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Abstract

The purpose of the present study is to investigate the detailed mechanism of

the wall-bounded compressible turbulent flow. In particular, the wall-bounded

flow with an adiabatic wall is not still understood in spite of its engineering

importance. To clarify the flow near the adiabatic wall and the difference between

those near isothermal and adiabatic walls for the compressible turbulent flow, the

compressible turbulent channel flow between adiabatic and isothermal walls is

investigated. This flow can be a very useful framework for the present objective,

since it is the simplest turbulent channel flow with an adiabatic wall and provides

ideal information for modeling the compressible turbulent flow near the adiabatic

wall. Note that the mean flow in the compressible channel flow between adiabatic

walls does not approach a stationary state if there is no artificial heat sink.

A new Direct Numerical Simulation (DNS) algorithm based on B-spline col-

location method is proposed to perform the DNS of the compressible turbulent

channel flow between adiabatic and isothermal walls, since it is difficult to simu-

late the flow accurately and efficiently using the existing DNS algorithm for the

wall-bounded compressible turbulent flow. The reliability of the present DNS al-

gorithm is confirmed by comparing our result with that of Coleman et al. (1995)

for the compressible turbulent channel flow between isothermal walls.

The DNS of the compressible turbulent channel flow between adiabatic and

isothermal walls is stably performed by using the constructed DNS algorithm,

and then the first DNS data of this flow is obtained. This is the novel result of

the present study. Mean profiles, turbulence statistics and energy transfers are

investigated by using the present DNS results.
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To compare compressible and incompressible turbulent channel flows, the

DNS of the incompressible turbulent channel flow with passive scalar transport

between adiabatic and isothermal walls is also carried out. This flow is one of

three specific situations between which Teitel & Antonia (1993) distinguished.

The DNS of the incompressible turbulent flow between isothermal walls, which

corresponds to that of Kim & Moin (1989), is performed for comparison.

The main results obtained in this study may be stated as follows. We pro-

pose the DNS algorithm which can simulate the turbulent channel flow between

adiabatic and isothermal walls accurately and efficiently. The reliable results of

this flow are firstly obtained by the present DNS. The mean velocity and temper-

ature near adiabatic and isothermal walls for the compressible turbulent channel

flow can be explained using the non-dimensional heat flux and the friction Mach

number. Morkovin’s hypothesis is not applicable to the near-wall asymptotic

behavior of the wall-normal turbulence intensity even if the variable property

effect is taken into account. Although the compressibility terms of the turbulent

kinetic energy equation have slight contribution to the energy transfer, the dom-

inant term of them transfers the turbulent kinetic energy to the mean flow near

the isothermal wall and transfers the energy from the mean flow to the turbu-

lent flow near the adiabatic wall. The pressure work which is dominant in the

compressibility term of the mean kinetic energy equation exchanges the internal

energy for mean kinetic energy near the isothermal wall and exchanges the mean

kinetic energy for internal energy near the adiabatic wall. The thermodynamic

dissipation term which is dominant in the compressible part of the turbulent en-

ergy dissipation is not negligible in the region very close to the isothermal wall.

The near-wall streak structures of compressible and incompressible turbulent

flows are comparable and are independent of the thermal wall boundary condi-

tion, when the variable property effect is taken into consideration. Morkovin’s

hypothesis is not applicable to the correlation coefficient between velocity and

temperature fluctuations near the adiabatic wall.
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Roman Symbols

A A = Bq/[(γ − 1)M2
τ ]

a Speed of sound; a = (γRT )1/2

AC Acoustic Courant number; see (2.37)

B Additive constant for log-law of mean velocity

B Matrix of B-spline

bj Expansion coefficient of B-spline for integration

Bkj j-th B-spline of k-th order

Bq Non-dimensional heat flux; Bq = qw/(ρwcpuτTw)

C Additive constant for log-law of mean temperature

Ck Compressibility term of turbulent kinetic energy equation;

Ck = −Ck1 + Ck2 + Ck3
CK Compressibility term of mean kinetic energy equation;

CK = Ck1 − Ck2 + CK1
Ck1 Ck1 = hu002i ∂ hpi /∂x2
Ck2 Ck2 = hu00i i ∂ hτi2i /∂x2
Cn1 Mass at time tn

Cn2 Momentum at time tn

xv



xvi NOMENCLATURE

Ck3 Pressure-dilatation correlation term; Ck3 = hp0∂u0k/∂xki
CK1 Pressure work; CK1 = hpi ∂ hu2i /∂x2
Cf Skin friction coefficient; Cf = 2τw/(ρmU

2
m)

cp Specific heat at constant pressure

cv Specific heat at constant volume

d Dilatation; d = ∂uj/∂xj

D D = (A2 + E)
1/2

De Diffusion term of internal energy equation; De = De1 +De2

De1 De1 = ∂ (hρi cv{u002T 00}) /∂x2
De2 De2 = ∂ hq2i /∂x2
Dk Diffusion term of turbulent kinetic equation;

Dk = ∂ [hτ 0i2u0ii− hρi {u002k00}− hp0u02i] /∂x2
DK Diffusion term of mean kinetic equation;

DK = ∂ [hτi2i huii− hρi {u002K 00}− hpi hu2i] /∂x2
E E = 2/[PrtM

2
τ (γ − 1)]

Eφφ(k1, x2) 1D streamwise energy spectrum; see (2.38)

Eφφ(k3, x2) 1D spanwise energy spectrum; see (2.39)

fi Body force; fi = −τwavδi1/ (Hρm)

FK Force term of mean kinetic energy equation; FK = hρi f1{u1}
G Criterion for Reynolds analogy; see (4.16)

H Channel half-width

L1, L2, L3 Computational region in the x1, x2 and x3 directions, respectively

hki Reynolds-averaged turbulent kinetic energy; hki ≡ hu0iu0ii /2



NOMENCLATURE xvii

{k} Favre-averaged turbulent kinetic energy; {k} ≡ {u00i u00i }/2
{K} Favre-averaged mean-flow kinetic energy {K} ≡ {ui}2/2
k00 Favre-fluctuation turbulent kinetic energy; k00 ≡ u00i u00i /2− {k}
K 00 Favre-fluctuation mean-flow kinetic energy; K 00 ≡ {ui}u00i
k1, k3 Modal indices in the x1 and x3 directions

M Mach number based on bulk velocity and isothermal wall

temperature; M = Um/ (γRTiw)
1/2

hMi Mach number based on bulk velocity and isothermal wall

temperature; hMi = hu1i / ((γ − 1)cp hT i)1/2

Mc Mach number based on velocity and sound speed at center of

channel; Mc = u1c/ac

Mt Turbulent Mach number; Mt = hu0iu0ii1/2 / hai
Mτ Friction Mach number based on friction velocity and wall sound

speed; Mτ = uτ/aw

nilmn Elements of nonlinear matrix on B-spline Galerkin method

N1,N2, N3 Number of grid points in the x1, x2 and x3 directions, respectively

Nu Nusselt number; Nu = 2Hqw/κw(Tw − Tm)
p Pressure

Pk Production term of turbulent kinetic energy;

Pk = − hρi {u001u002}∂{u1}/∂x2
Pr Prandtl number; Pr = μcp/κ

Prt Turbulent Prandtl number;

Prt = {u001u002} ∂{T}/∂y/ [{T 00u002} ∂{u1}/∂y] or Prt = κu/κT



xviii NOMENCLATURE

Q Heat source of energy equation for incompressible turbulent flow;

Q = −qwav/ (ρcpH)
qj Heat flux; qj = −κ∂T/∂xj , or Knot points
qw Wall heat flux

qwav qwav =
¡hq2i|x2=H − hq2i|x2=−H¢ /2

R Gas constant; R = (γ − 1)cp/γ
Rφφ(r1, x2) Streamwise two-point correlation; see (2.40)

Rφφ(r3, x2) Spanwise two-point correlation; see (2.41)

r1, r3 Separations in the x1 and x3 directions

Re Reynolds number based on bulk density, bulk velocity, channel

half-width, and viscosity at isothermal wall ; Re = ρmUmH/μiw

Rec Reynolds number based on variables at center of channel;

Rec = ρcu1cH/μc

Reτ Reynolds number based on wall density, friction velocity,

channel half-width and wall viscosity; Reτ = ρwuτH/μw

Re∗τ Reynolds number based on local density, semi-local friction velocity,

channel half-width, and local viscosity; Re∗τ = hρiuτ∗H/ hμi
Ru01T 0 Correlation coefficient between velocity and temperature fluctuations;

see (6.1)

S1 Constant in the Sutherland’s law

t Time

T Temperature

hT i+ Mean temperature scaled by friction temperature; hT i+ = (Tw − hT i)/Tτ



NOMENCLATURE xix

Tm Bulk temperature; Tm =

Z H

−H
hρcpu1T i dx2 /

Z H

−H
hρcpu1i dx2

Tt Total temperature; Tt = T + u
2
i /(2cp)

Tτ Friction temperature; Tτ = BqTw

u1, u2, u3 Velocity component in the x1, x2 and x3 directions, respectively

U U represents hu1i+, hu1i+VD and hu1i∗

hu1i+ Mean streamwise velocity scaled by friction velocity; hu1i+ = hu1i /uτ
hu1i+VD Van Driest transformed mean streamwise velocity;

hu1i+VD =
Z hu1i+

0

(hρi /ρw)1/2 d hu1i+

hu1i∗ Mean streamwise velocity scaled by semi-local friction velocity;

hu1i∗ = hu1i /uτ∗

Um Bulk velocity; Um =

Z H

−H
hρu1i dx2/ (2Hρm)

(u0α)rms RMS velocity fluctuation; (u0α)rms = hu0αu0αi1/2

(α = 1, 2, 3, no summation for α)

uτ Friction velocity; uτ = (τw/ρw)
1/2

uτ∗ Semi-local friction velocity; uτ∗ = (τw/ hρi)1/2

x Position vector; x = (x1, x2, x3)

x1, x2, x3 Streamwise, wall-normal and spanwise directions, respectively

xi2 Collocation points

y Distance from wall

y+ Wall unit; y+ = ρwuτy/μw

y∗ Semi-local wall unit; y∗ = hρiuτ∗y/ hμi
y+0 y+0 = exp(−κuB)



xx NOMENCLATURE

Greek Symbols

αk1 Wave number in the x1 direction; αk1 = 2πk1/L1

α0k1 Modified wave number for the first derivative

βk3 Wave number in the x3 direction; βk3 = 2πk3/L3

δij Kronecker delta

δv Visous length scale; δv = μw/ (ρwuτ )

δv∗ Semi-local visous length scale; δv∗ = hμi / (hρiuτ∗)
∆ t Time increment

∆x1,∆x2,∆x3 Grid spacing in the x1, x2 and x3 directions, respectively

∆x+i (i = 1, 2, 3) Grid spacing scaled by wall variables in the xi(i = 1, 2, 3)

directions; ∆x+i = ρwuτ∆xi/μw

∆x∗i (i = 1, 2, 3) Grid spacing scaled by local variables in the xi(i = 1, 2, 3)

directions; ∆x∗i = hρiuτ∗∆xi/ hμi
δ(x2) Delta function

²ijk Eddington’s epsilon

γ Ratio of specific heats; γ = cp/cv

κ Thermal conductivity

κu Von Kármán constant

κT Constant in terms of wall law of temperature; κT = κu/Prt

μ Molecular viscosity

ν Kinematic viscosity

ρ Density
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ρm Bulk density; ρm =

Z H

−H
hρi dx2/(2H)

τij Viscous stress tensor; see (A.4)

τw Wall stress

τwav τwav = (hτ12ix1−x3
¯̄
x2=H

− hτ12ix1−x3
¯̄
x2=−H)/2

φjk1k3 Expansion coefficient of B-spline

φ`j Expansion coefficient of B-spline for the `-th derivative

Ψi Weight function

ω0i (i = 1, 2, 3) Vorticity fluctuation in the xi directions; ω
0
i = ²ijk∂uk/∂xj

εc Dissipation per unit mass; εc = εk/ hρi
εcc Compressible part of εc; εcc = εc − εci

εci Incompressible part of εc; εci = (hμi / hρi) h(∂u0i/∂xj)2i
εk Dissipation of turbulent kinetic energy equation

per unit volume; εk =
­
τ 0ij∂u

0
i/∂xj

®
εk1 Enstropy dissipation term; εk1 = hμi hω0iω0ii
εk2 Dilatational dissipation term; εk2 = −2/3 hμi hd0d0i
εk3 Dissipation term with respect to viscosity fluctuation;

εk3 = ∂ huii /∂xj hμ0∂u0i/∂xji
εTK Turbulent dissipation of mean kinetic energy equation

per unit volume; εTK = − hρi {u001u002}∂{u1}/∂x2
εVK Viscous dissipation of mean kinetic energy equation

per unit volume; εVK = hτi2i ∂ huii /∂x2
εVKc Compressible part of εVK; εVKc = εVK − εVKi

εVKi Incompressible part of εVK; εVKi = hμi (∂ hu1i /∂x2)2



xxii NOMENCLATURE

Abbreviations

CPU Central Processing Unit

DNS Direct Numerical Simulation

ENO Essentially Non-Oscillatory

FDM Finite Difference Method

LES Large Eddy Simulation

LHS Left Hand Side

RHS Right Hand Side

RMS Root Mean Square

SRA Strong Reynolds Analogy

TVD Total Variation Diminishing

1D One-Dimensional

(Cont.) = 0 Continuity equation

(Div.)φ Divergence form of convection for φ

(Adv.)φ Advective form of convection for φ

(Skew.)φ Skew-symmetric form of convection for φ

(Skew.B)φ Skew-symmetric form proposed by Blaisdell et al. (1993)

(Skew.M)φ Skew-symmetric form proposed by Morinishi et al. (2001)
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Other Symbols

( ) Complex conjugate

c( ) Fourier coefficient, or Spline interpolation function

~( ) Vector variable

h i Reynolds average over time and x1 and x3 directions

{ } Favre average over time and x1 and x3 directions

h ix1−x3 Spatial average over x1 and x3 directions

h ix1−t Average over time and x1 direction

h ix3−t Average over time and x3 direction

( )+ Value scaled by wall variables

( )† Non-dimensional value scaled by H, ρm, Um and values at

isothermal wall

( )∗ Non-dimensional value scaled by semi-local friction velocity uτ∗,

e.g. Re∗τ , hu1i∗ and y∗

( )0 Turbulent fluctuation with respect to Reynolds average

( )00 Turbulent fluctuation with respect to Favre average

( )c Value at center of channel

( )aw Value at adiabatic wall

( )iw Value at isothermal wall

( )rms RMS value

( )w Wall value

⇐ Modification done in the direction



Chapter 1.

Introduction

1.1 Background

It is considerably important to clarify the detailed mechanism of wall-bounded

compressible turbulent flow for engineering and industrial applications. Since the

1950’s, many experimental studies have provided valuable knowledge about the

friction coefficient, the mean velocity profiles and so on (e.g., see Bradshaw 1977;

Fernholz & Finley 1977, 1980; Spina et al. 1994; Smits & Dussauge 1996). The

compressibility effects are commonly distinguished into two types: a mean vari-

able property effect due to the variations in mean properties such as density and

viscosity, and an intrinsic compressibility effect due to fluctuations of thermody-

namic quantities, mean dilatation and its fluctuation. Morkovin (1962) proposed

the hypothesis that the compressibility effect was mainly due to the variable prop-

erty effect and that the turbulence structures of compressible boundary layers

were comparable with those of incompressible ones when the variable property

effect was taken into account (see Morkovin 1962; Bradshaw 1977; Smits & Dus-

sauge 1996). This hypothesis has long been widely acknowledged to be correct in

the study of the wall-bounded compressible turbulent flow, and is referred to as

‘Morkovin’s hypothesis’. In the analysis of wall-bounded compressible turbulent

flow, the Van Driest transformation (see Van Driest 1951; Rotta 1960), which is

supported by Morkovin’s hypothesis, is well known. A Reynolds analogy which

relates the mass transfer to the heat transfer is known in the incompressible

1
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turbulent shear flow (see White 1991). Morkovin (1962) also reported that the

Reynolds analogy could be applied to the wall-bounded compressible turbulent

flow. This concept is referred to as ‘Strong Reynolds Analogy (SRA)’. The SRA

is applicable to the adiabatic wall for the compressible turbulent flow. Recently,

some modified Reynolds analogies applicable to the isothermal wall have been

proposed by Gaviglio (1987), Rubesin (1990) and Huang et al. (1995).

Fernholz & Finley (1980) observed in the compressible turbulent zero-pressure-

gradient boundary layer flows on isothermal and adiabatic walls that the Van

Driest transformed velocity profile agreed well with the data of the incompress-

ible turbulent flow. On the other hand, Zhang et al. (1993) reported that the

untransformed velocity profile near the adiabatic wall agreed well with the data

of the incompressible turbulent flow. Huang & Coleman (1994) pointed out that

the Van Driest transformation did not work well for low Reynolds number flow,

while it was useful for high Reynolds number flow (see also Fernholz & Finley

1980; Spina 1994). In spite of many experimental efforts, the mean velocity

profile of the wall-bounded compressible flows remains unclear. Other statistics

have not been understood enough, because experimental measurements of such

as thermodynamic state quantities in high speed flow are very difficult (see Spina

et al. 1994; Smits & Dussauge 1996). Actually, the mean temperature profile in

the wall-normal direction has been often estimated by using the mean velocity

in the experimental study.

In the last decade, with the rapid growth of the computational resources, the

direct numerical simulation (DNS) has been performed to investigate the wall-

bounded compressible turbulent flow as an alternative method (e.g., Coleman et

al. 1995; Guarini et al. 2000; Maeder et al. 2001). DNS of the wall-bounded

compressible turbulent flow is considerably appealing because it provides entirely

three-dimensional and time-dependent data which are very difficult or even im-

possible to obtain experimentally. However, reliable DNS results are lacking

despite their engineering importance. As typical DNS results, Coleman et al.

