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On Asymptotic Points of Holomorphic Curves
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Let f=[f,"**.f,..] be a transcendental holomorphic curve from C into the n dimensional

complex projective space P"(C) with a reduced representation
(fy, o fyo) 1 C=C" 1= {0},

where 7 is a positive integer.

Definition (asymptotic point). Let a be a point of C""'— V. Then, we say that @ is an as-
ymptotic point of fif there exists a pathZ : 2=2(¢)(0<¢<1) in | 2| < oo satisfying the follow-
ing conditions:

o L L a, SO
(i) limz(¢)=co and (ii) im e m55 =0,

t->1
where V=1{a=C""":(a, f)=0}.
The purpose of this paper is to give some sufficient conditions for aEC"™'— V to be an as-
ymptotic point of f. For example,
Theorem. If for some point @ of C*''—V
2 = N,(t,a,f)
2 Jo (t+1)?

then @ 1s an asymptotic point of f.

ILmW{T(r, f)— dt—n(0,a,f)log r} = oo,

1 Introduction.

Let f=[f,"-".f,..] be a transcendental holomorphic curve from C into the #» dimensional complex projective

space P"(C) with a reduced representation
(fi fpe) 1 €=C 1= {0},

where 7 is a positive integer.

We use the following notation:
=A@ P+ + ] £ () D

and for a point @ = (a,,*,a,.,) in C""'— {0}

lall=Ca, F+-+la,.. D"
(a’f):alfl’L"'+an~1 n~1
(a, fz)=a,/,(2)++a,., f,.(2).

The characteristic function 7(r, f) of fis defined as follows(see [10]):
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Tr, ) = [ logl (e a6— logll ()l

We put

18 T ) 5 _ liminf

log T(r, f)
log r >0 lo

0= 11rrn§wup zr

and we say that o is the order of f and A the lower order of f. We note that

tim L0 o
r>e lOgr

since f is transcendental.
Let
V= {aE ¢ (a, ) :O}.

Then, V is a subspace of C"""and 0< dim V<#n—1. It is said that f is linearly nondegenerate when dim V=0 and
linearly degenerate otherwise.

For meromorphic functions in |z | < o we shall use the standard notation and symbols of the Nevanlinna
theory of meromorphic functions ([3],[5]).

ForaeC" '~ V, we put for r>0

n(r, a, f)=n(r, 1/(a, 1)),
N(r,a, f)=N(r,1/(a, 1)),
1 2”1 llallllfCre™) |l 40

m(r.a, )= o 8 (a fireN| "
— liming 7@, )
ola, )= liminf —r=
L N(r,a, f)
= 1= limsup =75

The last equality holds since
N(r,a, H)+m(r,a, f)=T(r, £)+0(1)

(the first fundamental theorem (see [10])).

As a natural generalization of asymptotic values for meromorphic functions, we gave a definition of asymp-
totic points for systems of entire functions (see Definition 3 in [7] or Definition 2 in [9]). The definition is also
valid for holomorphic curves. We rewrite it for holomorphic curvres.

Definition 1 (asymptotic point). Let @ be a point of C*"'— V. Then, we say that @ is an asymptotic point
of fif there exists a path I': z=2(#)(0<¢<1) in |z| < o satisfying the following conditions:

(i) ltil? z(t) = oo;

o a, fEOD]
(i) Uy oGz

We denote by A(f) the set of asymptotic points of f.
We here give some theorems on asymptotic points obtained for systems of entire functions in [7] or [9],

0.

which are valid for holomorphic curves too.

Theorem A. If a=C""'— V is Picard exceptional for f; that is to say, the number of zeos of (a, f) is at most
finite, then a € A (f) (see Theorem 1 in [7]).

Theorem B. Suppose that lim,...7(2r, /)/T(r, f)=1. If there exists a point a=C" '—V such that
6(a, f) >0, then a= A (f) (see Theorem 5 and Remark 4 in [9]).

The main purpose of this paper is to extend Theorem 2 in [4] or Lemma 1 in [8] to holomorphic curves to ob-
tain a result containing Theorems A and B, and then to give some results for holomorphic curves with smooth

growth.
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2 General case.

The purpose of this section is to extend Theorem 2 in [4] or Lemma 1 in [8] to holomorphic curves. We shall

first give some lemmas for later use. Let f be as in Section 1 and C=CU {o}.

