On the Order of Entire Solutions of a Differential Equation

Nobushige TODA
Department of Mathematics
（Received August 21，1996）

We consider the order of entire solutions of the differential equation
（1）

$$
\mathrm{P}\left(z, \mathrm{w}, \mathrm{w}^{\prime}, \cdots, \mathrm{w}^{(\mathrm{n})}\right)=\mathrm{Q}(z, \mathrm{w})
$$

where P is a polynomial in $w, w^{\prime}, \cdots, w^{(n)}$ with polynomial coefficients such that the degree of each term of P is not smaller than one and

$$
Q(z, w)=a_{0} w^{d}+a_{1} w^{d-1}+\cdots+a_{d}
$$

Here，$d=\operatorname{deg} P, a_{1}, \cdots, a_{d}$ are polynomials at least one of which is not identically equal to zero and a_{0} is a transcendental entire function．

This equation（1）contains several popular equations．

1．Introduction

Let P be a polynomial of $\mathrm{w}, \mathrm{w}^{\prime}, \cdots, \mathrm{w}^{(\mathrm{n})}(\mathrm{n} \geq 1)$ with polynomial coefficients：

$$
\mathrm{P}\left(z, \mathrm{w}, \mathrm{w}^{\prime}, \cdots, \mathrm{w}^{(\mathrm{n})}\right)=\sum_{\lambda \in 1} \mathrm{c}_{\lambda}(z) \mathrm{w}^{\mathrm{i}_{0}}\left(\mathrm{w}^{\prime}\right)^{\mathrm{i}_{1}} \ldots\left(\mathrm{w}^{(\mathrm{n})}\right)^{\mathrm{i}_{\mathrm{n}}}
$$

where each c_{λ} is polynomial and I is a finite set of multi－indices $\lambda=\left(i_{0}, i_{1}, \cdots, i_{n}\right)$ for which $c_{\lambda} \neq 0$ and $i_{0}, i_{1}, \cdots, i_{n}$ are non－negative integers such that at least one of i_{1}, \cdots, i_{n} is not equal to zero，

$$
\mathrm{d}=\max _{\lambda \in \mathrm{I}}\left(\mathrm{i}_{0}+\mathrm{i}_{1}+\cdots+\mathrm{i}_{\mathrm{n}}\right)
$$

and let

$$
Q(z, w)=\sum_{j=0}^{\ell} a_{\ell-j}(z) w^{j}
$$

where a_{1}, \cdots, a_{ℓ} are polynomials at least one of which is not identically equal to zero and a_{0} is a transcendental entire function．
We consider entire solutions of the differential equation

$$
\begin{equation*}
\mathrm{P}\left(z, \mathrm{w}, \mathrm{w}^{\prime}, \cdots, \mathrm{w}^{(\mathrm{n})}\right)=\mathrm{Q}(z, \mathrm{w}) \tag{1}
\end{equation*}
$$

It is known that if the differential equation（1）admits an admissible entire solution，then $\ell \leq \mathrm{d}$ ．
From now on，we consider the differential equation（1）satisfying $\ell=\mathrm{d}$ ．
Examples of（1）．
（a）$-2 \mathrm{EE}^{\prime \prime}+\left(\mathrm{E}^{\prime}\right)^{2}=4 \mathrm{AE}^{2}+\mathrm{c}^{2}(\mathrm{c} \neq 0$ ，constant）$)($ see $[1])$ ．
（b） $\mathrm{w}^{(\mathrm{n})}+\mathrm{c}_{1}(\mathrm{z}) \mathrm{w}^{(\mathrm{n}-\mathrm{l})}+\cdots+\mathrm{c}_{\mathrm{n}-1}(\mathrm{z}) \mathrm{w}^{\prime}+\mathrm{c}_{\mathrm{n}}(\mathrm{z}) \mathrm{w}=\mathrm{F}(\mathrm{z}) \quad(\mathrm{F} \neq 0)$（see［5］）．
（c）$\left(w^{\prime}\right)^{n}=a_{0}(z) w^{n}+\cdots+a_{n-1}(z) w+a_{n}(z) \quad($ see［4］），etc．
For an entire function f ，we denote the order of f by $\rho(\mathrm{f})$ and the lower order of f by $\mu(\mathrm{f})$ ，the order of $N(r, 1 / f)$ by $\lambda(f)$ and the order of $\bar{N}(r, 1 / f)$ by $\bar{\lambda}(f)$ respectively．

Recent results on the growth of solutions of（b）in which we are interested are the followings：
Theorem A（［11］，Theorem 1）．Suppose in（b）that $\mathrm{c}_{1}, \cdots, \mathrm{c}_{\mathrm{n}}, \mathrm{F}$ are entire such that $\rho\left(\mathrm{c}_{\mathrm{n}}\right)$ and ρ（F）are finite and that（i）or（ii）holds

[^0](i) $\rho\left(\mathrm{c}_{\mathrm{j}}\right)<\rho\left(\mathrm{c}_{\mathrm{n}}\right)(\mathrm{j}=1, \cdots, \mathrm{n}-1)$;
(ii) $\mathrm{c}_{1}, \cdots, \mathrm{c}_{\mathrm{n}-1}$ are polynomials and c_{n} is transcendental.

