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On the Second Fundamental Inequality for Holomorphic Curves
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Let f=[f,,"*".f,~1] be a transcendental holomorphic curve from C into the 7n-dimensional
complex projective space P"(C) with a reduced representation (f;,**,f,.,): C—~C""'—{0},
where 7 is a positive integer.

Let X be a subset of C""'—{0} in N-subgeneral position, where N>#, and X(0)={a=
(ay,+,a,.))EX:a,.,=0}. Then, we can improve the second fundamental inequality of

Nochka ([5]) as follows.
Theorem. Let a,,**,a, be any elements of X (2N—n+1<¢g< ) and let s be the maximum

number of linearly independent vectors in X(0) N {a,,---,a,}. Then

S m(ra,f) < (N—n+n(s))T(r )+ (N+1-n()E(r ) +S(r.f),

i=1
where n(s)=(s+1)(N+1)/(n+1).
Theorem. Let X be p-maximal (1<p<n). Then,

Y. 8(a,H)<2N—n+1—(N+D(n—p)A—Q)/(n+1),

aeX

where 0 <Q=1im sup,_.t(7,.f)/T(r,.f) <1.

1 Introduction

Let f=1[f;,""",f,+1] be a holomorphic curve from C into the n-dimensional complex projective space P"(C)

with a reduced representation

(_f[y"'yf;ﬁ»l) : C“’C’H-l_ {0},

where 7 is a positive integer.

We use the following notation:
@I = AR P+ | £y (2) DY

and for a vector a=(a,,***,a,.,) €EC"""'— {0}
lall=(la,[*++la,., D"

(a.)=afi++a,rfoir,
(a.f(2)=afi(z)++a,. f,.1(2)

The characteristic function T(7,f) of f is defined as follows(see [10]):
I S i0 _
T(r.f) =5 [ loglf(re*lid6— loglf(O)I.

On the other hand, put
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U(Z)=]gl§”)gliﬁ(2)l,

then it is known([1]) that

2 .
T(r.p) =5 | log Utre")ao+0(D), (1)
We suppose throughout the paper that f is transcendental; that is to say,
tim L0 oo
- lOg 7

and f is linearly non-degenerate over C; namely, f;,"*.f,. are linearly independent over C.

It is well-known that f is linearly non-degenerate over C if and only if the Wronskian W(f,,*.f,-\) of
fi, . fr+ 1s not identically equal to zero.

We denote by 0(f) the order of f and ¢ (f) the lower order of f:

log T(r.,f)

o log T(r.f)
o(H) lim sup Tog .

and u(f)= h?li,nf og 7

It is said that f is of regular growth if p(f) =u(f).

For meromorphic functions in the complex plane we use the standard notation of the Nevanlinna theory of
meromorphic functions([4]).

For ae C"™'— {0}, we write

_1 (= lallllfCre™)l
miraN) =g |, lou (8 Joom) 40
N(r,a,f)=N(r, ﬁ).
We then have '
T(r,f)=N(r,a,f)+m(r,a,f)+0(1) (2)
([10], p.76). We call the quantity
N(r,a,f) m(r,a,f)

r—>0

6(a,f)=1— hrgswup T liminf TP
the deficiency of @ with respect to f. We have
0<6(a,N<1

by (2) since N(7,a,f) >0 for r>1 and m(r,a,f) >0 for r >0.
Further, let v(c) be the order of zero of (a,f(z)) at z=c and for a positive integer k let
n(r.a,.f)= Z min {v(c),k}.
Then, we put for » >0

N.(r,a,f)= fo‘r nk(t,a,f);n,,(o,a,f) dt+n,(0,a,flog r

and put
5u(a.f) =1 limsup ———N"T((rr‘j,)f )

It is easy to see that 6(a,f) <4&,(a,f) <1 by definition.

Let X be a subset of C*™'— {0} in N-subgeneral position; that is to say, #X > N+1 and any N+1 elements of
X generate C*', where N is an integer satisfying N>n.

We use e,,"**,e,., as the standard basis of C"*".

