Some Notes on the Fundamental Inequality for Holomorphic Curves and on Defects for Moving Targets

Nobushige TODA
Department of Mathematics
（Received August 24，1995）

Let $\mathrm{f}: \mathbf{C} \rightarrow \mathrm{P}^{\mathrm{n}}(\mathbf{C})$ be a transcendental holomorphic curve from \mathbf{C} into the n －dimensional complex projective space $\mathrm{P}^{\mathrm{n}}(\mathbf{C})$ and let H be a set of holomorphic curves A such that $\mathrm{T}(\mathrm{r}, \mathrm{A})=$ $o(T(r, f))(r \rightarrow \infty),(A, f) \neq 0$ and in general position．

When f is degenerate and $\mathbf{H} \subset \mathrm{P}^{\mathrm{n}}(\mathbf{C})$ ，we gave several results on the fundamental inequality for f in［11］and on defects with respect to f in［10］．

In this paper，we shall extend those results to the case when \mathbf{H} contains moving elements and apply one of them to estimate numbers of several kinds of exceptional targets A in \mathbf{H} ．

1．Introduction

Let

$$
\mathrm{f}: \mathbf{C} \rightarrow \mathrm{P}^{\mathrm{n}}(\mathbf{C})
$$

be a holomorphic curve from \mathbf{C} into the n －dimensional complex projective space $\mathrm{P}^{\mathrm{n}}(\mathbf{C})$ ，where n is a positive integer，and let

$$
\left(f_{1}, \cdots, f_{n+1}\right): \mathbf{C} \rightarrow \mathbf{C}^{\mathrm{n}, 1}-\{0\}
$$

be a reduced representation of f ．We then write $f=\left[f_{1}, \cdots, f_{n+1}\right]$ ．
The characteristic function $T(r, f)$ of f is defined as follows：

$$
\mathrm{T}(\mathrm{r}, \mathrm{f})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|\mathrm{f}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right\| \mathrm{d} \theta-\log \|\mathrm{f}(0)\|
$$

where

$$
\|f(z)\|=\left\{\sum_{j=1}^{n+1}\left|f_{j}(z)\right|^{2}\right\}^{1 / 2}
$$

In addition，put

$$
\mathrm{U}(\mathrm{z})=\max _{1<\mathrm{j}<\mathrm{n}: 1}\left|\mathrm{f}_{\mathrm{j}}(\mathrm{z})\right|
$$

then

$$
\mathrm{U}(\mathrm{z}) \leq\|\mathrm{f}(\mathrm{z})\| \leq(\mathrm{n}+1)^{1 / 2} \mathrm{U}(\mathrm{z})
$$

and we have

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, \mathrm{f})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \mathrm{U}\left(\mathrm{re}^{\mathrm{i} \theta}\right) \mathrm{d} \theta+\mathrm{O}(1) \tag{1}
\end{equation*}
$$

We suppose throughout the paper that f is transcendental；that is to say，

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log r}=+\infty
$$

We denote by $\rho(\mathrm{f})$ the order of f ：

$$
\rho(\mathrm{f})=\lim _{\mathrm{r}} \sup \frac{\log \mathrm{~T}(\mathrm{r}, \mathrm{f})}{\log \mathrm{r}} .
$$

Let $S_{o}(r, f)$（resp．$S(r, f)$ ）be any quantity satisfying

$$
S_{0}(r, f)=o(T(r, f))(r \rightarrow \infty)
$$

（resp．$S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ ，possibly outside a set of r of finite linear measure），let $S_{0}(f)$ be the field of meromorphic functions α in $|z|<\infty$ such that $\mathrm{T}(\mathrm{r}, \alpha)=\mathrm{S}_{0}(\mathrm{r}, \mathrm{f})$ and Γ be a subfield of $\mathrm{S}_{\mathrm{o}}(\mathrm{f})$ containing \mathbf{C} ．

The set

$$
\mathrm{V}=\left\{\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n+1}\right): \sum_{j=1}^{n=1} \alpha_{\mathrm{j}} \mathrm{f}_{\mathrm{j}}=0, \alpha_{\mathrm{j}} \in \Gamma\right\}
$$

is a vector space over Γ. We denote by λ the dimension of V :

$$
\lambda=\operatorname{dim} \mathrm{V}
$$

We can easily prove that λ is independent of the choice of reduced representation of f and that

$$
0 \leq \lambda \leq \mathrm{n}-1 .
$$

Let

$$
\Gamma(f)=\left\{A=\left[a_{1}, \cdots, a_{n+1}\right]: a_{k} / a_{j} \in \Gamma(k=1, \cdots, n+1) \text { for an } a_{j} \neq 0\right\}
$$

and for $A=\left[a_{1}, \cdots, a_{n+1}\right] \in \Gamma(f)$ we set

$$
(A, f)=a_{1} f_{1}+\cdots+a_{n+1} f_{n+1} .
$$

We put for any $A \in \Gamma(f)$ such that $(A, f) \neq 0$

$$
\begin{equation*}
\mathrm{m}(\mathrm{r}, \mathrm{~A}, \mathrm{f})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\mathrm{~A} \mid\| \mathrm{f} \|}{|(\mathrm{A}, \mathrm{f})|} \mathrm{d} \theta \tag{2}
\end{equation*}
$$

which is independent of the choice of reduced representations of f and A and non-negative since $\|\mathrm{A}\|\|\mathrm{f}\| \geq|(\mathrm{A}, \mathrm{f})|$, and

$$
N(r, A, f)=N(r, 1 /(A, f)),
$$

which is also independent of the choice of reduced representations of f and A.
The defect $\delta(\mathrm{A}, \mathrm{f})$ of A with respect to f is defined as follows:

$$
\delta(\mathrm{A}, \mathrm{f})=\liminf _{\mathrm{r}} \inf _{\infty} \frac{\mathrm{m}(\mathrm{r}, \mathrm{~A}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})}
$$

The purpose of this paper is to extend some results for constant targets in [10] or [11] to moving targets. We shall use the standard notation of the Nevanlinna theory of meromorphic functions ([4],[5]).

2. Preliminary and Lemma

I. Let $\mathrm{f}, \Gamma(\mathrm{f})$ and λ etc. be as in the introduction. We shall give some lemmas in this section.

Lemma 1.