Then, every solution f of (b) satisfies $\rho(\mathrm{f})=\bar{\lambda}(\mathrm{f})=\lambda(\mathrm{f})=+\infty$ with at most one possible exceptional solution of finite order.

In [11] examples with an "exceptional solution" are given, but those without "exceptional solution" are not given. An equation of (b) without "exceptional solution" is given in [2]:

Theorem B ([2], Theorem 3). Suppose in (b) that c_{1}, \cdots, c_{n} and F are entire such that

$$
\max \left\{\rho\left(\mathrm{c}_{1}\right), \cdots, \rho\left(\mathrm{c}_{\mathrm{n}-1}\right), \rho(\mathrm{F})\right\}<\rho\left(\mathrm{c}_{\mathrm{n}}\right)<1 / 2 .
$$

Then, every solution of (b) has infinite order.
The purpose of this paper is to give a result on the order of entire solutions of the differential equation (1) similar to Theorem 3 in [9]. We use the standard notation of the Nevanlinna theory of meromorphic functions ([3],[6]).

2. Lemma.

Lemma 1. Let f be an entire function of finite order. Then, for any positive number ε there exist $\mathrm{q}=\mathrm{q}(\varepsilon)$, $r_{0}>1$ and $J(r)$ a subset of $[0,2 \pi)$ such that the inequality

$$
\begin{equation*}
\left|\left(\sum_{i_{0}+i_{1}+\cdots+i_{n}=k} c_{\lambda} f^{i_{0}}\left(f^{\prime}\right)^{i_{1}} \ldots\left(f^{(n)}\right)^{i_{n}} / f^{k}\right)\left(r e^{i \theta}\right)\right| \leq r^{q} \tag{2}
\end{equation*}
$$

holds for all $r \geq r_{o}$ and $\theta \notin J(r)$, where the angular measure of $J(r), m(J(r)) \leq \varepsilon r$. (cf. Lemma 1 in [7])
Proof (see [7], Lemma 1). By the lemma of the logarithmic derivative and by the fact that f is of finite order and every c_{λ} is polynomial, there exist a constant K and an $r_{0}>1$ such that for all $r \geq r_{0}$

$$
m\left(r, \sum_{i_{0}+\cdots+i_{n}=k} c_{\lambda} f^{i_{0}}\left(f^{\prime}\right)^{i_{1}} \cdots\left(f^{(n)}\right)^{i_{n}} / f^{k}\right) \leq K \log r
$$

For any positive number ε, let $\mathrm{q}=2 \mathrm{~K} / \varepsilon$ and

$$
J(r)=\left\{\theta \in[0,2 \pi):\left.\right|_{i_{0}+\ldots+i_{n}=k} c_{\lambda} f^{i_{0}} \ldots\left(f^{(n)}\right)^{i_{n}} / f^{k}\left(r e^{i \theta}\right) \mid>r^{q}\right\}
$$

Then, $\mathrm{m}(\mathrm{J}(\mathrm{r})) \leq \varepsilon \pi$. For $\mathrm{r} \geq \mathrm{r}_{\mathrm{o}}$ and $\theta \notin \mathrm{J}(\mathrm{r})$, the inequality (2) holds.
Lemma 2. Let f be a transcendental entire function, $R(\neq 0)$ a polynomial and set

$$
G_{o}=\{z:|f(z)|>1\}
$$

Then, for any positive number ε, there exist $\mathrm{q}=\mathrm{q}(\varepsilon), \mathrm{r}_{\mathrm{o}}>1$ and $\mathrm{J}(\mathrm{r})$ a subset of $[0,2 \pi), \mathrm{m}(\mathrm{J}(\mathrm{r})) \leq \varepsilon \mathrm{r}$ such that the inequality

$$
\left|\frac{1}{R}\left\{\left(P\left(z, f, f^{\prime}, \cdots, f^{(n)}\right)-\left(Q(z, f)-a_{0} f^{d}\right)\right) / f^{d}\right\} \quad\left(r e^{i \theta}\right)\right| \leq r^{q}
$$

holds for all $z=r e^{i \theta} \in G_{o}, r \geq r_{0}$ and $\theta \notin J(r)$.
Proof. For any $z=r e^{i \theta} \in G_{0}$,

