On the Second Fundamental Inequality for Holomorphic Curves

Nobushige TODA＊
Department of General Studies
（Received August 28，1998）

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into the n－dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation $\left(f_{1}, \cdots, f_{n+1}\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}-\{\mathbf{0}\}$ ， where n is a positive integer．

Let X be a subset of $\boldsymbol{C}^{n+1}-\{\mathbf{0}\}$ in N－subgeneral position，where $N \geq n$ ，and $X(0)=\{\boldsymbol{a}=$ $\left.\left(a_{1}, \cdots, a_{n+1}\right) \in X: a_{n+1}=0\right\}$ ．Then，we can improve the second fundamental inequality of Nochka（［5］）as follows．

Theorem．Let $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}$ be any elements of $X(2 N-n+1<q<\infty)$ and let s be the maximum number of linearly independent vectors in $X(0) \cap\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}\right\}$ ．Then

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \leq(N-n+n(s)) T(r, f)+(N+1-n(s)) t(r, f)+S(r, f)
$$

where $n(s)=(s+1)(N+1) /(n+1)$ ．
Theorem．Let X be p－maximal $(1 \leq p \leq n)$ ．Then，

$$
\sum_{a \in X} \delta(\boldsymbol{a}, f) \leq 2 N-n+1-(N+1)(n-p)(1-\Omega) /(n+1),
$$

where $0 \leq \Omega=\lim \sup _{r \rightarrow \infty} t(r, f) / T(r, f) \leq 1$ ．

1 Introduction

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ be a holomorphic curve from \boldsymbol{C} into the n－dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation

$$
\left(f_{1}, \cdots, f_{n+1}\right): C \rightarrow C^{n+1}-\{0\},
$$

where n is a positive integer．
We use the following notation：

$$
\|f(z)\|=\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n+1}(z)\right|^{2}\right)^{1 / 2}
$$

and for a vector $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right) \in \boldsymbol{C}^{n+1}-\{\mathbf{0}\}$

$$
\begin{aligned}
\|\boldsymbol{a}\| & =\left(\left|a_{1}\right|^{2}+\cdots+\left|a_{n+1}\right|^{2}\right)^{1 / 2}, \\
(\boldsymbol{a}, f) & =a_{1} f_{1}+\cdots+a_{n+1} f_{n+1}, \\
(\boldsymbol{a}, f(z)) & =a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z)
\end{aligned}
$$

The characteristic function $T(r, f)$ of f is defined as follows（see［10］）：

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\| .
$$

On the other hand，put

[^0]$$
U(z)=\max _{1 \leq j \leq n+1}\left|f_{j}(z)\right|
$$
then it is known([1]) that
\[

$$
\begin{equation*}
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log U\left(r e^{i \theta}\right) d \theta+O(1) \tag{1}
\end{equation*}
$$

\]

We suppose throughout the paper that f is transcendental; that is to say,

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=\infty
$$

and f is linearly non-degenerate over \boldsymbol{C}; namely, f_{1}, \cdots, f_{n+1} are linearly independent over \boldsymbol{C}.
It is well-known that f is linearly non-degenerate over C if and only if the Wronskian $W\left(f_{1}, \cdots, f_{n-1}\right)$ of f_{1}, \cdots, f_{n+1} is not identically equal to zero.

We denote by $\rho(f)$ the order of f and $\mu(f)$ the lower order of f :

$$
\rho(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, f)}{\log r} \text { and } \mu(f)=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

It is said that f is of regular growth if $\rho(f)=\mu(f)$.
For meromorphic functions in the complex plane we use the standard notation of the Nevanlinna theory of meromorphic functions([4]).

For $\boldsymbol{a} \in \boldsymbol{C}^{\boldsymbol{n + 1}}-\{\mathbf{0}\}$, we write

$$
\begin{aligned}
& m(r, \boldsymbol{a}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{a}\|\left\|f\left(r e^{i \theta}\right)\right\|}{\left|\left(\boldsymbol{a}, f\left(r e^{i \theta}\right)\right)\right|} d \theta \\
& N(r, \boldsymbol{a}, f)=N\left(r, \frac{1}{(\boldsymbol{a}, f)}\right)
\end{aligned}
$$

We then have

$$
\begin{equation*}
T(r, f)=N(r, \boldsymbol{a}, f)+m(r, \boldsymbol{a}, f)+O(1) \tag{2}
\end{equation*}
$$

([10], p.76). We call the quantity

$$
\delta(\boldsymbol{a}, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, \boldsymbol{a}, f)}{T(r, f)}=\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{T(r, f)}
$$

the deficiency of \boldsymbol{a} with respect to f. We have

$$
0 \leq \delta(\boldsymbol{a}, f) \leq 1
$$

by (2) since $N(r, \boldsymbol{a}, f) \geq 0$ for $r \geq 1$ and $m(r, \boldsymbol{a}, f) \geq 0$ for $r>0$.
Further, let $\nu(c)$ be the order of zero of $(\boldsymbol{a}, f(z))$ at $z=c$ and for a positive integer k let

$$
n_{k}(r, \boldsymbol{a}, f)=\sum_{c!\leq r} \min \{\nu(c), k\}
$$

Then, we put for $r>0$

$$
N_{k}(r, \boldsymbol{a}, f)=\int_{0}^{r} \frac{n_{k}(t, \boldsymbol{a}, f)-n_{k}(0, \boldsymbol{a}, f)}{t} d t+n_{k}(0, \boldsymbol{a}, f) \log r
$$

and put

$$
\delta_{k}(\boldsymbol{a}, f)=1-\underset{r \rightarrow \infty}{\limsup } \frac{N_{k}(r, \boldsymbol{a}, f)}{T(r, f)}
$$

It is easy to see that $\delta(\boldsymbol{a}, f) \leq \delta_{k}(\boldsymbol{a}, f) \leq 1$ by definition.
Let X be a subset of $\boldsymbol{C}^{n+1}-\{0\}$ in N-subgeneral position; that is to say, $\# X \geq N+1$ and any $N+1$ elements of X generate C^{n+1}, where N is an integer satisfying $N \geq n$.