Nochka([5]) gave the following

Theorem A. For any ¢(>2N—n+1) elements a; (G=1,"",q) of X,
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(@—2N+n—DT(r.f)< i N(r,a;, ) +S(r,f),

where S(7,f) is any quantity satisfying

S(r,f)=0(T(r,f)

when 7 tends to °© outside a subset of 7 of at most a finite linear measure (see also [2] or [3]).

We gave a refinement of the second fundamental inequality of Cartan([1]) in [9]. The purpose of this paper
1s to give a result containing Theorem A for N >n.

2 Preliminary

Let f=[f,,"*",f,+1) and X etc. be as in Section 1.
Definition 1([9]). We put

u(z)= {gﬁg‘ﬁ@ [,

t(r,) :2—17[ j:”{log u(re”) — log u(e®)} de.
and

t(r.f)

Q= lim sup TCr ) and 7= lirpwionf

t(r.f)
T(r,f)"

It is easy to see the following

Proposition 1([9]1). (a) ¢(r,f) is independent of the choice of reduced representation of f.
(b) t(r, /) < T(r,f)+0(L).

(c) N(r1/f) <t(r,)+0(1) (G=1,-,n).

(d) 0<7T<Q<1.

Definition 2([7]). We denote by f* the holomorphic curve induced by the mapping
U W S for ) s C—~C L

It is easy to see that f* is independent of the choice of reduced representation of f. Let d(z) be an entire func-
tion such that the functions

77d G=1,-n) and W, £, )/d
are entire functions without common zeros. Then
=Y 5 A, W fa) /d].

Proposition 2([7],[9]1). (a) f* is transcendental.
(b) T, )< T(r,f)+nt(r,f)—N(r,1/d) +S(r,f).
(e) o(f*) =p(N).

Example 1. Let @; (j=1,""-,n) be real numbers satisfying 0<a,< - <a,_,<a, and put
f=11,e%%, - o).
Then, we easily have
T(r.f)=(a,/m)r+0(1) and t(r,f)=(a, /m)r+0(1)
(see [10], pp.94-95) and t=Q=a,_,/a,(<1). Further,
T(r,f*)=(A/m)r+0(D),

where A = max{(n+1Da, ,, a,++a,}.
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We need the set
x(0)={a=(a,.a,a,.)EX:a,.,=0}

to obtain an amelioration of Theorem A. Let p be the maximum number of linearly independent vectors in

X(0). Then, it is easy to see that
0<#X(0)<N and 0<p<nm.
since X is in N-subgeneral position.

Let ¢ be an integer satisfying 2N—n+1<g< and put @={1,2,~,¢}. Let {a;: jEQ} be a family of
vectors in X. If PC @, we denote
H(P) =the vector space spanned by {a;: jEP} and d(P)= dim H(P).

Lemma 1 (see [2], Theorem 0.3). For {a;:jE @}, there exist a Nochka weight function w : @—(0,1] and a
Nochka constant 8> 1 such that

(a) 0<w(j))OL1 for all jJEQ;

(b) g—2N+n—1=60(Z! ,w(j)—n—1);

(¢) (N+1D/(n+ 1D << (2N—n+1)/(n+1);

(d) If PCQ and 0<#P<N+1, then Z;cpw(j) <d(P).

Lemma 2 ([2], Theorem 1.2). Let  and 6 be the same as in Lemma 1. Take A C § with 0<#A4 <N+1. Let

{E,;€ER:E;>1jEQ}.
Then there exists a subset B of A such that
{a;: JEB} isa basisof H(A)
and such that
., B <TI0, 4E;.

Remark 1. If #4 =N+1, then H(A)=C""" and {a,: JEB} is a basis of crl

3 Second fundamental inequality 1

Let f=1[f,,*"*.f,-1] and X etc. be as in Section 1 or 2.
Theorem 1. For any a,,*,a, (2N—n+1<g< ) in X—X(0), we have the following inequalities:

(a) iw(j)m(r,aj,f)Sm(r,en+1,f*)+s(7’,f);

j=1

MLy 1+ N+ 1- D p +5 .