$$
\begin{align*}
& \left|\frac{1}{R}\left\{\frac{P\left(z, f, f^{\prime}, \cdots, f^{(n)}\right)-Q(z, f)+a_{0} f^{d}}{f^{d}}\right\}(z)\right| \tag{3}\\
& \quad \leq \frac{1}{|R(z)|}\left\{\sum_{k=1}^{d}\left|\sum_{i_{0}+\cdots+i_{n}=k} c_{\lambda} f^{i_{0}}\left(f^{\prime}\right)^{i_{1}} \cdots\left(f^{(n)}\right)^{i_{n}} / f^{k}(z)\right|+\sum_{j=0}^{d-1}\left|a_{j}(z)\right|\right\}
\end{align*}
$$

and we have a constant K and an $r_{o}>1$ such that for $r \geq r_{o}$

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \log +\frac{1}{|R|}\left\{\sum_{k=1}^{d}\left|\sum_{i_{0}+\cdots+i_{n}=k} c_{\lambda} f^{i_{0}}\left(f^{\prime}\right)^{i_{1}} \ldots\left(f^{(n)}\right)^{i_{n}} / f^{k}\right|+\sum_{j=0}^{d-1}\left|a_{j}\right|\right\}\left(r e^{i \theta}\right) d \theta \\
& \leq m(r, 1 / R)+\sum_{k=1}^{d} m\left(r,{ }_{i_{0}+\cdots+i_{n}=k} c_{\lambda} f^{i_{0}}\left(f^{\prime}\right)^{i_{1}} \cdots\left(f^{(n)}\right)^{i_{n} / f^{k}}\right)+\sum_{j=0}^{d-1} m\left(r, a_{j}\right)+O(1) \leq K \log r
\end{aligned}
$$

as in the proof of Lemma 1．For any positive number ε ，let $\mathrm{q}=2 \mathrm{~K} / \varepsilon$ and

Then，

$$
(2 \pi)^{-1} m(J(r)) q \log r \leq K \log r
$$

and

$$
\begin{equation*}
\mathrm{m}(\mathrm{~J}(\mathrm{r})) \leq \varepsilon \mathrm{r} \tag{5}
\end{equation*}
$$

From（3），（4）and（5），we obtain our lemma．
Lemma 3．Let $f(z)$ be a transcendental entire function．Then，there exists a polygonal path $\Gamma: z=z(t)$ （ $0 \leq \mathrm{t}<1$ ）such that
（i） $\lim _{t \rightarrow 1} z(t)=\infty$ ；
（ii） $\lim _{t \rightarrow 1} \log |f(z(t))| / \log |z(t)|=+\infty$ ．（［8］）
Let D be an unbounded plane domain the boundary of which consists of at most countable analytic curves clus－ tering nowhere in $|z|<\infty$ ．We put

$$
\mathrm{E}(\mathrm{r})=\left\{\theta \in[0,2 \pi): \mathrm{re}^{\mathrm{i} \theta} \in \mathrm{D}\right\}
$$

and

$$
\theta(\mathrm{r})= \begin{cases}+\infty & \text { if }\{|z|=\mathrm{r}\} \subset \mathrm{D} \\ \mathrm{~m}(\mathrm{E}(\mathrm{r})) & \text { otherwise } .\end{cases}
$$

Let a be a positive number such that $\theta(r)>0$ for all $r \geq a$ ．Then，we have the following：
Lemma 4．Let $v(z)$ be a subharmonic function in D ，continuous on the closure of D such that $v(z) \leq 0$ ． If there exists one point $z_{o} \in D$ such that $v\left(z_{0}\right)>0$ ，then

$$
\log M(r, v, D) \geq \pi \int_{a}^{r / 2} \frac{d t}{t \theta(t)}+O(1)
$$

where $M(r, v, D)=\sup \{v(z):(|z|=r) \cap D\}$ ．
See the proof of Theorem III， 68 in［10］，p．117．We can apply the method used there for $\log ^{+}|f(z)|$ to our subharmonic function $v(z)$ and easily obtain this lemma．

