On Asymptotic Points of Holomorphic Curves

Nobushige TODA＊
Department of General Studies

（Received August 24，1999）

Let $f=\left[f_{1}, \cdots, f_{n-1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into the n dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation

$$
\left(f_{1}, \cdots, f_{n+1}\right): C \rightarrow C^{n+1}-\{0\},
$$

where n is a positive integer．
Definition（asymptotic point）．Let \boldsymbol{a} be a point of $\boldsymbol{C}^{n+1}-V$ ．Then，we say that \boldsymbol{a} is an as－ ymptotic point of f if there exists a path $\Gamma: z=z(t)(0 \leq t<1)$ in $|z|<\infty$ satisfying the follow－ ing conditions：
（i） $\lim _{t \rightarrow 1} z(t)=\infty \quad$ and（ii） $\lim _{t \rightarrow 1} \frac{|(\boldsymbol{a}, f(z(t)))|}{\|\boldsymbol{a}\|\|f(z(t))\|}=0$ ，
where $V=\left\{\boldsymbol{a} \in \boldsymbol{C}^{n+1}:(\boldsymbol{a}, f)=0\right\}$ ．
The purpose of this paper is to give some sufficient conditions for $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-V$ to be an as－ ymptotic point of f ．For example，

Theorem．If for some point \boldsymbol{a} of $\boldsymbol{C}^{n+1}-V$

$$
\lim _{r \rightarrow \infty}\left\{T(r, f)-\frac{r^{1 / 2}}{2} \int_{0}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+r)^{3 / 2}} d t-n(0, \boldsymbol{a}, f) \log r\right\}=\infty,
$$

then \boldsymbol{a} is an asymptotic point of f ．

1 Introduction．

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into the n dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation

$$
\left(f_{1}, \cdots, f_{n+1}\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}-\{0\},
$$

where n is a positive integer．
We use the following notation：

$$
\|f(z)\|=\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n+1}(z)\right|^{2}\right)^{1 / 2}
$$

and for a point $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right)$ in $\boldsymbol{C}^{n+1}-\{\mathbf{0}\}$

$$
\begin{aligned}
\|\boldsymbol{a}\| & =\left(\left|a_{1}\right|^{2}+\cdots+\left|a_{n+1}\right|^{2}\right)^{1 / 2}, \\
(\boldsymbol{a}, f) & =a_{1} f_{1}+\cdots+a_{n+1} f_{n+1} \\
(\boldsymbol{a}, f(z)) & =a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z) .
\end{aligned}
$$

The characteristic function $T(r, f)$ of f is defined as follows（see［10］）：

[^0]$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\|
$$

We put

$$
\rho=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}, \quad \lambda=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

and we say that ρ is the order of f and λ the lower order of f. We note that

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=\infty
$$

since f is transcendental.
Let

$$
V=\left\{\boldsymbol{a} \in \boldsymbol{C}^{n+1}:(\boldsymbol{a}, f)=0\right\} .
$$

Then, V is a subspace of C^{n+1} and $0 \leq \operatorname{dim} V \leq n-1$. It is said that f is linearly nondegenerate when $\operatorname{dim} V=0$ and linearly degenerate otherwise.

For meromorphic functions in $|z|<\infty$ we shall use the standard notation and symbols of the Nevanlinna theory of meromorphic functions ([3],[5]).

For $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-V$, we put for $r>0$

$$
\begin{aligned}
n(r, \boldsymbol{a}, f) & =n(r, 1 /(\boldsymbol{a}, f)), \\
N(r, \boldsymbol{a}, f) & =N(r, 1 /(\boldsymbol{a}, f)), \\
m(r, \boldsymbol{a}, f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{a}\|\left\|f\left(r e^{i \theta}\right)\right\|}{\left|\left(\boldsymbol{a}, f\left(r e^{i \theta}\right)\right)\right|} d \theta, \\
\delta(\boldsymbol{a}, f) & =\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{T(r, f)} \\
& =1-\limsup _{r \rightarrow \infty} \frac{N(r, \boldsymbol{a}, f)}{T(r, f)} .
\end{aligned}
$$

The last equality holds since

$$
N(r, \boldsymbol{a}, f)+m(r, \boldsymbol{a}, f)=T(r, f)+O(1)
$$

(the first fundamental theorem (see [10])).
As a natural generalization of asymptotic values for meromorphic functions, we gave a definition of asymptotic points for systems of entire functions (see Definition 3 in [7] or Definition 2 in [9]). The definition is also valid for holomorphic curves. We rewrite it for holomorphic curvres.