(b) ) m(ra,f)+ N+l o et

: n+1

j=1

NG < (N=n+
where W= W({f,,".f,:1).
Proof. (a) Put
(a,f)=F, and E;=lalllfl/IFI(=1) (G=1,,9).
For any z2(#0) arbitrarily fixed, let
|F ()| < |F,(2) | << |F (2],

where j;,:**,j, are distinct integers satisfying 1<7,,-,7,<gq.
Then there is a positive constant K such that
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A

1Al < KIF,(2)] (v=N+1,-+9), (3)
IF()! < KIf@I (=1, (4)

IA

and for any j,

N

IfI < KA+ + 1 £(2) I+ | F (2) )Y
{K(nﬂ)”zu(z) if |F,(2)]<u(z)

12 . (5)
Kn+1'""|F, ()| otherwise

since the n+1—th elements of vectors a; are different from zero. (From now on we denote by K a positive con-
stant, which may be different from each other when it appears.)
(I) The case when u(z) < IFjl (z)]. We have |[f(2)l| éKle1 (z) | from (5) in this case and the following ine-

quality holds:
. ( lalilrl o ‘
u (o) <K (6)

(I1) The case when | F; (2)| <u(z2). We have ||f(2){| <Ku(z) from (5) in this case, and so we obtain by (3),
Lemma 2 and Remark 1 that

\ Haj“Hf(z)“>w(j) Vet ||a]y||Hf(Z)” @0
Hfil(\(‘aj,f<z>>\ = KL\ Tp |

lla;, il F (2l
< KH]',,EE ’FJV(Z)‘

u(z)n+1

ijf,B‘F}y(Z)l

u(z)"! | Wp(2) | (7)

=K . ,
(W2 1, .| F (2) |

where W; is the Wronskian of {F, : j,EB}. We know that Wz=cW (c#0, constant).
From (6) and (7) we have the inequality

N P T o L IW@|
L eOog g foyyr<los gyt L loe i iE gy,

+0(1), (8)

where the summation (-4, 1s taken over all permutations of the elements of @ which appear when z varies in
c—{0}.

Integrating both sides of (8) with respect to ¢ (z=7e") from 0 to 27, we obtain the inequality
q

Y w(m(r,a, ) <m(re,..f)+S(rf)

i=1

since

L e :

27r£ o |W(rei“’)ld¢ mr.en 1. f+OCL; ®)
1o [ W(re®)| _

TR o R IAL 10

We obtain (9) from the definition of m(r,e,_,,*) and (10) as in [1], pp.12-15.
(b) By using Proposition 2 and (2), we obtain from (a) that
q
Y 0(GIm(r,a, 0+ Nr7) < T f) +nt(r.f) +S(r,f)
i=1

and so
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Y 0w (m(r,a,N)+ON(r ) <OT(r.0)+nbt(r. ) +S(r.f). (11)

i=1

Adding
L1=6w()Im(ra.N)

to both sides of (11) and using (2), we obtain

S mtrann + oNGby+ Y (160N e,

i=1

< (g+6- i 8w T(r,f)+nbt(r,f)+S(r,f). (12)

By (a) and (b) of Lemma 1 and from (12) we obtain

im(r,a]-,f) + HN(r,%)S(2an+1)T(r,f)—nH{T(r,f)*t(r,f)} +S(r,f)

ji=1
and by using Lemma 1 (¢) and Proposition 1 (b)

N+1 1
n+1 w

Z m(r,a;,f) + ———N(r =) < (2N—n+1)T(r,f)—n]Zj:11 {T(r,)—t(r,NY+S(r.f)

j=1

N+1 N+1

= (N— n+ )T( f)+(N+1— )t(rf)+S(rf).