Lemma 5．Let $\mathrm{A}(z)$ be a transcendental entire function with $\mu(\mathrm{A})<+\infty$ ．Suppose that for some constant K_{1} the set

$$
\left\{z:|\mathrm{A}(\mathrm{z})|>\mathrm{K}_{1}\right\}
$$

consists of at least N components G_{1}, \cdots, G_{N} ，where $N \geq 2$ ．Then，there exist a harmonic function $v_{j}(z)$ in G_{j} and an unbounded domain $D_{j} \subset G_{j}(j=1, \cdots, N)$ such that
（i） $\mathrm{v}_{\mathrm{j}}(\mathrm{z}) \geq|z|^{(\rho(\mathrm{A}) /(2 \rho(\mathrm{~A})+1-\mathrm{N})\}-\varepsilon_{\mathrm{j}}(\mathrm{z})}$ in $\mathrm{D}_{\mathrm{j}}\left(\varepsilon_{\mathrm{j}}(\mathrm{z}) \rightarrow 0\right.$ as $\left.z \rightarrow \infty\right)$ ；
（ii） $\log |A(z)|-v_{j}(z)\left\{\begin{array}{lll}>0 & \text { in } & D_{j} \\ =0 & \text { on } & \partial D_{j}\end{array}\right.$
Proof．For $j=1, \cdots, N$ ，let $u_{j}(z), \delta$ and Γ_{j} be those given in the proof of Theorem 1 in［9］，（We here use G_{j} in stead of D_{j} there．）For $j=1, \cdots, N$ ，put $v_{j}(z)=\delta u_{j}(z)+\log K_{1}$ ，which is positive in G_{j} ，and let D_{j} be the un－ bounded component of $\left\{z \in G_{j}: \log |A(z)|-v_{j}(z)>0\right\}$ containing Γ_{j} ．Then，it is easy to see from the proof of Theorem 1 in［9］that v_{j} satisfies（i）and（ii）of this lemma．
（We consider $\rho(\mathrm{A}) /(2 \rho(\mathrm{~A})+1-\mathrm{N})=1 / 2$ if $\rho(\mathrm{A})=+\infty$ ．））
Lemma 6．Let f be any entire solution of the differential equation（1）．Then f is transcendental and $\rho(\mathrm{f}) \geq \rho\left(\mathrm{a}_{0}\right)$ ．

Proof．From（1）we have

$$
\begin{equation*}
a_{0}=\frac{P\left(z, f, f^{\prime}, \cdots, f^{(n)}\right)-\sum_{j=0}^{d-1} a_{i} f^{j}}{f^{d}} \tag{6}
\end{equation*}
$$

Suppose that f is polynomial. Then the right-hand side of (1) is not transcendental, but a_{0} is transcendental. This is a contradiction. f must be transcendental.

Next, Suppose that $\rho(\mathrm{f})<+\infty$. We then have from (6)

$$
\mathrm{m}\left(\mathrm{r}, \mathrm{a}_{0}\right) \leq \mathrm{dm}(\mathrm{r}, 1 / \mathrm{f})+\mathrm{O}(\log \mathrm{r}) \leq \mathrm{dT}(\mathrm{r}, \mathrm{f})+\mathrm{O}(\log \mathrm{r})
$$

which implies $\rho\left(\mathrm{a}_{0}\right) \leq \rho(\mathrm{f})$.

3. Result.

We suppose that the differential equation (1) admits at least one entire solution. Let \mathbf{f} be any entire solution of (1). Let D_{0} be a component of the set

$$
\{z:|f(z)|>1\}
$$

which is a non-empty unbounded domain since f is transcendental by Lemma 6. Put

$$
\begin{aligned}
& \mathrm{E}_{0}(\mathrm{r})=\left\{\theta \in[0,2 \pi): \mathrm{re}^{\mathrm{i} \theta} \in \mathrm{D}_{0}\right\}, \\
& \theta_{0}(\mathrm{r})= \begin{cases}+\infty & \text { if }\{|z|=r\} \subset D_{0} \\
\mathrm{~m}\left(\mathrm{E}_{0}(\mathrm{r})\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\ell_{0}(r)=m\left(E_{0}(r)\right)= \begin{cases}2 \pi & \text { if } \theta_{0}(r)=+\infty \\ \theta_{0}(r) & \text { otherwise }\end{cases}
$$

Applying the method used in the proof of Theorem 3 in [9], we shall give a theorem on the order of f in this section.

Theorem. Suppose in (1) that $\mathrm{a}_{0}(\mathrm{z})=\alpha(\mathrm{z}) \mathrm{A}(\mathrm{z})+\beta(\mathrm{z})$, where A is transcendental, $\rho(\mathrm{A})<+\infty$ and $\alpha(\neq 0), \beta$ are polynomials. If for some constant K_{1} the set

$$
\left\{z:|A(z)|>K_{1}\right\}
$$

consists of at least N components ($1 \leq \mathrm{N}<+\infty$), then either $\rho(\mathrm{f})=+\infty$ or

$$
\frac{\mathrm{N}}{\mu(\mathrm{~A})}+\frac{1}{\rho(\mathrm{f})} \leq 2 \quad\left(\text { resp. } \frac{\mathrm{N}}{\rho(\mathrm{~A})}+\frac{1}{\mu(\mathrm{f})} \leq 2\right)
$$

