fHi R LR KRZEE @ X

HE4205 GREE TICXK D)

Ykl 563325 HEES

Studies on Applying m-Calculus to Formalizing
Multi-Agent Systems

- by
Kazunori Iwata

Dissertation submitted in partial fulfillment
for the degree of Doctor of Engineering

Under the supervision of
Professor Naohiro Ishii

Nagoya Institute of Technology
Nagoya, Japan

January 2003

AbStract

This thesis studies formalizing agents’ behaviors and communications by use of -
calculus. We consider a model and a protocol for multi-threaded processes with choice
to avoid deadlocks in using m-calculus. Further, we design a new language to implement
7-calculus on a computer more easily than mathematical notations of it, and implement
the system by using the model and proﬁocol. Next, we develop a description for agents’
plans and methods having dynamically changing structures. Moreover, we develop a
protocol for agents to cooperate each other by sharing their actions. Finally, we develop
the description to easily find the sharable actions, and the description of agents’ actions

including communications.
This thesis is divided into 5 chapters.

In Chapter 1, we state multi-agent systems, introduce modeling and formalizing
agents. |
In Chapter 2, we develop a model and a protocol for multi-threaded processes with
choice written in m-calculus. In the model and the protocol, we assign each process
in m-calculus to a thread, and define the three elements: Processes, Communication
Managers(CMs) and Choice Managers(CHMSs). A process is a basic unit to control
concurrently executed threads in our concurrent and distributed system. CMs manage
communication requests along channels from processes, and CHMs manage choice pro- |
| cesses in processes. Moreover, we show why the protocol frees the processes from the
~deadlock. Finally, we design a primitive language instead of using the mathematical

notations of w-calculus, and implement the system.

1

Chapter 3 considers an agent model to use descriptions for agents’ plans and meth-
ods based on m-calculus. First, we develop a description for agents’ plans. The plans
described in 7-calculus can be changed dynamically while it is executing, because 7-
calculus provides dynamically changing structures. Secondly, we develop a description
for agents’ methods that refer their parameters through channels in 7-calculus. Thus,
agents can dYnamibally change the references from the methods to the ‘_parameters.
Next, we develop an agent model to use the descriptions. The agents can, therefore,
change their plans and methods to adapt to the environment around them by them-
selves by using these property. Finally, we show two experiments: a tracing problem
and a fire-world problem.

In Chaptér 4, we develop a protocol for agents to cooperate each other by sharing
their actions, and define the similar intention focused on agents’actions. In the protocol,
agents build a group with agents having the same intentions or the similar intentions
by sharing their actions. However, it is hard to find the common sharable actions
among actions, since there is much combination in these actions. Thus, we develop the
‘de‘scription to easily find such sharable actions, in order to solve the problem above, and
explain how the processes make the target sets Moreover, we develop the description of
agents’ actions including communications, and show the calculations of the desciption
by using the operational semantics of m-calculus.

‘Finally, Chapter 5 summarizes the results derived in this thesis.

Contents

1 Introduction
1.1 Modeling and Formalizing Agents
1.2 Outline of Thesis . . .« v v v v o i S

2 A Protocol for Multi-Threaded Processes with Choices
2.1 Introduction e
2.2 T-Calculuso R e
9.3 A Model and a Protocol for Multi-Threaded Processes
2.3.1 Situations of Processes’ Communication
2.3.2 7T—Model T e e
2.3.3 The Outline of the Protocol
2.3.4 The Behavior ofa Process
2.35 TheBehaviorof aCM
2.3.6 The Behaviorof a CHM
2.4 Freeing Processes from Deadlocks v oo
2.5 Implem’enting»the Interpreter for 7T-Calculus
2.5.1 The Syntax of our Language
2.5.2 The ImpIementation of the Interpreter

26 Conclusions e

3 An Agent Model for a Dynamically Changing Environment
3.1 Introduction e

w

© W 00 & vt !

10
11
11
12
13
19
19
20
20

35

i

CONTENTS

3.2 Dynamically Changing Plans in 7-calculus
3.2.1 Executing and ChangingaPlan
3.3 The Propertiesof aPlan
3.4 Describing Agents’ Methods in 7m-calculus
3.5 The Properties of Methods
3.5.1 Executing Methods

3.5.2 Changing Parameter Values and References CL e

36 Agent Model e et :

3.7 The Experiments by Using the Dynamically Changing Plans

3.7.1 The Environment of the Experiments :

3.7.2 The Ways of the Experiments e :

3.7.3 The Results of the Experiments

3.8 The Experiments by Using the Dynamically Changing Methods

-3.8.1 The Environment of the Experiments
3.8.2 The Change of the Environment R
3.8.3 The Ways of the Experiments L
3.8.4 The Results of the Experiments e D e

3.9 Conclusions o . e '

Descriptions for the Collaboration of Agents by Sharing Actions

4.1 Introduction S
42 Sharable Actions R
4.3 Similar Intentions P P

44 Agents’ Groupso

4.42 The Collaborationin a Group
45 Layered Structures
4.6 Dividing Action Sets
4.6.1 The Processes Related to Actions S

71
4.4.1 Buildiﬁg Groups ,

CONTENTS | | | iii

46.2 The Examples of the Calculation 7

4.7 Sharing Actions 79
4.7.1 Describing Actions in 7-calculus 80

4.7.2 The Calculations of the Descriptions 83

4.8 Conclusions e 85
Appendix 1 U e e 90
Appendix 2 R T 92
Appendix 3 O 94

5 Conclusions 97
AcknOWlédgements | _ : 101

Bibliography : ‘ , 103

List of Publications N 107

List of Figurés

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4

T-Model 22
The Conditions of a Process 23
The Conditions of a CHM 27
The Behavior of a CHM 29
The Chbice Processes in Example 2.5.1 31
The Results of Executing Pfocesses in Example 2.5.1 32
The Results of Executing Processes in Example 2.5.1 33
Executing Plan(method;, methody, methods) 54
Substituting methody for methods in Plan(method;, methods, methods) 55
Adding method, before methody 56
Deleting method, from Plan(methody, methody, methods) 57
Agent Model 58
The Results of the Experiments 60
The Environment of the Fire-World 62
The Average Time to Escape from the Fire-World 63
The Rate of Succeeding in Escaping from the Fire-World 64
Algorithm of Reducing Common Actions 7
Layered Structures of Actions 8
Connecting Actions L. o 87
Common Actions e 88

vi

4.5 The Example of Sharing Actions

LIST OF FIGURES

List of Tables

2.1
- 2.2
2.3
24

25

3.1
3.2
3.3

The Transition Rules of a Process 24
The Transition Rules of a CM — 1 J2.0 ... P 25
The Transition Rulesof a CM —2/2. 26
The Transition Rules of a CHMo 28
Cnmparing Tr-Calculus with Our Language 30
The Environment of the Tracing Problem 59
The Results of the Tracing Problem 6l

The Total Results of Escaping from the Fire-World 65

vil

Chapter 1

Introduétion

Agent Systems and Multi-Agent Systems are the subfields of Artificial Intelligence that
aim to provide both principles for construction of complex systems involving multiple
agents and mechanisms for coordination of independent agents’ behaviors.

The term “agent” is difficult to define. Agents are often described as entities with
attributes considered useful in a particular domain. This is the case with intelligent
agents, Where‘age‘nts are seen as entities that emulate mental processes or simulate
rational behavior; personal assistant agents, where agents are entities that help users
perform a task; mobil_e agents, where entities that are able to roam networking envi-
ronments to fulfill their goals; information agents, where agents filter and coherently
organize unrelated and scattered data; and autonomous agents, where agents are able
to accomplish unsupervised actions. A multi-agent system is a loosely coupled network
of problem-solver entities that work together to find answers to problems that are be-
yond the individual capabilities or knowledge of each entity and-a,n environment. More
recently, the term “multi-agent system” has been given a more general meaning, and
it is’now used for all types of systems composed of multiple autonomous components.

When a group of agents in a multi-agent system share common long-term goal, they
can be said to from a team. Team members(or teammates) coordinate their behaviors
by adopting compatible cognitive processes and by directly affecting each other’s inputs

including via communicative actions. Other agents in the environment that have goals

1

2 - CHAPTER 1. INTRODUCTION

opposed to the team’s long-term goal are the team’s adversaries. Therefore, modeling
and formalizing agents in Agent Systems and Multi-Agent Systems are important issues
to help to analyze agents’ behaviors and their interactions, to design and to implement
intelligent agents. However, these are also difficult issues, since they must consider
complex, real-time, noisy, collaborative and adversarial multi-agent environments. .

In this thesis, we formalize agents’ behaviors and communications by use of -
calculus [Mil91, KMO01, FG99, Mun98], since it is a process calculus describing dy-
namically changing networks of concurrent processes. In addition, m-calculus provides
a sound foundation to concurrent computations and a communication among parallel
processes. These properties are useful to describe agents in complex, real-tifne, noisy,

collaborative and adversarial multi-agent environments.