(1995) performed the DNS of the turbulent channel flow between isothermal
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walls. And Guarini et al. (2000) performed the DNS of the boundary layer flow

on the adiabatic wall. They reported that the Van Driest transformed veloc-

ity agrees well with the data on the wall-bounded incompressible turbulent flow.

However, the influence of different wall boundary conditions (isothermal and adi-

abatic conditions) on the mean velocity and temperature profiles has not been

investigated. Comparison of compressible and incompressible turbulent flows in

terms of the temperature field in addition to the velocity field is also very im-

portant for accurate understanding of the compressible turbulent flow. However,

there have been no studies to date in which the statistics relative to the tem-

perature of compressible turbulent flow are compared to those of incompressible

turbulent flow.

In terms of turbulence statistics, Coleman et al. (1995) and Guarini et al.

(2000) reported that the variable property effect should be taken into account

in the scaling. However, thermodynamic fluctuations such as density and tem-

perature have not been sufficiently examined. So et al. (1998) reported that

Morkovin’s hypothesis was applicable to the near-wall asymptotic behaviors of

turbulence statistics not shown in logarithmic coordinates. Huang et al. (1995)

showed that their modified Reynolds analogy agreed well with the DNS data of

Coleman et al. (1995) for compressible turbulent channel flow between isother-

mal walls. Guarini et al. (2000) showed that the modified Reynolds analogy

proposed by Huang et al. (1995) was effective for boundary layer flow on the

adiabatic wall. However, the applicability and usefulness for other flows strongly

affected by the opposite wall (e.g., the turbulent channel flow between adiabatic

and isothermal walls) have not been examined.

A detailed understanding of the energy transfer in wall-bounded compress-

ible turbulent flow requires reliable data on the turbulent kinetic, mean kinetic

and internal energy budgets, because the energy is exchanged among the inter-

nal energy, mean and turbulent kinetic energies (see Lele 1994; Huang et al.

1995). However, reliable DNS data on the energy budgets for the wall-bounded

compressible turbulent flow are less available than on the wall-bounded incom-
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pressible turbulent flow. Huang et al. (1995) investigated the energy transfer

near the isothermal wall using the DNS data on compressible turbulent channel

flow presented by Coleman et al. (1995). Guarini et al. (2000) reported that

the turbulent kinetic energy budget near the adiabatic wall in the compressible

turbulent boundary layer flow was almost the same as that of the wall-bounded

incompressible turbulent flow. However, the knowledge of the difference and

similarity between energy transfers near isothermal and adiabatic walls remains

insufficient. In addition, compressible and incompressible flows have not been

sufficiently compared.

In order to understand the wall-bounded compressible turbulent flow, it is

very important to clarify near-wall turbulence structures in addition to mean ve-

locity and temperature profiles, turbulence statistics and energy transfers. The

knowledge on the near-wall turbulence structure for the incompressible turbulent

flow was summarized by Robinson (1991). On the other hand, there have only

been a few studies of near-wall turbulence structure for the compressible turbu-

lent flow. Coleman et al. (1995) reported that streak structures near the isother-

mal wall became more coherent in the streamwise direction as the Mach number

increased. Guo & Adams (1995) performed DNS of a compressible boundary

layer flow developing on the isothermal wall in the adiabatic boundary condi-

tion, and showed that streak structures near the wall were larger than those of

incompressible turbulent flow. Wang & Pletcher (1996) performed a large eddy

simulation (LES) of the isothermal channel flow between hot and cold walls for

the almost zero Mach number, and reported that the cold wall side exhibited

stronger coherence of the near-wall streak structure. The LES of the turbulent

channel flow with constant heat flux for the almost zero Mach number was also

performed by Dailey & Pletcher (1999) who showed that the turbulent structures

appeared to be more coherent on the cold wall side and less coherent on the heat-

ing wall side. However, why the modification of the near-wall streak structures

occurs is still not sufficiently understood. In particular, the detailed turbulence

structures near the adiabatic wall have not been found so far. It is also uncer-
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tain whether or not Morkovin’s hypothesis relative to turbulence structures near

adiabatic and isothermal walls is successful.

1.2 Numerical Algorithm

DNS offers useful information about the understanding and modeling of tur-

bulent flow. However, the sufficient DNS data of wall-bounded compressible

turbulent flow has not been provided because of the lack of the useful DNS

algorithm for the wall-bounded compressible turbulent flow. The typical DNS

algorithms are as follows.

Coleman et al. (1995) performed the DNS of compressible turbulent channel

flow between isothermal walls. The simulation was carried out using the DNS

algorithm based on the Legendre Galerkin method (developed by Buell 1990,

1991). Although the DNS algorithm based on the Galerkin method which is

expensive to calculate the nonlinear term is applicable to the Dirichlet boundary

condition, it is difficult to apply the Neumam boundary condition and, therefore,

to treat the adiabatic wall. However, the study of compressible turbulent flow

near the adiabatic boundary is important for engineering applications.

Guarini et al. (2000) performed the DNS of compressible boundary layer flow

at an adiabatic wall using the DNS algorithm based on the B-spline Galerkin

method first developed for the incompressible flow (see Loulou et al. 1997;

Kravchenko et al. 1996, 1999). Loulou et al. (1997) and Kravchenko et al.

(1999) reported that, respectively, 85% and more than 50% of central process-

ing unit (CPU) time was spent on the evaluation of the nonlinear terms. The

B-spline Galerkin method for the compressible turbulent flow with variable fluid

properties might be extremely expensive even if one could provide the adiabatic

boundary condition accurately. Note that Guarini et al. (2000) treated the adi-

abatic boundary condition through weak formation (see Guarini 1998 in detail).

Although a collocation method can be used instead of the Galerkin method in

order to reduce the cost of evaluating nonlinear terms, the B-spline collocation

method has not been previously applied to wall-bounded compressible turbu-



6 CHAPTER 1. INTRODUCTION

lent flows. On the other hand, Bottela (2000, 2001) has attempted to simulate

incompressible turbulent flow using the B-spline collocation method.

Recently, Maeder et al. (2001) and Lechner et al. (2001) simulated a com-

pressible boundary layer developing on the laminar adiabatic wall (constant tem-

perature wall) and the turbulent supersonic isothermal-wall channel flow, re-

spectively, using the DNS algorithm based on a Padé (compact) finite-difference

method (FDM) (see Lele 1992). While the Padé FDM is also an economical al-

ternative, the wall boundary treatment cannot be determined uniquely because

the higher order FDM generally requires a wall scheme.

1.3 Objectives

The purpose of the present study is to investigate the detailed mechanism of

the wall-bounded compressible turbulent flow. In particular, the wall-bounded

flow with the adiabatic wall is still not understood in spite of its engineering

importance. In order to clarify the compressible turbulent flows near isothermal

and adiabatic walls, we perform DNS of the compressible turbulent channel flow

between adiabatic and isothermal walls that has not been previously performed

by the DNS. The present study of the compressible turbulent channel flow be-

tween adiabatic and isothermal walls is also very important for complementing

studies of Coleman et al. (1995) and Guarini et al. (2000). However, it is difficult

to simulate the flow accurately and efficiently using the existing DNS algorithm

for the wall-bounded compressible turbulent flow as mentioned in section 1.2.

There is still no universal theory for wall-bounded compressible turbulent

flow. Consequently, understanding of the wall-bounded compressible turbulent

flow has been usually obtained from comparison with the incompressible one,

for instance, the Van Driest transformation. Therefore, the understanding of

the wall-bounded incompressible turbulent flow is also very important for that

of the wall-bounded compressible turbulent flow. We focus on the similarity

and difference between compressible and incompressible turbulent channel flows,

as well as the effects of the different boundary conditions on the compressible
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turbulent flow.

The objective of the present study is achieved according to the following

procedures:

1. To perform the DNS for the compressible turbulent channel flow between

adiabatic and isothermal walls, a new DNS algorithm is proposed in which

B-spline collocation method is used in the wall-normal direction and the

skew-symmetric form for convection term is adapted for the stable numeri-

cal simulation. To show the reliability of the present algorithm, the DNS of

compressible turbulent flow between isothermal walls, which corresponds

to the DNS of Coleman et al (1995), is performed. Note that the present

algorithm does not aim at simulating flow with strong discontinuities like

shock waves. The shock-capturing method, like essentially non-oscillatory

(ENO) and total variation diminishing (TVD) schemes, may be coupled

with to simulate such a flow (see Adams et al. 1996; Adams 2000).

2. To investigate the difference and similarity between flows near adiabatic

and isothermal walls for the wall-bounded compressible turbulent flow, the

DNS of the compressible turbulent channel flow between adiabatic and

isothermal walls is performed using the constructed DNS algorithm.

3. To clarify the difference and similarity between compressible and incom-

pressible turbulent channel flows, the DNS of the incompressible turbulent

channel flow with passive scalar transport between adiabatic and isother-

mal walls is carried out. This flow has not been previously performed

by DNS. DNS of incompressible turbulent flow between isothermal walls,

which corresponds to that of Kim & Moin (1989), is performed by the way

of comparison.

1.4 Organization of Dissertation

This dissertation is arranged as follows.
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Chapter 2 proposes a new DNS algorithm based on the B-spline collocation

method to simulate compressible turbulent flow between adiabatic and isother-

mal walls. The skew-symmetric form which is suitable for a wall-bounded com-

pressible flow is presented for the convection term to maintain numerical stability.

In chapter 3, the effects of the different thermal wall boundary conditions on

mean velocity and temperature profiles are explained through the dependence of

the non-dimensional heat flux and the friction Mach number. The scaling laws

of mean velocity and temperature profiles are also discussed.

In Chapter 4, the profiles of turbulence statistics and the near-wall asymp-

totic behaviors are discussed for compressible turbulent flow. Moreover, the

applicability and usefulness of the Reynolds analogy and the modified Reynolds

analogy are examined using the present simulation results.

In chapter 5, the turbulent kinetic, mean kinetic and internal energy budgets

are calculated and the mechanism of the energy transfer near isothermal and

adiabatic walls is investigated.

In chapter 6, the near-wall turbulence structures, in particular, the streak

structures near adiabatic and isothermal walls, are investigated for compress-

ible turbulent flow. In addition, the difference in turbulence structures between

compressible and incompressible turbulent flows is explored.

Key results are summarized and a conclusion is given in chapter 7, which

ends with a brief discussion of the future work.

The equations governing compressible and incompressible flows are given in

Appendix A.

Appendix B gives a short summary of B-splines and their properties.



Chapter 2.

Numerical Methods

2.1 Outline

In this chapter, the numerical algorithm that can simulate the compressible

turbulent channel flow between adiabatic and isothermal walls is introduced. The

skew-symmetric form for convection term which is used in the DNS algorithm

to maintain numerical stability is proposed. Next, the discrete method in space

and time is explained in detail. To confirm that the present DNS data has the

sufficient resolution and domain size, the one-dimensional energy spectrum and

two-point correlation are also examined.

2.2 Basic Equations

The x1−, x2− and x3−directions are the streamwise, wall-normal and span-
wise directions, respectively. The variables ui (i = 1, 2, 3), ρ, p, t, T , μ and κ are

the velocity component in the xi (i = 1, 2, 3) direction, the density, the pressure,

the time, the temperature, the molecular viscosity and the thermal conductivity,

respectively. The variables in the continuity, momentum and energy equations

(see (A.1)—(A.3)) are non-dimensionalized by the channel half-width H, the bulk

velocity Um, the bulk density ρm, the temperature at the isothermal wall Tiw, the

molecular viscosity at the isothermal wall μiw and the thermal conductivity at

the isothermal wall κiw, where x
†
i = xi/H (i = 1, 2, 3), u†i = ui/Um (i = 1, 2, 3),

ρ† = ρ/ρm, p
† = p/(ρmU

2
m), t

† = t/(H/Um), T
† = T/Tiw, μ

† = μ/μiw and

9
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κ† = κ/κiw. Note that μ
† = κ† because the specific heat at constant pressure

cp and the Prandtl number Pr = μcp/κ are constants in the present study.

The ratio of specific heats is γ = cp/cv, where cv is specific heat at constant

volume. The Mach number based on bulk velocity and isothermal wall tem-

perature is M = Um/ (γRTiw)
1/2, and the Reynolds number based on the bulk

density, bulk velocity, channel half-width, and viscosity at the isothermal wall

is Re = ρmUmH/μiw. The non-dimensional continuity, momentum and energy

equations are

∂ρ†

∂t†
= −∂(ρ†u†j)

∂x†j
, (2.1)

∂u†i
∂t†

= −u†j
∂u†i
∂x†j

− 1

γM2ρ†
∂(ρ†T †)

∂x†i
+

1

Reρ†
∂τ †ij
∂x†j

+ f †i , (2.2)

∂T †

∂t†
= −u†j

∂T †

∂x†j
− (γ − 1)T †∂u

†
j

∂x†j
+

γ (γ − 1)M2τ †ij
Reρ†

∂u†i
∂x†j

+
γ

RePrρ†
dμ†

dT †
∂T †

∂x†j

∂T †

∂x†j
+

γμ†

RePrρ†
∂2T †

∂x†j∂x
†
j

, (2.3)

where

τ †ij = μ†
Ã
∂u†i
∂x†j

+
∂u†j
∂x†i

− 2
3

∂u†k
∂x†k

δij

!
. (2.4)

We shall employ the summation convention in which repeated italic indices are

summed. The bulk density ρm and the bulk velocity Um are

ρm =
1

2H

Z H

−H
hρi dx2, (2.5)

Um =
1

2Hρm

Z H

−H
hρu1i dx2. (2.6)

Viscosity μ† is given by Sutherland’s law:

μ† =
1 + S1/Tiw
T † + S1/Tiw

T †
3
2 . (2.7)

The non-dimensional state equation and driving force f †i are

p† =
1

γM2
ρ†T †, (2.8)

f †i = −
h
hτ †12ix1−x3|x†2=1 − hτ

†
12ix1−x3 |x†2=−1

i
δi1

2Re
. (2.9)
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A mean pressure gradient is imposed to drive the flow in the DNS of incom-

pressible turbulent channel flow. Although the driving force f †i has the same role

in the DNS of compressible turbulent channel flow, it is not interpreted as the

mean pressure gradient, since pressure is given by the state equation (2.8) (see

Coleman et al. 1995; Huang et al. 1995).

2.3 Form of Convection Term

It is important to maintain numerical stability for the numerical simulation

of turbulent flow. Dealiasing is often used to remove the nonlinear instability in

the DNS of the turbulent flow (see Blaisdell et al. 1993). Blaisdell et al. (1993)

reported that the magnitude of the aliasing errors was reduced for the skew-

symmetric form compared to divergence and advective forms. Using a Fourier

analysis, they showed that the skew-symmetric form had a smaller amplitude

for the aliasing errors coming from the region close to the resolved wave number

range than the other formulations. Kravchenko & Moin (1997) also reported that

the aliasing errors due to the advective and divergence forms were of opposite

signs, then the skew-symmetric form reduced aliasing errors. Coleman et al.

(1995) used the advective form for convection term, thus they must give about

30 % more collocation points in x1, x2 and x3 directions than modes to eliminate

aliasing errors. The skew-symmetric form is the alternative method to reduce

the aliasing errors and to inhibit nonlinear instability while saving the numerical

capacity and cost, since the full dealiasing by the padding method is not practical

in the DNS of compressible flow with variable fluid properties. Blaisdell et al.

(1993) maintained the numerical stability by using the skew-symmetric form

in the DNS of homogeneous compressible turbulent shear flow. In the present

simulations, the skew-symmetric form is also used to maintain numerical stability.

The basic equations are different from those used in Blaisdell et al. (1993); the

present skew-symmetric form used in our study is described below.
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(Cont.) = 0 represents the continuity equation.

(Cont.) =
∂ρ

∂t
+

∂(ρuj)

∂xj
= 0 (2.10)

(Div.)φ, (Adv.)φ and (Skew.)φ represent the divergence, advective and skew-

symmetric forms of the convection term for φ (=u1, u2, u3 and T ), respectively:

(Div.)φ =
∂(ρφ)

∂t
+

∂(ρφuj)

∂xj
(2.11)

(Adv.)φ = ρ
∂φ

∂t
+ ρuj

∂φ

∂xj
(2.12)

(Skew.)φ =
1

2
(Div.)φ +

1

2
(Adv.)φ (2.13)

(Div.)φ, (Adv.)φ and (Skew.)φ are connected with each other through the fol-

lowing analytical relations as those of the incompressible flow (see Morinishi et

al. 1998):

(Adv.)φ = (Div.)φ − φ(Cont.), (2.14)

(Skew.)φ = (Div.)φ − 1
2
φ(Cont.), (2.15)

= (Adv.)φ +
1

2
φ(Cont.). (2.16)

As long as (Cont.) = 0 is satisfied, (Adv.)φ and (Skew.)φ are analytically con-

servative. Note that these exchanges in compressible flow require time derivative

terms. Here, Blaisdell et al. (1993) used the following skew-symmetric form with

the time derivative term (Skew.B)φ.

(Skew.B)φ =
∂(ρφ)

∂t
+
1

2

·
uj

∂(ρφ)

∂xj
+ ρφ

∂uj
∂xj

+
∂(ρφuj)

∂xj

¸
(2.17)

It is difficult to apply (Skew.B)φ to wall-bounded compressible turbulent flow,

since the density in the computational region and on the boundary should be

estimated at the same time and it is difficult to give the adiabatic boundary

condition in the time dependent equation of ρT . Therefore, in the present sim-

ulations the skew-symmetric form with the time derivative term (Skew.M)φ is

introduced by using (2.10) and (2.13).

(Skew.M)φ = ρ
∂φ

∂t
+
1

2

·
ρuj

∂φ

∂xj
+

∂(ρφuj)

∂xj
− φ

∂(ρuj)

∂xj

¸
(2.18)
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The comparison between skew-symmetric and advective forms in a simulation

will be done in section 2.10.

