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On Holomorphic Curves of Infinite Order
with Maximal Deficiency Sum
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Let f: C — P"(C) be a transcendental holomorphic curve from C into the n-dimensional
complex projective space P"(C) and X a subset of C"*! in general position. Then, it is known
that if f is non-degenerate, (*) 2 ,<x & (a,f)<n+1. As in the case of meromorphic functions,
the following problem is interesting:

Problem. What properties does f possess if the equality holds in (% )?

Concerning this problem, we gave several results for f of finite order in [9]. For example,
“If the equality holds in (%) and if & (e;,f)=1 (j = 1,---,n), then f is of regular growth and
the order of f is a positive integer.”

In this paper, we shall give similar results for f of infinite order to those for holomorphic

curves of finite order obtained in [9].

1. Introduction

Let
f:cC — P"(C)
be a holomorphic curve from C into the n-dimensional complex projective space P"(C), where n is a positive
integer, and let
(fi,>faci) : C — C"'' — {0}
be a reduced representation of f. We then write f =[f1,--fn+:].

For a vector a=(ai,***,a.-1) in C"*!, we write
(a,f):j%llajfj and fal = i?gl la;|?{v*
and put
1)1 =172 I, ) 17 1
Then we define as usual the characteristic function of f as follows.

1 r2r .
T(r,0)= 5 [Mlog I(re'*) 146 —log 1£(0) 1.

In addition, put
U(z)= max |fi(2)],
1<j<n+1

then
Ulz)Z If(2) | <(n+1)¥2U(z)

and we have

#L b i8
(1) T(r,f)= zﬂfo log Ulre'?)d g +O(1) (see [11).
We suppose that f is transcendental; that is to say,
lim __T(r,f) = +oo
r-o logr

We denote the order of f by o (f) and the lower order of f by # (f) respectively:
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log T f log T f
p (f)= lim sup O—b—(_&—) and # (f)= lim inf 0{—4(1")
r -~ oo log r o og T

It is said that f is of regular growth if o (f)=x(f).
We write for a=(a1,***,a.+1) in C**'— {0} such that (a,f)*+ 0

m(r,a,f)= —f log 'lla"”f" df and N(r,a,f)ZN(r,ﬁ).

Then we have
(2) T(r,f)=N(r,a,f)+m(r,a,f)+0(1)
(the first fundamental theorem (see [10], p.76)).

We call the quantity
i N (r,a,f)
Slaf)=1— hrm_’sgop W
= lim inf minal (ra.f)
r- o T(rf)
the deficiency of a with respect to f. It is easy to see that
0<4s(a,0)<1
by (2) since m(r,a,f)=>0. Put
A=dim{(cy,*,car1)EC s cif i+ Fcosifos = 0,
then it is easy to see that 0< A <n—1. We say that f is (linearly) non-degenerate if A = 0 and that f is

(linearly) degenerate if A > 0.
It is well-known that f is non-degenerate if and only if the Wronskian W(f, ==+ f..1) of fi,=*,fa+1 is not

identically equal to 0.
Let X be a subset of C**'—1{0} in general position; that is to say, any n+1 vectors of X are linearly inde-

pendent. The following inequality (the defect relation) is well-known (see [1]).

(3) > 6 (a,f)<n+ 1.

aeX
In [9], we gave several results for holomorphic curves of order finite for which the equality holds in (3).

For example,
Theorem A. Suppose that f is non-degenerate and o (f)<oo. If there are a:,**,a, in X (n+1<g<o0) such

that
i) o
(i) % o(a,,f)=n+l,
then f is of regular growth and p (f) is equal to a positive integer.

The purpose of this paper is to give similar results to them when p (f)=oc0. From now on throughout the

paper we suppose p (f)=o00,
We prepare several lemmas in Section 2 and give a result for non-degenerate holomorphic curves in Section
3, which corresponds to Theorem A. In Section 4, we extend a result obtained in Section 3 to moving targets.