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, \mathrm{f})<\sum_{\mathrm{k}=1}^{\mathrm{n}+1} \mathrm{~T}\left(\mathrm{r}, \mathrm{a}_{\mathrm{k}} / \mathrm{a}_{\mathrm{j}}\right)+\mathrm{O}(1) \quad\left(\mathrm{a}_{\mathrm{j}} \neq 0\right) \tag{8}
\end{equation*}
$$

Lemma 2. For any $A=\left[a_{1}, \cdots, a_{n+1}\right]$ and $B=\left[b_{1}, \cdots, b_{n+1}\right]$ of $\Gamma(f)$ such that $(A, f) \neq 0,(B, f) \neq 0, a_{j} \neq 0$, $b_{k} \neq 0$, we have

$$
\begin{equation*}
\mathrm{T}\left(\mathrm{r}, \frac{(\mathrm{~A}, \mathrm{f}) / \mathrm{a}_{\mathrm{j}}}{(\mathrm{~B}, \mathrm{f}) / \mathrm{b}_{\mathrm{k}}}\right) \leq 2 \mathrm{nT}(\mathrm{r}, \mathrm{f})+\mathrm{S}_{\mathrm{o}}(\mathrm{r}, \mathrm{f}) \tag{12}
\end{equation*}
$$

Proposition 1. For any $A=\left[a_{1}, \cdots, a_{n+1}\right] \in \Gamma(f)$
(a) $T(r, A)=S_{0}(r, f)$,
(b) $N\left(r, 1 / a_{j}\right)=S_{0}(r, f)$ for $a_{j} \neq 0$.

Proof. (a) Applying Lemma 1 to A, we have for an $a_{j} \neq 0$

$$
T(r, A) \leq \sum_{k=1}^{n+1} T\left(r, a_{k} / a_{j}\right)+O(1)=S_{o}(r, f)
$$

since $a_{k} / a_{j} \in \Gamma$.
(b) Since a_{1}, \cdots, a_{n+1} have no common zero,

$$
N\left(r, 1 / a_{j}\right) \leq \sum_{k=1}^{n+1} N\left(r, a_{k} / a_{j}\right) \leq \sum_{k=1}^{n+1} T\left(r, a_{k} / a_{j}\right)+O(1)=S_{o}(r, f)
$$

as in (a).
Proposition 2. For any $A \in \Gamma(f)$ for which $(A, f) \neq 0$
(3)

$$
\mathrm{T}(\mathrm{r}, \mathrm{f})=\mathrm{m}(\mathrm{r}, \mathrm{~A}, \mathrm{f})+\mathrm{N}(\mathrm{r}, \mathrm{~A}, \mathrm{f})+\mathrm{S}_{0}(\mathrm{r}, \mathrm{f})
$$

(the first fundamental theorem).
Proof. From (2) we have

$$
\mathrm{m}(\mathrm{r}, \mathrm{~A}, \mathrm{f})=\mathrm{T}(\mathrm{r}, \mathrm{f})+\mathrm{T}(\mathrm{r}, \mathrm{~A})-\mathrm{N}(\mathrm{r}, \mathrm{~A}, \mathrm{f})
$$

which reduces to（3）by Proposition 1.
Proposition 3．For any $A \in \Gamma(f)$ for which $(A, f) \neq 0$

$$
\delta(\mathrm{A}, \mathrm{f})=1-\lim _{\mathrm{r}} \sup _{\infty} \frac{\mathrm{N}(\mathrm{r}, \mathrm{~A}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})} \quad \text { and } \quad 0 \leq \delta(\mathrm{A}, \mathrm{f}) \leq 1
$$

We easily obtain these relations from Proposition 2 and the fact that $N(r, A, f) \geq 0$ for $r \geq 1$ ．
By the definition of λ ，there are $n+1-\lambda$ functions in $\left\{f_{1}, \cdots, f_{n+1}\right\}$（let them be $f_{1}, \cdots, f_{n+1-\lambda}$ without loss of generality）which are linearly independent over Γ such that the others（namely $f_{n+2-\lambda}, \cdots, f_{n+1}$ ）can be represented as linear combinations of $f_{1}, \cdots, f_{n+1-\lambda}$ with Γ－coefficients．It is easy to see from（1）that

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, \mathrm{f})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \max _{1<\mathrm{j} \leqslant \mathrm{n}+1 \ldots \lambda} \log \left|\mathrm{f}_{\mathrm{j}}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta+\mathrm{S}_{0}(\mathrm{r}, \mathrm{f}) \tag{4}
\end{equation*}
$$

Let \mathbf{H} be a subset of $\Gamma(f)$ in general position such that for any A in $\mathbf{H},(A, f) \neq 0$ ．For $A=\left[a_{1}, \cdots, a_{n+1}\right]$ in \mathbf{H} ，let $\mathrm{a}_{\mathrm{j}_{0}}$ be the first element not identically equal to zero．Then，put

$$
\widetilde{A}=\left(a_{1} / a_{j_{0}}, \cdots, a_{n+1} / a_{j_{0}}\right)=\left(g_{1}, \cdots, g_{n+1}\right),\|\tilde{A}\|=\|A\| / a_{j_{0}} \mid, \widetilde{\mathbf{H}}=\{\widetilde{A}: A \in \mathbf{H}\}
$$

and for $(A, f) \equiv F$

$$
\begin{equation*}
\widetilde{\mathrm{F}}=\mathrm{F} / \mathrm{a}_{\mathrm{i}_{\mathrm{o}}}=(\tilde{\mathrm{A}}, \mathrm{f})=\sum_{\mathrm{j}=1}^{\mathrm{n+1}} \mathrm{~g}_{\mathrm{j}} \mathrm{f}_{\mathrm{j}}, \mathrm{~N}(\mathrm{r}, \tilde{\mathrm{~A}}, \mathrm{f})=\mathrm{N}(\mathrm{r}, \mathrm{l} /(\tilde{\mathrm{A}}, \mathrm{f})) \tag{5}
\end{equation*}
$$

Then，$\widetilde{\mathbf{H}}$ is in general position，$g_{j}=a_{j} / a_{j_{\mathrm{o}}} \in \Gamma$ and by Proposition 1

$$
\begin{equation*}
\mathrm{N}(\mathrm{r}, \mathrm{~A}, \mathrm{f})=\mathrm{N}(\mathrm{r}, \overline{\mathrm{~A}}, \mathrm{f})+\mathrm{S}_{\mathrm{o}}(\mathrm{r}, \mathrm{f}) \tag{6}
\end{equation*}
$$

since $N(r, A, f)-N\left(r, 1 / a_{j_{o}}\right) \leq N(r, \tilde{A}, f) \leq N(r, A, f)$ from（5）．
Let $A_{j}=\left[a_{j 1}, \cdots, a_{j n+1}\right]$ be any $n+1$ elements in \mathbf{H} and put

$$
\widetilde{\mathrm{A}}_{j}=\left(g_{j 1}, \cdots, g_{j n+1}\right),\left(A_{j}, f\right)=F_{j} \quad \text { and }\left(\widetilde{A}_{j}, f\right)=\widetilde{F}_{j} .
$$

