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Abstract

In recent years, the most popular acoustic model in automatic speech recognition (ASR)
and text-to-speech synthesis (TTS) is a hidden Markov model (HMM), due to its ease of
implementation and modeling flexibility. However, a number of limitations for modeling
sequences of speech spectra using the HMM have been pointed out, such as i) piece-wise
constant statistics within a state and ii) conditional independence assumption of state out-
put probabilities. To overcome these shortcomings, a variety of alternative acoustic mod-
els have been proposed. Although these models can improve model accuracy and speech
recognition performance, they generally require an increase in the number of model pa-
rameters. In contrast, dynamic features can also enhance performances of HMM-based
speech recognizers and has been widely adopted. It can be viewed as a simple mechanism
to capture time dependencies in the HMM. However, this approach is mathematically im-
proper in the sense of statistical modeling. Generally, the dynamic features are calculated
as regression coefficients from their neighboring static features. Therefore, relationships
between the static and dynamic features aredeterministic. However, these relationships
are ignored and the static and dynamic features are modeled as independent statistical
variables in the HMM framework. Ignoring these interdependencies allows inconsistency
between the static and dynamic features when the HMM is used as a generative model in
the obvious way.

In the present dissertation, a novel acoustic model, named atrajectory HMM, is described.
This model is derived from the HMM whose state output vector includes both static and
dynamic features. By imposing explicit relationships between the static and dynamic fea-
tures, the HMM is naturally translated into a trajectory model. The above inconsistency
and limitations of the HMM can be alleviated by the trajectory HMM. Furthermore, pa-
rameterization of the trajectory HMM is completely the same as that of the HMM with
the same model topology. Therefore, any additional parameters are not required. In the
present dissertation, model training algorithms based on a Viterbi approximation and a
Markov chain Monte Carlo (MCMC) method and a search algorithm based on a delayed
decision strategy are also derived. Results of continuous speech recognition and speech
synthesis experiments show that the trajectory HMM can improve the performance both
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of speech recognizers and synthesizers.

Keywords: Speech recognition, speech synthesis, acoustic modeling, hidden Markov
models, dynamic features, trajectory model, Viterbi approximation, Markov chain Monte
Carlo
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Abstract in Japanese

計算機の高速化，大規模音声コーパスの整備などに伴い，大語彙連続音声認識に関
する研究が盛んに行われている．音声認識における代表的な枠組みとして，音響モ
デルに統計モデルの一種である隠れマルコフモデル (Hidden Markov Model; HMM)，
特徴ベクトルにMFCCとその動的特徴量 (∆MFCC，∆2MFCC)を用いる枠組みがあ
る．HMM は，学習データに基づきパラメータを推定する実現容易なアルゴリズム
が存在する，トポロジーを認識対象に応じて設計できる，現実的な計算量で学習・
認識を行えるなどの特徴があり，十分な学習データ量が与えられれば高い認識性能
を示すことが知られている．

しかしながら，HMMを用いた音声スペクトル系列のモデル化に関する問題点が，こ
れまで幾つか指摘されている．本論文で取り上げる問題点は以下の二つである．

1. HMMは，定常とみなせる短区間を表現する状態を連結することで，音声スペ
クトルの動的特性をモデル化する．このため，各状態内では出力確率分布が一
定であり，状態内での時間的変化をモデル化できない．

2. 各時刻における観測ベクトルの出力確率は，その時刻に滞在する状態にのみ
依存し，前後の時刻に滞在する状態には依存しない．これは，独立性の仮定
(Conditional Independence Assumption)と呼ばれる．

これらの問題を克服するため，これまでに様々な音響モデルが提案されており，性
能の向上が報告されているが，HMM と比較してパラメータ数や計算量が増加する
場合が多い．

一方，各時刻における音声特徴量だけでなく，その時間微分に対応する動的特徴量
を利用することにより，認識性能が改善することがよく知られている．動的特徴量
の利用は，HMM の枠組みの中で時間方向の依存性をモデル化するための一手法と
みなすことができる．一般に動的特徴量は，前後数フレームの静的特徴量から回帰
係数として計算される場合が多い．このため，静的特徴量・動的特徴量間には，線
形変換で表現できる確定的な関係が存在するが，これまでの枠組みではこの関係を
無視してモデル化を行っていた．
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本論文では，静的及び動的特徴を含む特徴ベクトルを状態出力ベクトルとするHMM
に対して，静的・動的特徴間の関係を明示的に導入し，HMM を再定式化する．そ
の結果，HMM はトラジェクトリモデル (トラジェクトリ HMM) として定義できる
ことを示す．トラジェクトリHMM は，先にあげた通常のHMM の問題点を避ける
ことができる．また，トラジェクトリHMM のパラメータ構造は通常のHMM と同
一であり，同じトポロジーであればそのパラメータ数はHMM と完全に等しい．

