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ABSTRACT

Various types of moments of velocity and temperature fluctuations of
the first to the fourth order have been measured and analyzed in a wall-
bounded shear flow. First, an orthogonal series expansion for the three-
dimensional joint probability density function (pdf) is developed using the
cumulants and Hermite polynomials. This pdf is found to provide satis-
factory predictions for the statistical characteristics, including triple
products, of turbulent momentum and heat transfer,

Next, to identify the role of coherent motions in the turbulent heat
transport processes, an objective method for the recognition and descrip-
tion of coherent structures has been developed. Four distinct patterns
are recognized in the sequence of coherent motions near the wall. These
four basic flow patterns have their own characteristic vortex structures
and reflect the succession of stages that might occur in the evolution of
coherent motions. Also, these recognized patterns can delineate the
mechanistic picture of turbulent heat transport in the wall region. Among
other things, the important finding is that the outflowing low-momentum
wall-region fluid organizing strong vortical motions with the incoming
higher-momentum fluid from regions away from the wall is the principal
contributor to the turbulent exchange process of heat.

Finally, the conditional sampling and averaging technique is employed
to investigate fhe statistical characteristics of coherent turbulent
transport processes of momentum and heat. Conditional pdfs are developed
for various moments of velocity and temperature up to the third order. It

is shown that the present pdfs can represent the detailed role of coherent



motions in the dynamics of wall turbulent shear flows and in the relevant
process of heat transpbrt by tqrbulence. In particular, the importanée of
coherent motions in the turbulent diffusion process of Reynolds stress
components and heat fluxes is demonstrated for the first time by the

present study.
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NOMENCLATURE

Cp Specific heat at constant pressure.

Cpar Coefficient in the power-series expansion for ¥ (Eq.(3-10)).

Cr1, Cpr2, a1, a2, a3, a4, Csl, Cs2, Cs3 Model constants for triple
products.

Dpar Coefficient in the power-series expansion for (Eq.(3-11)).

F(x) Flatness factor of x : F(x )= X 4.

H Threshold.

Hn (x) One-dimensional Hermite polynomial (Eq.(3-13)).

i, J Unit vectors (streamwise and normal to the wall).

1i(T ,H) Detection function (Eq.(5-2)).

K Sum of the orders of & ,7» and & : K= ptqtr.

k Turbulence kinetic energy: k= uiui/2.

kpar Cumulant (Eq.(3-5)).

Dpar Moment (Eq.(3-2)).

P Three-dimensional joint pdf (Eq.(3-12)).

Pi Conditional pdf in the ith-quadrant of the (u, v)-plane.

p, 9, T Orders of £ ,7 and £ in the power-series expansion for v .
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Pr Prandtl number.

Q Turbulence quantity.

q’ Turbulent heat-flux vector (Eq.(5-8)).

qw Wall heat flux.

r, ro ' Coordinate in radial direction, and pipe radius.

Ruv, Rut, Rvt ‘Cross-correlation coefficients between u and v, u and t,
and v and t. .

S(x ) Skewness factor of x : S(x )= x 3.

T Time averaged temperature.

T Averaging time (Eq.(5-1)).

Ti, ATi Mean period, and mean duration of the ith-quadrant motion.

Te Centerline temperature.

Tw Wall temperature: Tw= 100 °C.

T+ Dimensionless temperature: T*= (Tw - T)/tz.

t Fluctuating temperature.

te Friction temperature: tz= qw/p Cpuz.

1] Time averaged streamwise velocity.

Uc Centerline velocity.

Uv Convection velocity of an observer.

U+ Dimensionless velocity: U*= U/uz.

u, vV, W Streamwise, normal to the wall and circumferential velocity
fluctuations. o

uz Friction velocity: uz=sTw/p .
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Velocity vector relative to an observer moving at Uv(Eq.(5-6)).

w Velocity vector for coherent motions (Eq.(5-7)).
Wx Weighted function for moment x.

X Moment, or streamwise coordinate.

xt Dimensionless streamwise coordinate: x*= urx/ v.
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CHAPTER 1

INTRODUCTION
1.1. Background

Transfer problems of momentum and heat have begun to be analyzed with &
strategy of recent advanced turbulence modelling such as those based on
Reynolds stress and heat flux closures (e.g., Elghobashi & Launder 1981).
Results, however, are not as satiéfactory as initially expected, mainly due
to a few unreasonable hypotheses involved in modélling (Lumley 1978). In
order to resolve pertinent problems radically; we need a correct knowledge
of the statistical characteristics of the first- and second-order moments
of velocity and temperature fluctuations, and the relevant processes of
turbulent diffusions (i.e., third-order moments), all of which are basic
parameters in the stress and heat flux equations modelling.

Antonia & Atkinson (1973) first investigated statistical characteristics
of Reynolds shear stress without the aid of the assumption of Gaussian
behaviour. Their approaches, however, cannot be applied to the analysis
of turbulent heat transfer and third-order moments of velocity and
temperature, since the derived pdf is only valid for second—order moments
in a velocity field without passive contaminants. Furthermore, in the
analysis of third-order moments, we cannot generally use the conventional
assumption of Gaussian behaviour because of the essential unreality
according to which a mean value is consistently zero.

On the other hand, it is now widely recognized that many of the

attributes of wall-turbulent shear flows can be ascribed to well-ordered



fluid motions, i.e., coherent structures, near the wall (Kline et al. 1967;
Corino & Brodkey 1969). So far, various flow-visualization studies have
‘provided useful qualitative knowledge of these organized structures (e.g.,
Kim, Kline & Reynolds 1971; Grass 1971; Nychas, Hershey & Brodkey 1973;
- Offen & Kline 1974, 1975; Praturi & Brodkey 1978; Head & Bandyopadhyay
1981; Falco 1982). However, quantitative treatment of information
obtained by flow-visualization techniques is not so easy. Thus, accumula-
tion of relevant quantitative knowledge is now required. In principle, it
is possible to investigate the characteristics of coherent structures
quantitatively by a hot-wire anemometry technique. In this technique, fhe
sampling criterion is the key to accurate extraction of coherent structures
from seemingly chaotic hot-wire traces. Many detection methods for
coherent structures have been proposed and evaluated. The most familiar

detection methods are as follows:

(1) uv-quadrant method (Lu & Willmarth 1973; Brodkey, Wallace &
Eckelmann 1974; Sabot & Comte-Bellot 1976; Nakagawa & Nezu 1981).

(2) VITA sampling technique (Blackwelder & Kaplan 1976).

(3) VITA with slope (Chen & Blackwelder 1978; Johansson & Alfredsson
1982).

(4) Pattern-recognition technique (Wallace, Brodkey & Eckelmann 1977).

(5) Band-pass filter technique (Rao, Narasimha & Narayanan 1971; Ueda &
Hinze 1975),

(6) Short-time averaged autocorrelation technique (Kim, Kline & Reynolds
1971; Strickland & Simpson 1975; Hishida & Nagano 1979).

(7) u-level (Lu & Willmarth 1973) and modified u-level techniques
(Luchik & Tiederman 1987). '

These methods have their own features in treatable physical quantities



(e.g., bursting period, duration of bursts, etc.), detection algorithms,
and information-sources necessary for detection (e.g., streamwise velocity,
normal velocity, temperature, wall shear stress, etc.). Although we
cannot generally rank these detection methods, the uv-quadrant method and
the VITA sampling technique are often used because of accurate depiction of
the essential characteristics of coherent structures and the practical ease
of the detection algorithms. Recently, careful appraisal of the effec-
tiveness of these two methods has been performed. Alfredsson & Johansson
(1984) pointed out that the phenomena detected by the VITA techniﬂue
corresponded principally with ejection-type motions identified by the uv-
quadrant method, while the ensemble-averaged waveforms obtained by the VITA
technique depicted a more realistic change in streamwise fluid velocity.
On the other hand, employing flow-visualization and hot-wire anemometer
techniques simultaneously, Bogard & Tiederman (1986) evaluated the
detection algorithms from the standpoint of capability of detecting
ejection-type motions recognized by flow visualization, and cpncluded that
the uv-quadrant method had the greatest reliability with a high probability
of detecting the ejections and a low probability of false detections.
However, all of these methods possess inherent'ambiguity.in setting a
threshold level. In reality, it is no easy matter to establish a rational
basis for determination of the threshold level. Aécordingly, further
modifications and improvements of the existing detection methods or the
development of new ones are still needed.

In general, turbulent heat transfer is dominated essentially by the flow
near a heat-transfer surface. Therefore, the basic mechanism of heat

trar sfer is expected to be strongly associated with the coherent turbulent



motions near the wall., The mechanistic picture of turbulent heat
transfer, however, is not yet made sufficiently clear, even for the most
fundamental flows such as those in a pipe or a boundary layer. So much is
still unknown about the relationship befween the coherent structures near
the wall and heat transport processes. Research pertaining to this
problem is now accumulating experimental evidences.

’Antonia et al. (1982) and Subramanian et al. (1982) directed their
attention to 1arge—scalé‘temperature fronts noted by Chen & Blackwelder
(1978), and investigated the relationship between the coherent structures
and heat transport processes in a boundary layer. In their experiment,
eleven cold-wires were arrayed normal to the wall like a "rake," and fhe
temperature front was detected by the visual observation of temperature-
fluctuation signals. The main purposes of their studies were to examine
the Reynolds-number dependence of the structure characterized by the
temperature front and to investigate the diversity of conditionally
averaged patterns of coherent motions obtained by various existing
detéction—methods with reference to those decided with the "rake" méthod.
However, flow structures and associated turbulent heat transfer in the wall
region were not studied in detail. Recently, Iritani et al.»(1985) turned
their attention to low-speed streaks in the viscous sublayer and investi-
gated unsteady wall-temperature fluctuations by ﬁsing a temperature-
sensitive liquid crystal. A close correlation was found between turbulent
heat transfer and counter-rotating streamwise vértices recognized as one of
the fundamental elements of the coherent structures (Bakewell & Lumley
1967; Lee, Eckelman & Hanratty 1974; Blackwelder & Eckelmann 1979; Kim

1985).



Perry & Hoffmann (1976) examined the similarity between the ngnolds
shear stress uv and turbulent heat flux vt from the results of a condi-
tional analysis for a heated flat-plate boundary layer flow. In their
experimental study with the help of the quadrant analysis, however, the
Reynolds shear stress uv was analyzed in the (u, v)-plane and the turbulent
heat flux vt in the (v, t)-plane. Hence, the correspondence between heat
transport and fluid motions was not strictly specified.

In the series of investigations on turbulent heat transfer at Nagoya
Institute of Technology, two unique measurement techniques have been
developed: one for simultaneous measurements of velocity and temperature in
nonisothermal flows (Hishida & Nagano 1978a), and the other for turbulence
measurements near the wall with specially devised, symmetrically bent 'V’-
shaped hot wires (Hishida & Nagano 1988a, b). Employing these techniques,
the relation between turbulent heat and momentum transfer in the immediate
neighborhood of the wall has been investigated from various points of view
(Hishida & Nagano 1979, Nagano & Hishida 1985). However, one cannot yet
give full explanation to the problems of how or how strongly these
organized fluid motions dominate the statistical charactefistics of scalar
turbulence, e.g., temperature-fluctuation variance, turbulent heat fluxes

and triple correlations between velocity and temperature.



1.2. Objectives

In view of the present state of the art described in the previous

section, this study has the following five main objectives:

(1) To develop a theory by which the principal statistical aspects of
high-order moments related to turbulent momentum and heat transfer

can be predicted;

(2) To obtain detailed experimental evidence of these moments in a wall

turbulent shear flow;

(3) To extract fundamental flow patterns (i.e., organized motions)

responsible for heat and momentum transfer in the wall region;

(4) To investigate the mechanism of transmission and destruction of heat

in connection with identified well-ordered motions;

(5) To identify the role of coherent structures in transport phenomena

from statistical viewpoints.



1.3. Organization of the Presentation

The details of the theory, experimental program and procedures, results

and conclusions are described in the remainder of this thesis.

Chapter I contains the experimental arrangement, the measuring
techniques, and the methods of data acquisition and reduction.