Proof. Suppose that $\rho(\mathrm{f})<+\infty$. By Lemma 2, for any positive ε, the inequality

$$
\begin{equation*}
\left|\frac{1}{\alpha}\left\{\frac{\mathrm{P}\left(z, \mathrm{f}, \mathrm{f}^{\prime}, \cdots, \mathrm{f}^{(\mathrm{n})}\right)}{\mathrm{f}^{\mathrm{d}}}-\frac{\mathrm{Q}(\mathrm{z}, \mathrm{f})-\mathrm{a}_{0} \mathrm{f}^{\mathrm{d}}}{\mathrm{f}^{\mathrm{d}}}\right\}(\mathrm{z})\right| \leq \mathrm{r}^{\mathrm{q}} \tag{7}
\end{equation*}
$$

holds for $\mathrm{q}=\mathrm{q}(\varepsilon)>0, \mathrm{z}=\mathrm{re}^{\mathrm{i} \theta} \in \mathrm{G}_{0}, \mathrm{r} \geq \mathrm{r}_{0}>1$ except for $\theta \in \mathrm{J}(\mathrm{r})$ satisfying $\mathrm{m}(\mathrm{f}(\mathrm{r})) \leq \varepsilon \mathrm{r}$.
For $K=\max \left\{K_{1}, 1, M(1, A)\right\}$ and a positive integer $p>q$, the set

$$
\{z: \log |\mathrm{A}(z)|-\mathrm{p} \log |z|-\log \mathrm{K}>0,|z|>1\}
$$

consists of at least N unbounded components D_{1}, \cdots, D_{N} by Lemma 3 in case of $N=1$ or by Lemma 5 in case of $\mathrm{N} \geq 2$. For $\mathrm{j}=1, \cdots, \mathrm{~N}$ put

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{j}}(\mathrm{r})=\left\{\theta \in[0,2 \pi): \mathrm{re}^{\mathrm{i} \theta} \in \mathrm{D}_{\mathrm{j}}\right\}, \\
& \theta_{\mathrm{j}}(\mathrm{r})= \begin{cases}+\infty & \text { if }\{|z|=\mathrm{r}\} \subset \mathrm{D}_{\mathrm{j}} \\
\mathrm{~m}\left(\mathrm{E}_{\mathrm{j}}(\mathrm{r})\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

and

$$
\ell_{\mathrm{j}}(\mathrm{r})=m\left(\mathrm{E}_{\mathrm{j}}(\mathrm{r})\right)= \begin{cases}2 \pi & \text { if } \theta_{\mathrm{j}}(\mathrm{r})=+\infty \\ \theta_{\mathrm{j}}(\mathrm{r}) & \text { otherwise }\end{cases}
$$

Then, there is a positive number a such that $\theta_{j}(r)>0$ for all $r \geq a$ and for $j=0,1, \cdots, N$. By Lemma 4 we have

$$
\begin{equation*}
\pi \int_{\mathrm{a}}^{\mathrm{r} / 2} \frac{\mathrm{dt}}{\mathrm{t} \theta_{0}(\mathrm{t})} \leq \log \log \mathrm{M}(\mathrm{r}, \mathrm{f})+\mathrm{O}(1) \tag{8}
\end{equation*}
$$

and

$$
\begin{align*}
\pi \int_{a}^{r / 2} \frac{d t}{t \theta_{j}(t)} & \leq \log \{\log M(r, A)-p \log r-\log K\}+O(1) \tag{9}\\
& \leq \log \log M(r, A)+O(1) \quad(j=1, \cdots, N)
\end{align*}
$$

since $\log |A(z)|-p \log |z|-\log K$ is positive harmonic and $p \log |z|+\log K$ is positive in D_{j} by the choice of K ． Further we have from（7）and by the choice of p

$$
\begin{equation*}
\sum_{j=0}^{N} \ell_{j}(r) \leq(2+\varepsilon) \pi \quad\left(r \geq b=\max \left\{r_{0}, a\right\}\right) \tag{10}
\end{equation*}
$$

From（10）we have

$$
\begin{equation*}
\sum_{j=0}^{N} \int_{b}^{r} \frac{\ell_{j}(t)}{t} d t \leq(2+\varepsilon) \pi \log (r / b) \tag{11}
\end{equation*}
$$

By the Cauchy－Schwarz inequality

$$
\begin{equation*}
\int_{\mathrm{b}}^{\mathrm{r}} \frac{\ell_{\mathrm{j}}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \ell_{\mathrm{j}}(\mathrm{t})} \geq\left(\int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t}}\right)^{2}=\left(\log \frac{\mathrm{r}}{\mathrm{~b}}\right)^{2} \quad(\mathrm{j}=0, \cdots, \mathrm{~N}) \tag{12}
\end{equation*}
$$