In Section 5, we treat the degenerate case. We use the standard notation of the Nevanlinna theory of mero-

morphic functions ([2],[3]).
2. Lemma
We shall give some lemmas in this section for later use. Let f and X be as in Section 1. Note that ¢ (f)=

We use the following notation to treat f of order infinite in the same way as in the case of holomorphic

curves of finite order.
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Let o« be any positive number. Then, we put

Tu(r,f)=flr T(L.f)

tl+a

dt
and we difine N.(r,a,f) and m.(r,a,f) similarly. Further, put

m.(r,a,f)
d.(af)= l:mjgf ———-(Y )

(see [7]). Let S(r,f) be any quantity satisfying

s.r0)=[" St(,ﬁ’f)dpom(r,m (r— o)

for any positive number « .
Lemma 1. (a) For any 0 < a <o
log T.(r,f
(4) lim supi—(—r—) =
ro— log r
Conversely, if (4) holds for some finite « >0, then p (f)=o0.

‘ >max (p(f)— a0 if 4 (£)<oo;
(b) ()3 lim ing 128 Te(rf) | Zmax ({5 =a,0)if w(f)
P e log r =o0 otherwise.

In fact, (a) is given in Proposition 1([7]) and we can prove (b) as in the case of (a).
Lemma 2. 0<¢d(a,f)<¢s.(a,)<1 (see [7], Proposition 3, 3)).

Lemma 3. Let h(z) be a meromorphic function in |z | < oo, then for any positive integer k

h(k) B r100, (t h)
ma(r,—h')—O(f]‘T—— t).
In fact, for k=1, this is Lemme I in [3], pp.62-63. For k=>2, we note first that
_ Rk ki)
(5) o Lo
By using .
T(r,h )< 2T(r,h"" " 2)+m(r —— Xy )+0(1)
we have -
(i—-1)
(6) log “T(r,h" ) < og " T(r,h" ") +m(r =) +O(1).

and by applying the case k=1 of this lemma to h"’ "', we have

i

t” dt). (G=1,k).

(7) m. (r,

11)

From (6) and (7) we obtain by induction

hor o re logt T(t,h)
m, (r, h”’”)_O(fl —tl;a—dt) (j=1,--k)
so that we have from (5)
heo . r log* T(t,h)
=< ——
m.(r, =) =< ¥ m.(r, h(,1>+o<1> —o(f )

Lemma 4. If there exist n+1 elements a:,***,8.-1 in X such that &.(a;,f)=1 (j=1,-,n+1) for any 0< «
< oo, then f is of regular growth ([7], Corollaire 5).
Lemma 5. (a) T(r,fx/f;)<T(r,f)+0(1) (k*j) ([1D).
(b) For any a, b in X such that (a,f)#0 and (b,f)#0,
T(r,(a,f)/(b,f))<T(r,f)+0(1) (1.
Put for any a; €X (j=1,--,n+1) .
3 N.(r,aj,f)

Ka(f) - limab‘gp j—:T"(r’f—)—“

(see [7], Definition 5). Then we have the following
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Lemma 6. If x (f)< p (f)=o0, then for any r and « such that
(1) 7 is not an integer and x (f)< ¢ ;
(ii) 0<ea<p and 7+ a <oo;
(iii) [e]=lr+al,
n+1 | sin 7 (z+a)l
' Kla,r)+lsin z(c+a)l’

where K( a, 7 ) is a positive number dependent only on « and r ([7], Théoréme 5).

K.(f)=

Suppose now that f is non-degenerate. Let d(z) be an entire function such that the functions
f3*1/d (j=1,+n) and W(fi, - fa.1)/d
are entire functions without common zeros.
Definition ([8]). We call the holomorphic curve induced by the mapping
(fptt e 2, W(fy,f271)):C — C*!
the derived holomorphic curve of f and we write it by f*:
fr=[fre1/d, = 57 /d,W(f 1, far0)/d].
Lemma 7 ([8]). T(r,f*)<(n+1)T(r,f)—N(r,1/d)+S(r,f).
Proof (see [8], Lemma 3). Put h;=f; /fl. Then,
2 W(hz, hhs1)
S(r.f)= 5 f IS ldg o)
<T T m(rh/h,)+0(1)

and by Lemmas 3 and 5 (a) we have
S.(r,f)=o(T.(r,f)) (r— o).
In addition, f* has the following properties:

Proposition 1 ([8]). (a) f* is transcendental. (b) o (f*)=p (f). (c) f* is not always non-degenerate.