Chapter Il presents the basic theory of the statistics of turbulent heat
transfer. In the theory, the cumulant-discard method (Monin & Yaglom
1971) has been used so as to take into account a departure from Gaussian
behaviour (Kampé de Fériet 1966; Frenkiel & Klebanoff 1967). Then; multi-
dimensional joint pdfs for quantities controlling transport phenomena have -
been developed (Nagano & Tagawa 1987a; Nagano, Tagawa & Tokoro 1988). The
present theory covers completely the reported two-dimensional probability
theory (Antonia & Atkinson 1973; Nakagawa & Nezu 1977).

In Chapter IV, the theory has been applied to the analysis of the
statistical characteristics, including triple products, of turbulent heat
and momentum transfer (Nagano & Tagawa 1987a; Nagano, Tagawa & Tokoro
1988). In the present study, employing the two unique techniques for
simultaneous measurements of velocity and temperature and measurements of
turbulence near the wall with V-shaped hot wires, turbulence quantities in
the immediate neighborhood of the wall have been measured. The global
analogy between heat and momentum transfer (Hishida, Nagano & Tagawa 1986)
has been discussed in this chapter. Validity of the present theory has

also been verified in this chapter by application to the prediction of



experimental results of pdf distributions of high-order moments. Particu-
lar attention is directed to the study of statistical chayacteristics of
third-order moments, because measurements of their pdf distributions are
~ few and the current modelling is quite ad hoc.

| Chapter V deals with the coherent structures near the wall and their
role in the heat transport process. With a new idea for the recognition
and description of coherent structures, an effective sampling technique for
well-ordered motions has been developed. This chapter reveals that the
outflowing loﬁ—momentum wall-region fluid organizing strong vortical
motions with the incoming higher-momentum fluid from regiohs away from the
wall is the principal contributor to the turbulent exchange process of heat
(Hishida, Nagano, Tagawa & Miyakawa 1984; Nagano, Hishida & Tagawa 1987;
Nagano & Tagawa 1987b).

Furthermore, the foregoing information of turbulent heat and momentum
transfer has been reflected in the statistical investigation (Nagano &
Tagaﬁa 1988; Tagawa & Nagano 1988). Namely in Chapter VI, theoretical
treatment for the three-dimensional joint pdf has been expanded by
combining a conditional sampling technique and investigated the internal
structures of velocity and temperature fluctuations, Reynolds shear stress,
turbulent heat fluxes, and turbulent diffusion, i.e., the tfiple products
of velocity and temperature. The organized motions and their
contributions to transport process in wall turbulence have been discussed
in concrete terms.

The . important conclusions drawn from this study are presented in Chapter

V]I .



CHAPTER 1I

EXPERIMENTAL FACILITIES AND DATA ACQUISITION

The experimental apparatus used for the present study is shown in
Fig. 2.1, The experiment was performed in an air flow in a 45.68 mm ID
reamed brass tube heated by saturated steam of atmospheric preésure to a
uniform wall temperature of 100 °C at a Reynolds number (based on bulk
velocity and pipe diameter) of 40,000. Measurements were performed at a
location 167 diameters downstream from the pipe inlet and 40 diameters
downstream from the beginning of the heated section. Both velocity and
thermal fields were fully developed at this measurement location (Hishida &
Nagano 1978b, 1979). The mean characteristics of thé flow are given in
Table 4.1, where Rg= Uc@® /v (Uc being the centerline velocity) is the
momentum thickness Reynolds number, Tw and Tc are the wall and centerline
temperatures, qw is the wall heat flux, and urz and tr are the friction
velocity and temperature. Displacement and momentum thicknesses were
2.23 mm and 1.22 mm, respectively.

Fluctuations of velocity components (u axial, and v normal) and
temperature (t) were simultaneously measured with the specially devised
three-wire probe shown in Fig. 2.2(a). As seen in this figure, a conven-
tional straight tungsten wire (lw= 0.8 mm, dw= S5u m) was symmetrically bent
into a V-shape and combined with a normal hot-wire (lw= 0.6 mm, dw= 3um),
together with a cold wire (lw= 0.9 mm, dw= 3um) located upstream of the
hot-wires. The V-shaped hot-wire has proven highly effective for the
measurement of turbulence very near the wall, where a conventional X-wire

anemometry technique is either subject to large errors or, at worst, cannot



be used (Nagano & Hishida 1985; Hishida & Nagano 1988a, b). Note that the
probe was constructed as small as practicable in order to assure spatial
resolution without causing any thermal and aerodynamic interference between
eaqh wire, i.e., the sensing part was kept less than 6% x (where 7 x is the
Kolmogorov microscale); Heat loss due to end-conduction occurs for a
shorter cold-wire, which lowers the sensitivity to temperature fluctua-
tions, and so some corrections are needed as pointed out by Paranthoen et
al. (1982). In measurement of isothermal flow, a probe with two V-shaped
hot-wires in an X arrangement was used as shown in Fig. 2.2(b). The
circumferential velocity fluctuation (w) was measured by fotating a single
normal hot-wire (Fujita & Kovasznay 1968).

All data were recorded in analog form with an FM data recorder (TEAC R-
210B) and then reproduced for conversion to digital form. The digitized
data were stored on magnetic tape with a 12-bit analog-to-digital converter
(TEAC DR-2000). The real time sampling frequency was 32 kHz and the
number of data was 52,428 per measurement. It was confirmed that the
sampling frequency and the data length were quite adequate to obtain
statistical values. Any slight phase lag in high-frequency temperature
fluctuations that occurred in a filter circuit was eliminated almost
completely by the following method: first, the Fourier transform was
performed on signals of temperature fluctuation; secondly, phase discrep-
ancy determined by a transfer functionAof the circuit was correcﬁed to each
Fourier coefficient; finally, the inverse Fourier transform was performed
to obtain true temperature fluctuations. Conditional sampling and averag-

ing were made for these digital data on a FACOM M-382 computer system.
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Fig. 2.1. Schematic of apparatus.



Prong (tapered)
Copper plated end ($25pm)
——— Wire (¢$5um or $3um)

(a)

mmmen  Prong (tapered)
—— Copper plated end (#25um)
——  Wire @#5um)

(b)

Fig. 2.2. Probe configuration (all dimensions in millimeters).‘
(a) Three wire probe for measurement of nonisothermal flows;
(b) X-wire probe consisting of two V-shaped hot-wires for

measurement of isothermal flows.
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CHAPTER N

BASIC THEORY OF THE STATISTICS OF TURBULENT HEAT TRANSFER

To analyze generally the statistics of momentum and heat transfer, we
should introduce the four-dimensional joint pdf with three components of a
velocity vector V (u,v,w) and a fluctﬁating temperature t as random
variables. In two-dimensional turbulent flows, however, the random
properties pertaining to transport prdcesses can be sufficiently specified
by the three-dimensional joint pdf P{(u,v,t). When a Gaussian distribution
is supposed to be P(u,v,t), mean values of any third-order moments are
consistently zero, which is usually not the case in an actual phenoﬁenon.
Thus, as given below, a more general representation for P(ﬁ,?,%) is
developed using their characteristic function % , which is the Fourier

o AN

transform of the pdf. In what follows, a symbol denotes the

n—n

normalization by the respective r.m.s. value, and an overbar

represents an expected value or time average.

y(E,n,2) = [[f P(u,v,t) expli(ue+vn+tz)} dudv dt (3-1)

If some form is given to the characteristic function » defined by Eq.(3-
1), P({,9,%) can be obtained by executing the inverse Fourief transform of

Y. Two expressions for ¥ are conceivable.

[A] Description of ¥ in terms of moment mpqr.

The following relation holds between mpqgr and ¥ :

13



aky (g,n,z)

= ik (3-2)
9EP NI dgr | E=n=g=0 Par
where
K=p+q+r and
Mpqr = UP VO Er
= [f] G vetr p(u,v,t) didv di (3-3)
Thus, we obtain the-following expression for p :
] e |
lp(g,ﬂ,C) = ST mpqrgp nq Cr (3“4)
p.q,r=0 Plalr!
[B ]vDescription of ¥ in terms of cumulant kpqr.
The definition of cumulant kpqr is:
KIny(g,n,t . '
b(e,n,t) = K Kpgr (3-5)
dEP Indd L |E=n=c=0 v .
Thus,
b (E,n,z) = exp( ) Srairl Kpqr €7 N L") (3-6)
I Iqlr!
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The relations between mpqr and kpqr are:

for K=0,

Mogo = 1, Kogp= 03
for 15 K< 3,

Mpqr = Kpgr 3 and (3;7)
for K=4,

My00= Kyoo * 35 Moso = Koso + 3, Mooy = Koos + 3,

m310= k3o + 3m110, M3e1 = k3o1+ 3mipr, +-e-- » Mo13= Ko13+ 3mo11 »
— 2 _
Moo= Kogo+ 2(mypp )+ 1, «evev, my;p= Kypp+ 2mygymoyy + Mg

Similarly, the relations for K2 5 can be deduced, but the calculations
become increasingly cumbersome.

Now, the Gaussian joint pdf can be written as:

3 o ,
Pg(ﬁ,V,f:) = exp{- ( E Ainin)/(z |JR!)}/ {(2ﬂ)3/2 /“Rl } (3-8)

where
1 Riz Ry
R = Ri12 1 R23 i Aij is the cofactor of the matrix R ; and
R13  Rz3 1
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Rij denotes the correlation coefficient between Y i and xj (= X iX ’).’
In a Gaussian field given by Eq.(3-8), moments and cumulants preserve the
following characteristics.

(a) Odd-order moments (i.e., K is odd) are all zero.

(b) Even-order moments (i.e., K is even) can be represented by zero- and

second-order moments.

(c) For K2 3, all cumulants are zero.
In statistical analysis of a field close to Gaussian, the above character—
istic (c) is quite useful. It is generally recognized that probability
distributions of turbulent phenomena do not deviate largely from a Gaussian
distribution. Hence, adopting [B ] for describing ¥ and using the
characteristic (c), we can accurately represent the pdf P({i,¥,t) with a

small number of series-expansion terms. From Egs.(3-6) and (3-7), we

obtain:

P (E,n,8) = exp { -(E*+n®+c%+2Ryy Ent2Ryt ECH+2R ¢ T ) /2
oo -iK

+ —'——'——T kquEanU} (3-9)
kKz3 P:Qq:r:

where kii1o= mi10= 6i¥= Ruv, kioi= Rut and koi1i= Rvt. Equation (3-9) can be

rewritten in either of two ways:

[ee]

UJ(E,T],C) = eXP{'(£2+n2+§2 )/2} 2 CpqriK Epnacgr (3-10)
p,q,r=0
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Y (E,n,8) = exp{ -(E%+n*+z?4+2Ryy En+2Ryt EC+2R e L) /2 }

X Of Dpgri¥ EPmacr  (3-11)
psq,r=0

where Cpqr and Dpqr are the coefficients in the power-series expansion of
Eq.(3-9). If we use Eq.(3-10), the final form for P({i,%,t) is expressed
by the products of one-dimensional Hermite polynomials. On the other
hand, with Eq.(3-11), P(ﬁ,?,%) is represented by three-dimensional
conjugate Hermite polynomials. The study by Antonia & Atkinson (1973) oﬁ
a two-dimensional pdf with two random variables, showed that an expression
with conjugate Hermite polynomials predicted the experimental results a
little more closely than with one-dimensional Hermite polynomials.
However, even in their two-dimensional analysis, numerous series-expansion
terms were needed for the pdf, and the expression was complex. Since, in
the‘present study, the third-order moments in a three-dimensional field is
analyzed, the use of Eq.(3-11) will obviously make mathematical treatment
extremely difficult. In addition, to apply a pdf to multisided analyses
of transport processes of momentum and heat and to modeiling third-order
moments, it is desirable to keep the number of parameters as few as
possible. Hence, expression (3-10) is adopted. |

Substituting the characteristic function (3-10) into Eq.(3?1) and
performing the inverse Fourier transform, we obtain the following general

"N

representation for P(i,V,t):
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p(i,v,t) = Hf ¥ (£,n,2) expl~i(Ue+vn+Ez)) de dndc

21)3

1 © R R ) o
(2n)3/2 p,qi'ho Cpqr Hp(U) Hq (V) Hr () exp{-(u?+v?+1t%)/ 21 (3-12)

where
() = (1) exp( =) 0 exp(- ) (3-13)
= (- expl( — exp(-— -
" PL e P
Hn(x ) is an Hermite polynomial. The subsequent analysis has been made

for K< 4. Calculating Cpqr from Egs.(3-9) and (3-10) yields:

Cooo= 15 C100= Co10= Coo1 = 0, C200= Co20= Coo2= 0>

C110= Ruv, C101 = Rut, Co11 = Rut, C300= k300/6, Co3o= ko3o/6, =+

Co10= K210/2, ==~ » Co12= ko12/2, C111= kqnn» ., (3-14)
C400= kuoo /24, ++=+, C310= k310/65 *-++, Co13 = ko13/6, o
Ca20=(kazo + 2RZ )/4, Co02=(kooz+ 2RZ)/4, ===+, Criz =(kj2 + 2Ryt Ryt )/2.

