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Let f: C—>P"(C) be a transcendental holomorphic curve from C into the n-dimensional
complex projective space P"(C) and let H be a set of holomorphic curves A such that T (r,A)=
o(T(r,f)) (r— o), (A, f)* 0 and in general position.

When f is degenerate and HC P"(C), we gave several results on the fundamental inequality
for f in [11] and on defects with respect to f in [10].

In this paper, we shall extend those results to the case when H contains moving elements and

apply one of them to estimate numbers of several kinds of exceptional targets A in H.

1. Introduction

Let
f:C - P"(C)
be a holomorphic curve from C into the n-dimensional complex projective space P"(C), where n is a positive
integer, and let
(fy, o £, : C = C*''—{0}

be a reduced representation of f. We then write f= [f,,---, f,.,].

The characteristic function T (r, f) of f is defined as follows:

(D) =5 [ logllfre) A0 loglif(0)],
where .
I = (516 3"
In addition, put
Uz = max [§(2)],
then o
U < 6 < (0 DU (2)

and we have

2n )

(1) T(r, ) == [ log Ulre")dg+0(1) (see [1]).
We suppose throughout the paper that f is transcendental; that is to say, »

. T(r, D

lim low r —

r—>co og r
We denote by o(f) the order of f:

L log T(x, f)

o(f) = lim sup Tlog 1

Let S (r, f) (resp. S(r, f)) be any quantity satisfying
So(r, ) =o(T(r, 1)) (r —>o0)

(resp. S(r, f)=0(T(r, f)) as r —~oo, possibly outside a set of r of finite linear measure), let S_(f) be the field of
meromorphic functions « in |z] < oo such that T(r, @) = S,(r, f) and I be a subfield of S, (f) containing C.
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The set .
V= {(al,az,---, anyj): Zl ajfj:(), ajEI‘}
P

is a vector space over I'. We denote by 4 the dimension of V:

A=dim V.
We can easily prove that A is independent of the choice of reduced representation of f and that
0<1<n—1
Let
re) = {A=1[a,,a,.,]:a/a;el (k=1,--,n+1) for an a; # 0}

and for A= [a,,---, a,,,] €T() we set
‘ (A, D =af,+-+a, .
We put for any A& T'(f) such that (A, f)+0

LA £l
(2) m(r A, D) =5 fl |(Af)|d0,

which is independent of the choice of reduced representations of f and A and non-negative since
Al > (A, )], and
N(r, A, f) =N(r, 1/(A, 1)),
which is also independent of the choice of reduced representations of f and A.
The defect 6(A,f) of A with respect to f is defined as follows:
6(A D) = Iirm)iorgf%l.

The purpose of this paper is to extend some results for constant targets in [10] or [11] to moving targets.

We shall use the standard notation of the Nevanlinna theory of meromorphic functions ([41,[51).

2. Preliminary and Lemma
I. Let f, T(f) and 2 etc. be as in the introduction. We shall give some lemmas in this section.
Lemma 1. T(r, ) < :le T(r, a,/a;) +Q(1) (a;#0) ([8]1).
Lemma 2. For any A= [a,,-, a,,,] and B= [b,,---, b,,,] of I'(f) such that (A, f)=#0, (B,f)+0, a;#0,

b, # 0, we have
) (A, D)/a

T(r, B f)/b‘) <2nT(r, £)+S,(r, ) ([121).
Proposition 1. For any A= [a,,---, a,,,] €T()
(a) T(r, A) =S,(r, ), (b) N(r, 1/a;) =S,(r, f) for a;# 0.

