On the Order of Entire Solutions of a Differential Equation

Nobushige TODA

Department of Mathematics (Received August 21, 1996)

We consider the order of entire solutions of the differential equation

$$P(z, w, w', \dots, w^{(n)}) = Q(z, w)$$

where P is a polynomial in w, w',..., $w^{(n)}$ with polynomial coefficients such that the degree of each term of P is not smaller than one and

 $Q(z, w) = a_0 w^d + a_1 w^{d-1} + \dots + a_d.$

Here, d = deg P, a_1, \dots, a_d are polynomials at least one of which is not identically equal to zero and a_0 is a transcendental entire function.

This equation (1) contains several popular equations.

1. Introduction

(1)

Let P be a polynomial of w, $w', \dots, w^{(n)}$ $(n \ge 1)$ with polynomial coefficients:

$$P(z, w, w', ..., w_{1}^{(n)}) = \sum_{\lambda \in I} c_{\lambda}(z) w^{i_{0}}(w')^{i_{1}} ... (w^{(n)})^{i_{n}},$$

where each c_{λ} is polynomial and I is a finite set of multi-indices $\lambda = (i_0, i_1, \dots, i_n)$ for which $c_{\lambda} \neq 0$ and i_0, i_1, \dots, i_n are non-negative integers such that at least one of i_1, \dots, i_n is not equal to zero,

$$\mathbf{d} = \max_{\lambda \in \mathbf{I}} \left(\mathbf{i}_0 + \mathbf{i}_1 + \dots + \mathbf{i}_n \right)$$

and let

$$Q(z, w) = \sum_{j=0}^{\ell} a_{\ell-j}(z) w^{j},$$

where a_1, \dots, a_ℓ are polynomials at least one of which is not identically equal to zero and a_0 is a transcendental entire function.

We consider entire solutions of the differential equation

(1)
$$P(z, w, w', \dots, w^{(n)}) = Q(z, w).$$

It is known that if the differential equation (1) admits an admissible entire solution, then $\ell \leq d$. From now on, we consider the differential equation (1) satisfying $\ell = d$. Examples of (1).

(a) $-2EE'' + (E')^2 = 4AE^2 + c^2 (c \neq 0, \text{ constant}) (\text{see [1]}).$

(b) $w^{(n)} + c_1(z)w^{(n-1)} + \dots + c_{n-1}(z)w' + c_n(z)w = F(z)$ (F $\neq 0$) (see [5]).

(c)
$$(w')^n = a_0(z)w^n + \dots + a_{n-1}(z)w + a_n(z)$$
 (see [4]), etc.

For an entire function f, we denote the order of f by $\rho(f)$ and the lower order of f by $\mu(f)$, the order of N(r, 1/f) by $\lambda(f)$ and the order of $\overline{N}(r, 1/f)$ by $\overline{\lambda}(f)$ respectively.

Recent results on the growth of solutions of (b) in which we are interested are the followings:

Theorem A ([11], Theorem 1). Suppose in (b) that c_1, \dots, c_n , F are entire such that $\rho(c_n)$ and $\rho(F)$ are finite and that (i) or (ii) holds

This research was partially supported by Grant-in-Aid for Scientific Research (No.08640194), Ministry of Education, Science and Culture.

(i) $\rho(c_j) < \rho(c_n)$ (j = 1,...,n-1);

(ii) c_1, \dots, c_{n-1} are polynomials and c_n is transcendental.

Then, every solution f of (b) satisfies $\rho(f) = \overline{\lambda}(f) = \lambda(f) = +\infty$ with at most one possible exceptional solution of finite order.

In [11] examples with an "exceptional solution" are given, but those without "exceptional solution" are not given. An equation of (b) without "exceptional solution" is given in [2]:

Theorem B ([2], Theorem 3). Suppose in (b) that c_1, \dots, c_n and F are entire such that

$$\max \{\rho(c_1), \dots, \rho(c_{n-1}), \rho(F)\} < \rho(c_n) < 1/2.$$

Then, every solution of (b) has infinite order.