4 Second fundamental inequality 2

In this section we suppose that X(0) is not empty.
Theorem 2. Let a,,---,a, (2N—n+1<g<o0) be any elements of X and suppose that

XN {a,.a)=1{a,.a},
where 1< £<#X(0). Let s be the maximum number of linearly independent vectors in {a,,"-",a,}. Then,
q
(a) ). w(Hm(r,a;f) +N(r,%) <(s+DTrH+n—s)t(r,f)+S(r,f);

ji=1

N‘rl

(b) Z m(r.a, )+ (r,——&—/:)g(NAn—#n(s))T(r,f)+(N+1*n(s))t(r,f)+S(r,f),

where W is the Wronskian of f,,**.f,.; and n(s) = (s+1)(N+1)/(n+1).
Proof. (a) Put

(a,/)=F, and E;=llalllifl/IFI(=1D G=1,,.
For any z(#0) arbitrarily fixed, let
|F(2) | < |F(2) | < <|F (2)],

where 1<j,,*,7,< ¢ and j,,**,j, are distinct. Then there is a positive constant K such that
If(Il < KIF ()| (v=N+1,,9), (13)
|F, ()] < Klf)ll (v=1,q) (14)

and for any j, > £+1
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If@I < KU£G) P+ + £, [+ F () DY,
1K(n+l)”2u(z) if |F(2)]<u(z)

I

K(n+D"?|F, (2)| otherwise (15)

since the #+1—th element of a; is different from zero if j,>£+1. (From now on we denote by K a positive con-
stant, which may be different from each other when it appears.)
We have by (13) and by Lemma 2

. ( lla; |l f(2)]] )“"” - N”<M>ww

Wl Tla, 1) = K=\ TF. @]
lla; N f (2
v T = 16
< Kl ey 7] =] (16)
(A) The case when {a; : j,EB}NX(0)=¢
(A-1) If for any j,€B
u(z) <|F, ()1,
we have by (15)
I<K. (17)
(A-2) If for some j,EB
IF,(2) | <u(z),
we have by (15)
u@" u@ W2
B, Rl KTW@T I, F. o1 (18)

where Wy is the Wronskian of {F, :j,EB}. Note that Wy=cW (c#0, constant).
(B) The case when {a; :j,B}NX(0)#¢. Suppose without loss of generality that

X N{a;: j,€B} ={a,.a,},

Then, 1<k<s. We suppose without loss of generality that @,,::*,a, are linearly independent.
(B-1) If for any j,€B, j,#1,--.k

u(z) <|F, ()1,

we have by (14) and (15)

LFI* IFCDIP
<K 5 R KRR (19)

We can find e; , ,-,e; (4. ,,",i,<n) such that the vectors

s+17

are linearly independent.

From (19) and by the inequalities

A CIIESFiCIIIR £ (&) <uz) G=s+1,,n)
and

WE, - F, fi oS o) (@) = KW (2)

s+17

we have
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@I uCay s | IWE o Fy f i hee) )]

I<K (20)

| W(z) | F@)F@f, (@ f (@ fa @
(B-2) If for some j,€B, j,#1,"",k
|F,(2) | <u(z),
we have by (15)
Cuw@@™ u@r W)
ISKHMB\FJ,V(ZM W@ 4l F(2)] (21)
Since
w(@)" <@ w2,
we have from (16),(17),(18),(20) and (21)
2 . lla; Il f 2] DI ) . W)
L wGog iy <log T eyt L o8 o e Gy
W(Flv.“st’ ANIITN A A% )(
| Ty g Fue ) (2)] +0(D), (22)

* (j,,Z,J,‘Og P, F@)f,, (&) f, (2)fy (@]

s+1

where Z;, ..., is taken over all permutations of the elements of @ which appear when z varies in C—{0}. Since
i|Is—1 n—s
tog - BT jog max i)l u@) % W(z) 1)~ log| W(2)|
and
— en i W(Z)l 1s=1 n-—s | W(Z) ‘7
iW(Z)“‘fl(Z) f;l1(Z)|\f‘l(z)"'f¢l(z)|§“f(2)[‘ u(z) lfl(z)f;ll(z)l,

integrating both sides of (22) with respect to ¢ from 0 to 2z (z=re") we obtain

q

y. w(j)m(r,aj,f)ﬂ-N(r,%)£(s+1)T(r,f)+(nfs)t(r,f)+S(r,f).

j=1

(b) We obtain (b) of this theorem from (a) as in the case of Theorem 1.

5 Subset of C**' in subgeneral position

To obtain a refinement of the defect relation for holomorphic curves (see, for example, Theorem 3.3.8 and
Theorem 3.3.10 in [3]), we need some new notions on subsets of C*"' in subgeneral position.