From（11）and（12）we obtain the inequality

$$
\begin{equation*}
\sum_{j=0}^{N} \frac{\log (r / b)}{\pi \int_{b}^{r} \frac{d t}{t \ell_{j}(t)}} \leq 2+\varepsilon \tag{13}
\end{equation*}
$$

$$
\mathrm{B}_{\mathrm{o}}=\left\{\mathrm{r}: \theta_{0}(\mathrm{r})=+\infty\right\}
$$

Then，B_{o} is a sum of intervals．Let

$$
\chi_{0}(r)= \begin{cases}1 & \text { if } r \text { belongs to } B_{0} \\ 0 & \text { otherwise }\end{cases}
$$

If r belongs to B_{o} and $r \geq b$ ，we have

$$
\theta_{\mathrm{j}}(\mathrm{r})=\ell_{\mathrm{j}}(\mathrm{r}) \quad(\mathrm{j}=1, \cdots, \mathrm{~N})
$$

and

$$
\theta_{1}(\mathrm{r})+\cdots+\theta_{\mathrm{N}}(\mathrm{r}) \leq \varepsilon \pi
$$

from（10）．Thus，if we set

$$
\mathrm{F}_{\mathrm{j}}(\mathrm{r})=\left\{\mathrm{r}: \theta_{\mathrm{j}}(\mathrm{r}) \leq \varepsilon \pi\right\}
$$

then

$$
\begin{equation*}
B_{o} \subset \bigcup_{j=1}^{N} F_{j} . \tag{14}
\end{equation*}
$$

Define

$$
\phi_{\mathrm{j}}(\mathrm{r})= \begin{cases}1 & \text { if } \mathrm{r} \text { belongs to } \mathrm{F}_{\mathrm{j}} \\ 0 & \text { otherwise }\end{cases}
$$

We then have from（14）

$$
\begin{equation*}
\int_{\mathrm{b}}^{\mathrm{r}} \frac{\chi_{0}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \sum_{\mathrm{j}=0}^{\mathrm{N}} \int_{\mathrm{b}}^{\mathrm{r}} \frac{\phi_{\mathrm{j}}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \mathrm{N} \varepsilon \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{~A})+\mathrm{O}(1) \tag{15}
\end{equation*}
$$

since $\varepsilon^{-1} \phi_{\mathrm{j}}(\mathrm{t}) \leq \pi / \theta_{\mathrm{j}}(\mathrm{t})$ and

$$
\varepsilon^{-1} \int_{\mathrm{b}}^{\mathrm{r}} \frac{\phi_{\mathrm{j}}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \pi \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \theta_{\mathrm{j}}(\mathrm{t})} \leq \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{~A})+\mathrm{O}(1)
$$

by（9）．Further we have

$$
\begin{equation*}
\pi \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \theta_{0}(\mathrm{t})}=\pi \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \ell_{0}(\mathrm{t})}-\frac{1}{2} \int_{\mathrm{b}}^{\mathrm{r}} \frac{\chi_{0}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \tag{16}
\end{equation*}
$$

(I) The case when $N=1$. Let $B_{1}=\left\{r: \theta_{1}(r)=+\infty\right\}$. Then, B_{1} is a sum of intervals. Define

$$
\chi_{1}(r)= \begin{cases}1 & \text { if } r \in B_{1} \\ 0 & \text { otherwise }\end{cases}
$$

If $\mathrm{r} \in \mathrm{B}_{1}$ and $\mathrm{r} \geq \mathrm{b}$, then, by (10) $\theta_{1}(\mathrm{r}) \leq \varepsilon \pi$. Put

$$
\mathrm{F}_{0}=\left\{\mathrm{r}: \theta_{0}(\mathrm{r}) \leq \varepsilon \pi\right\}
$$

and

$$
\psi_{0}(\mathrm{r})= \begin{cases}1 & \text { if } \mathrm{r} \in \mathrm{~F}_{0} \\ 0 & \text { otherwise }\end{cases}
$$