3. Non-Degenerate Case

Let f=[f,>-,f.~:1] and X be as in Section 1. We shall give similar results to those obtained in [9], Section
3 when f is non-degenerate and p (f)=oc in this section. We need another lemma.

Lemma 8. Suppose that f is non-degenerate and p (f)=co, For any ai, *a, (n+1 < q <) of X, we have
(q=n=DT(r,)< = N(r,a;,0) =N, l/W(fy, = f200)) +S(r,0) (see [1]).
e

Proof. We have only to change slightly the proof of the fundamental inequality of Cartan ([1], p.12-p.15).

We make use of the formula

1 o F, - F, . 1 1
= [T og et 14g = ) =N(r, ————)+0(1
27['-/; 8 (e ..y 146 = BN ) =N, ) +0(1),
instead of the inequality
27r -‘.F
— 1" 149 < SN, +0(1
> f W(f“ 10 £ No-(nF))+0(D),

used in [1], where F, =(a;,f).
Since the error term S(r) used in [1] is equal to a finite sum of integrals of the from
h(]k )

o [ogr 1R 4 o)< 2% mr, =) +0(D)
ox o "8 U h o, =SSP
where h; is a ratio of the form F; /Fj, (j, #j,), it is easy to see that

S(r)=S(r,f)

by Lemma 3 as in the proof of Lemma 7 since
T(r,h;)<T(r,f)+0(1)
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by Lemma 5(a).

Corollary 1. Under the same condition as in Lemma 8, if the equality holds in (3), then for any 0< a <o
. N.(r,0,W({f " fas1))
(8) ] — IVy 3y 3’ —
lim, T.(r.0) 0.

Proof. By integrating both sides divided by ' of the inequality of Lemma 8 from 1 to r with respect to

r, we obtain the inequality

(q—n—l)T‘Ar,f)s“z1 N.(r,a;,f)=N.(r,0,W)+S.(r,f),

where W=W(f,*--,f.~1), from which we obtain
N.(r,0,W)

<n+1.
T.(r,f) ntl

(9) 2_7\{8,(a,f)+ lim sup
Note that
d.(a,f)=1—lim sup N.(r,a,f)/T.(r,f)

since T.(r,f)=N.(r,a,f)+m.(r,a,f)+0(1).
If the equality holds in (3), then by Lemma 2 and (9) we have

glx&a(a,f)=n+1

and so (8) from (9).
Let {e1,"*",eq+:1 be the standard basis of C**' and put
X,=1la=(ai,,a0+1)EX : ans1=0}.
Then, # X,<n since X is in general position.
Theorem 1. Suppose that f is non-degenerate and p (f)=oco. For any ai,*,8, (1<q <) in X—X,, we
have the following inequality:

J%_llm(r,a,-,f)i m(r,ea+1,f*)+S(r,f).
Proof. We have only to prove this theorem when q =2 n+1. We put
(a;,f)=F; (j=1,-+,q) and u(z)= Jnax. 1£5(z) 1
and for any z(#0) arbitrarily fixed, let
1T, (2)] < IF;,(2)| << |F5 ()| (1 <j, i< a).

Then, as in the proof of Theorem 1 in [9], we obtain the inequality
U(Z) n+1

W(fi,fas1) 146

q 1 2
R < — +
jglm(r,al,f)_ o j; log* |

Y+0O(1)< m(r,en+1,f*)+8(r),

W(F; JRTT OF )
+ > m(r’ 1 Jn+1
Giyrig4y) Fjl"’an+1
where X is the summation taken over all combinations (j,,**,j, ) chosen from {1,---,q} and

Gyprnipgy)
W(F, - Figy )

S(r)= = mlr,
(x) Gyodg gy FijFi )

)+0(1).

=S(r,f)
as in the case of Lemma 8. Thus, our proof is complete.
Corollary 2. Let f be as in Theorem 1. Then we have

1
< N *
OO RO ),

T.(r,f*) T.(r,f*)
——= <1 ————— < n+l1.
T.(r.0) lll'nl‘Slolﬂp T.(r.0) n

(10) 2 d.(a,f)< lim inf
aEX-—XO r — oo
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We can easily prove this corollary by Lemma 7 and Theorem 1.
Now, we can prove one of main results of this paper.
Theorem 2. Suppose that f is non-degenerate, o (f)=o0 and
(i) o ey, £)=1(j=1,n).
If there exist a1,"*-,aq (n+1 < q < ) in X such that
(i) 2 o(a,0=n+l,
then f is of regular growth.

