On the Fine Cluster Set of Holomorphic Curves

Nobushige TODA
Department of General Studies

（Received July 22，1997）
We shall give a definition of fine cluster set for holomorphic curves from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ as a generalization of the case of meromorphic functions and prove the followings．
＂Let f be a transcendental holomorphic curve from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ ．Then the fine cluster set of f is either（i） \boldsymbol{C}^{n+1} or（ii）a subset of \boldsymbol{C}^{n+1} of dimension n ．

In case of（ii），
f has neither Picard exceptional vectors nor deficient vectors nor Borel exceptional vectors．＂

1．Introduction

（a）Let V_{o} be the family of deleted fine neighbourhoods v_{o} of the origin of the complex plane and put

$$
v=\left\{z: 1 / z \in v_{o}\right\}
$$

and put

$$
V=\left\{v: v_{o} \in V_{o}\right\} .
$$

For any function $\varphi(z)$ defined in the complex plane we put

$$
\mathscr{F} C(\varphi)=\prod_{v \in V} \overline{\varphi(v)}
$$

where $\varphi(v)=\{\varphi(z): z \in v\}$ and $\overline{\varphi(v)}$ is the closure of $\varphi(v)$ in the extended complex plane．
The set $\mathscr{F} C(\varphi)$ is called the fine cluster set of φ at ∞ ．The set is non－empty closed set in the extended complex plane．φ is called to have a fine limit at ∞ when $\mathscr{F} C(\varphi)$ consists of a single point．
（b）In 1965，J．L．Doob（［3］）applied the fine cluster set to meromorphic functions to obtain the following in－ teresting

Theorem A．Let f be a transcendental meromorphic function in $|z|<\infty$ ．Then，one of the following situa－ tions must hold．
（i） $\mathscr{F} C(f)$ is the extended complex plane．
（ii）f has a fine limit at ∞ ．In this case f has no Picard exceptional value．
（Theorem 7.3 in［3］）．

Theorem A （ii）was improved as follows．
Theorem B．Let f be a transcendental meromorphic function in $|z|<\infty$ ．If f has a fine limit at ∞ ，then
（i）f has no deficient value（Théorème 2 in［5］）．
（ii）f has no Borel exceptional value（Theorème 3 in［5］）．

This research was partially supported by Grant－in－Aid for Scientific Research（No．09640180），Ministry of Education，Science and Culture．
(c) These results were generalized to algebroid functions in $|z|<\infty$. In [6], we gave a definition of fine cluster set at ∞ for algebroid functions in $|z|<\infty$ and obtained some generalizations of Theorems A and B as follows.

Theorem C. Let f be a transcendental, n-valued algebroid function in $|z|<\infty$, where n is an integer not less than 1. Then, one of the following situations must hold.
(i) $\mathscr{F} C(f)$ is the extended complex plane.
(ii) $\mathscr{F} C(f)$ consists of at most n values. In this case, f has no Picard exceptional value, no deficient value or no Borel exceptional value (see Théorèmes 2,3,4 and 5 in [6]).
(d) The purpose of this paper is to give some results similar to Theorem C given above for holomorphic curves in $|z|<\infty$.

2 Preliminary and Lemma

Let $f=\left[f_{1}, \cdots, f_{n+1}\right]$ be a transcendental holomorphic curve from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ a reduced representation of which is

$$
\left(f_{1}, \cdots, f_{n+1}\right): C \rightarrow C^{n+1}-\{0\}
$$

where n is an integer not less than one. We may suppose without loss of generality that $f_{j} \neq 0(j=1, \cdots, n+1)$. For any vector

$$
\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right) \in \boldsymbol{C}^{n+1}-\{\mathbf{0}\}
$$

we put

$$
\varphi_{a}(z)=\frac{|(\boldsymbol{a}, f(z))|}{\|\boldsymbol{a}\|\|f(z)\|}
$$

where

$$
\begin{gathered}
(\boldsymbol{a}, f(z))=\sum_{j=1}^{n+1} a_{j} f_{j}(z), \\
\|\boldsymbol{a}\|=\left(\sum_{j=1}^{n+1}\left|a_{j}\right|^{2}\right)^{1 / 2}
\end{gathered}
$$

and

$$
\|f(z)\|=\left(\sum_{j=1}^{n+1}\left|f_{j}(z)\right|^{2}\right)^{1 / 2}
$$

The characteristic function $T(r, f)$ of f is defined as follows (see [8]):