We then have

$$
\begin{equation*}
\int_{\mathrm{b}}^{\mathrm{r}} \frac{\chi_{1}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \int_{\mathrm{b}}^{\mathrm{r}} \frac{\psi_{0}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \varepsilon \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{f})+\mathrm{O}(1) \tag{17}
\end{equation*}
$$

since $\mathrm{B}_{1} \subset \mathrm{~F}_{0}, \varepsilon^{-1} \phi_{0}(\mathrm{t}) \leq \pi / \theta_{0}(\mathrm{t})$ and

$$
\varepsilon^{-1} \int_{\mathrm{b}}^{\mathrm{r}} \frac{\psi_{0}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \leq \pi \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \theta_{0}(\mathrm{t})} \leq \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{f})+\mathrm{O}(1)
$$

by (8). Since

$$
\pi \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \theta_{1}(\mathrm{t})}=\pi \int_{\mathrm{b}}^{\mathrm{r}} \frac{\mathrm{dt}}{\mathrm{t} \ell_{1}(\mathrm{t})}-\frac{1}{2} \int_{\mathrm{b}}^{\mathrm{r}} \frac{\chi_{1}(\mathrm{t})}{\mathrm{t}} \mathrm{dt}
$$

from (8), (9), (13) and (15) for $N=1,(16)$ and (17), we have

$$
\begin{align*}
& \frac{\log (\mathrm{r} / \mathrm{b})}{\log \log \mathrm{M}(2 \mathrm{r}, \mathrm{~A})+\varepsilon \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{f})+\mathrm{O}(1)} \\
& \quad+\frac{\log (\mathrm{r} / \mathrm{b})}{\log \log \mathrm{M}(2 \mathrm{r}, \mathrm{f})+(\varepsilon / 2) \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{~A})+\mathrm{O}(1)} \leq 2+\varepsilon \tag{18}
\end{align*}
$$

Let $\left\{r_{n}\right\}$ be a sequence tending to $+\infty$ such that

$$
\lim _{n \rightarrow \infty} \frac{\log \log M\left(2 r_{n}, A\right)}{\log r_{n}}=\mu(A) \quad\left(\text { resp. } \lim _{n \rightarrow \infty} \frac{\log \log M\left(2 r_{n}, f\right)}{\log r_{n}}=\mu(f)\right)
$$

Put $r=r_{n}$ in (18) and let n tend to ∞. We then have

$$
\frac{1}{\mu(\mathrm{~A})}+\frac{1}{\rho(\mathrm{f})+\mathrm{N} \varepsilon \mu(\mathrm{~A})} \leq 2+\varepsilon \quad\left(\text { resp. } \frac{1}{\rho(\mathrm{~A})}+\frac{1}{\mu(\mathrm{f})+\mathrm{N} \varepsilon \rho(\mathrm{~A})} \leq 2+\varepsilon\right)
$$

Tending $\varepsilon \rightarrow 0$, we have

$$
\begin{align*}
& \frac{1}{\mu(\mathrm{~A})}+\frac{1}{\rho(\mathrm{f})} \leq 2 \tag{19}\\
& \left.\frac{1}{\rho(\mathrm{~A})}+\frac{1}{\mu(\mathrm{f})} \leq 2\right)
\end{align*}
$$

(resp. (19) ${ }^{\prime}$
(II) The case when $\mathrm{N} \geq 2$. In this case it is clear that for $\mathrm{j}=1, \cdots, \mathrm{~N}$

$$
0<\theta_{\mathrm{j}}(\mathrm{r})<2 \pi \quad \text { and } \quad \theta_{\mathrm{j}}(\mathrm{r})=\ell_{\mathrm{j}}(\mathrm{r}) \quad(\mathrm{r} \geq \mathrm{b})
$$

From (8),(9),(13),(15) and (16) we obtain for $r \geq b$

$$
\begin{equation*}
\frac{\mathrm{N} \log (\mathrm{r} / \mathrm{b})}{\log \log \mathrm{M}(2 \mathrm{r}, \mathrm{~A})+\mathrm{O}(1)}+\frac{\log (\mathrm{r} / \mathrm{b})}{\log \log \mathrm{M}(2 \mathrm{r}, \mathrm{f})+(\mathrm{N} \varepsilon / 2) \log \log \mathrm{M}(2 \mathrm{r}, \mathrm{~A})+\mathrm{O}(1)} \leq 2+\varepsilon \tag{20}
\end{equation*}
$$

Then as in the case of $\mathrm{N}=1$, we obtain the inequality

$$
\frac{\mathrm{N}}{\mu(\mathrm{~A})}+\frac{1}{\rho(\mathrm{f})} \leq 2 \quad\left(\text { resp. } \frac{\mathrm{N}}{\rho(\mathrm{~A})}+\frac{1}{\mu(\mathrm{f})} \leq 2\right)
$$

from (20).