Proof. (a) Applying Lemma 1 to A, we have for an a;#0

nil
T(r, A) < 3 T(r,a,/a) +0(1) =S,(r. )
since a,/a, eI
(b) Since a,,---, a,., have no common zero,

N(r, 1/a;) < :)flll N(r, a/a;) < :i: T(r, a,/a;)) +0(1) =S, (r, )

as in (a).
Proposition 2. For any Ac I'(f) for which (A, f)#0
(3) T(r, f) =m(r, A, ) +N(r, A, £)+S.(r, D)
(the first fundamental theorem).
Proof. From (2) we have
mir, A, f)=T(r, f)+T(r, A)—N(r, A, ),
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which reduces to (3) by Proposition 1.
Proposition 3. For any A& TI'(f) for which (A, f)+0

N(r, A, f)
T(r, )

We easily obtain these relations from Proposition 2 and the fact that N(r, A, f) >0 for r > 1.
By the definition of A, there are n+1—A4 functions in {f;,---, f,.;} (let them be f,,---, f,,, ; without loss of

6(A, f) =1— lim sup and 0<8(A D) <1

generality) which are linearly independent over I" such that the others (namely f,,, ;,:-, f,,,) can be represented

as linear combinations of f, -, f,,, ; with T-coefficients. It is easy to see from (1) that
_ 1 fz” i0
(4) T(r, ) =5 ), max  loglfi(re )1do+S,(r, ).

Let H be a subset of I'(f) in general position such that for any A in H, (A, f)#0. For A= [a,,":-,a,,,] in

H, let a; be the first element not identically equal to zero. Then, put
A= (a/a;,a,/a;) = (g, g0, |All = |All/la; |, H= {A: A€ H)
and for (A, f) =F

(5) F=F/a, = &A, f) = zj gf,, N(r, A, ) =N(r, 1/(A, D).

Then, H is in general position, g;= aj/ajoe I" and by Proposition 1
(6) N(r, A, £) =N(r, A, ) +S,(r, )

since N(r, A, f) —N(r, 1/a; ) <N(r, A, ) <N(r, A, f) from (5).
Let A;= [a;,-:-, aj,,,] be any n+1 elements in H and put

Aj: (&1, &nr1)y (A, 1) =F; and (Aj' ) :Fi'

Then it is easy to see the following

Lemma 3. (a) The dimension of the vector space over I':
{(a1,“', am]) : a1F|+"'+an0lle:0v ajEF}

is equal to A.
(b) There are n+1—2 elements in {F,,---, F,,,} (let them be F,,---, F,,,_; without loss of generality) which are
linearly independent over I" such that for any A of H, (A, f) =F can be represented as a linear combination of
F,,-n, }:ml , with '-coefficients. (We then say that Fl,---, f‘ml , form a basis of H over I'.)
(¢) a,F,, - @psy Fuir 2 (a;#0, €I') are linearly independent over C.
2n ~ .
(d) T(r, ) :Lf max  log F.(re”)|d6+S,(r, f) (see (4)).
27 Jo 1<i=n+loa J
Lemma 4. For any F‘il,m, IT‘im (I<i, < <ip<n+1-2,2<m<n+1—2) and a,,+, a, €T
m(r, W(aF, ., a,F; )/aF - a,F; ) =S(r, D),

where F,,---, F,,., , form a basis of Hover I', &;#0 (j = 1,--,m) and W(f,--,¢) is the Wronskian of f,",g.
Proof. Applying Lemma 2, we can prove this lemma as in [1], p.14-p.15.
II. Let FAJ. (j=1,--q; @>n+1) be elements of H and put

(Aj, f) :]-E‘j (] =1,-, Q)-
We may suppose without loss of generality that Fl F,., ; form a basis of Hover I". Let
Y= {FJ: j=n+2-—-24,---,q}.

As in [10], we introduce an equivalence relation into Y as follows.
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Definition 1. (a) For H, and H, of Y such that

Hj:ajlﬁl LI L’ SH /IFnAl a2 G=12),

ﬁl ~H, if and only if there exists a k, such that ay, - ay #0.

(b) For F and G of Y, F ~ G if and only if F =G or there exist H,,--, H, in Y such that F~H, H,~ H,, -,
H, ,~H, H,~G.

Proposition 4. The relation “~” is an equivalence relation in Y.

This is trivial from the definition.