また，トラジェクトリHMM の学習アルゴリズムとして，Viterbi近似及びマルコフ
連鎖モンテカルロ (MCMC)に基づく手法を導出した．特定話者連続音声認識実験
においてトラジェクトリHMM の性能を評価したところ，HMM と比較して最大約
50%の誤り削減率が得られた．また，トラジェクトリHMM をHMM に基づく音声
合成システムの音響モデルに適用したところ，合成音の自然性が大きく改善するこ
とが確認された．

以上のように本論文では，静的・動的特徴間の関係をHMM に明示的に導入するこ
とにより新たな統計モデルを導出し，音声認識・音声合成における音響モデルとし
て有用であることを示す．
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Chapter 1

Introduction

Since speech is obviously one of the most important ways for human to communicate,
there have been a great number of efforts to incorporate speech into human-machine
communication environments. As computers become more functional and prevalent, de-
mands for technologies in speech processing area is increasing to establish high-quality
human-machine communication with voice. These technologies will also be applicable
to human-to-human communication.

Automatic speech recognition (ASR) and text-to-speech synthesis (TTS) are fundamental
technologies for realizing speech-oriented interfaces. In recent years, these technologies
are used in real-world applications, such as car navigation, information retrieval over the
telephone, voice mail, or speech-to-speech translation system.

In the early years of speech technologies, rule-based systems were mainly used. How-
ever, in these days statistical approaches based on hidden Markov models (HMMs) have
been dominant both in ASR [1] and TTS [2–5], due to their ease of implementation and
modeling flexibility.

In this approach, the HMMs are used for modeling sequences of speech spectra. How-
ever, a number of limitations of the HMM have been pointed out [6–8]. In the present
dissertation, following two limitations are considered:

• One of the underlying assumptions in the HMM is that observation vector se-
quences are quasi-stationary and each stationary part can be represented by a single
state of the HMM. The statistics of each state does not vary dynamically. There-
fore, intra-state time-dependency cannot be represented. Although this assumption
might be satisfied in reading speech, it is not valid in spontaneous speech because
they are dynamically affected by various factors such as speaking rate.

1



• The output probability of an observation vector depends only on the current state,
neither on any other states nor observations. This is generally called asstate condi-
tional independence assumption.

To overcome these shortcomings of the HMM, a variety of alternative acoustic models,
such as HMMs with polynomial regression functions [9–11], hidden dynamic models
and its variants [12–19], frame-correlated HMMs [20–25], partly hidden Markov mod-
els [26], stochastic segment model [27], segmental HMMs [28–30], dynamical system
models [31], switching linear dynamical systems [32, 33], buried Markov models [34],
dynamic Bayesian networks [35], temporally varying means and precisions [36] etc., have
been proposed. Most of them have attempted to capture explicit dynamics of speech pa-
rameter trajectories. Although the above models can improve model accuracy and speech
recognition performance, generally an increase in the number of model parameters and
computational complexity is required.

Alternatively, the use of dynamic features (e.g., delta and delta-delta cepstral coefficients)
[37,38] can also enhance the performance of HMM-based speech recognizers [39,40]. It
can be considered as a simple mechanism to capture time dependencies. However, it has
been thought of as an ad hoc rather than an essential solution. Generally, the dynamic
features are calculated as regression coefficients from their neighboring static features.
Therefore, relationships between the static and dynamic features aredeterministic. How-
ever, these relationships are ignored and the static and dynamic features are modeled as
independent statistical variables. Ignoring these interdependencies allows inconsistency
between the static and dynamic features when the HMM is used as a generative model in
the obvious way.

In the present dissertation, a novel acoustic model is derived by reformulating the HMM
whose state output vector includes both static and dynamic feature vectors. By imposing
explicit relationships between static and dynamic features, the HMM is naturally trans-
lated into a trajectory model, referred to astrajectory HMM in the present dissertation.
The trajectory HMM can overcome the above limitations of the HMM without any ad-
ditional parameters. In the present dissertation training algorithms based on a Viterbi
approximation and a Markov chain Monte Carlo (MCMC) method are derived. A new
searching algorithm used both in training and recognition are also presented.

The formulation of the trajectory HMM is closely related to a technique for speech pa-
rameter generation from the HMM [41–43], in which the speech parameter sequence is
determined so as to maximize its output probability for the HMM under the constraints be-
tween static and dynamic features. While the speech parameter generation algorithm was
derived to construct HMM-based speech synthesizers [5], which can synthesize speech
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with various voice characteristics [44–46], the generation algorithm was also applied to
speech recognition [47,48].