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|\dot{f}(0)\|
$$

As our f is transcendental, it holds that

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=\infty
$$

We denote by $\rho(f)$ the order of f :

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

In the sequel, we use the standard notation of the Nevanlinna theory of meromorphic functions(see [4]).
For $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right)$ such that $(\boldsymbol{a}, f) \neq 0$, we write

$$
m(r, \boldsymbol{a}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{a}\|\left\|f\left(r e^{i \theta}\right)\right\|}{\mid\left(\boldsymbol{a}, f\left(r e^{i \theta}\right) \mid\right.} d \theta
$$

and

$$
N(r, \boldsymbol{a}, f)=N(r, 1 /(\boldsymbol{a}, f)) .
$$

We call the quantity

$$
\delta(\boldsymbol{a}, f)=\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{T(r, f)}
$$

the deficiency of \boldsymbol{a} with respect to f ．
The vector \boldsymbol{a} is said to be
（a）Picard exceptional for f when（a，f ）has at most a finite number of zeros；
（b）deficient or exceptional in the sense of Nevanlinna for f when $\delta(\boldsymbol{a}, f)>0$ ；
（c）Borel exceptional for f when

$$
\limsup _{r \rightarrow \infty} \frac{\log N(r, \boldsymbol{a}, f)}{\log r}<\rho(f)
$$

Now，we shall give a definition of fine cluster set $\mathscr{F}(f, \infty)$ for f ．

Definition．A vector $\boldsymbol{a} \neq \mathbf{0}$ is contained in $\mathscr{F}(f, \infty)$ if and only if 0 is contained in $\mathscr{F} C\left(\varphi_{a}\right)$ ．We call $\mathscr{F}(f, \infty)$ the fine cluster set of f at ∞ ．

Remark．Put

$$
\mathscr{H}=\left\{\boldsymbol{a} \in \boldsymbol{C}^{n+1}:(\boldsymbol{a}, f)=0\right\},
$$

then \mathscr{H} is a subspace of \boldsymbol{C}^{n+1} ．Put $\lambda=\operatorname{dim} \mathscr{H}$ ，then $0 \leq \lambda \leq n-1$ ．A holomorphic curve f is said to be
（a）（linearly）nondegenerate if $\lambda=0$ ；
（b）（linearly）degenerate if $\lambda>0$ ．
In case f is degenerate

$$
\mathscr{F}(f, \infty) \cup\{\mathbf{0}\} \supset \mathscr{H}
$$

since for $\boldsymbol{a}(\neq \mathbf{0}) \in \mathscr{H}, \varphi_{a}(z) \equiv 0$ and $\mathscr{F} C\left(\varphi_{a}\right)=\{0\}$ ．
Now we give some lemmas for later use．
Lemma 1．For any $v \in V$ ，there is a positive sequence $\left\{r_{k}\right\}$ tending to ∞ such that the circles $|z|=r_{k}$ （ $k=1,2, \cdots$ ）are contained in v（［2］，p．89）．

Lemma 2．Let $u(z)$ be a superharmonic function in a domain D such that $D^{c} \in V$ ．If $u(z) / \log |z|$ is bounded below in a set $v \in V$ ，then $u(z) / \log |z|$ has a finite fine limit at ∞（Théorème 2 in［1］）．

Lemma 3．Let X be a subset of \boldsymbol{C}^{n+1} any $n+1$ vectors in which are linearly independent．Then，there are at most $2 n$ Borel exceptional vectors for f in X when $\rho(f)>0$（see Théorème 4 in［7］）．

3 Theorem

We shall prove some theorems for holomorphic curves corresponding to Theorem C in Section 1.