Let X be a subset of C""' in N-subgeneral position such that the number of elements of X is not smaller than
N+1 as in Section 1 and

X0 ={a=(a,a, .ana,..)EX:a,.,=0}

as in Section 2. Suppose that N >n in this section.

Let Vi be the vector space generated by the elements of X(0). Remember that the number of elements of
X(0) is not greater than N and the dimension of Vg, is not greater than n.

Definition 3. We say that

(i) X is maximal in the sense of subgeneral position if for any Y in N-subgeneral position such that
Xcycce, X=Y.

(ii) X is p-maximal (in the sense of subgeneral position) if X is maximal in the sense of subgeneral position
and dim Vi =D.

Note that X is p-maximal in the sense of general position if N=n ([8], Definition 1).

The purpose of this section is to give examples of p-maximal subsets of C™*! in the sense of subgeneral
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position.

We shall use the following lemma for our purpose.

Lemma 3. For any vector (@,,"**,@,,@,.,) of C"~' which is neither equal to 0, ce, nor Be, ., there exist com-
plex numbers a,,---,a, different from each other for which the vectors
(a,,a,.), (@].aia,1), (ahal ', a,1)

are linearly dependent, where @ and 8 are any complex numbers ([8], Lemma 3).

Proposition 3. For n>2, the set
A={(a"a"",a1):acCU {ke,: k=1, N—n+1} U {e,)

is 2-maximal.
Proof. It is easy to see that A is in N-subgeneral position and dim V, =2. We have only to prove that for

any vector
x=(a, e, ) (+0)

which does not belong to A, AU {x} is not in N-subgeneral position.

(a) The case when a,#0, a,=--=a,,,=0.

For any distinct numbers a,**-,a, ,, we can not find #+1 linearly independent vectors in the following
N+1 vectors

(@}.a; ', a1 G=1,n—1), ke, (k=1,,N—n+1), x.

72Q;
(b) The case when ¢, =+ =a,=0, a,,,#0.

For any distinct numbers a,,*+,a,_, different from zero, we can not find n+1 linearly independent vectors in

the following N+1 vectors

(a},a} ', a,1) (G=1,"-,n—2), ke, (k=1,N—n+1), e, .,, x.

i@
(c) The case when a,=a;="=a,,,=0 and a,#0.

For any distinct numbers a,,***,a,_,, we can not find n+1 linearly independent vectors in the following
N+1 vectors

(a},a] 'a,1) (G=1,-+n—2), ke, (k—1,~,N—n+1), e, x.

Riad}

(d) The case when x+# ae,, Be,, 7e,.,.

By Lemma 3, there are n—1 distinct numbers a,,***,a,_, such that the vectors
(apa,.), (@7 ,a,1) G=1,+n—1)
are linearly dependent. Then, we can not find #+1 linearly independent vectors in the following N+1 vectors

(a},ai”',a,1) (G=1,"+,n—1), ke, (k=1,"N—n+1), .

jri

since (a},a} ',--,a;,1) (j=1,-,n—1), e, and x are linearly dependent.
From (a),(b),(c) and (d) it is proved that AU{x} is not in N-subgeneral position.

Proposition 4. For n>2, the set
A,={(a"a" ', -a,a’+1):a€CY U lke, : k=1, N—n+1} U {e,)

1s pt2-maximal, where 1 <p<n—2.

Proof. It is easy to see that A, is in N-subgeneral position and dim VA,,<0) =p+2 since the p+2 vectors

e, e, {(a"a" ', a,d+1): a®+1=0}
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are linearly independent.

We have only to prove that for any vector
x="(a,, ay,a,.)(#0)
which does not belong to A,, A,U {x} is not in N-subgeneral position. In fact the vector
y=C(a, " e,a, = | ,)

does not belong to A and AU{y} is not in N-subgeneral position by Proposition 3 and so A,U{x} is not in N-

subgeneral position.
Forn=>2, let

B={(a"a" ', ,a,1):aECUlke : k=1, N—n+1} U {e,+e,}.