The coefficients listed above are determined from the measured correlations

up to the fourth order (see Eq.(3-7)).
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CHAPTER V
HIGH-ORDER MOMENTS AND PROBABILITY DISTRIBUTIONS OF

VELOCITY AND TEMPERATURE
4.1. Distributions of Turbulence Quantities in Velocity and Thermal Fields

The distributions of r.m.s. amplitude of velocity component and temper-
-ature fluctuations normalized by the friction velocity ur and friction
temperature t; are presented as a function of y* in Fig. 4.1. The maximum
production of turbulence energy and temperature variance occurs near the
heat-transfer surface (y*= 10«#20), where the existence of coherent motions
is most pronounced (Nagano & Hishida 1985). Intensities of'ﬁ and t
fluctuations also peak in this region. The r.m.s. values of v
fluctuations are much smaller than those of u and w in the wall region.
This is because the preferential damping of v fluctuations increases
sharply as the wall>is approached. At the pipe centerline, intensities of
u, Q and w fluctuations‘become nearly identical, thus indicating the
existence of the apparent isotropic Structure. The intensity of u
fluctuations in an isothermal flow measured in the same pipe using an X-
array probe with two V-shaped hot-wires (Fig. 2.2(b)) is also shown in
Fig. 4.1. Evidently, the influence of heat input is immaterial over most
of the pipe section. The r.m.s. values of v and w fluctuations in the
wall region are compared with those obtained by Laufer (1954) and by
Kreplin & Eckelmann (1979). The present profiles for the near-wall region
(y*<30) agree well with the results by Kreplin & Eckelmann. In the region

y*>30, the data of Kreplin & Eckelmann become smaller than the present
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measurements, because this region in their low-Reynolds-number experiment
(Re=<7700) corresponds to the outer region of thé flow.

The normalized Reynolds shear stress (i.e., momentum transfer) and
turbulent heatifluxes are shown in Fig. 4.2, For a fully-developed
turbulent pipe flow, the Reynolds shear stress uv and the radial turbulent
heat flux vt can be calculated from the momentum and energy equations.

The profiles thus obtained are expressed with the following equations:

-av/uZ = (1-y*/rh) - aU+/ay+ (4-1)

Ve __rp  (UTHe 1 T (4-2)
uzty rgh -yt (U+T+) oy Pr oy*

where
ry
(UTHe = | (r5 - yH) T THay* (4-3)
y+

+
Ty

(TTH) oy = | (£ - yH)UTHdy*+ (4-4)
0
which are respectively shown by the broken and chain lines in Fig. 4.2.
Obviously, the present direct measurements of uv and VvVt are in almost
complete agreement with those calculated from Egs.(4-1) and (4-2).

The cross-correlation coefficients, which are indicative of the degree

of both similarity in waveforms and difference in phase, are defined by:
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Ruv= ﬁ—w’i, Rut= ﬁ{, Rvt= 0% (4'5)

As seen in Fig. 4.3, the cross-correlation coefficient between u and v,
Ruv, and that between v and t, Rvt, are almost equal in the absolute
values. The correlation coefficient Ruv remains constant at -0.47 over
most of the pipe section from within the buffer layer out to the core
region of the flow (10<y*<400; 0.011<y/ro<0.45). In the near-wall region,
Ruv becomes a bit higher than Rvt (Rve==0.45, -Ruv==0.50), while in the
near-centerline region isotropy of the fluctuating velocity-temperature
field is approached with a vanishing of both correlation coefficients. As
for the cross-correlation between velocity and temperature fluctuations
near the wall, very little information has appeared to date. There are,
however, several published data for correlationvcoefficients in the outer
region of the flow. For pipe flow turbulence, Bremhorst & Bullock (1973)
obtained the values.of Rvt=0.47 and -Ruv=0.43. For boundary layer flows,
the corresponding values are: Rvt=0.49, and ~Ruv=0.47 measured by
Subfamanian & Antonia (1981); Rvt¢=0.57 and -Ruv=0.47 by Verriopoulos
(1983). The present values of Rvt and -Ruv in the core region are in good
agreement with these published data. The important finding in this study
is that heat and momentum transfer correlation coefficients in the wall
region have practically the same values as those for the outer region.
Values of -Rut are greater than those of Rvt throughout the pipe
section, thus indicating that the temperature fluctuations are better
correlated with the streamwise than the transverse velocity components.
At the pipe centerline, Rut does not vanish even though isotropy is

generally thought to be approached in this region. From all these
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measurements, we may conclude that the relation -Rut>Rvt=-Ruv generally

holds true.

4.2. Probability Density Distributions of Velocity and Temperature

Fluctuations

The pdf distributions P(9¥) and P(%) at various locations, from within
the sublayer out to the pipe centerline (y*=863.0), are shown in Fig. 4.4.
The solid lines indicate the theoretical values derived from Eg.(3-12), and
the broken lines represent the Gaussian distributions. Thus, the
theoretical values of P(¥), P(f) and the first-order Gaussian pdf Pc(x )

are given by:

P(v) = [[ P(u,v,t) dudt

= Pg(v) ( 1+Co30 (v3-3V) +Couo (V"-6V2+3)} (4-6a)
P(E) = Pg(E) { 1+ Coo3 (£%-3t) +Coos (t*-6t%+3)) (4-6b)
Pe(x) = exp(-x2/2)/J2m X=v or t (4-7)
The P(V) curve is very close to Gaussian near the wall. A departure from

the Gaussian distribution, however, occurs in the log-law'region and in the
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core region of the flow, The P(t) curve, on the other hand, is strongly
skewed to the negative side of t very near the wall, although it may be
approximated with é Gaussian distribution in the log-law region. Inverse~
ly, P(i) is skewed positively in the near-wall region (not shown). The
measurement of a joint pdf P(li, ¥) shown in Fig. 4.5(a) indicates that the
sweep—type motioné, rushing into the near-wall region from regions away
from the wall, predominate in the near-wall structure, i.e., the large-
amplitude motions with u positive and v negative occur most frequently near
the wall. The negatively skewed P(%) and positively skewed P(U) distribu-
tions are the consequence of these inrushes of low-enthalpy and high-
momentum fluid. Totally opposite trends are observed in the core region,
reflecting the dominant influence of high-enthalpy and low-momentum fluid
ejections from the wall region. These unique features, as seen from
Fig. 4.4, are almost perfectly predicted by Eq.(4-6).

The theoretical value of P(li, ¥) derived from Eq.(3-12) becomes:

1 S . " o A
= — Y Cpqo Hy () Hq(V) exp{-(u?+v?) /2} (4-8)

Comparison of predictions (Fig. 4.5(b)) with measurements (Fig. 4.5(a))
proves that Eq.(4-8) represents accurately a highly anisotropic velocity
field near the wall. Equation (4-8) is also identical to the theoretical
formula developed by Antonia & Atkinson (1973).

The shapes of pdf P{(x ) are well marked by the skewness S(x )= ;75 and

the flatness factor F(x )= ;7?. The former is particularly indicative of
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the probabilistic asymmetry of x and the latter is a measure of symmet-
rical peakedness of the probability. A random variable with a Gaussian
pdf has values of S(x )=0 and F(yx )=3.. The skewness and flatness factors
of u, v and t fluctuations are shown in Figs. 4.6 and 4.7, respectively.
The skewness factor S(u) becomes negative in the outer region and positive
in the near-wall region, while it is approximately zero over the fully
turbulent log region. It is conceivable that a marked change in S(u) for
y*<20 is a reflection of the existeﬁce of coherent motions near the wall.
Measurements of S(u) and S(t) indicate that u and t fluctuations are skewed
in the opposite direction. In contrast, S(v) is essentially positive over
most of the pipe section.

Next, it is shown that the skewness factor is related closely to the
fraction of time during which a random variable x is positive (¥ +) or

negative (y -). With Eq.(4-6), the time fraction ¥ :+ is expressed as:

Yo(x) = f P(+R) dR

(Jn/2 ¥ S(x)/61} /2w (4-9)

Thus, Eq.(4-9) gives the following formula for S(x ):
S(x) = 32w {v_(x) - v (x)} : (4-10)

The values of S(x ) from Eq.(4-10), calculated using measurements ofvthe
time fractions, are compared with the present direct measurements of
skewness factors in Fig. 4.6, Agreement is seen to be almost perfect.
This is important knowledge which demonstrates that the skewness factor

characterizing turbulence structures can be represented with the time
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fractions (i.e., intermittency factor) occupied by positive or negative
events of a turbulence component.

The flatness factors F(u) and F(t) present similar distributions which
are very close to the Gaussian value of 3 in the log-law region. And the
skewness factors of u and t are nearly equal to zero in this region.
Thus, the assumption of the Gaussian for P(Q) and P(t) distributions does
not lead to a noticeable erfor, as evidenced in Fig. 4.4. Besides, F(t)
becomes minimum at a location where temperature variance attains a maximum
(see Secfion 4.1), which provides a good similarity to F(u) behaviour
(Zarid¢ 1979). Values of F(Y), on the other hand, deviate considerably
from thé Gaussian value over a greater part of the pipe section (see
Fig. 4.4).

A full knowledge of skewness and flatness factors near the wall is also
required_to investigate the coherent structures of wall turbulence.
However, we can refer to few reliable measurements of these factors (Zarié
1979), particularly for v and t, so accumulation of accurate data can be
expected, The present distributions of S(u) and F(u) agree quite well
with the recent measurements in a flat-plate boundary layer (Durst et al.

1987).
4.3. Probability Density Distributions of Second-Order Moments

The pdf distributions of Reynolds shear stress uv and turbulent heat
flux vt are shown in Figs. 4.8(a) and (b), respectively. The solid line

stands for the theoretical pdf Pn(x) for a second-order moment derived from
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Eq.(3-12). The pdf of uv has beén studied by Lu & Willmarth (1973),
Antonia & Atkinson (1973) and Nakagawa & Nezu (1977), but a systematic
investigation of the pdf of vt has not been performed so far.

The theoretical pdf Pj(x) can be obtained by differentiating a
cumulative probability distribution function Fy(x) with respect to x. In

the case of x= ¥t, a definition of Fp(x) is:

Fp(x) = Prob { vt<x} (4-11)

The corresponding representation in the (v, t)-plane yields:

0 [ee]
Fp(x) = j[jx';’\; { [ P(u,v,t)du} di]dv

+ 1y X/ {°f P(G,v,t)duy dt]dv (4-12)

0 - 00

Differentiation of Eq.(4-12) with respect to x leads to:

Py (VE) = dFy(x) /dx

= [ LS P(G,-0,-x/%) + PG,0,x/0)) di] dU/0

— 00

<

4 o '
[ Hq(8) He(x/V) expl-(V2+ (x/¥)23/21 0/ ¥ (4-13)

0

Similarly, the pdf for iV is derived as:

. 1 K<h ) R R - R R R
Pr(0V) =— '} Cpqo [ Hp(0) Hq(x/G) exp[-{0*+ (x/0)*/2] du/ G (4-14)
T p+q=even 0

26



As shown in Fig. 4.8, though skewed opposite, the distributions of PE(ﬁﬁ)
and PK(G%) are seen to be similar in every respect. The shapes of pdf
change little with radial location, from within the wall region out to the
core region of the flow, which corresponds to constancy in correlation
coefficients (Ruv=>=-0.5 and Rvt=>=0.5) over these regions (see Section 4.1).
The long tails of pdf substantiate the highly intermittent nature of
momentum and heat transfer. At the pipe centerline, Ruv and Rvt are zero,
and both PE(ﬁQ) and PH(GQ) distributions become symmetrical. It is
evident from Figs. 4.8(a) and (b) that the theoretical predictions from

Egs.(4-13) and (4-14) follow the experimental trend quite closely.

