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We consider the order of entire solutions of the differential equation

(1) p(z, w, w′,-,w(n)) -Q(z, w)

where P is a polynomial in w･ w,I-･w(n) with polynomial coefficients such that the degree of

each term or P is not smaller than one and

Q(z, w) -a｡wd+alWd~Ⅰ+-+a｡.

Here･ d-deg P･ al
･････

ad are POlynomials at least one of which is not identically equal to zero

and ao IS a transcendental entire function.

This equation (1) contains several popular equations.

121

1. Introduction

Let P be a polynomial of w, w′,-,w(n) (n ≧ 1) with polynomial coefficients:

p(z, w,
w′･-,w(n))

-

^誓.
cÅ(z)wio(w')il･･･(w(n))in･

where each c'is polynomial and
I is a finite set of multi-indices A - (io,il,･･･,in)for which ci i 0 and io,i"･･･,in are

non-negative integers such that at least one of
il,･･･,1n lS not equal to zero,

d- max (io+il+-+i｡)
Å∈l

an°let

J

Q(z･ w)
-

,P.aL-,･(z)wj･
where al

,-I aL are pOlynomials at least one of which is not identically equal to zero and a. is a trよnscendental

entire function.

We consider entire solutions of the differential equation

(1) p(z, w, w′,-,w(n)) -Q(z, w).

It is known that if the differential equation (1) admits an admissible entire solution, then A≦ d.

From now on, we consider the differential equation (1) satisfying A- d.

ExampJes of (1).

(a)
-2EE′′+(E′)2 -4AE2+c2 (c≠o, constant) (see [1]).

(b) w(n)+cl(z)w`n-1)+-+c｡_1(z)w′+c｡(z)w-F(z) (F≠0) (see [5]).
(c) (w′)n

-a｡(z)wⅢ+-+a｡_1(z)w+a｡(z) (see [4]), etc.

For an entire function ∫,we denote the order of ∫by
〟(f) and the lower order of ∫by

〟(f), the order of

N(r, 1/f) byュ(f) and the order of両(r, 1/f) by A(f) respectively.

Recent results on the growth of solutions of (b) in which we are interested are the followings:

Theorem A ([11], Theorem 1)･ Suppose in (b) that cl
,･･･,

Cn, F are entire such thatp(cn) andp(F) are finite

and that (i) or (ii) holds
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(i) 〟(c〕)<β(c｡) (j-1,-,n-1);

(ii) cl,･･･,Cn_1 are POlynomials and cn is transcendental.

Then, every solution f of (b) satisfiesp(f) -i(f)ニス(f)
- +- with at most one possible exceptional solu-

tion or finite order.

In [11] examples with an "exceptional solution''are given, but those without "exceptional solution" are not

given. An equation of (b) without "exceptional solution" is given in [2]:

Theorem B ([2], Theorem 3). Suppose in (b) that cl,-,C｡ and
F are entire such that

max (p(cl),･･･,P(cnJ, p(F)) <p(cn) < 1/21

Then, every solution of (b) has infinite order.

The purpose of this paper is to give a result on the order of entire solutions of the differential equation (1)

similar to Theorem 3 in [9]. We use the standard notation of the Nevanlinna theory of meromorphic functions

([3],[6]).

2. Lemma.

Lemma 1. Let f be an entire function of finite order. Then, for any positive number e there exist q-q(e),

r.> 1 and J(r) a subset of [0, 27T) such that the inequality

(2) l(io.i1.Rin=kC入flo(f′)il･･･(f(n))in/fk)(reiO)I ≦ ,q

holds for all r≧r｡ and O車J(r), where the angular measure ofJ(r), m(J(r)) ≦Er･ (cf･ Lemma 1 in [7])

proof (see [7], Lemma 1). By the lemma of the logarithmic derivative and by the fact that ∫is of finite order

and every cl lS pOlynomial, there exist a constant K and an ro> 1 such that for all r≧ro

m(r,

18+...?,n=k
CÅflo(f')il-(f(n))in/fk)≦

K log r･

For any positive number e, let q-2K/e and

J(r) - (0∈ [0･ 2方)‥li..‥崇n=kCÅflo･･･(f(n')in/fk(reiO)I,rq)･

Then, m(J(r)) ≦87T. For r≧r｡ and O更J(r), the inequality (2) holds.