Corollary．Under the same assumption as in Theorem，if

$$
\mu(\mathrm{A}) \leq 1 / 2 \quad \text { or } \mu(\mathrm{A})=\mathrm{N} / 2 \quad \text { or } \rho(\mathrm{A})=\mathrm{N} / 2(\mathrm{~N}=2,3, \cdots),
$$

then $\rho(\mathrm{f})=+\infty$ ．
Example 1．For a polynomial $p(z)$ of degree 1，put $f(z)=e^{p(z)}$ ．Then，$p_{j}=f^{(j)}(z) / f(z)=\left(p^{\prime}\right)^{j}$ $(j=1,2, \cdots)$ are constants．For any polynomials a_{1}, \cdots, a_{n-1} and $F(\neq 0)$ ，we set

$$
\mathrm{q}(z)=\sum_{\mathrm{j}=1}^{\mathrm{n}-1} \mathrm{p}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}(z) \text { and } \mathrm{a}_{0}(z)=\mathrm{F}(z) \mathrm{e}^{-\mathrm{p}(z)}-\mathrm{q}(z)
$$

Then，$f(z)=e^{p(z)}$ is a solution of the differential equation

$$
\mathrm{f}^{(\mathrm{n})}+\mathrm{a}_{\mathrm{n}-1} \mathrm{f}^{(\mathrm{n}-1)}+\cdots+\mathrm{a}_{1} \mathrm{f}^{\prime}+\mathrm{a}_{0} \mathrm{f}=\mathrm{F} .
$$

It is easy to see that for some sufficiently large K the sets

$$
\left\{z:\left|\mathrm{e}^{\mathrm{p}(z)}\right|>\mathrm{K}\right\} \quad \text { and } \quad\left\{z:\left|\mathrm{e}^{-\mathrm{p}(z)}\right|>\mathrm{K}\right\}
$$

have one unbounded component．Further $\rho\left(\mathrm{a}_{0}\right)=\mu\left(\mathrm{a}_{0}\right)=\rho\left(\mathrm{e}^{\mathrm{p}}\right)=1$ ．This shows that $1 / \mu\left(\mathrm{a}_{0}\right)+1 / \rho(\mathrm{f})=2$ ．
Example 2．The function $A(z)=\frac{1}{2}\left\{\exp \left(z^{m / 2}\right)+\exp \left(z^{-m / 2}\right)\right\}(m=2,3, \cdots)$ is of order $\rho(A)=m / 2$ and $\mathrm{N}=\mathrm{m}$（see［9］，example 1）．For this $\mathrm{A}(\mathrm{z})$ ，any entire solution of（1）under the assumption of Theorem is of order $+\infty$ ．

Remark．By a well－known theorem of Ahlfore（see［10］，p．236），

$$
\mathrm{N}=1 \text { when } \mu(\mathrm{A})<1 \text { and } \mathrm{N} \leq 2 \mu(\mathrm{~A}) \text { when } 1 \leq \mu(\mathrm{A})<+\infty
$$

for any non－constant entire function A ．

References．

［1］S．B．Bank and I．Laine：On the oscillation theory of $\mathrm{f}^{\prime \prime}+\mathrm{Af}=0$ ，where A is entire．Trans．A．M．S．，273（1982）， 351－363．
［2］G．G．Gundersen and E．M．Steinbart：Infinite order solutions of non－homogeneous linear differential equa－ tions．Ann．Acad．Sci Fenn．Ser．A，I．Math．，17（1992），327－341．
［3］W．K．Hayman：Meromorphic functions．Oxford at the Clarendon Press， 1964.
［4］He Yuzan and I．Laine：The Hayman－Miles theorem and the Differential equation $\left(y^{\prime}\right)^{n}=R(z, y)$ ，Analysis 10（1990），387－396．
［5］I．Laine：Nevanlinna theory and complex differential equations．de Gruyter Studies in Math．15，Berlin－New York， 1993.
［6］R．Nevanlinna：Le théorème de Picard－Borel et la théorie des fonctions méromorphes．Gauthier－Villars， Paris， 1929.
［7］J．Rossi：Second order differential equations with transcendental coefficients．Proc．A．M．S．，97（1986），61－ 66.
［8］M．N．M．Talpur：On the growth of subharmonic functions on asymptotic paths．Proc．London Math．Soc．， 32（1976），193－198．
［9］N．Toda：A theorem on the growth of entire functions on asymptotic paths and its application to the oscil－ lation theory of $\mathrm{w}^{\prime \prime}+\mathrm{Aw}=0$ ．Kodai．Math．J．，16（1993），428－440．
［10］M．Tsuji：Potential theory in modern function theory．Maruzen，Tokyo， 1959.
［11］Zong－Xuan Chen and Shi－An Gao：The complex oscillation theory of certain non－homogeneous linear differ－ ential equations with transcendental entire coefficients．J．Math．Anal．Appl．，179（1993），403－416．

[^0]: This research was partially supported by Grant－in－Aid for Scientific Research（No．08640194），Ministry of Education，Science and Culture．

