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Let f=[f£,"*".f,+1] be a transcendental holomorphic curve from C into the n dimensional
complex projective space P"(C), T(r, f) the characteristic function of f, X a subset of
C*""'—{0} in N -subgeneral position, where N>n are positive integers, X(0)={a=
(a,,a,.)EXla,.,=0}. Put

27 . .
t(r, )= | llog max | £(re™) | — log max | £(™) 1) do.

Then, we proved the following theorem in [9]:
Theorem A. For any a,,*, ,€EX 2N—n+1<g< ),

q

Y w(Déla;, H<d+1+(n—ad)Q,

i=1
where @ is a Nochka weight function for a, -, a, d:Z,,JEX(O)w(j) and
Q=1im sup,_.. t(r, £)/T(r, ).

In this paper, a generalization of this theorem to moving targets is given, which is an im-
provement of a result by M. Ru and W. Stoll ([4]).

1 Introduction.
Let
f:C— P"(C)

be a transcendental holomorphic curve from C into the #» dimensional complex projective space P*(C), where n

is a positive integer, and let
f:(fl"“’f;l+l) :C— "' - {0}
be a reduced representation of f. We then write
f: I:fl’ T f;H—I]'
Put
nt+1
I£G1={ ), 1 £ 13

j=1

and the characteristic function T(r, f) of f is defined as follows (see [11]):

_ 1 b i | |
T(r, )= | logllf(re™ a6 10g] F(O)].

Then,
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lim 2D = oo

e | g

since f 1s transcendental.
We put

M, () = {a|meromorphic inlz| < oo, T(r,a) =S(r, 1},
where S(r, f) is any quantity satisfying
S(r,_f) =0o(T(r, )

as r — o0, possibly outside a set of finite linear measure.
Let & be a subfield of .#,(f) containing C and

F={(a,, @) | EF).
We also use S(z, f) which is any non-negative function defined on C satisfying
2 ) .
fo log™ S(re®, /do=S(r, f).

Throughout the paper we suppose that f is non-degenerate over g .

For a holomorphic curve b= [b, -*-, b,.,] from C into P"(C) we put
b= oo O
b_(bp , bnﬁrl) and b_‘(bjny s bjo )7
where bjo 1s the first element of by, -**, b,., not identically equal to zero.

Let F(f) be the set of holomorphic curves b= [b,, =+, b,.,] from C into P"(C) satisfying bEF" '. For any
b=1[by, =+, b,.,] of F(f), we set

(b' f) :blfl +”.+bn+1 n+1-

For b of ¥ (f) we put

_ 1 = blllA
m(r, b, f) = 27rfo log———*|(b'f)|d6,

N(r, b, )=N(r, 1/(b, ))
and

m(r, b, f)
T(r, )

These three quantities are independent of the choice of representations of the curves f and b..

o(b, = lim inf

Let N(=n) be an integer and X be a subset of % (f) such that #X> N+1. We say that X is in N-subgeneral
position if and only if the set X=1{b|bEX} isin N-subgeneral position; that is to say, any N+1 elements of
X contain n+1 elements the determinant of which is not identically equal to zero. By definition, “n-subgeneral
position” is “general position”.

Ru and Stoll gave the following

Theorem A. For any ¢(>2N—n+1) elements a; (j=1,-, ¢) of F(f) in N-subgeneral position,

g
Y 6(a; f)<2N—n+1
j=1

([4], Theorem II).
The purpose of this paper is to give a result which contains this theorem and which is an extension of the
theorem obtained in [9]. We use the standard notation of the Nevanlinna theory ([2],[31]).
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2 Preliminaries

and

I Let f="Lf,>".fo1l, F(F) etc. be as in Section 1.

Definition 1 ([8]). 1) We put

u(z) = max FACHN

_th i _qu i0
t(r, f)727z . log u(re*®)do 5 ). log u(e**)do.

