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On the Order of Entire Solutions of a Differential Equation
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We consider the order of entire solutions of the differential equation
(1) P(z, w, w',--,w™) =Q(z, w)
where P is a polynomial in w, W’,---,w ™ with polynomial coefficients such that the degree of
each term of P is not smaller than one and
Qz, w) =aw'+a,w' '+..-+a,
Here, d=deg P, a,,---, a4 are polynomials at least one of which is not identically equal to zero
and a, is a transcendental entire function.

This equation (1) contains several popular equations.

1. Introduction
Let P be a polynomial of w, w’,---,w"™ (n>1) with polynomial coefficients:
P(z, w, w', s w®™) = 121 c, (2w (w).. (w ™),
(=

where each c; is polynomial and I is a finite set of multi-indices A = (i, iy, -++,1,) for which ¢; # 0 and iy, i,,+++,i, are

non-negative integers such that at least one of i,--,i, is not equal to zero,

d= max (ig+i,+ - +i,)
iel

and let
f .
Qlz, w) = ZO a, (z)w,
s
where a, -+, a, are polynomials at least one of which is not identically equal to zero and a, is a transcendental

entire function.
We consider entire solutions of the differential equation

(1) P(z, w, W', ,w™) =Q(z, w).

It is known that if the differential equation (1) admits an admissible entire solution, then £ < d.

From now on, we consider the differential equation (1) satisfying £=d.

Examples of (1).
(a) —2EE”+(E")? =4AE’+c? (c#0, constant) (see [1]).
(b) w(")—+—cl(z)w(“‘”+---+cn_,(z)w'+cn(z)w =F(z2) (F+0) (see [5]).
() (W) =ay(2)w'+--+a, (2)w+a,(z) (see [4]), etc.

For an entire function f, we denote the order of f by o(f) and the lower order of f by u(f), the order of
N(r, 1/f) by A(f) and the order of N(r, 1/f) by A(f) respectively.

Recent results on the growth of solutions of (b) in which we are interested are the followings:

Theorem A ([11], Theorem 1). Suppose in (b) that c,,---, c,, F are entire such that p(c,) and o(F) are finite
and that (i) or (ii) holds
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(i) p(cy <plcy) (G=1,+,n—1);
(ii) ¢,,++,c,_; are polynomials and c, is transcendental.

Then, every solution f of (b) satisfies o(f) = A(f) = A(f) = + oo with at most one possible exceptional solu-
tion of finite order.

In [11] examples with an “exceptional solution” are given, but those without “exceptional solution” are not
given. An equation of (b) without “exceptional solution” is given in [2]:

Theorem B ([2], Theorem 3). Suppose in (b) that c,,---,c, and F are entire such that
max {p(c ), -0(c,.), p(F)} <plc,) <1/2

Then, every solution of (b) has infinite order.
The purpose of this paper is to give a result on the order of entire solutions of the differential equation (1)

similar to Theorem 3 in [9]. We use the standard notation of the Nevanlinna theory of meromorphic functions

([3],061).

2. Lemma.

Lemma 1. Let f be an entire function of finite order. Then, for any positive number & there exist g =q(e),
r,>1 and J(r) a subset of [0, 27) such that the inequality

(2) 1. = kCz‘fi"(f')i‘--'(f(“))‘“/f") (re)| <r°

foHiy e +iy =
holds for all r >r, and 8¢ J(r), where the angular measure of J(r), m(J(r)) <er. (cf. Lemma 1in [7])
Proof (see [7], Lemma 1). By the lemma of the logarithmic derivative and by the fact that f is of finite order

and every c, is polynomial, there exist a constant K and an r,> 1 such that for allr>r,

m(r, X kc;f""(f')ilu-(f(“))‘“/f“) <Klogr.

it i, =

For any positive number &, let ¢ =2K/e and

Jn)={8co,2n:| X kc,lfion-(f(m)i“/fk(rew)| >},

fgtertiy=
Then, m(J(r)) <ex. For r>r, and 8¢ J(r), the inequality (2) holds.
Lemma 2. Let f be a transcendental entire function, R(# 0) a polynomial and set

G,= {z: lf(2)| >1}.

Then, for any positive number &, there exist g =q(e), r, > 1 and J(r) a subset of [0, 27), m(J(r)) <er such that
the inequality

& (PG £, T, £7) —(Qz D—agf D/FY) (re)] <r°
holds for all z=re?=G,, r>r, and 8¢ J(1).
Proof. For any z= refe G,,
B P(z f, -, ™) —Q(z, ) +a,f*
® ! £d
(3)

}(2) |

<L (S| 5 )-GO/ |+ T lay(2) )
= R(2)| ¥= kA j=o )

N
and we have a constant K and an r, > 1 such that for r>r,

2 d . . . d—1 .
L log* 1z = C () (F™)in/f* | + X |a;|} (re)de
27 Jo | Kk i=o ’

IR| %=1 i, =

d . . . d
<m(r, 1/R)+ kZI m(r, X kc,lf“’(f’)‘l---(f("))‘“/f")+ é):;m(r, a;))+0(1) <Klogr
= i

Lyt =
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as in the proof of Lemma 1. For any positive number ¢, let g = 2K/e and

d

J() = {6< [0, 27r):|T%|{k}3 | B e f ) () ?giia;!} (re’) >r%.