Lemma 1. Let i : C—C be continuous in the spherical metric. Then, at least one of the following possibili-
ties must occur:

(a) h has o as an asymptotic value at oo;

(b) & is bounded on a path 7 going to o;

(¢) h is uniformly bounded on a sequence {I}};-, of closed curves which surround the origin and recede to
oo with k (Theorem 2 in [2]).

Lemma 2. Every component of the complement of a continuum in C is simply connected (Theorem 4.4 in
[(61).

Lemma 3. Suppose that D(# C) is a simply connected domain containing the origin in the complex plane and
let d be the distance from the origin to the complement of D. Further let g(z, @) be the Green function of D with
pole at @. Then, fora#0in D

(I) log” 1%lgg(o, a) < 10g{1+%+2{‘%‘+(%)2}1/2};

Lo e _ v d
() 5 [ gCae”, a)do=g(0, @)~ tog " 1.

Proof. (1) See Lemma 5 in [4] and its improvement in [8], p.492.
(II) The function

g(z,a)+ loglz—al
is harmonic in D and continuous on |z| =7 (0<7<d), so that we have
27 3 )
Zlﬂﬁ {g(de®, a)+ log|de®—al}do=g(0, a) + loglal.

Since
Lfhlogl de”—aldé=log d+ log" la]
2 Jo d
(see the formula (1.2) in [3], p.8), we easily have our equality.
Lemma 4. Suppose that there is a simply connected domain D(# C) containing the origin in the complex

plane such that for a pointa€C""'—V

lallllfC)II

T T<SM

|(a, f(2)) ]
on the finite boundary I, of D for a finite positive number M. Let d be the distance from the origin to 7. Then,
we have

Jd = Nt a, f) =
m(d, a,f)+ND(d,a,f)§Tf0 Wdt+ 10gM+n(O, a,f)log(3+v8), (D

where

r t, s
n,(t, a, f) it

n,(t,a, HH)=n(t, a, f))—n(0,a, f) and No(r,a,f):j; ;
Proof. We have only to prove the inequality (1) when

f” N, a, )
0 (t+d>3/2

Assume that (2) holds. Let a,, a,, *** be the zeros of (a, f) different from zero such that |a,|<la,| <--

In this sequence, each multiple zero appears as many times as its multiplicity. Then, (2) is equivalent to

dt < 0. (2)



146 Bulletin of Nagoya Institute of Technology Vol. 51 (1999)

Yla,| *< oo, (3
since
© N,(t, a, f) = n,(t, a, f)
et = [ Tt 2L
fo (t+d)**? j; t(t+d)"*
and for r >0
°nt, a f) . ~ -
j; it ) dt<oo if and only if glap\ 2< co,
Let g(z, a,) be the Green function of D with pole at @,. Then, since it follows from Lemma 3 and (3) that
2d d d \nie
< +22 4 + '
ggm, ab)_glog{l a2 G
172
o) e
,2f 1og{(1+|t]>'/2+(m)”2}dn (t,a, )
~ n,(t, a, f)
:d”zf —2 < oo, 4
o t(t+d)"? * @
the sum

9(z)=) g(z, a,)

converges uniformly in any compact subset of D to a function harmonic in D except at the points @, and vanishes

continuously on the finite boundary of D. The function

u(z) = log l‘(a‘lll,{[((z)))l” —n(0, a, Hg(z, 0)—g(z)— log M

is subharmonic in D and satisfies
u(z)<0 on T,

This implies that #(z) <0 in D, so that we have in D

lallllf(z)1l
[(a, f(z))]

Integrating both sides of this inequality with respect to 8 (z=de"), we obtain

log <n(0, a, NHg(z, 0)+g(z)+ log M.

2.4 X 27 B}
m(al,a,f)gn(o,a,f)f1 f g(de’g,O)dG-i——l f g(de®)do+ log M
21 Jo

<n(0, a, Hlog(3+vy8)+g(0)— Z log~ a, + log M (5)

a,<d

since by Lemma 3(I)
g(de”, 0) =g(0, de”) < log(3++8)
and since from the equality

9= ), gza)+ ) gz a),
a, <d a, >d

where the second term of the right-hand side is harmonic in |z| < d and continuous on |z | =d, and from Lemma
3(1I) we have