Theorem 1．Let f be a transcendental holomorphic curve from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ ．Then，one of the following situa－ tions must hold．
（i） $\mathscr{F}(f, \infty) \cup\{0\}=C^{n+1}$
（ii） $\mathscr{F}(f, \infty) \cup\{0\}$ is a subspace of C^{n+1} of dimension n ．
Proof．Suppose that the set $\mathscr{F}(f, \infty)$ is not equal to $\boldsymbol{C}^{n+1}-\{\boldsymbol{0}\}$ ．Then，there exists a vector $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right) \neq \mathbf{0}$ such that

$$
0 \notin \mathscr{F} C\left(\varphi_{a}\right)
$$

In this case, there is an element v of V and positive number M such that

$$
\begin{equation*}
1 \leq \frac{\|\boldsymbol{a}\|\|f(z)\|}{|(\boldsymbol{a}, f(z))|} \leq M \quad(z \in v) \tag{1}
\end{equation*}
$$

Put

$$
(a, f(z)) \equiv a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z)=F(z)
$$

and we have from (1) for $j=1, \cdots, n+1$

$$
\frac{\left|f_{j}(z)\right|}{|F(z)|} \leq\left\{\sum_{j=1}^{n+1}\left(\frac{\left|f_{j}(z)\right|}{|F(z)|}\right)^{2}\right\}^{1 / 2} \leq \frac{M}{\|\boldsymbol{a}\|}
$$

in v. This means that all meromorphic functions $f_{j}(z) / F(z)(j=1, \cdots, n+1)$ are bounded in v and by theorem A each $f_{j}(z) / F(z)$ has a finite fine limit at ∞. Let the limits be $\alpha_{j}(j=1, \cdots, n+1)$. Then, there is an element v_{1} of V such that

$$
\begin{equation*}
\frac{f_{j}(z)}{F(z)} \rightarrow \alpha_{j}(j=1, \cdots, n+1) \tag{2}
\end{equation*}
$$

when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$ (see [2], p.91). Put $\boldsymbol{p}=\left(\alpha_{1}, \cdots, \alpha_{n+1}\right)$, then, from (1) we have the inequality

$$
\frac{1}{\|\boldsymbol{a}\|} \leq\left(\sum_{j=1}^{n+1}\left|\alpha_{j}\right|^{2}\right)^{1 / 2}=\|\boldsymbol{p}\|
$$

and so $\boldsymbol{p} \neq \mathbf{0}$. Further, from (1) and (2) we have

$$
\alpha_{1} a_{1}+\cdots+\alpha_{n+1} a_{n+1} \neq 0
$$

Put

$$
W=\left\{\left(b_{1}, \cdots, b_{n+1}\right) \in \boldsymbol{C}^{n+1}: \alpha_{1} b_{1}+\cdots+\alpha_{n+1} b_{n+1}=0\right\}
$$

Then, W is a subspace of \boldsymbol{C}^{n+1} and since $\boldsymbol{p} \neq \mathbf{0}$,

$$
\operatorname{dim} W=n .
$$

For any vector $\boldsymbol{b}=\left(b_{1}, \cdots, b_{n+1}\right)$ in $W-\{\mathbf{0}\}$, the function

$$
\frac{|(\boldsymbol{b}, f(z))|}{\|\boldsymbol{b}\|\|f(z)\|}=\frac{\left|\sum_{j=1}^{n+1} b_{j} f_{j}(z) / F(z)\right|}{\|\boldsymbol{b}\|\left(\sum_{j=1}^{n+1}\left|f_{j}(z) / F(z)\right|^{2}\right)^{1 / 2}}
$$