1.1 Mbdeling and Formalizing Agents

Agents need plans to satisfy their goals. A plan for an agent consisfs of a serial of pro-
cesses that the agent will execute. In other words, an agent executes processes derived
from the plan (called executing plan). Planning means that an agent constructs a plan
for agents. The planning is an important problem for autonomous agent systems. The
existing plans in Artificial Intelligence are made according to the current environment
and future one forecasted by the agent. Thus, these plans in a dynamically changing
environment are not always suc@ssfully executed due to unforecastable changes in the
environment [JZ97, SN98|. If the environment is changed by some factors that are not
forecasted by the agent, the plan becomes unexecutable and the agent should reform
the plan according to the new environment. It is an important property that the agent
can reform plans by himself. This property is called reflection. Therefore, we design
and implement a lower-level primitive language based on 7-calculus to provide the
property reflection for agents.

m-calculus is a process calculus describing dynamically changing networks of con-

current processes and has a property choosing one process from them. The property

1.2. OUTLINE OF THESIS 3

provides a flexibility to agents by choosing the most appropriate process from some
concurrent processes[Mun98]. However, calculating processes in w-calculus is compli-
cated and causes a deadlock, because the process that is chosen between them needs
to get a lock and block the other processes|[BD95]. Thus, we divide the conditions of
process communications into a condition with choice processes or without them and
design m-model to adjust these divided conditions. In addition to this, we design the
language to implement 7-calculus on a computer more easily than mathematical no-
tations of it. We implement the m-calculus processes in the model as multi-threaded
processes. Thus, agents implemented by use of the model can easily control multi-
threaded processes without deadlocks and use the language describing plan based on
w-calculus with the property reflection. 4 |
We ﬁse t’he. m-model system to control agents’ communications in a multi-agent
system. Agents build' groups and collaborate each other to improve the performance of
the system. Thus, we define agents’ collaboration by sharing common actions among
agents that have similar intentions [HCY99, FG99, Nak99, CLS97]. However, it is
hard to find the common actions among their actions, since there is much combination
in these actions and agents find the common actions through a network. We, then,
describe actions based on m-calculus to find common actions among agents. In the
description, an agent sends action sets to other agents through a network and easily
performs actions and communication only by evaluating them. Moreover, an agent
parallel calculates action sets to find common actions, because actions are described as

parallel processes through a network.

1.2 Outline of Thesis

This section describes the outline of this thesis. This thesis is divided into Introduction,
Chapter 2-4, Conclusions and Bibliography.
In Chapter 2, we develop a model and a protocol for multi-threaded processes With

choice written in w-calculus. In the model and the protocol, we assign each process

4 CHAPTER 1. INTRODUCTION

in m-calculus to a thread, and define the three elements: Processes, Communication
Managers(CMs) and Choice Managers(CHMs). A process is a basic unit to control
concurrently executed threads in our concurrent and distributed system. CMs manage
communication requests along channels from processes, and CHMs manage choice pro-
cesses in processes.. Moreover, we show why the protocol frees the processes from the
deadlock. ‘Finally, we design a primitive language instead of using the mathematical
notations o‘f m-calculus, and implement the system.

Chapter 3 considers an agent model to use descriptions for agénts’ plans and meth-
ods based on w-calculus. First, we develop a description for agents’ plans. The plans
described in 7-calculus can be changed dynamically while it is executing, because -
calculus provides dynamically changing structures. Secondly, we develop a description
for agents’ methods that refer their parameters through channels in 7-calculus. Thus,
agents can dynamically change the references from the methods to the parameters.
Next, we develop an agent model to use the descriptions. The agents can, therefore,
changeb their plans and methods to adapt to the- environment around them by them-
selves by using these property. Finally, we show two experiments: a tracing problem
and a fire-world problem. ’

In Chapter 4, we develop a protocol for agents to cooperate each other by shar-
ing their actions, and define the similar intention focused on agents’ actions. In the
protocol, agents build a group with agents having the same intentions or the similar
intentions by sharing their actions. However, it is hard to find the common sharable
actions among actions, since there is much combination in these actions. Thus, we de-
velop the description to easily find such sharable actions, in order to solve the problem
above, and explain how the processes make the target sets Moreover, we develop the
descriptions of agents’ actions including communications, and show the calculations of
_ the descriptions.

Finally, Chapter 5 summarizes the results derived in this thesis.

Chapter »2'

A Protocol for Multi-Threaded
Processes with Choices

We use m-calculus to implement agents’ multi-threaded processes, but calculating pro-
cesses in w-calculus is complicated and causes deadlocks. Therefore, this chapter consid-
ers a model and a protocol for multi-threaded processes with choices to avoid deadlocks.
The model and protocol distinguish between choice processes and normal processes, and
divide and manage the choice processes. They make processes free from deadlocks and
we use the processes to describe agents’ multi—threads. In addition to this, we design
the language to implement 7-calculus on a computer more easily than mathematical

notations of it, and implement the system by using the model and protocol.

2.1 Introduction

We developed a model and a protocol for multi-threaded processes with choices writ-
ten in m-calculus. In the model and protocol, we assign each process in w-calculus to
a thread. m-calculus is a process calculus which can describe a channel-based commu-
nication among distributed agents. Agents‘communicate each other in the following

rules:

1. A message is successfully delivered when two processes attempt an output and

an input at the same time.

6 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

2. Agents are allowed to attempt outputs and inputs at multiple channels 51mu1ta—

neously, with only one actually succeeding.

This process of communication has been 1dent1ﬁed as a promising concurrency primitive[Mun98
BD95, Bag89, BA89, DD92|

In m-calculus agents have a property to choose one process frcm concurrent pro-
cesses. An agent gets a mutex-lock and executes the process to choose one ‘process The
other processes are blocked by the lock and will be stopped, if the chosen process will be
successfully executed. The process is easily executed, if the agent executes concurrent
processes without communicating. However, when these processes are executed by the
communication with agents, the conditions of mutex-lock is too cornplex for agents to
avoid deadlocks. Hence, we adjust the conditions of the communication and define a
model and a protocol to avoid deadlocks[Mun98, GA83, C.A85, EK96b, EK96a, EK97].
In addition, we design the language to implement W—calculns on a computer more easily

than mathematical notations of it, and implement the system called PiEngine.

2.2 m-Calculus

Tr-calculus is a process calculus that is able to describe dynamically changing networks
of concurrent processes. T-calculus contains just two kinds of entities: processes and
channels. Processes, sometimes called agents, are the active components of a system.

The syntax of defining a process is as follows:

P = Ty.P /* Output */

| z(2).P /* Input */

| P|@Q /* Parallel composition */
| (vz)P /* Restriction */

| P+ @ /*Summation */

0 /* Nil */

| P /™ Replication */

| [z=y|P /* Matching */

2.2. T-CALCULUS - ” 7

Processes interact by synchron‘ous rendeivous on channels, (also called names or
ports). When two processes synchronize, they exchange a single value, which is itself
a channel.

The output process Ty. P, sends a value y along a channel named z and then, after
the output has completed, continues to be as a new proéess B,. Conversely, the input
process z(z).P, waits until a value is received along a channel named z, substitutes it
for the bound variable z, and continues to be as a new process F{y/z} where y/z means
to substitute the variable zin P, with the received value y. The parallel composition
of the above two processes, denoted as Zy.P, | z(z).P,, is thus synchronized on z, and
- reduced to P, | Py{y/z}.

Fresh channels are introduced by restriction operator v. The expression (vz)P cre-
ates a fresh channel z with scope P. For example, expression (vz)(ZTy.F | z(2).P,)
localizes the channel z, it means that no other process can interfere with the commu-
nication between Ty.P, and z(z).P; through the channel z. |

The expression P, + P, denotes an external choice between P, and P,: either P is
allowed to proceed and B is discarded, or Converée case. Here, external ’chdice means
that which process is chosen is determined by some external input. For example, the
process Ty.P; | (z(2). Py + z(w).Ps) can reduce to either P, | P{y/z}or P, | Bs{y/w}.
The null process is denoted by 0. If output process (or input process) isZy.0 (or z(z).0),
we abbreviate it to Zy (or z(2)).

Infinite behavior is allowed in m-calculus. It is denoted by the replication operator
!P, which informally means an arbitrary number of copies of P running in parallel.
This operator is similar to the equivalent mechanism, but more complex, of mutually-
recursive process definitions. |

Tr-calculus includes also a matching operator [z = y| P, which allows P to proceed
if x and y are the same channel. '

The output and input primitives of m-calculus are monadic: exactly one channel

is exchanged during each communication. Polyadic 7-calculus is a useful extension of

8 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES

m-calculus which allows many channels exchanged during each communication[Mil91].