The purpose of this paper is to give a result on the order of entire solutions of the differential equation (1) similar to Theorem 3 in [9]. We use the standard notation of the Nevanlinna theory of meromorphic functions ([3],[6]).

2. Lemma.

Lemma 1. Let f be an entire function of finite order. Then, for any positive number ε there exist $q = q(\varepsilon)$, $r_o > 1$ and J(r) a subset of $[0, 2\pi)$ such that the inequality

(2)
$$|(\sum_{i_0+i_1+\cdots+i_n=k} c_{\lambda} f^{i_0}(f')^{i_1} \cdots (f^{(n)})^{i_n}/f^k) (re^{i\theta})| \le r^q$$

holds for all $r \ge r_o$ and $\theta \notin J(r)$, where the angular measure of J(r), $m(J(r)) \le \varepsilon r$. (cf. Lemma 1 in [7])

Proof (see [7], Lemma 1). By the lemma of the logarithmic derivative and by the fact that f is of finite order and every c_1 is polynomial, there exist a constant K and an $r_0 > 1$ such that for all $r \ge r_0$

$$m(r, \sum_{i_0+\dots+i_n=k} c_{\lambda} f^{i_0}(f')^{i_1} \dots (f^{(n)})^{i_n}/f^k) \leq K \log r.$$

For any positive number ε , let $q = 2K/\varepsilon$ and

$$J(\mathbf{r}) = \{ \theta \in [0, 2\pi) : |\sum_{i_0 + \dots + i_n = k} c_{\lambda} f^{i_0} \dots (f^{(n)})^{i_n} / f^k(\mathbf{r} e^{i\theta}) | > r^q \}.$$

Then, $m(J(r)) \leq \varepsilon \pi$. For $r \geq r_o$ and $\theta \notin J(r)$, the inequality (2) holds.

Lemma 2. Let f be a transcendental entire function, $R(\neq 0)$ a polynomial and set

$$G_o = \{z : |f(z)| > 1\}.$$

Then, for any positive number ε , there exist $q = q(\varepsilon)$, $r_o > 1$ and J(r) a subset of $[0, 2\pi)$, $m(J(r)) \le \varepsilon r$ such that the inequality

$$|\frac{1}{R}\{(P(z, f, f', \dots, f^{(n)}) - (Q(z, f) - a_0 f^d))/f^d\} (re^{i\theta})| \le r^q$$

holds for all $z = re^{i\theta} \in G_o$, $r \ge r_o$ and $\theta \notin J(r)$.

Proof. For any $z = re^{i\theta} \in G_{o}$,

(3)

$$\begin{split} |\frac{1}{R} \{ \frac{P(z, f, f', \cdots, f^{(n)}) - Q(z, f) + a_0 f^d}{f^d} \}(z) | \\ \leq & \frac{1}{|R(z)|} \{ \sum_{k=1}^d |\sum_{i_0 + \cdots + i_n = k} c_\lambda f^{i_0}(f')^{i_1} \cdots (f^{(n)})^{i_n} / f^k(z) | + \sum_{j=0}^{d-1} |a_j(z)| \} \end{split}$$

and we have a constant K and an $r_o > 1$ such that for $r \ge r_o$

$$\begin{split} & \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \frac{1}{|R|} \{ \sum_{k=1}^{d} \big| \sum_{i_{0}+\dots+i_{n}=k} c_{\lambda} f^{i_{0}}(f')^{i_{1}} \dots (f^{(n)})^{i_{n}} / f^{k} \big| + \sum_{j=0}^{d-1} |a_{j}| \} \ (re^{i\theta}) d\theta \\ & \leq m(r, 1/R) + \sum_{k=1}^{d} m(r, \sum_{i_{0}+\dots+i_{n}=k} c_{\lambda} f^{i_{0}}(f')^{i_{1}} \dots (f^{(n)})^{i_{n}} / f^{k}) + \sum_{j=0}^{d-1} m(r, a_{j}) + O(1) \leq K \ log \ r \end{split}$$

as in the proof of Lemma 1. For any positive number ε , let $q = 2K/\varepsilon$ and

$$J(\mathbf{r}) = \{ \theta \in [0, 2\pi) : \frac{1}{|\mathbf{R}|} \{ \sum_{k=1}^{d} | \sum_{i_0 + \dots + i_n = k} c_{\lambda} f^{i_0}(f')^{i_1} \cdots (f^{(n)})^{i_n} + \sum_{j=0}^{d-1} |a_j| \} \ (\mathbf{r} e^{i\theta}) > \mathbf{r}^q \}.$$