=1 dQg+eti, =
Then,
27)'m(J(r))qlogr <K logr
and
(5) m(J(r)) <er.

From (3),(4) and (5), we obtain our lemma.

Lemma 3. Let f(z) be a transcendental entire function. Then, there exists a polygonal path T':z=2z(t)
(0 <t< 1) such that
(1) limz(t) = oo;
(ii) l%g}loglf(z(t))l/108|z(t)l =400, ([8])

Let D be an unbounded plane domain the boundary of which consists of at most countable analytic curves clus-

tering nowhere in |z| < co. We put
E(r) = {8 [0, 27) : re’ =D}
and

+o0 if {lz| =r} cD
m(E(r)) otherwise.

o(r) = {

Let a be a positive number such that 8(r) >0 for all r >a. Then, we have the following:
Lemma 4. Let v(z) be a subharmonic function in D, continuous on the closure of D such that v(z) <0.
If there exists one point z,& D such that v(z,) >0, then

r/2
log M(r, v, D) 27tfa %4—0(1),

where M(1, v, D) = sup {v(2): (Iz| =r)ND}.

See the proof of Theorem III, 68 in [10], p.117. We can apply the method used there for log*f(z)| to our
subharmonic function v(z) and easily obtain this lemma.

Lemma 5. Let A(2) be a transcendental entire function with #(A) < +oo. Suppose that for some constant
K, the set

{z: 1A(2)| >K,}

consists of at least N components G,,-++,Gy, where N > 2. Then, there exist a harmonic function v;(z) in G; and

an unbounded domain D;C G; (j =1,---,N) such that
G) wvi(z) > |Zl(p(A)/(Zp(A)+1—N))~ej(z)
i(z) >

>0 in Dy
{=0 on 0D,
Proof. For j=1,-,N, let u;(z), 6 and I} be those given in the proof of Theorem 1 in [9], (We here use G, in
stead of D; there.) For j=1,-N, put vj(2) =du;(2) + log K,, which is positive in G;, and let D, be the un-
bounded component of {z&G;: log| A(z)|—v,(z) >0} containing ;. Then, it is easy to see from the proof of

in D; (g;(z) >0 asz—>);

(ii) loglA(2)|—v(2)

Theorem 1 in [9] that v; satisfies (i) and (ii) of this lemma.
(We consider p(A)/(20(A) +1—-N) =1/2 if p(A) = +0.))

Lemma 6. Let f be any entire solution of the differential equation (1). Then f is transcendental and
o(f) >p(ay).

Proof. From (1) we have a1
P(zf, £, f®)— Zaf

(6) ap= £
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Suppose that f is polynomial. Then the right-hand side of (1) is not transcendental, but a, is transcendental.
This is a contradiction. f must be transcendental.
Next, Suppose that p(f) < +oo. We then have from (6)

m(r, a,) <dm(r, 1/f) +0(logr) <dT(r, f)+0C(logr),

which implies p(a,) <p(f).

3. Result.

We suppose that the differential equation (1) admits at least one entire solution. Let f be any entire solution

of (1). Let D, be a component of the set
{z:11(z) | >1},
which is a non-empty unbounded domain since f is transcendental by Lemma 6. Put

Eo(r) = {6 [0,27) : re’ €Dy},
oo if = D
eo(r)={+ if {|z] =r} CcD,

m(E,(r)) otherwise
and
27 if 6,(r) = + o0
£,(r) =m(E(r)) =
o(r) (Eo(r) {0o(r) otherwise.

Applying the method used in the proof of Theorem 3 in [9], we shall give a theorem on the order of f in this
section.

Theorem. Suppose in (1) that a,(z) =a(z)A(z)+8(z), where A is transcendental, p(A) < +o and
a(+#0), B are polynomials. If for some constant K, the set

{z:1A(2)| >K,},

consists of at least N components (1 <N < +0), then either p(f) = +o or
N 1 N 1

<2 =t

2(A o < (resp- 58 T u(®

Proof. Suppose that o(f) < +oo. By Lemma 2, for any positive , the inequality

1, Pz f £, f™) Qg ) —a,f
v ot £ a £

<2).

)| <1t

holds for q=q(e) >0, z=re’ &G, r>r1,> 1 except for 8& J(r) satisfying m(f(r)) <er.
For K = max {K,, 1, M(1,A)} and a positive integer p >q, the set

{z: loglA(z)| —ploglz|—1og K>0, 2] >1}

consists of at least N unbounded components D,,++-,Dy by Lemma 3 in case of N=1 or by Lemma 5 in case of
N>2. Forj=1,---,N put

E;(r) = {6 [0, 27) : re’€D}},

+o0 if {lz| =r} CD;
6;(r) = { .

m(E;(r)) otherwise
and
o2n if 6,(r) = +oo
6,(r) otherwise.