4.4. Turbulent Diffusion of Turbulence Energy Components, Temperature

Variance, Reynolds Shear Stress and Turbulent Heat Fluxes

4.4.1. Comparison of measurements of turbulent diffusion with predictions

by existing models for triple products

The distributions of turbulent diffusion, i.e., third-order moments, of
turbulence energy components u? and vZ?, témpefature variance t2, Reynolds
shear stress uv, and turbulent heat fluxes ut and vt are presented in
Figs. 4.9(a) and (b). The values predicted from the existing models for
triple products vuv and vvt, i.e., diffusion of uv and vt, are included in
Fig. 4.9 so as to evaluate the performance of the models. A prime " ' "

denotes the normalization of velocity and temperature by the friction

velocity and friction temperature, respectively. The representative
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existing models are as follows:

[I ] Models for turbulent diffusion of Reynolds stress uiujuk

(a) Daly & Harlow (1970)

k 9 Uj Uj
Uiujuk= - Cri— Uy Uy (4-15)
€ d Xg
(b) Hanjalié & Launder (1972)
k d U U 3 U3y dU Uy
Upujuc= -Cpp— [Ugu;y Uty —— + Tgu, ——— (4-16)
i4j RZE Y5 3 xg LY 3 Xy LYk 3 Xg
(c) Cormack et al. (1978)
4k2{2 (s 5 S ss 8 s )ak daik  daij dakj
u-u-u - — o .« + . <o+ . . _._+a + +
iUj Uk c 1 ij Okg ikOje kjOif 3xg 2 3Xj 3 X, 3 %
2k d k
== {203(8ik ajpt Sijakgt Sjkaze ) ——
€ 3 Xy
94djyg 9 akyg odig
+ . - e + .
wlaik s Mg Wigw, ) D
a'lj = Uin - 261Jk/3 (4—17)
[II ] Models for turbulent diffusion of heat flux uiujt
(a) Deardorff (1973)
- k[ _""Bui—tJr aut+ _t_auuj:I
U: u; = -—LCU:Uupg — CrU: U ChU -
iYj c 14542 5 Xy 241 MR 3 xg 3YL 5 xg (4-18)

with ci=c2=c3=cs1.
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(b) Owen (1973)
One letting c3=0, ci=cz=cs2 in Eq.(4-18).
(c) Wyngaard & Coté (1974)

One letting c2=c3=0, ci=cs3 in Eq.(4-18).

[T ] Models for turbulent diffusion of temperature variance ujt2
(a) Deardorff (1973)
One letting ui= t in [II ] (a).
(b) Wyngaard (1975)

One letting ui= t in [ ] (c).

where k and & are the turbulence kinetic energy (= uiui/2) and dissipation
rate of turbulence energy, respectively. Definitely, all are the
gradient-type diffusion models. The model constants used in the present
study are summarized in Table 4.2.

As shown in Fig. 4.9, turbulent diffusions pertaining to the velocity
fieid are similarly distributed with maximums at approximately y*= 30.
The same applies to turbulent diffusions for the thermal field, in which
the second peaks are seen to exist in the outer region. Comparing the
calculéted values of -vuv and vvt from the existing models with the
experimental results, we find that all models fail to predict the measure-
ments quantitativély for y*>100 and even qualitatively for y*<100, where
the predictions present the trend opposite to the measurements.
Accordingly, there is a risk that serious errors may be introduced into the
results of predictions if these models are incorporated in the Reynolds

stress and/or heat flux equation modelling.
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4.4.2. Probability density distributions of third-order moments

For appropriate modelling, it is necessary to investigate the statis-
tical characteristics of third-order moments in detajl and give a theo-
retical explanation for then. Figure 4.10 shows measurements of pdf
distributions of third-order moments. Every pdf is nearly symmetrical
about zero and has very long tails for positive and negative values of the
abscissa, although not distributed in the Gaussian manner. Also, all of
these distributions are too similar to be readily distinguished from
others. This means that turbulent diffusion is a very intermittent
phenomenon and that the magnitude and direction of time-averaged diffusion
are determined by a delicate imbalance (i.e., asymmetry) of pdf
distribution.

To illustrate this situation, the theoretical pdf distributions for
third-order moments Py (VaV), PM(GQ%) and Pm(Vﬁ%) are derived from a non-
Gaussian joint pdf (3-12). Following the same procedure as for the
second-order moments (cf. Egs.(4-13) and (4—14)), we get Pp(x) for x= ¥49,

AAD AAD
vVt and Vit as:

Cpq0 of Ho (X/V2) Ho (V) exp[-{ (x/v2)2+v21/2] dv/ v? (4-19)
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AnaA

Pp(vut) = [f {P(U,V,x/UV) +P(-G,V,-x/0GV)

0

+P(=U,-V,x/UV) + P(0,-V,-x/09) } di dv/ av (4-21)

The pdf based on an assumption of Gaussian behaviour, Pey(x), is similarly
obtained using Eq.(3-8) instead of Eq.(3-12).
The measured pdf distributions of ¥8¢ and 9% are presented in

Fig. 4.11, compared with the theoretical predictions from Egs.(4-19) and

(4-20) and those based on a Gaussian joint pdf. Evidently, the asymmetry
in pdf distributions is fractional. But it is this asymmetry that
determines the net value of turbulent diffusion. If a theory is developed

on the basis of an assumption of Gaussian behaviour, the pdf distributions
of third-order moments become symmetrical about zefo. Consequently, time-
averaged values of third-order moments (i.e., expectations of instantaneous
third-order moments) are consistently zero, and the important characteris-
tics of turbulent diffusion are not described fully. Howeyer, as seen
from Fig. 4.11, the present theoretical models (4-19) and (4-20) can
precisely predict the asymmetry in pdf distributions, thus vielding the

correct values of third-order moments.
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Probability density distributions of velocity and temperature
fluctuations.

(a) P(¥): O , experiment; , Eq.(4-6a); ————,
Gaussian;
(b) P(%): O , experiment; , Eq.(4-6b); ————,
Gaussian.
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Fig. 4.5. Joint probability density of {i and ¥ (y'=7,6).

isocontours with an equal increment of 0.02.

Lines are
(a) Experiment; (b) Prediction.
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Fig. 4.9, Distributions of turbulent diffusion (third-order moments).

(a) Velocity field. Experiments: —O—, -vuv; —@—,

;1—15; —(—, vv2., Predictions for -vav: — 0 , Daly &
Harlow; — -——, Hanjalié & Launder; ————-, Cormack et
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(b) Thermal field. Experiments: —O—, vvt; —@—, -vut;
—0—, vt2, Predictions for vvt: ———— , Owen;
——-— Deardorff; ————, Wyngaard & Coté.
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Fig. 4.11. Comparison of predictions with experimental results for
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Re RB UC m/s Uz m/s -TW °C TC OC .t’t °C wa/mz
4x104| 1032 | 17.2 | 0.79 | 100.3 | 41.2 2.9 2333

Table 4.1, Characteristics of the flow.

Model for triple product | Constant | Value (Present work)

Daly & Harlow (1970) Cr1 0.21
Hanjalit & Launder (1872) | Cre 0.11
Cormack et al. (1978) a -8.14x10°3
(for all flows) ~  |f-------mopmmmmomommmmomomeo s
a2 -1.72x10-?
e | _1.80x10-2
e | -Loaxut
Deardorff (1973) Cs1 0.11
Owen (1973) Cs2 0.11
Wyngaard & Coté (1974) Css 0.13
Wyngaard (1975) Css 0.13

Taﬁle 4,2, -Model constants used in the existing models for triple

products of velocity and temperature.
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CHAPTER V

COHERENT MOTIONS AND THEIR ROLE IN HEAT TRANSPORT PROCESSES
5.1. Pictorial Structure Survey

The velocity and temperature profiles agreed with those fully developed
profiles already generally accepted (Hishida & Nagano 1979). A pipe
section can be partitioned into four basic flow zones: (i) the viscous
éﬁblayer (y*<5), (ii) the buffer layer (5<y*<30), (iii) the fully turbulent
part of the wall region, i.e., log-law region, (30(y*<180:=0.2r3), and (iv)
the outer region (y*>0.2r3). Here, rs is the dimensionless pipe radius.
In what follows, the characteristics of fluid flow and heat transfer
structures are investigated in conjunction with these basic flow zones.

Typical instantaneous fluctuations of the velocity components u and v,
temperature t, turbulence energy components u2 and v2, temperature variance
t2, turbulent momentum transfer (i.e., Reynolds shear stress) uv, and axial
and radial turbulent heat fluxes, ut and vt, recorded simultaneously, are
presented in Fig. 5.1. Figure 5.1(a) shows the records of the signals in
the buffer layer where most intense turbulent mixing takes place. From
this figure, the highly intermittent and spiky nature of turbulent heat and
momentum transfer is apparent. Almost all large peaks of uv<0 and vt>0
are the consequence of inrushes of high-momentum and low-enthalpy fluid
from the outer region (v<0, w0, t<0); and low-momentum and high-enthalpy
fluid ejections from the near-wall region (v>0, u<0, t>0). Also observed
in this figure are the typical u-signal patterns of the ejection- and

sweep-type motions consisting of a gradual deceleration from a local
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maximum followed by a strong acceleration (Blackwelder & Kaplan 1976
Wallace, Brodkey & Eckelmann 1977).

Despite increasing distance from the wall, as inkthe outer region of the
flow shown in Fig. 5.1(b), violent fluctuations of Reynolds shear stress
and turbulent heat fluxes are still associated with ejection- and sweep-
type motions. This indicates that the coherent motions originating in the
wall region also play a very dominant role in determining the transport
processes of heat and momentum in the outer region.

From these observations, the inherent intermittency of turbulent heat
and momentum transfer can be regarded as the consequence of the intermit-
tent coherent motions near the wall. Therefore, it is very important to
detect the coherent structures accurately in order to clarify the transport

phenomena in turbulent flows.

5.2, Description and Recognition of Coherent Motions

To investigate coherent structures, first fluid motions are classified
into four types of events according to each quadrant of the (u, v)-plane.
Four different types of motion and the properties of different quadrants
are given in Table 5.1. As shown in Fig. 5.2, each classified motion has
the deterministic mean period Ti and mean duration A Ti. The mean periods
for each motion are essentially equal ét a location, indicating that each
classified motion on the average occurs at the same interval. In contrast
to this, the mean durations of the two interaction-type motions (i=1, 3)

are about half as large as those of the ejection- (i=2) and sweep-type
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(i=4) motions. Thus, ﬁhe fractions of time occupied by the ejections and
sweeps are generally larger than those of the interactions.

From the pictorial structure survey presented in Section 5.1, it is
clear that the coherent structuresAof wall turbulence afford the key to an
understanding of fhe mechanism of turbulent heat transfer. Here, the
important questions are: What are the relations between the ejection- and
sweep-type motions (both motions play a main role in turbulent heat
transfer)? What is the role of both interaction-type motions in turbulent
heat transfer? How strongly do in fact the coherent structures and
turbulent heat transfer correlate? To answer these questions fully, we
must determine objectively coherent structures consisting of wéll—ordered
smotions from random time—series data and then describe them appropriately.
The following procedure has been developed to judge whether the detected
motions are the coherent motions.

In order to improve the accuracy of the recognition of coherent
structures, it is often very effective to apply a detection algorithm to
thé localized fluctuations of turbulence quantities about their short-time
temporal averages (moving-averages), i.e., to extract a specific structure
covered with unnecessary large-scale fluctuations (Blackwelder & Kaplan
1976; Wallace, Brodkey & Eckelmann 1977). The localized fluctuating part

of a turbulence quantity, Q’(7 ), about the mdving—average is given by:

T+T/2
1
Q' (t) = Q1) -+ Q(t')dt' (5-1)
T-T/2
where T and 7 ’ denote time, and T represents the averaging time. The

accuracy of recognition of coherent structures can be improved by making
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the averaging time T as short as possible. The value, however, has a
lower limit so as not to influence average time-quantities characterizing
the intermittent nature of coherent structures such as those shown in
Fig. 5.2, The dependence of the evaluated mean duration of each classi-
fied motion, Z;T;, with the averaging time T, is demonstrated in Fig. 5.3.
Judging from this figure, the authors have employed T=51.98 */Uc as the
most appropriate value in the present study. It has been also confirmed
that the mean period and the mean duration calculated at other y locations
.by using this averaging time agree well with those given in Fig. 5.2.