Definition 1 (asymptotic point). Let \boldsymbol{a} be a point of $\boldsymbol{C}^{n+1}-V$. Then, we say that \boldsymbol{a} is an asymptotic point of f if there exists a path $\Gamma: z=z(t)(0 \leq t<1)$ in $|z|<\infty$ satisfying the following conditions:
(i) $\lim _{t \rightarrow 1} z(t)=\infty$;
(ii) $\lim _{t \rightarrow 1} \frac{|(\boldsymbol{a}, f(z(t)))|}{\|\boldsymbol{a}\|\|f(z(t))\|}=0$.

We denote by $A(f)$ the set of asymptotic points of f.
We here give some theorems on asymptotic points obtained for systems of entire functions in [7] or [9], which are valid for holomorphic curves too.

Theorem A. If $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-V$ is Picard exceptional for f; that is to say, the number of zeos of (\boldsymbol{a}, f) is at most finite, then $\boldsymbol{a} \in A(f)$ (see Theorem 1 in [7]).

Theorem B. Suppose that $\lim _{r \rightarrow \infty} T(2 r, f) / T(r, f)=1$. If there exists a point $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-V$ such that $\delta(\boldsymbol{a}, f)>0$, then $\boldsymbol{a} \in A(f)$ (see Theorem 5 and Remark 4 in [9]).

The main purpose of this paper is to extend Theorem 2 in [4] or Lemma 1 in [8] to holomorphic curves to obtain a result containing Theorems A and B, and then to give some results for holomorphic curves with smooth growth.

2 General case．

The purpose of this section is to extend Theorem 2 in［4］or Lemma 1 in［8］to holomorphic curves．We shall first give some lemmas for later use．Let f be as in Section 1 and $\overline{\boldsymbol{C}}=\boldsymbol{C} \cup\{\infty\}$ ．

Lemma 1．Let $h: \boldsymbol{C} \rightarrow \overline{\boldsymbol{C}}$ be continuous in the spherical metric．Then，at least one of the following possibili－ ties must occur：
（a）h has ∞ as an asymptotic value at ∞ ；
（b）h is bounded on a path γ going to ∞ ；
（c）h is uniformly bounded on a sequence $\left\{\Gamma_{k}\right\}_{k=1}^{\infty}$ of closed curves which surround the origin and recede to ∞ with k（Theorem 2 in［2］）．

Lemma 2．Every component of the complement of a continuum in $\overline{\boldsymbol{C}}$ is simply connected（Theorem 4.4 in ［6］）．

Lemma 3．Suppose that $D(\neq \boldsymbol{C})$ is a simply connected domain containing the origin in the complex plane and let d be the distance from the origin to the complement of D ．Further let $g(z, a)$ be the Green function of D with pole at a ．Then，for $a \neq 0$ in D
（I） $\log ^{+} \frac{d}{|a|} \leq g(0, a) \leq \log \left\{1+\frac{2 d}{|a|}+2\left\{\frac{d}{|a|}+\left(\frac{d}{|a|}\right)^{2}\right\}^{1 / 2}\right\}$ ；
（II）$\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(d e^{i \theta}, a\right) d \theta=g(0, a)-\log ^{+} \frac{d}{|a|}$ ．
Proof．（I）See Lemma 5 in［4］and its improvement in［8］，p． 492.
（II）The function

$$
g(z, a)+\log |z-a|
$$

is harmonic in D and continuous on $|z|=r(0<r \leq d)$ ，so that we have

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{g\left(d e^{i \theta}, a\right)+\log \left|d e^{i \theta}-a\right|\right\} d \theta=g(0, a)+\log |a| .
$$