We classify Y by this equivalence relation. Let

Y/'\’: {Yl"") Yp} (ISDSH-FI—X)

and put fort =1, p
~ ~ ~ n+1-2 ~
X, =1{F; : there is at least one element F in Y, such that a, # 0}, where F = 21 aF, (a,el);

~ ~ p
XO: {F1 le--rx} - I!l Xz N

v, =the number of elements of X, (t=0,---,p).
Lemma 5. (a) If t #+ s, then X, N X, = ¢.
P
(b) [20 v,=n+1—21.

(c)Ifa>n+A+2, thenp =1 and y,=0.
It is easy to see (a) and (b) by definition. We can prove (¢) as in the proof of Lemma 3 in [11].

3. Theorem

Let f, I and 4 etc. be as in Section 1 or 2. For a positive integer # and A € I'(f) such that (A, f)#0, we denote
by n,(r, A, ) the number of zeros of (A, f) in |z| <r, where for a zero z, of (A, f) of order k, we count it k times

if k <y and ¢ times if k>4 and put forr >0

r , A f)— , A f
N,(r, A, f):fo n,(u, A )unu(O )

du+n,(0, A, ) logr.

As an extension of Theorem 1 in [11], we can prove the following theorem.
Theorem 1. Let A,,---, A, .,., be any elements of H. Then we have the following inequality:

nta:2
T(r ) < 2 Nl A, D+ D).
i
Proof. Put as in Section 2

(A, ) =F and (A,f) =F, (j=1,-, n+21+2).

J

We may suppose without loss of generality that f*‘, IN‘“N, , form a basis of H over I'. We represent

F; (j=n+42—2,-, n+A+2) by F,,-- F.,, , with [-coefficients. For simplicity we put

an l+k:ﬁk (k=1,---,22+1)

and
(7) Hy=a F to b, Foy 2 (k=1 2241 a,eT).

Due to Lemma 5(c), there is at least one element in {H,,--, Hy;,,} such that the number of coefficients
different from zero in (7) is at least two. We may suppose without loss of generality that H, is such an element.
Let

alil%O,..-, alimi(), ay=0G+#i,,i,) 2<m<n+1—2).
Then,
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(8) H,=a,F toetay Fo

ity m
We differentiate (8) j-times (0 <j<m-—1). From these m relations, we have
(9) alikF[k;ﬁlAlk/A] (k=1,-+m),
where
A= W(alili{‘il T alimFim)/a]iIFi] alimi‘im
and A, 1s one obtained by exchanging a“kf‘ik for ﬁl in A,. We note that A;# 0 and A, # 0 since a,ilf“il,---,

a“mf“,m are linearly independent over C (Lemma 3(c)).

From (9) we have

max log | F,| < log!f,/+ log ' |-+ 3 (log'|A,,] + log ' [——)+O(1)
@ 70 A, k=1 Qi
(I) When m=n-+1—2, integrating this inequality with respect to 6 from 0 to 2z (z=re”), we obtain the

following inequality due to Lemmas 2, 3(d) and 4.

1 2 ~ m
T(r, ) <5 [ logl i ld0+m(r, 1/8)+ £ m(r, 4,0 +8,(r, )

(10)
<N(r, 0, H) +N(r, A)) —=N(r, 1/A,) +S(r, )

since

m(r,A) =S(r, ), m(r,A,) =S(, )
and

m(r, 1/, ) <T(r, a; ) +01) =S,(r, .

Next,
N(r, A)—NC(r, 1/A,) :E%foz”log|AL|de+o<1>
n+l-—2a 1 2n ~

. =2 o [Togl Bl + logla ) de

2n - N
_2—17r,/; log | W(allFl vt @yl o 1)|d9+0(1)

IA

n+l-21 ~ ~ ~
kzl N(z, 0, Fk)_N(r, I/W(anF] »ttt Ayn anH A))+So(r: )

since &, &T. From (10) and (11), we obtain

(12) T(r, D NG, 0, )+ X NG, 0,F) NG, /Wy Fy o @iy iFacr ) 480 D.
Here, by (6)

(13) N(r, 0, H) =N(1,0,F, ., ;) =N(r, A, ,, ,,f) =N(r, A,,, » D) +S,(r, D),

(14) N(r, 0, F,) =N(r, A,, £) =N(r, A, D+S,(r, ) (k=1,--, n+1-2)

and

N(r, I/W(anﬁlv”'yalml AFn~l )

(15) nil- 24 ~ ~ nil 2 ~ ~
> kZI N(r, 0, F ) +N(r, 0, H) — kZI N, (1,0, F ) —N, ,(r, 0, H)+S.(r, D).