Lemma 2. Let f be a transcendental entire function, R(≠ 0) a polynomial and set

G｡- (z:】f(z)I >1).

Then, for any positive numbers, thereexist q-q(e), r｡> 1 and J(r) a subset of [0, 27T),m(J(r)) ≦er such that

tbeinequality

l去((p(z･
f･f′･-I f(n')-(Q(z, f)-aofd))/fd) (reie)1 ≦rq

holds for all z-reiO∈G｡, r≧r｡ and O更J(r).

proof. For any z-rei♂∈G｡,

(3)

I-Ri(
p(z, f,f′,-, f(a))-Q(z, f)+a｡fd

)(z)

･T&(k!1llD.."Pin=kC^fio(f′)il-(f(n))in/fk(z)

I

+岩Iaj(z川
and we have a constant K and an r｡> 1 such that for r≧r｡

去L2nlog･TkT(k!1Ii..‥.?in=k
CAfio(f′)il･･･(f(n))in/fkl

･嵩I
a,･ I) (rei8)dO

･-(r･ 1/R)+ =

-(r･io.".P.n=kCÅfLo(f')il-(f(n))in/fk)+篭1-(r･ aj)+0(1)
≦K logr

d

k=1 j-0
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as in the proof of Lemma l･ For
any positive number e, let q-2K/e and

d d-1

J(r) - (OE [0,2方)

‥古(乱⊥..吾n=kC^flo(f′)il-(f(n')in+jS.lajl)
(reiO) ,rq)･

Then,

(27T)-1rn(J(r))q log r≦x logr

and

(5)
m(J(r)) ≦er.
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From (3),(4) and (5), we obtain our lemma.

Lemma 3･ Let f(z) be a transcendental entire function･ Then, there exists a polygonal path
r:

z-z(t)
(0≦t< 1) such that

(i) 1imz(t)-∞;
uZ⊇=il

(ii) 1Lmlloglf(z(t))l/loglz(t)l-+∞･ ([8])

Let D be an unbounded plane domain the boundary of which consists of at most countable analytic curves clus-

tering nowherein fzI < cx,. weput

E(r) - (0∈ [0,27T):reie∈D)

and

♂(r) -

+- if(lzl-r)⊂D

m(E(r)) otherwise.

Let a be a positive number such that 0(r) >O for all r≧a. Then, we hav･e the following:

Lemma 4･ Let
v(i) be a subharmonic function in D, continuouson the closure of D such that v(z) ≦0.

If there exists one point z｡∈D such that v(z｡) >0, then

logM(r, v, D)

≧方Lr'2怠+o(1)I
wbereM(r,Ⅴ,D)

-

sup(Ⅴ(z): (lz‡
-r)nD).

See the proof of Theorem III,68 in [10], p･117･ Wecan apply the method used there for log+lf(z)I to our

subharmonic function v(z) and easily obtain this lemma.

Lemma 5･ Let A(z) be a transcendental entire function
with〟(A)

< +-. Suppose that for some ｡｡｡stant

Kltheset

(z: lA(z)l >Kl)

consists of at least N components G"･･･,GN･ Where N>2･ Then･ there exist a harmonic function vj(I) in Gi and
an

unbounded domain D1⊂Gi (j -

1,-,N) such that

(i) vj(z) ≧ fzf(p(A'/(2p(A)+ll"'トgj`z'inDj (ej(z)-0 asz-∞);

(ii) loglA(z)トv)(z) (
>O in Dj

-0 on ∂Dj

Proof･ For i- l･････N･ let
u,･(z)･Sand r,Ibe thosegiven in the proof of Th･eorem 1 in [9],(We here use q. in

steadofDj tbere･) For j-1,-･N･ put ち(z) -叫(z)+ logKl･ Which is po.sitive in Gj, and let Dj be the un-

bounded component or (z∈Gj: loglA(z)トⅥ(z) >o) containing n･ Then, it is easy to see from the proof ｡r

Theorem 1 in [9] that vi Satisfies (i) and (ii) of this lemma.