The syntax of polyadic w-calculus resembles that of monadic. It is as follows:

P

= I[y].P /* Output */

| 2(%).P /* Input */ ,

| P|Q /* Parallel composmon * /
| (vzy...z,)P /* Restriction */

| P+ Q /* Summation */

| 0 J* Nil ¥/

| P /* Replication */

1 [z=ylP /* Matching */

Only output and input are different from those of monadic. 7 and 7 stand for
vectors of channels including empty. The output process Z[7].P; sends a vector of
channels, 7/, along z and then, after the output has rcompléted continues to be as F.
Conversely, the mput process (7). P, waits until a vector of values is received along
z, substitutes them for the vector of bound variable Zz'. When it receives channels 7/,
it continues to be as P{%y/7Z}. The reduction relation of 7-calculus, denoted as —,

over processes is the least relation satisfying the following rules:

COMM : (- +F(F1.P) | (- +2(Z).P) — P|Q(V/7)

PP | PP
PAR : ES :
R, PlQ—P|Q : RES (v z)P— (v)P

Q=P P—P P=¢

STRUOT: T~ |
2.3 A Model and a Protocol for Multi-Threaded
Processes

In this section, we developed a model and a protocol for multi-threaded processes with

choices. The processes concurrently communicate each other. First, we explain the

2.3. A MODEL AND A PROTOCOL FOR MULTI-THREADED PROCESSES 9

situations of the process communication.

2.3.1 Situations of Processes’ Communication

The situations of the processes’ communication are divided into the two situations.
One of them is that a process is now communicating with another process by using
a chahnel. The other is that a process is now choosing one process among external
choice(summation) processes. ’

In the former case, there are many communications among the processes and they
are executed concurrently. Each communication depends on only the channel, and it is
independent of the other communications executed through the other channels. Hence,
it is easy to model this situation. In the later case, on the other hand, it is difficult to
model the situation. Here, a process should choose one process among many processes
and determines which process should be chosen by synchronizing a communication.
However to synchronize a communication, a process should block other processes. For
exémple, the process (overlinex[1].P, + overlinez[2].Py) | (z(2).Q1 + z(w).Q2) can
reduce to either P, | Q1{1/z} or P, | Qo{1/w} or Py | Qi{2/2} or Py | Qa{2/w). If
it reduces to P, | @1{1/z}, the process Z[1].P; should block the process Z[2]. P, and
z(w).Q2 to communicate with the process z(z).Q;. Howe\}er, if the process z(w).Q2
would like to communicate with the process Z[2]. P, the process Z[1].P, and z(z).Q:
should be blocked. Hence, the process Z[1].F; and z(w).Qs block each other. Adjusting

the order of blocked processes is needed to avoid the situations above.

2.3.2 m-Model

We design the m-model that manages communications among processes and consider

the orders of the processes being blocked. The m-model has elements shown below:

Process: Processes are units of concurrent execution of our concurrent and distributed
system. Processes are implemented as threads. If processes meet the choice

process, they make new threads for each process in the choice process.

10 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

Communication Manager: Communication Managers(CMs) manage communica-
tion requests on channels from processes. They make possible for processes to
communicate with one another. They have queues which consist of the commu-

nication requests from processes.

Choice Manager: Choice Managers(CHMs) manage choice proceéses’ Ol Processes.
They observe the threads made from the choice, and decide which process should

be remained.

- The m-model is shown in Figure 2.1.

2.3.3 The Outline of the Protocol

We give an outline of the protocol, before giving a precise of it.

Outline of Processes’ Behavior: Processes perform a output process (resp. an in-
put process) through CMs. To perform a output process (resp. an input process),

processes send the information to CMs and wait for the answer from CMs.

When processes encounter a choice operator, they send the information about it
to CHMs and assign each process in choice for a new thread. Each thread interacts
CMs independently each other. One of these thread is selected by CHM, and the

others are stopped.

- Outline of Communication Managers’ Behavior: Each CM has a queue that stores
i the communication requests from processes. CMs divide the communication re-
quests according to the channel name. When the output request and the input
request are gathered on the same channel, CMs send processes the results of

communication.

Outline of Choice Managers’ Behavior: Each CHM controls the choice operator.
It receives the information from the processes and interact CMs to decide which

thread should be remained. It send the result of selection to processes and CMs.

2.3. A MODEL AND A PROTOCOL FOR MULTI-THREADED PROCESSES 11

2.3.4 The Behavior of a Process

Conditions of a Process: A process have the variable to store its condition. The
set of possible conditions of proceés is {init, waz’t—C’Mout, wait-CMin, wait-CHMid,
wait-CHM, wait-Res, done, stopped }. '

| Figure 2.2 shows the relations among the conditions.

Transition Rules of a Process: In Table 2.1, process means fhe current process of
the process, aid denotes the id 0f the process, C'id denotes the id of CHM ,pid denotes
the id of choice procéss and 0 means the process is not produced from the choice (e.g.
P+Q+R: Phasid 1, Q hasid 2 and R has id 3).

If processes do not meet choice, they send the information about processes to -
CMs(see R1, R2, R5, and R6 in Table 2.1). On the other hand, if processes meet
choice, they send the information about processes to CHMs and are divided into new
threads that take over the conditions (see R4 in Table 2.1). The new threads, then,
wait for the answer from CHMs (see R7, R8 and R11 in Table 21) if one of them

receives the (resume), it continues the process and the other processes are stopped.

2.3.5 The Behavior of a CM

A CM manages the communications among processes on one channel. It checks outp’ut
processes and input processes, and stores them to two queues. If the both queues store
processes, it permits two processes, which are the top of each queue, to communicate
each other. The precise transition rules of a CM is described in Table 2.2 and 2.3.
Conditions of a CM: Each CM has two queues named in-zzz and out-zzz (zzz means
arbitrary strings) The queues store the request from processes according to the kind
of process:input or output process. The noﬁation ' Jenotes the process that divides
the queue into the first element and the others.

Transition Rules of a CM: A CM stores the requests from processes, and if the
output requests and the input requests are gathered on the same channel without the

choice, it permits processes to communicate(see R1-R4 in Table2.2).

12 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

The requests with the choice lead the complex rules denoted in R5-R8, R11 and R12
in Table2.2 and 2.3. If opponent to communicate dose not exist, the request is stored
in the queue(see R5 and R6 in Table2.2). In the other cases, CMs ask CHMs whether
the request is executable. If CHMs answer yes, then CMs continue the communication,
otherwise CMs ignore the input. (ezecute, dz’d, pid) means the process with aid and
pid is executed, and (suspend, aid, pid) means the process is suspended.

The requests without the choice but the opponent with choice, the rules are con-
structed as well as R5-R8, R11 and R12. In these cases, CMs ask CHMs whether
the request is executable. If CMs receive answer yes, they continue the communica-
tion, otherwise CMs discard the opponent of the request and apply the rules to the
request(see R9 and R10 in Table 2.2). '

2.3.6 The Behavior of a CHM

Conditions of a CHM: A CHM has variables named “flag” and “queue”. The
variable flag stores the conditions of one choice process, it has {suspend, try, done}.
The condition suspeﬁd means the choice process is suspended now, the condition try
‘means the choice process is now being tried to be executed, and the condition done
means the choice process has been already executed. The variable queue stores the
processes of the choice process that are tried to execute by CMs.

Transition Rules of a CHM: CHMs manage choice processes. The basic concept
is that a CHM manages one choice process. A CHM receives a choice process and
numbers the processes in the choice process(see R1 in Table 2.4). After numbering the
processes, the CHM waits for requests from CMs as the first phase(see R2, R3 or R7 in
Table 2.4). If the CHM receives the requests from CMs, the CHM behaves as follows:

if the flag is suspend.
The CHM allows the requested process to be executed and sends the permission
to execute it (sends the signal “yes”). It, then, changes the flag to try (see R2 in

Table 2.4).

2.4. FREEING PROCESSES FROM DEADLOCKS ' 13

else if the flag is try.
The CHM suspends the process and stores it to the queue. It, then, sends the
CM the condition that other CM is now trying to execute the choice process (see

R3 in Table 2.4).

else
" The CHM sends the CM the signal to stop the process (see R7 in Table 2.4).

After sending the signal “yes” to the CM, the CHM waits for the result of executing

the process in the CM and behaves as follows:

if the CHM receives the signal that the CM succeeds to execute the process.
The CHM sends that the process can be executed and the other processes in the
choice process should be stop, then, changes the flag to done (see R6 in Table
2.4).

else
The CHM suspends the process. If the queue is not empty, the CHM checks the
top process in the queue and sends the signal “yes” to the CM that owns the
process. (see R4 and R5 in Table 2.4).

Figure 2.3 shows the relations among the conditions of a CHM, Table 2.4 describes
the tfaﬁsition rules of a CHM, and Figure 2.4 shows the behavior of a CHM. The
top figure in Figure 2.4 shows the h(r’?HM numbers the processes. The “Request” and
“Answer” mean the first phase (R2, R3 and R7 in Table 2.4), and the “Result” means
the second phase(R4, R5 and R6 in Table 2.4) in the bottom figure in Figure 2.4.

2.4 Freeing Processes from Deadlocks

The processes with choices are nondeterministic, thus the executions have various re-
sults. Hence, if the executions are in deadlocks, it is difficult to find the cause. In this

section, we show why the protocol frees the processes from the deadlocks.

14 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

We consider four cases-to show the freedom from the deadlocks,

1. There is no choice process and only one paired processes(input and output) use

a channel.

2. There is no choice process and processes use channels. It means some input and

output processes use the same channel.

3. The first process, which a CHM determine to execute, in the choice process can -

be executed.