If any organized motions exist truly‘in a flow, there should be a
certain regularity in the trajectories of quadrant-sequences on the (u, v)-
plane because of continuity of turbulent motions. In order to detect the
coherent motions in a wall turbulent shear flow, an investigation of all
possible trajectories on the (u, v)-plane is necessary, since various
stages are observed in the evolution of coherent structures. Tﬁerefore,
at the beginning, the frequencies of occurrence of a specific quadrant-
sequence are investigated at various amplitudes of velocity fluctuations.
Figure 5.4 shows an example of the results. Here, instantaneous velocity
fluctuations, u’(7 ) and v’(7 ), are conditionally sampled and averaged

using the detection function Ii(7 ,H) given by:

- e
1, if | u'(T )v’(q.)l > Ha/u’2 A v'2 and point (u’, v’)

is in quadrant i,

Ii ,H)=
(7102 9 (5-2)

L 0, otherwise
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The parameter H in Eq.(5-2) is a threshold and permits a conditional
sampling.

From Fig. 5.4, we can see that the trajectory in the sequence of [4]-
[1]1-[2] occurs much more frequently than that of [4]1-f2]-{1]1, and the
ejection- and sweep-type motions have larger amplitudes than the
interaction-type motions. Strictly speaking, the importance of a
trajectory to turbulent heat ﬁransfer is not necessarily expressed with the
frequency of occurrence alone. It was established by Hishida & Nagano
(1979) that large-amplitude fluid motions bring about strong correlations
between the velocity and thermal fields and contribute largely to turbulent
heat transfer. In addition, the frequency of occurrence of the trajectory
detected‘with a high threshold is closely related to the frequency at H=0.
Accordingly, we can evaluate the importance of a trajectory correctly with
its frequency of occurrence at H=0.

All possiblé sequences of events have been investigated. Figures
5.5(&) and (b) show thé sample results in the buffer layer and in the core
region of the flow, respectively. Numbers appended to a trajectory denote
the detected frequencies of quadrant-sequences for H=0. For example, in
Fig. 5.5(a), the frequency of the quadrant-sequence [4]-[1] is 717, and
that of [1]-[2] which follows the previous sequence [4]-[1] is 502. Tﬁe
frequencies of [1]-[3] and [1]-[4] which follow [4]-[1] are 7 and 208,
respectively. Similarly, the frequency of [2]-[3] is 780, which is
followed by 537 [3]-[4], seven [3]-[1] and 236 [3]-[2] sequences of events.
If wall turbulent shear flows should consist of completely chaotic motions,

a specific trajectory does not occur with such a high frequency. In the
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core region of the flow shown in Fig. 5.5(b), the tendency similar to that
in the buffer layer can be noted only except for an incredse in the
trajectories of [2]-[1]-[2], [2]-[3]-[21, [41-[1]1-[4], and [4]-[3]-[4].

The main reason for the increase of these trajectories is that the well-
organized motions such as ejections and sweeps gradually degenerate with
increasing distance from the wall, and so the ejection- and sweep-type
motions are easily cut off by the interaction-type motions. Therefore,
the principal features of the coherent motions are reflected more clearly
By the measurements in the buffer layer. In other words, we can extract
the coherent motions more reliably and more easily from the result shown in
Fig. 5.5(a), which indicates that: (1) possibility of direct coupling of
the ejections and the sweeps is very low, and the interactions exist almost
always between the ejections and sweeps; (2) thé interactions wedge
themselves into the ejections or sweeps less frequently than between the
ejections and sweeps (or vice versa); and (3) the two interactions (i=1l, 3)
are rarely coupled with each other.

Furthermore, a set of trajectories moving on any four quadrants of the
(u, v)-plane have been also sampled, e.g., [4]-[1]1-[2]-[3]. The recog-
nized regularity in the sequence of events is exemplified in Fig. 5.6.
The frequencies are included in the figure. The numbers in parentheses
represent the relevant percentage. As a matter of coﬁrse, the frequencies
of occurrence are nearly identical with those predicted from the values
given in Fig. 5.5. For example, the frequency predicted for the
trajectory [4]-[1]-[2]-[1] is 502X (367/765)=241, which is in excellent
agreement with an actual value of 236.

From these results, it becomes now evident that the deterministic
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regularity exists in the trajectory of individual coherent events and that
we can detect and describe the coherent motions objectively. Four
distinct patterns are eventually recognized in the sequence of coherent

motions as given in Table 5.2.

5.3. Basic Flow-Patterns of Coherent Structures

The finding described in the previous section makes it possible to
program a computer to extract and ensemble-average sequence of events, and
to delineate the characteristics of the coherent structures. The
ensemble-averaged velocity and temperature fluctuations can be established
by arranging temporal duration and period of each event in the mean
duration and the mean period of the respective motions. This procedure is
expressed by the following equation:

ATy,

Q' (=22t + ') (5-3)

<Q'(t)> = Yo

N
W
where <Q’> denotes the conditional average of a quantity Q’(7 ), N is the
number of events classified into the ith-quadrant, ZSTirn represents the
duration of events in the ith-quadrant, and ATi is equal to (1/N)é;[xTi,n.
The points T n’ denote the reference points in time when events in the ith-
quadrant begin. Time T =0 arbitrarily corresponds to the position where
all the reference points 7 n’ are brought into alignment. ‘Figures 5.7,

5.8 and 5.9 show the conditionally averaged patterns of velocity and

temperature fluctuations, <u’>, <v’> and <t’>, Reynolds shear stress,
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<u’v’>, and turbulent heat fluxes, <u’t’> and <v’t’>, in the buffer layer
adjacent to the heat-transfer surface, in the log-law region and in the
core region of the flow, respectively. In each figure, the conditional
averages are presented in terms of four basic flow-patterns of coherent
structures. The velocity and temperature fluctuations are normalized by
the respective r.m.s. values and the time T on the abscissa is normalized
by the centerline velocity Uc and the displacement thickness & x. The
quantities <u’2> and <E’2? denote <(du’/ 9T )2> and <(3t’/ 3T )2>, and
correspond to the dissipation rates of velocity and temperature fluctua-
tions, & and ¢ t,’which can be obtained using the local isotropy and
Taylor's hypothesis as:

e = 15v(du/dx)?2 15v(3u/at)2/U0? (5-4)

1]

]

e = 3aGETE - WG/ (5-5)
where v and a are the kinematic viscosity and the thermalvdiffusivity,
respectively. The conditional averages of <u’2> and <t’2> are nérmalized
by the respective appropriate common values so that the magnitude of the
two becomes nearly the same through Figs. 5.7-5.9.

From Fig. 5.7, it is obvious that four basic patterns have distinct
characteristics from each other in the conditional aVerages of turbulence
quantities and in the relevant transport processes of heat and momentum.
The interaction-type motions are very important events providing a phase-
information for recognition and classification of organized structures.

The prominent characteristics of each pattern are: waveforms of <u’> and
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<v’> related to classified patterns 1 and 3 are bilaterally symmetrical at
a midpoint of each waveform; <u’> and <v’> of patterns 2 and 4 are
bilateraily asymmetrical, with a larger <u’> amplitude of pattern 2 in the
first fourth-quadrant and with a completely opposite trend in pattern 4;
almost all net heat transfer occurs during the swWweeps and ejections; heat
transport becomes greatest when the pattern-4 motions dominate a flow
field.

It is also found that the dissipation of both velocity and temperature
fluctuations happens mainly during the interaction-type motions associated
with a change of flow patterns from the ejections to sweeps. Wallace,
Eckelmann & Brodkey (1972) reported, from an observation of the flow-
visualization film, that the dissipation rate of turbulent kinematic energy
peaked at a boundary between the ejection- and sweep-type motions. The
present result proves that the fluid flows shifting from the ejections to
sweeps dominate not only the dissipation rate of the velocity fluctuations
but also that of the temperature.

‘In the log-law region (Fig. 5.8) and in the outer region (Fig. 5.9) as
well, the time length of every pattern becomes shorter, reflecting a
decrease in the mean duration of each event A Ti (see Fig. 5.2). The
difference between patterns 2 and 4 becomesaremarkable in magnitude of
turbulent heat and momentum transfer. However, the main characteristics
of related conditional averages in the log-law and outer regions are
similar to those found in the buffer layer. This provides further support
for preciseness of the present sampling method to extract the coherent

structures which may exist over a greater part of the pipe section.

Here, the characteristics of the basic flow-patterns are supplemented.
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The <u’>-waveform of pattern 4 depicts the typical u-signal patterns of the
coherent structures consisting of a gradual decelération from a local
maximum followed by a strong acceleration, which was identified by using
the pattern-recognition technique (Wallace, Brodkey & Eckelmann 1977).
The <t’>-waveform of pattern 4 has a steep negative gradient when <u’> is
under strong acceleration. This might reflect the possible existence of a
large-scale temperature-front, noted first by Chen & Blackwelder (1978).
The dissipation rates of hoth velocity and temperature fluctuations have
their minima during the ejection-phase, but are not zero even near the
points of zero-gradient of <u’> and <t’> patterns. Thus, in the course of
ensemble-averaging, the waveforms of <u’> and <t’> have lost their small-
scale disturbances irresponsible for the larger-scale coherent motions.
Furthermore, high-frequency components contributing to the dissipation
should have a universal nature regardless of the flow-patterns, since the
waveforms of the dissipation rates‘change little among four basic flow
patterns.

Next, the threshold level H is increased to 0.5 for the recognition of
the ejection- and sweep-events so as to get, if any, a property of larger
scale. organized motions, An example of conditional averages is shown in
Fig. 5.10. The total number of detected patterns decreases with
increasing H values, but the characteristics of each pattern become more
pronounced. As shown in Fig. 5.10, the duration of pattern 4 becomes
longer than that for H=0, and the typical features of coherent motions such
as a weak deceleration of the flow followed by a period of low velocity and
a strong acceleration leading to a period of higher velocity are more

emphasized. The magnitude of Reynolds shear stress and turbulent heat
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fluxes becomes very large accordingly. It is also evident that, in the
immediate neighborhood of the heat transfer surface, the larger scale
sweep-type motions contribute more to the production processes of turbulent
heat and momentum transfer than the ejections; in particular, <-u’'t’> is
generated so as to be quite large in the last fourth-quadrant. Note that,
however, important changes are not observed in the essential character-
istics of every pattern even though the threshold H has changed. This in

turn indicates the adequacy of the present detection algorithm.

5.4. Vortex Structures of Coherent Motions

To better understand the spatial extent and evolution of four distinct
flow-patterns, the vortex structures of organized motions have been
examined. Temporal variafion of velocity vectors obtained from the
ensemble-averages of <u’> and <v’> is transformed into its spatial
variation by using Taylor’s hypothesis. Thé velocity vector, i, relative

to an observer moving at a convection velocity Uv, can be written as:
W= {<u'>+ (U-Uy)} i+ <v'>j (5-6)

where U is a local mean velocity, and i and j represent the unit vectors in
the x and y directions, respectively. The velocity vector-diagram of each
flow-pattern is established from a set of vectors calculated from Eq.(5-6),
which can visualize the spatial structure of the coherent motions observed

from a moving "camera". To verify the reality of the deduced velocity-
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vector contours, however, it is necessary to ascertain the fact that the
same flow pattern occurs simultaneously at different positions in the y
direction, at least over some area. Blackwelder & Kaplan (1976) used ten
hot-wires arranged normal to the wall, i.e., a hot-wire rake, to examine
the degree of coherence in a turbulent boundary layer. Figure 5.11(a)
shows their measurements of instantaneous streamwise velocitykfluctuations
in the inner region of the flow. As shown in Fig. 5.11(b), the authors
too have measured the streamwise velocity fluctuations simultaneously at
three different y positions in the wall region. Both figures show that
the same flow-pattern really occurs at the same time over a considerable
area in the direction normal to the wall.