Since

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|d e^{i \theta}-a\right| d \theta=\log d+\log ^{+} \frac{|a|}{d}
$$

（see the formula（1．2）in［3］，p．8），we easily have our equality．
Lemma 4．Suppose that there is a simply connected domain $D(\neq \boldsymbol{C})$ containing the origin in the complex plane such that for a point $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-V$

$$
\frac{\|\boldsymbol{a} \mid\| f(z) \|}{|(\boldsymbol{a}, f(z))|} \leq M
$$

on the finite boundary Γ_{o} of D for a finite positive number M ．Let d be the distance from the origin to Γ_{o} ．Then， we have

$$
\begin{equation*}
m(d, \boldsymbol{a}, f)+N_{o}(d, \boldsymbol{a}, f) \leq \frac{\sqrt{d}}{2} \int_{0}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+d)^{3 / 2}} d t+\log M+n(0, \boldsymbol{a}, f) \log (3+\sqrt{8}) \tag{1}
\end{equation*}
$$

where

$$
n_{o}(t, \boldsymbol{a}, f)=n(t, \boldsymbol{a}, f)-n(0, \boldsymbol{a}, f) \quad \text { and } \quad N_{o}(r, \boldsymbol{a}, f)=\int_{0}^{r} \frac{n_{o}(t, \boldsymbol{a}, f)}{t} d t .
$$

Proof．We have only to prove the inequality（1）when

$$
\begin{equation*}
\int_{0}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+d)^{3 / 2}} d t<\infty \tag{2}
\end{equation*}
$$

Assume that（2）holds．Let a_{1}, a_{2}, \cdots be the zeros of（ \boldsymbol{a}, f ）different from zero such that $\left|a_{1}\right| \leq\left|a_{2}\right| \leq \cdots$ ． In this sequence，each multiple zero appears as many times as its multiplicity．Then，（2）is equivalent to

$$
\begin{equation*}
\sum_{\nu}\left|a_{\nu}\right|^{-1 / 2}<\infty \tag{3}
\end{equation*}
$$

since

$$
\int_{0}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+d)^{3 / 2}} d t=2 \int_{0}^{\infty} \frac{n_{o}(t, \boldsymbol{a}, f)}{t(t+d)^{1 / 2}} d t
$$

and for $r>0$

$$
\int_{0}^{\infty} \frac{n_{0}(t, \boldsymbol{a}, f)}{t(t+d)^{1 / 2}} d t<\infty \quad \text { if and only if } \quad \sum_{\nu}\left|a_{\nu}\right|^{-1 / 2}<\infty
$$

Let $g\left(z, a_{\nu}\right)$ be the Green function of D with pole at a_{ν}. Then, since it follows from Lemma 3 and (3) that

$$
\begin{align*}
\sum_{\nu} g\left(0, a_{\nu}\right) & \leq \sum_{\nu} \log \left\{1+\frac{2 d}{\left|a_{\nu}\right|}+2\left\{\frac{d}{\left|a_{\nu}\right|}+\left(\frac{d}{\left|a_{\nu}\right|}\right)^{2}\right\}^{1 / 2}\right\} \\
& =2 \sum_{\nu} \log \left\{\left(1+\frac{d}{\left|a_{\nu}\right|}\right)^{1 / 2}+\left(\frac{d}{\left|a_{\nu}\right|}\right)^{1 / 2}\right\} \\
& =2 \int_{0}^{\infty} \log \left\{\left(1+\frac{d}{|t|}\right)^{1 / 2}+\left(\frac{d}{|t|}\right)^{1 / 2}\right\} d n_{o}(t, \boldsymbol{a}, f) \\
& =d^{1 / 2} \int_{0}^{\infty} \frac{n_{o}(t, \boldsymbol{a}, f)}{t(t+d)^{1 / 2}} d t<\infty \tag{4}
\end{align*}
$$