From (12),(13),(14) and (15), we -obtain
n+1l-2
T(r, ) <N, ,(r, A,y » D)+ =z N A AL D +S(r D)

nil+2
é Z Nn l(r‘ Ajv f)+S(r, f)
i
since for any A= H
N, :(r, A, £)+0O(log r) >0.
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(II) When m<n+1—2, modifying II, IIl and IV of the proof of Theorem 1 in [11], we obtain our theorem.
Definition 2. For a positive integer ¢ and any A in I'(f) such that (A, f)+0

N,(r, A, D)

3,(A, ) =1— lim SUP T )

It is easy to see that
0<6(A, ) <6,(Af) <1

Corollary 1. For any A,,--, A,,;..1in H

n+2+2
_Z] 6,—. 1<Aj; f) <n+A+1.
J
(cf. Theorem 1 in [6] or Theorem 3.2 in [7]).
Theorem 2. Suppose that there exist n + 7 + 1 elements A, -, A,,.,; (1 <7<n-—1) in H such that

n+l
‘Z] 6n 1<Ai, f)+6n—l(An—H.‘jv f) >n+1 (]: 1 ,"',T).

Then, we have 2 > .

Proof. Modifying the proof of Lemma 8({10]) to our case as in the proof of Theorem 1, we can prove this
theorem.

Corollary 2. Suppose that H contains n+1 elements A, ,---, A, satisfying &, ;(A;,f) =1 (=1, n+1).
Then, H—{A,, -+, A,.,} contains at most A elements A satisfying &, (A, f) >0.

Corollary 3. Suppose that H contains n + 2 + 2 elements A,,---, A, ., ,, such that

n+a-+2

(16) 30, 1(AL D) =n+a+
i
n+A+2

(resp. (16)° 2 6(A;,f) =n+a+1).

j=1

Then, there exists a j, such that

6n,,,X(AJO, f) =0 and 6, ,(A;, D) =1 (G+#j,)
(resp. 6(A; ,f) =0 and 6(A;, ) =1 (G+#i,)).
Proof. We may suppose without loss of generality that
6n,1(A1 » f) 26;\ »A(AZ’ f) > 26n 1 (Anrlmzv f)
(resp. (A, ) 2 6(A,, ) >-->6 (A, ,;,,, D).

If8, 2 (AL 1.2, 0) >0 (resp. 6 (A, ..., 1) >0),
then
0<8,_2 (A 1.0, <1 (resp. 0< 6 (A, 1,0, ) <1).

From (16) (resp. (16)") we obtain the inequalities

n+l
.Zlén l(Ai'f)+5n l(Angjvf) >n+1 (jzl,"‘, A+l)

n+1
(resp. _Z] 6(A;, D)+6(A, ., D) >n+1 (=1, 2+1)).

Then, we have
A= A+1

due to Theorem 2, which is absurd. This means that

S, 2 (AL 10,8 =0 (resp. 6 (A, ;... 1) =0)
and
On-2 (Aj,f) =1 (resp. 6 (Aj,f) =1) (G=1,--,n+A+1).
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Remark. If (16)" holds, p(f) is positive integer or + o and f is of regular growth ([12], Theorem 6 and [13],
Theorem 6).
Let A, A,,,,, 1<v<i-1) and B,,---, B, be in H and put

(A, ) =F (i=1--n+v+1) and (B, =G, (G=1,--, 7).
We apply the discussion in II of Section 2 to

(F,,- F Gy, G,).

n+v+1y
We may suppose without loss of generality that f‘[ FHH,X form a basis of H over I'. Let
YO: {Fnd PR f?nuu l}r Yj = Yo U {Gl} (.] = 1;"'17)
and p, be the number of equivalence classes of Y®/ ~. Then, we have the following theorem.
Theorem 3. (I) Suppose
n+yil
(17) -21 8, ;(A,, f) >n+vr

Then, 2<p,<n+1—2 and v(p,—1) < A.
(I1) Suppose that

ntytl

(18) 21 8y (A, D+6,,B,, D >nt+v+1 (G=1,-7).

