On the Defect Relation of Holomorphic Curves for Moving Targets

Nobushige TODA＊
Department of General Studies（Mathematics）

（Received August 28，2000）

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into the n dimensional complex projective space $P^{n}(\boldsymbol{C}), T(r, f)$ the characteristic function of f, X a subset of $\boldsymbol{C}^{n+1}-\{\mathbf{0}\}$ in N－subgeneral position，where $N \geq n$ are positive integers，$X(0)=\{\boldsymbol{a}=$ $\left.\left(a_{1}, \cdots, a_{n+1}\right) \in X \mid a_{n+1}=0\right\}$ ．Put

$$
t(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{\log \max _{1 \leq j \leq n}\left|f_{j}\left(r e^{i \theta}\right)\right|-\log \max _{1 \leq j \leq n}\left|f_{j}\left(e^{i \theta}\right)\right|\right\} d \theta
$$

Then，we proved the following theorem in［9］：
Theorem A．For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q} \in X(2 N-n+1<q<\infty)$ ，

$$
\sum_{j=1}^{q} \omega(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq d+1+(n-d) \Omega
$$

where ω is a Nochka weight function for $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}, d=\Sigma_{a_{j} \in X(0)} \omega(j)$ and $\Omega=\lim \sup _{r \rightarrow \infty} t(r, f) / T(r, f)$ ．

In this paper，a generalization of this theorem to moving targets is given，which is an im－ provement of a result by M．Ru and W．Stoll（［4］）．

1 Introduction．

Let

$$
f: \boldsymbol{C} \rightarrow P^{n}(\boldsymbol{C})
$$

be a transcendental holomorphic curve from \boldsymbol{C} into the n dimensional complex projective space $P^{n}(\boldsymbol{C})$ ，where n is a positive integer，and let

$$
\hat{f}=\left(f_{1}, \cdots, f_{n+1}\right): C \rightarrow C^{n+1}-\{0\}
$$

be a reduced representation of f ．We then write

$$
f=\left[f_{1}, \cdots, f_{n+1}\right] .
$$

Put

$$
\|f(z)\|=\left\{\sum_{j=1}^{n+1}\left|f_{j}(z)\right|^{2}\right\}^{1 / 2}
$$

and the characteristic function $T(r, f)$ of f is defined as follows（see［11］）：

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\|
$$

Then，

[^0] Culture
$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=+\infty
$$
since f is transcendental.
We put
$$
\mathscr{M}_{o}(f)=\{\alpha \mid \text { meromorphic in }|z|<\infty, T(r, \alpha)=S(r, f)\},
$$
where $S(r, f)$ is any quantity satisfying
$$
S(r, f)=o(T(r, f))
$$
as $r \rightarrow \infty$, possibly outside a set of finite linear measure.
Let \mathscr{F} be a subfield of $\mathscr{M}_{o}(f)$ containing \boldsymbol{C} and
$$
\mathscr{F}^{n+1}=\left\{\left(\alpha_{1}, \cdots, \alpha_{n+1}\right) \mid \alpha_{j} \in \mathscr{F}\right\} .
$$

We also use $S(z, f)$ which is any non-negative function defined on \boldsymbol{C} satisfying

$$
\int_{0}^{2 \pi} \log ^{+} S\left(r e^{i \theta}, f\right) d \theta=S(r, f)
$$

Throughout the paper we suppose that f is non-degenerate over \mathscr{F}.
For a holomorphic curve $b=\left[b_{1}, \cdots, b_{n+1}\right]$ from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ we put

$$
\widehat{b}=\left(b_{1}, \cdots, b_{n+1}\right) \quad \text { and } \quad \widetilde{b}=\left(\frac{b_{1}}{b_{j_{o}}}, \cdots, \frac{b_{n+1}}{b_{j_{o}}}\right),
$$

where $b_{j_{o}}$ is the first element of b_{1}, \cdots, b_{n+1} not identically equal to zero.
Let $\mathscr{F}(f)$ be the set of holomorphic curves $b=\left[b_{1}, \cdots, b_{n-1}\right]$ from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ satisfying $\tilde{b} \in \mathscr{F}^{n-1}$. For any $b=\left[b_{1}, \cdots, b_{n+1}\right]$ of $\mathscr{F}(f)$, we set

$$
(b, f)=b_{1} f_{1}+\cdots+b_{n+1} f_{n+1} .
$$

For b of $\mathscr{F}(f)$ we put

$$
\begin{gathered}
m(r, b, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|b|\||\| f|}{|(b, f)|} d \theta \\
N(r, b, f)=N(r, 1 /(b, f))
\end{gathered}
$$

and

$$
\delta(b, f)=\liminf _{r \rightarrow \infty} \frac{m(r, b, f)}{T(r, f)}
$$

These three quantities are independent of the choice of representations of the curves f and b..

Let $N(\geq n)$ be an integer and X be a subset of $\mathscr{F}(f)$ such that $\# X \geq N+1$. We say that X is in N-subgeneral position if and only if the set $\hat{X}=\{\hat{b} \mid b \in X\}$ is in N-subgeneral position; that is to say, any $N+1$ elements of \hat{X} contain $n+1$ elements the determinant of which is not identically equal to zero. By definition, " n-subgeneral position" is "general position".

Ru and Stoll gave the following
Theorem A. For any $q(>2 N-n+1)$ elements $a_{j}(j=1, \cdots, q)$ of $\mathscr{F}(f)$ in N-subgeneral position,

$$
\sum_{j=1}^{q} \delta\left(a_{j}, f\right) \leq 2 N-n+1
$$

([4], Theorem II).
The purpose of this paper is to give a result which contains this theorem and which is an extension of the theorem obtained in [9]. We use the standard notation of the Nevanlinna theory ([2],[3]).