We use $\boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n+1}$ as the standard basis of \boldsymbol{C}^{n+1}.
Nochka([5]) gave the following
Theorem A. For any $q(>2 N-n+1)$ elements $a_{j}(j=1, \cdots, q)$ of X,

$$
(q-2 N+n-1) T(r, f)<\sum_{j=1}^{q} N\left(r, \boldsymbol{a}_{j}, f\right)+S(r, f)
$$

where $S(r, f)$ is any quantity satisfying

$$
S(r, f)=o(T(r, f))
$$

when r tends to ∞ outside a subset of r of at most a finite linear measure（see also［2］or［3］）．
We gave a refinement of the second fundamental inequality of Cartan（［1］）in［9］．The purpose of this paper is to give a result containing Theorem A for $N>n$ ．

2 Preliminary

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ and X etc．be as in Section 1 ．
Definition 1（［9］）．We put

$$
\begin{gathered}
u(z)=\max _{1 \leq j \leq n}\left|f_{j}(z)\right| \\
t(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{\log u\left(r e^{i \theta}\right)-\log u\left(e^{i \theta}\right)\right\} d \theta
\end{gathered}
$$

and

$$
\Omega=\limsup _{r \rightarrow \infty} \frac{t(r, f)}{T(r, f)} \quad \text { and } \quad \tau=\liminf _{r \rightarrow \infty} \frac{t(r, f)}{T(r, f)} .
$$

It is easy to see the following
Proposition 1 （［9］）．（a）$t(r, f)$ is independent of the choice of reduced representation of f ．
（b）$t(r, f) \leq T(r, f)+O(1)$ ．
（c）$N\left(r, 1 / f_{j}\right) \leq t(r, f)+O(1)(j=1, \cdots, n)$ ．
（d） $0 \leq \tau \leq \Omega \leq 1$ ．
Definition 2（［7］）．We denote by f^{*} the holomorphic curve induced by the mapping

$$
\left(f_{1}^{n+1}, \cdots, f_{n}^{n+1}, W\left(f_{1}, \cdots, f_{n}, f_{n+1}\right)\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}
$$

It is easy to see that f^{*} is independent of the choice of reduced representation of f ．Let $d(\boldsymbol{z})$ be an entire func－ tion such that the functions

$$
f_{j}^{n+1} / d(j=1, \cdots, n) \quad \text { and } \quad W\left(f_{1}, \cdots, f_{n+1}\right) / d
$$

are entire functions without common zeros．Then

$$
f^{*}=\left[f_{1}^{n+1} / d, \cdots, f_{n}^{n+1} / d, W\left(f_{1}, \cdots, f_{n+1}\right) / d\right] .
$$

Proposition 2（［7］，［9］）．（a）f^{*} is transcendental．
（b）$T\left(r, f^{*}\right) \leq T(r, f)+n t(r, f)-N(r, 1 / d)+S(r, f)$ ．
（c）$\rho\left(f^{*}\right)=\rho(f)$ ．
Example 1．Let $a_{j}(j=1, \cdots, n)$ be real numbers satisfying $0<a_{1}<\cdots<a_{n-1}<a_{n}$ and put

$$
f=\left[1, e^{a_{1} z}, \cdots, e^{a_{n} z}\right]
$$

Then，we easily have

$$
T(r, f)=\left(a_{n} / \pi\right) r+O(1) \quad \text { and } \quad t(r, f)=\left(a_{n-1} / \pi\right) r+O(1)
$$

（see［10］，pp．94－95）and $\tau=\Omega=a_{n-1} / a_{n}(<1)$ ．Further，

$$
T\left(r, f^{*}\right)=(A / \pi) r+O(1)
$$

where $A=\max \left\{(n+1) a_{n-1}, a_{1}+\cdots+a_{n}\right\}$ ．

We need the set

$$
X(0)=\left\{\boldsymbol{a}=\left(a_{1}, \cdots, a_{n}, a_{n+1}\right) \in X: a_{n+1}=0\right\}
$$

to obtain an amelioration of Theorem A. Let p be the maximum number of linearly independent vectors in $X(0)$. Then, it is easy to see that

$$
0 \leq \# X(0) \leq N \quad \text { and } \quad 0 \leq p \leq n .
$$

since X is in N-subgeneral position.
Let q be an integer satisfying $2 N-n+1<q<\infty$ and put $Q=\{1,2, \cdots, q\}$. Let $\left\{\boldsymbol{a}_{j}: j \in Q\right\}$ be a family of vectors in X. If $P \subset Q$, we denote

$$
H(P)=\text { the vector space spanned by }\left\{\boldsymbol{a}_{j}: j \in P\right\} \quad \text { and } \quad d(P)=\operatorname{dim} H(P)
$$

Lemma 1 (see [2], Theorem 0.3). For $\left\{\boldsymbol{a}_{j}: j \in Q\right\}$, there exist a Nochka weight function $\omega: Q \rightarrow(0,1]$ and a Nochka constant $\theta \geq 1$ such that
(a) $0<\omega(j) \theta \leq 1$ for all $j \in Q$;
(b) $q-2 N+n-1=\theta\left(\sum_{j=1}^{q} \omega(j)-n-1\right)$;
(c) $(N+1) /(n+1) \leq \theta \leq(2 N-n+1) /(n+1)$;
(d) If $P \subset Q$ and $0<\# P \leq N+1$, then $\Sigma_{j \in P} \omega(j) \leq d(P)$.

Lemma 2 ([2], Theorem 1.2). Let ω and θ be the same as in Lemma 1. Take $A \subset Q$ with $0<\# A \leq N+1$. Let $\left\{E_{j} \in \boldsymbol{R}: E_{j} \geq 1, j \in Q\right\}$.

Then there exists a subset B of A such that

$$
\left\{\boldsymbol{a}_{j}: j \in B\right\} \quad \text { is a basis of } H(A)
$$

and such that

$$
\Pi_{j \in A} E_{j}^{\omega(j)} \leq \Pi_{j \in B} E_{j} .
$$

Remark 1. If $\# A=N+1$, then $H(A)=\boldsymbol{C}^{n+1}$ and $\left\{\boldsymbol{a}_{j}: j \in B\right\}$ is a basis of \boldsymbol{C}^{n+1}.

3 Second fundamental inequality 1

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ and X etc. be as in Section 1 or 2 .
Theorem 1. For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(2 N-n+1<q<\infty)$ in $X-X(0)$, we have the following inequalities:
(a) $\sum_{j=1}^{q} \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right) \leq m\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)+S(r, f)$;
(b) $\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right)+\frac{N+1}{n+1} N\left(r, \frac{1}{W}\right) \leq\left(N-n+\frac{N+1}{n+1}\right) T(r, f)+\left(N+1-\frac{N+1}{n+1}\right) t(r, f)+S(r, f)$,
where $W=W\left(f_{1}, \cdots, f_{n+1}\right)$.
Proof. (a) Put

$$
\left(\boldsymbol{a}_{j}, f\right)=F_{j} \quad \text { and } \quad E_{j}=\left\|\boldsymbol { a } _ { j } \left|\left\|\left|f \| /\left|F_{j}\right|(\geq 1)(j=1, \cdots, q)\right.\right.\right.\right.
$$