tends to

$$
\frac{\left|\sum_{j=1}^{n+1} b_{j} \alpha_{j}\right|}{\|\boldsymbol{b}\|\|\boldsymbol{p}\|}=0
$$

when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$. This means that

$$
\boldsymbol{b} \in \mathscr{F}(f, \infty)
$$

that is to say,

$$
W-\{\mathbf{0}\} \subset \mathscr{F}(f, \infty)
$$

Let $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ be a system of basis of W. Then, $\boldsymbol{a}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ are linearly independent over \boldsymbol{C}. In fact, suppose to the contrary that $\boldsymbol{a}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ are linearly dependent over \boldsymbol{C}. Then, there are constants $\beta, \beta_{1}, \cdots, \beta_{n}$ satisfying

$$
\begin{equation*}
\beta \boldsymbol{a}+\beta_{1} \boldsymbol{b}_{1}+\cdots+\beta_{n} \boldsymbol{b}_{n}=0 \tag{3}
\end{equation*}
$$

where at least one of $\beta, \beta_{1}, \cdots, \beta_{n}$ is not equal to zero. Now, β is not equal to zero, because if $\beta=0$, we have

$$
\beta_{1} \boldsymbol{b}_{1}+\cdots+\beta_{n} \boldsymbol{b}_{n}=\mathbf{0},
$$

and so，as $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ are linearly independent

$$
\beta_{1}=\cdots=\beta_{n}=0
$$

which is a contradiction．From（3）we have

$$
\boldsymbol{a}=-\frac{1}{\beta}\left(\beta_{1} \boldsymbol{b}_{1}+\cdots+\beta_{n} \boldsymbol{b}_{n}\right),
$$

which implies that $\boldsymbol{a} \in W$ ．This is a contradiction，that is to say， $\boldsymbol{a}, \boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ must be linearly independent over C ．

Let $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n+1}\right)$ be any vector not contained in W ．Then for some constants $\gamma, \gamma_{1}, \cdots, \gamma_{n}$

$$
\boldsymbol{c}=\gamma \boldsymbol{a}+\gamma_{1} \boldsymbol{b}_{1}+\cdots+\gamma_{n} \boldsymbol{b}_{n}
$$

and when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$ the function

$$
\frac{|(\boldsymbol{c}, f(z))|}{\|\boldsymbol{c}\|\|f(z)\|}
$$

tends to

$$
\frac{\mid \boldsymbol{\gamma} \|\left(\sum_{j=1}^{n+1} a_{j} \alpha_{j} \mid\right.}{\|\boldsymbol{c}\|\|\boldsymbol{p}\|} \neq 0
$$

which means that $\boldsymbol{c} \notin \mathscr{F}(f, \infty)$ ．We have

$$
\mathscr{F}(f, \infty) \cup\{\mathbf{0}\}=W
$$

which is a subspace of \boldsymbol{C}^{n+1} of dimension n ．This completes the proof．

Theorem 2．Let f be a transcendental holomorphic curve from \boldsymbol{C} into $P^{n}(\boldsymbol{C})$ such that $\mathscr{F}(f, \infty) \cup\{\mathbf{0}\}$ is a sub－ space of \boldsymbol{C}^{n+1} of dimension n ．Then，for any $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n+1}\right) \in \boldsymbol{C}^{n+1}-\boldsymbol{H}$ ，
（i） \boldsymbol{c} is not Picard exceptional for f ．
（ii）$\delta(c, f)=0$ ．
（iii） \boldsymbol{c} is not Borel exceptional for f ．
Proof．Let $\boldsymbol{a}=\left(a_{1}, \cdots, a_{n+1}\right)$ be a vector in $\boldsymbol{C}^{n+1}-\mathscr{F}(f, \infty) \cup\{\mathbf{0}\}$ ．Then，

$$
0 \notin \mathscr{F} C\left(\varphi_{a}\right) .
$$

In this case，there is an element v of V and a positive number M satisfying

$$
1 \leq \frac{\|\boldsymbol{a}\|\|f(z)\|}{|(\boldsymbol{a}, f(z))|} \leq M \quad(z \in v)
$$