the sum

$$
g(z)=\sum_{\nu} g\left(z, a_{\imath}\right)
$$

converges uniformly in any compact subset of D to a function harmonic in D except at the points a_{ν} and vanishes continuously on the finite boundary of D. The function

$$
u(z)=\log \frac{\|\boldsymbol{a}\|\|f(z)\|}{|(\boldsymbol{a}, f(z))|}-n(0, \boldsymbol{a}, f) g(z, 0)-g(z)-\log M
$$

is subharmonic in D and satisfies

$$
u(z) \leq 0 \quad \text { on } \quad \Gamma_{o}
$$

This implies that $u(z) \leq 0$ in D, so that we have in D

$$
\log \frac{\|\boldsymbol{a}\|\|f(z)\|}{|(\boldsymbol{a}, f(z))|} \leq n(0, \boldsymbol{a}, f) g(z, 0)+g(z)+\log M
$$

Integrating both sides of this inequality with respect to $\theta\left(z=d e^{i \theta}\right)$, we obtain

$$
\begin{align*}
m(d, \boldsymbol{a}, f) & \leq n(0, \boldsymbol{a}, f) \frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(d e^{i \theta}, 0\right) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(d e^{i \theta}\right) d \theta+\log M \\
& \leq n(0, \boldsymbol{a}, f) \log (3+\sqrt{8})+g(0)-\sum_{a_{i} \leq d} \log -\frac{d}{\left|a_{\nu}\right|}+\log M \tag{5}
\end{align*}
$$

since by Lemma 3 (I)

$$
g\left(d e^{i \theta}, 0\right)=g\left(0, d e^{i \theta}\right) \leq \log (3+\sqrt{8})
$$

and since from the equality

$$
g(z)=\sum_{a_{\imath} \leq d} g\left(z, a_{\nu}\right)+\sum_{a_{\nu}>d} g\left(z, a_{\nu}\right)
$$

where the second term of the right-hand side is harmonic in $|z|<d$ and continuous on $|z|=d$, and from Lemma 3 (II) we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(d e^{i \theta}\right) d \theta & =\sum_{a_{\imath} \leq d} \frac{1}{2 \pi} \int_{0}^{2 \pi} g\left(d e^{i \theta}, a_{\nu}\right) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \sum_{a_{v}>d} g\left(d e^{i \theta}, a_{\nu}\right) d \theta \\
& =g(0)-\sum_{a_{\nu} \leq d} \log \frac{d}{\left|a_{\nu}\right|}
\end{aligned}
$$

Using the inequality（4）and integrating by parts，from（5）we obtain

$$
\begin{aligned}
m(d, \boldsymbol{a}, f)+N_{o}(d, \boldsymbol{a}, f) & \leq \sqrt{d} \int_{0}^{\infty} \frac{n_{o}(t, \boldsymbol{a}, f)}{t(t+d)^{1 / 2}} d t+\log M+n(0, \boldsymbol{a}, f) \log (3+\sqrt{8}) \\
& =\frac{\sqrt{d}}{2} \int_{0}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+d)^{3 / 2}} d t+\log M+n(0, \boldsymbol{a}, f) \log (3+\sqrt{8})
\end{aligned}
$$

since

$$
\sum_{a_{\nu} \leqslant d} \log ^{+} \frac{d}{\left|a_{\nu}\right|}=N_{o}(d, \boldsymbol{a}, f) .
$$

Theorem 1．If for some point \boldsymbol{a} of $\boldsymbol{C}^{n-1}-V$

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left\{T(r, f)-\frac{r^{1 / 2}}{2} \int_{0}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+r)^{3 / 2}} d t-n(0, \boldsymbol{a}, f) \log r\right\}=\infty \tag{6}
\end{equation*}
$$

then $\boldsymbol{a} \in A(f)$ ．
Proof．Suppose that \boldsymbol{a} does not belong to $A(f)$ ．Then，it follows from Lemma 1 with $h=\|\boldsymbol{a}\|\|f\| /|(\boldsymbol{a}, f)|$ that there exists a positive constant M such that

$$
\begin{equation*}
\frac{\|\boldsymbol{a}\|\|f\|}{\mid \boldsymbol{a}, f) \mid} \leq M \tag{7}
\end{equation*}
$$