1 2r p 1 2r ; ;
7f0 g(de”)do= ngfﬂ g(de”, a,)d6+ ——f Z g(de”, a,)do

=g(0)— ) log™

la, |
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Using the inequality (4) and integrating by parts, from (5) we obtain

m(d, a, f)+N,(d, a, /) Sﬁfm nz(%:il;{;z)'dt+ log M +n(0, a, log(3+8)
-a. f J\gt(ida)wjz()dw log M+n(0, a, /)log(3+y8)

since
Y log ——=N,(d, a, f).
a, <d a
Theorem 1. If for some point @ of C” -y

« N.(t, a, f)
2 Z+ )3/2

llm{T(r - dt—n(0, a, Hlog r} =0, (6)

thena€ A (f).
Proof. Suppose that a does not belong to A(f). Then, it follows from Lemma 1 with
h=llalllfll/|(a, f)| that there exists a positive constant M such that

llallllf]]
Ca, f))SM D

(a) on a path 7 going to ; or
(b) on the union of a sequence {I}} of closed curves surrounding the origin and receding to o with k.

The case (a). Suppose first that (7) holds on 7 and the path 7 goes from z,(#0) to ©. Then, the path meets
thecircle |z| =d ford > |z,|. Hence there exists an arc 7, of this path joining a point z,=de” to © and lying oth-
erwise in |z| >d. Let D be the component of C—7, containing the origin. Then D is simply connected by Lemma
2 and (7) is satisfied on the finite boundary of D, so that we obtain (1) of Lemma 4 with any d > | z,|, which con-
tradicts (6).

The case (b). Suppose that (7) holds on {I}}. Let D, be the component of C—T} containing the origin and
d, be the distance from the origin to 8D,. Then, D, is simply connected by Lemma 2, d,~> o (k—>20) and (7) holds
on 8D,. Thus we obtain (1) of Lemma 4 with d =d, for any k, which contradicts (6).

Thus by Lemma 1, llallllfll/I(a, f)| must have o as an asymptotic value. This implies that
[Ca, P I/llallllfll has 0 as an asymptotic value, which means that a= A (f).

Corollary 1. If for some point @ of C"''—V

hm{T(r - r’ rwN(tt’a,ig’f)dt} =00, (®
thenacs A(f).
Proof. Since
' ~Nta ), _r” N(taf)
2 J, 32 2 Jr P 2
> r'? e N(t a, f)
2 Jr 4+

° logt

dt+n(0, a, f)(log r+2),

if (8) holds, then (6) holds.
Remark 1. 1) We can easily obtain Theorem A from Corollary 1. In fact, let @ be Picard exceptional for f,

then
7 = N, a, Hy

2 , t3/2

t=0(log r)

and (8) holds as f is transcendental.
2) If for some point @ of C* '—V

N(r,a, /)=0(r") and liminfT—u/’g—fl>0
e T
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where 2 <1/2, a <8, thena< A(f).
In fact, in this case

r'? = N, a, f)
2 t3/2

r

dt=0(r")

and we have (8).

Corollary 2. Suppose

1/2 5
. r < T(t f)
hrpasooul:) 2 Jr (t+ r)];/z

Then if for some point @ of C*"'—V

dt/T(r, /) =K< o,

5(a, ) >1-K ',

acA(f).
We can prove this corollary as in Lemma 2([8], p.493) by applying Theorem 1.

3 Holomorphic curves with smooth growth.

Let f be as in Section 1. In [9] we gave some results on asymptotic properties of f satisfying

TG _
MTG (%)

A holomorphic curve satisfying (9) is of order zero(Theorem 1 in [9]). The purpose of this section is to gen-
eralize Theorem B to holomorphic curves of order positive applying the method used in [8].
Definition 2. Let p be a positive number. We say that f is of o-smooth growth if and only if T(r, f) satisfies

lim Iy;g‘x(ij;)g =1 forany x>0 (10)
(see [8], p.495).

For example, it is easy to see that if f has perfectly regular growth of order o >0 (see [4]), then T(r, f) sat-
isfies (10).

Remark 2. (10) is equivalent to

7152%:1 for any x>1 (1D)

(see [8], Remark 1).

Let f” be the holomorphic curve induced by (f,-+, f,.,) and [f, f'] be a bivector determined by f and f with
the components £, f; —ff; (1<i<j<n+1). Put

l r por teiﬁ , ’ tei& 2
s p= [T Hfzt;;g}l“ g

Then we have the following relation between T(7, f) and S(r, f).