Then it is easy to see the following
Lemma 3．（a）The dimension of the vector space over Γ ：

$$
\left\{\left(\alpha_{1}, \cdots, \alpha_{n+1}\right): \alpha_{1} \widetilde{F}_{1}+\cdots+\alpha_{n+1} \widetilde{\mathrm{~F}}_{n+1}=0, \alpha_{\mathrm{j}} \in \Gamma\right\}
$$

is equal to λ ．
（b）There are $n+1-\lambda$ elements in $\left\{\widetilde{F}_{1}, \cdots, \widetilde{F}_{n+1}\right\}$（let them be $\widetilde{F}_{1}, \cdots, \widetilde{F}_{n+1-\lambda}$ without loss of generality）which are linearly independent over Γ such that for any A of $\mathbf{H},(\widetilde{\mathrm{A}}, \mathrm{f}) \equiv \widetilde{\mathrm{F}}$ can be represented as a linear combination of $\widetilde{F}_{1}, \cdots, \widetilde{\mathrm{~F}}_{n+1 \cdots \lambda}$ with Γ－coefficients．（We then say that $\widetilde{\mathrm{F}}_{1}, \cdots, \widetilde{\mathrm{~F}}_{\mathrm{n}+1 \cdots \lambda}$ form a basis of \mathbf{H} over Γ ．）
（c）$\alpha_{1} \widetilde{\mathrm{~F}}_{1}, \cdots, \alpha_{\mathrm{n}+1-\lambda} \widetilde{\mathrm{F}}_{\mathrm{n}+1-\lambda}\left(\alpha_{\mathrm{j}} \neq 0, \in \Gamma\right)$ are linearly independent over \mathbf{C} ．
（d）

$$
\mathrm{T}(\mathrm{r}, \mathrm{f})=\frac{1}{2 \pi} \int_{0}^{2 \pi} \max _{1 \leq j \leq \mathrm{n}+1 \lambda} \log \left|\widetilde{\mathrm{~F}}_{\mathrm{j}}\left(\mathrm{re}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta+\mathrm{S}_{\mathrm{o}}(\mathrm{r}, \mathrm{f})
$$

Lemma 4．For any $\widetilde{\mathrm{F}}_{\mathrm{i}_{1}}, \cdots, \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{m}}}\left(1 \leq \mathrm{i}_{1}<\cdots<\mathrm{i}_{\mathrm{m}} \leq \mathrm{n}+1-\lambda, 2 \leq \mathrm{m} \leq \mathrm{n}+1-\lambda\right)$ and $\alpha_{1}, \cdots, \alpha_{\mathrm{m}} \in \Gamma$

$$
\mathrm{m}\left(\mathrm{r}, \mathrm{~W}\left(\alpha_{1} \widetilde{\mathrm{~F}}_{\mathrm{i}_{1}}, \cdots, \alpha_{\mathrm{m}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{m}}}\right) / \alpha_{1} \widetilde{\mathrm{~F}}_{\mathrm{i}_{1}} \cdots \alpha_{\mathrm{m}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{m}}}\right)=\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

where $\widetilde{F}_{1}, \cdots, \widetilde{F}_{n+1 \ldots \lambda}$ form a basis of \mathbf{H} over $\Gamma, \alpha_{j} \neq 0(j=1, \cdots, m)$ and $W(f, \cdots, g)$ is the Wronskian of f, \cdots, g ．
Proof．Applying Lemma 2，we can prove this lemma as in［1］，p．14－p．15．
II．Let $\widetilde{\mathrm{A}}_{\mathrm{j}}(\mathrm{j}=\mathbf{1}, \cdots, \mathrm{q} ; \mathrm{q} \geq \mathrm{n}+1)$ be elements of $\widetilde{\mathbf{H}}$ and put

$$
\left(\tilde{A}_{i}, f\right)=\tilde{F}_{j}(j=1, \cdots, q)
$$

We may suppose without loss of generality that $\widetilde{F}_{1}, \cdots, \widetilde{F}_{n+1-\lambda}$ form a basis of \mathbf{H} over Γ ．Let

$$
Y=\left\{\widetilde{F}_{\mathrm{j}}: j=\mathrm{n}+2-\lambda, \cdots, \mathrm{q}\right\}
$$

As in［10］，we introduce an equivalence relation into Y as follows．

Definition 1. (a) For $\widetilde{\mathrm{H}}_{1}$ and $\widetilde{\mathrm{H}}_{2}$ of Y such that

$$
\widetilde{\mathrm{H}}_{\mathrm{j}}=\alpha_{\mathrm{j} 1} \widetilde{\mathrm{~F}}_{1}+\cdots+\alpha_{\mathrm{jn+1-} \mathrm{\lambda}} \widetilde{\mathrm{~F}}_{\mathrm{n}+1 \cdot \lambda} \quad(\mathrm{j}=1,2)
$$

$\widetilde{\mathrm{H}}_{1} \simeq \widetilde{\mathrm{H}}_{2}$ if and only if there exists a k_{o} such that $\alpha_{1 \mathrm{k}_{0}} \cdot \alpha_{2 \mathrm{k}_{\mathrm{o}}} \neq 0$.
(b) For \widetilde{F} and \widetilde{G} of $Y, \widetilde{F} \sim \widetilde{G}$ if and only if $\widetilde{F} \simeq \widetilde{G}$ or there exist $\widetilde{H}_{1}, \cdots, \widetilde{H}_{s}$ in Y such that $\widetilde{F} \simeq \widetilde{H}_{1}, \widetilde{H}_{1} \simeq \widetilde{H}_{2}, \cdots$, $\widetilde{\mathrm{H}}_{\mathrm{s}-1} \simeq \widetilde{\mathrm{H}}_{\mathrm{s}}, \widetilde{\mathrm{H}}_{\mathrm{s}} \simeq \widetilde{\mathrm{G}}$.