For any $z(\neq 0)$ arbitrarily fixed, let

$$
\left|F_{j_{1}}(z)\right| \leq\left|F_{j_{2}}(z)\right| \leq \cdots \leq\left|F_{j_{q}}(z)\right|,
$$

where j_{1}, \cdots, j_{q} are distinct integers satisfying $1 \leq j_{1}, \cdots, j_{q} \leq q$.
Then there is a positive constant K such that

$$
\begin{align*}
\|f(z)\| & \leq K\left|F_{j_{\nu}}(z)\right| \quad(\nu=N+1, \cdots, q), \tag{3}\\
\left|F_{j_{\nu}}(z)\right| & \leq K\|f(z)\| \quad(\nu=1, \cdots, q) \tag{4}
\end{align*}
$$

and for any j_{ν}

$$
\begin{align*}
\|f(z)\| & \leq K\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n}(z)\right|^{2}+\left|F_{j_{2}}(z)\right|^{2}\right)^{1 / 2} \\
& \leq \begin{cases}K(n+1)^{1 / 2} u(z) & \text { if }\left|F_{j_{2}}(z)\right| \leq u(z) \\
K(n+1)^{1 / 2}\left|F_{j_{2}}(z)\right| & \text { otherwise }\end{cases} \tag{5}
\end{align*}
$$

since the $n+1$－th elements of vectors \boldsymbol{a}_{j} are different from zero．（From now on we denote by K a positive con－ stant，which may be different from each other when it appears．）
（I）The case when $u(z)<\left|F_{j_{1}}(z)\right|$ ．We have $\|f(z)\| \leq K\left|F_{j_{1}}(z)\right|$ from（5）in this case and the following ine－ quality holds：

$$
\begin{equation*}
\Pi_{j=1}^{q}\left(\frac{\left\|\boldsymbol{a}_{j} \mid\right\|\|f(z)\|}{\left|\left(\boldsymbol{a}_{j}, f(z)\right)\right|}\right)^{\omega(j)} \leq K . \tag{6}
\end{equation*}
$$

（II）The case when $\left|F_{j_{1}}(z)\right| \leq u(z)$ ．We have $\|f(z)\| \leq K u(z)$ from（5）in this case，and so we obtain by（3）， Lemma 2 and Remark 1 that

$$
\begin{align*}
\Pi_{j=1}^{q}\left(\frac{\left\|\boldsymbol{a}_{j}\right\|\|f(z)\|}{\left|\left(\boldsymbol{a}_{j}, f(z)\right)\right|}\right)^{\omega(j)} & \leq K \Pi_{\nu=1}^{N+1}\left(\frac{\left\|\boldsymbol{a}_{j_{\nu}}\right\|\| \| f(z) \|}{\left|F_{j_{\nu}}(z)\right|}\right)^{\omega\left(j_{\nu}\right)} \\
& \leq K \Pi_{j_{\nu} \in B} \frac{\left\|\boldsymbol{a}_{j_{\nu}}|\|\mid f(z)\|\right.}{\left|F_{j_{\nu}}(z)\right|} \\
& \leq K \frac{u(z)^{n+1}}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|} \\
& =K \frac{u(z)^{n+1}}{|W(z)|} \cdot \frac{\left|W_{B}(z)\right|}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|} \tag{7}
\end{align*}
$$

where W_{B} is the Wronskian of $\left\{F_{j_{\nu}}: j_{\nu} \in B\right\}$ ．We know that $W_{B}=c W$（ $c \neq 0$ ，constant $)$ ．
From（6）and（7）we have the inequality

$$
\begin{equation*}
\sum_{j=1}^{q} \omega(j) \log \frac{\left\|\boldsymbol{a}_{j}| || | f(z)\right\|}{\left|\left(\boldsymbol{a}_{j}, f(z)\right)\right|} \leq \log ^{+} \frac{u(z)^{n+1}}{|W(z)|}+\sum_{\left(j_{1}, \cdots, j_{0}\right)} \log ^{+} \frac{\left|W_{B}(z)\right|}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|}+O(1), \tag{8}
\end{equation*}
$$

where the summation $\sum_{\left(j_{1}, \cdots, j_{q}\right)}$ is taken over all permutations of the elements of Q which appear when z varies in C－ 00$\}$ ．

Integrating both sides of（8）with respect to $\varphi\left(z=r e^{i \varphi}\right)$ from 0 to 2π ，we obtain the inequality

$$
\sum_{j=1}^{q} \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right) \leq m\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)+S(r, f)
$$

since

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{-} \frac{u\left(r e^{i \varphi}\right)^{n+1}}{\left|W\left(r e^{i \varphi}\right)\right|} d \varphi=m\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)+O(1) \tag{9}\\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{-} \frac{\left|W_{B}\left(r e^{i \varphi}\right)\right|}{\Pi_{j_{2} \in B}\left|F_{j_{2}}\left(r e^{i \varphi}\right)\right|} d \varphi=S(r, f) \tag{10}
\end{align*}
$$

We obtain（9）from the definition of $m\left(r, \boldsymbol{e}_{n-1}, f^{*}\right)$ and（10）as in［1］，pp．12－15．
（b）By using Proposition 2 and（2），we obtain from（a）that

$$
\sum_{j=1}^{q} \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right)+N\left(r, \frac{1}{W}\right) \leq T(r, f)+n t(r, f)+S(r, f)
$$

and so

$$
\begin{equation*}
\sum_{j=1}^{q} \theta \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right)+\theta N\left(r, \frac{1}{W}\right) \leq \theta T(r, f)+n \theta t(r, f)+S(r, f) . \tag{11}
\end{equation*}
$$

Adding

$$
\sum_{j=1}^{q}(1-\theta \omega(j)) m\left(r, \boldsymbol{a}_{j}, f\right)
$$

to both sides of (11) and using (2), we obtain

$$
\begin{align*}
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) & +\theta N\left(r, \frac{1}{W}\right)+\sum_{j=1}^{q}(1-\theta \omega(j)) N\left(r, \boldsymbol{a}_{j}, f\right) \\
& \leq\left(q+\theta-\sum_{j=1}^{q} \theta \omega(j)\right) T(r, f)+n \theta t(r, f)+S(r, f) \tag{12}
\end{align*}
$$

By (a) and (b) of Lemma 1 and from (12) we obtain

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right)+\theta N\left(r, \frac{1}{W}\right) \leq(2 N-n+1) T(r, f)-n \theta\{T(r, f)-t(r, f)\}+S(r, f)
$$

and by using Lemma 1 (c) and Proposition 1 (b)

$$
\begin{aligned}
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right)+\frac{N+1}{n+1} N\left(r, \frac{1}{W}\right) & \leq(2 N-n+1) T(r, f)-n \frac{N+1}{n+1}\{T(r, f)-t(r, f)\}+S(r, f) \\
& =\left(N-n+\frac{N+1}{n+1}\right) T(r, f)+\left(N+1-\frac{N+1}{n+1}\right) t(r, f)+S(r, f)
\end{aligned}
$$

