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1. INTRODUCTION

　Electrically conductive ceramic (CC) has been one of 

the research points recently determined by its various 

advantages. These merits involve physic-chemical and 

thermal stability, high erosion resistivity, low cost etc. [1-

5] So far, either conductive matrices or additives have 

been employed to get CC via different preparing 

methods. These methods involve hot press [6], spark 

plasma [7], sol-gel [8] etc. However, it is still difficult to 

make uniformly dispersed conductive networks in Al2O3 

matrix [9-20]. Various carbon additives are facilitated to 

agglomerate in composite, thereby leading to the 

segregated conductive phase and weak bending strength. 

Thus, that is certainly necessary to explore a new 

process that not only is simple and direct method, but 

also provides homogeneously dispersed conductive 

networks. Herein, a new era has been developed since 

the initial announce of conductive alumina (CA) which 

was fabricated by combination of gelcasting and high 

temperature reductive sintering (HTRS) [21-24]. In this 

material, it was confirmed that the uniformly dispersed 

carbon with graphitic structure attributes to the good 

electrical conductivity of CA. With the aid of 

mechanically forming by hand-mixer at the highest 

speed, conductive porous alumina (CPA) with high 

porosity up to 66.23% was also fabricated in our study. 
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Fig. 1.　Schematic of preparing conductive alumina (CA)[21-24]
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Therefore, there are two forms for CA, namely 

conductive dense alumina (CDA) and conductive porous 

alumina (CPA).

  Taking the unique structure of CDA and CPA into 

consideration [21-24], it is reasonable that various 

potential applications are designed as shown as follows. 

Because of the good conductivity, structure and property 

stability, microwave irradiation induced increased 

temperature of CA was confirmed and various 

modification ways had been completed. Besides the 

above suppose, due to the electrical conductivity of CA 

and high accessible surface area, a novel electro-catalyst 

employing CPA was also constructed.

2. MICROWAVE-INDUCED HEAT PER-FORMANCE

　Conductive alumina (CA) was fabricated by 

Fig. 2.　TEM images of CA[21] (a), (b) and (c) and Raman spectroscopy of CA (d)[28]

Fig. 3.　Schematic illustration between densifying and coarsening procedures micro-structure changes of CA via high temperature 

reductive sintering (HTRS) resulting graphitization of polymer networks

Fig. 4.　(a) Schematic diagram of relationship between electrical conductivity and thermal conductivity of CA, (b) Photograph of CA 

electrical conductivity and (c) Temperature-time curves of CA for liquid paraffin via microwave irradiation
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combination of gel-casting and HTRS in Ar [21-24]. 

With the aid of HTRS, the polymer networks formed in 

gel-casting technology were totally converted to nano-

carbon networks (NCN), thereby leaving the electrical 

conductivity of ceramic. The preparing process is 

proposed in Fig. 1.

　Nano-carbon and alumina grains co-exist together as 

shown in Fig. 2 (a), (b) and (c). More, Raman spectrum 

also confirms the electronic crystal structure of carbon 

is graphitic as displayed in Fig. 2 (d) [25-28].

　It is noticed that HTRS attributes to the completed 

conversation of carbon from well gelled polymer 

networks, thereby forming the nano-graphitic carbon 

crosslinks in CA.

  Then, it is reasonable to conclude that graphene 

orientation can be controlled by HTRS.

  HTRS effect on graphitic orientation is supposed in 

Fig. 3. As the increased temperature, polymer is initially 

converted to amorphous carbon followed by accelerating 

to graphitic structure. Higher temperature benefits to the 

improved graphitic orientation, which is verified by the 

decreased surface defects calculated from Raman 

spectroscopy analysis (RID/IG (CDA-1400 

°C)=1.26>RID/IG (CDA-1700 °C)=0.35) [21].

　Furthermore, besides the good electrical conductivity 

(Fig. 4 (b)), both CDA and CPA have microwave 

Fig. 5.　(I) Flow-chat of CNT/CPA[30], (II) Change of CNT by pre-treating[29] and (III) FE-SEM images of CNT/CPA[30]
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absorbability, which benefits from the graphitic 

networks in them, which could be confirmed by the 

increased temperature of detected sample as shown in 

Fig. 4 (c).