2.4 Discrete Method in Space

The Fourier Galerkin method (see Canuto et al. 1988) is used for the periodic

(x1 and x3) directions. The variable φ† is represented by the discrete Fourier

series expansion as follows.

φ†
¡
x†
¢
=

N1/2−1X
k1=−N1/2

N3/2−1X
k3=−N3/2

φ̂†k1k3(x
†
2)e
i(αk1x

†
1+βk3x

†
3) , (2.19)

Equation (2.19) is substituted into (2.1)—(2.3), and then the Fourier pseudo-

spectral method is applied in the periodic directions. As a result, the basic

equation of the Fourier coefficient for an unknown variable φ†(=ρ†, u†1, u
†
2, u

†
3,

T †) is obtained.

∂φ̂†k1k3(x
†
2)

∂t†
= Ŝφ†k1k3(x

†
2), (2.20)

where Ŝφ†k1k3(x
†
2) is evaluated by the discrete Fourier transformation of Sφ†

(pseudo-spectral method). The Fourier coefficient φ̂k1k3(x
†
2) is obtained by in-

tegrating (2.20). The B-spline collocation method is used in the wall-normal

(x2) direction. The Fourier coefficient φ̂k1k3(x
†
2) is expanded by the B-spline of

order k (see Appendix B.1).

φ̂†k1k3(x
†
2) =

N2X
j=1

φ†jk1k3B
k
j (x

†
2) (2.21)

When (2.21) is integrated after being multiplied by weight function Ψi(x
†
2) (i =

1, · · · ,N2), the following equation is obtained.Z 1

−1
Ψi(x

†
2)

N2X
j=1

φ†jk1k3B
k
j (x

†
2)dx

†
2 =

Z 1

−1
Ψi(x

†
2)φ̂

†
k1k3(x

†
2)dx

†
2 (2.22)

Since Ψi(x
†
2) is δ(x

†
2 − x†i2 ) for the collocation method, equation (2.22) becomes

the following equation.

N2X
j=1

φ†jk1k3B
k
j (x

†i
2 ) = φ̂†k1k3(x

†i
2 ), (i = 1, · · · , N2) (2.23)



14 CHAPTER 2. NUMERICAL METHODS

In addition, no-slip, adiabatic and isothermal wall boundary conditions are, re-

spectively, as follows.

N2X
j=1

u†1 jk1k3 B
k
j (x

†
2)
¯̄̄
wall
=
N2X
j=1

u†2 jk1k3 B
k
j (x

†
2)
¯̄̄
wall
=
N2X
j=1

u†3 jk1k3 B
k
j (x

†
2)
¯̄̄
wall
=0 (2.24)

N2X
j=1

T †jk1k3
dBkj (x

†
2)

dx†2

¯̄̄̄
¯
adiabatic wall

= 0 (2.25)

N2X
j=1

T †jk1k3 B
k
j (x

†
2)
¯̄̄
isothermal wall

=

⎧⎨⎩ 1 (k1, k3 = 0)

0 (others)
(2.26)

When the temperatures of both isothermal walls are different, the value of zero

mode in (2.26) depends on the temperature difference. Density at the walls

is solved by using (2.23) with i = 1 and N2. The equation on the vector of

coefficient of B-spline ~φ†k1k3 is constructed from (2.23) to (2.26).

B ~φ†k1k3 =
~r†k1k3, (2.27)

where B is the matrix (N2 × N2) and ~r†k1k3 is the RHS vector. Once (2.27) is
solved for the wave modes (k1, k3) for each variable, the B-spline coefficient φ

†
jk1k3

is obtained. Since Bkj (x2) has the compact support, matrix B is a banded matrix

(see Kravchenko & Moin 1998). Equation (2.27) is solved by LU decomposition.

Although the B-spline Galerkin method is available, the B-spline collocation

method is used in the present algorithm because of the low computational cost.

The comparison of numerical costs between the B-spline Galerkin and collocation

methods is presented in the following subsection.

2.5 Comparison of B-spline Galerkin and Col-

location Methods

Loulou et al. (1997) and Kravchenko et al. (1999) reported that using

the B-spline Galerkin method to calculate the nonlinear terms of incompressible

turbulent flow was expensive. In this section, we compare the number of the op-

eration counts of a nonlinear term, d(ρu1u2)/dx2, between the B-spline Galerkin

and collocation methods for wall-bounded compressible turbulent flow.
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In a case using the B-spline Galerkin method, the integration of the products

of B-spline in the wall-normal direction is evaluated asX
l

X
m

X
n

·Z +H

−H
Bki (x2)

dBkl (x2)B
k
m(x2)B

k
n(x2)

dx2
dx2

¸
ρl u1mu2n

=
X
l

X
m

X
n

nilmnρl u1mu2n, (2.28)

where the integral in brackets (nilmn) is usually pre-computed and stored. The

sums of (2.28) can be evaluated in order N2(2k + 1)
3 operations.

On the other hand, the calculation using the B-spline collocation method are

as follows. First of all, the function ζ(xi2) is calculated as

ζ(xi2) = ρ(xi2)u1(x
i
2)u2(x

i
2), (i = 1, · · · , N2) (2.29)

where the number of operation counts is N2. Second, the coefficient of B-spline

interpolation for the function ζ(xi2) is obtained by solving the following equation.

ζ(xi2) =
X
j

ζjB
k
j (x

i
2), (i = 1, · · · , N2) (2.30)

where the number of operation counts is N2k. Finally, using the coefficient ζj ,

the derivative of ζ(x2) is gained at the collocation points as

d(ρu1u2)

dx2
(xi2) =

X
j

ζ1jB
k
j (x

i
2), (i = 1, · · · ,N2) (2.31)

where the number of operation counts is N2k. Thus, the total operation counts

using the B-spline collocation method are about N2(2k + 1).

For instance, the operation counts of the fourth order B-spline Galerkin

method are about 40 times larger than that of the eighth order B-spline col-

location method. Note that the orders of the B-spline Galerkin and collocation

methods give the same modified wave numbers for derivatives (see Kravchenko

& Moin 1998 in detail). Although the estimate used here is done only for one

nonlinear term, it is easily expected that the B-spline collocation method can

allow a drastic reduction in the cost of simulating wall-bounded compressible

turbulent flow. In addition, note that calculations of the other terms such as
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the diffusion term using the B-spline Galerkin method are also expensive for

compressible turbulent flows with variable fluid properties.

Note that the memory requirement of B-spline collocation method is much

smaller than that of B-spline Galerkin method which requires a lot of matrices

(see Guarini 1998).

2.6 Discrete Method in Time

The time-advancement scheme in this study is a third-order compact stor-

age Runge—Kutta method (RK3) developed by Wray (1986) (see Spalart 1991).

Since periodic boundary conditions are used in the present simulations, the mass

and momentum should be conserved. In the present simulation, the driving

force, (2.9), is given at each time step in order to conserve mass and momentum.

However, the numerical error due to the time advancements slightly destroys the

conservations, since the continuity equation in compressible flow contains the

time derivative term. Coleman et al. (1995) avoided this problem by setting the

zero (prime) Legendre polynomial mode of density in advance (see Buell 1990).

Since this device is only applicable to the orthogonal polynomials, the corre-

sponding procedure is introduced in this study. The mass Cn1 and momentum

Cn2 at time tn are given by (2.32) and (2.33).Z L1

0

Z H

−H

Z L3

0

ρ(x, tn)dx = C
n
1 (2.32)Z L1

0

Z H

−H

Z L3

0

ρ(x, tn)u1(x, tn)dx = C
n
2 (2.33)

The averages over the streamwise and spanwise directions for density and stream-

wise velocity are modified by (2.34) and (2.35) respectively.

hρ(x2)ix1−x3 ⇐ ρ0m
ρnm
× hρ(x2)ix1−x3 =

C01
Cn1

× hρ(x2)ix1−x3 , (2.34)

hu1(x2)ix1−x3 ⇐ U0m
Unm

× hρ(x2)ix1−x3 =
Cn1
C01

× C02
Cn2

× hu1(x2)ix1−x3 , (2.35)

where h ix1−x3 represents spatial average over x1 and x3 directions. C01 and C02
are mass and momentum at the initial time and ⇐ represents the modification
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done in the direction. The modifications are small enough to be negligible after

the turbulent flows become stationary. We confirmed that the errors of mass

and momentum were smaller than O(10−8) at each time step. Lenormand et al.

(2000) performed the LES of compressible periodic channel flow, and reported

that the mass flux was conserved within 0.01% in the long-term integration using

the driving force based on the mass flux.

2.7 Summary of Present DNS Algorithm

The present algorithm for compressible turbulent channel flow is summarized

in the following (see also Morinishi et al. 2001a). First, the Fourier coefficient

φ̂†k1k3(x
†
2) of the variable φ†(=ρ†, u†1, u

†
2, u

†
3 and T

†) at the new time is solved

by the time integration of (2.20). The RHS of (2.20) is evaluated by the pseudo-

spectral method in the x1 and x2 directions and by the B-spline collocation

method in the x2 direction. The skew-symmetric form (2.18) is used. Second,

the coefficient of B-spline interpolation φ†jk1k3 is obtained by calculating (2.27).

The coefficient φ†jk1k3 is used for the calculations of a wall-normal derivative in the

RHS of (2.20) (see Appendix B.2). The variable φ† in physical space is obtained

by (2.19). Note that the temperature T † in physical space for the flow which

includes the adiabatic wall is solved by (2.19) and (2.21). The series of operations

is carried out repeatedly, and the time-dependent variables are advanced with

the third-order compact storage Runge—Kutta method.

On the other hand, we briefly explain the numerical method to solve the

continuity, momentum and energy equations (see (A.10)—(A.12)) for incompress-

ible turbulent channel flows as follows (see also Morinishi et al. 2001b). The

Chebyshev-tau method is used in the wall-normal direction, and the Fourier

Galerkin method is used in the streamwise and spanwise directions (see Canuto

et al. 1988). The continuity and Navier—Stokes equations are solved by the mod-

ified Kleiser—Schumann method (Kleiser & Schumann 1980; Werne 1995). The

skew-symmetric form for convection term is used for the stable numerical sim-

ulation. The semi-implicit time marching algorithm is used where the diffusion
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term is treated implicitly with the Crank—Nicolson scheme, and the third order

Runge—Kutta scheme is used for all other terms. We confirmed the validity of

the present code for the incompressible turbulent channel flow, comparing our

results with those of existing DNS of incompressible turbulent channel flow (Kim

& Moin 1989; Horiuti 1992).

2.8 Numerical Conditions

The non-dimensional parameters for the present simulations of compressible

turbulent channel flows (Cases 1 and 2) are the Reynolds number Re = 3000, the

Mach number M = 1.5, the Prandtl number Pr = μcp/κ = 0.72, and the ratio

of specific heats γ = cp/cv = 1.4 (where κ is thermal conductivity, μ is molecular

viscosity, cp is specific heat at constant pressure, and cv is specific heat at constant

volume). The Reynolds number, Re = ρmUmH/μiw, is based on the bulk density,

bulk velocity, channel half-width, and viscosity at the isothermal wall, and the

Mach number, M = Um/ (γRTiw)
1/2, is based on the bulk velocity and sound

speed at the isothermal wall. The low-Reynolds and low-Mach numbers do not

make the present analysis useless, because our goal is to clarify the difference and

similarity between compressible turbulent flows near adiabatic and isothermal

walls. The viscosity is given by Sutherland’s law (see (2.7)), where S1 = 110.4[K]

and Tiw = 293.15[K].

The non-dimensional parameters for the present simulations of incompressible

turbulent channel flow with passive scalar transport (Cases A and B) are the

Reynolds number Reτ = 150 and the Prandtl number Pr = 0.72. The Reynolds

number, Reτ = uτH/ν, is based on the friction velocity, the channel half-width,

and the kinematic viscosity. Note that the Reynolds number Reτ is given by

Reτ = ρwuτH/μw for compressible turbulent flow, where the friction velocity is

defined as uτ = (τw/ρw)
1/2 and τw is the wall shear stress.

The initial condition for Case 1 is as follows. The mean streamwise velocity

is given by superimposing random velocity fluctuations upon the profile based

on Spalding’s law (see Spalding 1961). The wall-normal and spanwise velocity
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FIGURE 2.1. Computational cases: (a) Case 1 or A and (b) Case 1 or B.

components are given as random fluctuations with zero mean values. The RMS

of velocity fluctuation is given by the function of the mean distribution and

the amplitude of the random variable goes to zero as the wall is approached.

The temperature and density fluctuations are zero, and their mean values are

uniform: hρix1−x3 /ρm = 1 and hT ix1−x3 /Tiw = 1. The initial field for Case 2

is a flow field of Case 1. A smoothing of density in the wall-normal direction

is done for Case 2 a few times soon after the temperature boundary condition

is changed from the isothermal wall to the adiabatic wall, because the sudden

change causes unphysical oscillation.
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TABLE 2.1. Classification of computational cases corresponding to thermal wall
boundary conditions.

Compressible Incompressible

Computational cases Case 1 Case 2 Case A Case B

Near isothermal wall Case 1IW Case 2IW Case AIW Case BIW

Near adiabatic wall — Case 2AW — Case BAW

TABLE 2.2. Physical simulation parameters.

Case Re Reτ M Pr γ

1 3000 (218) 1.5 0.72 1.4

2 3000 (86.4− 279) 1.5 0.72 1.4

A (2291) 150 − 0.72 −
B (2291) 150 − 0.72 −

Coleman et al. 3000 (222) 1.5 0.7 1.4

The no-slip wall boundary condition is used for all cases. The Dirichlet or

Neumam boundary condition of the density is not imposed, instead the continuity

equation is solved at the wall with keeping the bulk density constant. The upper

and lower walls of Case 1 are isothermal, and their temperatures are the same.

The upper and lower walls of Case 2 are adiabatic and isothermal, respectively.

The wall boundary conditions of Cases A and B correspond to those of Cases 1

and 2, respectively.

The computational domains and wall boundary conditions of temperature are

shown in figure 2.1. The classification of the computational cases corresponding

to thermal wall boundary conditions is shown in table 2.1. Cases 1IW, 2IW and

2AW represent the isothermal wall side of Case 1, the isothermal wall side of

Case 2 and the adiabatic wall side of Case 2, respectively. Cases AIW, BIW and

BAW represent the isothermal wall side of Case A, the isothermal wall side of

Case B and the adiabatic wall side of Case B, respectively.
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TABLE 2.3. Numerical simulation parameters.

Case L1 × L2 × L3 N1 ×N2 ×N3
1 4πH × 2H × 4πH/3 120× 180× 120
2 4πH × 2H × 4πH/3 120× 240× 120
A 4πH × 2H × 4πH/3 128× 129× 128
B 4πH × 2H × 4πH/3 128× 129× 128

Coleman et al. 4πH × 2H × 4πH/3 144× 119× 80

Grid spacing in the periodic directions is uniform for all cases. The wall-

normal collocation points xi2 are distributed by using a hyperbolic-tangent func-

tion for Cases 1 and 2,

xi2
H
=
tanh [G (2(i− 1)/(N2 − 1)− 1)]

tanh (G)
, (i = 1, · · · , N2) (2.36)

where G is 2.0. The wall-normal grid points are given by Gauss—Lobatto points

(see Canuto et al. 1988) for Cases A and B.

The physical and numerical parameters for all cases are given in tables 2.2

and 2.3, respectively. (N1, N2, N3) and (L1, L2, L3) are the number of grid points

and computational region in the x1, x2 and x3 directions, respectively. In the

tables, parameters of Coleman et al. (1995) are also presented for comparison.

The eighth order B-spline, which has enough resolving power (see Appendix B.3),

is used for Cases 1 and 2. The statistics are obtained by averaging over space

(x1 and x3 directions) and time after the turbulent flows become stationary. The

acoustic Courant number is defined as

AC =

· |u1|+ a
∆x1

+
|u2|+ a
∆x2

+
|u3|+ a
∆x3

¸
∆ t, (2.37)

where a = (γRT )1/2 is acoustic speed, ∆ t is time increment, and ∆xi(i = 1, 2, 3)

is grid spacing in the xi direction, respectively. The acoustic Courant numbers

for Cases 1 and 2 are smaller than 0.43 and 0.36, respectively.

The time-averaged data for Cases 1 and 2 and Coleman et al. (1995) are

summarized in Table 2.4. Reynolds number based on variables at the center of
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TABLE 2.4. Time-averaged results.

Case Reτ Rec −Bq Mc Mτ uτ/Um Cf Nu

1IW 218 2717 0.048 1.502 0.080 0.0533 7.7× 10−3 39

2IW 279 2344 0.059 1.326 0.077 0.0517 9.6× 10−3 30

2AW 86.4 2344 0 1.326 0.071 0.0741 8.0× 10−3 0

Coleman et al. 222 2760 0.049 1.502 0.082 0.0545 8.1× 10−3 -

FIGURE 2.2. Profiles of Reynolds number Re∗τ .

channel, Rec, non-dimensional heat flux, Bq, Mach number based on velocity and

sound speed at the center, Mc, friction Mach number based on friction velocity

and wall sound speed, Mτ , skin friction coefficient, Cf , and Nusselt number,

Nu, are respectively defined as follows: Rec = ρcu1cH/μc, Bq = qw/(ρwcpuτTw),

Cf = 2τw/(ρmU
2
m), Mc = u1c/ac, Mτ = uτ/aw, Nu = 2Hqw/κw(Tw − Tm), where

qw is wall heat flux, τw is wall stress, Tm is bulk temperature, and ( )c is value

at the center of channel. The results of Case 1 are almost the same as those of

Coleman et al. (1995). The non-dimensional heat flux Bq is zero at the adiabatic

wall because of no heat flux, and it is negative at the isothermal wall since the

heat is transported out of the isothermal wall, i.e. the flow is cooled at the

isothermal wall.
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TABLE 2.5. Grid resolution.