N _
»He

2) limsup ;‘((rr,

This t(r, f) is independent of the choice of reduced representations of f and it is easy to see that

(a) u(2) <l f(2I};

(b) tlr, )< T(r, H+0Q);

(¢) N(r, 1/f) <t(r, H+0() (G=1, -, n);
(d) 0<Q<1.

We can easily give a holomorphic curve for which Q<1 (see [8]).

Lemma 1. For any b=1[b,, -, b,.,] of F(f)
(a) b;/b;€F for any 1<i#j<n+1if b;%0; (b) (b, f)#0.

It is easy to see this lemma as & is a field and f is non-degenerate over & (see Prop.2 in [7]).

By Lemma 1 (b), we have the following
Proposition 1. For any & of F(f)
(a) m(r, b, )+N(r, b, ) =T(r, H+S(r, f);

N(r, b, )

(b) 0<6(b, /)=1~ limsup T(r, f)

<L

Lemma 2. For any b= [b,, >, b,.,] and ¢=[c,, -, ¢,+,) of F(f) such that b;#0, ¢, #0,

(b, N/b,
T(” (e, N/

We can prove this lemma as in Lemma 6([7]).

) <2nT(r, f)+S(r, /)

For any b=[b,, ***, b,+,] of F(f) we set

bl bn+

it we G A U

Jo

and for F= (b, f)

F=(. )= Z g,f= (b[;.f)'

Jo

Further we set

and

= 1 Bl
m(r, b, )= f 81 G 00

N(r, b, )=N(r, 1/(b, £))

123
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m(r, b, )

(b, = liginf TCr, )

Then it is easy to see that

m(r, b, )=m(r, b, 1),
N(r, b, /) =N(r, b, /) +S(r, f)

and

N(r, b, f)

TCr. ) =35(b, ).

5(b, f) =1— limsup

II. Let ¢ be any integer satisfying 2N—n+1<g<cc and put @ ={1, 2, -+, ¢}. Let
X=Aa, a -, aq|aj6g(f)}

be in N-subgeneral position and put X = {ajla,€X;j=1,, ¢}.
Let G(j,, -+, ji) (2) be the Gramian of @; (2), -+, a;,(2) where 1 <j, <j,<-+<j,<gand 2<k<n-+1. We put

I=A{(,, = ) |GGy, -, i) # 0}
and
S=A{z1 GGy, -, ) () =0, G, =+, jO ET}.
Then, S is a countable subset of C clustering nowhere in C. For ¢ # PC @ and zEC, let
H(z, P) = the linear subspace of C""' spanned by {a,(z)|j< P}
and put
d(z, P)= dim H(z, P).
Then, d(z, P) is constant for z& C—S8 as in Lemma 3.2([4]), and so we put for z2EC—8
d(P)=d(z, P).

It is easy to see that if PC @ and N+1<#P, then d(P)=n+1.

Ru and Stoll gave the following

Lemma 3([4], p.486). Let X={a,;|7EQ} be a subset of F(f) in N-subgeneral position. Then for every
z2E€ C—8, there exist a Nochka weight function

w:Q — (0,1]

and a Nochka constant 8>1 such that
(a) 0<w ()81 for all jEQ;
(b) g—2N+n—1=6(3_ 0 —n—1);
(c) If ¢ # PC Q with #P<N+1, then %, pw(j) <d(P);
(d) (N+1)/(n+1) <8< (2N—n+1)/(n+1);

Remark 1. If #4 =N+1, then H(z, A)=C""" and {a;(2)|jEB(2)} generates C*"' for zEC—S.
Lemma 4 ([4], Theorem 3.3). Let w: @ — (0, 1] be a Nochka weight function given in Lemma 3 and let

{E;|j& Q) be a family of functions E;: C—S — [1, ©). Take AC Q with 0<#4 <N-+1 and z&C—S. Then,
there is a subset B=B(z) of A such that #B(z) =d(A) and {a,(z2)|;EB(2)} is a basis of H(z, A) and such
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that