  Generally, graphitic structure results in not only 

conductivity, but also electromagnetic wave 

absorbability. It is noticed that various properties of CA 

results from graphitic structure of carbon. Taking the 

similar graphitic structure of carbon nanotubes (CNT) 

into consideration, CNT/CPA was developed. The 

corresponding experimental flow-chat and micro-

structure of CNT/CPA is shown in Fig. 5 (I) and (III), 

respectively [29-30].

　It is noticed that additive CNT was uniformly 

dispersed in matrix as shown in Fig. 5 (III), which merits 

from the surface pre-treatment by concentrated acids [29-

30]. CNT co-exist with NCN and alumina forming 

ternary composite. Comparing with other CNT-based 

composites prepared by hot press [25], spark plasma [7], 

sol-gel [26-27, 31] etc., CNT is more uniformly 

dispersed in ceramic matrix. More, as introduced by 

Mao et al. [32], microwave absorbability is not only 

related with electron but also phonon. The increased 

phonon intensity induced by CNT in composites 

attributes to this performance. More, Vázquez et al. [20] 

have reported that CNT with higher impurities owns 

stronger absorptions than ‘perfect’ one benefiting from 

impurities-induced localized superheating and heating 

performance of CNT is little related with its length. 

Generally, the intensified phonon accelerates the 

increased D intensity leaving the higher heating 

performances [33].

　Furthermore, Wei et al. [34] has claimed that match of 

absorbers plays an important role for accelerating the 

electromagnetic wave absorbability and developing 

various potential applications in many fields. To date, 

kinds of ferrite/dielectric (Fe3Al/Al2O3, YBa2Cu3O7-

x/Al2O3, FCC-Co/Al2O3, Al2O3-coated FeCo, 

BA0.65Sr0.65TiO3, (ZnMg) TiO3) have been reported [34-

39]. It was proven by Suttisawat et al., Pt nanoparticles 

with uniform distribution was not only catalyst but also 

good absorbent [40-41]. More, CA also has good 

heating performance at the irradiation of microwave. 

Herein, it is possible to design another composite by 

anchoring Pt nanoparticles via chemical reductive 

reaction employing CA as substrate. Two heating 

methods have been conducted. One is conventional oil 

bath heating, another is microwave-assisted heating. The 

fundamental experimental mechanism is proposed in 

Fig. 6.

　Benefiting from carbon polarization by microwave 

radiation, high selective surface modification of porous 

ceramic with large size was completed.

  Structural modification by both employing CNT and 

surface modification via Pt nanoparticles at the aid of 

microwave-assisted heating chemical reductive reaction 

attributed to the enhanced heat performances, which 

also claimed the potential application of CA as non-

Fig. 6.　Schematic of Pt nanoparticles deposition via different heating methods  (EG: Ethylene glycol)
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touching heater. And the increased heat phenomena 

results from the intensified phonon signals. This 

conclusion was valid by Raman spectroscopy.

3. ELECTROCHEMICAL PERFORMANCE 

EVALUATION

　As shown in Fig. 7, the schematic employed in this 

experiment was proposed. Briefly speaking, three steps 

were involved for making CPA-based composites 

M/CPA. (a) Surface pre-treating, by which various 

surface defects on NCN with graphitic structure are 

available. These defects include five- or seven-

membered rings in the carbon networks instead of 

normal ring, sp3-hybridized defects (H or OH) and 

vacancies in the carbon lattice [27]. Pre-treating of CPA 

attributes to increased sp3-hybridized defects (-COOH, -

COH etc.) [42]. (b) Absorption of Mn+ onto substrate via 

electrostatic interaction and (c) Chemical reduction of 

Mn+ to M particles [46]. More, conventional three-

electrode evaluation system was constructed to evaluate 

the electro-performances of different composites.