（a）on a path γ going to ∞ ；or
（b）on the union of a sequence $\left\{\Gamma_{k}\right\}$ of closed curves surrounding the origin and receding to ∞ with k ．
The case（a）．Suppose first that（7）holds on γ and the path γ goes from $z_{0}(\neq 0)$ to ∞ ．Then，the path meets the circle $|z|=d$ for $d>\left|z_{0}\right|$ ．Hence there exists an arc γ_{d} of this path joining a point $z_{1}=d e^{i \theta}$ to ∞ and lying oth－ erwise in $|z|>d$ ．Let D be the component of $\boldsymbol{C}-\gamma_{d}$ containing the origin．Then D is simply connected by Lemma 2 and（7）is satisfied on the finite boundary of D ，so that we obtain（1）of Lemma 4 with any $d>\left|z_{o}\right|$ ，which con－ tradicts（6）．

The case（b）．Suppose that（7）holds on $\left\{\Gamma_{k}\right\}$ ．Let D_{k} be the component of $\boldsymbol{C}-\Gamma_{k}$ containing the origin and d_{k} be the distance from the origin to ∂D_{k} ．Then，D_{k} is simply connected by Lemma $2, d_{k} \rightarrow \infty$（ $k \rightarrow \infty$ ）and（7）holds on ∂D_{k} ．Thus we obtain（1）of Lemma 4 with $d=d_{k}$ for any k ，which contradicts（6）．

Thus by Lemma 1，$\|\boldsymbol{a}\|\|f\| / /|(\boldsymbol{a}, f)|$ must have ∞ as an asymptotic value．This implies that $|(\boldsymbol{a}, f)| /\|\boldsymbol{a}\|\|f\|$ has 0 as an asymptotic value，which means that $\boldsymbol{a} \in A(f)$ ．

Corollary 1．If for some point \boldsymbol{a} of $\boldsymbol{C}^{n+1}-V$

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left\{T(r, f)-\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t\right\}=\infty, \tag{8}
\end{equation*}
$$

then $\boldsymbol{a} \in A(f)$ ．
Proof．Since

$$
\begin{aligned}
\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t & =\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t+n(0, \boldsymbol{a}, f) \frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{\log t}{t^{3 / 2}} d t \\
& \geq \frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N_{o}(t, \boldsymbol{a}, f)}{(t+r)^{3 / 2}} d t+n(0, \boldsymbol{a}, f)(\log r+2)
\end{aligned}
$$

if（8）holds，then（6）holds．
Remark 1．1）We can easily obtain Theorem A from Corollary 1．In fact，let a be Picard exceptional for f ， then

$$
\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t=O(\log r)
$$

and（8）holds as f is transcendental．
2）If for some point \boldsymbol{a} of $\boldsymbol{C}^{n-1}-V$

$$
N(r, \boldsymbol{a}, f)=O\left(\gamma^{\alpha}\right) \quad \text { and } \quad \underset{r \rightarrow \infty}{\liminf } \frac{T(r, f)}{\gamma^{\beta}}>0
$$

where $\alpha<1 / 2, \alpha<\beta$, then $\boldsymbol{a} \in A(f)$.
In fact, in this case

$$
\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t=O\left(r^{\alpha}\right)
$$

and we have (8).
Corollary 2. Suppose

$$
\underset{r \rightarrow \infty}{\limsup } \frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{T(t, f)}{(t+r)^{3 / 2}} d t / T(r, f)=K<\infty
$$

Then if for some point \boldsymbol{a} of $\boldsymbol{C}^{n+1}-V$

$$
\delta(\boldsymbol{a}, f)>1-K^{-1}
$$

$\boldsymbol{a} \in A(f)$.
We can prove this corollary as in Lemma 2([8], p.493) by applying Theorem 1.