Furthermore, in order to obtain direct evidence for this fact, the axial
and normal velocity fluctuations have been also measured simultaneously.
A normal hot-wire was set at y*=28.8 and an X-wire probe consisting of two
V-shaped hot-wires (Fig. 2.2(b)) was positioned at y*=57.5 right above the
normal hot-wire. The X-probe was used as a detector probe when applying
the'present detection algorithm. The detection—signal from the X-probe
afforded a pattern criterion for conditionally averaging the streamwise
velocity flucfuations measured by the normal hbt—wire. It should be noted
that the convection velocities of the coherent motions have a little
irregularity (Blackwelder 1977), so the point at which the correlation
coefficient between two streamwise velocities (i.e., measured by the normal
hot-wire and by the X-probe) becomes maximum is adopted as the reference
point in time for obtaining conditional averages. ‘An example of the
results is shown in Fig. 5.12, Apparently, the conditional average of

<u’> obtained from the normal hot-wire is nearly identical to that detected
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with the X-probe, thus indicating the existence ofva flow field with the
same fldw pattern. It was confirmed with three other flow—pattefns that
the same respective pattern did occur simultaneously at different positions
in the wall region.

The vortex structures of each flow pattern in the wail region are
depicted in Figs. 5.13(a)-(d), calculated from Eq.(5-6) with the convection
velocit& of an observer equal to a mean streamwise velocity at y*=37.8.
"Here, the relative velocity vector W is normalized by the friction velocity
Ug . The fluid motions of each flow pattern appear to be considerably
different from those expected from Figs. 5.7 and 5.8.  The important
differences may be listed as follows. Pattern 1 has a small-scale
vortical motion in the immediate neighborhood of the wall. The fluid
upstream of this vortex is ejected from the near-wall region as if it were
penetrating the sweep-type motion fluid which comes from far upstream at a
small angle to the wall. In the case of pattern 2, the small-scale
vortical motion observed in pattern 1 increases its scale slightly and the
outflowing motion from the wall becomes weaker. The ejection- and sweep-
type motions interact violently with each other within a very small region.
This is a reason why the velocity dissipation rate has its maximum in this
limited region (see Fig. 5.7(b)). The upstream fluid rushes toward the
wall at a larger angle to the wall, particulaply in the neighborhood of the
wall, than that which occurs in pattern 1. Pattern 3 has a large-scale
vortical motion at about y*=70, and this vortex is seen to dominate the
whole structure of pattern 3. The mode of mutual interference between the
ejections and upstream sweeps is similar to that of pgttern 2. However,

a flow state considerably different from patterns 1 and 2 is seen in the
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near-wall region downstream of the vortex. Pattern 4 also has a large-
scale vortical motion which is similar to that of pattern 3 and centers
around y*=70. The important characteristics of this pattern are: the
fluid downstream of the vortex penetrates into the region in immediate
proximity to the wall and is ejected outward from the wall as if it were
involving the near-wall fluid.in its motion (i.e., the fluid staying in the
near-wall region is brought outward from the wall by the strong vortical
motion); the upstream sweeps in the near-wall region have approach angles
to the wall much smaller than those of patterns 2 and 3, and move parallel
to the wall; the interference between the sweeps and the ejections occurs
over a wider area, and tﬁis explains why the‘peak of <u’2> in pattern 4
lasts longer (Fig. 5.7(d)). As mentioned in Section 5.3, much of the
turbulent kinetic energy dissipates when the flow changes from the
ejections to the sweeps. It can be seen from Figs. 5.13(a)-(d) that this
is due to the fact that the ejections and sweeps, which are usually large-
scale motions, interact violently with each other, as if clashing in a very
narrow region.

To investigate the structure away from the wall, the vortex motions are
presented in Figs, 5.14(a) and (b) on condition that the convection
velocity of an observer Uv is set to 0.8Uc. ‘ Here, structures of patterns
1 and 4 have been focused oﬁ. Pattern 1 has a very large-scale vortical
motion Centering around y*+=110. This vortex cannot be observed in
Fig. 5.13(a) in which a small-scale vortex exists near the wall. Such a
double vortical structure corresponds well with the model which explains
the cyclic process of bursting phenomena (Offen & Kline 1975, see

Fig. 5.15). Their model may be rephrased as follows: a small-scale vortex
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is formed in the near-wall region when the previous burst has jugt ended;
this vortex is lifted up from the wall and grows gradually while increasing
its spatial scale; finally, the grown vortex leads to bursting, aﬁd this
process is then repeated. Hence, it is more reasonable to regard each of
the four basic flow-patterns as an elemental motion which does not
represent an independent motion of one another but the stage of development
of the coherent structures. Especially pattern 4 can be considered to be
the flow in the final stage of the bursting phenomena (i.e., breakup),
because very active motions with vigorous ejection are observed in
Fig. 5.13(d). In addition, as seen from Fig. 5.14(b), pattern 4
delineates the lower part of a very large-scale transverse vortex
downstream of the ejections. This structure corresponds to the transverse
vortex motions which appear prior to the ejections found by Praturi &
Brodkey (1978) (see Fig. 5.16). = Furthermore, it might be possible to
identify the vortical motion in each flow-pattern (i.e., Figs. 5.13(a)-(d))
with the tip of such a horseshoe vortex as visualized by Head &
Bandyopadhyay (1981). No assertion, however, can be made at present.
Consequently, it is established that each of the four basic flow-
patterhs of the coherent motions is the principal member of the sequential
bursting phenomena. In particular, pattern 4 is a very important flow-
patternvwhich involves vigorous ejections. The scale and scope of
conditionally averaged vortical motions also agree quite well with the
flow-visualization results of Nychas, Hershey & Brodkey (1973), and the
calculated results of LES by Kim & Moin (1986). As mentioned in Section
1.1, Bogard & Tiederman (1986) reported that the uv-quadrant method is most

effective for detecting ejection-type motions. The idea of the present
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detection-method is the same as the uv-quadrant method in respect to
classification of the flow into the four quadrants on the (u, v)-plane.
However, the present method differs essentially from the conventional one
in regard to high ability, objectivity and reliability of the detection
algorithm based on the trajegtories of quadrant-sequences. It is also
self-evident from the above results that the quantitative structures
obtained by the present method are in good agreement with most of the flow-

visualization results.

5.5. Higher-Order Moments of Coherent Motions

Good modelling of third-order moments uiujuk, uwuiujt and ;;Ei is an
essential subject to develop a reliable’turbulence model (Bradshaw et al.
1981; Launder 1985). There are, however, only a few experimental data for
third-order moments because of the difficulty in measuring turbulent shear
stress and heat flux fluctuations simultaneously. Thus, in this section,
the dynamic characteristics of third-order moments are investigated in
connection with the organized motions. To associate the results with the
vortex structures shown in Figs. 5.13(a)-(d), typical waveforms of third-
order moments at y*=37.8 are presented in Figs. 5.17(a)-(d). The distinct
evidence is that much of the production of third;order moments occurs
during the ejection-phase of pattern 4, which may well be explained by the
vortical motion of pattern 4 shown in Fig. 5.13(d). Regarding the dynamic
aspects of <v’3>, the positive skewness can be clearly seen in the

ejection-phase of patterns 1 and 4, and the negative skewness is observed
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in the sweep-phase of pattern 3. It should be noted that the behaviour of

<v’3> dominates strongly the other third-order moments.

5.6. Relationship Between Coherent Motions and Heat Transport Processes

As the details of elemental flow-patterns for the coherent structurés
have been understood, next the relation between the coherent structures and
heat transport processes is investigated. With the conditional averages

of <u’> and <v’>, a velocity vector u’ for coherent motions is given by:
u' = <u'>i + <v'>j : (5-7)
Avrelevant turbulent heat-flux vector g’ may be written as:
q' = <u't'>i + <v't'>j ; (5-8)

The turbulent heat-flux vector does not describe the direction of a
turbulent motion (e.g., the direction of heat-flux vector for v’<0 and tf<0
is identical to that for v’>0 and t’>0), and hence we must refer to the
velocity vectors together to examine the dependence of heat transport
processes on coherent motions. The diagrams of nondimensiénal velocity
and turbulent heat-flux vectors, w (=u’/u:) and q (=q’/u;t:z), of each flow
pattern, are demonstrated in Figs. 5.18(&)—(d’ as ‘a function of y*.
Taylor’s hypothesis is used for conversion of a temporal pattern-length to

its spatial scale in the streamwise direction. The zero mark on the
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abscissa is the beginning poinf where the pattern is detected. The
spatial extent of each paftern in x direction is found almost equal
throughout the pipe section. In the near-centerline region, the accuracy
of pattern recognition decreases due to the effect of>the ejections from
the opposite wall (Sabot & Comte-Bellot 1976, Hishida & Nagano 1981), and
so the vector-diagrams for this region are not includéd in Fig. b5.18. As
was seen in Section 5.4, the difference in fluid vectors among basic flow-
patterns is much larger than that deduced from Figs. 5.7-5.9. For
example, the ejections of pattern 2 disperse upward, whereas the ejections
of pattern 4 concentrate in the outward direction. The sweeps for
patterns 1 and 2 concentrate in the wallward direction with small angles to
the wall, whereas thqse for patterns 3 and 4 occur at larger angles to the
wall as if fluids were crashing against the wall.

These different characteristics in flow patterns significantly influence
the state of turbulent heat transport. In pattern 1, net turbulent heat
transfer is small during the ejection-phase and becomes congiderably larger
during the sweep-phase. In pattern 2, large axial transports <-u’t’> are
observed near the wall during the sweep-phase downstream of the ejections,
but away from the wall (say y*>40) they‘become smaller; thus turbulent
heat-flux vectors diverge upward. The heat-flux vectofs~of pattern 2 are
not so intermittent in nature. In pattern 3, <-u’t’> is large during the
ejection-phase, and both <-u’t’> and <v’t’> are negative during the
wallward-interaction phase. In pattern 4, much turbuleht heat transport
occurs overall, In particular, the magnitgde of <v’t’> during the
ejection-phase is far larger than for other patterns, and turbulent heat-

flux vectors are very intermittent.
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These results should be viewed in the lighf of the velocity vector
diagrams shown in Fig. 5.13 to understand the relationship between the
vortex structures and heat transport processes. It is readily evident
that the streamwise turbulent heat-flux <-u’t’> becomes large during the
sweeps penetrating into the immediate neighborhood of the wall with small
angles to the wall, but becomes smaller during the other sweeps with large
angles to the wall (also see Fig. 5.7). The radial turbulent heat-flux
v’t’> is very large in pattern 4 which involves the strong ejection-type
motions (i.e., fluid approaching to the wall being carried outward
spontaneously), and the heated fluid near the heat transfer-surface is
transported outward largely by this pattern. In pattern 3, on the other
hand, such an outward flow as occurs in pattern 4 returns again toward the
wall and <v’t’> becomes negative due to the realization of t’>0 and v’<0;

thus heat transfer is suppressed in this pattern.

5.7. Contributions to Turbulence Quantities in Velocity and Thermal Fields

From Coherent Motions

As evidenced previously, the ejection- and sweep-type coherent motions,
irrespective of flow patterns, are the primary mechanisms of the production
of the turbulent shear stress and heat fluxes. Therefore, it is important
to evaluate quantitatively ﬁhe fractional contributions to turbulent
quantities related to heat transfer from these coherent motions.

The contribution to the radial turbulent heat flux vt from the ith

quadrant motions in the (u, v)-plane may be written as:
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T

1 . " . ] -
<F = %F %ig T v(t)t(t)Ij(t,H)dt (5-9)
0
where 1i(7 ,H) is the detection function given by Eq.(5-2). The frac-

tional contributions to vt from four distinct types of motion for H=0 are
presented in Fig. 5.19 as a function of y*. The ejection-type outflow of
high-enthalpy fluid from regions very near the wall is the main contributor
to turbulent heat transfer through a greater part of the pipe section.
However, sweeps of low-enthalpy fluid from regions away from the wall are
promihent as the wall is approdched. This is consistent with the
mechanism of Reynolds shear stress production; sweeps are the largest
contributors in the immediate neighborhood of the wall, and ejections
become predominant further away from the buffer layer (Lu & Willmarth 1973;
Hishida & Nagano 1981).