2 Preliminaries

I．Let $f=\left[f_{1}, \cdots, f_{n-1}\right], \mathscr{F}(f)$ etc．be as in Section 1 ．

Definition 1 （［8］）．1）We put

$$
u(z)=\max _{1 \leq j \leq n}\left|f_{j}(z)\right|
$$

and

$$
t(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log u\left(r e^{i \theta}\right) d \theta-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log u\left(e^{i \theta}\right) d \theta
$$

2） $\limsup _{r \rightarrow \infty} \frac{t(r, f)}{T(r, f)}=\Omega$
This $t(r, f)$ is independent of the choice of reduced representations of f and it is easy to see that
（a）$u(z) \leq\|f(z)\|$ ；
（b）$t(r, f) \leq T(r, f)+O(1)$ ；
（c）$N\left(r, 1 / f_{j}\right) \leq t(r, f)+O(1)(j=1, \cdots, n)$ ；
（d） $0 \leq \Omega \leq 1$ ．
We can easily give a holomorphic curve for which $\Omega<1$（see［8］）．

Lemma 1．For any $b=\left[b_{1}, \cdots, b_{n+1}\right]$ of $\mathscr{F}(f)$
（a）$b_{i} / b_{j} \in \mathscr{F}$ for any $1 \leq i \neq j \leq n+1$ if $b_{j} \not \equiv 0$ ；
（b）$(b, f) \neq 0$ ．

It is easy to see this lemma as \mathscr{F} is a field and f is non－degenerate over \mathscr{F}（see Prop． 2 in［7］）． By Lemma 1 （b），we have the following
Proposition 1．For any b of $\mathscr{F}(f)$
（a）$m(r, b, f)+N(r, b, f)=T(r, f)+S(r, f)$ ；
（b） $0 \leq \delta(b, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, b, f)}{T(r, f)} \leq 1$ ．

Lemma 2．For any $b=\left[b_{1}, \cdots, b_{n+1}\right]$ and $c=\left[c_{1}, \cdots, c_{n+1}\right]$ of $\mathscr{F}(f)$ such that $b_{j} \neq 0, c_{k} \neq 0$ ，

$$
T\left(r, \frac{(b, f) / b_{j}}{(c, f) / c_{k}}\right) \leq 2 n T(r, f)+S(r, f)
$$

We can prove this lemma as in Lemma 6（［7］）．

For any $b=\left[b_{1}, \cdots, b_{n+1}\right]$ of $\mathscr{F}(f)$ we set

$$
\tilde{b}=\left(\frac{b_{1}}{b_{j_{o}}}, \cdots, \frac{b_{n+1}}{b_{j_{o}}}\right)=\left(g_{1}, \cdots, g_{n+1}\right), \quad\|\tilde{b}\|=\frac{\|b\|}{\left|b_{j_{o}}\right|}
$$

and $\mathrm{for} F=(b, f)$

$$
\tilde{F}=(\tilde{b}, f)=\sum_{j=1}^{n+1} g_{j} f_{j}=\frac{(b, f)}{b_{j_{o}}} .
$$

Further we set

$$
\begin{gathered}
m(r, \tilde{b}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\tilde{b}\|\|f\|}{|(\widetilde{b}, f)|} d \theta, \\
N(r, \tilde{b}, f)=N(r, 1 /(\tilde{b}, f))
\end{gathered}
$$

and

$$
\delta(\tilde{b}, f)=\underset{r \rightarrow \infty}{\liminf } \frac{m(r, \tilde{b}, f)}{T(r, f)}
$$

Then it is easy to see that

$$
\begin{gathered}
m(r, \tilde{b}, f)=m(r, b, f) \\
N(r, \tilde{b}, f)=N(r, b, f)+S(r, f)
\end{gathered}
$$

and

$$
\delta(\widetilde{b}, f)=1-\underset{r \rightarrow \infty}{\limsup } \frac{N(r, \tilde{b}, f)}{T(r, f)}=\delta(b, f)
$$

II. Let q be any integer satisfying $2 N-n+1<q<\infty$ and put $Q=\{1,2, \cdots, q\}$. Let

$$
X=\left\{a_{1}, a_{2}, \cdots, a_{q} \mid a_{j} \in \mathscr{F}(f)\right\}
$$

be in N-subgeneral position and put $\hat{X}=\left\{\hat{a}_{j} \mid a_{j} \in X ; j=1, \cdots, q\right\}$.
Let $G\left(j_{1}, \cdots, j_{k}\right)(z)$ be the Gramian of $\widehat{a}_{j_{1}}(z), \cdots, \hat{a}_{j_{k}}(z)$ where $1 \leq j_{1}<j_{2}<\cdots<j_{k} \leq q$ and $2 \leq k \leq n+1$. We put

$$
I=\left\{\left(j_{1}, \cdots, j_{k}\right) \mid G\left(j_{1}, \cdots, j_{k}\right) \neq 0\right\}
$$

and

$$
\boldsymbol{S}=\left\{z \mid G\left(j_{1}, \cdots, j_{k}\right)(z)=0,\left(j_{1}, \cdots, j_{k}\right) \in I\right\}
$$

Then, \boldsymbol{S} is a countable subset of \boldsymbol{C} clustering nowhere in \boldsymbol{C}. For $\phi \neq P \subset Q$ and $z \in \boldsymbol{C}$, let

$$
H(z, P)=\text { the linear subspace of } C^{n+1} \text { spanned by }\left\{\widehat{a}_{j}(z) \mid j \in P\right\}
$$

and put

$$
d(z, P)=\operatorname{dim} H(z, P)
$$

Then, $d(z, P)$ is constant for $\boldsymbol{z} \in \boldsymbol{C}-\boldsymbol{S}$ as in Lemma 3.2([4]), and so we put for $\boldsymbol{z} \in \boldsymbol{C}-\boldsymbol{S}$

$$
d(P)=d(z, P)
$$

It is easy to see that if $P \subset Q$ and $N+1 \leq \# P$, then $d(P)=n+1$.