4. The first process, which a CHM determine to execute, in the. choice process cannot

be executed.

Case 1 Let the input process be A;, and the output process A,;. Each process uses

the same channel. We consider the process A;, is registered for CMs before Agy:.

1. By R2 in Table 2.2, the id of 4, is registered for in-x, and then the con-
dition of A;, is changed to wait-CMin. ’ |

2. If A, is registered for a CM, by R3 in Table 2.2, the values in A,,; are

output to the process indicated by the id in the top of in-x. Then, A4,

' receives the values from the CM and executes next process by R9 in Table

2.1. The condition of A,,: receives the results from the CM and executes

next process by R12 in Table 2.1.

Hence, the process A;, and A, can communicate each other.

Case 2 Let the nth input and the nth output processes which use the same channel

exist.

1. The mth input processes have already registered for CMs.

2.4. FREEING PROCESSES FROM DEADLOCKS 15

(a) If m == 1 (the length of in-x is 1) then

This condition is same as the case 1. Thus, the communication succeeds.
(b) Assﬁming that the communications succeed on m == k (the length of

in-x is k) then considering the condition as m == k + 1 (the length of

in-xisk +1): ’

When the condition on m ==k + 1,

i. Let the next registered process be the output process.

Byb R3 in Table 2.2, the values in the output process are sent to
. the process indicated by id in in-x. The output process proceeds
to the'next process throngh the condition wait-CMout by R12 in
Table 2.1. The process, which receives the values by R9 in Table
2.1, proceeds to the next process.
The process in the top on in-x and the output process commu-
nicates each other. The length of in-x is changed to m - 1, that
means m ==

ii. Let the next registered process be the input process.

The length of in-x is changed to m + 1, then the communication

succeeds by the previous case.

Then by the assumption of the induction(b), the communication suc-

ceeds in any cases.

Case 3 We consider about the choice process A +As+- - -+ A, and By + Ba+- - -+ By,

Let the process A; be able to communicate with B; and the process As be able to
communicate with By and so on. It means the different process uses a different

channel.

16

CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

The choice process A; + Az + -+ + A, is divided into the process A;, As, ...
and A, and are registered for a CHM, by R2 and R3 in Table 2.1. Each process
proceeds independently but has the condition wait-CHM. The choice process
By + By + -+ -+ B, is executed like as the choice process A; + Ay + -+ An‘, but
uses a different CHM. There are many combination to execute these processes.

Before explaining it, we explain the actions of CHMs.

AI CHM receives the processes and commits them to memory (see R1 in Table
2.4).‘ It has no knowledge of a channel used by the processes and checks the
process that is requested to execute by CMs (see R2 and R3 in Table 2.4). The
requests means that the process would like to use the channel and can be executed
if the CHM answers yes. When the CHM receives the first request, it returns
the answer yes(see R2 in Table 2.4). When the CHM receives the second request
or more requests, it store the requests in the queue and checks the head request
in the quéue if the first request cannot be executed (see R3, R4 and R5 in Table
24).

We consider the cases that the process 4; and B; communicate each other and
the other processes are discarded. These cases are distinguished by the order of

regisfration to CMs. The kind of order is as follows:

1. Ay — B; — the other processes
or

B; — A; — the other processes

These cases means the process A; and Bj registered before the others, and
communicate each other. ‘
We explain the first case in them.

The process A; registers for a CM by R5 or R6 in Table 2.2. The process B;
registers for the CM and the CM requests CHMSs to execute 4; and B; by

2.4. FREEING PROCESSES FROM DEADLOCKS 17

R11 or Rlé in Table2.3. CHMs answer yes to the CM, because the requests
is the first request for each CHM(see R2 in Table2.4).

The CM permits 4; and B; to communicate by R11 or R12 in Table2.3 and
CHMs send stop to the other processes by R6 in Tab1e2.4.

If the other processes register for a CM before receiving the signal stop,

CHMs answer no to the CM by R7 in Table2.4.

. 2. Pyg — A, — Pyp — Bj — the other processes
or

Psg — B; — Pyp — A; — the other processes

 where P = {4;, B;|2 < i,j < n}, Pap = {4;, Bj|]A, B; € P and i # j},
Pyp = {A;, B;|A;, B; € P —pair(P4g)} and pair(P) means the set of pro-
cesses that can communicate with the processes in the set P. For example,
let A, and A, communicate with By and By, respectively, pair({A4;, 42}) =
{B1, B2}

We explain the first case in them. It means the some processes registered
before the process A; registering. Then, when the process B; registers for
a CM before the pair to the processes that have already registered, the CM
requests to CHMs to execute it and CHMs answer yes to the CM. When
the CM receives the answer yes, it sends CHMs the signal of execution(see
R11 and R12 in Table 2.3). Under this condition, if the pair to the processes
registers for a CM before CHMs receive the signal from the CM, the CM
requests to CHMs and the CHM blocks this process(see R4 in Table 2.4).
The processes A; and B; communicate each other ’in spite of blyocking other
procesées, because the CM has aiready sent the signal of the execution to
CHMSs and CHMs send the permeations to execute to the processes (in this

case A; and By).

In this case CHMs block a process, but it does not generate a deadlock,

18 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

The blocked processes have no chance to be execute and the blocks have
no influence, because blocking the processes are generated by determining

which processes should be executed.

In this case, we consider only two choice processes using different channels. How-
ever, if there are many choice processes, they do not generate a deadlock. Because
the CM considers the processes according to their channels and one CHM man-
ages one choice process, and it blocks the processes only if the CHM determines

which process is executed.

Case 4 We consider about these choice processes A; + A, Bi + B,.

In this case, we consider the condition that CMs sends CHMs the signal of the
suspension(see R11 and R12 in Table 2.3).

Let the process A; bé able to communicate with B; and the process A, and B,

be able to communicate with other processes(e.g. M and N).

If all processes have finished to register for CHMs, the conditions that CMs send

CHMs the signal of the suspension are generated by some orders of requests.
The orders which generate the suspensions are as follows:

The CM sends the requests to execute two pairs {4;, B;} and {B,, N}(see R11
and R12 in Table 2.3). Under this condition, if the CHM managing 4; + A,
permits to execute A; and the CHM managing B, + B, permits.to execute B,
and the communication between B, and N succeeds. Thus, executing the process
B is impossible and the CHM answers no to the CM(see R11 and R12 in Table
2.3), and then the CM sends the signal of the suspension to the CHM managing
Ay + Ay. The CHM removes the process 4; from the queue and waits for a new

request from CMs.

In this case, the process A; blocks other process A, in the same choice process,

but the process A; releases the block if the process B; cannot communicate.

2.5. IMPLEMENTING THE INTERPRETER FOR TT-CALCULUS 19

Therefore, it does not generate a deadlock.

If the number of the process in one choice process, CHMs consider only the first
process in the queue storing the requests from CMs. The condition is, therefore,

the same as this condition.

We consider the all possible condition and show the protocol frees choice processes

from deadlocks. Hence, by using the protocol, we avoid to deadlocks in m-calculus.

2.5 Implementing the Interpreter for m-Calculus

In order to implement an interpreter for m-calculus more easily on computers, we design

a primitive language instead of using the mathematical notations of m-calculus.

2.5.1 The Syntax of our Language

Table 2.5 shows the syntax of definitions of a processes, and its corresponding the

definitions in m-calculus.

Example 2.5.1 We show simple m-calculus expressions and the program in our lan-

guage corresponding to the erpressions:

m-calculus expression Program
A|B : AlB

A Y K+L+M A w= K+ L+ M
B Y X+v+2 B X+Y + 7
K % ap K (out a b).@
L % L == (in cd).@
M %y M (out e f).@
x a(z) X == (in a 2).@
y “ zly] Y o= (out cy).@
Z o) Z == (in e2).Q

The result to execute this program is shown in the next subsection.

20 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

2.5.2 The Implementation of the Interpreter

We implement an interpreter for our Language in JAVA, called PiEngine by using
the m-model and the protocol. In this subsection, we verify the 'correctness of the
interpreter by running Example 2.5.1. :

This interpreter is implemented in‘JAVA, because JAVA provides multi-threaded
programm‘ing. The interpreter assigns each process in our language to one threaded
and executes these processes concurrently. Each channel is regarded as one instance
of a class accessed by some processes. Each threaded process can access concurrently
some instance of the class. Hence, JAVA is an appropriate ‘platform to vimplement the
interpreter for our language. ' |

Before executing the above example, we illustrate the actions of the program in
Figure 2.5.

Figure 2.6 and 2.7 show that the messages on windows are the résults executing the
program of Example 2.5.1. We show only two cases of the results, because the choice
process make many different results.

In Figure 2.6 and 2.7, each window shows one threaded process in multi-threaded
processes. The message “ok (A)...” means the process named “A” is executed and
“ok (M) ...” means the process “A” chooses the process named “M”.

In the case 1, the process A chooses the pfocess M and the process B chooses the
process Z. In the case 2, the process A chooses the process K and the process B chooses
the process X. Therefore, the interpreter system named Pikingine can execute programs

and can simulate the choice process of m-calculus.