Put

$$
(\boldsymbol{a}, f(z)) \equiv a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z)=F(z)
$$

As in the proof of Theorem 1，for each $j=1, \cdots, n+1, f_{j}(z) / F(z)$ has a finite fine limit α_{j} at ∞ and there exists v_{1} in V such that

$$
\begin{equation*}
\frac{f_{j}(z)}{F(z)} \rightarrow \alpha_{j}(j=1, \cdots, n+1) \tag{4}
\end{equation*}
$$

when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$ ．Put

$$
\boldsymbol{p}=\left(\alpha_{1}, \cdots, \alpha_{n+1}\right)
$$

then $\boldsymbol{p} \neq 0$ ．
（a）$F(z)$ is transcendental．

In fact, suppose to the contrary that $F(z)$ is polynomial. As f is transcendental, at least one of $f_{j}(z)$ is transcendental. We suppose without loss of generality that $f_{1}(z)$ is transcendental. Then, $f_{1}(z) / F(z)$ is transcendental and it has a finite fine limit α_{1} by (4). This means from Theorem $\mathrm{A}(\mathrm{ii})$ that $f_{1}(z) / F(z)$ has no Picard exceptional value. This is a contradiction since $F(z)$ has only a finite number of zeros and $f_{1}(z) / F(z)$ has only a finite number of poles. This implies that $F(z)$ is transcendental.
(b) At least one of $f_{j}(z) / F(z)(j=1, \cdots, n+1)$ is transcendental.

In fact, suppose to the contrary that any one of $f_{j}(z) / F(z)$ is rational. Then, $F(z)$ has at most a finite number of zeros since, if it has an infinite number of zeros, $f_{1}(z), \cdots, f_{n+1}(z)$ have an infinite number of common zeros, which is a contradiction. Put

$$
\frac{f_{j}(z)}{F(z)}=R_{j}(z)(j=1, \cdots, n+1)
$$

and

$$
F(z)=P(z) e^{g(z)}
$$

where $P(z)$ is a polynomial and $g(z)$ is a nonconstant entire function. Then,

$$
f_{j}(z)=P(z) R_{j}(z) e^{g(z)}(j=1, \cdots, n+1)
$$

and as $f_{j}(z)$ is entire, $P(z) R_{j}(z)$ must be polynomial, which reduces to

$$
T(r, f)=O(\log r)(r \rightarrow \infty)
$$

This is a contradiction. The assertion (b) holds.
(c) $F(z)$ has an infinite number of zeros.

In fact, we may suppose without loss of generality that $f_{1}(z) / F(z)$ is transcendental by (b) and, from (4), the transcendental function $f_{1}(z) / F(z)$ has a fine limit α_{1} at ∞, so that by Theorem A (ii), $F(z)$ has an infinite number of zeros.

Now, denote by

$$
\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}
$$

a system of basis of $\mathscr{F}(f, \infty) \cup\{\mathbf{0}\}$. Then, there are constants $\gamma, \gamma_{1}, \cdots \gamma_{n}$ such that

$$
\boldsymbol{c}=\gamma \boldsymbol{a}+\gamma_{1} \boldsymbol{b}_{1}+\cdots+\gamma_{n} \boldsymbol{b}_{n}
$$

and we have

$$
\begin{equation*}
(\boldsymbol{c}, f)=\gamma(\boldsymbol{a}, f)+\gamma_{1}\left(\boldsymbol{b}_{1}, f\right)+\cdots+\gamma_{n}\left(\boldsymbol{b}_{n}, f\right) . \tag{5}
\end{equation*}
$$