4 Second fundamental inequality 2

In this section we suppose that $X(0)$ is not empty.
Theorem 2. Let $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(2 N-n+1<q<\infty)$ be any elements of X and suppose that

$$
X(0) \cap\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}\right\}=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{\ell}\right\},
$$

where $1 \leq \ell \leq \sharp X(0)$. Let s be the maximum number of linearly independent vectors in $\left\{a_{1}, \cdots, a_{\ell}\right\}$. Then,
(a) $\sum_{j=1}^{q} \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right)+N\left(r, \frac{1}{W}\right) \leq(s+1) T(r, f)+(n-s) t(r, f)+S(r, f)$;
(b) $\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right)+\frac{N+1}{n+1} N\left(r, \frac{1}{W}\right) \leq(N-n+n(s)) T(r, f)+(N+1-n(s)) t(r, f)+S(r, f)$,
where W is the Wronskian of f_{1}, \cdots, f_{n+1} and $n(s)=(s+1)(N+1) /(n+1)$.
Proof. (a) Put

$$
\left(\boldsymbol{a}_{j}, f\right)=F_{j} \quad \text { and } \quad E_{j}=\left\|\boldsymbol{a}_{j}\right\|\|f\| /\left|F_{j}\right|(\geq 1)(j=1, \cdots, q)
$$

For any $z(\neq 0)$ arbitrarily fixed, let

$$
\left|F_{j_{1}}(z)\right| \leq\left|F_{j_{2}}(z)\right| \leq \cdots \leq\left|F_{i_{q}}(z)\right|,
$$

where $1 \leq j_{1}, \cdots, j_{q} \leq q$ and j_{1}, \cdots, j_{q} are distinct. Then there is a positive constant K such that

$$
\begin{align*}
\|f(z)\| & \leq K\left|F_{j_{\nu}}(z)\right| \quad(\nu=N+1, \cdots, q) \tag{13}\\
\left|F_{j_{\nu}}(z)\right| & \leq K\|f(z)\| \quad(\nu=1, \cdots, q) \tag{14}
\end{align*}
$$

and for any $j_{\nu} \geq \ell+1$

$$
\begin{align*}
\|f(z)\| & \leq K\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n}(z)\right|^{2}+\left|F_{j_{\nu}}(z)\right|^{2}\right)^{1 / 2}, \\
& \leq \begin{cases}K(n+1)^{1 / 2} u(z) & \text { if }\left|F_{j_{\nu}}(z)\right| \leq u(z) \\
K(n+1)^{1 / 2}\left|F_{j_{\nu}}(z)\right| & \text { otherwise }\end{cases} \tag{15}
\end{align*}
$$

since the $n+1-$ th element of $\boldsymbol{a}_{j_{\nu}}$ is different from zero if $j_{\nu} \geq \ell+1$ ．（From now on we denote by K a positive con－ stant，which may be different from each other when it appears．）

We have by（13）and by Lemma 2

$$
\begin{align*}
\Pi_{j=1}^{q}\left(\frac{\left\|\boldsymbol{a}_{j}\right\|\|f(z)\|}{\left|\left(\boldsymbol{a}_{j}, f(z)\right)\right|}\right)^{\omega(j)} & \leq K \Pi_{\nu=1}^{N+1}\left(\frac{\left\|\boldsymbol{a}_{j_{\nu}}\right\|\|f(z)\|}{\left|F_{j_{\nu}}(z)\right|}\right)^{\omega\left(j_{\nu}\right)} \\
& \leq K \Pi_{j_{\nu} \in B} \frac{\left\|\boldsymbol{a}_{j_{\nu}}\right\|\|f(z)\|}{\left|F_{j_{\nu}}(z)\right|} \equiv I . \tag{16}
\end{align*}
$$

（A）The case when $\left\{\boldsymbol{a}_{j_{\nu}}: j_{\nu} \in B\right\} \cap X(0)=\phi$
（A－1）If for any $j_{\nu} \in B$

$$
u(z)<\left|F_{j_{\nu}}(z)\right|,
$$

we have by（15）

$$
\begin{equation*}
I \leq K \tag{17}
\end{equation*}
$$

（A－2）If for some $j_{\nu} \in B$

$$
\left|F_{j_{\nu}}(z)\right| \leq u(z),
$$

we have by（15）

$$
\begin{equation*}
I \leq K \frac{u(z)^{n+1}}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|}=K \frac{u(z)^{n+1}}{|W(z)|} \cdot \frac{\left|W_{B}(z)\right|}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|}, \tag{18}
\end{equation*}
$$

where W_{B} is the Wronskian of $\left\{F_{j_{\nu}}: j_{\nu} \in B\right\}$ ．Note that $W_{B}=c W$（ $c \neq 0$ ，constant）．
（B）The case when $\left\{\boldsymbol{a}_{j_{\nu}}: j_{\nu} \in B\right\} \cap X(0) \neq \phi$ ．Suppose without loss of generality that

$$
X(0) \cap\left\{\boldsymbol{a}_{j_{v}}: j_{\nu} \in B\right\}=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\}
$$

Then， $1 \leq k \leq s$ ．We suppose without loss of generality that $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{s}$ are linearly independent．
（B－1）If for any $j_{\nu} \in B, j_{\nu} \neq 1, \cdots, k$

$$
u(z)<\left|F_{j_{\nu}}(z)\right|,
$$

we have by（14）and（15）

$$
\begin{equation*}
I \leq K \frac{\|f(z)\|^{k}}{\left|F_{1}(z) \cdots F_{k}(z)\right|} \leq K \frac{\|f(z)\|^{s}}{\left|F_{1}(z) \cdots F_{s}(z)\right|} \tag{19}
\end{equation*}
$$