Case ∆x+1 ∆x+2 ∆x+3 ∆x∗1 ∆x∗2 ∆x∗3

1IW 23 0.36—5.1 7.6 15—23 0.36—3.4 5.1—7.6

2IW 9.1 0.11—1.5 3.0 9.1—13 0.11—2.2 3.0—4.4

2AW 29 0.35—4.8 9.7 14—29 0.35—2.4 4.8—9.7

A (B) 15 0.045—3.7 4.9 15 0.045—3.7 4.9

The grid resolution is evaluated by using not only the Reynolds number

based on the friction velocity, Reτ , but also the Reynolds number based on

the semi-local friction velocity (uτ∗ = (τw/ hρi)1/2 ), Re∗τ = hρiuτ∗H/ hμi, where
h i represents the Reynolds average over time and the x1 and x3 directions.
Profiles of Re∗τ for Cases 1IW, 2IW and 2AW are shown in figure 2.2. The

semi-local wall unit, y∗ = hρiuτ∗y/ hμi, is used in the figure, instead of wall
unit, y+ = ρwuτy/μw. Grid resolution based on wall and local variables for the

present simulations is shown in table 2.5. The velocity field for Cases A and

B does not depend on the temperature field, so the resolution of Case B is the

same as that of Case A. The resolution of Cases 1 and 2 is comparable with that

of Coleman et al. (1995) and Guarini et al. (2000) for compressible turbulent

flow. The resolution of Cases A and B is better than that of Kim & Moin (1989)

and Horiuti (1992) for incompressible turbulent flow. The streamwise resolution

near the isothermal wall for compressible turbulent flow seems to be lower than

that of incompressible turbulent channel flow. However, when local scaling is

used, the resolution of compressible turbulent flow is comparable with that of

incompressible turbulent flow.

2.9 Spectra and Two-point Correlations

The grid numbers and domain sizes must be chosen in such a way that all

the relevant scales are resolved. The determination of proper resolution and

domain size of the simulation is accomplished by analyzing the one-dimensional
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(1D) energy spectra and two-point correlations, respectively. The 1D energy

spectrum is a good indication for the smaller scales. If the simulation is well-

resolved, then the energy spectrum should show several decades of decay and

very little pipe up of energy at higher wave numbers. For the large scales, the

domain size is most important. The domain size selected must be large enough

to contain the largest structure that is encountered in the simulation. Then, the

two-point correlation should go to zero within the domain.

The streamwise and spanwise energy spectra are

Eφφ(k1, x2) =
D
φ̂k1k3(x2) φ̂k1k3(x2)

E
x3−t

, (2.38)

Eφφ(k3, x2) =
D
φ̂k1k3(x2) φ̂k1k3(x2)

E
x1−t

, (2.39)

where ( ), h ix1−t, and h ix3−t represent the complex conjugate, average over time
and x1 direction, and average over time and x3 direction, respectively. Fig-

ure 2.3(a,c) shows the streamwise 1D energy spectra Eφφ(k1, x2) for Case 1, and

figure 2.3(b,d) shows the spanwise 1D energy spectra Eφφ(k3, x2) for Case 1. Fig-

ure 2.4(a,c,e) shows the streamwise 1D energy spectra Eφφ(k1, x2) for Case 2, and

figure 2.4(b,d,f) shows the spanwise 1D energy spectra Eφφ(k3, x2) for Case 2.

The 1D energy spectra Eφφ are examined at the center of the channel for Cases

1 and 2, near the isothermal wall of Cases 1 and 2, and near the adiabatic wall of

Case 2. All the 1D energy spectra in the region of high wave numbers are grad-

ually decreasing, and the magnitude of Eφφ between the smallest and the largest

wave number has dropped off by 3—4 orders. Moreover, the 1D energy spectra

Eφφ of the present simulations are also comparable with those of Coleman et al.

(1995) and Guarini et al. (2000). We therefore conclude that the resolutions of

Cases 1 and 2 are sufficient.

The streamwise and spanwise two-point correlations are

Rφφ(r1, x2) =
hφ0(x1, x2) φ0(x1 + r1, x2)i

hφ02i , (2.40)

Rφφ(r3, x2) =
hφ0(x3, x2) φ0(x3 + r3, x2)i

hφ02i , (2.41)

where r1 and r3 represent separations in the x1 and x3 directions, respectively.
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FIGURE 2.3. One-dimensional energy spectra for Case 1; –––, ρ ; - - - -, u1 ;
· · · · · ·, u2 ; — - —, u3 ; −−−, T . (a,c) streamwise; (b,d) spanwise.

The streamwise two-point correlations Rφφ(r1, x2) and the spanwise two-point

correlations Rφφ(r3, x2) for Cases 1 and 2 are shown in figures 2.5 and 2.6, re-

spectively. The two-point correlations Rφφ are calculated at the same wall-normal

positions as those of the 1D energy spectra Eφφ. Figure 2.5(c) shows that the

spanwise two-point correlation of density at the center of the channel is high for

Case 1. This tendency was also observed in the simulation of Coleman et al.

(1995). They argued that it was caused by acoustic resonance and did not affect

other statistics. No serious problems caused by the acoustic effect appear in

the results of Cases 1 and 2 (see the subsequent chapters). The other two-point

correlations reach zero within the domain size, therefore it is proven that the

computational domains of Cases 1 and 2 are sufficient.
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FIGURE 2.4. One-dimensional energy spectra for Case 2; lines as figure 2.3. (a,
c, e) streamwise; (b, d, f) spanwise.



2.9. SPECTRA AND TWO-POINT CORRELATIONS 27

FIGURE 2.5. Two-point correlations for Case 1; lines as figure 2.3. (a, c) stream-
wise; (b, d) spanwise.
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FIGURE 2.6. Two-point correlations for Case 2; lines as figure 2.3. (a, c, e)
streamwise; (b, d, f) spanwise.
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2.10 Comparison of Skew-symmetric and Ad-

vective Forms

The effect of the present skew-symmetric form (see (2.18)) is shown by com-

paring it with the advective form. To clarify the difference between these two

forms, the simulations with poor grid resolutions in the periodic directions are

carried out (N1 = N3 = 32 for Case 1-32, N1 = N3 = 60 for Case 1-60). The

initial field is given by interpolating the fully developed turbulent flow of Case

1 (N1 = N3 = 120). The numerical conditions of Cases 1-32 and 1-60 are the

same as those of Case 1 except for the grid number. The simulations for Cases

1-32 and 1-60 are carried out by using the skew-symmetric and advective forms

respectively for the convection term. Table 2.6 summarizes the results for the

simulations of Cases 1-32 and 1-60. The simulation with the advective form

diverged for Case 1-32 after about 10,000 time steps, while those with the skew-

symmetric form were stable for Cases 1-32 and 1-60. The simulation with the

advective form was possible for Case 1-60, but its results were aliased.

Figure 2.7 shows the streamwise 1D energy spectra of temperature for the

skew-symmetric and advective forms of Case 1-60 at 3,000 time steps after the

interpolation. The result with the advective form has a large aliasing error at the

largest wave number. On the other hand, the result with the skew-symmetric

form is less aliased. These numerical tests lead to the conclusion that stable

and low cost simulations can be done with the skew-symmetric form. Moreover,

the 1D energy spectra for Cases 1 and 2 with the skew-symmetric form were

gradually decreasing (see figures 2.3 and 2.4), therefore the usefulness of the

present skew-symmetric form is verified.
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TABLE 2.6. Comparison of advective and skew-symmetric forms for convection
term: ↑, Diverged; 4, Aliased; °, Stable.

Type of convection term Case 1-32 Case 1-60

Advective form ↑ 4
Skew-symmetric form ° °

FIGURE 2.7. One-dimensional Fourier spectra of temperature for Case 1-60.
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2.11 Summary

In this chapter, the new DNS algorithm which can simulate the compressible

turbulent channel flow between adiabatic and isothermal walls accurately and

efficiently is explained in detail.

(1) It is explained that the present DNS algorithm based on the B-spline

collocation method has the advantages that the numerical boundary condition

is uniquely and accurately determined corresponding to the physical boundary,

particularly, at the adiabatic wall.

(2) It is shown that the construction of the algorithm is simple and the numer-

ical cost is much cheaper than that of the B-spline Galerkin method, comparing

the number of the operation counts of a nonlinear term between the B-spline

Galerkin and collocation methods for wall-bounded compressible turbulent flow.

(3) The skew-symmetric form which is suitable for the wall-bounded com-

pressible flow is proposed for the convection term to maintain numerical stability.

The usefulness of the proposed skew-symmetric form is confirmed by perform-

ing the simulations with poor grid resolutions in the periodic directions and by

comparing the proposed one with the advective form.

(4) The reliability of the present DNS algorithm is confirmed by comparing

our result with that of Coleman et al. (1995) for the compressible turbulent

channel flow between isothermal walls. The applicability and usefulness of the

present DNS algorithm is also confirmed by the stable implementation of DNS of

the compressible turbulent channel flow between adiabatic and isothermal walls.

(5) It is confirmed that the present DNS data has sufficient resolution and

domain size, examining the 1D energy spectra and two-point correlations.





Chapter 3.

Mean Velocity and Temperature
Profiles

3.1 Outline

First of all, the effects of the non-dimensional heat flux and the friction Mach

number on the wall law of the mean velocity and temperature are examined

theoretically. Next, the mean velocity and temperature profiles near adiabatic

and isothermal walls are investigated using the present DNS results. The scaling

laws of mean velocity and temperature profiles are also discussed.

3.2 Wall Laws of Mean Velocity and Tempera-

ture

It is known from the dimensional analysis result that the mean velocity and

temperature profiles depend on the non-dimensional heat flux, Bq, and the fric-

tion Mach number, Mτ , when the Prandtl number Pr and the ratio of specific

heats γ are constants. Since Pr and γ are fixed in the present simulations, we

consider the effects of parameters Bq andMτ (see table 2.4) on the mean velocity

and temperature profiles. Parameters Bq and Mτ strongly depend on the mean

density as described later, and the variation in the mean density is generally large

near the wall in compressible turbulent flow. In this section, the wall laws of the

mean velocity and temperature profiles are examined using the non-dimensional

parameters Bq and Mτ . Assuming the length scale of turbulence, lu = κuy, and

33



34 CHAPTER 3. MEAN VELOCITY AND TEMPERATURE PROFILES

the temperature length scale, lT = κTy, the mixing length theory leads to the

following equations, respectively (Rotta 1960; Bradshaw 1977).

d hu1i
dy

=
(τw/ hρi)1/2

κuy
(3.1)

d hT i
dy

= − τw hu1i+ qw
hρi cp (τw/ hρi)1/2 κTy

(3.2)

The viscous friction work, τw hu1i, is induced from the fifth term on the right-

hand side of equation (A.3), and it does not appear in incompressible turbulent

flow with passive scalar transport (cf. (A.12) and (A.3)). Equation (3.1) leads

to the following equation;µhρi
ρw

¶1/2
d hu1i+
dy+

=
1

κuy+
, (3.3)

where hu1i+ = hu1i /uτ is the mean velocity scaled by the friction velocity. The
Van Driest transformed velocity hu1i+VD (see Van Driest 1951) is defined as

hu1i+VD =
Z hu1i+

0

µhρi
ρw

¶1/2
d hu1i+ . (3.4)

From (3.3) and (3.4), the log-law of hu1i+VD is obtained as

hu1i+VD =
1

κu
ln y+ +B, (3.5)

where B is the additive constant. Assuming hρi = ρw, the log-law of hu1i+ is
given by

hu1i+ = 1

κu
ln y+ +B. (3.6)

Note that the assumption of hρi = ρw is not successful in the present results

(see figure 3.1(a)). Moreover, we consider whether the mean velocity scaled by

the semi-local friction velocity, hu1i∗ = hu1i /uτ∗, provides the log-law. The
assumption,

d (hρi /ρw)1/2 /dy+ ' 0, (3.7)

yields the following log-law of hu1i∗.

hu1i∗ = 1

κu
ln y+ +B (3.8)
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FIGURE 3.1. Mean profiles: (a) hρi /ρw and (b) d (hρi /ρw)1/2 /dy+.

Note that (3.7) is the assumption in the region of sufficiently large y+ and does

not correspond to hρi = ρw. In the present simulations, the assumption (3.7) is

satisfied in the range of y+ > 50 for Cases 1IW and 2IW and is not successful

for Case 2AW (see figure 3.1(b)). As pointed out by Coleman et al. (1995), if

the semi-local wall variable, y∗, is used in (3.8) instead of the wall variable, y+,

the additive constant in (3.8), B, depends on the heat transfer and shear at the

wall.

Next, in order to show the effects of Bq and Mτ on the mean velocities

hu1i+VD, hu1i∗ and hu1i+ explicitly, we use the relationship between hT i /Tw and
hu1i+ obtained from (3.1) and (3.2) (see Huang et al. 1994; Huang & Coleman
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1994).

hT i
Tw

= 1− PrtBq hu1i+ − PrtM2
τ

γ − 1
2

hu1i+2 , (3.9)

where Prt = κu/κT is the turbulent Prandtl number. Assuming that pressure

given by the state equation (see (A.9)) is constant, it yields the relationship

between density and temperature, hρi /ρw = Tw/ hT i. The relationship between
hu1i+V D and hu1i+ is given by

hu1i+VD = E1/2
·
arcsin

µ
A+ hu1i+

D

¶
− arcsin

µ
A

D

¶¸
, (3.10)

where E = 2/[PrtM
2
τ (γ − 1)]，A = Bq/[(γ − 1)M2

τ ] and D = (A2 + E)
1/2
(see

Huang & Coleman 1994). The relationship between hu1i∗ and hu1i+ is given by

hu1i∗ =
·
1− PrtBq hu1i+ − PrtM2

τ

γ − 1
2

hu1i+2
¸−1/2

hu1i+ . (3.11)

The rearranged mean velocity in the standard wall-unit is given by

hu1i+ = D sin
µ

1

κuE1/2
ln
y+

y+0

¶
, (3.12)

where y+0 = exp(−κuB) (see White 1991).
The effects of Bq and Mτ are investigated respectively as follows. In the case

of Mτ = 0, the mean velocities hu1i+, hu1i+V D and hu1i+ are written by

hu1i+ =
1

κu
ln
y+

y+0
− PrtBq

4κ2u
ln2
y+

y+0
, (3.13)

hu1i+VD = − 2

PrtBq

h¡
1− PrtBq hu1i+

¢1/2 − 1i , (3.14)

hu1i∗ =
£
1− PrtBq hu1i+

¤−1/2 hu1i+ , (3.15)

respectively. We assume that Prt = 0.9, κu = 0.4 and y
+
0 = exp(−0.4 × 5.5) '

0.1108 for simplicity. In the case of Bq = Mτ = 0, the mean velocities hu1i+,
hu1i+V D and hu1i∗ are the same as the log-law for the incompressible turbulent
flow. In the case of Mτ = 0, the mean velocities given by (3.13)—(3.15) in the

range of 0.02 ≤ −Bq ≤ 0.12 where the increment of −Bq is 0.02, are shown in
figure 3.2(a). The velocity hu1i+ increases and hu1i∗ decreases with the increase
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FIGURE 3.2. Mean velocity: (a) effects of Bq and (b) effects of Mτ .

of −Bq, respectively. The transformed velocity hu1i+VD is independent of −Bq. In
the case of Bq = 0, the mean velocities hu1i+, hu1i+VD and hu1i∗, are written by

hu1i+ = E1/2 sin

µ
1

κuE1/2
ln
y+

y+0

¶
, (3.16)

hu1i+VD = E1/2 arcsin

µhu1i+
E1/2

¶
, (3.17)

hu1i∗ =

·
1− PrtM2

τ

γ − 1
2
hu1i+2

¸−1/2
hu1i+ . (3.18)

In the case of Bq = 0, the mean velocities given by (3.16)—(3.18) in the range of

0.02 ≤Mτ ≤ 0.12 where the increment of Mτ is 0.02, are shown in figure 3.2(b).

The velocity hu1i+ decreases and hu1i∗ increases with the increase ofMτ , respec-

tively. The transformed velocity hu1i+VD is independent of Mτ .
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FIGURE 3.3. Variation of hT i /Tw: (a) effects of Bq and (b) effects of Mτ .

Next, we show the effects of Bq and Mτ on the mean temperature profiles.

In the case of Mτ = 0, the mean temperature scaled by the wall temperature

given by (3.9), hT i /Tw, with the range of 0.02 ≤ −Bq ≤ 0.12 is shown in

figure 3.3(a). In the case of Bq = 0, the mean temperature hT i /Tw with the
range of 0.02 ≤ Mτ ≤ 0.12 is shown in figure 3.3(b). The velocities hu1i+ for
Mτ = 0 and Bq = 0 are given by (3.13) and (3.16), respectively. The mean

temperature hT i /Tw increases with the increase of −Bq and decreases with the
increase of Mτ . The relationship between hT i+ = (Tw − hT i)/Tτ and hu1i+,

hT i+ = Prt hu1i+ + PrtM
2
τ

Bq

γ − 1
2

hu1i+2 , (3.19)

is obtained in the case of Bq 6= 0 which corresponds to the non-adiabatic wall.
The friction temperature Tτ is defined as Tτ = BqTw. In case of Mτ = 0, equa-

tion (3.19) yields the similarity law of mean velocity and temperature, hT i+ =
Prt hu1i+. The mean temperature hT i+ with the range of 0.02 ≤ −Bq ≤ 0.12

in the case of Mτ = 0 is shown in figure 3.4(a). The mean temperature hT i+

with the range of 0.02 ≤ Mτ ≤ 0.12 in the case of −Bq = 0.048 is shown in
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FIGURE 3.4. Variation of hT i+: (a) effects of Bq and (b) effects of Mτ .

figure 3.4(b). The velocities hu1i+ in the case of Mτ = 0 and −Bq = 0.048 are
given by (3.13) and (3.12), respectively. The mean temperature hT i+ increases
with the increase of −Bq and decreases with the increase of Mτ . Note that the

mean temperature hT i+ depends on Bq even if Mτ is zero (see figure 3.4(a)),

because the mean velocity hu1i+ depends on Bq in the case ofMτ = 0. Here, the

log-law of the mean temperature near the non-adiabatic wall in the compress-

ible turbulent flow depends on the second term on the right-hand side of (3.19)

which corresponds to the viscous friction work, and it can be usually neglected

in incompressible turbulent flow. On the other hand, the log-law of the mean

temperature for incompressible turbulent flow is

hT i+ = Prt
κu

ln y+ + C, (3.20)

where C is the additive constant (see White 1991). In the following sections,

we shall explain the mean velocity and temperature profiles obtained from the

present DNS results, using the analysis in this section.
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FIGURE 3.5. Mean velocity profiles: hu1i+, hu1i+VD and hu1i∗.