Then,

$$(2\pi)^{-1}$$
m(J(r))q log r \leq K log r

and (5)

$$m(J(r)) \leq \varepsilon r.$$

From (3), (4) and (5), we obtain our lemma.

Lemma 3. Let f(z) be a transcendental entire function. Then, there exists a polygonal path $\Gamma: z = z(t)$ $(0 \le t < 1)$ such that

(i)
$$\lim z(t) = \infty$$
;

(ii) $\lim_{t \to 1} \log |f(z(t))| / \log |z(t)| = +\infty.$ ([8])

Let D be an unbounded plane domain the boundary of which consists of at most countable analytic curves clustering nowhere in $|z| < \infty$. We put

$$\mathbf{E}(\mathbf{r}) = \{ \boldsymbol{\theta} \in [0, 2\pi) : \mathbf{r} \mathbf{e}^{\mathbf{i}\boldsymbol{\theta}} \in \mathbf{D} \}$$

and

$$\theta(\mathbf{r}) = \begin{cases} +\infty & \text{if } \{|\mathbf{z}| = \mathbf{r}\} \subset \mathbf{D} \\ m(\mathbf{E}(\mathbf{r})) & \text{otherwise.} \end{cases}$$

Let a be a positive number such that $\theta(r) > 0$ for all $r \ge a$. Then, we have the following:

Lemma 4. Let v(z) be a subharmonic function in D, continuous on the closure of D such that $v(z) \le 0$. If there exists one point $z_0 \in D$ such that $v(z_0) > 0$, then

$$\log M(r, y, D) > -\int_{0}^{r/2} dt$$

$$\log M(\mathbf{r}, \mathbf{v}, \mathbf{D}) \ge \pi \int_{a}^{1/2} \frac{dt}{t\theta(t)} + O(1),$$

where $M(r, v, D) = \sup \{v(z) : (|z| = r) \cap D\}$.

See the proof of Theorem III, 68 in [10], p.117. We can apply the method used there for $\log^+|f(z)|$ to our subharmonic function v(z) and easily obtain this lemma.

Lemma 5. Let A(z) be a transcendental entire function with $\mu(A) < +\infty$. Suppose that for some constant K_1 the set

$$\{z: |A(z)| > K_1\}$$

consists of at least N components G_1, \dots, G_N , where $N \ge 2$. Then, there exist a harmonic function $v_j(z)$ in G_j and an unbounded domain $D_j \subset G_j$ $(j = 1, \dots, N)$ such that

(i) $v_j(z) \ge |z|^{\{\rho(A)/(2\rho(A)+1-N)\}-\varepsilon_j(z)}$ in $D_j(\varepsilon_j(z) \to 0 \text{ as } z \to \infty)$;

(ii)
$$\log |A(z)| - v_j(z) \begin{cases} > 0 & \text{in } D_j \\ = 0 & \text{on } \partial D_j \end{cases}$$

Proof. For $j = 1, \dots, N$, let $u_j(z)$, δ and Γ_j be those given in the proof of Theorem 1 in [9], (We here use G_j in stead of D_j there.) For $j = 1, \dots, N$, put $v_j(z) = \delta u_j(z) + \log K_1$, which is positive in G_j , and let D_j be the unbounded component of $\{z \in G_j : \log |A(z)| - v_j(z) > 0\}$ containing Γ_j . Then, it is easy to see from the proof of Theorem 1 in [9] that v_j satisfies (i) and (ii) of this lemma.

(We consider $\rho(A)/(2\rho(A)+1-N) = 1/2$ if $\rho(A) = +\infty$.))

Lemma 6. Let f be any entire solution of the differential equation (1). Then f is transcendental and $\rho(f) \ge \rho(a_0)$.