Ru and Stoll gave the following
Lemma 3([4], p.486). Let $X=\left\{a_{j} \mid j \in Q\right\}$ be a subset of $\mathscr{F}(f)$ in N-subgeneral position. Then for every $z \in \boldsymbol{C}-\boldsymbol{S}$, there exist a Nochka weight function

$$
\omega: Q \rightarrow(0,1]
$$

and a Nochka constant $\theta \geq 1$ such that
(a) $0<\omega(j) \theta \leq 1$ for all $j \in Q$;
(b) $q-2 N+n-1=\theta\left(\Sigma_{j=1}^{q} \omega(j)-n-1\right)$;
(c) If $\phi \neq P \subset Q$ with $\# P \leq N+1$, then $\Sigma_{j \in P} \omega(j) \leq d(P)$;
(d) $(N+1) /(n+1) \leq \theta \leq(2 N-n+1) /(n+1)$;

Remark 1. If $\# A=N+1$, then $H(z, A)=\boldsymbol{C}^{n+1}$ and $\left\{\widehat{a}_{j}(z) \mid j \in B(z)\right\}$ generates \boldsymbol{C}^{n+1} for $z \in \boldsymbol{C}-\boldsymbol{S}$.
Lemma 4 ([4], Theorem 3.3). Let $\omega: Q \rightarrow(0,1]$ be a Nochka weight function given in Lemma 3 and let $\left\{E_{j} \mid j \in Q\right\}$ be a family of functions $E_{j}: \boldsymbol{C}-\boldsymbol{S} \rightarrow[1, \infty)$. Take $A \subset Q$ with $0<\# A \leq N+1$ and $z \in \boldsymbol{C}-\boldsymbol{S}$. Then, there is a subset $B=B(z)$ of A such that $\# B(z)=d(A)$ and $\left\{\hat{a}_{j}(z) \mid j \in B(z)\right\}$ is a basis of $H(z, A)$ and such
that

$$
\prod_{j \in A} E_{j}(z)^{\omega(j)} \leq \prod_{j \in B} E_{j}(z) .
$$

Put

$$
X(0)=\left\{a_{j}=\left[a_{j 1}, \cdots, a_{j n+1}\right] \in X \mid a_{j n-1}=0\right\} \quad \text { and } \quad \widetilde{X}(0)=\left\{\tilde{a}_{j} \mid a_{j} \in X(0)\right\} .
$$

Then， $0 \leq l=\# X(0) \leq N$ ．Without loss of generality we put

$$
X(0)=\left\{a_{p+1}, \cdots, a_{p+l}\right\}
$$

where $q-l=p$ ．Further we put

$$
G_{k}=\left(a_{p+k}, f\right), \quad \tilde{G}_{k}=\left(\tilde{a}_{p+k}, f\right) \quad(k=1, \cdots, l)
$$

and

$$
d=\sum_{k=1}^{l} \omega(p+k)
$$

where $\omega: Q \rightarrow(0,1]$ is a Nochka weight function for X ．When $l>0$ we have the following

Lemma 5．For any $z \in \boldsymbol{C}-\boldsymbol{S}$ such that $\bar{G}_{k}(z) \neq 0, \infty$ for $k=1, \cdots, l$ ，
（I）When d is an integer，there are linearly independent vectors $\hat{a}_{p+i_{1}}(z), \cdots, \hat{a}_{p+i_{d}}(z)$ such that

$$
\left|\widetilde{G}_{i_{1}}(z) \cdots \widetilde{G}_{i_{d}}(z)\right| \leq \prod_{k=1}^{l}\left|\widetilde{G}_{k}(z)\right|^{\mid \omega(p+k)}
$$

（II）When d is not an integer，there are linearly independent vectors $\hat{a}_{p+i_{1}}(z), \cdots, \hat{a}_{p+i_{[d]+1}}(z)$ such that

$$
\left|\widetilde{G}_{i_{1}}(z) \cdots \widetilde{G}_{i[d]+1}(z)\right| \leq S(z, f) u(z)^{[d]+1-d} \prod_{k=1}^{l}\left|\widetilde{G}_{k}(z)\right|^{\omega(p+k)} .
$$

Proof．For a point z satisfying the condition given above，we suppose for brevity that

$$
\left|\widetilde{G}_{1}(z)\right| \leq\left|\widetilde{G}_{2}(z)\right| \leq \cdots \leq\left|\widetilde{G}_{l}(z)\right| .
$$

（A）（resp．（B））．We choose i_{1}, \cdots, i_{d}（resp．$i_{1}, \cdots, i_{[d]+1}$ ）as follows：
（i）$i_{1}=1$ ．
（ii）Suppose that $i_{1}, \cdots, i_{\mu-1}$ are chosen for $\mu \geq 2$ ．Then we choose i_{μ} as follows（ $\mu \leq d$（resp．$\mu \leq[d]+1$ ））：＂i_{μ} is the least number in $\left\{i_{\mu-1}+1, \cdots, l\right\}$ such that $\hat{a}_{p+i_{1}}(z), \cdots, \widehat{a}_{p+i_{\mu}}(z)$ are linearly independent．＂Then， $\widetilde{G}_{i_{1}}(z), \cdots, \widetilde{G}_{i_{d}}(z)$（resp．$\left.\widetilde{G}_{i_{1}}(z), \cdots, \widetilde{G}_{i_{[d]+1}}(z)\right)$ satisfy the inequality in（I）（resp．（II））． In fact，put for $1 \leq m \leq d-1$（resp． $1 \leq m \leq[d])$

$$
\sigma(m)=i_{m+1}-1 \quad \text { and } \quad \varphi(m)=\sum_{k=1}^{\sigma(m)} \omega(p+k)
$$

We first note that

$$
\begin{equation*}
\prod_{k=1}^{o(d-1)}\left|\tilde{G}_{k}(z)\right|^{\omega(p+k)} \cdot\left|\tilde{G}_{i_{d}}(z)\right|^{d-\varphi(d-1)} \leq \prod_{k=1}^{l}\left|\tilde{G}_{k}(z)\right|^{\omega(p+k)} \tag{1}
\end{equation*}
$$