1 E*?V< [] E(2).

jEA jeB

Put
X(0)={a,=[a;, =, ap.,]EX|a;., =0} and X(0)={g;a;EX(0)}.
Then, 0<I=#X(0) <N. Without loss of generality we put
X0 =Aay.,, =, apsi}s
where g—[!=p. Further we put
Gi= (e 1)y Gi=(Gpuip, ) k=1, D)
and
d= kilw(zth),

where w : @ — (0, 1] is a Nochka weight function for X. When [ >0 we have the following

Lemma b. For any 2& C—S such that ék(z) #0, o for k=1, -, I,

(I) When d is an integer, there are linearly independent vectors a,.; (2), ***, @,.; (z) such that
p+iy Prig
l
|G, (2)G, ()| < [[ G (=) [*?*%.
k=1
(I) When d is not an integer, there are linearly independent vectors a,., (z), ***, @,.;. ... (2z) such that
pHiy PHirgl+1

‘ 5i1(2)"'é ()1 <S(z, f)u(z)[‘” 1 dH | ék(z) |w(P~k).
k=1

ifa]+1
Proof. For a point z satisfying the condition given above, we suppose for brevity that
16D < G < < G2,

(A) (resp. (B)). We choose i,, -+, iy (resp. i), **, irg74:) as follows:

(i) i =1.

(ii) Suppose that i, --*, i, are chosen for #>2. Then we choose i, as follows (¢ <d (resp. p < [d]+1)): “i, is
the least number in {i, ,+1,---, !} such that Ep+i1(z), - EPH#(Z) are linearly independent.” Then,
G\ (2), =+, Gy, (2) (resp. G; (), -+, Gi[d]+1(z)) satisfy the inequality in (I) (resp. (II)).
In fact, put for 1<m<d—1 (resp. 1<m<[d])

a(m)
0'<m):im+171 and (p(m)z Z w(p+k)
k=1
We first note that
old—1) - N ; _
[T 16| G;,(2) [17@ D < ]| Gula) |°@*P W
k=1 o
(resp.
o(fldD  _ R 1 L .
H |G (2) |72 | Gi"dwﬂ(z) |[d1+1-9 (D) < H 1Gu(2) 9P (S(z, Hlu(z) 419 o
=t o k=1
since

|G (D <G| (1,<k) (resp. |Gy ()| 1G] (ig.y<k) and |G(2) | <S(z, Hul2)),

Then, by using Lemma 3(c), we have
old-—-1)

GG, <[] 1G)IP PG, ()| ¢ (3)
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which is equivalent to

illog\ 8.2 < (Z) w(p+Blog] Gy(2) | + (d—p(d—1)log | G, (D). D
We prove (4) as follows. We first note that by Lemma 3(c)
o(m)<m (m=1, -, d—1 (resp. [d])). (5)
By the choice of {i,, -, i,}, we have the following inequalities.

o(1) - ~
log| G, (2)| < Y, w(p+k)log| G (2) |+ (1—p(1)log| G, (2) |;

k=

- o(m) - ‘ - -
log!G,-m(z)Ié Z w(p+k)log\Gk(z)l+(mf<p(m))loglGim‘l(z)\v(m—l—w(m—l))log\Gim(z)l
k=i,
(m=2,,d—1);
log| G,,(2) | = log| G,,(2) |.
Adding all these d inequalities side by side, we have
d - old—1 - ~
Y log | G ()] < Y w(p+kdlogl G2 |+ (d—e(d—1))log | G, (21,
v=1 k=1
which is the desired inequality. From (1) and (3) we have (I).
(resp. We can also prove
N _ o(ld)) _ - - .
\Gil(Z)“‘Gi[d]‘l(Z)l < ) IG() |“(p‘k>‘|Gi;d—ul(z)|'d“*lw("d‘) (6)
k=1 L

asin (3). From (2) and (6), we have (II).)