. .

Proof. From (1) we have

(6)
$$a_0 = \frac{P(z, f, f', \dots, f^{(n)}) - \sum_{j=0}^{d-1} a_j f^j}{f^d}$$

Suppose that f is polynomial. Then the right-hand side of (1) is not transcendental, but a_0 is transcendental. This is a contradiction. f must be transcendental.

Next, Suppose that $\rho(f) < +\infty$. We then have from (6)

$$m(r, a_0) \le dm(r, 1/f) + O(\log r) \le dT(r, f) + O(\log r),$$

which implies $\rho(a_0) \leq \rho(f)$.

3. Result.

We suppose that the differential equation (1) admits at least one entire solution. Let f be any entire solution of (1). Let D_0 be a component of the set

$$\{z: |f(z)| > 1\},\$$

which is a non-empty unbounded domain since f is transcendental by Lemma 6. Put

$$\begin{split} \mathbf{E}_0(\mathbf{r}) &= \{ \theta \in [0, 2\pi) : \mathbf{r} \mathbf{e}^{i\theta} \in \mathbf{D}_0 \}, \\ \theta_0(\mathbf{r}) &= \begin{cases} +\infty & \text{if } \{ |\mathbf{z}| = \mathbf{r} \} \subset \mathbf{D}_0 \\ \mathbf{m}(\mathbf{E}_0(\mathbf{r})) & \text{otherwise} \end{cases} \end{split}$$

and

$$\boldsymbol{\ell}_0(\mathbf{r}) = \mathbf{m}(\mathbf{E}_0(\mathbf{r})) = \begin{cases} 2\pi & \text{if } \theta_0(\mathbf{r}) = +\infty \\ \theta_0(\mathbf{r}) & \text{otherwise.} \end{cases}$$

Applying the method used in the proof of Theorem 3 in [9], we shall give a theorem on the order of f in this section.

Theorem. Suppose in (1) that $a_0(z) = \alpha(z)A(z) + \beta(z)$, where A is transcendental, $\rho(A) < +\infty$ and $\alpha \neq 0$, β are polynomials. If for some constant K_1 the set

$$\{z: |A(z)| > K_1\},\$$

consists of at least N components $(1 \le N < +\infty)$, then either $\rho(f) = +\infty$ or

$$\frac{\mathrm{N}}{\mu(\mathrm{A})} + \frac{1}{\rho(\mathrm{f})} \le 2 \qquad (\text{resp.} \ \frac{\mathrm{N}}{\rho(\mathrm{A})} + \frac{1}{\mu(\mathrm{f})} \le 2).$$

Proof. Suppose that $\rho(f) < +\infty$. By Lemma 2, for any positive ε , the inequality

(7)
$$\left|\frac{1}{\alpha}\left\{\frac{P(z, f, f', \dots, f^{(n)})}{f^{d}} - \frac{Q(z, f) - a_{0}f^{a}}{f^{d}}\right\}(z)\right| \le r^{q}$$

holds for $q = q(\varepsilon) > 0$, $z = re^{i\theta} \in G_0$, $r \ge r_0 > 1$ except for $\theta \in J(r)$ satisfying $m(f(r)) \le \varepsilon r$.

For $K = \max \{K_1, 1, M(1, A)\}$ and a positive integer p > q, the set

$$\{z: \log |A(z)| - p \log |z| - \log K > 0, |z| > 1\}$$

consists of at least N unbounded components D_1, \dots, D_N by Lemma 3 in case of N = 1 or by Lemma 5 in case of $N \ge 2$. For $j = 1, \dots, N$ put

$$E_{j}(\mathbf{r}) = \{ \theta \in [0, 2\pi) : \mathbf{r} e^{i\theta} \in D_{j} \},$$

$$\theta_{j}(\mathbf{r}) = \begin{cases} +\infty & \text{if } \{ |\mathbf{z}| = \mathbf{r} \} \subset D_{j} \\ \mathbf{m}(E_{i}(\mathbf{r})) & \text{otherwise} \end{cases}$$

and

$$\boldsymbol{\ell}_{j}(\mathbf{r}) = \mathbf{m}(\mathbf{E}_{j}(\mathbf{r})) = \begin{cases} 2\pi & \text{if } \theta_{j}(\mathbf{r}) = +\infty \\ \theta_{j}(\mathbf{r}) & \text{otherwise.} \end{cases}$$