(We
considerp(A)/(2p(A)+llN)

-

1/2 ifp(A) -

+∞.))

Lemm8 6･ Let ∫be any entire solution of the differential equation (1). Then ∫ is transcendental and

p(f)≧p(ao).

Proof. From (1) we have

(6) ao=

d-1

p(z･ f･f'･････f'n')-

,P.a,･f'
fd
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suppose that ∫is polynomial. Then the right-hand side of (1) is not transcendental, but ao is transcendental･

This is a contradiction. ∫must be transcendental.

Next, Suppose thatp(f) < +-. We then have from (6)

m(r, a｡) ≦dm(r, 1/f)+0(logr) ≦dT(r, f)+0(logr),

which impliesp(ao) ≦p(f).

3. Result.

we suppose that the differential equation (1) admits at least one entire solution･ Let ∫be any entire solution

of (1). Let Do be a component of the set

(z:lf(z)I >1),

which is a non-empty unbounded domain since ∫is transcendental by Lemma 6･ Put

E.(r) - (0∈ [0,27r): reie∈D.),

βo(r)
-

+∞ if (lzl-r)⊂Do

m(Eo(r)) otherwise

Ao(r) -m(Eo(r))
-

(三?(,)
ifβo(r) -+-

otherwise.

and

Applying the method used in the proof of Theorem 3 in [9],we shall give a theorem on the order of ∫in this

section.

Theorem. Suppose in (1) that a.(z) -a(z)A(z)+β(z), where A is transcendental, p(A) < +- and

α(≠0), β are polynomials. If for some constant Kl the set

(z:lA(z)I >Kl),

consists of at least N components (1 ≦N< +-), then eitherp(f)
- +- or

詰+志≦2 (resp･器テ+読-≦2)･
proof. Suppose thatp(f) < +-, By Lemma 2, for any positive e, the inequality

(7) I与(
p(z, i,f',･･･,i(n)) Q(z,i)-aofd

a
L

fd fd
)(z)l≦rq

holds for q-q(E) >0, z-reie∈G., r≧ro>1 except for O∈J(r) satisfying m(f(r)) ≦er･

For 冗- max(Kl,
1, M(1,A)) and a positive integer p>q, theset

(z: logIA(I)I-ploglzトlogK>0, lzl >1)

consists of at least N unbounded components Dl,･-,DN by Lemma 3 in case of N- 1 or by Lemma 5 in case of

N≧2. Forj-1,-,Nput

Ej(r) - (0∈ [0,27T): reiO∈Di),

･j(r) - (
+- if (lzl-r)⊂Di

m(Ei(r)) otherwise

A｣(r) -m(Ej(r))
- (

27T ifO〕(r) - +-

β〕(r) otherwise･

and

Then, there is a positive number a such that O】(r)>O for all r≧a and for j-0, 1,-,N･ By Lemma 4 we have
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方Lr'2濃㌻≦
loglog M(r･ f)+0(1)

方Lr'2了お≦
log{logM(r･ A,-p logr- logK}+0(1)
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≦ loglogM(r,A)+0(1) (j-1,-,N)

since logJA(z)トp loglzJI logK ispositiveharmonicand p loglzl + log K is positivein Dj by thechoiceofK.

Further we have from (7) and by the choice of p

(10)

,.!o
2,.(r)≦ (2+e)方(r≧b- -ax(r.,a))･

From (10) we have

(ll) 豊
j-0

By the Cauchy-Scbwarz inequality

(12) Lr
A】(t)

t

Lr竿dt≦(2+8)方log(r/b)･

dtfr怠≧(よr号)2-(log言)2(j-0,･･･,N)･

From (ll) and (12) we obtain the inequality

(13)

Define

Then, B｡ is a stlm Of intervals. Let

If r belongs to B｡ and r≧b, we have

and

from (10). Thus, ifweset

We then have from (14)

(15)

P. log(r/b)
≦2+e.

B｡- (r:βo(r)
-+-).

x.(r)
-

if r belongs to B｡

otherwise.