3 Defect relation
Let f=[f, - firr, F(O, X, X(0), X and X(0) etc. be as in Section 2. Then, we have the following theo-
rem.
Theorem. Put d=3._,w(p+k). Then, the following inequality holds:
g
Y w(Déla; <d+1+(n—d),
i=1
where ¢ =p+1 and w is a Nochka weight function from @= {1, -, ¢} into (0, 1] given in Lemma 3.
Proof. Put forj=1, -, ¢q
a;=lay - aud, @G=(g " gn-0), F=C(a, ), F,;=(@; 1)

and

lla Al NalllAl
E=—Il=—" . (D
7 |Fy | F|
For any integer s, let V(s) be the vector space generated by

n+1 g . n+l g
(I 271 YY) sG, k) <s, s(, k) =0 and integer}

k=1j=1 k=1j=1

over C and put
d(s)=dim V(s).

Then, V(s) is a subspace of V(s+1) and
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liminf dgis<+>1) 1 (8)
by the deduction to absurdity since d(s) < (“"7V"%) (see [5],061).
Let
b1, s batsys bacy+1o 77 bacs+n
be a basis of V(s+1) such that
by, s b

form a basis of V(s). Then, the functions
{b,flt=1,,d(s+1), k=1, -, n+1}
are linearly independent over C. We put
W=W(b,f,, by fis s bacsrnfusr)s
where W(g, ++, h) is the Wronskian of the functions g, ***, . Note that
N(r, W)=S(r, 1.

Let 2z(#0) be a point of C—S8 and at which none of {Fj}?zl has pole or zero and none of {g,,.,}7-, has zero.

Note that we have only to consider the case p= N+1. We rearrange {F;(2)}\_, as follows:

|F;(2)| < |Fy(2) | << | F (z)IS---SIf‘%(z)I,

v
where 1 <j,, -*, j,<p. Then, we have
£ < Sz, HIF ()| (k=N+1, -, p), (9
|F (@) < S NI k=1, =, p) (10)
and for any j,(<p)
17 < SCz, UL P+ - + £ [+ Fy (2) D (1

{S(z, Hu(z) if |F,(2)|<u(2),
(12)

< ~
S(z, IF;(2)| otherwise

since the #+1—th element of 5,-]( is different from zero at z for any 7, (<p).
By (9) we have at the point z
q ) (s) N+1 ) d(s)
(H E;"‘”) <S(z, f)( H Ep9. H E;;z;;w) =7. (13)
=1 k=1

We want to estimate this /;. By Lemma 4 we have

at )
]ISS(z,f)<H %> (14
where [7[1, H,,ﬂ are chosen from {Fjl, F,»NH, 51, . E? } and are linearly independent over . We put
*(a ) (w=1, -, n+D), H={a, },2|
and note that
H—X(0)#¢.

We put

_( A >"‘”
]2 <|H1 * ,,+1|
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(I) The case when for any ¢ such that EiﬂEH—X(O)
u(z)<|H,(2)|
and for somej, (1<v<N+1)
|F, ()] <u(2),
or when for some ¢ such that 5,—u€H*)~((O)
|A,(2)| <u(z).
In this case, we have by (11) and (12)
IfI<S(z, Hulz)

and

u(z)"" -
1< s f)<m> ) (15)

Now, as I~{l, I;T,,-l are linearly independent over &, it holds that
{blgl’ bzgh T bd(s)ﬁn+l}

are linearly independent over C. Since FJ» = (a;, f), these (n+1)d(s) functions can be represented as linear com-

binations of
{bfi 11<t<d(s+1), 1<k<n+1}
with constant coefficients:
(blﬁl, bsz,, e, bd(s);l,,.l):(blﬂ, by fi, s bagsifa-1)Dh,

where D is an (n+1)d(s+1) X (n+1)d(s) matrix the elements of which are constants and the rank of which is
equal to (n+1)d(s). Let D,be an (n+1)d(s+1) X (n+1){d(s+1)—d(s)} matrix consisting of constant ele-

ments such that the matrix
D=(D,D,)
is regular. Put for L=(n+1){d(s+1)—d(s)}
(Ky, o K ) = (by fiy bafry o, bageersfy 1) Do

then

(b,H,, b\, =+, byioH, 1, Ky K = (by £, byfi, o, bagsinfas DD (16)
from which we obtain