Then,
Proposition 5. The set B is 2-maximal.
Proof. It is easy to see that B is in N-subgeneral position and dim V,=2. We have only to prove that for

any vector
(ay, e, (#F0)

which does not belong to B, BU{x} is not in N-subgeneral position.
(a) The case when a,#0, a,==a,_.,=0.
(b) The case when a,=-=a,=0, a,.,#0.
In these two cases we can prove that AU{x} is not in N-subgeneral position as in the proof of Proposition 3.
(¢) The case when x=a,e,+a.e, (a,#0).
For any distinct numbers a,,***,a, ,. we can not find #+1 linearly independent vectors in the following

N+1 vectors

(al,al'a,1) G=1,n—2), ke, (k=1,-",N—n+1), e, +e, x.

j1@;
(d) The case when x# ae,+8e, (lal+181#0), re,. .
By Lemma 3, there are n—1 distinct numbers a,,***,a,_, such that the vectors
(az,"',anﬂ), (a?‘l,"-,al,l),-",(a’,’.ii,---,an_l,D
are linearly dependent. Then, we can not find #+1 linearly independent vectors in the following N+1 vectors

(al,a} ' a,1) (G=1,n—1), ke, (k=1,N—n+1), x

jr™i
since e,, x and (a},a; ',-,a;,1) (j=1,-,n—1) are linearly dependent.
From (a),(b),(c) and (d), AU{x} is not in N-subgeneral position.

Proposition 6. For n>2, the set

B,={(1,a" ',»,a,a"):aEC} Ulke,.,: k=1, N—-n+1} U{e,+e,.}

is 1-maximal.
Proof. It is easy to see thal B, is in N-subgeneral position and dim V; (o, =1. We have only to prove that for

any vector

X = (aljaZy..'yan’an¢l)(¢0>
which does not belong to B,, B,U {x} is not in N-subgeneral position. Put

v="_(a,, " a,a).
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Then, ¥ is not equal to 0 and does not belong to B given just before Proposition 5. By Proposition 5, BU {y} is
not in N-subgeneral position, so that B;U {x} is not in N-subgeneral position.

Theorem 3. Suppose N>n>2. For any p (1<p<n), there is a p-maximal subset of C""' in the sense of
subgeneral position.

Remark 2. It is easy to see that any maximal subset of C”in the sense of subgeneral position is 1-maximal.

Problem. Is there a 0-maximal subset of C" (# >3) in the sense of subgeneral position?

6 Defect relation

Let f, X and X(0) etc. be as in Section 1,2,3 or 4.
Theorem 4 (defect relation). For any ¢ elements @,,**",a,EX (2N—n+1<g< ),

(a-1) Y. 0()5,(a, ) <p+1+(n-p)2;

1
q

(a-2) ). w(Né(a,f)+E<p+1+(n—p)Q;

j=1

N+1
n+1

(b1 ¥ 5@ N <N -nt1- L p)(1-);

g N+1 N+1
_ . T rcoN— — _ _

(b2)j;6(aj,f)+n+l§v2N nt1-=—5-(n—p)(1-Q),

where p is the maximum number of linearly independent vectors in X(0) N {a,,*,a,} (0<p<n) and
. N1/ W) . -

. lupiup TP if f has finite order,

.. . Nr1/W) .
1112 Lnf TGP otherwise.

We easily obtain this theorem from Theorem 1 when p =0 or from Theorem 2 when p is positive. We obtain
(a-1) and (b-1) by applying Lemma 3.2.13 in [3],p.102.
Remark 3. p+1+(n—p)Q<n+land 2N—-n+1—(N+1)(n—p)(1—Q)/(n+1) <2N—n+1. The equalities

hold if and only if p=#% or Q=1 in these two inequalities.

The number “2N—n+1—-(N+1)(n—p)(1—8)/(n+1)” increases with p (0<p<n) when Q<1. If p in-
creases to # when ¢ tends to o, the bound “2N—n+1—(N+1)(n—p)(1—Q)/(n+1)" of Theorem 4 (b-1),(b-2)
increases to 2N—n+1 for any Q<1. But, as Theorem 3 shows, there exist examples of X for which p does not
increase to 7 even when ¢ tends to . By the way, Example 1 gives a holomorphic curve for which Q< 1.