3 Holomorphic curves with smooth growth.

Let f be as in Section 1. In [9] we gave some results on asymptotic properties of f satisfying

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(2 r, f)}{T(r, f)}=1 \tag{9}
\end{equation*}
$$

A holomorphic curve satisfying (9) is of order zero(Theorem 1 in [9]). The purpose of this section is to generalize Theorem B to holomorphic curves of order positive applying the method used in [8].

Definition 2. Let ρ be a positive number. We say that f is of ρ-smooth growth if and only if $T(r, f)$ satisfies

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(x r, f)}{x^{\rho} T(r, f)}=1 \quad \text { for any } \quad x>0 \tag{10}
\end{equation*}
$$

(see [8], p.495).
For example, it is easy to see that if f has perfectly regular growth of order $\rho>0$ (see [4]), then $T(r, f)$ satisfies (10).

Remark 2. (10) is equivalent to

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(x r, f)}{x^{\rho} T(r, f)}=1 \quad \text { for any } \quad x>1 \tag{11}
\end{equation*}
$$

(see [8], Remark 1).
Let f^{\prime} be the holomorphic curve induced by $\left(f_{1}^{\prime}, \cdots, f_{n-1}^{\prime}\right)$ and $\left[f, f^{\prime}\right]$ be a bivector determined by f and f^{\prime} with the components $f_{i} f_{j}^{\prime}-f_{i}^{\prime} f_{j}(1 \leq i<j \leq n+1)$. Put

$$
S(r, f)=\frac{1}{\pi} \int_{0}^{r} \int_{0}^{2 \pi} \frac{\left\|\left[f\left(t e^{i \theta}\right), f^{\prime}\left(t e^{i \theta}\right)\right]\right\|^{2}}{\left\|f\left(t e^{i \theta}\right)\right\|^{4}} t d t d \theta
$$

Then we have the following relation between $T(r, f)$ and $S(r, f)$.
Lemma 5. Let r_{o} be a positive number. Then for $r \geq r_{o}$

$$
T(r, f)-T\left(r_{o}, f\right)=\int_{r_{o}}^{r} \frac{S(t, f)}{t} d t
$$

(see formula (14) in [1] and pp.142-143 in [10]).
Lemma 6. For a positive number ρ, the following three statements are equivalent:
(i) f has ρ-smooth growth;
(ii)

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)}=\rho \tag{12}
\end{equation*}
$$

(iii) For any positive $\epsilon<\rho$, there is an R_{o} such that the following inequality holds:

$$
\begin{equation*}
\left(\frac{t}{r}\right)^{o-\epsilon} T(r, f) \leq T(t, f) \leq\left(\frac{t}{r}\right)^{\rho+\epsilon} T(r, f) \quad\left(R_{o} \leq r \leq t\right) . \tag{13}
\end{equation*}
$$

Proof．（i）Suppose that f has ρ－smooth growth．For $x>1$

$$
S(r, f) \log x \leq \int_{r}^{x r} \frac{S(t, f)}{t} d t=T(x r, f)-T(r, f)
$$

so that we have

$$
\frac{S(r, f)}{T(r, f)} \leq\left\{\frac{T(x r, f)}{T(r, f)}-1\right\} / \log x .
$$

This inequality and（11）yield

$$
\limsup _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)} \leq \frac{x^{\rho}-1}{\log x}
$$

and letting $x \rightarrow 1$ ，we have

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } \frac{S(r, f)}{T(r, f)} \leq \rho \tag{14}
\end{equation*}
$$

On the other hand，for $x<1$

$$
S(r, f) \geq \int_{x r}^{r} \frac{S(t, f)}{t} d t=T(r, f)-T(x r, f)
$$

so that we have

$$
\frac{S(r, f)}{T(r, f)} \geq\left\{\frac{T(x r, f)}{T(r, f)}-1\right\} / \log x
$$