W(bH, bH, +, K)=(det D)W,  det D#0 an

where W=W(b, f,, b, £}, ***, by=1nfos1). We then have from (11)
1 (W(bli[p"', KL)[ . 1

(HZ;W a _—‘ W‘ |det D‘ (HZZ”ITIk‘)d(S)

1 |W(blf]1'.”’KL)}
o . ;N s)
[det DITWT ™ (-t A, )©

u(z)" | WOH, bH, -, K|

S@.D W |b1f{1'b2f:11"' K, | (18)

IA
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since | H(2)| <S(z, HIIFI, 1K (2)| <S(z, Al and [1f(2)]| <S(z, Hu(z) in this case.
From (15) and (18) we have
u(z>(n+1>d(sf1) . By(blf[“ b?f[h v K |

<S(z, 1) = = (19
I (z, f | W] ‘b1H1' szl"'KL|
(II) The case when for any u such that ﬁquH—)?(O)
u(z) < |H,(2)]
and for any j, 1<y<N+1)
u(z) <|F;(2)].
In this cae, by (11) and (12) we have for any 7, (v=1, =, N+1)
A< S, HIF,
and from (13) we have
<S8z, f) (20)
when /=0, and when [ >0
! a(s)
5< S(z, f)( I E;’i‘:i’”)
k=1
dd(s)
<SG, LB 21)
(T1_,| G (=) [#7*P)
When [ >0 we put
[ d(s)
=1/ 1118 e
k=1
When d is a positive integer, by Lemma 5(I) there are d functions éil, éid linearly independent over %
such that
J=1/1G, (2) = G, () [*9. (22)
When d is not an integer, by Lemma 5(II) there are [d]+1 functions éil, éi[d" » linearly independent over

F such that

]3§S(Z, f)u(z)(tdlﬂfd)d(s)” éz‘l(Z) a (Z) ‘d(s). (23)

ifd]+1

We put

{d if d is an integer,
<d>= _
[d]+1 otherwise.

Now we can find e;

icgs.p T €, such that

Qi " Bigysr Cicys o 7 Giy €nt

i
are linearly independent over %, where
€, "ty €,y
are the standard basis of C*"'. Then,
Gil’ " Gi<d>' fi<d>ﬂ-1’ o fin’ Jant

are linearly independent over % . Put
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E:ij G=1,, <d>),

=15 (G=<d>+1, ),
n+l1 (]:n+1>

(We use the same notation as in the case (I) for simplicity.) Then, as in the case of (I), there are K,, -+, K, sat-

isfying (16), (17) and we have the following inequality at z as in (18)

1 _ (f@lluCz) <)
H;gm Gik<2) ’d(s) - HZZHHk!d(S)

_ @ uz) <) | W(bH,, -, K|
Ny AL |det D|[ W]

(z)n-<d>)d<s> . | W(blﬁl, K, |

LUf)
S(ny)Hf(Z)H N ;blf{lKLl

(24)

IN

since | f,(2)| <u(2) if 4;<n by Definition 1 and for any j, |K;(2)| <S(z, )IIf(2)|l as in (10). Putting
n(s)=m+Dd(s+1)—(n—d)d(s),

from (21),(22),(23) and (24) we have

IF DI Cul)™ 2% | W(bH,, -, K,)|
< S(z, . = 25
]1 (z f) ‘Wl |b1H1"'KL| ( )
Since
u(z>(n+l)d(s*1)£ ”f(z)Hn(s)u<z)(n~d)d(s)‘
from (13),(14),(19),(20) and (25) we have the inequality
& eIl A u(z) e Wb H, - K|
d(s) ), w(log——"—+" < Io + lo =
& 0 los =] . W R Ty oy
+ log™ S(z, 1),

where the sum Xy, ..y _ is taken over all {H,, -+, H,.,} which are linearly independent over & chosen from
{F\, ", F,, fi, ***, f,.1}. This inequality is independent of 2& C—S and at which none of {F,»}}Zl has pole of zero
and none of {g,,.,}*_, has zero.