As $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{n}$ are in $\mathscr{F}(f, \infty)$ and

$$
\left(\sum_{j=1}^{n+1}\left|\frac{f_{j}(z)}{F(z)}\right|^{2}\right)^{1 / 2} \rightarrow\|\boldsymbol{p}\|(\neq 0)
$$

when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$,

$$
\begin{equation*}
\frac{\left(\boldsymbol{b}_{1}, f(z)\right)}{F(z)} \rightarrow 0 \tag{6}
\end{equation*}
$$

when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$. (5) and (6) imply that

$$
\frac{(c, f(z))}{F(z)} \rightarrow \gamma
$$

when $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$. This means that the function $(c, f(z)) / F(z)$ has a fine limit γ at ∞.
(I) Proof of (i). When $(c, f(z)) / F(z)$ is transcendental, $(c, f(z)$) has an infinite number of zeros by Theorem $\mathrm{A}($ ii $)$ and when $(c, f(z)) / F(z)$ is rational, $(c, f(z)$) has also an infinite number of zeros since $F(z)$ has
an infinite number of zeros．
（II）Proof of（ii）．For $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n+1}\right)$ given in the statement of this theorem，we estimate

$$
m(r, \boldsymbol{c}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{c}\|\left\|f\left(r e^{i \theta}\right)\right\|}{\left|\left(\boldsymbol{c}, f\left(r e^{i \theta}\right)\right)\right|} d \theta
$$

as follows．
（a）When $\gamma \neq 0$ ，the function

$$
\begin{equation*}
\frac{\|\boldsymbol{c}\|\|f(z)\|}{|(\boldsymbol{c}, f(z))|}=\frac{\|\boldsymbol{c}\|\left(\sum_{j=1}^{n+1}\left|f_{j}(z) / F(z)\right|^{2}\right)^{1 / 2}}{|(\boldsymbol{c}, f(z)) / F(z)|} \tag{7}
\end{equation*}
$$

tends to $\|\boldsymbol{c}\|\|\boldsymbol{p}\| /|\boldsymbol{\gamma}|$ as $v_{1} \ni z \rightarrow \infty$ in the usual sense in $|z|<\infty$ ．Then，by Lemma 1 ，there is a sequence $\left\{r_{k}\right\}$ tend－ ing to ∞ such that the circles $|z|=r_{k}(k=1,2, \cdots)$ are contained in v_{1} and

$$
\frac{\|\boldsymbol{c}\|\left\|f\left(r_{k} e^{i \theta}\right)\right\|}{\left|\left(\boldsymbol{c}, f\left(r_{k} e^{i \theta}\right)\right)\right|}=O(1) \quad(k \rightarrow \infty)
$$

which shows that

$$
\begin{equation*}
m\left(r_{k}, \boldsymbol{c}, f\right)=O(1)(k \rightarrow \infty) . \tag{8}
\end{equation*}
$$

（b）When $\gamma=0$ ，from（7）we have

$$
\begin{equation*}
\log \frac{\|\boldsymbol{c}\|\|f(z)\|}{|(\boldsymbol{c}, f(z))|}=\log \|\boldsymbol{c}\|+\frac{1}{2} \log \left(\sum_{j=1}^{n+1}\left|f_{j}(z) / F(z)\right|^{2}\right)-\log |(\boldsymbol{c}, f(z)) / F(z)| \tag{9}
\end{equation*}
$$

Here，for $v_{1} \ni z \rightarrow \infty$

$$
\frac{1}{2} \log \left(\sum_{j=1}^{n+1}\left|f_{j}(z) / F(z)\right|^{2}\right) \rightarrow \log \|\boldsymbol{p}\|
$$

and

$$
-\log |(c, f(z)) / F(z)| \rightarrow \infty
$$

Let D be a unbounded component contained in

$$
\{z \in v:-\log |(c, f(z)) / F(z)| \geq 0 ;|z|>1\}
$$

Then，$D \in V$ and $-\log |(c, f(z)) / F(z)|$ is a positive superharmonic function in D ．Since