We can find $\boldsymbol{e}_{i_{s+1}}, \cdots, \boldsymbol{e}_{i_{n}}\left(i_{s+1}, \cdots, i_{n} \leq n\right)$ such that the vectors

$$
\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{s}, \boldsymbol{e}_{i_{s+1}}, \cdots, \boldsymbol{e}_{i_{n}}
$$

are linearly independent．
From（19）and by the inequalities

$$
\left|f_{n+1}(z)\right| \leq\|f(z)\|, \quad\left|f_{i_{j}}(z)\right| \leq u(z) \quad(j=s+1, \cdots, n)
$$

and

$$
W\left(F_{1}, \cdots, F_{s}, f_{i_{s+1}}, \cdots, f_{i_{n}}, f_{n+1}\right)(z)=K W(z)
$$

we have

$$
\begin{equation*}
I \leq K \frac{\|f(z)\|^{s+1} u(z)^{n-s}}{|W(z)|} \cdot \frac{\left|W\left(F_{1}, \cdots, F_{s}, f_{i_{s+1}}, \cdots, f_{i_{n}}, f_{n+1}\right)(z)\right|}{\left|F_{1}(z) \cdots F_{s}(z) f_{i_{s+1}}(z) \cdots f_{i_{n}}(z) f_{n+1}(z)\right|} . \tag{20}
\end{equation*}
$$

(B-2) If for some $j_{\nu} \in B, j_{\nu} \neq 1, \cdots, k$

$$
\left|F_{j_{2}}(z)\right| \leq u(z)
$$

we have by (15)

$$
\begin{equation*}
I \leq K \frac{u(z)^{n+1}}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|}=K \frac{u(z)^{n+1}}{|W(z)|} \cdot \frac{\left|W_{B}(z)\right|}{\Pi_{j_{\nu} \in B}\left|F_{j_{\nu}}(z)\right|} \tag{21}
\end{equation*}
$$

Since

$$
u(z)^{n+1} \leq\|f(z)\|^{s+1} u(z)^{n-s}
$$

we have from (16), (17), (18), (20) and (21)

$$
\begin{align*}
\sum_{j=1}^{q} \omega(j) \log \frac{\left\|\boldsymbol{a}_{j}| || | f(z)\right\|}{\left|F_{j}(z)\right|} & \leq \log +\frac{\|\left. f(z)\right|^{s+1} u(z)^{n-s}}{|W(z)|}+\sum_{\left(j_{1}, \cdots, j_{z}\right)} \log ^{+} \frac{\left|W_{B}(z)\right|}{\Pi_{j_{2} \in B}\left|F_{j_{2}}(z)\right|} \\
& +\sum_{\left(j_{1}, \cdots, j_{g}\right)} \log ^{+} \frac{\left|W\left(F_{1}, \cdots, F_{s}, f_{i_{s+1}}, \cdots, f_{i_{n}}, f_{n+1}\right)(z)\right|}{\left|F_{1}(z) \cdots F_{s}(z) f_{i_{s+1}}(z) \cdots f_{i_{n}}(z) f_{n+1}(z)\right|}+O(1) \tag{22}
\end{align*}
$$

where $\Sigma_{\left(j_{1}, \cdots, j_{q}\right)}$ is taken over all permutations of the elements of Q which appear when z varies in $\boldsymbol{C}-\{0\}$. Since

$$
\log \frac{\|f(z)\|^{s-1} u(z)^{n-s}}{|W(z)|}=\log \max \left\{\|f(z)\|^{s-1} u(z)^{n-s},|W(z)|\right\}-\log |W(z)|
$$

and

$$
|W(z)|=\left|f_{1}(z) \cdots f_{n+1}(z)\right| \frac{|W(z)|}{\left|f_{1}(z) \cdots f_{n+1}(z)\right|} \leq \|\left. f(z)\right|^{s+1} u(z)^{n-s} \frac{|W(z)|}{\left|f_{1}(z) \cdots f_{n-1}(z)\right|},
$$

integrating both sides of (22) with respect to φ from 0 to $2 \pi\left(z=r e^{i \varphi}\right)$ we obtain

$$
\sum_{j=1}^{q} \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right)+N\left(r, \frac{1}{W}\right) \leq(s+1) T(r, f)+(n-s) t(r, f)+S(r, f)
$$

(b) We obtain (b) of this theorem from (a) as in the case of Theorem 1.

5 Subset of C^{n+1} in subgeneral position

To obtain a refinement of the defect relation for holomorphic curves (see, for example, Theorem 3.3.8 and Theorem 3.3.10 in [3]), we need some new notions on subsets of \boldsymbol{C}^{n+1} in subgeneral position.

Let X be a subset of C^{n+1} in N-subgeneral position such that the number of elements of X is not smaller than $N+1$ as in Section 1 and

$$
X(0)=\left\{\boldsymbol{a}=\left(a_{1}, a_{2}, \cdots, a_{n}, a_{n+1}\right) \in X: a_{n+1}=0\right\}
$$

as in Section 2. Suppose that $N>n$ in this section.
Let $V_{X(0)}$ be the vector space generated by the elements of $X(0)$. Remember that the number of elements of $X(0)$ is not greater than N and the dimension of $V_{X(0)}$ is not greater than n.

Definition 3. We say that
(i) X is maximal in the sense of subgeneral position if for any Y in N-subgeneral position such that $X \subset Y \subset C^{n+1}, X=Y$.
(ii) X is p-maximal (in the sense of subgeneral position) if X is maximal in the sense of subgeneral position and $\operatorname{dim} V_{X(0)}=p$.

Note that X is p-maximal in the sense of general position if $N=n$ ([8], Definition 1).
The purpose of this section is to give examples of p-maximal subsets of \boldsymbol{C}^{n+1} in the sense of subgeneral
position．
We shall use the following lemma for our purpose．
Lemma 3．For any vector（ $\alpha_{1}, \cdots, \alpha_{n}, \alpha_{n+1}$ ）of \boldsymbol{C}^{n-1} which is neither equal to $\mathbf{0}, \alpha \boldsymbol{e}_{1}$ nor $\beta \boldsymbol{e}_{n-1}$ ，there exist com－ plex numbers a_{1}, \cdots, a_{n} different from each other for which the vectors

$$
\left(\alpha_{1}, \cdots, \alpha_{n+1}\right),\left(a_{1}^{n}, a_{1}^{n-1}, \cdots, a_{1}, 1\right), \cdots,\left(a_{n}^{n}, a_{n}^{n-1}, \cdots, a_{n}, 1\right)
$$

are linearly dependent，where α and β are any complex numbers（［8］，Lemma 3）．
Proposition 3．For $n \geq 2$ ，the set

$$
A=\left\{\left(a^{n}, a^{n-1}, \cdots, a, 1\right): a \in \boldsymbol{C}\right\} \cup\left\{k \boldsymbol{e}_{1}: k=1, \cdots, N-n+1\right\} \cup\left\{\boldsymbol{e}_{2}\right\}
$$

is 2 －maximal．
Proof．It is easy to see that A is in N－subgeneral position and $\operatorname{dim} V_{A(0)}=2$ ．We have only to prove that for any vector

$$
\boldsymbol{x}=\left(\alpha_{1}, \cdots, \alpha_{n}, \alpha_{n+1}\right)(\neq \mathbf{0})
$$

which does not belong to $A, A \cup\{\boldsymbol{x}\}$ is not in N－subgeneral position．
（a）The case when $\alpha_{1} \neq 0, \alpha_{2}=\cdots=\alpha_{n+1}=0$ ．
For any distinct numbers a_{1}, \cdots, a_{n-1} ，we can not find $n+1$ linearly independent vectors in the following $N+1$ vectors

$$
\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-1), k \boldsymbol{e}_{1}(k=1, \cdots, N-n+1), \boldsymbol{x}
$$