3.3 Mean Velocity Profiles

Figure 3.5 shows the profiles of mean velocities hu1i+, hu1i+VD and hu1i∗. The
figure obviously shows that the Van Driest transformed velocity hu1i+V D agrees
well with the data of the incompressible turbulent flow. Thus, the Van Driest

transformation provides the most universal velocity profiles.

Next, the mean velocities hu1i+, hu1i+VD and hu1i∗ for y+ ≥ 20, are compared
under the same thermal boundary condition. The profiles of mean velocities for

Cases 2IW and 2AW which correspond to the compressible turbulent flow near

isothermal and adiabatic walls are shown in figure 3.6. Using the theoretical

results of figure 3.2 and the numerical results of figure 3.6, the effects of the

parameters Bq and Mτ on the mean velocity are summarized as follows. The

Van Driest transformed mean velocity hu1i+VD of Cases 2IW and 2AW agrees well
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FIGURE 3.6. Profiles of mean streamwise velocity: (a) Case 2IW and (b) Case
2AW.

with the data of Case A, because hu1i+V D is independent of Bq and Mτ . The

velocity hu1i+ of Case 2IW is larger than that of Case A. This is because the

effect of Bq is larger than that ofMτ . The value of hu1i+ for Case 2AW is slightly

smaller than that of Case A because of the effect of Mτ . Unlike hu1i+ of Case
2IW, hu1i+ of Case 2AW is close to that of Case A. This is probably caused

by the influence of the low-Reynolds number effect near the adiabatic wall, as

mentioned in the Introduction. We checked the profile of y+d hu1i+ /dy+ and
confirmed that the log-region of Case 2AW was very small. The log-law is not

realized for hu1i+ of Cases 2IW and 2AW because of the failure of the assumption

of hρi = ρw. The velocity hu1i∗ of Case 2IW is smaller than that of Case A. This
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is because the effect of Bq is larger than that of Mτ . The value of hu1i∗ for Case
2AW is much larger than that of Case A because of the effect ofMτ . The log-law

of hu1i∗ is not realized, because the assumption of (3.7) is not satisfied.

3.4 Mean Temperature Profiles

Profiles of mean temperature hT i /Tw are shown in figure 3.7(a). The tem-
perature hT i /Tw for Case 2AW becomes smaller than unity, because of the effect

of Mτ (see figure 3.3(b)). The values of hT i /Tw for Cases 1IW and 2IW become

larger than unity, because the effect of Bq is larger than that of Mτ (see fig-

ure 3.3). The value of hT i /Tw for Case 2IW is larger than that of Case 1IW

because −Bq (=0.048) of Case 1IW is smaller than −Bq (=0.059) of Case 2IW,
and Mτ (=0.080) of Case 1IW is larger than Mτ (=0.077) of Case 2IW (see

figure 3.3).

Profiles of mean temperature scaled hT i+ are given in figure 3.7(b). The
temperatures hT i+ of the compressible turbulent flows (Cases 1IW and 2IW) are

smaller than those of the incompressible turbulent flows (Cases AIW and BIW).

The difference in hT i+ between Cases 1IW and 2IW is explained by figure 3.4, as

well as the profiles of hT i /Tw. The gradient of hT i+ for Cases 2IW and BIW is

large near the centre of the channel, because they are influenced by the opposite

wall which corresponds to the adiabatic wall.

Next, to clarify the logarithmic regions of velocity and temperature, the pro-

files of y+d hu1i+ /dy+ and y+d hT i+ /dy+ are investigated (see figure 3.8). The
logarithmic regions of the velocity and temperature correspond to the regions

where y+d hu1i+ /dy+(= 1/κu) and y
+d hT i+ /dy+(= 1/κT ) are constants, re-

spectively. The logarithmic region of velocity is found for all cases, and the

values of κu for Cases 1IW and 2IW are larger than for Case A. No logarith-

mic region of the mean temperature for Case 1IW can be seen in figure 3.8(b).

Although a mimic logarithmic region is observed around the minimum point of

y+d hT i+ /dy+ for Cases 2IW and BIW, it is caused by the different thermal

wall boundary condition on the opposite wall. Since the second term on right-
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FIGURE 3.7. Profiles of (a) hT i /Tw and (b) hT i+.

hand side of (3.19) that corresponds to the viscous friction work is not zero for

the compressible turbulent flow, the logarithmic region of temperature is not

found for Cases 1IW and 2IW. The logarithmic region of temperature is not

realized for Case AIW in spite of Mτ = 0, because of the low-Reynolds number

(Reτ = 150). The logarithmic region of the mean temperature appears for the in-

compressible turbulent channel flow with the higher Reynolds number (see Case

CIW in figure 3.8(b)). Case CIW represents the isothermal wall side of Case C

whose conditions are the same as those of Case A, except the Reynolds number,

Reτ = 300, the grid numbers, (N1,N2, N3)=(128, 161, 128), and computational

domain sizes, (L1, L2, L3)=(2πH, 2H, 2πH/3).
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FIGURE 3.8. Similarity law of velocity and temperature (a) y+d hu1i+ /dy+ and
(b) y+d hT i+ /dy+.

3.5 Summary

In this chapter, the mean streamwise velocity and temperature profiles are

investigated. The results are summarized as follows.

(1) The Van Driest transformation collapses the mean velocity profiles of the

compressible turbulent flow near adiabatic and isothermal walls onto the log-law

for the incompressible turbulent flow. This can be explained by the theoreti-

cal analysis result, i.e., the Van Driest transformed velocity is independent of

non-dimensional heat flux Bq and the friction Mach number Mτ , while the un-

transformed velocity increases with an increase of −Bq and decreases with an
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increase of Mτ . The log-law of the mean velocity normalized by the semi-local

friction velocity is not realized for compressible turbulent flows near both adia-

batic and isothermal walls.

(2) The mean temperature profiles scaled by the wall and friction tempera-

tures can be explained using the theoretical analysis result, i.e., the mean tem-

perature increases with an increase of −Bq and decreases with an increase ofMτ .

And the difference of the mean temperature between compressible turbulent flows

near isothermal and adiabatic walls is clarified.

(3) The logarithmic region of the mean temperature near the isothermal wall

does not appear for compressible turbulent flow because of the effect of the

viscous friction work, while the logarithmic region appears near the isothermal

wall in incompressible turbulent flow.





Chapter 4.

Turbulence Statistics

4.1 Outline

First, the profiles of the RMS velocity fluctuations, the RMS density and tem-

perature fluctuations, Reynolds shear stress and turbulent heat flux are discussed

through the different normalizations for compressible turbulent flow. Second, the

difference between the near-wall asymptotic behaviors of compressible and incom-

pressible turbulent flows is investigated. Finally, the applicability and usefulness

of the Reynolds analogy and the modified Reynolds analogy are examined using

the present simulation results.

4.2 Profiles of Turbulence Statistics

The usefulness of the semi-local scaling is investigated by comparing the

RMS velocity fluctuations scaled by the friction velocity, (u0α)
+
rms= hu0αu0αi1/2 /uτ ,

with those scaled by the semi-local friction velocity, (u0α)
∗
rms = hu0αu0αi1/2/uτ∗,

(α = 1, 2, 3, no summation for α) (see figure 4.1). The streamwise intensities of

turbulence for the compressible turbulent flow near the isothermal wall (Cases

1IW and 2IW) in the region of y+ ≥ 10, are larger than that of the incom-

pressible turbulent flow (Case A). The streamwise intensity of turbulence for the

compressible turbulent flow near the adiabatic wall (Case 2AW) in the region

of y+ ≥ 10, is smaller than that of Case A. On the other hand, the semi-local

scaling collapses the RMS velocity fluctuations of the compressible turbulent flow

47
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FIGURE 4.1. Profiles of RMS velocity fluctuations: (a) (u0α)
+
rms (α = 1, 2, 3) and

(b) (u0α)
∗
rms (α = 1, 2, 3).

onto those of the incompressible turbulent flow. Namely, Morkovin’s hypothesis

is satisfied in the RMS velocity fluctuations. However, the wall-normal and span-

wise intensities of turbulence, (u02)
∗
rms and (u

0
3)
∗
rms, in the compressible turbulent

flow near the adiabatic wall (Case 2AW) are slightly smaller than those of Case

A, respectively. The same trend was also observed in the turbulent channel flow

of M = 0 with variable properties between isothermal walls by Nicoud (1999).

The difference may be caused by the low-Reynolds number effect (see Antonia

et al. 1992).

The RMS density, temperature fluctuations and the relationship between
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FIGURE 4.2. Profiles of (a) ρ0rms/ρw and ρ0rms/ hρi, (b) T 0rms/Tw and T 0rms/ hT i.

these variables have not been sufficiently investigated to date. The density and

temperature fluctuation profiles scaled by the wall and local variables are com-

pared with each other. The profiles of the RMS density flluctuations ρ0rms/ρw

and ρ0rms/ hρi are shown in figure 4.2(a), and the profiles of the RMS temperature
fluctuations T 0rms/Tw and T

0
rms/ hT i are shown in figure 4.2(b). The peak value

of ρ0rms/ρw for Case 2AW is almost twice that of Case 2IW, while the peak value

of T 0rms/Tw for Case 2IW is almost twice that of Case 2AW. This corresponds

to the isobaric change. On the other hand, the RMS temperature fluctuation

T 0rms/ hT i is almost the same as the RMS density fluctuation ρ0rms/ hρi, except
that the RMS temperature fluctuation on the isothermal wall is zero.

Next, we investigate the universal scaling method with respect to the Reynolds
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shear stress. The Favre average of a quantity φ is given by {φ} = hρφi / hρi and
00 represents the turbulent fluctuation with respect to the Favre average. The

relationships between averaging operations h i and { } are as follows.

hφ00i = hφi− {φ} (4.1)

{φ00ψ00} = hφ0ψ0i− hφ00i hψ00i+ hρ0φ0ψ0i / hρi (4.2)

The non-dimensional Reynolds shear stresses are as follows;

− hρu01u02i+ = − hρu01u02i /(ρwu2τ ), (4.3)

− hρi hu01u02i+ /ρw = − hρi hu01u02i /(ρwu2τ ), (4.4)

− hu01u02i∗ = − hρi hu01u02i /(hρi u2τ∗), (4.5)

− hρu01u02i∗ = − hρu01u02i /(hρiu2τ∗), (4.6)

−{u001u002}∗ = − hρi {u001u002}/(hρi u2τ∗), (4.7)

− hρi {u001u002}+/ρw = − hρi {u001u002}/(ρwu2τ ). (4.8)

Equations (4.3)—(4.8) collapse the same form, provided that the density is con-

stant. The profiles of (4.3)—(4.8) are shown in figure 4.3. The Reynolds shear

stresses normalized by the wall variables − hρu01u02i+, − hρihu01u02i+/ρw and − hρi
{u001u002}+/ρw, have almost the same value, and the Reynolds shear stresses scaled
by the local and semi-local variables − hu01u02i∗, − hρu01u02i∗ and −{u001u002}∗ coin-
cide with each other. It indicates that the difference in the Reynolds shear stress

between Favre and Reynolds averages is negligible. This is because the second

and third terms on the right-hand side of (4.2) are negligible compared with the

first term in the present data. The Reynolds shear stresses scaled by the wall

variables for Cases 1IW and 2IW are smaller than that of Case A for y+ ≤ 40 and
are almost the same as that of Case A for y+ ≥ 40. The Reynolds shear stress
scaled by the wall variables for Case 2AW is almost the same as that of Case

A for y+ ≤ 20 and are smaller than that of Case A for y+ ≥ 20. On the other
hand, − hu01u02i∗, − hρu01u02i∗ and −{u001u002}∗ have almost the same value of Case A
near adiabatic and isothermal walls. Coleman et al. (1995), Guarini et al. (2000)

and So et al. (1998) used − hρu01u02i+, − hρi hu01u02i+ /ρw and − hρi {u001u002}+/ρw
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for the scaling of the Reynolds shear stress, respectively. In the present results,

these scaling methods collapse the Reynolds shear stresses onto data of the in-

compressible turbulent flow (Case A) in the region of y+ ≥ 40 on the isothermal
wall side and in the region of y+ ≤ 20 on the adiabatic wall side.
Figure 4.4 shows the profiles of the turbulent heat flux, − hρu02T 0i /(ρwuτTw)

and − hρu02T 0i /(hρi uτ∗ hT i). The sign of the turbulent heat flux of the compress-
ible turbulent flow near the isothermal wall (Cases 1IW and 2IW) is opposite

to that of flow near the adiabatic wall (Case 2AW). Unlike the Reynolds shear

stress, the turbulent heat flux does not have a universal profile in the present

result, because the turbulent heat flux is directly and strongly influenced by the

thermal boundary condition.
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FIGURE 4.3. Profiles of Reynolds shear stresses.

FIGURE 4.4. Profiles of turbulent heat fluxes.
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4.3 Near-wall Asymptotic Behaviors

4.3.1 Analytical Estimates for Near-wall Asymptotic Be-
haviors

The turbulent fluctuations φ0 and φ00 with respect to Reynolds and Favre

averages of φ are expanded in terms of y as follows;

φ0 = φ0(0) + y
∂φ0

∂y

¯̄̄̄
y=0

+
y2

2

∂2φ0

∂y2

¯̄̄̄
y=0

+O(y3), (4.9)

φ00 = φ00(0) + y
∂φ00

∂y

¯̄̄̄
y=0

+
y2

2

∂2φ00

∂y2

¯̄̄̄
y=0

+O(y3). (4.10)

The near-wall asymptotic behaviors with respect to Reynolds and Favre averages

are theoretically gained from (4.9) and (4.10) with boundary conditions. Since

the density at the wall is governed by the continuity equation, the mean density

approaches a constant non-zero value with the decrease of y+ for Cases 1IW,

2IW and 2AW (see figure 4.5). The continuity equation and the non-slip wall

boundary condition provide the following relation at the wall.

∂ui
∂xi

¯̄̄̄
w

=
1

ρw

∂ρ

∂t

¯̄̄̄
w

(4.11)

The density varies in time and space in the present compressible simulations,

this yields ∂uj/∂xj|w 6= 0. As a result, ∂u02/∂x2|w and ∂u002/∂x2|w do not become
zero for Cases 1 and 2. On the other hand, the continuity equation provides

∂u02/∂x2|w = 0 in incompressible turbulent flow. Regarding the wall boundary
conditions, the near-wall asymptotic behaviors of (u0α)rms (α = 1, 2, 3), hki (=
hu0iu0ii /2), εk (see (5.13)), ρ0rms, p0rms, T 0rms, − hu01u02i and− hu02T 0i are summarized
in table 4.1. Note that the near-wall asymptotic behaviors of (u02)rms, − hu01u02i
and − hu02T 0i for compressible turbulent flow are different from the corresponding
incompressible ones.

4.3.2 Near-wall Asymptotic Behaviors of Turbulence Statis-
tics

The difference in scaling is investigated using the wall-normal RMS veloc-

ities (u02)
+
rms and [hρi {u0022 }/(ρwu2τ )]1/2 (see figure 4.6). The wall-normal inten-
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FIGURE 4.5. Near-wall behavior of hρi /ρw.

TABLE 4.1. Power index n (φ ∝ yn) of near-wall asymptotic behavior.
Case (u01)rms (u02)rms (u03)rms hki εk ρ0rms T 0rms p0rms − ­u01u02® − ­u02T 0®

1IW, 2IW 1 1 1 2 0 0 1 0 2 2

2AW 1 1 1 2 0 0 0 0 2 1

AIW, BIW 1 2 1 2 0 - 1 0 3 3

BAW 1 2 1 2 0 - 0 0 3 2

sities of turbulence, (u02)
+
rms, for Cases 1IW, 2IW and 2AW vary linearly with

the decrease of y+, while that of Case A vary linearly with the decrease of

y+2 as shown in table 4.1. The asymptotic behavior of [hρi {u0022 }/(ρwu2τ )]1/2

is the same as that of (u02)
+
rms. This is because the boundary conditions of

Favre and Reynolds averages are not different, and the condition of density,

hρi /ρw ∝ O(y+0), is satisfied (see figure 4.5). Figure 4.6 shows that the range of
O(y+0) near the adiabatic wall is narrower than that near the isothermal wall. So

et al. (1998), using the Morkovin’s hypothesis, found that the asymptotic behav-

ior of [hρi {u0022 }/(ρwu2τ )]1/2 became equal to that of the incompressible turbulent
flow. However, they did not compare the asymptotic behaviors for compressible

and incompressible turbulent flows in logarithmic coordinates. The present re-

sult indicates that the asymptotic behavior of
£hρi {u0022 }/(ρwu2τ )¤1/2 is the same

as that of (u02)
+
rms for the turbulent channel flows at M = 1.5. The asymptotic
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FIGURE 4.6. Near-wall behavior (a) (u02)
+
rms and (b) [hρi {u0022 }/(ρwu2τ )]1/2.

behavior of the wall-normal RMS velocity fluctuation for the compressible tur-

bulent flow is not equal to that for the incompressible turbulent flow, even if the

mean density variation is taken into account for the scaling. Thus, Morkovin’s

hypothesis is not applicable to near-wall asymptotic behavior.