$$
\frac{-\log |(\boldsymbol{c}, f(z)) / F(z)|}{\log |z|}
$$

is bounded below it has a finite fine limit at ∞ by Lemma 2．This implies that by Lemma 1 and by Cartan＇s theo－ rem（［2］，p．91）there is a sequence $\left\{r_{k}\right\}$ tending to ∞ such that the circles $|z|=r_{k}(k=1,2, \cdots)$ are contained in D and

$$
-\log \left|\left(\boldsymbol{c}, f\left(r_{k} e^{i \theta}\right)\right) / F\left(r_{k} e^{i \theta}\right)\right|=O\left(\log r_{k}\right)(k \rightarrow \infty)
$$

so that we have from（9）that

$$
\begin{equation*}
m\left(r_{k}, \boldsymbol{c}, f\right)=O\left(\log r_{k}\right)(k \rightarrow \infty) \tag{10}
\end{equation*}
$$

From（8）and（10），we have

$$
\delta(\boldsymbol{c}, f)=\liminf _{r \rightarrow \infty} \frac{m(\boldsymbol{r}, \boldsymbol{c}, f)}{T(r, f)}=0
$$

since f is transcendental．
（III）Proof of（iii）．For $\boldsymbol{c}=\left(c_{1}, \cdots, c_{n+1}\right)$ given in the statement of this theorem，when $(\boldsymbol{c}, f(z)) / F(z)$ is tran－ scendental，by Theorem B（ii）

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log N(r, \boldsymbol{c}, f)}{\log r}=\limsup _{r \rightarrow \infty} \frac{\log N(r, 1 / F)}{\log r} \tag{11}
\end{equation*}
$$

and when $(c, f(z)) / F(z)$ is rational，（11）also holds since

$$
N(r, c, f)=N(r, 1 / F)+O(\log r)
$$

By Lemma 3, the equality

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log N(r, 1 / F)}{\log r}=\rho(f) \tag{12}
\end{equation*}
$$

must hold. In fact, suppose to the contrary that

$$
\limsup _{r \rightarrow \infty} \frac{\log N(r, 1 / F)}{\log r}<\rho(f) .
$$

Then, from (11) for any vector $\boldsymbol{c} \in C^{n+1}-\mathscr{H}$,

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log N(r, \boldsymbol{c}, f)}{\log r}<\rho(f) \tag{13}
\end{equation*}
$$

On the contrary, take

$$
X=\left\{\left(a^{n}, \cdots, a, 1\right): a \in \boldsymbol{C}\right\}
$$

in Lemma 3. Then $X \cap \mathscr{H}$ contains at most $n-1$ elements and $X-\mathscr{H}$ contains at most $2 n$ Borel exceptional vectors for f, and so there are vectors in $X-\mathscr{H}$ not Borel exceptional for f, which contradicts with (13).

From (11) and (12) we have (iii) of this theorem.

References

[1] M.Brelot: Etude générale des fonctions harmoniques ou surharmoniques positives au voisinage d'un point frontière irrégulier. Ann. Univ. Grenoble, 22(1946), 201-219.
[2] M.Brelot: Eléments de la théorie classique du potentiel(4 ${ }^{e}$ édition). C.D.U., Paris 1969.
[3] J.L.Doob: Some classical function theory theorems and their modern versions. Ann. Inst. Fourier, 15(1965), 113-135.
[4] W.K.Hayman: Meromorphic functions. Oxford at the Clarendon Press, 1964.
[5] N.Toda: Sur l'allure des fonctions méromorphes. Nagoya Math. J., 26(1966), 173-181.
[6] N.Toda: Sur l'ensemble d'adhérence fine des fonctions algébroïdes. Nagoya Math. J., 30(1967), 295-302.
[7] N.Toda: Sur les combinaisons exceptionnelles des fonctions holomorphes; applications aux fonctions algébroïdes. Tohoku Math. J., 22 (1970), 290-319.
[8] H.Weyl and F.J.Weyl: Meromorphic functions and analytic curves. Princeton Univ. Press, Princeton 1943.