Proof. Suppose that X, consists of a;,***,a.. Then, 0 < ¢ <n. Let « be any positive number. Then, by

Corollary 1, we have from (ii)
N (r,1/W(fi, = fasr))

(11) }m:ﬂ T.(ef) =0.

By (10) and (ii), we have

(12) 1<n+1—1¢ séﬂaa(aj,f)s lrinligf% < limjgp% <n-+1.
By Proposition 1 (b), o (f*)= p (f)=o0 and (12) implies that

(13) lim, igflo—gl%: lim igflog+:r’m

From (11) and (12), we have

(14) 8. (enri,f*)=1

and from (i) and (12)

(15) d.(e;,f*)=1 (j=1,~n).

By Lemma 4, (14) and (15) imply that f* is of regular growth since the set le; ! is in general position. So,
(13) and Lemma 1 (b) imply that # (f)=co. That is, f is of regular growth.

Corollary 3. Suppose that f is non-degenerate and o (f)=oo. If there are a,,-,a, in X (n+1 < q <o) such
that
(i) ¢ (a;,f)=1(j=1,>n);
(i) 2 6(a,f)=n+1,
then f is of regular growth.

We can prove this corollary as in the case of Corollary 3 in [9].

4. Extension

Let f=[f,,---,f.+1] be a transcendental holomorphic curve from C into P"(C). We use the same notation as
in Sections 1 and 2. Let T' be the field consisting of meromorphic functions a in |z| < oo such that T(r,a)=
S(r,f).

Throughout the section we suppose that f is non-degenerate over I' and we note that f is of order infinite.
Let

S(f)=1{A=[a1,"*",a.+1]: holomorphic curve from C into P*(C) such that T(r,A)=S(r,f)|
and let H be a subset of S$(f) in general position. It is clear that S(f)DP"(C). For A=[a.,,a..:1€S(f) we
set
(Af)=afi++a,ifo..

Then, we have the following

Proposition 2. (a) aw/a; €T if a,+0. (b) (A,f)=0.

Proof. (a) Applying Lemma 5 (a) to A, we have

T(r,ac/a;)<T{r,A)+0(1)=S(r,f).

(b) Since there is at least one a, #0 (1 <j < n+1),
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(Af)

ai Qn+1
_— —fi+"'+
aj aj

aj

fn+1

is a linear combination of £, ,f..: with I'-coefficients. As f is non-degenerate over I', (A,f)/a;#0. That
is, (A,f)=0.

We put

1 (= ITAIE
m(r,Af)= E \ log Wdﬁ ,
which is non-negative as in Section 1 and independent of the choice of reduced representations of f and A, and
N(r,A,f)=N(r,1/(Af)).
Then we have the first fundamental theorem:

T(r,f) =m(r,A,f) +N(r,Af) +3(r,f).
The defect of A with respect to f is defined as follows:

- m(r,A,f)
f)=lim inf ———.
o (Af) im int T(e.f)
We define m. (r,A,f), N.(r,Af) and &.(A,f) as in Section 2.

Then, by the first fundamental theorem

and Lemma 2 holds for A€S(f). We can prove the following defect relation by using the inequality (19) given
below:

The defect relation (cf.[6], see also [4]):

(16) T s(ADS 2 8.(A<n+l
A€H A€EH

The purpose of this section is to give a similar result to Theorem 3 in [9] when p (f)=co and the equality
holds in (16). We need the following lemma.

Lemma 9. For any A=[ai,"*,a.+:] and B=[by,"*,ba+1] of S(f) such that a;#0, b« #0, put (Af)=F and
(B,f)=G. Then,

F/a;

L y<
- T(r, G/bk)_ onT(r,f)+S(r,f).
Proof. Since

F/a; o 4 a1
m4{El(a,/a,)fﬂ/{El(b,/bﬂfb)

=1'S (a./a)E/I/1E (b /BT /D,
F/aj

n+1 f,, a. bv
< R S 2Ly 4+0(1) <
T, G/be )*21{21‘(1«’ . )+T(r, a, )+T(r, b )1 4+0(1)< 2nT(r,f) +S(r,f)
by Lemma 5 (a) and Proposition 2 (a).