（resp．

$$
\begin{equation*}
\prod_{k=1}^{\sigma([d])}\left|\widetilde{G}_{k}(z)\right|^{\omega(p+k)} \cdot\left|\tilde{G}_{i[d]+1}(z)\right|^{[d]+1-\varphi([d])} \leq \prod_{k=1}^{l}\left|\tilde{G}_{k}(z)\right|^{\omega(p+k)} \cdot\left(S(z, f) u(z)^{[d]+1-d}\right) \tag{2}
\end{equation*}
$$

since

$$
\left|\widetilde{G}_{i_{d}}(z)\right| \leq\left|\tilde{G}_{k}(z)\right|\left(i_{d}<k\right)\left(\text { resp. }\left|\tilde{G}_{i_{[d]+1}}(z)\right| \leq\left|\tilde{G}_{k}(z)\right|\left(i_{[d]+1}<k\right) \text { and }\left|\tilde{G}_{l}(z)\right| \leq S(z, f) u(z)\right) .
$$

Then，by using Lemma 3 （c），we have

$$
\begin{equation*}
\left|\widetilde{G}_{1}(z) \cdots \widetilde{G}_{i_{d}}(z)\right| \leq \prod_{k=1}^{o(d-1)}\left|\tilde{G}_{k}(z)\right|^{\omega(p+k)} \cdot\left|\tilde{G}_{i_{d}}(z)\right|^{d-\varphi(d-1)} \tag{3}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{\nu=1}^{d} \log \left|\widetilde{G}_{i_{\nu}}(z)\right| \leq \sum_{k=1}^{\sigma(d-1)} \omega(p+k) \log \left|\widetilde{G}_{k}(z)\right|+(d-\varphi(d-1)) \log \left|\widetilde{G}_{i_{d}}(z)\right| . \tag{4}
\end{equation*}
$$

We prove (4) as follows. We first note that by Lemma 3(c)

$$
\begin{equation*}
\varphi(m) \leq m \quad(m=1, \cdots, d-1(\text { resp. [d] })) \tag{5}
\end{equation*}
$$

By the choice of $\left\{i_{1}, \cdots, i_{d}\right\}$, we have the following inequalities.

$$
\begin{aligned}
& \log \left|\tilde{G}_{i_{1}}(z)\right| \leq \sum_{k=1}^{o(1)} \omega(p+k) \log \left|\tilde{G}_{k}(z)\right|+(1-\varphi(1)) \log \left|\tilde{G}_{i_{2}}(z)\right| ; \\
& \log \left|\tilde{G}_{i_{m}}(z)\right| \leq \sum_{k=i_{m}}^{o(m)} \omega(p+k) \log \left|\tilde{G}_{k}(z)\right|+(m-\varphi(m)) \log \left|\tilde{G}_{i_{m-1}}(z)\right|-(m-1-\varphi(m-1)) \log \left|\widetilde{G}_{i_{m}}(z)\right| \\
& \quad(m=2, \cdots, d-1) ; \\
& \log \left|\tilde{G}_{i_{d}}(z)\right|=\log \left|\tilde{G}_{i_{d}}(z)\right| .
\end{aligned}
$$

Adding all these d inequalities side by side, we have

$$
\sum_{\nu=1}^{d} \log \left|\tilde{G}_{i_{\nu}}(z)\right| \leq \sum_{k=1}^{\sigma(d-1)} \omega(p+k) \log \left|\tilde{G}_{k}(z)\right|+(d-\varphi(d-1)) \log \left|\tilde{G}_{i_{d}}(z)\right|
$$

which is the desired inequality. From (1) and (3) we have (I).
(resp. We can also prove

$$
\begin{equation*}
\left|\tilde{G}_{i_{1}}(z) \cdots \widetilde{G}_{i[d]+1}(z)\right| \leq \sum_{k=1}^{\sigma([d])}\left|\widetilde{G}_{k}(z)\right|^{\omega(p+k)} \cdot\left|\widetilde{G}_{i_{[d]+1}}(z)\right|^{[d]+1-\varphi([d])} \tag{6}
\end{equation*}
$$

as in (3). From (2) and (6), we have (II).)

3 Defect relation

Let $f=\left[f_{1}, \cdots, f_{n+1}\right], \mathscr{F}(f), X, X(0), \widetilde{X}$ and $\widetilde{X}(0)$ etc. be as in Section 2. Then, we have the following theorem.

Theorem. Put $d=\Sigma_{k=1}^{l} \omega(p+k)$. Then, the following inequality holds:

$$
\sum_{j=1}^{q} \omega(j) \delta\left(a_{j}, f\right) \leq d+1+(n-d) \Omega
$$

where $q=p+l$ and ω is a Nochka weight function from $Q=\{1, \cdots, q\}$ into (0,1$]$ given in Lemma 3.

Proof. Put for $j=1, \cdots, q$

$$
a_{j}=\left[a_{j 1}, \cdots, a_{j n+1}\right], \quad \tilde{a}_{j}=\left(g_{j 1}, \cdots, g_{j n+1}\right), \quad F_{j}=\left(a_{j}, f\right), \quad \tilde{F}_{J}=\left(\tilde{a}_{j}, f\right)
$$

and

$$
\begin{equation*}
E_{j}=\frac{\left\|\widetilde{a}_{j}|\||f|\|\right.}{\left|\widetilde{F}_{j}\right|}=\frac{\left\|a_{j}| |\right\| f \|}{\left|F_{j}\right|} . \tag{7}
\end{equation*}
$$