2.6 Conclusions

We have developed the model named m-model and the protocol for multi-threaded
processes with choices written in 7w-calculus. In the model and protocol, we have

assigned each process in m-calculus to a thread, and we have defined the three elements:

2.6. CONCLUSIONS 21

Processes, Communication Managers(CMs) and Choice Managers(CHMs). A process is
a basic unit to control concurrently executed threads in our concurrent and distributed
system. CMs manage communication requests along channels from processes, and
CHMs manage choice processes in processes. v

We have shown why the protocol frees the processes ffom the deadlocks. If the
processes have no choice process, any process do not be blocked. If the processes have
choice processes, CHMs order the réquests from CMs and manage the block to avoid
deadlocks. Hence, the protocolyfre‘es the processes from the deadlocks.

We have designed a primitive language instead of using the mathematical notations
of m-calculus, and implemented the system in JAVA called PiEngine by using the -

model and the protocol.

22 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

Process1

P+Q+®+

\

Communication Managers Choice Managers

Process2

Each element communicates with each other. If there is no choice process in the
processes, the processes and CMs don’t communicate with CHMs.

Figure 2.1: 7T-Model

TABLES AND FIGURES 23

The arrows mean the transitions.The circles mean the conditions. The init is the first
condition. The done or stopped is the final condition.

Figure 2.2: The Conditions of a Process

24 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

Table 2.1: The Transition Rules of a Process

[Rules [Conditions Inputs | Processes || Next Conditions | Outputs | Other Actions
TR1 init - T Y] - wait-CMowut Sending -
' (im, =, ¥, aid, 0, 0)
to a CM.
R2 it - %(7) wast-CMin Sending -
: (out, z, 7, aid, 0, 0)
- to a CM.
R3 it - P= wait-CHMid Sending The current process
Q+... : (P, aid) is not changed.
to a CHM. .

R4 wait-CHMid | Receiving = wait-CHM - Each process in the
(Cid) Q+... choice is divided
from into one process
a CHM. and each process

has the condition
i i wait-CHM.
R5 wait-CHM - z[Y] wait-Res Sending -
(in,z, ¥, aid, Cid, pid)
to a CM.
R6 wait-CHM - x(?) wait-Res Sending -
(out,z, 7', aid, Cid, pid)
: to a CM. :

R7 wait-Res Receiving | Z[y] wait-CMout - This thread
(resume) is selected
from to be executed.

a CHM.

R38 wait-Res Receiving | z(7) || wait-CMin - This thread
(resume) is selected
from to be executed.
a CHM.

R9 wait-Res Receiving | - stopped - This thread
(stop) is stopped.
from
a CHM.

R10 wait-CMout | Receiving | Z[y] done : if there isno | - The condition done
(output) next process means the process
from it : otherwise is finished.

a CM.

R11 wait-CMin Receiving | z(7) done : if there is no | - The condition done
(7) next process means the process
from init : otherwise is finished.

a CM.

TABLES AND FIGURES

25

Table 2.2: The Transition Rules of a CM - 1/2

[Rules] Conditions I Inputs 1 Next Conditions [Outputs
R1 inx=0 Receiving out-x -
(out, z, 7 ; aid, 0, 0) = out-x
from a process. + (aid, 7,0,0)
R2 out-x = 0 Receiving in-x -
(in,z;, ¥, aid, 0,0) = inx
from a process. + (aid, 0,0)
R3 in-x # 0 Receiving. in-x = in-x’ Sending
in-x (out, z, ', aid, 0, 0) (output) to aid
div (aid’, 0,0) from a process. and (7") to aid’.
+ in-x’
R4 out-x # () Receiving out-x = out-x’ Sending
out-x (én,z, Y, aid, 0,0) (output) to aid’
% (aid', 7,0, 0) from a process. and (7) to aid.
4+ out-x’
R5 in-x =0 Receiving out-x -
(out, z, 7, aid, Cid, pid) = out-x
from a process. + (aid, 7, Cid, pid)
R6 out-x = Receiving in-x -
(in,z, Y, aid, Cid, pid) = in-x ‘
from a process. + (aid, Cid, pid)
RT7 in-x #0 Receiving Sending (aid, pid) to Cid
: (out, z, 7, aid, Cid, pid) and if receiving yes from Cid then:
in-x from a process. in-x = in-x’ Sending
Ly (aid’, 0, 0) (output) to aid
+ in-x’ (7)) to aid’
(ezecute, aid, pid) to Cid.
if receiving no from Ctid then:
Ignore this input. -
R8 out-x # 0 Receiving Sending (aid, pid) to Cid
(in,z, ¥, aid, Cid, pid) and if receiving yes from Cid then:
out-x from a process. out-x = out-x’ Sending
Ly (aid’, 7,0, 0) (output) to aid’
+ out-x’ () to asd’
) (execute, aid, pid) to Cid.
if receiving no from Cid then:
Ignore this input. -
R9 in-x # 0 Receiving Sending (aid, pid) to Cid
. (out, z, 7, aid, 0, 0) and if receiving yes from Cid then:
in-x from a process. in-x = in-x’ Sending
Ly (aid’, Cid, pid) (output) to aid
+ in-x’ (Z) to aid’.
if receiving no from Cid then:
in-x = in-x’ -
Apply these rules again.
R10 out-x # 0 Receiving Sending (aid, pid) to Cid
: (in,z, ¥, aid, 0, 0) and if receiving yes from Cid then:
out-x from a process. Sending

% (gid', 7, Cid, pid)
+ out-x’

out-x = out-x’

(output) to aid’
(%) to aid.

if receiving no from Cid t

hen:

out-x = out-x’

Apply these rules again.

26 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

Table 2.3: The Transition Rules of a CM — 2/2

{ Rules | Conditions | Inputs 1 Next Conditions | Outputs
RI11 in-x #£ 0 Receiving Sending (aid, pid) to Cid
(out,®, 7', aid, Cid, pid) || and (aid’, pid’) to Cid'
in-x from a process. and if receiving yes from Cid and Cid/then:
i (aid’, Cid’, pid") . in-x = in-x’ Sending
=+ in-x’ (output) to aid

() to aid’

(execute, aid, pid)
to Cid

(execute, aid’, pid")
to Cid'.

if receiving yes from Cid and no from Cid’ then:

in-x = in-x’ : -

Applying these rules again.

if receiving no from Cid and yes from Cid’ then:

Ignoring this input. Sending .

' - (suspend, aid’, pid')
to Cid':

if receiving yes from Cid and try from C%d’ then:

Waiting for a while and Sending

applying these rules again. (suspend, aid, pid)
to Cid.

if receiving try from Cid and yes from Cid’ then:

Waiting for a while and Sending

applying these rules again. | (suspend,aid’,pid’)
to Cid'.

if receiving no from Cid and Cid then:

in-x = in-x’ -

Ignoring this input.

R12 out-x # @ Receiving Sending (aid, pid) to Cid
. (in,z, 7, aid, Cid, pid) and (aid’, pid’) to Cid'
out-x from a process. and if receiving yes from Cid and Cid’ then:
iy (aid’, Cid', pid’) out-x = out-x’ Sending
+ out-x’ (output) to aid’
(Z) to aid
(emecute, aid, pid)
to Cid
(execute, aid’, pid')
to Cid'.)

if receiving yes from Cid and no from Cid’ then:
out-x = out-x’ -

Applying these rules again.
if receiving no from Cid and yes from Cid’ then:

Ignoring this input. Sending
(suspend, aid’, pid’)
to Cid'.

if receiving yes from Cid and ¢ry from Cid then:

Waiting for a while and Sending

applying these rules again. (suspend, aid, pid)
to C'id.

if receiving ¢ry from C%d and yes from Cid’ then:

Waiting for a while and Sending

applying these rules again. | (suspend,aid’, pid’)
to Cid'.

if receiving no from Cid and Cid” then:
out-x = out-x’ -
Ignoring this inpus.

TABLES AND FIGURES : 27

suspend

The last condition done is reached through the condition try.

Figure 2.3: The Conditions of a CHM

28 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...
Table 2.4: The Transition Rules of a CHM
[_Rule State | Input Next State Output Other Actions
ﬁil - Get flag = suspend | Send Numbering each process.
(P, aid) (Cid)
from Agent. to aid.
R2 flag = suspend | Get (aid, pid). flag = try Send yes -
from CM to CM.
R3 flag = try Get queue Send ¢ry -
: (atd, pid) = queue to CM.
from CM. + (aid, pid)
R4 flag = try Get flag = suspend | - -
queue = { (suspend, aid, pid)
from CM.
R5 flag = try Get queue Send -
queue (suspend, aid, pid) = queue’ yes to CM
diy (aid’, pid') | from CM. + (aid, pid) | which sent
+queue’ (asd’, pid’).
R6 flag = try Get flag = done Send -
(executed, aid, pid) (resume) to
from CM. atd with pid
: and (stop) to
atd without pid.
R7 flag = done Get (aid, pid) - Send no -
from CM. to CM.