The scales of turbulent motions which contribute mainly to vt can be
analyzed from Eq.(5-9) by varying a threshold level H, and the results for
the characteristic flow regions are shown in Fig. 5.20 as a function of H.
Over the entire cross section except for the near-centerline region, the
turbulent heat transport induced by large—aﬁplitude turbulent motions for
H>1 exclusively occurs during the ejection- and sweep-phase and the
contributions of both wallward and outward interactions are negligible.
The distributions of (?ETi for i=2, 4 (i=2: ejection, i=4: sweep) are very
similar to those of Reynolds shear stress (5;7} (Hishida & Nagano 1981), so
one may conclude that amplitudes of turbulent heat flux fluctuations are
determined by those of Reynolds shear stress fluctuations. This is con-

sistent with previously identified conditional averages of <-u’v’> and
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vt shown in Figs. 5.7-5.10. The ejections of high-enthalpy- fluid
originating from the wall regions in any azimuthal direction reach the
centerline region, and thg classification of fluid motions given in Table
5.1 becomes meaningless due to complex effects of interactive motions. As
a result, the contributions to vt from the classified flows become equal to
one another at the pipe centerline.

The fractional contributions to turbulent kinetic energy @2 (= w4+ vi4
;5), and temperature variance t2 are computed in a manner similar to the
fractional contributions to vt, and the results for H=0 are presented in
Figs. 5.21 and 5.22, respectively. Although the circumferential velocity

fluctuation w was not measured simultaneously, we could reasonably estimate

the fractional contribution to (6531//65 with [(u2)1+-(5271]//(554;;5),
because the relation G?5=(554$$5)/2 holds as shown in Fig. 4.1. Figures
5.21 and 5.22 shéw that most of the turbulent kinetic energy and temper-
ature variance are produced by the ejection- and sweep-type motions, and
the fractional contributions made by these two coherent motions total about
80 % of the whole. In close proximity to the heat-transfer surface, the
sweep-type motions are the largest contributor to the production of
turbulent kinetic energy and temperature variance. In the buffer layer
where turbulent kinetic energy and temperature variancé reach their
maximums, the ejections and sweeps equally predominate the production of
these turbulent quantities, reflecting the highl& organized structure
composed of the sequence of ejection- and sweep-type coherent motions. At
the pipe centerline, the relation (6531//55 = (2731//€? = 0.25 holds, and

the distinct coherent structures observed in the wall region almost

disappear.
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5.1. Simultaneous traces of turbulent quantities related to heat and
momentum transfer. .

(a) Buffer layer: yt*= 1b.4, y/ro=0.012;

{(b) Outer region: y+*=387.7, y/ro=0.441,
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Fig. 5.3. Dependence of mean duration with averaging time T (y*=22.2).

Notation as in figure 5.2.
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5.4. An example of frequencies of occurrence for specific trajecto-
ries (y*=7.6). [@]-[0]-[O1, [4]-[1]1-[2]; [Al-[A1-[A],

[41-[2]-[1].

Fig.
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(b)

Fig. 5.5. All possible trajectories on the (u, v)-plane.
(a) Buffer layer, y*=7.6; (b) Core region, y*=377.8.

65



[4-1-2-1] v [1-2-1-4]) v

sz§>
67(33) A
FE Y
p L
4( 2) 137(58) 2( 1) 137(67)
[4-1-2-3]1 v [1-2-3-4] v

207 LI
58(28) ) 65(30) ///'
o( 0)
7
1 ” v d + v
' !

1 7
A
‘\\\ii /ﬁ/ 2( 1) 149(69)
7 149(72)
I 216

‘?"”/

[1)

[4-3-2-3] v ' [3-2-3-4] v

° u’ ? 2 U’

4( 2) 95(35) 4( 1)
/ 1 7/
v o
172(66) b 172(63)
el B e Ot e’
271

~<;4?’Z. \>—er’f’

(4-3-2-1] v [3-2-1-4] v
o b 144
50(34) pa
P 47(33) 1( 1)
/ Y uw ? % v
a/, i \ i v
1( 1) 96(65) Y ,/h
: , 96(67)
147 R

Fig. 5.6. Important trajectories moving on any four quadrants of the

(u, v)-plane (y*=7.6). The numbers in parentheses represent

the relevant percentage.

66



<4-1-2-1-4>

<y> <—uvs

<4-1-2-3-4>
o<y <Tuv>

1 7/\

I
0 .

N— AN

<y'>
1
= TAVAV:Y

0 - v

e <t>
o \//d\\/ <Vt >

10/t

(b)

Fig. 5.7. Basic flow-patterns of coherent motions in the near-wall region
(y*=7.6).
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.

67



<4-3-2-3-4>

<-—-yv>
<y> UV

‘1’ h\/h " /\v/\/\
<-yt>

AR
<Vv't>

YW

T TUc/8*

(e)

(d)

Fig. 5.7. Basic flow-patterns of coherent motions in the near-wall region
(y*=7.6).
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.8. Basic flow-patterns of coherent motions in the log-law region

(y*=37.8).
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.8. Basic flow-patterns of coherent motions in the log-law region
(y*=37.8).
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.9. Basic flow—patterns of coherent motions in the core region
(y*=377.8).
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.9. Basic flow-patterns of coherent motions in the core region
(y*=377.8). ‘
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.11. Evidences of a high degree of coherence of velocity fluctu-

ations in the wall region.
(a) Near-wall region (from Blackwelder & Kaplan 1976;

figure 7);
(b) Fully turbulent region.
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Fig. 5.13. Vortex structures of basic flow-patterns that might be seen
an observer moving at a speed Uv=0.64Uc.
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.18. Velocity and turbulent heat-flux vectors for the basic flow-
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Fig. 5.18. Velocity and turbulent heat-flux vectors for the basic flow-
patterns (normalized by u. and tz).
(a) Pattern 1; (b) Pattern 2; (c) Pattern 3; (d) Pattern 4.
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Fig. 5.19. Fractional contributions to turbulent heat-flux vt from

different motions with H=0. Notation as in figure 5.2.
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Fig. 5.20. Fractional contributions to vt from different motions as a

function of H. Notation as in figure 5.2.
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Fig. 5.22. Fractional contributions to temperature variance t2 from

different motions. Notation as in figure 5.2.
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Quadrant- Type of Contribution
(u-v plane) Hotion to -uv
OQut d
1 u>0, v>0 ! "af -
Interaction
2 u<o, v>0 Ejection +
Wallward
3 u<o, v<o ] -
Interaction
4 u>0, v<o0 Sweep +

Table 5.1. Classification of the various types of motions in the (u, v)-

plane.
Pattern Quadrant Sequence
1 [4]1-[1)-[271-[1]1-[4]
2 [41-[11-[21-[31-04]
3 [4]1-0[3]-[2]1-[3]1-[4]
4 [4]1-[31-[2]-[11-14]

Table 5.2. Four basic flow-patterns of the coherent motions.
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CHAPTER VI

FINE STRUCTURES OF COHERENT‘TURBULENT TRANSPORT PROCESS

6.1. Conditional Probability Density Distributions of Velocity and

Temperature Fluctuations

Using the generalized three-dimensional joint pdf developed in Chapter
I, we can obtain the following one-dimensional conditional pdf Pi(x ) in

terms of the flow-classification given in Table 5.1:

v,1

-
-
—~
=
~—
H

° > 8

{ [ P(U,0, ; v,t)dE)dv

PPN

{ [ P(o, ;U,v,t)dE)du (6-1)

u,i

O

-

—
<>
S
it

o 8

(e}

] P(cu'i&,ov,iQ,E)deQ
0

-
.
—
>
~
i

where

Ou,i = (19_13_131)9 Ov,i = (191"‘1:"1) (6-2)
Here, the suffix i denotes each quadrant in the (u, v)-plane, and 6 u,i and
0 v,i are sign-functions which represent the signs of u and v of the ith-

quadrant. For example, in the case of i=2, we have:

(O'u,i, 6V,i)= ('1’ 1)°
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The experimental results of Pi(x ) are shown in Fig. 6.1, compared with
the calculated values from Eq.(6-1). The most probable value of the
conditional pdf of temperature fluctuations exists in the region t>0 at an
ejection—phase‘(i=2) and in the region t<0 at a sweep-phase (i=4). This
result provides statistical support for the evidence that low-momentum and
high-enthalpy fluid moves away from the wall during'the ejection-phase and,
inversely, high-momentum and low-enthalpy fluid moves toward the wall ~
during the sweep-phase. On the other hand, the conditional pdf Pi(%)
related to both interaction-phases (i=1, 3) are almost symmetrical; that
is, the temperature fluctuations do not correlate to the interactive fluid
motions. |

Predictions from Eq.(6-1) are seen in excellent agreemént with the
experimental values. Thus, we can apply the joint pdf P({i,%,t) to the
analysis of the coherent turbulent structures and the relevant transport

processes of momentum and heat.

6.2. Contributions of Organized Fluid Motions to Second-Order Moments

6.2.1. Contributions of different motions to turbulent momentum and heat

transfer

Figures 6.2 and 6.3 show the results of the fractional contributions to
the time-averaged values of Reynolds shear stress uv and turbulent heat
flux vt from each fluid motion classified in the (u, v)-plane, respec-

tively. The contributions from ejections become the largest in the
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region y*>10, while sweeps predominate in the near-wall region (y*<10).
These features are equally seen in contributions to both uv and vt. Lines
in Figs. 6.2 and 6.3 represent the theoretical predictions from the
following equation, which is obtained by calculating the moment ufvmtn

separately in each quadrant of the (u, v)-plane with Eq.(3-12).

Cam)
[ i)
=
< >
El
ot >
>
S
.

=

i

W= okion, | UH/“{I WP (o, ; Uso, 5 v,t)dErdv]da
0 U -eo

2 KS4 o o
_ Q.+P m+q ~ ~ ~ ~
= — L ou,ioug Cpgr [ be,p (0)(]  ba g (V)dV)da-B (6-3)
(2m)*2 g P ' i "
hifzeven ; H/u

where,

b 0= XM (x) exp(-x*/2), Bj, = [ b; , (x)dx

o%“— 8

and the parameter H is a threshold so as to pick out phenomena only for
| 4% ] >H. Putting H=0, {=m=1 and n=0 for (E;TE, and H=0, m=n=1 and {=0
for (3%71 in Eq.(6-3), we obtain the theoretical values shown in Figs. 6.2
and 6.3, respectively. As seen in these figures, the theoretical predic-
tions can trace the experimental trends satisfactorily. Thus, essential
aspects of the coherent structures such as negligible contributions from
both interactions and a reversal of contributions in ejections and sweeps
at about y*=10, are well reproduced.

The scales of fluid motions which contribute mainly to the turbulent

heat transport are presented in Fig. 6.4, being evaluated with a threshold
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level H. From this figure, one can recognize that the transport processes
of heat are dominated by large-amplitude ejection- and sweep-type coherent
motions, and the contributions of both interactions are negligible for H>2.
Nakagawa & Nezu (1977) used a two-dimensional pdf for analyzing the
structures of Reynolds shear stress uv theoretically. However, in order
to clarify the structures of turbulent heat fluxes in terms of typical
turbulent motions classified in the (u, v)-plane, we need a three-
dimensional pdf. Hence, their approach is not applicable for this
purpose. Lines in Fig. 6.4 show the predictions from Eq.(6-3) for various
threshold levels. Clearly, Eq.(6-3) is very useful for analyzing the

‘turbulent heat transfer in conjunction with the scales of fluid motions.

6.2.2. Conditional probability density distribution of heat flux vt

As stated previously, turbulent heat flux vt is determined by large-
amplitude organized motions (ejections and sweeps). To gain a deeper
insight into this distinct feature, the conditional pdf of %t (Fig.
6.5(a)) and the conditional weighted distribution defined as Qf-PI,i(ﬁf)
(Fig. 6.5(b)) have been investigated in the buffer region (y*=10.6) where
the organized motions are prominent. The distribution of %t-Pp,i(¥%)
represents a statistical contribution to the total heat flux vt from
various amplitudes of %% fluctuations. As is obvious from Fig. 6.5(a),
ejections (i=2) and sweeps (i=4) are the principal contributors to the
time-averaged heat flux vt, since the conditional pdfs in the ejection- and
sweep-phase are skewed largely to the positive side of vt. At this y-

location, the fractional contributions of ejections and sweeps are nearly
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equal (see Fig. 6.3). However, Fig. 6.5(b) indicates that the detailed
structure is somewhat different between ejections and sweeps. Larger-
amplitude fluctuations of turbulent heat flux (9%)2.5) are mainly associ-
ated with the sweep-type coherent motions. Furthermore, Fig. 6.5(a), (b)
also proves that organized motions (ejections and sweeps) sometimes
contribute negatively to the time-averaged value vt. This means that a
passive scalar field (thermal field) does not necessarily follow a velocity
field in a wall turbulent shear flow. In both interaction-phases
(i=1, 3), the distributions of conditional pdf are seen to be much more
symmetrical, and the correspondence between turbulent heat transfer and
fluid motions is very weak. Hence, the fractional contributions to vt
from both interactions remain considerably low. \

Lines in Fig. 6.5(a) show theoretical values calculated from the
following equation (6-4), which is obtained applying the same procedure as
in the derivation of the pdf for a second-order moment from the three-

dimensional joint pdf.