This inequality with（11）yields

$$
\liminf _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)} \geq \frac{x^{\rho}-1}{\log x}
$$

and letting $x \rightarrow 1$ ，we have

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{S(r, f)}{T(r, f)} \geq \rho \tag{15}
\end{equation*}
$$

From（14）and（15）we have（12）．
（ii）Suppose that（12）holds．Let ϵ be any positive number smaller than ρ ．Then，there exists an R_{o} such that for $R_{o} \leq r \leq t$ we have the inequality

$$
(\rho-\epsilon) \log \frac{t}{r} \leq \log \frac{T(t, f)}{T(r, f)}=\int_{r}^{t} \frac{S(u, f)}{u T(u, f)} d u \leq(\rho+\epsilon) \log \frac{t}{r},
$$

which reduces to

$$
\left(\frac{t}{r}\right)^{\rho-\epsilon} T(r, f) \leq T(t, f) \leq\left(\frac{t}{r}\right)^{o+\epsilon} T(r, f)\left(R_{o} \leq r \leq t\right)
$$

（iii）Suppose that（13）holds．Let $x \geq 1, r \geq R_{o}$ and put $t=x r$ ．Then from（13）we have

$$
x^{-\epsilon} \leq \frac{T(x r, f)}{x^{\rho} T(r, f)} \leq x^{\epsilon}
$$

Letting $r \rightarrow \infty$ first and then $\epsilon \rightarrow 0$ ，we obtain

$$
\lim _{r \rightarrow \infty} \frac{T(x r, f)}{x^{\rho} T(r, f)}=1 \quad \text { for any } \quad x \geq 1
$$

Considering Remark 2，we have（10）．
Remark 3．As is easily seen from（13），if f has ρ－smooth growth，f has regular growth of order ρ ．
Remark 4．As in Lemma 6，we can prove the following．
＂The following four statements are equivalent：
（i） $\lim _{r \rightarrow \infty} T(2 r, f) / T(r, f)=1$ ；
（ii） $\lim _{r \rightarrow \infty} T(x r, f) / T(r, f)=1 \quad$ for any $x>0$ ；
（iii） $\lim _{r \rightarrow \infty} S(r, f) / T(r, f)=0$ ；
(iv) For any positive number ϵ there exists an R_{o} such that the following inequality holds:

$$
T(t, f) \leq\left(\frac{t}{r}\right)^{\epsilon} T(r, f) \quad\left(R_{o} \leq r \leq t\right)
$$

Theorem 2. Suppose that f has ρ-smooth growth, where $0<\rho<1 / 2$. If there exists a point \boldsymbol{a} in $\boldsymbol{C}^{n+1}-V$ such that

$$
\delta(\boldsymbol{a}, f)>1-\frac{\sqrt{\pi}}{\Gamma(\rho+1) \Gamma(1 / 2-\rho)}
$$

then $\boldsymbol{a} \in A(f)$.
Proof. As in the proof of Theorem 1 in [8], we have

$$
\limsup _{r \rightarrow \infty} \frac{r^{1 / 2}}{2} \int_{0}^{\infty} \frac{T(t, f)}{(t+r)^{3 / 2}} d t / T(r, f) \leq \frac{\Gamma(\rho+1) \Gamma(1 / 2-\rho)}{\sqrt{\pi}}
$$

Using Corollary 2, we obtain this theorem.
Remark 5. $1-\frac{\sqrt{\pi}}{\Gamma(\rho+1) \Gamma(1 / 2-\rho)}<2 \rho$ if $0<\rho<1 / 2$ (see Remark 2 in [8]).
Theorem 3. Suppose that f satisfies

$$
\int_{1}^{\infty} \frac{T(t, f)}{t^{3 / 2}} d t<\infty
$$

If there exists a point $\boldsymbol{a} \in \boldsymbol{C}^{n-1}-V$ such that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\{m(r, \boldsymbol{a}, f)-2 S(r, f)\}=\infty \tag{16}
\end{equation*}
$$

then $\boldsymbol{a} \in A(f)$.
Proof. We apply Corollary 1. For any sufficiently large r

$$
\begin{aligned}
T(r, f)-\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{N(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t & =T(r, f)-\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{T(t, f)-m(t, \boldsymbol{a}, f)}{t^{3 / 2}} d t+O(1) \\
& =\frac{r^{1 / 2}}{2} \int_{r}^{\infty} \frac{m(t, \boldsymbol{a}, f)-2 S(t, f)}{t^{3 / 2}} d t+O(1)
\end{aligned}
$$