TABLES AND FIGURES

/—Choice vManager—\

Register processes @
- Process I

L Queue
—Choice Manager— | Cbmmunication
| Request Manager
@ :
\ Queue)

The choice process A+ B+ ... is registered for the Choice Manager, and it
communicates with the Communication Manager.

Figure 2.4: The Behavior of a CHM

29

30 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

Table 2.5: Comparing T-Calculus with Our Language

Functions Polyadic m-calculus Our Language
Output ZYy1 .. Yn|. P (out z yy ...y,).P
Input z(z...2,).P (in z 21...2,).P
Parallel composition P|...|P, P | ... |P,
Restriction (vay...z,)P (new z1...z,).P
Summation P+---+P, P+---+P,
Nil 0 Q
Replication P P
Matching - [z =y|P [z =9y].P

Choice Manager ~ Choice Manager

The process A has the choice process K + L + M, and the process B has the choice process X +Y + Z.The
choice managers choose the pair (K, X) or (L,Y) or (M, Z).

Fiéure 2.5: The Choice Processes in Example 2.5.1

SHUNOIA ANV SHTAV.L

1€

32 CHAPTER 2. A PROTOCOL FOR MULTI-THREADED PROCESSES ...

It shows the process M is chosen from the process A and the process Z is chosen
from the process B.

Figure 2.6: The Results of Executing Processes in Example 2.5.1

TABLES AND FIGURES '

. . .

S Car it

It shows the process K is chosen from the process A and the process X is chosen
from the process B. ‘

Figure 2.7: The Results of Executing Processes in Example 2.5.1

33

Chapter 3 |

An Agent Model for a Dynamically
Changing Environment

We develop an agént model to use descriptions for agents’ plans and methods based
on w—calculus{l\/[ilQl,'MPWQQ, BD95]. First, we develop a description for agents’ plans.
The plans described in m-calculus can be changed dynamicall}; while it is executing,
because m-calculus provides dynamically changing structures. Secondly, we develop
a description for agents’ methods that refer their parameters through channels in 7-
calculus. Thus, agents can dynamically change the references from the methods to
the parameters. Next, we develop an agent model to use the descriptions.' The agents
can, therefore, change their plans and methods to adapt to the environment around
them by themselves by using these property. This property is important to agents,
called reflection. Finally, we show two experiments: a tracing problem and a fire-world

problem.

3.1 Introduction
Agents mean the object which has some of the following properties:

o Autonomy : Agents decide to act according to their knowledge.

e Proactivity : Agents begin to act by themselves.

35

36 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

e Sociality : Agents communicate with the other agents or human to act co-

operatively.

e Reactivity : Agents change rapidly their action to adapt to the change of their

environment.

- The autonomy and proactivity are more important than the others to define agents
[Sho93, INH*98, IIDI99b, IIDI99a).

In order to act autonomously and ﬁroactively, agents need to observe their environ-
ment and make the plan to satisfy their goals. A plan for an agent consists of a series of
processes that the agent will execute. The one process in the plan is called “methbd”.
In other words, an agent executes methods according to the plan (called ezecuting
plan). Planning means that an agent constructs a plan for agents. The planning is an
important problem for autonomous agent systems. However, the environment around
agents is not the static environment and dynamically changed in real time. Hence,

agents in the environment have the following problems:

1. The environment is the real time world.
The delay to calculate the parameters, which are referred to by methods, causes

the delay to execute the methods.

2. The environment is the dynamic world.
The agents need function to change the reference to parameters, and cannot
always succeed in executing plans due to unforecastable changes in the environ-

ment.

The solution for the first problem is that agents should concurrently and indepen-
dently execute the calculation of the parameters and the methods. The second problem
is difficult, because formalizing methods that can change the reference to parameters

is difficult and the agents should dynamically reform the plans to succeed in executing

3.1. INTRODUCTION 37

them in the new environment [JZ97, SN98, TK95, AT97, Mor97]. We called these

property called reflection and the agent with reflection are called reflective agent.

For example, assume that there are two agents in a room. One agent (called agent1)
traces anofher agent (called agent2). Each agent has the same ability about the move-
ment. Agentl can check the position of agent2 by using the sensor and form the plan
to trace agent2. Agent2 moves to the position which is away from the agentl at the
rate X, otherwise to the random position. If agentl can use sensor for all times, it can
choice the best-’ routét‘o trace agent2. But if agentl only uses the sensor to form the
plan, this plan is not suitable to trace agent2. Hence, agentl should have the function

reflection.

Our solution of these problems is based on 7-calculus. 7-calculus is a process calcu-

lus, which is able to describe dynamically changing networks of concurrent processes.

First, we develop a description for agents’ plans by using 7-calculus. The agents can
change the plans described in m-calculus even when they are executing the plahs. Sec-
ondly, we develop a description for agents’ methods. In the description, the vparameters
andthe‘methods‘are regarded as the processes in m-calculus. Hence, the parameters
and the ‘rnevthods are concurrently and independently executed. The references from
the methods to the parameters are fegarded as the networks in w-calculus. Hence, the
references can be changed dynamically. Next, we define an agent model to use the
descriptions for plans and methods. It has the processor for w-calculus(PiEngine in
Chapter 2) and the functions to behave like an agent. Finally, we make two experi-
ments. One of them is that an agent traces and catches another agent like as the above
example. Another agent is that an agent searches the route to escape from the fire-
world. In the fire-world, the fire randomly moves and spreads, agents can not predict

how the environment changes.

38 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

3.2 Dynamically Changing Plans in m-calculus

In this section we develop a description for agents’ plans by using polyadic 7-calculus.
The description is basically a set of list-typed expressions. Most importantly, the
descriptions of a plan can be modified dynamically by changing thé connections of the
list according to the requests of an agent.

In a static environment, an a‘gent can succeed in executing plans. However, in
a dynamically changing environment, the plans become unexecutable. Because the
plans are usually not changed until the executing them is finished. Thus, they should
be changed in executing them. In order fo provide this function for plans, an agent
should have the function reflection. Therefore, we develop the plans written in polyadic
m-calculus.

We define the process for calling the method from m-calculus in Definition 3.2.1.

Definition 3.2.1 Process of Calling Method
Call exec(method, methode,q).Call(method) methodeyg

It doesn’t call no method If method == “nil”

Call(method) = { It calls the method named method Otherwise

where the typewritten fonts words represent the channel name; and method rep-
resents the name of the method to be executed; and method.,g represents the name
which checks the finishing to execute the method; and the name nil denotes the end

of plan and doesn’t call any methods.

Definition 3.2.2 Basic element

Element(previous, method, next)

def .
= previous.

(change|method].change (method).a%ac [method, method.pq] method,,q.next
+ execute.8Xec[method, methodeq] methodeny next) '

where the name “previous” and “next” represent channels to the other elements.

3.2. DYNAMICALLY CHANGING PLANS IN m-CALCULUS 39

We define a plan by using the definition 3.2.2. On the assumption that method;,
methods, ..., method,_;, method, should be executed, the description of the plan is

as follows:

Definition 3.2.3 Definition of a plan

Plan(method;, methods,, . . ., method,_;, method,)
2o (v nyng ...np_7 Ny) Element(start, method;, ny)
| Element(n;, methods, ns)

| Element(n;_;, method;, n;)

| Element(n, 3, method, 1, n,1)
| Element(n,_;, method,, nil)
| nil | Call

where the last element nil denotes the end of plan.

3.2.1 Executing and Changing a Plan

An agent should execute the methods in a plan at a suitable timing. First, we, therefore,
define the process changing the plan into an executable condition. Secondly, we define

the process requesting to execute the method in a plan.

Definition 3.2.4 Requesting the start of a plan

Start def start

Definition 3.2.5 Requesting the execution of a method

de e
Execute <) execute

This definition is simple. This process named “Execute” requests a plan to execute
one method. Therefore, if a plan has n methods, n processes named “Execute” are
needed to finish the plan. However, this property is useful to change a plan.

Next, we define three processes to change a plan: “Substitute”, “Add” and “Delete”.

40 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

Definition 3.2.6 Requesting the substitution of a method

Substitute(method’) - chaﬁge(method).change[method’]

Definition 3.2.7 Requesting the addition of a method ,
Add(method’) o change(method).gxec[method’, method. ;] method._, change[method]

Definition 3.2.8 Requesting the deletion of a method
Delete %/ change(method).change|nil]

The usages of them is same as the request named “Execute”. This property sim-

plifies to implement the system.

3.3 The Properties of a Plan

We show four properties as Theorems 3.3.1, 3.3.2, 3.3.3 and 3.3.4, by using Definitions
3.2.5, 3.2.6, 3.2.7 and 3.2.8,

Theoreyrp‘ 3.3.1 Execution of method

I Plétn(methodl,.. . method’n) exists and it is performed in the parallel compo-
sition with the process named “Execute” then: the method named method; is called

and the plan is changed to Plan(methods,, ..., method,).