For any integer s, let $V(s)$ be the vector space generated by

$$
\left\{\prod_{k=1 j=1}^{n+1} \prod_{j k}^{s(j, k)} \mid \sum_{k=1}^{n+1} \sum_{j=1}^{q} s(j, k) \leq s, s(j, k) \geq 0 \text { and integer }\right\}
$$

over \boldsymbol{C} and put

$$
d(s)=\operatorname{dim} V(s)
$$

Then, $V(s)$ is a subspace of $V(s+1)$ and

$$
\begin{equation*}
\liminf _{s \rightarrow \infty} \frac{d(s+1)}{d(s)}=1 \tag{8}
\end{equation*}
$$

by the deduction to absurdity since $d(s) \leq\binom{ q(n+1)+s}{s}$（see［5］，［6］）．
Let

$$
b_{1}, \cdots, b_{d(s)}, b_{d(s)+1}, \cdots, b_{d(s+1)}
$$

be a basis of $V(s+1)$ such that

$$
b_{1}, \cdots, b_{d(s)}
$$

form a basis of $V(s)$ ．Then，the functions

$$
\left\{b_{t} f_{k} \mid t=1, \cdots, d(s+1), k=1, \cdots, n+1\right\}
$$

are linearly independent over \boldsymbol{C} ．We put

$$
W=W\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(s+1)} f_{n+1}\right)
$$

where $W(g, \cdots, h)$ is the Wronskian of the functions g, \cdots, h ．Note that

$$
N(r, W)=S(r, f)
$$

Let $z(\neq 0)$ be a point of $\boldsymbol{C}-\boldsymbol{S}$ and at which none of $\left\{\widetilde{F}_{j}\right\}_{j=1}^{q}$ has pole or zero and none of $\left\{g_{j n+1}\right\}_{j=1}^{p}$ has zero． Note that we have only to consider the case $p \geqq N+1$ ．We rearrange $\left\{\widetilde{F}_{j}(z)\right\}_{j=1}^{p}$ as follows：

$$
\left|\widetilde{F}_{j_{1}}(z)\right| \leq\left|\widetilde{F}_{j_{2}}(z)\right| \leq \cdots \leq\left|\widetilde{F}_{j_{N+1}}(z)\right| \leq \cdots \leq\left|\widetilde{F}_{j_{p}}(z)\right|
$$

where $1 \leq j_{1}, \cdots, j_{p} \leq p$ ．Then，we have

$$
\begin{align*}
\|f(z)\| & \leq S(z, f)\left|\tilde{F}_{j_{k}}(z)\right|(k=N+1, \cdots, p) \tag{9}\\
\left|\widetilde{F}_{j_{k}}(z)\right| & \leq S(z, f)\|f(z)\|(k=1, \cdots, p) \tag{10}
\end{align*}
$$

and for any $j_{k}(\leq p)$

$$
\begin{align*}
\|f(z)\| & \leq S(z, f)\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n}(z)\right|^{2}+\left|\tilde{F}_{j_{k}}(z)\right|^{2}\right)^{1 / 2} \tag{11}\\
& \leq \begin{cases}S(z, f) u(z) & \text { if }\left|\widetilde{F}_{j_{k}}(z)\right| \leq u(z), \\
S(z, f)\left|\tilde{F}_{j_{k}}(z)\right| & \text { otherwise }\end{cases} \tag{12}
\end{align*}
$$

since the $n+1-$ th element of $\tilde{a}_{j_{k}}$ is different from zero at z for any $j_{k}(\leq p)$ ．
By（9）we have at the point z

$$
\begin{equation*}
\left(\prod_{j=1}^{q} E_{j}^{\omega(j)}\right)^{d(s)} \leq S(z, f)\left(\prod_{\nu=1}^{N+1} E_{j_{\nu}}^{\omega\left(j_{\nu}\right)} \cdot \prod_{k=1}^{l} E_{p+k}^{\omega(p+k)}\right)^{d(s)} \equiv J_{1} \tag{13}
\end{equation*}
$$

We want to estimate this J_{1} ．By Lemma 4 we have

$$
\begin{equation*}
J_{1} \leq S(z, f)\left(\prod_{i=1}^{n+1} \frac{\|f\|}{\left|\widetilde{H}_{i}\right|}\right)^{d(s)} \tag{14}
\end{equation*}
$$

where $\widetilde{H}_{1}, \cdots, \widetilde{H}_{n+1}$ are chosen from $\left\{\widetilde{F}_{j_{1}}, \cdots, \widetilde{F}_{j_{N+1}}, \widetilde{G}_{1}, \cdots, \widetilde{G}_{l}\right\}$ and are linearly independent over \mathscr{F} ．We put

$$
\tilde{H}_{\mu}=\left(\tilde{a}_{i_{\mu}}, f\right)(\mu=1, \cdots, n+1), \boldsymbol{H}=\left\{\tilde{a}_{i_{\mu}}\right\}_{\mu=1}^{n+1}
$$

and note that

$$
\boldsymbol{H}-\tilde{X}(0) \neq \phi
$$

We put

$$
J_{2}=\left(\frac{\|f\|^{n+1}}{\left|\widetilde{H}_{1} \cdots \widetilde{H}_{n+1}\right|}\right)^{d(s)}
$$

(I) The case when for any μ such that $\tilde{a}_{i_{\mu}} \in \boldsymbol{H}-\tilde{X}(0)$

$$
u(z)<\left|\tilde{H}_{\mu}(z)\right|
$$

and for some $j_{\nu}(1 \leq \nu \leq N+1)$

$$
\left|\widetilde{F}_{j_{\nu}}(z)\right| \leq u(z),
$$

or when for some μ such that $\tilde{a}_{i_{\mu}} \in \boldsymbol{H}-\widetilde{X}(0)$

$$
\left|\tilde{H}_{\mu}(z)\right| \leq u(z)
$$

In this case, we have by (11) and (12)

$$
\|f(z)\| \leq S(z, f) u(z)
$$

and

$$
\begin{equation*}
J_{2} \leq S(z, f)\left(\frac{u(z)^{n+1}}{\left|\widetilde{H}_{1} \cdots \widetilde{H}_{n+1}\right|}\right)^{d(s)} \tag{15}
\end{equation*}
$$