Integrating this inequality with respect to 8 from 0 to 27z, where z=7¢", we obtain

q or n(s) (n—d)d(s)
4)Y w(m(r,a, P < o [“log 1121 e d6+S(r, f) (26)

since
1 w | W(b]fll, e KD
- log =
21 Jo |b1H1~~-KL|
as in [1] by Lemma 2 and by the inequality

do=S(r, f)

T(r, Kj/blH]) <onT(r, )+S(r, ) G=1, -, L)
which we can prove as in Lemma 2 since b,€ % (¢=1, -+, d(s+1)) and since
B i0 —
o | log” SGre”, pao=S(r, 1.

Now,

L D I u(z) 04

log W = log max {[lf(2)I"“u(z)" ¥, | W[} — log| W|

and
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_ b o wl
!W| - |b1f1 bd(““f”l‘|b1f1“'bd(s<nfn+1‘

as+1) wsin WL

< Sz, DI u(z) 5, bgefomt]
n(s) (- d)d(s) | W

< Sz, HIFI™ ulz) 507, bacerrfons ]

since #(z) <||f(2)|l. Using these relations we have from (26)
d(s)i w(Pm(r, a;, ) < n($)T(r, H+n—d)d(s)t(r, )—N(r, 1/W)+S(r, ), 27
i=1

7

which reduces to
d(s)i w(6a;, ) < (n+Dd(s+1)—(n—d)d(s)—(n—d)d(s)Q

since n(s)=(n+1)d(s+1)—(n—d)d(s).
Dividing both sides of this inequality by d (s) and letting s —> % so that % tends to 1 according to (8),

we obtain

i w(éla;, ) <d+1+(n—d)Q.

j=1

Remark 2 (Second fundamental inequality). For any positive €,

S w(mir, a, ) < (@+1+OT(r, ) +(n—d)i(r, H+S(r. .

i=1
In fact, let s be so large that d(s+1)/d(s) < 1+e€ by (8), we have this inequality from (27) immediately.

Corollary 1. Under the same assumption as in Theorem,

(N+D(n—ad)1—Q)
n+1 '

q
Y 6(a;, f) < 2N—n+1—
j=1

Proof. We can easily prove this corollary by applying Lemma 3(a),(b) and (d) to Theorem as usual.

As in Definition 3 in [10], we can definie X to be maximal or v-maximal in the sense of subgeneral position.
By using this notion, we have the following
Corollary 2. Let X be v-maximal in the sense of subgeneral position. Then we have the inequality

(N+1D)(n—v)(1—Q)
n+1 ’

q
Y 6(a, f) < 2N—-n+1—
j=1

In fact, the inequality d <v holds in this case and we have this corollary from Corollary 1 immediately.

Corollary 3 ([9], Theorem 3). For any a,, -+, a,€C""'— {0} (2N—n+1<g< ) in N-subgeneral position,

we have the following inequalities:

q

(A) Y w(Néa, H < d+1+(n—d)Q;

j=1

(N+1D)(n—ad)(1—)
n+1 ’

(B) . 6(a, ) < 2N—n+1-

where ® is a Nochka weight function for X={a,, -, a,} and d:Za].( x@ (),
-X(O) = {a]: (ajl' T ajnv 1) EX' ajn+1:0} .

By taking %= C in Theorem and Corollary 1 we have this corollary immediately.
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