4 =mE®) = {

Then, there is a positive number a such that 6,(r) >0 for all r>a and for j=0, 1,---,N. By Lemma 4 we have



HEBIERERE $48% (1996) 125

/2 dt
(8) T[‘L ‘mﬁ log log M(x, £) +0(1)
and

2t
(9) ”fa [0 log {log M(r, A) —p logr— log K} +0(1)
< loglog M(r, A)+0(1) (j=1,--,N)
since log| A(2) | —p log| z| — log K is positive harmonic and p log|z| + log K is positive in D; by the choice of K.

Further we have from (7) and by the choice of p

(10) 2 40 < @er (r2b= max (r,, a).
From (10) we have
(11) ,-%,j:@ dt< (2+&)rlog(r/b).

By the Cauchy-Schwarz inequality
r 4;(1) rodt Tdty T2 /.
(12) S e [ gty 9 = Geg £ =0,

From (11) and (12) we obtain the inequality

log (r/b)
r o dt
‘n, t4,(t)

M=

(13) <2+4e

It

j
Define
B,= {r: 6,(r) = 4+ oo}.

Then, B, is a sum of intervals. Let

1 if r belongs to B,
% = {

0 otherwise.
If r belongs to B, and r > b, we have
ej(r) =[j(r) (] = L;N)

and

6,(r)+---+6y(r) <erm
from (10). Thus, if we set

Fi(r) = {r: 6,(r) <en},
then

N
(14) B(,CjL=J1 F;.
Define

1 if r belongs to F;
‘/)j(l') = { :

0 otherwise.
We then have from (14)
F 2o(t) SO
(15) J; 3 dtgjgoj; = dt < Ne log log M(2r, A)+0(1)
since & ~'¢;(t) < 7/6,(t) and
1 [T ¢j(t) Todt
&€ j;—t dtgﬂfb —*tej(t)g log log M(2r, A)+0(1)

by (9). Further we have
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rdt [ f (),
(16) ”j; 0,(1) " Jv teu(t) 2
(I) The case when N=1. Let B, = {r: §,(r) = +oo}. Then, B, is a sum of intervals. Define
1 ifreB
0 = { ‘

0 otherwise.
If r&B, and r> b, then, by (10) 6,(r) <er. Put
Fo= {r: 6,(r) <en}

and
1 ifreF,

0 otherwise.

‘/’o(r) = {
We then have
(17) f:#dtg Lrﬁiﬁdtgs log log M(2r, £) +0(1)

since B, C Fy, &€ '¢(t) < 7/6,(t) and

f $o(t) dt< 7 f o (t)< log log M(2r, ) +0(1)

by (8). Since

f‘ dt " xl(t)
(T O R ) <t)
from (8), (9), (13) and (15) for N=1, (16) and (17), we have
log(r/b)
(18) log log M(2r, A) +¢ log log M(2r, f) +0(1)
log (r/b)

log log M(2r, ) + (¢/2) log log M(2r, A) +0(1) <2+e.

Let {r,} be a sequence tending to + oo such that
. log logM(2r,, A)
im
n—oo lOg I,

Put r=r, in (18) and let n tend to . We then have

log log M(2r,, f)
logr,

©()).

w(A) (resp. lim

<2+4¢€).

1
<2+¢ (resp. o(A) T ,u(f)+Nsp(A) =

1 " 1
u(A) " p(f) +Neu(A)
Tending €—0, we have

1

1
(19) 7[(7?)*’7&732

(resp. (19)’ <2).

p(A) u(f)
(I1) The case when N > 2. In this case it is clear that for j=1,---,N

0<6,(r) <2z and 6,(r) =£4(r) (r=b).

From (8),(9),(13),(15) and (16) we obtain for r>b

N log (r/b) log(r/b)
log log M(2r, A) yo * log log M(2r, )+ (Ne/2)log logM(2r, A)+0(1)

Then as in the case of N =1, we obtain the inequality

N
FIeS) +oysz e (A)+u(f)

(20)

<2+e€.

<2).

from (20).
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Corollary. Under the same assumption as in Theorem, if
©w(A) <1/2 or p(A)=N/2 or p(A)=N/2 (N=2,3, ),

then p(f) = + oo,
Example 1. For a polynomial p(z) of degree 1, put f(z) =e*®. Then, p;=f? (2)/f(z) = (p")
(j=1,2,++) are constants. For any polynomials a,,---,a, , and F(#0), we set

q(z) = Jné pa;(z) and ay(z) =F(2)e*?—q(2).
Then, f(z) =€ is a solution of the differential equation
fPya, f"Viqaf taf=F.
It is easy to see that for some sufficiently large K the sets
{z: 1*”| >K} and {z:|e™?| >K}

have one unbounded component. Further p(a,) =u(a,) =p(e?) =1. This shows that 1/u(a,) +1/o(f) =2.
Example 2. The function A(2) =—;— {exp(z™) + exp(z ™)} (m=2, 3,---) is of order p(A) =m/2 and
N=m (see [9], example 1). For this A(z), any entire solution of (1) under the assumption of Theorem is of
order +co.
Remark. By a well-known theorem of Ahlfore (see [10], p.236),

N=1 when u(A)<1 and N<2u(A) when 1<u(A) <+

for any non-constant entire function A.
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