（b）The case when $\alpha_{1}=\cdots=\alpha_{n}=0, \alpha_{n+1} \neq 0$ ．
For any distinct numbers a_{1}, \cdots, a_{n-2} different from zero，we can not find $n+1$ linearly independent vectors in the following $N+1$ vectors

$$
\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-2), k \boldsymbol{e}_{1}(k=1, \cdots, N-n+1), \boldsymbol{e}_{n+1}, \boldsymbol{x}
$$

（c）The case when $\alpha_{1}=\alpha_{3}=\cdots=\alpha_{n+1}=0$ and $\alpha_{2} \neq 0$ ．
For any distinct numbers a_{1}, \cdots, a_{n-2} ，we can not find $n+1$ linearly independent vectors in the following $N+1$ vectors

$$
\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-2), k \boldsymbol{e}_{1}(k-1, \cdots, N-n+1), \boldsymbol{e}_{2}, \boldsymbol{x}
$$

（d）The case when $\boldsymbol{x} \neq \alpha \boldsymbol{e}_{1}, \beta \boldsymbol{e}_{2}, \gamma \boldsymbol{e}_{n+1}$ ．
By Lemma 3，there are $n-1$ distinct numbers a_{1}, \cdots, a_{n-1} such that the vectors

$$
\left(\alpha_{2}, \cdots, \alpha_{n+1}\right),\left(a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-1)
$$

are linearly dependent．Then，we can not find $n+1$ linearly independent vectors in the following $N+1$ vectors

$$
\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-1), k \boldsymbol{e}_{1}(k=1, \cdots, N-n+1), \boldsymbol{x} .
$$

since $\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-1), \boldsymbol{e}_{1}$ and \boldsymbol{x} are linearly dependent．
From（a），（b），（c）and（d）it is proved that $A \cup\{\boldsymbol{x}\}$ is not in N－subgeneral position．
Proposition 4．For $n \geq 2$ ，the set

$$
A_{p}=\left\{\left(a^{n}, a^{n-1}, \cdots, a, a^{p}+1\right): a \in \boldsymbol{C}\right\} \cup\left\{k \boldsymbol{e}_{1}: k=1, \cdots, N-n+1\right\} \cup\left\{\boldsymbol{e}_{2}\right\}
$$

is $\mathrm{p}+2$－maximal，where $1 \leq p \leq n-2$ ．
Proof．It is easy to see that A_{p} is in N－subgeneral position and $\operatorname{dim} V_{A_{p}(0)}=p+2$ since the $\mathrm{p}+2$ vectors

$$
\boldsymbol{e}_{1}, \boldsymbol{e}_{2},\left\{\left(a^{n}, a^{n-1}, \cdots, a, a^{p}+1\right): a^{p}+1=0\right\}
$$

are linearly independent.
We have only to prove that for any vector

$$
\boldsymbol{x}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1}\right)(\neq \mathbf{0})
$$

which does not belong to $A_{p}, A_{p} \cup\{\boldsymbol{x}\}$ is not in N-subgeneral position. In fact the vector

$$
\boldsymbol{y}=\left(\alpha_{1}, \cdots, \alpha_{n}, \alpha_{n-1}-\alpha_{n-1-p}\right)
$$

does not belong to A and $A \cup\{\boldsymbol{y}\}$ is not in N-subgeneral position by Proposition 3 and so $A_{p} \cup\{\boldsymbol{x}\}$ is not in N subgeneral position.

For $n \geq 2$, let

$$
B=\left\{\left(a^{n}, a^{n-1}, \cdots, a, 1\right): a \in \boldsymbol{C}\right\} \cup\left\{k \boldsymbol{e}_{1}: k=1, \cdots, N-n+1\right\} \cup\left\{\boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right\} .
$$

Then,
Proposition 5. The set B is 2 -maximal.
Proof. It is easy to see that B is in N-subgeneral position and $\operatorname{dim} V_{B(0)}=2$. We have only to prove that for any vector

$$
\left(\alpha_{1}, \cdots, \alpha_{n}, \alpha_{n+1}\right)(\neq \mathbf{0})
$$

which does not belong to $B, B \cup\{\boldsymbol{x}\}$ is not in N-subgeneral position.
(a) The case when $\alpha_{1} \neq 0, \alpha_{2}=\cdots=\alpha_{n-1}=0$.
(b) The case when $\alpha_{1}=\cdots=\alpha_{n}=0, \alpha_{n-1} \neq 0$.

In these two cases we can prove that $A \cup\{\boldsymbol{x}\}$ is not in N-subgeneral position as in the proof of Proposition 3.
(c) The case when $\boldsymbol{x}=\alpha_{1} \boldsymbol{e}_{1}+\alpha_{2} \boldsymbol{e}_{2}\left(\alpha_{2} \neq 0\right)$.

For any distinct numbers a_{1}, \cdots, a_{n-2}. we can not find $n+1$ linearly independent vectors in the following $N+1$ vectors

$$
\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-2), k \boldsymbol{e}_{1}(k=1, \cdots, N-n+1), \boldsymbol{e}_{1}+\boldsymbol{e}_{2}, \boldsymbol{x}
$$

(d) The case when $\boldsymbol{x} \neq \alpha \boldsymbol{e}_{1}+\beta \boldsymbol{e}_{2}(|\alpha|+|\beta| \neq 0), \boldsymbol{\gamma} \boldsymbol{e}_{n+1}$.