Now, as $\widetilde{H}_{1}, \cdots, \widetilde{H}_{n+1}$ are linearly independent over \mathscr{F}, it holds that

$$
\left\{b_{1} \tilde{H}_{1}, b_{2} \tilde{H}_{1}, \cdots, b_{d(s)} \tilde{H}_{n+1}\right\}
$$

are linearly independent over \boldsymbol{C}. Since $\bar{F}_{j}=\left(\widetilde{a}_{j}, f\right)$, these $(n+1) d(s)$ functions can be represented as linear combinations of

$$
\left\{b_{t} f_{k} \mid 1 \leq t \leq d(s+1), 1 \leq k \leq n+1\right\}
$$

with constant coefficients:

$$
\left(b_{1} \tilde{H}_{1}, b_{2} \widetilde{H}_{1}, \cdots, b_{d(s)} \tilde{H}_{n+1}\right)=\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(s+1} f_{n-1}\right) D_{1}
$$

where D_{1} is an $(n+1) d(s+1) \times(n+1) d(s)$ matrix the elements of which are constants and the rank of which is equal to $(n+1) d(s)$. Let D_{2} be an $(n+1) d(s+1) \times(n+1)\{d(s+1)-d(s)\}$ matrix consisting of constant elements such that the matrix

$$
D=\left(D_{1} D_{2}\right)
$$

is regular. Put for $L=(n+1)\{d(s+1)-d(s)\}$

$$
\left(K_{1}, \cdots, K_{L}\right)=\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(s+1)} f_{n+1}\right) D_{2}
$$

then

$$
\begin{equation*}
\left(b_{1} \tilde{H}_{1}, b_{2} \tilde{H}_{1}, \cdots, b_{d(s)} \tilde{H}_{n+1}, K_{1}, \cdots, K_{L}\right)=\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(s+1)} f_{n+1}\right) D \tag{16}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
W\left(b_{1} \tilde{H}_{1}, b_{2} \tilde{H}_{1}, \cdots, K_{L}\right)=(\operatorname{det} D) W, \quad \operatorname{det} D \neq 0 \tag{17}
\end{equation*}
$$

where $W=W\left(b_{1} f_{1}, b_{2} f_{1}, \cdots, b_{d(s+1)} f_{n+1}\right)$. We then have from (11)

$$
\begin{align*}
\frac{1}{\left(\Pi_{k=1}^{n+1}\left|\tilde{H}_{k}\right|\right)^{d(s)}} & =\frac{\left|W\left(b_{1} \tilde{H}_{1}, \cdots, K_{L}\right)\right|}{|W||\operatorname{det} D|} \cdot \frac{1}{\left(\Pi_{k=1}^{n+1}\left|\widetilde{H}_{k}\right|\right)^{d(s)}} \\
& =\frac{1}{|\operatorname{det} D||W|} \cdot \frac{\left|W\left(b_{1} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left(\Pi_{k=1}^{n+1}\left|\widetilde{H}_{k}\right|\right)^{d(s)}} \\
& \leq S(z, f) \frac{u(z)^{L}}{|W|} \cdot \frac{\left|W\left(b_{1} \widetilde{H}_{1}, b_{2} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left|b_{1} \widetilde{H}_{1} \cdot b_{2} \widetilde{H}_{1} \cdots K_{L}\right|} \tag{18}
\end{align*}
$$

since $\left|\widetilde{H}_{k}(z)\right| \leq S(z, f)\|f(z)\|,\left|K_{j}(z)\right| \leq S(z, f)\|f(z)\|$ and $\|f(z)\| \leq S(z, f) u(z)$ in this case．
From（15）and（18）we have

$$
\begin{equation*}
J_{2} \leq S(z, f) \frac{u(z)^{(n+1) d(s+1)}}{|W|} \cdot \frac{\left|W\left(b_{1} \widetilde{H}_{1}, b_{2} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left|b_{1} \widetilde{H}_{1} \cdot b_{2} \widetilde{H}_{1} \cdots K_{L}\right|} \tag{19}
\end{equation*}
$$

（II）The case when for any μ such that $\tilde{a}_{i_{\mu}} \in \boldsymbol{H}-\tilde{X}(0)$

$$
u(z)<\left|\tilde{H}_{\mu}(z)\right|
$$

and for any $j_{\nu}(1 \leq \nu \leq N+1)$

$$
u(z)<\left|\tilde{F}_{j_{\nu}}(z)\right|
$$

In this cae，by（11）and（12）we have for any $j_{\nu}(\nu=1, \cdots, N+1)$

$$
\|f(z)\| \leq S(z, f)\left|\widetilde{F}_{j_{\nu}}\right|
$$

and from（13）we have

$$
\begin{equation*}
J_{1} \leq S(z, f) \tag{20}
\end{equation*}
$$

when $l=0$ ，and when $l>0$

$$
\begin{align*}
J_{1} & \leq S(z, f)\left(\prod_{k=1}^{l} E_{p+k}^{\omega(p+k)}\right)^{d(s)} \\
& \leq S(z, f) \frac{\|f(z)\|^{d d(s)}}{\left(\Pi_{k=1}^{l}\left|\widetilde{G}_{k}(z)\right|^{\omega(p+k)}\right)^{d(s)}} \tag{21}
\end{align*}
$$

When $l>0$ we put

$$
J_{3}=1 /\left(\prod_{k=1}^{l}\left|\widetilde{G}_{k}(z)\right|^{\omega(p+k)}\right)^{d(s)}
$$

When d is a positive integer，by Lemma $5(\mathrm{I})$ there are d functions $\tilde{G}_{i_{1}}, \cdots, \tilde{G}_{i_{d}}$ linearly independent over \mathscr{F} such that

$$
\begin{equation*}
J_{3} \leqq 1 /\left|\widetilde{G}_{i_{1}}(z) \cdots \widetilde{G}_{i_{d}}(z)\right|^{d(s)} \tag{22}
\end{equation*}
$$