Pr,i (VE) = [f Ploy ; Uso, ; V,o, ; x/V)(dV/V)dd

1 K3 p q+r
(2")3/2 p,q,Z:O ou,i OY,i Cpqr‘ BO,p
© R . . . . (6-4)
X fHq(v)Hr(x/v)exp[—{v2+(x/v)2}/2]dv/v
0

The appreciable discrepancy between the theories and measurements can be

attributed to a little truncation-effect in the series-expansion for the
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Jjoint pdf.
6.2.3. Weighted functions in (u, v)-plane

The conditional analysis based on threshold H alone is not sufficient to
ascertain the detailed correspondence between momentum/heat transfer and
fluid motions. Therefore, the authors define the following weighted

function Wx(4,V¥) in the (u, v)-plane:

W, (8,9) = [ xP(d,0,8)dt
(6-5)

x = gLy"gn

This function provides a powerful tool to see how and how much each fluid
motion in the quadrants of the (u, v)-plane produces the moment x. The
integrated value of Wx in each quadrant becomes the fractional contribution
(x)i. And the integration over the whole (u, v)-plane reduces to the
conventional time-averaged value X.

The experimental distributions of the weighted function for x=t2  are
shown in Fig. 6.6. In the immediate neighborhood of the wall (y*=7.6),
the distribution extends far to the fourth-quadrant (sweep-phase), and
peaks in the second-quadrant (ejection-phase) as if u fluctuations were
limited at §i= -2. In the core region of the flow (y*=377.6), on the other
hand, the distribution becomes wider, gently sloping in the second-
quadrant, and becoming narrower and steeper in the fourth-quadrant. In

Section 5.7, it was shown that the contributions to temperature variance
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(t?2)i from sweeps were the largest in the vicinity of the wall, and became
almost equal to those from ejections in the core region (see Fig. 5.22).
However, Fig. 6.6 demonstrates the existence of a definite difference in
the internal structures of temperatﬁre variance EE, which cannot be
identified from the conventional fractional contribution (2771. Hence,
the ways of contribution from ejections and sweeps to the production of
temperature variance in the near-wall region are'totally different from
those in the core region. . Moreover, one can recognize that, even if the
fractional contributions from ejections and sweeps are equal, there is a
large difference in the scales of both motions governing the production of
temperature fluctuations.

The experimental results of Wi¢ and Wt in the near-wall region and of
Wt in the core region are shown in Figs. 6.7(a), (b) and (c), respective~
ly. In the contour maps of Fig. 6.7, solid and broken lines represent
positive and negative values, and intervals between two successive contour
lines are 0.02. With Figs. 6.7(a) and (b), we can investigate the
internal structures of the production processes of uv and vt near the wall.
Integration of WiV and Wt within each quadrant results in the fractional
contributions of different motions with H=0 presented in Figs. 6.2 and 6.3,
respectively. Also, integration of W¢% over the region outside the
hyperbolic boundary ¥=x H/G results in the fractional contributions to vt
from different motions as a function of H shown in Fig. 6.4. Thus,
Fig. 6.7 contains a gfeat deal of information.

As seen from these figures, the sweep-type motions with large-amplitude
u fluctuations dominate the production of uv and vt in the near-wall

region. The distributions have the characteristics similar to temperature
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variance (Fig. 6.6; y*=7.6). However, whereas both interactions (i=1, 3)
make a positive contribution to the production of temperature variance EE,
they contribute negatively to the Reynolds shear stress -uv and turbulent
temperature flux vt. Profiles shown in Figs. 6.7(a) and (b) are too
similar to be readily distinguished from the other. This is an important
result which shows that a close analogy exists between the internal
structures of uv and vt.

The distribution of W¢t in the core region (Fig. 6.7(c)) is different
from that in the near-wall region (Fig. 6.7(b)) in the following respects:
(i) the distributions in the second- and fourth-quadrant exhibit opposite
trends; (ii) the negati§e regions seen in the first- and third-quadrant of
Fig. 6.7(b) disappear in Fig. 6.7(c). The internal étructures of Wot
change with the distance from the wall as in temperature variance,'and the
analogy between Reynolds shear stress and turbulent heat flux breaks down
with increasing distance from the wall. Note that Reynolds shear stress

-uv is consistently negative in the first- and third-quadrant.

6.3. Contribution of Organized Motions to Third-Order Moments

In Section 4.4.2, it has been shown that the pdf distributions of third-
order moments (i.e., turbulent diffusion of turbulence energy, temperature
variance, turbulent heat fluxes, etc.) have very long tails and the
asymmetry in these pdfs is fractional, but it is this asymmetry that
determines the net value of turbulent diffusion. In this section, their

internal structures are elucidated.
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The contributions to vuZ and vt? from different flﬁid motions with H=0
are presented in Figs. 6.8(a) and (b), respectively. Obviously, the
turbulent diffusion of u? and t? occurs mainly during the ejection- and
sweep-phase (i=2, 4), and hence disparity of contributions between these
two-types of motions determines the magnitude and direction (i.e., plus and
minus) of time—a?eraged diffusion. Neither interaction (i=1, 3)
influences the time-averaged values vu?Z and ;if, since the fractional
contributions from these motions are not only very small in absolute value
but nearly symmetrical about zero (sum being zero). It is now established
that the turbulent diffusion is determined by dynamicvphenomena associated
with organized motions of ejections and sweeps. This also explains why
the third-order moments cannot be described adequately by a static model
such as gradient-type diffusion of the second-order moment (see Section
4.4.1). The theoretical values in Fig. 6.8, calculated from Eq.(6-3),
reproduce this dynamic behaviour very well. On the other hand, if a
Gaussian distribution is supposed for the joint pdf in Eq.(6-3), the
contributions to the third-order moments from motions in the second- and
fourth-quadrant of the (u, v)-plane are completely equal in magnitude with
an opposite sign. Hence, the foregoing important characteristics of
third-order moments cannot be described fully.

To judge the feasibility of predicting the characteristics of the third-
‘order moments theoretically in conjunction with the scales of fluid
motions, the experimental distriﬁutions of the conditional pdf of vu?2 and
vt2 have been examined at y*=37.1 where the net values of the turbulent
diffusion take their maxima (see Fig. 4.9). Figure 6.9 shows the measure-

ments, compared with the present predictions. Solid lines in this figure

94



represent the following theoretical distributions, which are obtained after

differentiating the cumulative probability distribution functions for wvu?

and vt2,
Pp; (vu2) j f (04,5 U,x/02,t)dt)du/u?
1 Prash .
" n L o CpqOI Hy (U)Hq (x/02 )exp[-{02+(x/0G2)2}/2]d0/G2  (6-6)
pP.q=
here x= ¥i?;
Pri (VE2) = [ {f P(o, ; u,x/t2,1)dE/E2)du
. 0 -
2 K4
- p
- (2q)3/2 p'§=0 ou,i Cpgr Bo,p
r=even

(6-7)
X [ Hy (x/E2)H, (t)expl-{ (x/t?)?+t2}/2]dt/ 2
where x= ¥t2.
It can be seen from the meésured distributions that both conditional
pdfs of vu? and vt? at small | x| values are a bit larger in the sweep-

phase than in the ejection-phase, and vice versa at larger | x| values.

Since the fractional contributions (vu?)i and (vt?);i are obtained from the
integratioﬁ of.Eqs.(G—G) and (6-7) multiplied by x, the conditional pdfs at
larger | x| values contribute largely to these quantities., Accordingly,
now that large-amplitude fluctuations of vu? and vt2 are generated mainly
by ejections, the fractional contributions from ejections become larger
than those from sweeps as seen in Fig. 6.8. Such phenomena are well re-

produced by the theoretical conditional pdfs given by Egs.(6-6) and (6-7).
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The experimental and theoretical distributions of the weighted
function (6-5) for vt? are shown in Figs. 6.10(a) and (b), respectively.
From the experimental result, one can see that the large-amplitude
ejections contribute largely to the production of vt2. Apparently, the
theorétical results reproduce precisely the peak locations and the extent

of the distributions in the second- and fourth-quadrant.
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Y'=56.0 Y/r,=0.065

Y'=10.6 Y/r,=0.012

Fig. 6.4. Theoretical predictions of the fractiénal contributions to vt as

a function of H. Notation as in figure 6.2.
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CHAPTER VI

CONCLUSIONS

The statistical characteristics of momentum and heat transfer in a wall
turbulent shear flow have been investigated experimentally and theoretical-
ly. And the relationship between the organized motions near the wall and
turbulent heat transfer has been analyzed by introducing a new conditional
sampling technique which possesses objectivity and reliability for the
detection and description of coherent turbulent motions. The following is
a summary of the important conclusions that can be made from the present

study.

7.1. Statistical Characteristics of Wall turbulence with Heat Trénsfer

(1) A three-dimensional joint pdf has been developed so as to describe
transfer processes of momentum and heat in a two~dimensional turbulence

field.

(2) The pdf distributions of u and t fluctuations can be approximated with
Gaussian ones in the log-law region, but in the other region, they are
skewed to the opposite sides. The probability distribution of v
fluctuations differs from a Gaussian distribution over a greater part of

the flow field.
(3) The skewness factor can be represented with the time fractions (i.e.,
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intermittency factor) occupied by positive and negative events of a

turbulence component.

(4) The pdf distributions of Reynolds shear stress uv and turbulent heat
flux vt are similar, and change little over the entire cross section

except for the pipe-centerline region.

(5) The distributions of turbulent diffusion of uv, vt, t2?, etc. have been
measured and compared with predictions from the existing models for
triple products. All existing models are found to give quite unsatis-

factory predictiohs for diffusion of uv and vt.

(6) A net value of turbulent diffusion is determined by the fractional
asymmetry of the pdf distribution. This asymmetry cannot be reproduced
by a Gaussian pdf, but can be represented with the pdf developed in the

present study.

7.2, Coherent Motions and Their Role in Turbulent Heat Transfer

(1) The coherent structures in a wall turbulent shear flow are well

represented in terms of four basic well-ordered motions.

(2) The inherent intermittency of turbulent heat and momentum transfer can
be considered the consequence of highly intermittent coherent motions

" near the wall.
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(3) The ejection- and sweep-type coherent motions play a very dominant role
in determining the transport processes of heat and momentum. The
degree of their contributions, however, depends on each basic flow-

pattern.

(4) The dissipations of both velocity and temperature fluctuations occur
mainly during an interactive flow period shifting from ejections to
sweeps. This process has universal aspects independent of basic flow-

patterns.

(5) The vortex structures of four basic flow-patterns of the coherent
structures have been quantitatively established, which correspond very

well with the results obtained by various flow-visualization studies.

(6) The transport processes of heat are closely related to the vortex
‘structures of coherent motions. Pattern 4, in particular, is very

important, because it induces_a great deal of turbulent heat transfer.

7.3. Fine Structures of Coherent Turbulent Heat Transfer

(1) The theoretical formulations for the conditional pdf and the fractional
contributions to various moments are derived using the three-dimensional
joint pdf. These equations are applicable to the structural analysis

of velocity and temperature fluctuations and their high-order moments.
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(2) Temperature fluctuations are influenced strongly by the organized
motions of ejections and sweeps, but hardly correlate to interaction-

type motions.

(3) In the near-wall region y*<10, the sweeps play a dominant role in the
production processes of Reynolds shear stress uv and turbulent heat flux

vt; the ejections predominate in the remaining region.

(4) In the near-wall region, there is a close analogy between the
instantaneous structures of Reynolds shear stress uv and turbulent heat

flux vt.

(5) The net values of turbulent diffusion in turbulence energy, temperature
variance, turbulent heat fluxes, etc., are determined by an imbalance
between the contributions from ejections and sweeps. This fact can be

well predicted by the present theory.
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