By Lemma 3, there are $n-1$ distinct numbers a_{1}, \cdots, a_{n-1} such that the vectors

$$
\left(\alpha_{2}, \cdots, \alpha_{n+1}\right),\left(a_{1}^{n-1}, \cdots, a_{1}, 1\right), \cdots,\left(a_{n-1}^{n-1}, \cdots, a_{n-1}, 1\right)
$$

are linearly dependent. Then, we can not find $n+1$ linearly independent vectors in the following $N+1$ vectors

$$
\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-1), k \boldsymbol{e}_{1}(k=1, \cdots, N-n+1), \boldsymbol{x}
$$

since $\boldsymbol{e}_{1}, \boldsymbol{x}$ and $\left(a_{j}^{n}, a_{j}^{n-1}, \cdots, a_{j}, 1\right)(j=1, \cdots, n-1)$ are linearly dependent.
From (a),(b),(c) and (d), $A \cup\{\boldsymbol{x}\}$ is not in N-subgeneral position.
Proposition 6. For $n \geq 2$, the set

$$
B_{1}=\left\{\left(1, a^{n-1}, \cdots, a, a^{n}\right): a \in \boldsymbol{C}\right\} \cup\left\{k \boldsymbol{e}_{n-1}: k=1, \cdots, N-n+1\right\} \cup\left\{\boldsymbol{e}_{2}+\boldsymbol{e}_{n+1}\right\}
$$

is 1-maximal.
Proof. It is easy to see that B_{1} is in N-subgeneral position and $\operatorname{dim} V_{B_{1}(0)}=1$. We have only to prove that for any vector

$$
\boldsymbol{x}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, \alpha_{n+1}\right)(\neq \mathbf{0})
$$

which does not belong to $B_{1}, B_{1} \cup\{\boldsymbol{x}\}$ is not in N-subgeneral position. Put

$$
\boldsymbol{y}=\left(\alpha_{n+1}, \alpha_{2}, \cdots, \alpha_{n}, \alpha_{1}\right)
$$

Then， \boldsymbol{y} is not equal to $\mathbf{0}$ and does not belong to B given just before Proposition 5．By Proposition $5, B \cup\{\boldsymbol{y}\}$ is not in N－subgeneral position，so that $B_{1} \cup\{\boldsymbol{x}\}$ is not in N－subgeneral position．

Theorem 3．Suppose $N>n \geq 2$ ．For any $p(1 \leq p \leq n)$ ，there is a p－maximal subset of C^{n+1} in the sense of subgeneral position．

Remark 2．It is easy to see that any maximal subset of \boldsymbol{C}^{2} in the sense of subgeneral position is 1－maximal．
Problem．Is there a 0 －maximal subset of $\boldsymbol{C}^{n}(n \geq 3)$ in the sense of subgeneral position？

6 Defect relation

Let f, X and $X(0)$ etc．be as in Section 1，2，3 or 4 ．
Theorem 4 （defect relation）．For any q elements $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q} \in X(2 N-n+1<q<\infty)$ ，
（a－1）$\sum_{j=1}^{q} \omega(j) \delta_{n}\left(\boldsymbol{a}_{j}, f\right) \leq p+1+(n-p) \Omega$ ；
$(\mathrm{a}-2) \sum_{j=1}^{q} \omega(j) \delta\left(\boldsymbol{a}_{j}, f\right)+\xi \leq p+1+(n-p) \Omega$ ；
（b－1）$\sum_{j=1}^{q} \delta_{n}\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1-\frac{N+1}{n+1}(n-p)(1-\Omega)$ ；
（b－2）$\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)+\frac{N+1}{n+1} \xi \leq 2 N-n+1-\frac{N+1}{n+1}(n-p)(1-\Omega)$ ，
where p is the maximum number of linearly independent vectors in $X(0) \cap\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}\right\}(0 \leq p \leq n)$ and

$$
\xi= \begin{cases}\limsup _{r \rightarrow \infty} \frac{N(r, 1 / W)}{T(r, f)} & \text { if } \mathrm{f} \text { has finite order, } \\ \liminf _{r \rightarrow \infty} \frac{N(r, 1 / W)}{T(r, f)} & \text { otherwise. }\end{cases}
$$

We easily obtain this theorem from Theorem 1 when $p=0$ or from Theorem 2 when p is positive．We obtain （a－1）and（b－1）by applying Lemma 3．2．13 in［3］，p．102．

Remark 3．$p+1+(n-p) \Omega \leq n+1$ and $2 N-n+1-(N+1)(n-p)(1-\Omega) /(n+1) \leq 2 N-n+1$ ．The equalities hold if and only if $p=n$ or $\Omega=1$ in these two inequalities．

The number＂ $2 N-n+1-(N+1)(n-p)(1-\Omega) /(n+1)$＂increases with $p(0 \leq p \leq n)$ when $\Omega<1$ ．If p in－ creases to n when q tends to ∞ ，the bound＂ $2 N-n+1-(N+1)(n-p)(1-\Omega) /(n+1)$＂of Theorem 4 （b－1），（b－2） increases to $2 N-n+1$ for any $\Omega<1$ ．But，as Theorem 3 shows，there exist examples of X for which p does not increase to n even when q tends to ∞ ．By the way，Example 1 gives a holomorphic curve for which $\Omega<1$ ．

Theorem 5（Defect relation）．Let X be a p－maximal subset of \boldsymbol{C}^{n+1} in N－subgeneral position．Then，we have
（I）$\sum_{a \in X} \delta_{n}(\boldsymbol{a}, f) \leq 2 N-n+1-\frac{N+1}{n+1}(n-p)(1-\Omega)$ ；
（II）$\sum_{a \in X} \delta(\boldsymbol{a}, f)+\frac{N+1}{n+1} \xi \leq 2 N-n+1-\frac{N+1}{n+1}(n-p)(1-\Omega)$ ．
Proof．（I）When $\#\left\{\boldsymbol{a} \in X: \delta_{n}(\boldsymbol{a}, f)>0\right\}<\infty$ ，there is nothing to prove by Theorem 4 （b－1）．When $\#\left\{\boldsymbol{a} \in X: \delta_{n}(\boldsymbol{a}, f)>0\right\}=\infty$ ，it is countable by Theorem $4(\mathrm{~b}-1)$ ．Let

$$
\left\{\boldsymbol{a} \in X: \delta_{n}(\boldsymbol{a}, f)>0\right\}=\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots\right\},
$$

and without loss of generality we put

$$
X(0) \cap\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots\right\}=\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{k}\right\} \quad(0 \leq k \leq N) .
$$

Let

$$
\operatorname{dim} V_{\left\{a_{1}, \cdots, a_{k}\right\}}=s(0 \leq s \leq p) .
$$

Then, by Theorem 4 (b-1), for any q

$$
\sum_{j=1}^{q} \delta_{n}\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1-\frac{N+1}{n+1}(n-s)(1-\Omega) \leq 2 N-n+1-\frac{N+1}{n+1}(n-p)(1-\Omega)
$$

and letting q tend to ∞ we have

$$
\sum_{\boldsymbol{a} \in X} \delta_{n}(\boldsymbol{a}, f)=\sum_{j=1}^{\infty} \delta_{n}\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1-\frac{N+1}{n+1}(n-p)(1-\Omega)
$$

since p is independent of q.
(II) We obtain (II) of Theorem 5 by using Theorem 4 (b-2) instead of (b-1) as in the case of (I).