When d is not an integer，by Lemma 5 （II）there are $[d]+1$ functions $\widetilde{G}_{i_{1}}, \cdots, \widetilde{G}_{i_{[d]+1}}$ linearly independent over \mathscr{F} such that

$$
\begin{equation*}
J_{3} \leqq S(z, f) u(z)^{([d]+1-d) d(s)} /\left|\tilde{G}_{i_{1}}(z) \cdots \tilde{G}_{[[d]+1}(z)\right|^{d(s)} . \tag{23}
\end{equation*}
$$

We put

$$
<d>= \begin{cases}d & \text { if } d \text { is an integer }, \\ {[d]+1} & \text { otherwise }\end{cases}
$$

Now we can find $\boldsymbol{e}_{i_{<d\rangle+1}}, \cdots, \boldsymbol{e}_{i_{n}}$ such that

$$
\tilde{a}_{i_{1}}, \cdots, \tilde{a}_{i_{<d\rangle}}, \boldsymbol{e}_{i_{<d\rangle+1}}, \cdots, \boldsymbol{e}_{i_{n}}, \boldsymbol{e}_{n+1}
$$

are linearly independent over \mathscr{F} ，where

$$
\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n+1}
$$

are the standard basis of \boldsymbol{C}^{n+1} ．Then，

$$
\tilde{G}_{i_{1}}, \cdots, \tilde{G}_{i_{<d\rangle}>}, f_{i_{<d\rangle}+1}, \cdots, f_{i_{n}}, f_{n+1}
$$

are linearly independent over \mathscr{F} ．Put

$$
\widetilde{H}_{j}= \begin{cases}\widetilde{G}_{i_{j}} & (j=1, \cdots,<d>) \\ f_{i_{j}} & (j=<d>+1, \cdots, n) \\ f_{n+1} & (j=n+1)\end{cases}
$$

(We use the same notation as in the case (I) for simplicity.) Then, as in the case of (I), there are K_{1}, \cdots, K_{L} satisfying (16), (17) and we have the following inequality at z as in (18)

$$
\begin{align*}
\frac{1}{\Pi_{k=1}^{\langle d>}\left|\widetilde{G}_{i_{k}}(z)\right|^{d(s)}} & \leq \frac{\left(\|f(z)\| u(z)^{n-<d>}\right)^{d(s)}}{\prod_{k=1}^{n+1}\left|\widetilde{H}_{k}\right|^{d(s)}} \\
& =\frac{\left(\|f(z)\| u(z)^{n-\langle d>}\right)^{d(s)}}{\prod_{k=1}^{n+1}\left|\widetilde{H}_{k}\right|^{d(s)}} \cdot \frac{\left|W\left(b_{1} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{|\operatorname{det} D||W|} \\
& \leq S(z, f)\|f(z)\|^{L} \frac{\left(\|f(z)\| u(z)^{n-\langle d>}\right)^{d(s)}}{|W|} \cdot \frac{\left|W\left(b_{1} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left|b_{1} \widetilde{H}_{1} \cdots K_{L}\right|} \tag{24}
\end{align*}
$$

since $\left|f_{i_{j}}(z)\right| \leq u(z)$ if $i_{j} \leq n$ by Definition 1 and for any $j,\left|K_{j}(z)\right| \leq S(z, f)\|f(z)\|$ as in (10). Putting

$$
n(s)=(n+1) d(s+1)-(n-d) d(s)
$$

from (21), (22), (23) and (24) we have

$$
\begin{equation*}
J_{1} \leq S(z, f) \frac{\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)}}{|W|} \cdot \frac{\left|W\left(b_{1} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left|b_{1} \widetilde{H}_{1} \cdots K_{L}\right|} \tag{25}
\end{equation*}
$$

Since

$$
u(z)^{(n+1) d(s+1)} \leq\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)},
$$

from (13), (14), (19), (20) and (25) we have the inequality

$$
\begin{aligned}
d(s) \sum_{j=1}^{q} \omega(j) \log \frac{\left\|a_{j}(z)|\|\mid f(z)\|\right.}{\left|F_{j}\right|} \leq \log ^{+} \frac{\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)}}{|W|}+\sum_{\left\{H_{1}, \cdots, H_{n-1}\right\}} \log ^{-} \frac{\left|W\left(b_{1} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left|b_{1} \widetilde{H}_{1} \cdots K_{L}\right|} \\
+\log ^{+} S(z, f),
\end{aligned}
$$

where the sum $\sum_{\left\{H_{1}, \cdots, H_{n-1}\right\}}$ is taken over all $\left\{H_{1}, \cdots, H_{n-1}\right\}$ which are linearly independent over \mathscr{F} chosen from $\left\{F_{1}, \cdots, F_{q}, f_{1}, \cdots, f_{n+1}\right\}$. This inequality is independent of $z \in \boldsymbol{C}-\boldsymbol{S}$ and at which none of $\left\{\tilde{F}_{j}\right\}_{j=1}^{q}$ has pole of zero and none of $\left\{g_{j n+1}\right\}_{j=1}^{p}$ has zero.