Then, there is a positive number a such that $\theta_j(r) > 0$ for all $r \ge a$ and for $j = 0, 1, \dots, N$. By Lemma 4 we have

(8)
$$\pi \int_{a}^{r/2} \frac{\mathrm{d}t}{t\theta_{0}(t)} \leq \log \log \mathrm{M}(r, f) + \mathrm{O}(1)$$

and

(9)
$$\pi \int_{a}^{r/2} \frac{dt}{t\theta_{j}(t)} \leq \log \{\log M(r, A) - p \log r - \log K\} + O(1) \\ \leq \log \log M(r, A) + O(1) \quad (j = 1, \dots, N)$$

since $\log |A(z)| - p \log |z| - \log K$ is positive harmonic and $p \log |z| + \log K$ is positive in D_j by the choice of K. Further we have from (7) and by the choice of p

(10)
$$\sum_{j=0}^{N} \ell_j(\mathbf{r}) \leq (2+\varepsilon)\pi \quad (\mathbf{r} \geq \mathbf{b} = \max{\{\mathbf{r}_o, a\}}).$$

From (10) we have

(11)
$$\sum_{j=0}^{N} \int_{b}^{r} \frac{\ell_{j}(t)}{t} dt \leq (2+\varepsilon)\pi \log(r/b).$$

By the Cauchy-Schwarz inequality

(12)
$$\int_{b}^{r} \frac{\boldsymbol{\ell}_{j}(t)}{t} dt \int_{b}^{r} \frac{dt}{t\boldsymbol{\ell}_{j}(t)} \ge \left(\int_{b}^{r} \frac{dt}{t}\right)^{2} = \left(\log \frac{r}{b}\right)^{2} \quad (j = 0, \cdots, N).$$

From (11) and (12) we obtain the inequality

$$\sum_{j=0}^{N} \frac{\log(r/b)}{\pi \int_{b}^{r} \frac{dt}{t\ell_{j}(t)}} \leq 2+\varepsilon.$$

$$B_{o} = \{r: \theta_{0}(r) = +\infty\}.$$

Then, \boldsymbol{B}_o is a sum of intervals. Let

$$\chi_{o}(\mathbf{r}) = \begin{cases} 1 & \text{if } \mathbf{r} \text{ belongs to } B_{o} \\ 0 & \text{otherwise.} \end{cases}$$

If r belongs to B_o and $r \ge b$, we have

 $\theta_j(\mathbf{r}) = \boldsymbol{\ell}_j(\mathbf{r}) \quad (j = 1, \dots, N)$

and

$$\theta_1(\mathbf{r}) + \dots + \theta_N(\mathbf{r}) \leq \varepsilon \pi$$

from (10). Thus, if we set

$$\mathbf{F}_{\mathbf{i}}(\mathbf{r}) = \{\mathbf{r}: \boldsymbol{\theta}_{\mathbf{i}}(\mathbf{r}) \leq \boldsymbol{\varepsilon}\boldsymbol{\pi}\},\$$

then

(14)

Define

$$\phi_j(\mathbf{r}) = \begin{cases} 1 & \text{if } \mathbf{r} \text{ belongs to } \mathbf{F}_j \\ 0 & \text{otherwise.} \end{cases}$$

 $B_o \subset \bigcup_{j=1}^N F_j$.