Ezecuting the plan shown in Definition 3.2.3-1s as follows:

Plan(method, ..., method,) | Execute | start

— Plan(methods, ..., method,) | Call(method;) method,,_, | method,,, Ay
If Call(method;) is successfully executed, then

Plan(methods, ..., method,) | Call(method;).method;., | method, , Ay

— Plan(methods, ..., method,) | @7

3.3. THE PROPERTIES OF A PLAN ’ | 41

Theorem 3.3.2 Substitution of method

If Plan(method;, ..., method,) exists and it is performed in the parallel com-
position with the process named “‘Substitute(methodyew)” then: the method named
methodpey s called and the plan is changed to Plan(methods, ..., method,).

The substitution of a method for the method in the plan in Definition 3.2.3 is as

follows:

Plan(methody, ..., method,) | Substitute(methodpew) | start

— Plan(methbdg,...,methodn) | Call(methodye,)-method;,, | method;,,, B1
if Call(methodpew) s successfully executed, then

,Plan(methodg,...,methodn) | Call(methodpe,) methody,, | method,,, .0

- — _ Plan(methods, ..., method,) | &y

Theorem 3.3.3 Addition of method
vaPlan(methodl, ..., methody) ezists and it is performed in the parallel composi-
tion with the process named “Add(methodnew)” then: the methods named methodew
and method; are called and the plan is changed to Plan(methods, ..., method,).
Adding a method to the plan in Definition 3.2.3 is as follows:

Plan(methody, . .., method,) | Add(methodue,) | STart

— Plan(methods, . .., method,) | Call(method,e,) methodyeq,
| methodge,,,.change[method;| ‘
| - change(method,).ex&¢(method;, method;__,).methody,,, o7

42 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

If the process Call(method ey) s successfu{ly ezxecuted, then

Plan(method,, ..., method,) | Call (methodpe,) methodpey, .,
| method,es,,,.change|[method,]
| change(method,).8%&¢(method;, method,,__,).method, .oy

— Plan(methods, . .., method,) | Call(method;)method;, . | method,, ..
If Call(methody) is successfully executed, then

Plan(methods, ..., method,) | Call(method;).method;, | method, Ay

— Plan(methody, ..., method,) | &

Theorem 3.3.4 Deletion of method

If Plan(methody, ..., method,) ezists and it is performed in the parallel com-
position with the process named “Delete” then: no method is called and the plan is
changed to Plan(methods, ..., method,).

Deleting a method from the plan in Definition 3.2.3 is as follows:

Plan(methody, ..., method,) | Delete | start

— Plan(methods; ..., method,) | @y

We show the examples of Theorem 3.3.1, 3.3.2,3.3.3 and 3.3.4 in Example 3.3.5,
3.3.6, 3.3.7 and 3.3.8, respectively.

Example 3.3.5 Let the plan be Plan(method;, methody, methods), the processes of
the plan with the requests named “Ezecute” are shown in Figure 3.1. The figure illus-

trates the methods named method;, methody and methods are executed.

Example 3.3.6 Let the plan be Plan(method;, methody, methods), the processes of
the plan with the requests named “Ezecute” and “Substitute” are shown in Figure 3.2.

The figure illustmtes the method method, is substituted for the method methods.

3.4. DESCRIBING AGENTS’ METHODS IN n-CALCULUS 43

Example 3.3.7 Let the plan be Plan(method;, methods, methods), the processes of
the plan with the requests named “Ezecute” and “Add” are shown in Figure 3.8. The

figure illustrates the method methody is added before the method methods.

Example 3.3.8 Let the plan be Plan(method;, methody, methods), the prbcesses of
the plan with the requests named “Ezecute” and “Delete” are shown in fig 3.4. The fig-
ure illustrates the method methods is deleted from the plan Plan(methodl, methody, methods).

3.4 Describing Agents’ Methods in m-calculus

In this section we dévelop a description for agents’ methods and parameters, by using
polyadic m-calculus. In the description, the method refers the parameters through the
channels in w-calculus. Hence, the relation among the method and the parameters can
be changéd dynamically. Each parameter is described as the process in w-calculus.
Hence, it is calculated independently of the method.

First, we define the process to store the parameter values before defining the

method.
Definition 3.4.1 Process to Store Parameter Value
Param(a;) o (aj(vq,).Param(a;) + @;[vg,].Param(a;))

where a; means the name used to change the parameter value, and v,, means the default

value of the parameter.
Secondly, we define the method satisfying the following properties:

e The delay of calculating the parameter value is considered. -

e The relation among the method and the parameters can be changed dynamically.

44 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

Definition 3.4.2 Description of Method

We define the method named “M” referring ay - - - an as the parameters.

. , | |
May, - ,an) e} !(]V[.al(val). <o (Van) Mot [Vay, -+ Va,,]
+ M(al s an)»al(val)' cet van(van)‘—]\’fout['vam T :Uan]) I
Param(a;) | --- | Param(a,)
where Moyt[Vay, -+, Vo, | Teans the information about the method is sent from the pro-

cessor for m-calculus to outside unit and the method named M 1is exzecuted with the

parameter values vy, - -+, v,, in the unit.

'

Finally, we define the method referring n parameters in Definition 3.4.2 and the

process changing the parameter value in Definition 3.4.3.

Definition 3.4.3 Process to Change Parameter Value

We define the process changing the parameter value in a;.

renew(a;, v) o al[v]

where a; means the name used to change the parameter value, and v means the new

parameter value as Definition 3.4.1.

3.5 The Properties of Methods

3.5.1 Executing Methods
We show how to execute the method described in Definition 3.4.2.

Theorem 3.5.1 Executing Method
The output process in m-calculus having the same name of the method should be
given to the process of a method to execute the method. When calculating new parameter

values are not finished ,the method refers the defoult values of the parameters.

3.5. THE PROPERTIES OF METHODS | 45

We show the example of Theorem 3.5.1 in Example 3.5.2.

Example 3.5.2 Executing Method
In order to ezecute M(a1, - ,an), M should be given. We show calculating the

process of the methovd execution below:

M | M(a, - ,an)

!
, !
A/-[out{'vam T a’UamJ ’ !(M-al (Ual)' Tt -an(van)-Mout['Uau e 7'Uan]
4 M{ar- - an)a1(ve)). - -an(Va,) Moy, - ,van]>
| Param(a;) | --- | Param(a,)
The results Mout[Va,, - - ,Va,] Show the method M is executed with the parameter
values Vo, Vay, - '

3.5.2 Changing Parameter Values and References
We show how to change the parameter values.

Theorem 3.5.3 Changing Parameter Values

The parameter value in a; 18 changed to v by executing the parallel composition with

the process renew(a;,v).

We show the example in which the parameter value in @, is changed to v.

Example 3.5.4 Changing Parameter Values
The parameter value can be changed by executing the parallel composition with
M(ay, - ,a,) and renew(a;,v). We show calculating the process changing the pa-

rameter value below:

46 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

renew(a;,v) | M(a, - ,an)

!

!
I(M.al (Vgy). -+ - .an(van).Mom[val, co Vg ‘
| + M(ay - an)-01(Va,)- -0 (Van)-Mout[Vay, - - ,vanD

| Param(a;) | -+ | Param(a;){v/va,} | -+ | Param(an)
| If the method M is executed, then

M | l(]\/[.al(val)‘ T O (Ve)Mot Vay s+ Van]
- M(ar- - 80).01(ny)- 00 (Var) Mone[ti, ,van])
| (a}(vq,)-Param(a;) + @1[vq, |- Param(a;)) | ---
| (a}(v).Param(a;){v/ve, } + @] Param(a;){v/ve}) | -
|

(a\(va,)-Param(an) + @plva,].-Param(as))

!

|
—]\’[out[vala Uy 7'Uan] | !(M-a'l (Ua1)~ Tt -an(van)-]\/[out[vala o a'Uan]
+ M(al T an)-al(va1)~ Tt -an('van)-Mout[Ual: U ;Uan])

| Param(a) | -+ | Param(a;){v/ve} | -+ | Param(an)

The results shows that the method M is executed with the parameter values vq,, -+, v,

- and v,,. It means that the parameter value in a; is changed to v.

By using Theorems 3.5.1 and 3.5.3, the method is executed independently of the
delay of calculating the parameters.

We show how to change the references to parameters in Theorem 3.5.5.

3.5. THE PROPERTIES OF METHODS 47

Theorem 3.5.5 Changing References to Parameters
The references to parameters are changed by executing the parallel composition with

the output process having the name of the method and new references.

We show the example in which the method “M(ay,--- ,a,)” are changed the pa-

rameters to by, - - -, by.

Example 3.5.6 Changing References to Parameters
The references to parameters can be changed by executing the parallel composition

with M(ay,-- - ,a,) and M(by, -+ ,b,). We show calculating the process changing the

references to parameters below:
Mlby---ba] | M(ar,- -, a5)
ol
l

b1(Vay).+ -bn(Van) Mout[Var, -+ 1 Van] | M{ay,- -, an)

where in order to use the values from the the variables “by---b,”, this processes need
to ezecute the parallel composition with the processes Param(by) | --- | Param(b,),

then

b1 (Vay)- -+ -bn(Van)- Mout[Vay, -+, V) | M{a, -+, an) | (0 (vs,).Param(by)
+ bi[vy,). Param(b)) | --- | (b, (vs,). Param(b,) + by[us,].Param(b,))
| ,
l

Mouelon,, -+ 0] | M(ay, -+ ,an) | (¥ (vs,). Param(by) + E[vbi]'Pa’ra’m(bl)) | -
| (b, (v,)-Param(b,) + bn[vs, |- Param(b,)) ‘

48 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

The results shows that the method M is executed with the parameter values vy, - - , Vs, -

" It means that the references to parameters are changed.