Integrating this inequality with respect to θ from 0 to 2π, where $z=r e^{i \theta}$, we obtain

$$
\begin{equation*}
d(s) \sum_{j=1}^{q} \omega(j) m\left(r, a_{j}, f\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)}}{|W|} d \theta+S(r, f) \tag{26}
\end{equation*}
$$

since

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{\left|W\left(b_{1} \widetilde{H}_{1}, \cdots, K_{L}\right)\right|}{\left|b_{1} \widetilde{H}_{1} \cdots K_{L}\right|} d \theta=S(r, f)
$$

as in [1] by Lemma 2 and by the inequality

$$
T\left(r, K_{j} / b_{1} H_{1}\right) \leq 2 n T(r, f)+S(r, f)(j=1, \cdots, L)
$$

which we can prove as in Lemma 2 since $b_{t} \in \mathscr{F}(t=1, \cdots, d(s+1))$ and since

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} S\left(r e^{i \theta}, f\right) d \theta=S(r, f)
$$

Now,

$$
\log +\frac{\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)}}{|W|}=\log \max \left\{\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)},|W|\right\}-\log |W|
$$

and

$$
\begin{aligned}
|W| & =\left|b_{1} f_{1} \cdots b_{d(s+1)} f_{n+1}\right| \frac{|W|}{\left|b_{1} f_{1} \cdots b_{d(s+1} f_{n+1}\right|} \\
& \leq S(z, f)\|f(z)\|^{d(s+1)} u(z)^{n d(s+1)} \frac{|W|}{\left|b_{1} f_{1} \cdots b_{d(s+1)} f_{n+1}\right|} \\
& \leq S(z, f)\|f(z)\|^{n(s)} u(z)^{(n-d) d(s)} \frac{|W|}{\left|b_{1} f_{1} \cdots b_{d(s+1)} f_{n+1}\right|}
\end{aligned}
$$

since $u(z) \leq\|f(z)\|$ ．Using these relations we have from（26）

$$
\begin{equation*}
d(s) \sum_{j=1}^{q} \omega(j) m\left(r, a_{j}, f\right) \leq n(s) T(r, f)+(n-d) d(s) t(r, f)-N(r, 1 / W)+S(r, f) \tag{27}
\end{equation*}
$$

which reduces to

$$
d(s) \sum_{j=1}^{q} \omega(j) \delta\left(a_{j}, f\right) \leq(n+1) d(s+1)-(n-d) d(s)-(n-d) d(s) \Omega
$$

since $n(s)=(n+1) d(s+1)-(n-d) d(s)$ ．
Dividing both sides of this inequality by $d(s)$ and letting $s \rightarrow \infty$ so that $\frac{d(s+1)}{d(s)}$ tends to 1 according to（8）， we obtain

$$
\sum_{j=1}^{q} \omega(j) \delta\left(a_{j}, f\right) \leq d+1+(n-d) \Omega
$$

Remark 2 （Second fundamental inequality）．For any positive ϵ ，

$$
\sum_{j=1}^{q} \omega(j) m\left(r, a_{j}, f\right) \leq(d+1+\epsilon) T(r, f)+(n-d) t(r, f)+S(r, f)
$$

In fact，let s be so large that $d(s+1) / d(s)<1+\epsilon$ by（8），we have this inequality from（27）immediately．

Corollary 1．Under the same assumption as in Theorem，

$$
\sum_{j=1}^{q} \delta\left(a_{j}, f\right) \leq 2 N-n+1-\frac{(N+1)(n-d)(1-\Omega)}{n+1}
$$

Proof．We can easily prove this corollary by applying Lemma 3（a），（b）and（d）to Theorem as usual．

As in Definition 3 in［10］，we can definie X to be maximal or ν－maximal in the sense of subgeneral position． By using this notion，we have the following

Corollary 2．Let X be ν－maximal in the sense of subgeneral position．Then we have the inequality

$$
\sum_{j=1}^{q} \delta\left(a_{j}, f\right) \leq 2 N-n+1-\frac{(N+1)(n-\nu)(1-\Omega)}{n+1} .
$$

In fact，the inequality $d \leq \nu$ holds in this case and we have this corollary from Corollary 1 immediately．

Corollary 3 （［9］，Theorem 3）．For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q} \in \boldsymbol{C}^{n+1}-\{0\}(2 N-n+1<q<\infty)$ in N－subgeneral position， we have the following inequalities：
（A）$\sum_{j=1}^{q} \omega(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq d+1+(n-d) \Omega ;$
（B）$\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1-\frac{(N+1)(n-d)(1-\Omega)}{n+1}$ ，
where ω is a Nochka weight function for $X=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}\right\}$ and $d=\Sigma_{a_{j} \in X(0)} \omega(j)$ ， $X(0)=\left\{\boldsymbol{a}_{j}=\left(a_{j 1}, \cdots, a_{j n+1}\right) \in X \mid a_{j n+1}=0\right\}$.

By taking $\mathscr{F}=\boldsymbol{C}$ in Theorem and Corollary 1 we have this corollary immediately．

References

[1] H.Cartan: Sur les zéros des combinaisons linéaires de p fonctions holomorphes données. Mathematica(cluj), 7(1933), 5-33.
[2] W.K.Hayman: Meromorphic functions. Oxford at the Clarendon Press, 1964.
[3] R.Nevanlinna: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthier-Villars, Paris 1929.
[4] M.Ru and W.Stoll: The Cartan conjecture for moving targets. Proc. Symp. in Pure Math., 52(1991), 477508.
[5] N.Steinmetz: Eine Verallgemeinerungen des zweiten Nevanlinna-schen Hauptzatzes. J. Reine und Angew. Math., 368(1986), 134-141.
[6] W.Stoll: An extension of the theorem of Steinmetz-Nevanlinna to holomorphic curves. Math. Ann., 282(1988), 185-222.
[7] N.Toda: On the order of holomorphic curves with maximal deficiency sum. Kodai Math. J., 18-3(1995), 451474.
[8] N.Toda: On the fundamental inequality for non-degenerate holomorphic curves. Kodai Math. J., 203(1997), 189-207.
[9] N.Toda: An improvement of the second fundamental theorem for holomorphic curves. Proceedings of the Second ISAAC Congress Vol. 1 (2000), 501-510.
[10] N.Toda: On the second fundamental inequality for holomorphic curves. Bull. Nagoya Inst. of Tech., 50(1998), 123-135.
[11] H.Weyl and F.J.Weyl: Meromorphic functions and analytic curves. Ann. Math. Studies 12, Princeton 1943.

[^0]: ＊Supported in part by Grant－in－Aid for Scientific Research（NO．11640164），Ministry of Education，Science and