We then have from (14)

(15)
$$\int_{b}^{r} \frac{\chi_{o}(t)}{t} dt \leq \sum_{j=0}^{N} \int_{b}^{r} \frac{\psi_{j}(t)}{t} dt \leq N\varepsilon \log \log M(2r, A) + O(1)$$

since $\varepsilon^{-1} \phi_j(t) \leq \pi/\theta_j(t)$ and

$$\varepsilon^{-1} \int_{b}^{r} \frac{\phi_{j}(t)}{t} dt \leq \pi \int_{b}^{r} \frac{dt}{t\theta_{j}(t)} \leq \log \log M(2r, A) + O(1)$$

by (9). Further we have

(16)
$$\pi \int_{b}^{r} \frac{dt}{t\theta_{0}(t)} = \pi \int_{b}^{r} \frac{dt}{t\ell_{0}(t)} - \frac{1}{2} \int_{b}^{r} \frac{\chi_{0}(t)}{t} dt.$$

(I) The case when N = 1. Let $B_1 = \{r : \theta_1(r) = +\infty\}$. Then, B_1 is a sum of intervals. Define

$$\chi_1(r) = \begin{cases} 1 & \text{if } r \in B_1 \\ 0 & \text{otherwise} \end{cases}$$

If $r \in B_1$ and $r \ge b$, then, by (10) $\theta_1(r) \le \varepsilon \pi$. Put

$$\mathbf{F}_0 = \{\mathbf{r}: \theta_0(\mathbf{r}) \leq \varepsilon \pi\}$$

and

$$\psi_0(\mathbf{r}) = \begin{cases} 1 & \text{if } \mathbf{r} \in \mathbf{F}_0 \\ 0 & \text{otherwise} \end{cases}$$

We then have

(17)
$$\int_{b}^{r} \frac{\chi_{1}(t)}{t} dt \leq \int_{b}^{r} \frac{\phi_{0}(t)}{t} dt \leq \varepsilon \log \log M(2r, f) + O(1)$$

since $B_1 \subset F_0$, $\varepsilon^{-1} \phi_0(t) \le \pi/ heta_0(t)$ and

$$\varepsilon^{-1} \int_{b}^{r} \frac{\phi_{0}(t)}{t} dt \leq \pi \int_{b}^{r} \frac{dt}{t\theta_{0}(t)} \leq \log \log M(2r, f) + O(1)$$

by (8). Since

$$\pi \int_b^r \frac{\mathrm{d}t}{t\theta_1(t)} = \pi \int_b^r \frac{\mathrm{d}t}{t\ell_1(t)} - \frac{1}{2} \int_b^r \frac{\chi_1(t)}{t} \,\mathrm{d}t,$$

from (8), (9), (13) and (15) for N = 1, (16) and (17), we have

(18)
$$\frac{\log(r/b)}{\log\log M(2r, A) + \varepsilon \log\log M(2r, f) + O(1)} + \frac{\log(r/b)}{\log\log M(2r, f) + (\varepsilon/2) \log\log M(2r, A) + O(1)} \le 2 + \varepsilon.$$

Let $\{r_n\}$ be a sequence tending to $+\infty$ such that

$$\lim_{n \to \infty} \frac{\log \log M(2r_n, A)}{\log r_n} = \mu(A) \qquad (\text{resp. } \lim_{n \to \infty} \frac{\log \log M(2r_n, f)}{\log r_n} = \mu(f)).$$

Put $r = r_n$ in (18) and let n tend to ∞ . We then have

$$\frac{1}{\mu(A)} + \frac{1}{\rho(f) + N\epsilon\mu(A)} \le 2 + \epsilon \qquad (\text{resp. } \frac{1}{\rho(A)} + \frac{1}{\mu(f) + N\epsilon\rho(A)} \le 2 + \epsilon).$$

Tending $\varepsilon \rightarrow 0$, we have

(19)
$$\frac{1}{\mu(\mathbf{A})} + \frac{1}{\rho(\mathbf{f})} \le 2$$

(resp. (19)'
$$\frac{1}{\rho(A)} + \frac{1}{\mu(f)} \le 2$$
).