Theorem 5(Defect relation). Let X be a p-maximal subset of C"*' in N-subgeneral position. Then, we have
N+1

(D a;X 5,(a,f)<2N-n+1— o (n—p)(1—-Q);
N+1 N+1
w .,;X oa. N+ g EseN-nt1— 7 (—p)(1-Q).

Proof. (I) When #{a=X:6,(a,f) >0} <o, there is nothing to prove by Theorem 4 (b-1). When
t{acX:6,(a,f) >0} =0, it is countable by Theorem 4 (b-1). Let

{asX:5,(a.f) >0} ={a,a,-},
and without loss of generality we put

X0 N{a,a,}=1{a,,a,} (0<k<N).
Let
dim Vig, ..ap =5 (0<s<p).
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Then, by Theorem 4 (b-1), for any g

N+11 (n—s)(1-Q)<2N—n+1—

p— ML (-p -0

q
f)<2N-— —
j; 6,(a;,f)<2N—n+1 "

and letting ¢ tend to © we have

Y 6.(a.n= Y 6@ n<eN-nt1- VLo pya-o)

acX

since p is independent of g.

(I1) We obtain (II) of Theorem 5 by using Theorem 4 (b-2) instead of (b-1) as in the case of (I).

7 Holomorphic curves with maximal deficiency sum

Let f=[£,"*.f,-1), X and X(0) etc. be as in the previous sections.
Lemma 4. If

6(e,*)=1G=1,n+1),

then f* is of regular growth and o(f*) is either © or a positive integer (see [6], Théoréme 3).
Lemma 5. For any @,,-",a, (2N—n+1<g<) in X—X(0) and for r>1

N 2N—n+
Z m(r,aj,f)g%

i=1

m(r,e, ,.f*)+(N—n)T(r,f)+S(r.f).
Proof. From Theorem 1 (a), we have
i 0 w(GIm(r,a,f)<0m(re,. . .f*)+S(rf).

Adding £1_,(1-6 w(j)) T(r,f) to both sides of this inequality, we obtain

j=1
Since N(r,a;,f) =20 for r=1 and by (a),(b),(c) of Lemma 1, we obtain our lemma.
Theorem 6. Suppose that X is p-maximal in the sense of N-subgeneral position, p(f) <o and
Y o6(a.f)=2N—n+1.
acX
Then, the following statements hold:
(a) p=norQ=1.
(b) £=0.

n+1 .. T, ™ . T(r,f*)
(c) ON-ntl < h?llonfiT(r,f) < IHILSJJP TG <1+nQ.

(d) In particular, if
(e, )=1(G=1,"n),

then p(f) is a positive integer and f is of regular growth.
Proof. (a) and (b). These are trivial by Theorem 5 (II).
(c). Since #X(0) <N,
Yy, daf)=N—n+l.
asX—-X(0)
From (23) and Lemma 5, we have

ON—n+1 .. . . T(rfo
sl T _
ls— o7 Hminf—ry

and from Proposition 2,

S mra, Nt Y U-00MDINGa,)<Omre, . )+ TP Y (10 w(D)+S(r.p).
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lirpasooup TT((r;f;—))S 1+nQ.

Combining these two inequalities we obtain (c). Note that
S(r,f)=0ogr) (r—>o)

since p(f) < oo,
(d). Since forj=1,---,n
0< limsup €S Gy T DN(ref)
= SR TG PTG

N(re,
(n+Dlimsup T(zre}{ 2. TT((:,}%

IA

N(r,e,f)

< — i B A LA

< (2N n+l)11rgsm}1p TCr.f) 0
by (c) and by the assumption that 6(e;,f) =1 (j=1,":,n) and since

. N(r,e,...f*) . N(r1/W) T(rf) _2N—n+1
B 2 . ’ < =
0< hr}lju}m T(r,f*) < llI'{Lglp T(r, ) T(r,f*)— n+1 £=0
by (b), we have
N(r,e,f*)

5(e;f*)=1- lirfLSquW =1 (=1,n+1).

Then, we have (d) by Lemma 4.
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