T(

For A=[ai,""",an+:] of H, let a;, be the first element not identically equal to zero. Then we put
~ a. an+
A=( !

2, Y=(g1,gos1), IAI=1Al/la;,| , H={A:A€H|
and for (A,f)=F

? =F/aj0:(ﬂ,f)=fi‘,ll gjfj.
j=

. ~. . - a "
Then, it is clear that H is in general position and g; = _;_ €T by Proposition 2 (a).
]D
Put

H.= IA:[al,"',an+1]€HZan+1 :0}
Then we have

Theorem 3. Suppose that p (f)=c0 and that
(i) ¢&(e,f)=1( =1,-n).
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If there exist Ai,*-*,Aq (n+1 < q =<c0) in H such that
(i) 2 o(A,f)=n+1,
then, Jf_ils of regular growth.

Proof. We may suppose without loss of generality that q = 2n+1 as in the case of Theorem 3 in [9].

Let ¢ be any positive number smaller than 1/4. Then, there exists a finite number v (>2n+1) such that
(17) 2 oA D>n+1-c,

Put for j =1, v

Ai=[ai,a5]) and A;=(g;, " ginn).

For any integer p, Let V(p) be the vector space generated by

a+l ) n+1l . . .
im o g‘?(""):kﬂ1 ,Z}lp(],k)s p, p(j,k)= 0 and integer!
P

k=1j=1_1Jk

over C and
d(p)= dim V(p).
Then, V(p) is a subspace of V(p+1) and

lim inf d(p+1)/d(p)=1

since d(p) < <<“+1); “’) (see [5], see also [6]), so that we can choose p so large that the following inequality
holds:

(18) d(p+1)/d(p)<1+ ¢ /(n+1).
Note that any element of V(p) belongs to I' since gi«E .
Let

bl,”',bd(pl,bd(pH1,"',bd(p+1)
be a basis of V(p+1) such that
by, baip
form a basis of V(p). Then, it is clear that the functions
{befi : t=1,,d(p+1) ; k=1,---n+1}
are linearly independent over C. We put for convenience
W=W(b.ifi,bof1, bapsiifar1).
Then, we can prove the following inequality as in [4]:
(19) N(r,1/W)+d(p)( v —n—1)T(r,f)

<d(p)E N(r,A;L0) +(n+1)1d(p+1) —d(p) IT(r,£) +S(r,f).

Suppose without loss of generality that H, consists of A,,*+ ,A., where 0 < ¢ <n. As in the proof of
Theorem 3 in [9], by making use of Proposition 2 (a) and Lemma 9, we have
o {u(reiﬁ)zln+1?dip-l)

B 1 .
(20) 4(p) 2 m(r A0S 5 [Tlog W

J

dg +S(r,f).

Let g(z) be a meromorphic function such that the functions
1
g(z)
are entire functions without common zeros.
We put

1
{fj(z)frre=ti(j=1 .o n) and ——W
g(z)

1 ‘ 1 1
h*=[— (f,)r+Ddb+1) .. = . (nu)d(wny_w .
| ' [g (f1) g (f) z ]
Then, we have the inequality
(21) T(r,h*)<(n+1)d(p+1)T(r ) +S(r,f)
(cf. Lemma 7) by using

af

N(r,g)<(n+1)d(p+1) T N(rb,)=S(r.f).
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From (20) and (21), we have the following as in the case of (10):

oo .. T.(r,h*)
(22) d(p)1 2 8.(A;,DI< Lim inf —r 7
< limﬂsgp TT(_Z:,]T*)) < (n+1)d(p+1)
(cf. (29) in [9]) and from (17), (18) and (19)
. N.(r,1/W)
(23) 11{11Lsgp—#< 2¢d(p).