Proposition 4. The relation " \sim " is an equivalence relation in Y.
This is trivial from the definition.
We classify Y by this equivalence relation. Let

$$
\mathrm{Y} / \sim=\left\{\mathrm{Y}_{1}, \cdots, \mathrm{Y}_{\mathrm{p}}\right\} \quad(1 \leq \mathrm{p} \leq \mathrm{n}+1-\lambda)
$$

and put for $t=1, \cdots, p$

$\mathrm{X}_{0}=\left\{\widetilde{\mathrm{F}}_{1}, \cdots, \widetilde{\mathrm{~F}}_{\mathrm{n}+1-\lambda}\right\}-{\underset{\mathrm{t}}{\mathrm{U}}}_{\mathrm{p}}^{\mathrm{X}_{\mathrm{t}}}$;
$\nu_{t}=$ the number of elements of $X_{t}(t=0, \cdots, p)$.
Lemma 5. (a) If $t \neq s$, then $X_{t} \cap X_{s}=\phi$.
(b) $\sum_{\mathrm{t}=0}^{\mathrm{p}} \nu_{\mathrm{t}}=\mathrm{n}+1-\lambda .$.
(c) If $\mathrm{q} \geq \mathrm{n}+\lambda+2$, then $\mathrm{p}=1$ and $\nu_{0}=0$.

It is easy to see (a) and (b) by definition. We can prove (c) as in the proof of Lemma 3 in [11].

3. Theorem

Let f, Γ and λ etc. be as in Section 1 or 2. For a positive integer μ and $A \in \Gamma(f)$ such that $(A, f) \neq 0$, we denote by $n_{\mu}(r, A, f)$ the number of zeros of (A,f) in $|z| \leq r$, where for a zero z_{0} of (A,f) of order k, we count it k times if $\mathrm{k} \leq \mu$ and μ times if $\mathrm{k}>\mu$ and put for $\mathrm{r}>0$

$$
\mathrm{N}_{\mu}(\mathrm{r}, \mathrm{~A}, \mathrm{f})=\int_{0}^{\mathrm{r}} \frac{\mathrm{n}_{\mu}(\mathrm{u}, \mathrm{~A}, \mathrm{f})-\mathrm{n}_{\mu}(0, \mathrm{~A}, \mathrm{f})}{\mathrm{u}} \mathrm{du}+\mathrm{n}_{\mu}(0, \mathrm{~A}, \mathrm{f}) \log \mathrm{r} .
$$

As an extension of Theorem 1 in [11], we can prove the following theorem.
Theorem 1. Let $A_{1}, \cdots, A_{n+\lambda+2}$ be any elements of H. Then we have the following inequality:

$$
T(r, f) \leq \sum_{j=1}^{n+\lambda} N_{n, \lambda}^{2}\left(r, A_{j}, f\right)+S(r, f)
$$

Proof. Put as in Section 2

$$
\left(A_{j}, f\right)=F_{j} \quad \text { and } \quad\left(\tilde{A}_{j}, f\right)=\widetilde{F}_{j}(j=1, \cdots, n+\lambda+2)
$$

We may suppose without loss of generality that $\tilde{F}_{1}, \cdots, \widetilde{F}_{n+1} \lambda$ form a basis of \mathbf{H} over Γ. We represent $\widetilde{\mathrm{F}}_{\mathrm{j}}(\mathrm{j}=\mathrm{n}+2-\lambda, \cdots, \mathrm{n}+\lambda+2)$ by $\widetilde{\mathrm{F}}_{1}, \cdots, \widetilde{\mathrm{~F}}_{\mathrm{n}+1-\lambda}$ with Γ-coefficients. For simplicity we put

$$
\widetilde{\mathrm{F}}_{\mathrm{n}+1} \quad \lambda+\mathrm{k}=\widetilde{\mathrm{H}}_{\mathrm{k}} \quad(\mathrm{k}=1, \cdots, 2 \lambda+1)
$$

and

$$
\begin{equation*}
\widetilde{\mathrm{H}}_{\mathrm{k}}=\alpha_{\mathrm{k} 1} \widetilde{\mathrm{~F}}_{1}+\cdots+\alpha_{\mathrm{kn} \mid 1-\lambda} \widetilde{\mathrm{F}}_{\mathrm{n} \mid 1 \lambda}\left(\mathrm{k}=1, \cdots, 2 \lambda+1 ; \alpha_{\mathrm{kj}} \in \Gamma\right) \tag{7}
\end{equation*}
$$

Due to Lemma 5 (c), there is at least one element in $\left\{\widetilde{\mathrm{H}}_{1}, \cdots, \widetilde{\mathrm{H}}_{2 \lambda+1}\right\}$ such that the number of coefficients different from zero in (7) is at least two. We may suppose without loss of generality that \widetilde{H}_{1} is such an element. Let

$$
\alpha_{1_{1}} \neq 0, \cdots, \alpha_{1 \mathrm{i}_{\mathrm{m}}} \neq 0, \alpha_{\mathrm{ti}}=0\left(\mathrm{i} \neq \mathrm{i}_{1}, \cdots, \mathrm{i}_{\mathrm{m}}\right)(2 \leq \mathrm{m} \leq \mathrm{n}+1-\lambda)
$$

Then,

$$
\widetilde{\mathrm{H}}_{1}=\alpha_{1 i_{1}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{1}}+\cdots+\alpha_{1 \mathrm{i}_{\mathrm{m}}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{m}}} .
$$

We differentiate（ 8 ） j －times（ $0 \leq \mathrm{j} \leq \mathrm{m}-1$ ）．From these m relations，we have

$$
\begin{equation*}
\alpha_{i_{i} \mathrm{k}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{k}}}=\widetilde{\mathrm{H}}_{1} \Delta_{1 \mathrm{k}} / \Delta_{1}(\mathrm{k}=1, \cdots, \mathrm{~m}), \tag{9}
\end{equation*}
$$

where

$$
\Delta_{1}=\mathrm{W}\left(\alpha_{\mathrm{i}_{1}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{1}}, \cdots, \alpha_{\mathrm{ii}_{\mathrm{m}}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{m}}}\right) / \alpha_{\mathrm{ii}_{1}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{1}} \cdots \alpha_{\mathrm{i}_{\mathrm{m}}} \widetilde{\mathrm{~F}}_{\mathrm{i}_{\mathrm{m}}}
$$

and Δ_{Ik} is one obtained by exchanging $\alpha_{1 \mathrm{i}_{\mathrm{k}}} \tilde{\mathrm{F}}_{\mathrm{i}_{\mathrm{k}}}$ for $\tilde{\mathrm{H}}_{1}$ in Δ_{l} ．We note that $\Delta_{1} \neq 0$ and $\Delta_{\mathrm{ik}} \neq 0$ since $\alpha_{1 \mathrm{i}_{1}} \widetilde{\mathrm{~F}}_{1}, \cdots$ ， $\alpha_{1 i_{\mathrm{m}}} \widetilde{\mathrm{F}}_{\mathrm{i}_{\mathrm{m}}}$ are linearly independent over \mathbf{C}（Lemma 3（c））．