(II) The case when $N \ge 2$. In this case it is clear that for $j = 1, \dots, N$

$$0 < heta_j(\mathbf{r}) < 2\pi$$
 and $heta_j(\mathbf{r}) = \ell_j(\mathbf{r})$ $(\mathbf{r} \ge \mathbf{b}).$

From (8), (9), (13), (15) and (16) we obtain for $r \ge b$

(20)
$$\frac{N \log(r/b)}{\log \log M(2r, A) + O(1)} + \frac{\log(r/b)}{\log \log M(2r, f) + (N\varepsilon/2)\log \log M(2r, A) + O(1)} \le 2 + \varepsilon.$$

Then as in the case of N = 1, we obtain the inequality

$$\frac{N}{\mu(A)} + \frac{1}{\rho(f)} \le 2 \qquad (\text{resp. } \frac{N}{\rho(A)} + \frac{1}{\mu(f)} \le 2).$$

from (20).

Corollary. Under the same assumption as in Theorem, if

$$\mu(A) \le 1/2$$
 or $\mu(A) = N/2$ or $\rho(A) = N/2$ (N = 2, 3, ...),

then $\rho(f) = +\infty$.

Example 1. For a polynomial p(z) of degree 1, put $f(z) = e^{p(z)}$. Then, $p_j = f^{(j)}(z)/f(z) = (p')^j$ $(j=1, 2, \dots)$ are constants. For any polynomials a_1, \dots, a_{n-1} and $F(\neq 0)$, we set

$$q(z) = \sum_{j=1}^{n-1} p_j a_j(z)$$
 and $a_0(z) = F(z)e^{-p(z)} - q(z)$.

Then, $f(z) = e^{p(z)}$ is a solution of the differential equation

$$f^{(n)} + a_{n-1}f^{(n-1)} + \dots + a_1f' + a_0f = F.$$

It is easy to see that for some sufficiently large K the sets

$$\{z: |e^{p(z)}| > K\}$$
 and $\{z: |e^{-p(z)}| > K\}$

have one unbounded component. Further $\rho(a_0) = \mu(a_0) = \rho(e^p) = 1$. This shows that $1/\mu(a_0) + 1/\rho(f) = 2$.

Example 2. The function $A(z) = \frac{1}{2} \{ \exp(z^{m/2}) + \exp(z^{-m/2}) \}$ $(m = 2, 3, \dots)$ is of order $\rho(A) = m/2$ and N = m (see [9], example 1). For this A(z), any entire solution of (1) under the assumption of Theorem is of order $+\infty$.

Remark. By a well-known theorem of Ahlfore (see [10], p.236),

N=1 when
$$\mu(A) < 1$$
 and N $\leq 2\mu(A)$ when $1 \leq \mu(A) < +\infty$

for any non-constant entire function A.

References.

- [1] S.B.Bank and I.Laine: On the oscillation theory of f'' + Af = 0, where A is entire. Trans.A.M.S., 273(1982), 351-363.
- [2] G.G.Gundersen and E.M.Steinbart: Infinite order solutions of non-homogeneous linear differential equations. Ann.Acad.Sci Fenn.Ser.A,I. Math., 17(1992), 327-341.
- [3] W.K.Hayman: Meromorphic functions. Oxford at the Clarendon Press, 1964.
- [4] He Yuzan and I.Laine: The Hayman-Miles theorem and the Differential equation $(y')^n = R(z,y)$, Analysis 10(1990), 387-396.
- [5] I.Laine: Nevanlinna theory and complex differential equations. de Gruyter Studies in Math. 15, Berlin-New York, 1993.
- [6] R.Nevanlinna: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. Gauthier-Villars, Paris, 1929.
- [7] J.Rossi: Second order differential equations with transcendental coefficients. Proc.A.M.S., 97(1986), 61-66.
- [8] M.N.M.Talpur: On the growth of subharmonic functions on asymptotic paths. Proc. London Math. Soc., 32(1976), 193-198.
- [9] N.Toda: A theorem on the growth of entire functions on asymptotic paths and its application to the oscillation theory of w'' + Aw = 0. Kodai.Math.J., 16(1993), 428-440.
- [10] M.Tsuji: Potential theory in modern function theory. Maruzen, Tokyo, 1959.
- [11] Zong-Xuan Chen and Shi-An Gao: The complex oscillation theory of certain non-homogeneous linear differential equations with transcendental entire coefficients. J. Math. Anal. Appl., 179(1993), 403-416.