From (17) and (22) by the facts “0 < ¢ <n” and “ o (A,f)<5.(Af)”, we have for any 0 < a <oo
(24) lim sup M = lim sup JggT_.,(r,_h*_)
P log r ro e log r
and
(25) lim inf —_log T.(r.f) = lim inf _—__l()g T.(rh") .
ro— e log r P e log r
Since p (f)=o0, (24) and Lemma 1 (a) imply that o (h*)=oco.
Suppose now that # (f)<oo. Then, (25) and Lemma 1 (b) imply that # (h*)<o. Let ¢ satisfy
n+1' Isin 7 (z+a) | |
n Kla,z)+|sina(z+a)l”’
where « and r satisfy the conditions (i), (ii) and (iii) of Lemma 6 for h*. By the hypothesis (i), (17), (22)
and (23), we have

(26) 0<4e< min {1, sup

EINQ(r,ej,h*) ).

27 (h*)=h L < .

(217) K.(h*) im sup T.(r.h") 1-2. <4e

since € <1/4. (26) and (27) contradict with Lemma 6. This shows that # (f)=o0. That is, f is of regular

growth.

Our proof is complete.

5. Degenerate Case

Let f, X and A be as in Section 1. Throuout the section we suppose that A > 0.

By the definition of A, there are n+1— A functions in {fy, »+fa+: | which are linearly independent over C.
We suppose without loss of generality that fi,-:,f.+1-. are linearly independent over C. Then fa+:-; IRIEN e
can be represented as linear combinations of f1,"*,f«+1-: with constant coefficients.

From now on we put n— A = £ for simplicity.
For any a=(a.,",a.+1) of C"*' such that (a,f)#0, there exists only one vector a’ =(a},*,a%+1,0,++,0) of
C~*! such that
(a,f)=(a",f)
since fe.z2,"*,f.+1 can be uniquely represented as linear combinations of fi,---,f,+1 with constant coefficients.
We map a to a’. In this mapping, we put
X,={a€X: ats1=0l.

Lemma 10. (I) The number of vectors of X, is at most n.

(II) For any vectors a;,, ,a;, (1 <m=< ¢ ) of X—X{ such that aj,,+,a; are linearly independent over C, we
can choose e,,***,&:,, .. from le:, -e.| such that
, , , ,
@i, " Biy gy @iy 80y

are linearly independent over C.
(IIT) There is a subset X, of X, such that #X:< A and such that from any n+1 vectors a:,***,@+: of X—-X7,

we can find ¢ +1 vectors a,,,---,a;, ., for which
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(aj,,f),(aj,,,0)
are linearly independent over C and aj, ,,,***,a;,, ,, do not belong to X5. ([9], Lemma 8).
Lemma 11. Suppose that fi,---,f:+1 (£ =n— A) are linearly independent over C and p (f)=oo. Then for

any ai,+,a, (n+1< q <) of X—X7%, we have
2 m(ra, )<+ DT+ 4 Z Nire,,H)=(4 +1N(r,L/W)+S(r.1),
i= i=

where W=W(f,,~-- f,+1).

We can prove this lemma as in the case of Lemma 9 in [9].

Theorem 4. Suppose that fi,---,f(+: are linearly independent over C and p (f)=o0, Let ai,***,a, (n+ A +1<
q <o) be any elements of X such that X7 N{a:,"*-,a,}=1{ai,-,ax}. Then we have

q [4 1
(28) 2 m(ra;,f)<(n+2+DT(r,f)+2 = Nre,f)—(4 +1)N(r, W)+S(r,f),
1= 1=

where W=W(f,---.f,~1) and X7 is the set obtained in Lemma 10.
Further if 6 (e;,f)=1 (j =1,---,¢ ), then

(29) % 5 (a,0<n+1+ 2 6(a,H)<n+ i +1.
j= i=
Proof. We first note that 0 < k < A by Lemma 10 (IlI). Applying Lemma 11 to {aw+:,**,aq}, we have

m(r,a,,6)<(n+ DD+ A Nire,,£) = (4 +1DN(r, ) +8(n,8).

(30) = W

Adding él m(r,a;,f) to both sides of (30), using
m(r,a;,f)<T(r,f)+0(1)
and noting k < A, we have (28).
If 6(e;,f)=1(j=1,-,¢ ), then from (27) we have

qu 8(a,~,f)§n+1.
i=k+

1

Adding é‘.l 6 (a;,f) to both sides of this inequality, we obtain (29).