From（9）we have

$$
\max _{\alpha_{\mathrm{i}} \neq 0} \log \left|\tilde{\mathrm{~F}}_{\mathrm{i}}\right| \leq \log \left|\tilde{\mathrm{H}}_{1}\right|+\log +\left|\frac{1}{\Delta_{1}}\right|+\sum_{\mathrm{k}=1}^{\mathrm{m}}\left(\log ^{+}\left|\Delta_{\mathrm{lk}}\right|+\log \left|\frac{1}{\alpha_{1_{\mathrm{i}}}}\right|\right)+\mathrm{O}(1)
$$

（I）When $\mathrm{m}=\mathrm{n}+1-\lambda$ ，integrating this inequality with respect to θ from 0 to $2 \pi\left(z=r \mathrm{e}^{\mathrm{i} \theta}\right.$ ），we obtain the following inequality due to Lemmas $2,3(\mathrm{~d})$ and 4.

$$
\begin{align*}
\mathrm{T}(\mathrm{r}, \mathrm{f}) \leq & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\tilde{\mathrm{H}}_{1}\right| \mathrm{d} \theta+\mathrm{m}\left(\mathrm{r}, 1 / \Delta_{1}\right)+\sum_{\mathrm{k}=1}^{\mathrm{m}} \mathrm{~m}\left(\mathrm{r}, \Delta_{1 \mathrm{k}}\right)+\mathrm{S}_{0}(\mathrm{r}, \mathrm{f}) \tag{10}\\
& \leq \mathrm{N}\left(\mathrm{r}, 0, \widetilde{\mathrm{H}}_{1}\right)+\mathrm{N}\left(\mathrm{r}, \Delta_{1}\right)-\mathrm{N}\left(\mathrm{r}, 1 / \Delta_{1}\right)+\mathrm{S}(\mathrm{r}, \mathrm{f})
\end{align*}
$$

since

$$
\mathrm{m}\left(\mathrm{r}, \Delta_{1}\right)=\mathrm{S}(\mathrm{r}, \mathrm{f}), \quad \mathrm{m}\left(\mathrm{r}, \Delta_{\mathrm{Ik}}\right)=\mathrm{S}(\mathrm{r}, \mathrm{f})
$$

and

$$
\mathrm{m}\left(\mathrm{r}, 1 / \alpha_{\mathrm{i}_{\mathrm{k}}}\right) \leq \mathrm{T}\left(\mathrm{r}, \alpha_{\mathrm{it}_{\mathrm{k}}}\right)+\mathrm{O}(1)=\mathrm{S}_{\mathrm{o}}(\mathrm{r}, \mathrm{f}) .
$$

Next，

$$
\begin{align*}
& \mathrm{N}\left(\mathrm{r}, \Delta_{\mathrm{l}}\right)-\mathrm{N}\left(\mathrm{r}, 1 / \Delta_{1}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\frac{1}{\Delta_{1}}\right| \mathrm{d} \theta+\mathrm{O}(1) \\
& \quad=\sum_{\mathrm{k}=1}^{\mathrm{n}+1-\lambda} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{\log \left|\widetilde{\mathrm{~F}}_{\mathrm{k}}\right|+\log \left|\alpha_{1 \mathrm{k}}\right|\right\} \mathrm{d} \theta \tag{11}\\
& \quad-\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\mathrm{~W}\left(\alpha_{11} \widetilde{\mathrm{~F}}_{1}, \cdots, \alpha_{1 \mathrm{n}+1-\lambda} \widetilde{\mathrm{F}}_{\mathrm{n}+1-\lambda}\right)\right| \mathrm{d} \theta+\mathrm{O}(1) \\
& \quad \leq \sum_{\mathrm{k}=1}^{\mathrm{n}+1-\lambda} \mathrm{N}\left(\mathrm{r}, 0, \widetilde{\mathrm{~F}}_{\mathrm{k}}\right)-\mathrm{N}\left(\mathrm{r}, 1 / \mathrm{W}\left(\alpha_{11} \widetilde{\mathrm{~F}}_{1}, \cdots, \alpha_{1 \mathrm{n}+1-\lambda} \widetilde{\mathrm{F}}_{\mathrm{n}+1-\lambda}\right)\right)+\mathrm{S}_{0}(\mathrm{r}, \mathrm{f})
\end{align*}
$$

since $\alpha_{i \mathrm{k}} \in \Gamma$ ．From（10）and（11），we obtain

$$
\begin{equation*}
\mathrm{T}(\mathrm{r}, \mathrm{f}) \leq \mathrm{N}\left(\mathrm{r}, 0, \widetilde{\mathrm{H}}_{\mathrm{l}}\right)+\sum_{\mathrm{k}-1}^{\mathrm{n+1-} \mathrm{\lambda}} \mathrm{~N}\left(\mathrm{r}, 0, \widetilde{\mathrm{~F}}_{\mathrm{k}}\right)-\mathrm{N}\left(\mathrm{r}, 1 / \mathrm{W}\left(\alpha_{11} \widetilde{\mathrm{~F}}_{1}, \cdots, \alpha_{1 \mathrm{n}+1 \cdot \lambda} \widetilde{\mathrm{~F}}_{\mathrm{n}+1-\lambda}\right)\right)+\mathrm{S}(\mathrm{r}, \mathrm{f}) . \tag{12}
\end{equation*}
$$

Here，by（6）

$$
\begin{gather*}
N\left(r, 0, \widetilde{H}_{1}\right)=N\left(r, 0, \widetilde{F}_{n \cdot 2 \cdot \lambda}\right)=N\left(r, \tilde{A}_{n+2-\lambda}, f\right)=N\left(r, A_{n+2}, f\right)+S_{0}(r, f), \tag{13}\\
N\left(r, 0, \widetilde{F}_{k}\right)=N\left(r, \widetilde{A}_{k}, f\right)=N\left(r, A_{k}, f\right)+S_{0}(r, f)(k=1, \cdots, n+1-\lambda) \tag{14}
\end{gather*}
$$

and

$$
\begin{aligned}
& \mathrm{N}\left(\mathrm{r}, 1 / \mathrm{W}\left(\alpha_{11} \widetilde{\mathrm{~F}}_{1}, \cdots, \alpha_{\operatorname{ln+1}}{ }_{\lambda} \overline{\mathrm{F}}_{\mathrm{n}+1 \cdot \lambda}\right)\right) \\
& \quad \geq \sum_{\mathrm{k}}^{\mathrm{n}+1} \sum_{1}^{\lambda} \mathrm{N}\left(\mathrm{r}, 0, \widetilde{\mathrm{~F}}_{\mathrm{k}}\right)+\mathrm{N}\left(\mathrm{r}, 0, \widetilde{\mathrm{H}}_{1}\right)-\sum_{\mathrm{k}}^{\mathrm{n}} \sum_{1}^{1} \mathrm{~N}_{\mathrm{n} \cdot \lambda}\left(\mathrm{r}, 0, \widetilde{\mathrm{~F}}_{\mathrm{k}}\right)-\mathrm{N}_{\mathrm{n}} \lambda\left(\mathrm{r}, 0, \widetilde{\mathrm{H}}_{1}\right)+\mathrm{S}_{0}(\mathrm{r}, \mathrm{f}) .
\end{aligned}
$$