　Using CPA as reference, it is confirmed that 

functional particles have been successfully deposited 

onto the surface of matrix by surface decoration (Fig. 8 

(a), (b) and (c)). Comparing with Ni/CPA composite, it 

is noticed that Pt/CPA has higher selectivity. The electro-

performances of as-resulted composites have been 

evaluated in 1 M NaOH solution at the same 

experimental condition. The enhanced performance of 

pre-treated CPA is attributed to grafted functional 

groups by covalent modification [28]. As-received and 

pre-treated CPA display electro-catalytic activities 

Fig. 7.　Schematic representation of preparing M/CPA (Pt/CPA and Ni/CPA) via chemical reductive reaction[46]

Fig. 8.　FE-SEM images of (a) CPA, (b) Ni/CPA and (c) Pt/CPA and (d) Cyclic voltammetric (CV) curves of different electrodes 

developed in this study[45-46]
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toward oxygen reductive reaction (ORR), which can be 

proven by similar slopes of the reductive current with 

decreasing potential from -0.3 V to -0.2 V. Moreover, 

ORR occurred at potentials of -0.1 V~+0.4 V for Pt/CPA 

(Fig. 8. (d)). It is believed that the ORR activity of the 

Pt/CPA at more positive potentials is attributed to Pt (5-

d orbital vacancies) nanoparticles deposition.  And the 

enhanced performance of Pt/CPA can be verified by the 

increased current and enlarged time window as shown in 

Fig. 8 (d). Meng et al. [42] reported the ORR activity of 

Pt/C at potentials of +0.7 V. Pt/CNT/CHIT was also 

claimed to be ORR activity electro-catalysts at the same 

measurement condition and the ORR activity occurred 

at +0.1 V. Then, by surface modification, it was 

confirmed in this study that as-fabricated composites 

have a potential application in fuel cells [43-46]. Based 

on the features of substrate, different surface 

modification schematics have been proposed in Fig. 6 

and Fig. 7.

4. POTENTIAL APPLICATIONS OF CA WITH 

MODIFICATIONS

　Since good electrical conductivity, micro- structure 

and enhanced performances of CA via modifications, 

various attractive wide- spread potential applications 

ranging from heater [1-5], decomposition [47] and 

transfer hydrogenation (TH) process [48] etc. are 

designable. Subsequently, in this section, we will briefly 

introduce the different application directions of CA as 

shown in followings.

a. Non-contacting Heater Application

  Even though microwave absorbents display intriguing 

characteristics in many fields [47-49], microwave 

transparent materials are limited in this field. To date, 

SiC was reported to good heaters by Kremsner et al. [50] 

Therefore, due to the graphitic carbon, CA and CA-

based composites are available as non-contacting heater 

for microwave inert medium.

b. Decomposition and hydrogenation application

  Pt/substrate composites combining the advantages of 

matrix and uniformly dispersed Pt nanoparticles permits 

the possibility for organic decomposition at the aid of 

different method such as electrochemical evaluation 

[51], electromagnetic wave radiation [52] or ultra-high-

vacuum (UHV) [53] etc. More, according to the varied 

reaction mechanisms, different reaction routes with high 

selectivity are accessible. Herein, because of the 

microwave capacity of CA, TH or decomposition or 

combination utilizing CA or Pt/CA as heater and 

catalyst at the microwave radiation is reasonable.

c. Electro-catalyst application

　Commonly, conductor and semi-conductor are 

regarded as idea electrode materials as introduced in 

references [44,46,51,54-55]. Therefore, considering the 

electrical conductivity of CA and related CA 

composites, they are believed as electrode candidates 

with high-performance. It is significant to explore a 

novel electro-catalyst by kinds of surface modification 

for different practical applications.

5. CONCLUSIONS

　In this review, characteristic, property and influence 

factors of CA with two forms (dense (CDA) and porous 

(CPA)) have been demonstrated. Meriting from 

conductivity and property stability of matrix, various 

widespread potential applications are accessible for us. 

In order to gain the improved performances of 

composites, both structural and surface modifications 

have been conducted. Eventually, as-prepared 

composites can be designed as non-contacting heater, 

decomposition, TH and electro-catalyst etc.
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