7 Holomorphic curves with maximal deficiency sum

Let $f=\left[f_{1}, \cdots, f_{n-1}\right], X$ and $X(0)$ etc. be as in the previous sections.
Lemma 4. If

$$
\delta\left(\boldsymbol{e}_{j}, f^{*}\right)=1(j=1, \cdots, n+1)
$$

then f^{*} is of regular growth and $\rho\left(f^{*}\right)$ is either ∞ or a positive integer (see [6], Théorème 3).
Lemma 5. For any $\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{q}(2 N-n+1<q<\infty)$ in $X-X(0)$ and for $r \geq 1$

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right) \leq \frac{2 N-n+1}{n+1} m\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)+(N-n) T(r, f)+S(r, f) .
$$

Proof. From Theorem 1 (a), we have

$$
\sum_{j=1}^{q} \theta \omega(j) m\left(r, \boldsymbol{a}_{j}, f\right) \leq \theta m\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)+S(r, f)
$$

Adding $\sum_{j=1}^{q}(1-\theta \omega(j)) T(r, f)$ to both sides of this inequality, we obtain

$$
\sum_{j=1}^{q} m\left(r, \boldsymbol{a}_{j}, f\right)+\sum_{j=1}^{q}(1-\theta \omega(j)) N\left(r, \boldsymbol{a}_{j}, f\right) \leq \theta m\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)+T(r, f) \sum_{j=1}^{q}(1-\theta \omega(j))+S(r, f) .
$$

Since $N\left(r, \boldsymbol{a}_{j}, f\right) \geq 0$ for $r \geq 1$ and by (a),(b),(c) of Lemma 1, we obtain our lemma.
Theorem 6. Suppose that X is p-maximal in the sense of N-subgeneral position, $\rho(f)<\infty$ and

$$
\sum_{\boldsymbol{a} \in X} \delta(\boldsymbol{a}, f)=2 N-n+1
$$

Then, the following statements hold:
(a) $p=n$ or $\Omega=1$.
(b) $\xi=0$.
(c) $\frac{n+1}{2 N-n+1} \leq \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)} \leq \limsup _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)} \leq 1+n \Omega$.
(d) In particular, if

$$
\delta\left(\boldsymbol{e}_{j}, f\right)=1(j=1, \cdots, n)
$$

then $\rho(f)$ is a positive integer and f is of regular growth.
Proof. (a) and (b). These are trivial by Theorem 5 (II).
(c). Since $\# X(0) \leq N$,

$$
\begin{equation*}
\sum_{a \in X=X(0)} \delta(\boldsymbol{a}, f) \geq N-n+1 . \tag{23}
\end{equation*}
$$

From (23) and Lemma 5, we have

$$
1 \leq \frac{2 N-n+1}{n+1} \liminf _{r \rightarrow \infty} \frac{T\left(r, f^{*}\right)}{T(r, f)}
$$

and from Proposition 2,

$$
\underset{r \rightarrow \infty}{\limsup } \frac{T\left(r, f^{*}\right)}{T(r, f)} \leq 1+n \Omega
$$

Combining these two inequalities we obtain（c）．Note that

$$
S(r, f)=O(\log r) \quad(r \rightarrow \infty)
$$

since $\rho(f)<\infty$ ．
（d）．Since for $j=1, \cdots, n$

$$
\begin{aligned}
0 \leq \underset{r \rightarrow \infty}{\limsup } \frac{N\left(r, \boldsymbol{e}_{j}, f^{*}\right)}{T\left(r, f^{*}\right)} & \leq \limsup _{r \rightarrow \infty} \frac{(n+1) N\left(r, \boldsymbol{e}_{j}, f\right)}{T\left(r, f^{*}\right)} \\
& =(n+1) \limsup _{r \rightarrow \infty} \frac{N\left(r, \boldsymbol{e}_{j}, f\right)}{T(r, f)} \cdot \frac{T(r, f)}{T\left(r, f^{*}\right)} \\
& \leq(2 N-n+1) \limsup _{r \rightarrow \infty} \frac{N\left(r, \boldsymbol{e}_{j}, f\right)}{T(r, f)}=0
\end{aligned}
$$

by（c）and by the assumption that $\delta\left(\boldsymbol{e}_{j}, f\right)=1(j=1, \cdots, n)$ and since

$$
0 \leq \underset{r \rightarrow \infty}{\limsup } \frac{N\left(r, \boldsymbol{e}_{n+1}, f^{*}\right)}{T\left(r, f^{*}\right)} \leq \underset{r \rightarrow \infty}{\limsup } \frac{N(r, 1 / W)}{T(r, f)} \cdot \frac{T(r, f)}{T\left(r, f^{*}\right)} \leq \frac{2 N-n+1}{n+1} \xi=0
$$

by（b），we have

$$
\delta\left(\boldsymbol{e}_{j}, f^{*}\right)=1-\underset{r \rightarrow \infty}{\limsup } \frac{N\left(r, \boldsymbol{e}_{j}, f^{*}\right)}{T\left(r, f^{*}\right)}=1(j=1, \cdots, n+1)
$$

Then，we have（d）by Lemma 4.

References

［1］H．Cartan：Sur les combinaisons linéaires dep fonctions holomorphes données．Mathematica 7（1933），5－31．
［2］W．Chen：Defect relations for degenerate meromorphic maps．Trans．Amer．Math．Soc．，319－2（1990），499－ 515.
［3］H．Fujimoto：Value distribution theory of the Gauss map of minimal surfaces in \boldsymbol{R}^{m} ．Aspects of Math．E 21，Vieweg 1993.
［4］W．K．Hayman：Meromorphic functions．Oxford at the Clarendon Press 1964.
［5］E．I．Nochka：On the theory of meromorphic functions．Soviet Math．Dokl．，27－2（1983），377－381．
［6］N．Toda：Sur la croissance de fonctions algébroïdes à valeurs déficientes．Kodai Math．Sem．Rep．，22－ 3（1970），324－337．
［7］N．Toda：An extension of the derivative of meromorphic functions to holomorphic curves．Proc．Japan Acad．，70，Ser．A，No．6（1994），159－164．
［8］N．Toda：On subsets of \boldsymbol{C}^{n+1} in general position．Proc．Japan Acad．，72，Ser．A，No．3（1996），55－58．
［9］N．Toda：On the fundamental inequality for non－degenerate holomorphic curves．Kodai Math．J．20－3（1997）， 189－207．
［10］H．Weyl and F．J．Weyl：Meromorphic functions and analytic curves．Ann．Math．Studies 12，Princeton 1943.

[^0]: ＊Supported in part by Grant－in－Aid for Scientific Research（No．09640180），Ministry of Education，Science and Culture