From（12），（13），（14）and（15），we obtain

$$
\begin{gathered}
T(r, f) \leq N_{n, \lambda}\left(r, A_{n+2}, f\right)+\sum_{k=1}^{n+1 \cdot \lambda} N_{n \cdots \lambda}\left(r, A_{k}, f\right)+S(r, f) \\
\leq \sum_{j=1}^{n+\lambda+2} N_{n \cdots \lambda}\left(r, A_{j}, f\right)+S(r, f)
\end{gathered}
$$

since for any $\mathrm{A} \in \mathbf{H}$

$$
N_{n \cdot \lambda}(r, A, f)+O(\log r) \geq 0
$$

(II) When $\mathrm{m}<\mathrm{n}+1-\lambda$, modifying II, III and IV of the proof of Theorem 1 in [11], we obtain our theorem.

Definition 2. For a positive integer μ and any A in $\Gamma(f)$ such that $(A, f) \neq 0$

$$
\delta_{\mu}(\mathrm{A}, \mathrm{f})=1-\lim _{\Gamma \rightarrow \infty} \sup \frac{\mathrm{N}_{\mu}(\mathrm{r}, \mathrm{~A}, \mathrm{f})}{\mathrm{T}(\mathrm{r}, \mathrm{f})}
$$

It is easy to see that

$$
0 \leq \delta(\mathrm{A}, \mathrm{f}) \leq \delta_{\mu}(\mathrm{A}, \mathrm{f}) \leq 1
$$

Corollary 1. For any $A_{1}, \cdots, A_{n+\lambda+2}$ in \mathbf{H}

$$
\sum_{\mathrm{j}-1}^{\mathrm{n}+\lambda+2} \delta_{\mathrm{n} \lambda}\left(\mathrm{~A}_{\mathrm{j}}, \mathrm{f}\right) \leq \mathrm{n}+\lambda+1 .
$$

(cf. Theorem 1 in [6] or Theorem 3.2 in [7]).
Theorem 2. Suppose that there exist $n+\tau+1$ elements $\mathrm{A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}+\tau+1}(1 \leq \tau \leq \mathrm{n}-1)$ in H such that

$$
\sum_{i=1}^{n+1} \delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{i}}, \mathrm{f}\right)+\delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{n}+11 \mathrm{j}}, \mathrm{f}\right)>\mathrm{n}+1 \quad(\mathrm{j}=1, \cdots, \tau) .
$$

Then, we have $\lambda \geq \tau$.
Proof. Modifying the proof of Lemma $8([10])$ to our case as in the proof of Theorem 1, we can prove this theorem.

Corollary 2. Suppose that \mathbf{H} contains $n+1$ elements A_{1}, \cdots, A_{n+1} satisfying $\delta_{n-\lambda}\left(A_{j}, f\right)=1(j=1, \cdots, n+1)$. Then, $\mathbf{H}-\left\{\mathrm{A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}+1}\right\}$ contains at most λ elements A satisfying $\delta_{\mathrm{n} \cdot \lambda}(\mathrm{A}, \mathrm{f})>0$.

Corollary 3. Suppose that H contains $n+\lambda+2$ elements $A_{1}, \cdots, A_{n+\lambda+2}$ such that

$$
\begin{align*}
& \sum_{\mathrm{j}=1}^{\mathrm{n}+\lambda+2} \delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{j}}, \mathrm{f}\right)=\mathrm{n}+\lambda+1 \tag{16}\\
& \left.\sum_{\mathrm{j}=1}^{\mathrm{n}+\lambda+2} \delta\left(\mathrm{~A}_{\mathrm{j}}, \mathrm{f}\right)=\mathrm{n}+\lambda+1\right)
\end{align*}
$$

(resp. (16) ${ }^{\prime}$
Then, there exists a j_{0} such that

$$
\begin{gathered}
\delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{j}_{\mathrm{o}}}, \mathrm{f}\right)=0 \quad \text { and } \quad \delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{j}}, \mathrm{f}\right)=1 \quad\left(\mathrm{j} \neq \mathrm{j}_{\mathrm{o}}\right) \\
\left(\operatorname{resp} \cdot \delta\left(\mathrm{A}_{\mathrm{j}_{\mathrm{o}}}, \mathrm{f}\right)=0 \quad \text { and } \quad \delta\left(\mathrm{A}_{\mathrm{j}}, \mathrm{f}\right)=1 \quad\left(\mathrm{j} \neq \mathrm{j}_{\mathrm{o}}\right)\right) .
\end{gathered}
$$

Proof. We may suppose without loss of generality that

$$
\begin{aligned}
& \delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{1}, \mathrm{f}\right) \geq \delta_{\mathrm{n} \cdot \lambda}\left(\mathrm{~A}_{2}, \mathrm{f}\right) \geq \cdots \geq \delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \mathrm{f}\right) \\
& \left(\operatorname{resp} . \delta\left(\mathrm{A}_{1}, \mathrm{f}\right) \geq \delta\left(\mathrm{A}_{2}, \mathrm{f}\right) \geq \cdots \geq \delta\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \mathrm{f}\right)\right)
\end{aligned}
$$

If $\delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \mathrm{f}\right)>0\left(\right.$ resp. $\left.\delta\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \mathrm{f}\right)>0\right)$,
then

$$
0<\delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \text { f }\right)<1 \quad\left(\text { resp. } 0<\delta\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \text { f }\right)<1\right)
$$

From (16) (resp. (16)') we obtain the inequalities

$$
\begin{aligned}
& \quad \sum_{i=1}^{n+1} \delta_{n}\left(A_{i}, f\right)+\delta_{n-\lambda}\left(A_{n+1+j}, f\right)>n+1 \quad(j=1, \cdots, \lambda+1) \\
& \text { (resp. } \left.\sum_{i=1}^{n+1} \delta\left(A_{i}, f\right)+\delta\left(A_{n+1+j}, f\right)>n+1 \quad(j=1, \cdots, \lambda+1)\right) .
\end{aligned}
$$