RMS density and temperature fluctuations scaled by the wall variables are

shown in figure 4.7. The RMS density fluctuation approaches a constant non-zero

value with the decrease of y+ near both adiabatic and isothermal walls in com-

pressible turbulent flow. On the other hand, the RMS temperature fluctuation

varies linearly with the decrease of y+ near the isothermal wall and approaches

a constant non-zero value with the decrease of y+ near the adiabatic wall in

compressible turbulent flow.

The Reynolds shear stress − hρu01u02i+ and turbulent heat flux, − hρu02T 0i+

=− hρu02T 0i /(ρwuτTτ ) are shown in figure 4.8. The near-wall asymptotic be-
haviours of compressible turbulent flow presented in table 4.1 are obviously not

observed for both − hρu01u02i+ and − hρu02T 0i+ in the present simulations, be-
cause the dilatational effect is small at the wall. We confirmed the same trend
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FIGURE 4.7. Near-wall behavior (a) ρ0rms/ρw and (b) T
0
rms/Tw.

for turbulent heat flux near the adiabatic wall. The relation between near-wall

asymptotic behaviour and the Mach number will be considered in the near future.

We also confirmed that near-wall asymptotic behaviours of the other statistics

corresponded to the theoretical behaviours in table 4.1.

4.4 Reynolds Analogies

Morkovin (1962) proposed the five SRA relations for the adiabatic wall. One

of them is as follows:

T 0/ hT i
(γ − 1) hMi2 u01/ hu1i

≈ 1 (4.12)

The Reynolds average is used in (4.12) for simplicity. We confirmed that the

difference between Favre and Reynolds averages was negligible. Gaviglio (1987),

Rubesin (1990) and Huang et al. (1995) presented modified Reynolds analogies

(GSRA, RSRA and HSRA) which could apply to the isothermal wall. They are

given for the adiabatic and isothermal walls as follows:

T 0/ hT i
(γ − 1) hMi2 u01/ hu1i

≈ 1

h (1− g ∂ hTti /∂ hT i) , (4.13)
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FIGURE 4.8. Near-wall behavior (a) − hρu01u02i+ and (b) − hρu02T 0i+.

T 0/ hT i
(γ − 1) hMi2 u01/ hu1i

≈ 1

h (g ∂ hTti /∂ hT i− 1) , (4.14)

where hMi = hu1i / ((γ − 1)cp hT i)1/2 is a local Mach number and Tt = T +

u2i /(2cp) is a total temperature. The factors (g, h) of GSRA, RSRA and HSRA

are (1, 1), (1, 1.34) and (1, Prt), respectively. If (g, h) are (0, 1), the form of

(4.13) becomes equal to that of (4.12). GSRA and HSRA are based on the

mixing length theory with respect to the streamwise velocity and temperature

fluctuations. The turbulent Prandtl number in HSRA is defined as

Prt =
{u002u001} ∂{T}/∂y
{u002T 00} ∂{u1}/∂y . (4.15)

To examine the applicability and usefulness of the SRA, GSRA, RSRA and

HSRA, we introduce a criterion:

G ≡ hT 02i1/2/ hT i
(γ − 1) hMi2hu012i1/2/ hu1i

µ
h

¯̄̄̄
g
∂ hTti
∂ hT i − 1

¯̄̄̄¶
. (4.16)

Note that the root mean squares hu012i1/2 and hT 02i1/2 are used instead of u01 and
T 0. The model yields the exact value for G = 1.
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The profiles of G for Cases 1IW, 2IW and 2AW are shown in figure 4.9,

where SRA near the isothermal wall is also considered for comparison. The

values of G of SRA are greatly different from unity for Cases 1IW and 2IW.

Although the SRA is satisfied near the adiabatic wall in Guarini et al. (2000),

the SRA is not successful for Case 2AW. The reason is explained as below. The

SRA is available under the assumption that the total temperature fluctuation

is negligible compared to the static temperature fluctuations. When the above

assumption is not satisfied, the following condition presented by Guarini et al.

(2000) must be satisfied.

hT 02i
hT i2 ¿

hT 0t 2i− 2 hT 0T 0t i
hT i2 (4.17)

However, both assumption and condition are not satisfied for Case 2AW (see

figure 4.10), so that the SRA is not successful near the adiabatic wall.

The region of G ' 1 of HSRA is larger than that of GSRA for Case 1IW,

because the turbulent Prandtl number is treated as a variable in HSRA and

unity in GSRA. The values of G of HSRA and GSRA for Cases 2IW and 2AW

are almost unity in the region of y/H < 0.6 and decrease gradually in the region

of y/H > 0.6 where the influence of the opposite wall is not negligible. The

RSRA does not agree well with the DNS data for all cases. It is found that the

existing modified Reynolds analogies do not agree well with the DNS data on

the compressible turbulent flow between adiabatic and isothermal walls.
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FIGURE 4.9. Strong Reynolds analogy and modified Reynolds anologies: (a)
Case 1IW, (b) Case 2IW and (c) Case 2AW.
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FIGURE 4.10. Comparison between RMS total and static temperature fluctua-
tions with Reynolds average for Case 2AW.

4.5 Summary

We can summarize as follows:

(1) When the velocity fluctuations are scaled by the wall variables, these

profiles are larger and smaller near isothermal and adiabatic walls, respectively,

compared with those of the incompressible turbulent channel flow. On the other

hand, these profiles agree well with the data on incompressible turbulent channel

flow, when such profiles are scaled by local mean variables. This means that

Morkovin’s hypothesis is applicable to velocity fluctuation profiles.

(2) The RMS temperature fluctuation profile scaled by the mean temperature

is almost the same as that of the RMS density fluctuation profile scaled by the

mean density, except that the RMS temperature fluctuation on the isothermal

wall is zero. The wall variable scaling does not result in such a similarity between

temperature and density fluctuations.

(3) The difference between Favre and Reynolds averages on the Reynolds

shear stresses is negligible. The semi-local scaling provides the universal profile

of the Reynolds shear stress. On the other hand, the turbulent heat flux does

not have universal scaling in this study.
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(4) The near-wall asymptotic behavior of the wall-normal RMS velocity fluc-

tuation of the compressible turbulent flow is not equal to that of the incompress-

ible turbulent flow, even if the mean density variation is taken into account for the

scaling. Thus, Morkovin’s hypothesis is not applicable to near-wall asymptotic

behavior.

(5) The RMS density fluctuation approaches a constant non-zero value with

the decrease of the wall unit, y+, near both adiabatic and isothermal walls in

compressible turbulent flow. The RMS temperature fluctuation profile scaled by

the wall temperature varies linearly with the decrease of y+ near the isothermal

wall and approaches a constant non-zero value with the decrease of y+ near the

adiabatic wall in compressible turbulent flow.

(6) The existing modified Reynolds analogies do not agree well with the data

on compressible turbulent flow between adiabatic and isothermal walls.





Chapter 5.

Energy Transfers

5.1 Outline

In this chapter, the mechanism of the energy transfer among the turbulent

kinetic, mean kinetic and internal energies is investigated for compressible turbu-

lent flows near isothermal and adiabatic walls. First, the conservation equations

of compressible turbulent flow are explained. Next, the turbulent kinetic, mean

kinetic and internal energies are investigated to understand the energy transfers

of compressible turbulent flow. In particular, the compressibility and dissipation

terms are investigated in detail.

5.2 Conservation Equations

The Favre-averaged mean-flow kinetic energy {K}, the Favre-averaged turbu-
lent kinetic energy {k}, the Favre-fluctuation mean-flow kinetic energy K 00 and

the Favre-fluctuation turbulent kinetic energy k00 are defined as {K} ≡ {ui}2/2,
{k} ≡ {u00i u00i }/2, K 00 ≡ {ui}u00i and k00 ≡ u00i u

00
i /2 − {k}, respectively. The con-

tinuity, momentum and total energy equations are as follows in fully developed

turbulent channel flow (see Huang et al. 1995);

∂ hρi {u2}
∂x2

= 0, (5.1)

∂ hρi {ui}{u2}
∂x2

=
∂ hτi2i
∂x2

− ∂ hρi {u00i u002}
∂x2

+ hρi fi, (5.2)

∂ hρi {u2} [{K}+ {k}+ cv{T}+ hpi / hρi]
∂x2

=
∂ [hτi2i huii+ hτ 0i2u0ii− hq2i]

∂x2

63
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−∂ [hρi {u002K 00}+ hρi {u002k00}+ hρi cp{u002T 00}]
∂x2

+ hρi f1{u1}, (5.3)

where {u002K 00} and {u002k00} are

{u002K 00} = {u002u00i }{ui}, (5.4)

{u002k00} = {u2uiui}/2− {u2}{ui}{ui}/2− {u002u00i }{ui}− {u00i u00i }{u2}/2. (5.5)

The averaged state equation is

hpi = (γ − 1)cp hρi {T}
γ

. (5.6)

The Reynolds averaged viscous tensor hτiji is defined as

hτiji = hμi
µ
∂ huii
∂xj

+
∂ huji
∂xi

¶
− 2
3
hμi hdi δij

+

¿
μ0
µ
∂u0i
∂xj

+
∂u0j
∂xi

¶À
− 2
3
hμ0d0i δij, (5.7)

where hdi = ∂ huji /∂xj and d0 = ∂u0j/∂xj . The fluctuation viscous tensor,

τ 0ij = τij − hτiji, is defined as

τ 0ij = hμi
µ
∂u0i
∂xj

+
∂u0j
∂xi

¶
−
¿
μ0
µ
∂u0i
∂xj

+
∂u0j
∂xi

¶À
− 2
3
hμi d0δij + 2

3
hμ0d0i δij

+μ0
µ
∂u0i
∂xj

+
∂u0j
∂xi

¶
− 2
3
μ0d0δij + μ0

µ
∂ huii
∂xj

+
∂ huji
∂xi

¶
− 2
3
μ0 hdi δij. (5.8)

The Reynolds averaged heat flux hq2i is given by

hq2i = − hκi ∂ hT i
∂x2

−
¿
κ0
∂T 0

∂x2

À
. (5.9)

The total energy is defined as the sum of the turbulent kinetic energy {k},
the mean kinetic energy {K} and the internal energy, {e} = cv{T}, and it should
be conserved in the compressible turbulent channel flow. We confirmed that the

conservation of the total energy was satisfied in the present simulations of Cases

1 and 2. On the other hand, there are energy transfers among the turbulent

kinetic, mean kinetic and internal energies. In the subsequent sections, we shall

clarify the mechanism of the energy transfer through these energy budgets.
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5.3 Energy Budgets

The turbulent kinetic energy equation is

Pk +Dk − εk + Ck = 0, (5.10)

where the production Pk, diffusion Dk, dissipation per unit volume εk and in-

trinsic compressibility term Ck are defined as follows:

Pk = − hρi {u001u002}
∂{u1}
∂x2

, (5.11)

Dk =
∂ [hτ 0i2u0ii− hρi {u002k00}− hp0u02i]

∂x2
, (5.12)

εk =

¿
τ 0ij

∂u0i
∂xj

À
, (5.13)

Ck = −Ck1 + Ck2 + Ck3, (5.14)

where Ck1 = hu002i ∂ hpi /∂x2, Ck2 = hu00i i ∂ hτi2i /∂x2 and Ck3 = hp0∂u0k/∂xki. The
mean kinetic energy equation is

DK − εTK − εVK + CK + FK = 0, (5.15)

where the diffusion DK , turbulent dissipation per unit volume εTK, viscous dis-

sipation per unit volume εVK, intrinsic compressibility term CK and force term

FK are as follows:

DK =
∂ [hτi2i huii− hρi {u002K 00}− hpi hu2i]

∂x2
, (5.16)

εTK = − hρi {u001u002}
∂{u1}
∂x2

, (5.17)

εVK = hτi2i ∂ huii
∂x2

, (5.18)

CK = Ck1 − Ck2 + CK1, (5.19)

FK = hρi f1{u1}. (5.20)

After turbulent kinetic and mean kinetic energy equations are subtracted from

the total energy equation (5.3), the internal energy equation is obtained as

De + εVK + εk − CK1 − Ck3 = 0, (5.21)
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FIGURE 5.1. Energy transfer of wall-bounded compressible turbulent flow:
1. Pk(=εTK), 2. Ck1, 3. Ck2, 4c. Compressible part of εVK, 4ic. Incompressible
part of εVK, 5. CK1, 6c. Compressible part of εk, 6ic. Incompressible part of εk,
7. Ck3. Terms 4c, 4ic, 6c and 6ic are irreversible. Dashed arrows indicate intrinsic
compressibility terms.

where the diffusion De is defined as

De = De1 +De2, (5.22)

where

De1 = −∂ hρi cv{u002T 00}
∂x2

, De2 = −∂ hq2i
∂x2

. (5.23)

From (5.10), (5.15) and (5.21), the energy transfers among turbulent kinetic,

mean kinetic and internal energies are represented by seven terms (see Huang et

al. 1995). 1. Pk(=εTK), 2. Ck1, 3. Ck2, 4. εVK, 5. CK1, 6. εk, 7. Ck3. Terms 2, 3, 5

and 7 represent the intrinsic compressibility terms. Terms 4 and 6 which repre-

sent the irreversible energy transfers can be distinguished into the compressible

parts (4c, 4ic) and the incompressible parts (6c, 6ic), respectively. Terms 4 and

6 were not divided into compressible and incompressible parts in the study of
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Huang et al. (1995). Energy transfers of wall-bounded compressible turbulent

flow are summarized in figure 5.1. The dashed arrows represent the intrinsic

compressibility terms.

Turbulent kinetic energy budgets of Cases 1, 2 and A (B) are shown in fig-

ure 5.2, in which the profiles are scaled by bulk variables, ρmU
3
m/H, for com-

parison of Cases 1 and 2. The scaling of Case A is the same as for Case 1.

Here, Huang et al. (1995) used the mixture of wall and bulk variables, τwUm/H,

and Guarini et al. (2000) used wall variables, ρwuτ/δv, where δv = μw/ (ρwuτ )

is viscous length scale, for scaling the turbulent kinetic energy budget, respec-

tively. The peak value of the production term Pk (term 1 of figure 5.1) near

the adiabatic wall is smaller and its location moves to the centre of the channel,

comparing with those of Pk near the isothermal wall (see figure 5.2(b)). The

intrinsic compressibility term in the turbulent kinetic energy equation, Ck, and

the turbulent kinetic energy dissipation rate per unit volume, εk, are discussed

in sections 5.4 and 5.5, respectively.

Next, we consider the budgets scaled by the mixture of local and semi-local

variables, hρiu3τ∗/δv∗, where δv∗ = hμi / (hρiuτ∗) is semi-local viscous length
scale, for Cases 2IW and 2AW (see figure 5.3). Lechner et al. (2001) reported

that the production and dissipation rate in the turbulent kinetic energy equation

normalized by τwUm/H were reduced compared to their incompressible counter-

parts. However, figure 5.3 shows that the production and dissipation terms of

Cases 2IW and 2AW agree well with the data of the Case A. It indicates that the

difference observed in the turbulent kinetic energy budget scaled by ρmUm/H or

τwUm/H is mainly due to the variable property effect.

The mean kinetic energy budgets of Case 1, 2 and A (B) are shown in fig-

ure 5.4, which shows that the mean kinetic energy budget of Case 1 is not es-

sentially different from that of Case A. We also confirmed that the difference

between budgets near adiabatic and isothermal walls for Case 2 was mainly due

to the variable property effect. The intrinsic compressibility term in the mean

kinetic energy equation, CK , and the viscous dissipation per unit volume, εVK,
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are discussed in sections 5.4 and 5.5, respectively.

The internal energy budgets of Cases 1 and 2 are shown in figure 5.5, and

the energy (passive scalar) budgets of Cases A and B are shown in figure 5.6.

For Cases A and B, the bulk velocity Um and the friction temperature Tτ at the

isothermal wall are used for scaling the enrgy budgets. The dissipation rates εk

and εVK are irreversible energy transfers from the turbulent kinetic and mean ki-

netic energies to the internal energy, respectively. On the other hand, the energy

transfer due to the dissipation rate does not exist in incompressible turbulent

flow with passive scalar transport, because the viscous friction work does not

appear in the energy equation of incompressible turbulent flow (cf. (A.12) and

(A.3)). For Cases A and B, the artificial heat sources are added in the energy

(passive scalar) equations instead of the viscous friction work, where the heat

source of Case A is twice that of Case B (see (A.13) and (A.14)). As a result,

the profiles of internal energy budgets of Cases 1 and 2 are different from those

of Cases A and B. The qualitative comparison of the internal energy budgets

between compressible and incompressible turbulent flows has no meaning, be-

cause their normalizations are different. Note that the peaks of turbulent and

molecular diffusions do not appear near the adiabatic wall of Case B.
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FIGURE 5.2. Turbulent kinetic energy budgets: (a) Case 1, (b) Case 2, (c) Case
A (B).
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FIGURE 5.3. Turbulent kinetic energy budgets in semi-local wall units for Case
2: (a) near the isothermal wall, (b) near the adiabatic wall.
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FIGURE 5.4. Mean kinetic energy budgets: (a) Case 1, (b) Case 2, (c) Case A
(B).
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FIGURE 5.5. Internal energy budgets: (a) Case 1 and (b) Case 2.
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FIGURE 5.6. Internal energy budgets: (a) Case A and (b) Case B.
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5.4 Compressibility Terms of Turbulent and Mean

Kinetic Energy Budgets

The intrinsic compressibility term of the turbulent kinetic energy equation,

Ck, is almost zero and has a slight value in the region very close to the wall

(see figure 5.2). On the other hand, the intrinsic compressibility term of the

mean kinetic energy equation, CK , has a small value in the region very close

to the wall (see figure 5.4). In the present simulations (M = 1.5), the result

that Ck is almost zero is supported by the previous knowledge that the intrinsic

compressibility effect like the pressure-dilatation correlation term is negligible

for the wall-bounded compressible turbulent flow (e.g., Coleman et al. 1995;

Huang et al. 1995; Guarini et al. 2000). Although some studies have been

carried out to clarify the reason why the intrinsic compressibility effect is small

near the wall (e.g. Sarkar 1995; Friedrich 1997), its detailed mechanism is still

an open question. This is due to the lack of reliable DNS data for quantitative

investigation. Therefore, we first clarify the dominant terms in Ck and CK . Then

the roles of these terms with respect to energy transfers are investigated.