Thus (16) implies (8), so that $\boldsymbol{a} \in A(f)$.
Corollary 3. Under the same assumption as in Theorem 3, if there exists a point $\boldsymbol{a} \in \boldsymbol{C}^{n-1}-V$ such that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{S(r, f)}>2 \tag{17}
\end{equation*}
$$

then $\boldsymbol{a} \in A(f)$.
This is a direct consequence of Theorem 3.

Application of Corollary 3.

I. Suppose that

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{(\log r)^{2}}=A<\infty
$$

If there exists a point \boldsymbol{a} in $\boldsymbol{C}^{n+1}-V$ such that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{\log r}>8 A \tag{18}
\end{equation*}
$$

then $\boldsymbol{a} \in A(f)$
Proof. As

$$
S(r, f) \log r \leq \int_{r}^{r^{2}} \frac{S(t, f)}{t} d t \leq T\left(r^{2}, f\right)=(4 A+o(1))(\log r)^{2}
$$

that is,

$$
S(r, f) \leq(4 A+o(1)) \log r
$$

for $r \rightarrow \infty$ ，（18）implies（17），and $\boldsymbol{a} \in A(f)$ ．
Remark 6．We can replace $8 A$ by $8 A \log (\sqrt{2}+1)$ as in the case of meromorphic functions（see［8］，pp．502－ 503）．

II．Suppose

$$
\lim _{r \rightarrow \infty} \frac{T(2 r, f)}{T(r, f)}=1
$$

Then（17）is weaker than $\delta(\boldsymbol{a}, f)>0$ ．
In fact，if $\delta(\boldsymbol{a}, f)>0$ ，

$$
\frac{m(r, \boldsymbol{a}, f)}{S(r, f)}=\frac{m(r, \boldsymbol{a}, f)}{T(r, f)} \frac{T(r, f)}{S(r, f)} \rightarrow \infty
$$

for $r \rightarrow \infty$ by Remark 4 ．

References

［1］L．V．Ahlfors．The theory of meromorphic curves．Acta Soc．Sci．Fennicae，Nova Ser．A，3，No．4（1941），1－31．
［2］D．A．Brannan．On the behaviour of continuous functions near infinity．Complex Variables 5（1986），237－244．
［3］W．K．Hayman．Meromorphic functions．Oxford at the Clarendon Press 1964.
［4］W．K．Hayman．On Iversen＇s theorem for meromorphic functions with few poles．Acta Math．，141（1978），115－ 145.
［5］R．Nevanlinna．Le théorème de Picard－Borel et la théorie des fonctions méromorphes．Gauthier－Villars， Paris 1929.
［6］M．H．A．Newman．Elements of the topology of plane sets of points．University Press，Cambridge 1961.
［7］N．Toda．Boundary behavior of systems of entire functions．Research Bull．of the College of General Education，Nagoya Univ．，Ser．B，25（1980），1－9（in Japanese）．
［8］N．Toda．Some notes on asymptotic values of meromorphic functions of smooth growth．Hiroshima Math． J．，12－3（1982），491－504．
［9］N．Toda．On some asymptotic properties of systems of entire functions of smooth growth．J．Math．Soc． Japan，35－1（1983），163－178．
［10］H．Weyl and F．J．Weyl．Meromorphic functions and analytic curves．Ann．Math．Studies 12，Princeton Univ． Press 1943.

[^0]: ＊Supported in part by Grant－in－Aid for Scientific Research（No．11640164），Ministry of Education，Science and Culture