Then, we have

$$
\lambda \geq \lambda+1
$$

due to Theorem 2, which is absurd. This means that

$$
\delta_{\mathrm{n} \cdot \lambda}\left(\mathrm{~A}_{\mathrm{n}+\lambda+2}, \mathrm{f}\right)=0 \quad\left(\operatorname{resp} . \delta\left(\mathrm{A}_{\mathrm{n}+\lambda+2}, \mathrm{f}\right)=0\right)
$$

and

$$
\delta_{\mathrm{n}-\lambda}\left(\mathrm{A}_{\mathrm{j}}, \mathrm{f}\right)=1\left(\operatorname{resp} . \delta\left(\mathrm{A}_{\mathrm{j}}, \mathrm{f}\right)=1\right)(\mathrm{j}=1, \cdots, \mathrm{n}+\lambda+1)
$$

Remark．If（16）＇holds，$\rho(\mathrm{f})$ is positive integer or $+\infty$ and f is of regular growth（［12］，Theorem 6 and［13］， Theorem 6）．

Let $\mathrm{A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}+\nu+1}(1 \leq \nu \leq \lambda-1)$ and $\mathrm{B}_{1}, \cdots, \mathrm{~B}_{\tau}$ be in \mathbf{H} and put

$$
\left(\tilde{\mathrm{A}}_{\mathrm{i}}, \mathrm{f}\right)=\widetilde{\mathrm{F}}_{\mathrm{i}}(\mathrm{i}=1, \cdots, \mathrm{n}+\nu+1) \quad \text { and } \quad\left(\widetilde{\mathrm{B}}_{\mathrm{j}}, \mathrm{f}\right)=\widetilde{\mathrm{G}}_{\mathrm{j}}(\mathrm{j}=1, \cdots, \tau)
$$

We apply the discussion in II of Section 2 to

$$
\left\{\tilde{\mathrm{F}}_{1}, \cdots, \tilde{\mathrm{~F}}_{\mathrm{n}+\nu+1}, \tilde{\mathrm{G}}_{1}, \cdots, \tilde{\mathrm{G}}_{\tau}\right\}
$$

We may suppose without loss of generality that $\widetilde{F}_{1}, \cdots, \widetilde{F}_{n+1-\lambda}$ form a basis of \mathbf{H} over Γ ．Let

$$
Y^{0}=\left\{\widetilde{F}_{n+2-\lambda}, \cdots, \widetilde{F}_{n+\nu+1}\right\}, Y^{j}=Y^{0} \cup\left\{\widetilde{G}_{j}\right\} \quad(j=1, \cdots, \tau)
$$

and p_{o} be the number of equivalence classes of Y^{0} / \sim ．Then，we have the following theorem．
Theorem 3．（I）Suppose

$$
\begin{equation*}
\sum_{\mathrm{i}=1}^{\mathrm{n}+\nu+1} \delta_{\mathrm{n} \lambda}\left(\mathrm{~A}_{\mathrm{i}}, \mathrm{f}\right)>\mathrm{n}+\nu \tag{17}
\end{equation*}
$$

Then， $2 \leq \mathrm{p}_{\mathrm{o}} \leq \mathrm{n}+1-\lambda$ and $\nu\left(\mathrm{p}_{\mathrm{o}}-1\right) \leq \lambda$ ．
（II）Suppose that

$$
\begin{equation*}
\sum_{i=1}^{n+\nu+1} \delta_{n-\lambda}\left(A_{i}, f\right)+\delta_{n \cdot \lambda}\left(B_{j}, f\right)>n+\nu+1 \quad(j=1, \cdots, \tau) \tag{18}
\end{equation*}
$$

Then， $2 \leq \mathrm{p}_{\mathrm{o}} \leq \mathrm{n}+1-\lambda$ and $\nu\left(\mathrm{p}_{\mathrm{o}}-1\right)+\tau \leq \lambda$ ．
Proof．We first note that we get（17）from（18）．Let

$$
Y^{0} / \sim=\left\{Y_{1}^{0}, \cdots, Y_{P_{o}}^{0}\right\}, Y^{j} / \sim=\left\{Y_{1}^{j}, \cdots, Y_{p_{j}}^{j}\right\} \quad\{j=1, \cdots, \tau\}
$$

$X_{t}^{j}=\left\{\widetilde{F}_{i}\right.$ ：there is at least one element \tilde{F} in Y_{t}^{j} such that $\left.\alpha_{i} \neq 0\right\}$ ，where $\tilde{\mathrm{F}}=\sum_{\mathrm{i}=1}^{\mathrm{n}+1-\lambda} \alpha_{\mathrm{i}} \tilde{\mathrm{F}}_{\mathrm{i}} \quad\left(\alpha_{\mathrm{i}} \in \Gamma\right)$ ；
$\nu_{t}^{j}=$ the number of elements in $X_{t}^{j}\left(j=0,1, \cdots, \tau ; t=1, \cdots, p_{j}\right)$ ．Then，
（a）$X_{t}^{j} \cap X_{s}^{j}=\phi$ if $t \neq s$ ．
（b）$\sum_{t=1}^{\mathrm{P}_{\mathrm{i}}} \nu_{\mathrm{t}}^{\mathrm{j}}=\mathrm{n}+1-\lambda$ ．
This is because each $Y^{j}(j=0, \cdots, \tau)$ contains at least $\lambda+1$ elements and

$$
\left\{\tilde{F}_{1}, \cdots, \tilde{F}_{n+1-\lambda}\right\}-\bigcup_{t=1}^{p_{i}} X_{t}^{j}=\phi .
$$

（c）$\nu_{\mathrm{t}}^{\mathrm{j}} \leq \mathrm{n}-\lambda \quad\left(\mathrm{j}=0, \cdots, \tau ; \mathrm{t}=1, \cdots, \mathrm{p}_{\mathrm{j}}\right)$ ．
We can prove these inequalities as in the proof of Lemma 6 in［10］by applying the method used in the proof of Theorem 1 ．

Next，we suppose without loss of generality that \widetilde{G}_{j} belongs to $Y_{1}^{j}(j=1, \cdots, \tau)$ ．Then，we have
（d）For each $\mathrm{j}(\mathrm{j}=1, \cdots, \tau)$ ，there exist a t_{1} and a t_{2} such that

$$
\mathrm{X}_{\mathrm{t}_{1}}^{0} \subset \mathrm{X}_{1}^{\mathrm{j}} \quad \text { and } \quad \mathrm{X}_{\mathrm{t}_{2}}^{0} \cap \mathrm{X}_{1}^{\mathrm{j}}=\phi
$$