Intrinsic compressibility terms of the turbulent kinetic energy equation are

shown in figure 5.7. The pressure-dilatation correlation term Ck3 (term 7 in

figure 5.1) and the additional compressibility term Ck1 (term 2 in figure 5.1)

are almost zero near adiabatic and isothermal walls in compressible turbulent

flow. The additional compressibility term Ck2 (term 3 in figure 5.1) is dominant

in Ck, and it has plus and minus values near isothermal and adiabatic walls,

respectively. It implies that the term Ck2 transfers the turbulent kinetic energy

to the mean flow near the isothermal wall and transfers the energy from the mean

flow to the turbulent flow near the adiabatic wall. This difference is explained

as follows. The sign of Ck2, in which the term hu001i ∂ hτ12i /∂x2 is dominant,
depends on that of hu001i, because ∂ hτ12i /∂x2 is always negative. The value of
hu001i is equal to − hρ0u01i / hρi (see (4.1)), which is positive and negative near
isothermal and adiabatic walls, respectively. As a result, the value of Ck2 is
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FIGURE 5.7. Intrinsic compressibility terms of turbulent kinetic energy equation:
(a) Case 1 and (b) Case 2.

negative and positive near isothermal and adiabatic walls, respectively. Note

that these energy transfers due to Ck2 are small as mentioned above.

The intrinsic compressibility terms of the turbulent kinetic energy equation

are shown in figure 5.8. The term relative to the pressure work (term 5 in fig-

ure 5.1), CK1, is dominant in CK , and it has minus and plus values near isother-

mal and adiabatic walls, respectively. It means that the term CK1 exchanges the

internal energy for mean kinetic energy near the isothermal wall and exchanges

the mean kinetic energy for internal energy near the adiabatic wall. This dif-

ference can be explained by the result that the value of the mean dilatation hdi
is positive and negative near adiabatic and isothermal walls, respectively (see
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FIGURE 5.8. Intrinsic compressibility terms of mean kinetic energy equation: (a)
Case 1 and (b) Case 2.

figure 5.9). Note that the negative and positive quantities represent the com-

pression and expansion of the fluid, respectively.

5.5 Dissipation Terms of Turbulent and Mean

Kinetic Energy Budgets

In this section, we consider the irreversible energy transfers due to the tur-

bulent kinetic energy dissipation (see (5.13)), εk, and the mean kinetic energy

dissipation (see (5.18)), εVK.

Using the vorticity fluctuation, ω0i = ²ijk∂u
0
k/∂xj, and (5.8), the dissipation
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FIGURE 5.9. Mean dilatation terms for Cases 1 and 2.

of turbulent kinetic energy per unit volume, εk, is rewritten as follows.

εk = hμi hω0iω0ii−
2

3
hμi hd0d0i+ hμ0ω0iω0ii−

2

3
hμ0d0d0i+ ∂ huii

∂xj

¿
μ0
∂u0i
∂xj

À
+
∂ huji
∂xi

¿
μ0
∂u0i
∂xj

À
− 2
3
hdi hμ0d0i+ 2 hμi

¿
∂u0i
∂xj

∂u0j
∂xi

À
+ 2

¿
μ0
∂u0i
∂xj

∂u0j
∂xi

À
(5.24)

The enstrophy dissipation term εk1 = hμi hω0iω0ii, the dilatational dissipation
term εk2 = −2/3 hμi hd0d0i, the thermodynamic dissipation term εk3 = ∂ huii /∂xj
hμ0∂u0i/∂xji, and the total dissipation per unit volume εk, are shown for Case 2
in figure 5.10. The value of εk1 is dominant in the dissipation εk, the value of εk2

is almost zero and the value of εk3 is not negligible in the region very close to

the isothermal wall. We confirmed that the other terms of (5.24) were negligible.

The sum of the second and the eighth terms on the right-hand side of (5.24) is

the dilatational dissipation for the homogenous compressible turbulent flow (see

Sarkar 1991).

Using the following equation,

ω0iω
0
i =

∂u0i
∂xj

∂u0i
∂xj

− ∂u0i
∂xj

∂u0j
∂xi

, (5.25)

equation (5.24) is rewritten as follows.

εk=hμi
¿
∂u0i
∂xj

∂u0i
∂xj

À
− 2
3
hμi hd0d0i+

¿
μ0
∂u0i
∂xj

∂u0i
∂xj

À
− 2
3
hμ0d0d0i+∂ huii

∂xj

¿
μ0
∂u0i
∂xj

À
+
∂ huji
∂xi

¿
μ0
∂u0i
∂xj

À
− 2
3
hdi hμ0d0i+hμi

¿
∂u0i
∂xj

∂u0j
∂xi

À
+

¿
μ0
∂u0i
∂xj

∂u0j
∂xi

À
(5.26)



78 CHAPTER 5. ENERGY TRANSFERS

FIGURE 5.10. Turbulent kinetic energy dissipation per unit volume for Case 2.

The dissipation per unit mass, εc = εk/ hρi, is divided into the incompressible
part, εci = (hμi / hρi) h(∂u0i/∂xj)2i, and the compressible part, εcc = εc−εci. The

incompressible part hρi εci and the compressible part hρi εcc correspond to terms
6ic and 6c, respectively. The dissipations per unit mass, ε∗ci, ε

∗
cc and ε∗c , which are

normalised by uτ∗, hρi and hμi, are shown for Cases 2IW and 2AW in figure 5.11.

The compressible part ε∗cc is not negligible near the isothermal wall, while it does

not contribute near the adiabatic wall. Figures 5.10 and 5.11 indicate that the

thermodynamic dissipation term is dominant in the compressible part of the

turbulent energy dissipation and is not negligible in the region very close to the

isothermal wall, i.e., it increases the internal energy. Figure 5.11 also shows that

the scaling with the local variables collapses the dissipation ε∗c onto the data of

the incompressible turbulent flow. We confirmed that the dissipation scaled by

the wall variables did not agree well with the data of the incompressible turbulent

flow.

Next, we investigate the viscous dissipation per unit volume in the mean

kinetic energy budget (see (5.18)), εVK, which is divided into the incompressible

part (term 4ic in figure 5.1), εVKi = hμi (∂ hu1i /∂x2)2, and the compressible part
(term 4c in figure 5.1), εVKc = εVK − εVKi. The viscous dissipations εVK, εVKc and

εVKi, for Case 2 are shown in figure 5.12. The compressible part εVKc is almost
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FIGURE 5.11. Turbulent kinetic energy dissipation per unit mass in semi-local
wall units: (a) Case 2IW and (b) Case 2AW.

zero near adiabatic and isothermal walls for compressible turbulent flow, then

we can ignore the energy transfer due to term 4c in figure 5.1.

5.6 Energy Transfers near Adiabatic and Isother-

mal walls

The energy transfers near isothermal and adiabatic walls are summarized for

compressible turbulent flow as shown in figure 5.13. Term 1 is the energy transfer

from the mean kinetic energy to the turbulent kinetic energy near adiabatic and

isothermal walls in compressible turbulent flow. The roles of terms 2, 3, 5 and 7

with respect to intrinsic compressibility are as follows (see section 5.4). Terms 2
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FIGURE 5.12. Mean kinetic energy dissipation per unit volume for Case 2.

and 7 do not contribute to energy transfers near isothermal and adiabatic walls

in compressible turbulent flow. Term 3, which has a slight contribution to the

energy transfer, transfers the turbulent kinetic energy to the mean flow near the

isothermal wall and transfers the energy from the mean flow to the turbulent

flow near the adiabatic wall. Term 5, which is a small contribution to the energy

transfer, exchanges the internal energy for the mean kinetic energy near the

isothermal wall and exchanges the mean kinetic energy for the internal energy

near the adiabatic wall. The roles of terms 4 and 6 with respect to dissipations,

εVK and εk, are as follows (see section 5.5). Most parts of the energy transfers

due to terms 4 and 6 are composed of incompressible parts (terms 4ic and 6ic).

The compressible part (term 6c) is not negligible close to the isothermal wall.

For the wall-bounded incompressible turbulent flows with passive scalar trans-

port, the energy transfers due to terms 4ic and 6ic, which correspond to the

incompressible parts of terms εVK and εk, do not exist. The only energy transfer

due to term 1 exists in the wall-bounded incompressible turbulent flow, and its

role is the same as that of the wall-bounded compressible turbulent flow.
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(a) near the isothermal wall (Case 1IW or 2IW)

(b) near the adiabatic wall (Case 2AW)

FIGURE 5.13. Energy transfer of wall-bounded compressible turbulent flow: lines
and numbers as figure 5.1.
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5.7 Summary

In this chapter, the energy transfers near adiabatic and isothermal walls for

the compressible turbulent flow are investigated. The results are summarized as

follows.

(1) The additional compressibility term (term 3 in figure 5.1), Ck2, is dom-

inant in the compressibility term Ck of the turbulent kinetic energy equation,

although it has a slight contribution to the energy transfer. It transfers the

turbulent kinetic energy to the mean flow near the isothermal wall and trans-

fers the energy of the mean flow to the turbulent flow near the adiabatic wall.

The direction of the energy transfer due to Ck2 is determined by the sign of the

correlation between density and streamwise velocity fluctuations. The pressure-

dilatation correlation term is almost zero near adiabatic and isothermal walls for

the compressible turbulent flow.

(2) The term relative to the pressure work (term 5 in figure 5.1), CK1, is

dominant in the compressibility term CK of the mean kinetic energy equation.

It exchanges internal energy for mean kinetic energy near the isothermal wall

and exchanges mean kinetic energy for internal energy near the adiabatic wall.

This difference can be explained by the result that the value of the mean di-

latation hdi is positive and negative near adiabatic and isothermal walls, where
the negative and positive values represent the compression and expansion of the

fluid, respectively.

(3) Although the incompressible part of the turbulent energy dissipation is

dominant, the compressible part is not negligible in the region very close to

the isothermal wall. The thermodynamic dissipation term is dominant in the

compressible part and increases the internal energy. On the other hand, the

dilatational dissipation term is almost zero and does not depend on the thermal

wall boundary condition. Note that the incompressible part dose not contribute

the increase of the internal energy for incompressible turbulent flow. The energy

transfer of the mean kinetic energy dissipation is mainly due to the incompressible
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part, and that of the compressible part is negligible near isothermal and adiabatic

walls in compressible turbulent flow.





Chapter 6.

Turbulence Structures

6.1 Outline

In this chapter, turbulence structures near isothermal and adiabatic walls are

investigated for the compressible and incompressible turbulent flows. First, the

velocity-streak structures on the (x1—x3)-plane normalized by the channel half-

width are shown near adiabatic and isothermal walls for the compressible tur-

bulent flow. Second, the semi-local viscous length scale is used. The streamwise

and spanwise two-point correlations of streamwise velocity fluctuations are ex-

amined. Third, the temperature-streak structures near adiabatic and isothermal

walls are investigated. Moreover, the correlation coefficient between streamwise

velocity and temperature fluctuations is discussed in order to clarify the relation-

ship between near-wall streak structures of velocity and temperature. Finally,

the near-wall turbulence structures in the wall-normal direction are investigated

for compressible and incompressible turbulent flows.

6.2 Near-wall Turbulence Structures

The near-wall streak structures have been investigated in the domain sizes

normalized by channel half-width, H, or the viscous length scale, δv, in the

previous studies. In this section, we introduce the semi-local length scale, δv∗, to

exclude Reynolds number effects due to the mean property variation. The values

of the Reynolds number, Re∗τ , and the computational domain sizes normalized
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TABLE 6.1. Computational domain sizes normalized by semi-local viscous length.

Case y/H y∗ Re∗τ L∗1 L∗3

2IW 0.05 9.0 193 2425 808

2AW 0.13 12 94 1180 393

A (B) 0.08 11 150 1885 628

by semi-local viscous length, L∗1 = L1/δv∗ and L
∗
3 = L3/δv∗, at the wall-normal

positions, y/H and y∗, where the near-wall streak structures are investigated,

are summarized in table 6.1.

First, we investigate the near-wall streak structures on the (x1—x3)-plane

normalized by the channel half-width. Figure 6.1 shows the contours of the

streamwise velocity fluctuation on (x1—x3)-planes scaled by channel half-width

for Cases 2AW and 2IW. The solid lines represent positive quantities which cor-

respond to high-speed regions and the dashed lines represent negative quantities

which correspond to low-speed streaks. The streak structures near the adiabatic

wall are larger than those near the isothermal wall, when the normalization of

the channel half-width is used.

Next, we investigate the near-wall streak structures in the computational

domain sizes, L∗1 and L
∗
3, in which those of Case 2AW are almost half those of

Case 2IW (see table 6.1). Figure 6.2 shows the contours of the streamwise velocity

fluctuation of Case 2AW on (x1—x3)-planes scaled by the semi-local viscous length

of Case 2IW. Figures 6.1(b) and 6.2 show that the near-wall streak structures

for Cases 2AW and 2IW are essentially comparable. Thus, the modification of

the near-wall streak shown in figure 6.1 for the compressible turbulent flow is

mainly due to the Reynolds number effect. This is confirmed by the two-point

correlation of streamwise velocity fluctuation as described below.
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FIGURE 6.1. Contours of streamwise velocity fluctuation on (x1—x3)-planes scaled
by channel half-width: (a) Case 2AW and (b) Case 2IW. Solid and dashed lines
represent positive and negative quantities, respectively.

FIGURE 6.2. Contours of streamwise velocity fluctuation on (x1—x3)-planes scaled
by semi-local viscous length for Case 2AW.
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FIGURE 6.3. Two-point correlation of streamwise velocity fluctuation: (a)
streamwise and (b) spanwise directions.

The streamwise and spanwise two-point correlations of streamwise velocity

fluctuations, Ru01u01(r1) and Ru01u01(r3), are shown in figure 6.3. The two-point

correlations are calculated at the same wall-normal positions shown in table 6.1,

where r∗1 and r
∗
3 are defined as r

∗
1 = r1/δv∗ and r∗3 = r3/δv∗, respectively. The

streamwise two-point correlations for compressible turbulent flow go to zero

within L∗1/2 and do not depend on the thermal wall boundary condition. It

is found that the near-wall streaks of compressible turbulent flow do not become

more coherent than those of incompressible turbulent flow. Hence, Morkovin’s

hypothesis is successful in the near-wall streak structures. Coleman et al. (1995)

explained the modification of the streak using the ratio of turbulent and mean

timescales used in the study of the homogeneous turbulent shear flow by Lee et

al. (1990). However, we confirmed that the near-wall streak structures did not

relate to the timescale ratio. To clarify the relationship between the streamwise

two-point correlation and the near-wall streak structure, more detailed exami-

nation in terms of the variations in the time and space may be required. We
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FIGURE 6.4. Contours of temperature fluctuation on (x1—x3)-planes scaled by
channel half-width: (a) Case 2AW and (b) Case 2IW.

confirmed that the streamwise two-point correlations depended on the time and

the wall-normal position for all cases in the present results. Smith & Metzler

(1983) and Kim et al. (1987) reported experimentally and numerically that the

near-wall streaks had a mean spacing of about 100 in wall units and increased

with the distance from the wall for wall-bounded incompressible turbulent flow.

Figure 6.3(b) shows that the streak spacing of compressible turbulent flow is

about 100 in semi-local wall units and is almost the same as for incompressible

turbulent flow. The dependence of the near-wall streaks on the Mach number

will be considered in the near future.

Figure 6.4 shows the contours of the temperature fluctuation on (x1—x3)-

planes scaled by channel half-width for Cases 2AW and 2IW. The solid and

dashed lines represent high-temperature regions and low-temperature streaks,

respectively. The comparison between figures 6.1 and 6.4 shows that the low-

speed streaks coincide with the low-temperature streaks near the isothermal wall

and exist in the high-temperature regions near the adiabatic wall for compressible
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turbulent flow. This result is also explained by the correlation coefficient between

streamwise velocity and temperature fluctuations as described later.

Figures 6.5 and 6.6 show the streak structures of velocity and temperature

for Cases BAW and BIW, respectively. The low-speed streaks coincide with the

low-temperature streaks near the isothermal wall for the incompressible turbu-

lent flow. On the other hand, a corresponding relationship between streamwise

velocity and temperature fluctuations is not observed near the adiabatic wall

for incompressible turbulent flow, because the absolute values of temperature

fluctuations near the adiabatic wall are very small. We confirmed that the pro-

duction term in the equation of the temperature variance was almost zero near

the adiabatic wall in incompressible flow.