Corollary 4. Suppose that fi,--,f,+: are linearly independent over C, o (f)=c0 and that
(i) ¢ (e ,f)=1(j=1,,¢).

If there exist ai,---,aq (n4+ A +1<q<) in X such that
(ii) ,-%1 s(a; f)=n+ 21 +1
and such that

XiN1{a:,,adl=lay, - al,

then

(a) k=4 and & (a;,f)=1 (j=1,,1);
N W)

(b) }LT:: T.(r,f) =0

Proof. (a) From the hypothesis (ii) and (30), we have
q k
ntA+1=3 5 (a, < ntl+ 2 5 (aD<n+ 2+,
j= i=

so that we have
k=21 and ¢ (a;,f)=1 (=1, 41).
(b) From (28) of Theorem 4 and the hypothesis (i), we have
N.(r,1/W)
T.

- <n+ A +1,
) "

'ZQ:1 S.a;,f)+(A+1) lim sup

r — o

so that by the hypothesis (ii) and Lemma 2 we obtain
N. (r,1/W)

}VIEID]O ——Ta(r,f) =0.

Suppose that fi,-=*,f¢+, are linearly independent over C. Let f* be the holomorphic curve induced by the
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mapping
(firt, - firtW): C—>C'"!
where W=W(f,,+- f.+1) is the Wronskian of fi,:- f,...
Note that there is an entire function d(z) such that the functions f{*'/d (j =1,--, ¢ ) and W/d have no
common zeros.
Let {&;}¢*! be the standard basis of C'*'. Then, we have

Theorem 5. Suppose that o (f)=co. For any a:,"--,a, (n+1<q<0) in X—X5, we have
2 m(r,a;,0) <A+ Dm(r g ) +8(n1).

We can prove this theorem as in the case of Theorem 5 in [9] with a slight change in estimating the error
term.

Corollary 5. Under the same assumption as in Theorem 5, we have

1
! YRRV (a,)< 6.(8001.£%);
oy D (D) eciy Or@D= 8u(80EY)
1 T ) T. (r.f*)
2 2 sdJaf)= f = 2 < im sup —— < _
. GG iy O@D= il o = e oy =61

We can prove this corollary by Theorem 5 and Lemma 7 as in the case of Corollary 2 in Section 3.
Theorem 6. Suppose that fi,::+,f.+ are linearly independent over C, o (f)=oc0 and that
(i) eo(e,f)=1 (j=1,--,¢).
If there exist a:,-**,8, (n+ A +1<q<) in X such that
(ii) 21 8 (a;f)=n+ A +1,
then f is of regular growth.
Proof. By Lemma 10 (I), X/ contains at most n vectors. We may suppose without loss of generality that
X.=lai,-,a,} (0<p=<n).

Then from the hypothesis (ii), we have
(33) A+1Snta+1-p< 3 o(a )< i‘.uaa(aj,f)
)=p 1=Dp

by Lemma 2. (32) and (33) imply that
1 . 1 (r,f*
(34) lim sup tog T.{r.f). (r.0) = lim sup log T. (r,{*) (r.f*)
oo log r r - oo log r
and
log T.(r,f log T,(r,f*
(35) i inf 2B Lm0 Jog T ()
ro— e log r ro— oo log r

By Lemma 1 (a) and (34) we have o (f*)=oco. The hypothesis (i), (32) and (33) imply that
(36) s.(&,f*)=1. (j=1,-,¢).

Further, Corollary 4 (b), (32) and (33) imply that
(37) S8, f*)=1.
By Lemma 4, (36) and (37) imply that f* is of regular growth; that is to say, # (f*)= p (f*)=0c0. Then,
by Lemma 1 (b) and (35) we have x (f)=co. Namely, f is of regular growth.
As in Corollary 3, we have the following
Corollary 6. Suppose that p (f)=oo. If there exist a:,"*a. (n+ A +1<q<o0) in X such that
(i) of(a;,f)=1 (j=1,-,n),
(i) 2 6(af)=n+a+1,

)
then f is of regular growth.
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