O1(r) -2j(r) (j-1,-,N)

0.(r)+･･･+ON(r) ≦87T

Fl(r) - (r: Oi(r) ≦e7r),

N

Bo⊂

】EJIFj･

¢j(r) - (
I ifrbelongstoFi

0 otherwise.

Lr竿dt≦
,ur竿dt≦Ne

loglog M(2r, A)+0(1)

since E~1¢,･(t)≦ 7T/Oj(t) and

8-ILr竿dt≦方Lr港≦
loglog M(2r･ A)+0(1)

by (9). Further we have
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(16)

方Ibr諸行-方f恭一‡fbr竿dt･
(Ⅰ)TbecasewhenN-1. LetBl- (r: β1(r)-+-)･

Then, Blisasumofintervals･ Define

xl(r)
-

ifr∈BI

otherwise.

Ifr∈Blandr≧b, then, by (10) 0.(r) ≦e7T･ Put

Fo- (r: Oo(r) ≦E7T)

and

¢o(r) -

I ifrEFo

otherwise.

We then have

(17) J:r乎dt≦Lr竿dt≦Eloglog M(2r･ f).0(1,

since Bl⊂F., 8-l¢.(t) ≦ 7T/0.(t) and

81.Lr竿dt≦方J:r了お≦
loglog M(2r･ f)+0(1)

by (8). Since

方Ibr濃チエ方よr諾丁-ur竿dt,
from (8), (9), (13) and (15) forN-1, (16) and (17),wehave

log(r/b)

(18)
loglog M(2r, A)+e loglog M(2r, f)+0(1)

log (r/b)

log log M(2r, f)+(e/2) log log M(2r,

Let (r｡) be a sequence tending to +- such that

log logM(2r｡, A)

nL=L&
log rn

tim
-〟(A)

(resp. 1im
n→ (】○

Put r-r｡in (18) and let n tend to -. Wethenhave

1

.
1

ま左テ+示f)+N印(A)

Tending e-0, we have

(19)

(resp. (19)′

A)+0(1)
≦2+8

log logM(2r｡, f)

log r｡ -〟(f)).

(resp･ &･

志.志≦2

読了+志≦2)I

〟(f)+N印(A)

(ⅠⅠ)The case when N≧2. In this case it is clear that for j-1,-,N

o<o,･(r)<27T and Oj(r)-Ai(r) (r≧b)･

From (8),(9),(13),(15)and (16) weobtain for r≧b

(20)
N log(r/b)

軸化れA)+0(1)
+

1.如

log(r/b)

≦2+e).

+ (Ne/2)log logM(2r, A)十0(1)

Then as in the case of N- 1, we obtain the inequality

お.志≦2 (resp･詰+志≦2)･
from (20).

≦2+8.
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Coroll8ry･ Under the same assumption as in Theorem, if

〟(A)≦1/2 or 〟(A)-N/2 or
/)(A)-N/2

(N-2,3,･-),

then/)(f) - +∞.

ExampJe 1. For a polynomial p(z) of degree 1, put f(z)-ep(z) Then, p1-f(j) (z)/f(z)- (p′)j

(j - 1, 2,-) are constants. For any polynomials al,-,a｡_. and F(≠0), we set

n-1

q(z)
- I p,･a,･(z)and a.(z) -F(z)e-P(I)-q(z).

i"-n

Then, f(z) - ep(z) is a solution of the differential equation

f(n)+an-1f(n-1)+-+alf′+aof- F.

It is easy to see that for some sufficiently large K the sets

(z:lep(z)l >K) and (z: Fe-p(z)I >K)

have one unbounded component･ Furtherp(a.) -FL(a.) -P(ep)
- 1. This shows that l/p(a.)+1/p(f) -2.

Examp･e 2･ The function A(I)

-‡
(exp(z-'2)+ exp(z--'2)) (m-2, 3,-) is of order p(A) -m/2 and

N-m (see [9], example 1). For this A(z), any entire solution of (1) under the assumption of Theorem is of

order+∞.

Remark･ By a welトknown theorem of Ahlfore (see [10],
p.236),

N-1 when 〝(A)<1 and N≦2〟(A) when l≦.〟(A)<+∞

for any non-constant entire function A.
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