To clarify the relationship between the near-wall streak structures of velocity

and temperature, we investigate the correlation coefficient between streamwise

velocity and temperature fluctuations, Ru01T 0, which is defined by

Ru01T 0 =
hu01T 0i

hu012i1/2hT 02i1/2
. (6.1)

Guarini et al. (2000) reported that the velocity—temperature correlations agreed

well with the experimental and computational data on incompressible boundary

layer flows because of weak compressibility. On the other hand, Nicoud (1999)

reported that the peak value of the absolute velocity—temperature correlation

near a heated wall was larger than that of the correlation near a cold wall and

larger than that of Kim & Moin for incompressible turbulent flow. The correla-

tions Ru01T 0 are shown for Cases 2 and B in figure 6.7. The present results on the

velocity—temperature correlation in the region very close to the isothermal wall

are almost unity, Ru01T 0 ' 1.0, for both compressible and incompressible turbulent
flows, and their profiles are almost the same. The peak value of the absolute cor-

relation near the adiabatic wall of Case 2 is approximately 0.9, which is smaller

than that near the isothermal wall. On the other hand, the correlation |Ru01T 0 |
near the adiabatic wall for incompressible turbulent flow (Case B) is approxi-

mately 0.5—0.6 and is smaller than that for compressible turbulent flow (Case 2).
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The difference between compressible and incompressible turbulent flows near the

adiabatic wall is not attributable to the variable property effect. In other words,

Morkovin’s hypothesis is not applicable to the correlation coefficient between

velocity and temperature fluctuations near the adiabatic wall.

Next, we investigate the near-wall turbulence structures in the wall-normal

direction. Figures 6.8 and 6.9 show the contours of streamwise velocity and tem-

perature fluctuations on (x2—x3)-planes for Cases 2 and B, respectively. Arrows

indicate velocity vectors on the plane. The knowledge of the streak spacing and

the correlation obtained in this section are also confirmed by figures 6.8 and 6.9.

Lifting and bursting of the low-speed streaks, which are known in incompressible

turbulent flow (see Robinson 1991), are also observed for compressible turbulent

flow. In addition, it is found in the compressible turbulent flow that the oscilla-

tory of the streak structures near the adiabatic wall is larger than that near the

isothermal wall. This difference should be mainly due to the variable property

effect.
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FIGURE 6.5. Contours on (x1—x3)-planes scaled by channel half-width for Case
BAW: (a) streamwise velocity fluctuation and (b) temperature fluctuation.

FIGURE 6.6. Contours on (x1—x3)-planes scaled by channel half-width for Case
BIW: (a) streamwise velocity fluctuation and (b) temperature fluctuation.
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FIGURE 6.7. Correlation coefficients between u01 and T
0 for Cases 2 and B.

FIGURE 6.8. Contours on (x2—x3)-planes scaled by channel half-width for Case
2: (a) streamwise velocity fluctuations and (b) temperature fluctuations. Arrows
indicate velocity vectors on the plane.
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FIGURE 6.9. Contours on (x2—x3)-planes scaled by channel half-width for Case
B: (a) streamwise velocity fluctuations and (b) temperature fluctuations.

6.3 Summary

In this chapter, the turbulence structures near adiabatic and isothermal walls

for the compressible turbulent flow are investigated. The results are summarized

as follows.

(1) The modification of the near-wall streak observed in the domain sizes nor-

marized by the channel half-width for the compressible turbulent flow is mainly

due to the variable property effect. This is also confirmed by the two-point

correlation of streamwise velocity fluctuation. Thus, Morkovin’s hypothesis is

successful in the near-wall streak structures.

(2) The low-speed streaks coincide with the low-temperature streaks near the

isothermal wall and exist in the high-temperature regions near the adiabatic wall



6.3. SUMMARY 95

for the compressible turbulent flow. On the other hand, the low-speed streaks

do not correspond to the high- or low-temperature region near the isothermal

wall for the incompressible turbulent flow, while they coincide with the low-

temperature streaks near the isothermal wall. This difference is confirmed by

the correlation coefficient between velocity and temperature fluctuations and

is not attributable to the variable property effect. In other words, Morkovin’s

hypothesis is not applicable to the correlation coefficient between velocity and

temperature fluctuations near the adiabatic wall.





Chapter 7.

Conclusions

7.1 Summary of Results

The main results obtained in this study are presented as follows:

In Chapter 2, the new direct numerical simulation (DNS) algorithm which can

simulate the compressible turbulent channel flow between adiabatic and isother-

mal walls accurately and efficiently is explained. The present DNS algorithm

based on the B-spline collocation method has the following advantages. (1)

The numerical boundary condition is uniquely and accurately determined corre-

sponding to the physical boundary, in particular, at the adiabatic wall. (2) The

construction of the algorithm is simple and the numerical cost is much cheaper

than that of the B-spline Galerkin method. (3) The resolution at a high wave

number is better than those of the central and Padé FDMs with the correspond-

ing order. (4) The skew-symmetric form which is suitable for the wall-bounded

compressible flow is used for the convection term to maintain numerical stability.

The present skew-symmetric form works well even for simulations with poor grid

resolutions. The reliability of the present DNS algorithm is confirmed by compar-

ing our result with that of Coleman et al. (1995) for the compressible turbulent

channel flow between isothermal walls. The applicability and usefulness of the

present DNS algorithm is also confirmed by the stable implementation of DNS of

the compressible turbulent channel flow between adiabatic and isothermal walls.

In Chapter 3, the mean velocity and temperature profiles are investigated
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theoretically and numerically. The Van Driest transformed mean velocities near

adiabatic and isothermal walls agree well with the data on incompressible tur-

bulent flow. This can be explained by the theoretical analysis result, i.e., the

Van Driest transformed velocity is independent of non-dimensional heat flux Bq

and the friction Mach number Mτ , while the untransformed velocity increases

with an increase of −Bq and decreases with an increase of Mτ . The mean tem-

perature profiles scaled by the wall and friction temperatures can be explained

using the theoretical analysis result, i.e., the mean temperature increases with

an increase of −Bq and decreases with an increase of Mτ . And the difference of

the mean temperature between compressible turbulent flows near isothermal and

adiabatic walls is clarified. The logarithmic region of the mean temperature near

the isothermal wall does not appear for compressible turbulent flow because of

the effect of the viscous friction work, while the logarithmic region appears near

the isothermal wall in incompressible turbulent flow.

In Chapter 4, turbulence statistics are discussed and the following conclu-

sions are obtained. The velocity fluctuations normalized by the wall variables

are larger and smaller near isothermal and adiabatic walls, respectively, compared

with those of the incompressible turbulent channel flow. On the other hand, these

profiles agree well with the data on incompressible turbulent channel flow, when

such profiles are scaled by local mean variables. This means that Morkovin’s

hypothesis is applicable to velocity fluctuation profiles. The RMS temperature

fluctuation profile scaled by the mean temperature is almost the same as that of

the RMS density fluctuation profile scaled by the mean density, except that the

RMS temperature fluctuation on the isothermal wall is zero. The wall variable

scaling does not result in such a similarity between temperature and density fluc-

tuations. The difference between Favre and Reynolds averages on the Reynolds

shear stresses is negligible. The semi-local scaling provides universal profile of

the Reynolds shear stress. On the other hand, the turbulent heat flux does not

have a universal scaling in this study. The near-wall asymptotic behavior of

the wall-normal RMS velocity fluctuation for the compressible turbulent flow is
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not equal to that of the incompressible turbulent flow, even if the mean density

variation is taken into account for the scaling. Thus, Morkovin’s hypothesis is

not applicable to near-wall asymptotic behavior. The existing modified Reynolds

analogies do not agree well with the data on compressible turbulent flow between

adiabatic and isothermal walls because of the influence of the opposite wall.

In Chapter 5, the mechanism of the energy transfer among the turbulent ki-

netic, mean kinetic and internal energies is investigated. Although the compress-

ibility term Ck of the turbulent kinetic energy equation has a slight contribution

to the energy transfer, the dominant term of Ck transfers the turbulent kinetic

energy to the mean flow near the isothermal wall and transfers the energy of the

mean flow to the turbulent flow near the adiabatic wall. This difference is due

to the result that the correlation between the streamwise velocity and density

fluctuations is positive and negative near isothermal and adiabatic walls. The

pressure-dilatation correlation term is almost zero near adiabatic and isothermal

walls in compressible turbulent flow. The term relative to the pressure work is

dominant in the compressibility term CK of the mean kinetic energy equation.

It exchanges internal energy for mean kinetic energy near the isothermal wall

and also exchanges mean kinetic energy for internal energy near the adiabatic

wall. This difference can be explained by the result that the value of the mean

dilatation is positive and negative near adiabatic and isothermal walls, where

the negative and positive values represent the compression and expansion of the

fluid, respectively. The compressible part of the turbulent energy dissipation is

not negligible in the region very close to the isothermal wall, even if the incom-

pressible part is dominant. It is found that the thermodynamic dissipation term

is dominant in the compressible part and increases the internal energy. On the

other hand, the dilatational dissipation near adiabatic and isothermal walls is

almost zero. The energy transfer due to the mean kinetic energy dissipation is

mainly composed of the incompressible part, and that of the compressible part

is negligible in compressible turbulent flows near adiabatic and isothermal walls.

In Chapter 6, the near-wall streak structures of compressible and incom-
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pressible turbulent flows are investigated. It is found that the near-wall streak

structures of velocity are comparable and independent of the thermal wall bound-

ary condition, when the variable property effect is taken into account. This is

also confirmed by the two-point correlation of streamwise velocity fluctuation.

Morkovin’s hypothesis is thus successful in the near-wall streak structures. The

low-speed streaks coincide with the low-temperature streaks near the isother-

mal wall and exist in the high-temperature regions near the adiabatic wall for

compressible turbulent flow. On the other hand, the corresponding relationship

between streamwise velocity and temperature fluctuations is not observed near

the adiabatic wall for incompressible turbulent flow. This difference is confirmed

by the correlation coefficient between velocity and temperature fluctuations, i.e.,

Morkovin’s hypothesis is not applicable to the correlation coefficient between

velocity and temperature fluctuations near the adiabatic wall.

7.2 Future Work

To make supersonic flight commercially attractive, the research to improve

fuel efficiency, reduce pollution and minimize noise levels is required. More-

over, hypersonic flight will require the prediction of hypersonic combustion with

sufficient accuracy. The following future works in terms of the wall-bounded

compressible turbulent flow without strong discontinuities will be a key to meet

these engineering challenges.

1. The Mach number chosen for the present supersonic simulation, M = 1.5,

is in the middle of the region where Morkovin’s hypothesis is applicable.

The wall-bounded compressible turbulent flow at the Mach number range

beyond M = 5 where Morkovin’s hypothesis is not valid must be investi-

gated.

2. The low Reynolds number, Re = 3000, is chosen in the present simulation

because of the limitation of the computational resources. The simulation

of the higher Reynolds number will be performed for understanding the
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more practical compressible turbulent flow.

3. A reliable model, important from the viewpoint of practical demand, will be

explored for wall-bounded compressible turbulent flow. Near-wall asymp-

totic behavior, variable property effect and so on will be taken into account

in the turbulence model.





Appendix A.

Governing Equations

A.1 Compressible Flow

The continuity, momentum and energy equations are

∂ρ

∂t
= −∂(ρuj)

∂xj
, (A.1)

∂ui
∂t

= −uj ∂ui
∂xj

− 1
ρ

∂p

∂xi
+
1

ρ

∂τij
∂xj

+ fi, (A.2)

∂T

∂t
= −uj ∂T

∂xj
+
1

ρcv

·
−p∂uj

∂xj
+ τij

∂ui
∂xj

− ∂qj
∂xj

¸
. (A.3)

The skew-symmetric forms for convection terms are used in (A.2) and (A.3). The

viscous stress tensor τij and the heat flux qj are defined as

τij = μ

µ
∂ui
∂xj

+
∂uj
∂xi

¶
− 2
3
μ
∂uk
∂xk

δij, (A.4)

qj = −κ ∂T

∂xj
. (A.5)

The driving force fi is given by

fi = − τwav
Hρm

δi1, (A.6)

where

τwav =
hτ12ix1−x3

¯̄
x2=H

− hτ12ix1−x3
¯̄
x2=−H

2
. (A.7)

Viscosity μ is given by Sutherland’s law:

μ

μiw
=

1 + S1/Tiw
T/Tiw + S1/Tiw

µ
T

Tiw

¶ 3
2

, (A.8)
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where S1 is a constant. The state equation is

p =
cp (γ − 1) ρT

γ
. (A.9)

A.2 Incompressible Flow

The continuity, Navior—Stokes and energy equations are

∂uj
∂xj

= 0, (A.10)

∂ui
∂t
+ uj

∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (A.11)

∂T

∂t
+ uj

∂T

∂xj
= − κ

ρcp

∂2T

∂xj∂xj
+Q. (A.12)

The heat source Q is given by

Q = − qwav
ρcpH

, (A.13)

where

qwav =
hq2i|x2=H − hq2i|x2=−H

2
. (A.14)

Note that in the numerical simulation, the skew-symmetric forms for convection

terms are used in (A.11) and (A.12) and the energy equation of scalar θ(= Tiw−T )
is solved instead of (A.12).



Appendix B.

A Brief Description of B-spline

In the present Appendix we briefly introduce the B-spline function, the B-

spline interpolation and the resolution of the B-spline collocation method. For

further details of the B-spline method, see, for example, De Boor (1978) and

Kravchenko & Moin (1998).

B.1 B-spline Properties

The B-spline is the piecewise polynomial function and is also a basic function

of B-spline interpolation. The B-spline method has a high resolving power and

makes it easy to treat the wall boundary condition, derivative and integration,

and to change the order of B-spline. In this study, Bkj (x2) (j = 1, · · · ,N2) is
defined as follows. The B-spline of order zero is

B0j (x2) =

⎧⎨⎩ 1 qj−1 ≤ x2 < qj
0 x2 < qj−1, qj ≤ x2.

(B.1)

The B-spline needs the knots points qj (j = −k, · · · , N2) in addition to the
collocation points xj2 (j = 1, · · · , N2). The knots points should be satisfied

by the Schoenberg—Whitney condition, and the virtual points are required for

the wall boundary. In this study, all knots points [ except the virtual one,

qj (j = 1, · · · , N2 − k − 1) ] are defined for both uniform and non-uniform grids
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FIGURE B.1. Knot and virtual points.

as followings.

qj =

⎧⎨⎩ (xj+k/22 + xj+k/2+12 )/2 (k : even)

x
j+(k+1)/2
2 (k : odd).

(B.2)

The configuration of the knots and virtual points is shown in figure B.1. There

is an alternative method giving the relation between the knots and collocation

points; the latter are given at the maximum of the B-spline (see Botella 2000).

We attempted and confirmed for both configurations that their differences were

negligible in the preset simulations. It is difficult to change the number and

width of collocation points arbitrarily using the latter method. Therefore the

relation of (B.2) is used in the present simulations.

The B-spline has the following important properties.

1. Bkj (x2) = 0 (x2 < qj−k−1, x2 > qj)

2. Bkj (x2) > 0 (qj−k−1 < x2 < qj k 6= 0)

3.
Ps−r+k

j=1 Bks+j−1(x2) = 1 (qr < x2 < qs, k ≤ r < s)

The first and second properties represent the compact support of the B-spline.

The third property guarantees the interpolation at the boundary. The B-spline
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FIGURE B.2. B-splines of order 8 on non-uniform grids.

of order k , Bkj (x2), is defined by the following recursive relation,

Bkj (x2) =
(x2 − qj−k−1)Bk−1j−1 (x2)

qj−1 − qj−k−1 +
(qj − x2)Bk−1j (x2)

qj − qj−k . (B.3)

For instance, the profiles of B8j (x2) (j = 1, · · · , 14) on non-uniform grids are plot-
ted in figure B.2. The grid points xi2 (i = 1, · · · , 14) are given by the hyperbolic-
tangent function (see figure B.2). The first derivative of Bkj (x2),

dBkj (x2)

dx2
= k

"
Bk−1j−1 (x2)

qj−1 − qj−k−1 −
Bk−1j (x2)

qj − qj−k

#
, (B.4)

is used for setting the adiabatic wall boundary condition.

B.2 Interpolation Based on B-spline

Define the interpolation function φ̂(x2) of the B-spline as,

φ̂(x2) =
N2X
j=1

φ0jB
k
j (x2), (B.5)
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where φ0j is the expansion coefficient of the spline interpolation. The `-th deriva-

tive of φ̂(x2) is

d`φ̂(x2)

dx`2
=

N2X
j=1+`

φ`jB
k−`
j−` (x2), (B.6)

where

φ`j = (k − `+ 1)
φ`−1j − φ`−1j−1
qj−` − qj−k−1 . (B.7)

On the other hand, the integration of φ̂(x2) is defined by the following equation.Z x2

−H
φ̂(x2)dx2 =

N2X
j=1

bjB
k
j (x2), (B.8)

where

bj = bj−1 + φ0j
qj − qj−k−1
k + 1

, (b0 = 0). (B.9)

B.3 Resolution of B-spline Collocation Method

The resolution of the B-spline collocation method is shown using the first

derivative of the periodic function in the x1 direction. The Fourier expansion of

the function φ(x1) is represented by

φ (x1) =

N1/2−1X
k1=−N1/2

φ̂k1e
iαk1x1 . (B.10)

The first derivative in the x1 direction is given by

dφ (x1)

dx1
=

N1/2−1X
k1=−N1/2

iαk1φ̂k1e
iαk1x1 . (B.11)

When the discrete form of the first derivative is in general written by δφ/δx1, its

Fourier expansion is represented as:

δφ (x1)

δx1
=

N1/2−1X
k1=−N1/2

iα0k1φ̂k1e
iαk1x1 , (B.12)
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FIGURE B.3. Modified wave number of the first derivative with B-spline collo-
cation method, central FDM and Padé FDM.

where α0k1 is the modified wave number of the fisrt derivative. The modified wave

numbers on uniform grids for the B-spline collocation method, central FDM and

Padé FDM (see Lele 1992) are plotted in figure B.3. The periodic B-spline

function is used to calculate that number for the B-spline collocation method.

Figure B.3 shows that the resolution of the B-spline collocation method at the

high wave number is better than those of the central and Padé FDMs with the

corresponding order. In this study, the eighth order B-spline collocation method

is used, and its resolution suffices for about 2/3 of the wave number.
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