Then, 2<p,<n+1—2 and v(p,— 1) +7< 2.
Proof. We first note that we get (17) from (18). Let

Y/~ = {Y]°,-~-,Y;’O}, Y/ ~= (Y,j,---,Y;j,j} {i=1,-, 1},
. ~ ~ . ~ n+1-2 ~
X! ={F,: there is at least one element F in Y| such that a; # 0, where F = _Zl aF, (q,eT);
v =the number of elements in X} (j=0, 1=+, 7; t=1,---, p;). Then,

(a) XINXl=¢ift+s.
(b) t%l vi=n+1-21.
This is because each Y' (j=0,---, 7) contains at least 1 +1 elements and
(Frooen Fopiad = U Xi= 9.
(¢) vv<n—2 (=0, 7;t=1,-,p).

We can prove these inequalities as in the proof of Lemma 6 in [10] by applying the method used in the proof
of Theorem 1.
Next, we suppose without loss of generality that GJ- belongs to Y) (j=1,---, ). Then, we have
(d) Foreachj (j =1, 1), there exist a t, and a t, such that
X{ cX} and X{,NX =¢.

We can prove this fact as in the proof of Lemma 7, i) in [10].

(e) When we represent F..i 2ok (k=1 v+2) as linear combinations of F,,- IT‘,HI,/1 with T-coefficients,
there are p,—1 classes in (x°,..., X?,o} such that all coefficients of elements in those classes are equal to zero.
(f) When we represent éj as a linear combination of F,,---, F, ., , with T-coefficients, because of (d), there is

at least one class X?(w such that all coefficients of elements in that class are equal to zero.

Proof of (I). From the definition of A and due to (e), we have
(v+2)(po—1) <PoA,

which reduces to v(p,—1) <A.
Because of (b) and (c) for j=0, it is trivial that 2<p,<n+1-A4.
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Proof of (II). From the definition of A, due to (e) and (f), we have
W+ (Po— D +7<poA,

which reduces to v(p,—1) +7< 4.
As the number p, is the same one as in (I), we have
2<p,<n+1—4.
From this theorem, we can deduce many well-known results on the number of exceptional elements in H. We
use A, 4,, or A; instead of A when I'=C, I"'=the field of rational functions or I' =S (f) respectively.
Corollary 4. 1°. When I'=C, let N, be the number of elements A of H satisfying the condition
1] (A, f) has no zero.
Then, N, <n+1+24,/(n—2,) ([2]).
2°. When I'=C, let N, be the number of elements A of H satisfying the condition
2] (A, f) has at most a finite number of zeros.
Then, N,<n+1+21./(n—2,) ([3]).
3°. When I'=the field of rational functions, let N; be the number of elements A in H satisfying the condition
3] (A, f) has at most a finite number of zeros.
Then, N;<n+1+2,/(n-2,) ([9]).
4°. When T is any subfield of S,(f) containing C, let N, be the number of elements A in H satisfying the condition
4] 6(A, f)=1.
If o(f) < 400, then, Ny<n+1+1/(n—41,) ([9]).

Proof. For each i(=1,2,3,4), we have only to prove our inequality when Ni>n+2. Let
Ay, Anpy (W>1) be in H satisfying the condition i] (i =1,2,3 or 4). Then, by applying Theorem in [5],
p.116 to each case, we can prove the followings.

Case1°. p,=n+1-21,.
Case 2°. p,>n+1-4,.
Case 3°. p,=n+1—1,.
Case 4°. p,>n+1—21;.
Due to Theorem 3, (I), we have our inequalities.
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