3.6 Agent Model

The definitions in the section 3.2 and 3.4 provide the important properties shown in the
section 3.3 and 3.5. The properties show that the plan and the parameters of a method
can be dynamically changed.' However, it is difficult to use diréctly these definitions
on the computer and to provide the functions needed by agents. Hence, we define an
agent model to use the definitions and to provide the functions. We show the agent
model in Figure 3.5.

In this mbdel, the agent has many units. First, we explain the functions of the

© units.

Sensor Unit It receives the information from the environment and selects the infor-
mation needed by the agent, and then sends the selected information to “Plan
Generation Unit”. Moreover, it sends the requests to change the plans and the

parameters of the methods to “PiEngine”.

Execution Unit Tt receives the information about the methods and executes the
method according to the information from “PiEngine”, and then sends the results
of the execution to the environment. Moreover, it sends the requests to change

the plans and the parameters of the methods to “PiEngine”.

Plan Generation Unit It receives the information selected by “Sensor Unit” and

generates plans.

PiEngine It receives the plans from “Plan Generation Unit” and the requests to
change the plans and the parameters of the methods from “Sensor Unit” and
“Execution Unit” Moreover, it sends the informatidn about the methods with

the parameters to “Execution Unit”.

3.7. THE EXPERIMENTS BY USING THE DYNAMICALLY CHANGING ... 49

Secondly, we show the step to make a plan.
1. “Sensor Unit” receives the information from the environrﬁent.

2. “Sensor Unit” sends “Plan Generation Unit” the information which is useful for

the agent.

3. “Plan Generation Unit” makes a plan according to the information from “Sensor
Unit”. |
The agent acts by executing the methods in the plan. Under the condition, the

agentvcan execute the methods which are dynamically changed. Thirdly, we explain

how to execute and change the methods in the plans.

1. “Sensor Unit” and “Execution Unit” send the requests , which execute the meth-

ods and change the plan and the parameter of the methods, to “PiEngine”.

2. "‘PiEngine” calculates the information about the methods by using the requests
form the units and sends the information to“Execution Unit”. If necessary, the

plans and the methods are changed at the calculation.

3. “Execution Unit” executes the methods according to the information from “PiEngine”

and sends the results to the environment.

“Sensor Unit” and “Execution Unit” play a part of the wrapper adjusting the

information to the environment like as the environmental agent EAMMO [INH'98].

3.7 The Experiments by Using the Dynamically Chang-
ing Plans |

We explain the experiments by using the description of the plan defined in Section 3.2

and the model in Figure 3.5. These experiments are similar to the example in Section

3.1.

50 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

The purpose of these experiments is to check whether the plans and the model are

useful in a dynamically changing environment.

3.7.1 The Environment of the Experiments

We explain the environment of the experiments in Table 3.1.

3.7.2 The Ways of the Experiments

We have three experiments in the environment in Table 3.1.

Optimal plan Using the sensor at every time and forming the plan according to the

information. This environment is regarded as a static environment.

Normal plan Forming the plan according to the information from the sensor and a
new plan is formed after finishing the old plan. This environment is regarded as

a dynamically changing environment.

Reflective plan Forming the plan according to the information from the sensor and
it is changed according to the executions of the methods. This environment is

regarded as a dynamically changing environment.

3.7.3 The Results of the Experiments

We execute 10,000 experiments for each way of the experiments and calculate the
average of each 100 experiment. Hence, we get the 100 average of each way. This is
shown in Figure 3.6 and Table 3.2. The results in Figure 3.6 show the average steps
of each plan in the world which is 50 x 50 lattice(N =50), and in Table 3.2 show the
average steps in N = 50, N = 75 and N = 100.

From the results of the experiments the reflective plan has the advantage of the step
as compared with the normal plan. The results of the experiments show that reflective

plan is useful in the dynamically changing environment.

3.8. THE EXPERIMENTS BY USING THE DYNAMICALLY CHANGING ... 51

3.8 The Experiments by Using the Dynamically Chang
ing Methods

We explain the experimen’ﬁs to show efliciency of the definitions in Section 3.4. The
experiments are that the agent searches the route to escape from the fire-world. In
the fire-world the fire randomly moves and spreads and the agent can not predict how
the environment changes. Thus, the environment is regarded as dynamically changing

world.

3.8.1 The Environment of the Experiments

We explain the environment of the experiments. In the fire-world, there are four basic

elements to compose the environment.

Floor It is a basic element in the fire-world. The agent can pass it freely. However if

it burns fiercely, the agent can not pass it.

Wall It is the partition of the floors. The agent can not'pass it. However if it is burnt

out, the agent can pass it.

Door It is the conjunctive element between the rooms. If the agent want to move next

room, the agent pass it.

Exit It is the goal for the agents. It is basically the same “Door”. The difference

between the two is that it is not burnable.

The image of the environment is shown in Figure 3.7

3.8.2 The Change of the Environment

The change of the environment is determined by spreading the fire. Hence, we assume

the four properties of the element to determine how to spread the fire.

52 CHAPTER 3. AN AGENT MODEL FOR A DYNAMICALLY CHANGING ...

Power It shows the current heating power of the element. The endurance of the
element is reduced according to its value, If the degree of the power of an element
is higher, the surrounding elements easily start to burn and the agent can not

pass it.
Max Power It shows the max value of “Power”.

Flammability It shows the flammability of an element. If the degree of its flamma-

bility has the high value, it easily starts to burn.

Endurance It shows the endurance of an element. When the degree of its endurance

becomes zero, the condition means it burns out.

The environment is changed according to the assumptions. The next environment
is calculated by using the current environment and each element. The environment is
changed as soon as the calculation is finished. Hence, the agent cannot forecast when

the information about the new environment is given.

3.8.3 The Ways of the Experiments

The agent receives the information around it from the environment. However, this
information is not periodically provided. Hénce, the agent can not forecast when
the information of the environment is given. Under the condition, the agent should
concurrently and independently perform the calculation for the parameters and the
execution of the method. Moreover, the agent should change the reference to the
parameters.

We execute the experiment with two kinds of the agents. One of them has the all

function in Figure 3.5, the others don’t have “PiEngine”.

3.8.4 The Results of the Experiments

We execute 10,000 experiments for each agent. We calculate the average time and the

success rate to escape from the fire-world. This calculation is executed by each 100

3.9. CONCLUSIONS | B 53

experiment. Henee, we get 100 average times and 100 success rates. We show the
average time in Figure 3.8 and the success rate in Figure 3.9 and the total results in
Table 3.3. 7

These results mean that the agent with “PiEngine” can escape from the fire-world
in shorter time and with higher rate than without it. Hence, the descriptions are useful

in a real time, dynamically changing environment.

3.9 Conclusions

We have developed the agent model to use descriptions for agents’ plans and methods
based on ﬂ-calc‘ulus. The model and the descriptions provide the functions which an
agent needs to act in a real time, dynamically changing environment.

We have shown the properties of the descriptions as theorems and shown‘the ex-
amples. These properties have shown that the plan can be dynamically changed while
it is being executed and the method can be executed independently of the delay to.
calculate the parameters and can dynamically change the reference to the parameters.

We have shown two experiments. One of them is a tracing problefn and another
experiment is a fire-world problem. In the tracing problem, we have executed three
types experiments. One of them is in static environment and the others are in a
dynamically changing environment. The former is used for reference. The latter is used
to compare the reflective plan with the normal plan. The results of the experiments
have shown the reflective plan is useful in a dynamically changing environment. In the
fire-world problem, we have executed two types experiments. One agent is an agent
with the unit called “PiEngine” and another agent is an agent without it. The results
of the experiments have shown the developed descriptions of the method are useful in

a real time, dynamically changing environment.

Execute Fxecute Execute
émethodl ’Cgmethodg ’é methodg'
~O
O : State —— : Process li Request

Figure 3.1: Executing Plan(method;, methods, methods)

¥4

TTONIONVHO ATTVOINVNAJ V HOA THAOW LNAOV NV € H4LdVHO

Fxecute Substitute(methody)

émEthOdl

methody

methodg methods

Execute

Substituting method, for methods, methods

(O : State —— : Process li Request

Figure 3.2: Substituting method, for method, in Plan(method,, methods, methods)

SHYNOIA ANV SHTdVL

gg

Execute Add(methody)

method, - BExecute

»methodg »(l) methOdg |
O ~O

Adding method, before methods

O : State —» : Process l:‘Request

Figure 3.3: Adding method, before method,

9¢

TONIONVHD ATIVOINVNAA V HOA THAOW INHOV NV '€ H4.LdVHD

Execute , Delete

method; ymethods methodg
Deleting methody methods
(O : State — : Process li Request

Figure 3.4: Deleting method, from Plan(method,, methods, methods)

SHHNOIA ANV S