We can prove this fact as in the proof of Lemma 7，i）in［10］．
（e）When we represent $\widetilde{\mathrm{F}}_{\mathrm{n}+1-\lambda+\mathrm{k}}(\mathrm{k}=1, \cdots, \nu+\lambda)$ as linear combinations of $\widetilde{\mathrm{F}}_{1}, \cdots, \widetilde{\mathrm{~F}}_{\mathrm{n}+1-\lambda}$ with Γ－coefficients， there are $p_{o}-1$ classes in $\left\{X_{1}^{0}, \cdots, X_{p_{o}}^{0}\right\}$ such that all coefficients of elements in those classes are equal to zero．
（f）When we represent \widetilde{G}_{j} as a linear combination of $\widetilde{F}_{1}, \cdots, \widetilde{F}_{n+1-\lambda}$ with Γ－coefficients，because of（d），there is at least one class $X_{t(j)}^{0}$ such that all coefficients of elements in that class are equal to zero．

Proof of（I）．From the definition of λ and due to（e），we have

$$
(\nu+\lambda)\left(\mathrm{p}_{\mathrm{o}}-1\right) \leq \mathrm{p}_{\mathrm{o}} \lambda
$$

which reduces to $\nu\left(\mathrm{p}_{\mathrm{o}}-1\right) \leq \lambda$ ．
Because of（b）and（c）for $j=0$ ，it is trivial that $2 \leq p_{o} \leq n+1-\lambda$ ．

Proof of (II). From the definition of λ, due to (e) and (f), we have

$$
(\nu+\lambda)\left(\mathrm{p}_{\mathrm{o}}-1\right)+\tau \leq \mathrm{p}_{\mathrm{o}} \lambda,
$$

which reduces to $\nu\left(p_{o}-1\right)+\tau \leq \lambda$.
As the number p_{o} is the same one as in (I), we have

$$
2 \leq \mathrm{p}_{0} \leq \mathrm{n}+1-\lambda .
$$

From this theorem, we can deduce many well-known results on the number of exceptional elements in \mathbf{H}. We use $\lambda_{\mathrm{c}}, \lambda_{\mathrm{p}}$, or λ_{f} instead of λ when $\Gamma=\mathbf{C}, \Gamma=$ the field of rational functions or $\Gamma=\mathrm{S}_{\mathrm{o}}$ (f) respectively.

Corollary 4. 1°. When $\Gamma=\mathbf{C}$, let N_{1} be the number of elements A of \mathbf{H} satisfying the condition
1] (A, f) has no zero.
Then, $\mathrm{N}_{1} \leq \mathrm{n}+1+\lambda_{\mathrm{c}} /\left(\mathrm{n}-\lambda_{\mathrm{c}}\right)([2])$.
2°. When $\Gamma=\mathbf{C}$, let N_{2} be the number of elements A of \mathbf{H} satisfying the condition
2] (A, f) has at most a finite number of zeros.
Then, $\mathrm{N}_{2} \leq \mathrm{n}+1+\lambda_{\mathrm{c}} /\left(\mathrm{n}-\lambda_{\mathrm{p}}\right)([3])$.
3°. When $\Gamma=$ the field of rational functions, let N_{3} be the number of elements A in \mathbf{H} satisfying the condition
3] (A, f) has at most a finite number of zeros.
Then, $\mathrm{N}_{3} \leq \mathrm{n}+1+\lambda_{\mathrm{p}} /\left(\mathrm{n}-\lambda_{\mathrm{p}}\right)([9])$.
4°. When Γ is any subfield of $S_{0}(f)$ containing C, let N_{4} be the number of elements A in \mathbf{H} satisfying the condition 4] $\delta(\mathrm{A}, \mathrm{f})=1$.
If ρ (f) $<+\infty$, then, $N_{4} \leq n+1+\lambda /\left(n-\lambda_{f}\right)$ ([9]).

Proof. For each $i(=1,2,3,4)$, we have only to prove our inequality when $N_{i} \geq n+2$. Let $\mathrm{A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}+\nu+1}(\nu \geq 1)$ be in \mathbf{H} satisfying the condition i$]$ ($\mathrm{i}=1,2,3$ or 4). Then, by applying Theorem in [5], p. 116 to each case, we can prove the followings.

Case $1^{\circ} . \mathrm{p}_{\mathrm{o}}=\mathrm{n}+1-\lambda_{\mathrm{c}}$.
Case $2^{\circ} . \mathrm{p}_{\mathrm{o}} \geq \mathrm{n}+1-\lambda_{\mathrm{p}}$.
Case 3°. $\mathrm{p}_{\mathrm{o}}=\mathrm{n}+1-\lambda_{\mathrm{p}}$.
Case $4^{\circ} . \mathrm{p}_{\mathrm{o}} \geq \mathrm{n}+1-\lambda_{\mathrm{f}}$.
Due to Theorem 3, (I), we have our inequalities.

References

[1] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31.
[2] J. Dufresnoy, Théorie nouvelle des familles complexes normales; applications à l'étude des fonctions algébroïdes, Ann. E. N. S., (3) 61(1944), 1-44.
[3] A. A. Gol'dberg and S. B. Tushkanov, On the exceptional linear combinations of entire functions, Teor. Funk. Anal. i Pril., 13(1971), 67-74 (in Russian).
[4] W. K. Hayman, Meromorphic Functions, Oxford at the Clarendon Press, 1964.
[5] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris 1929.
[6] M. Ru and W. Stoll, The Cartan conjecture for moving targets, Proc. of Symp. in Pure Math., 52-2(1991), 477-508.
[7] M. Shirosaki, Another proof of the defect relation for moving targets (preprint).
[8] N. Toda, Sur une relation entre la croissance et le nombre de valeurs déficientes de fonctions algébroïdes ou de systèmes, Kodai Math. Sem. Rep., 22-1(1970), 114-121.
［9］N．Toda，Sur les combinaisons exceptionnelles de fonctions holomorphes；applications aus fonctions algébrö̈des，Tôhoku Math．J．，22－2（1970），290－319．
［10］N．Toda，Sur quelques combinaisons linéaires exceptionnelles au sens de Nevanlinna，V，Nagoya Math．J．， 66（1977），37－52．
［11］N．Toda，Sur l＇inégalité fondamentale de H．Cartan pour les systèmes de fonctions entières，Nagoya Math． J．，83（1981），5－14．
［12］N．Toda，On the order of holomorphic curves with maximal deficiency sum，Kodai Math．J．，18－3（1995）．
［13］N．Toda，On holomorphic curves of infinite order with maximal deficiency sum，Bull，Nagoya Inst．of Tech．， 46（1994），175－186．