Lemma 5. Let 7, be a positive number. Then for r>7,

T(r, )= T(r, f) = fr’itt’ﬁdt

(see formula (14) in [1] and pp.142-143 in [10]).
Lemma 6. For a positive number p, the following three statements are equivalent:
(i) f has p-smooth growth;
(ii)
(iii) For any positive € <p, there is an R, such that the following inequality holds:
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(f/,)p‘ “T(r, H<T(, < (%)QHT(r,f) (R, <r<t). (13)
Proof. (i) Suppose that f has p-smooth growth. For z>1
S(r, NDlog x < fﬂS—(tt’L)dt: T(xr, £)—T(r, ),

so that we have

Str,f) _ TCxr, )
T D <A (. D) 1}/ log x.

This inequality and (11) yield

. S(r, ) z°—1
<
l”ﬁi“p T(r, f) ~ logx

and letting £—1, we have

lim sup S(r. )

nSUP 7, A <p. (14)

On the other hand, for <1
S(r, /)= fy%ﬂdt: T(r, /)—T(xr, f),

so that we have

S(r. f) {T(xr, }d)
T, = T, )

—1}/log x.

This inequality with (11) yields

. . .S, H 21
m >
hr inf T(r, )" logzx

and letting x—1, we have
liminf o224 >p. (15)

From (14) and (15) we have (12).
(ii) Suppose that (12) holds. Let € be any positive number smaller than o. Then, there exists an R, such that
for R, <7<t we have the inequality

TP _ [ S )
T )~ J uTCu, P

(p—e)log%g log dué(p%—e)log%,

which reduces to
EF TG <T@ H<EY TG, ) (R<r<0),

(iii) Suppose that (13) holds. Let x>1, »>R, and put £=xr. Then from (13) we have

e TCar, /) _ .

x < <z‘.
2°T(r, )
Letting r—0 first and then e—>0, we obtain

. T(xr, f) _
M T f)

Considering Remark 2, we have (10).

1 forany zx2>1.

Remark 3. As is easily seen from (13), if f has p-smooth growth, f has regular growth of order p.
Remark 4. As in Lemma 6, we can prove the following.

“The following four statements are equivalent:

(i) lim,_.TQ2r, )/ T(r, =1,

(i1) lim,,TCzr, £)/T(r, f) =1 for any x> 0;

(iii) lim, ,..S(r, )/ T(r, /) =0;
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(iv) For any positive number € there exists an R, such that the following inequality holds:
T(t, N < (T (R<r<n).”

Theorem 2. Suppose that f has p-smooth growth, where 0<p < 1/2. If there exists a point @ in C*'— V such
that

Jr
> — - -
0(e. > 1= R D (i/2=0)"
thena€ A(f).
Proof. As in the proof of Theorem 1 in [8], we have

. r't e T, T'e+DIr{1/2—p)

A EERIWEN <4 ~
lim sup 2 o Gy dt/T(r, ) < e .

Using Corollary 2, we obtain this theorem.

Vr

— < 3 ~ 3 .
T+ DI(1/2—p) 20 if 0<p<1/2 (see Remark 2 in [8])

Remark 5. 1

Theorem 3. Suppose that f satisfies
° T, f)

i<,
If there exists a point a = C""'— V such that
lim{m(r, a, /)—25(r, f)} =0, (16)

thenacs A (f).
Proof. We apply Corollary 1. For any sufficiently large »

/2 po /2 poo 7 _
T(r, )~ "5 N D)oy T f L. N=mt.a.f) 4y o)
r t 2 r t”
12 poo _
:12 m(z, a,f)g/2 28(t, f)dt+0(1).
r t
Thus (16) implies (8), so that aE A (f).
Corollary 3. Under the same assumption as in Theorem 3, if there exists a point @ = C" ' — V such that
.. .m(r a,f)
llgrigonf*s(r, ) >2, an
thena S A(f).
This is a direct consequence of Theorem 3.
Application of Corollary 3.
I. Suppose that
limsup M:A < o0,
r=< " (logr)
If there exists a point @ in C*"'— V such that
liminf 224580 S gy (18)
7o log r

then ac A (f)
Proof. As

.2
S(r, f)logréf wdtg’l‘(rz, f)=(4A +0(1)) (log r)*

that 1s,
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S(r, H<(4A+o(1))logr

for r—>o0, (18) implies (17), and a S A(f).
Remark 6. We can replace 84 by 84 log(y2 +1) as in the case of meromorphic functions (see[8], pp.502-
503).

II. Suppose

lim Tr, f)

hm =re ey =L

Then (17) is weaker than 6(a, f) >0.
In fact, if §(a, f) >0,

m(r,a, /) _m(r,a ) T f)
S(r, f) T(r,) S

for r >0 by Remark 4.
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