The rest of the present dissertation is organized as follows. The next chapter introduces
basic theories of the HMM. Chapters 3 and 4 describe statistical speech recognition and
synthesis framework based on the HMM, respectively. Chapter 5 reformulates the HMM
by imposing explicit relationship between static and dynamic features and defines the
trajectory HMM. Relationships between the trajectory HMM and other techniques are
also discussed in this chapter. Chapter 6 shows the training algorithms for the trajectory
HMM. Chapter 7 describes the new search algorithm based on a delayed decision strat-
egy. Results of speech recognition and synthesis experiments are shown in Chapter 8.
Concluding remarks and future plans are presented in the final chapter.
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Chapter 2

Hidden Markov Models

Hidden Markov models (HMMs) are one of widely used statistical models for repre-
senting time series by well-defined algorithms. They have successfully been applied to
acoustic modeling both in speech recognition and synthesis. This chapter describes its
basic theories, how to calculate output probabilities of an observation vector sequence,
and how to estimate its parameters.

2.1 Definition of HMM

An HMM [49–51] is a finite state machine which generates a sequence of discrete time
observations. At each time unit (i.e., frame), it changes states according to its state tran-
sition probability distributions, and then generates an observation at timet, ot, according
to its output probability distribution of the current state. Hence, the HMM is a doubly
stochastic random process model.

An N-state HMM is specified by state transition probability distributions
{
ai j

}N
i, j=1

, output

probability distributions
{
bj (ot)

}N
j=1

, and initial state probability distributions
{
πi

}N
i=1

. For
convenience, the compact notation

Λ =

[{
ai j

}N
i, j=1

,
{
bj (·)
}N

j=1
,
{
πi

}N
i=1

]
(2.1)

is used to indicate the parameter set of the model.

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic
model, in which every state of the model could be reached from every other state of
the model in a single step, and Fig. 2.1(b) shows a 3-state left-to-right model, in which
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(a) A 3-state ergodic model (b) A 3-state left-to-right model

b1 (ot)

b2 (ot) b3 (ot)

b3 (ot)b1 (ot) b2 (ot)

Figure 2.1: Examples of HMM structure.

the state index increases or stays the same as time increases. Generally, the left-to-right
HMMs are used to model speech parameter sequences since they can appropriately model
signals whose properties change in a successive manner.

The output probability distributions
{
bj (·)
}N

j=1
can be discrete or continuous depending

on the observations. Usually in continuous distribution HMM (CD-HMM), each output
probability distribution is modeled by a mixture of multivariate Gaussian components [52]
as follows:

bj (ot) =
M∑

m=1

w jm · N
(
ot

∣∣∣ µ jm,Σ jm

)
, (2.2)

whereM is the number of Gaussian components,w jm, µ jm, Σ jm are the mixture weight,
mean vector, and covariance matrix of them-th Gaussian component of thej-th state,
respectively. Each Gaussian component is defined by

N
(
ot

∣∣∣ µ jm,Σ jm

)
=

1√
(2π)K

∣∣∣Σ jm

∣∣∣
exp

{
−1

2

(
ot − µ jm

)>
Σ−1

jm

(
ot − µ jm

)}
, (2.3)

where symbol> means transpose of vector or matrix, andK is the dimensionality of an
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observation vectorot. For each state,
{
w jm

}M
m=1

should satisfy the stochastic constraint

M∑

m=1

w jm = 1, 1 ≤ j ≤ N (2.4)

w jm ≥ 0,
1 ≤ j ≤ N
1 ≤ m≤ M

(2.5)

so that
{
bj (·)
}N

j=1
are properly normalized, i.e.,

∫

RK
bj (ot) dot = 1. 1 ≤ j ≤ N (2.6)

2.2 Calculating output probability

2.2.1 Total output probability of an observation vector sequence from
an HMM

When a state sequence is determined, a joint probability of an observation vector sequence
o= {o1, o2, . . . , oT} and a state sequenceq = {q1,q2, . . . , qT}, is calculated by multiplying
the state transition probabilities and state output probabilities for each state, that is,

p (o, q | Λ) =
T∏

t=1

aqt−1qtbqt (ot) , (2.7)

whereaq0q1 denotesπq1. The total output probability of the observation vector sequence
from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

p (o | Λ) =
∑

all q

T∏

t=1

aqt−1qtbqt (ot) . (2.8)

This definition involves on the order of 2T · NT calculation, since at everyt = 1, 2, . . . ,T,
there areN possible states that can be reached (i.e., there areNT possible state sequences),
and for each term in the sum of Eq. (2.8). This calculation is computationally infeasible,
even for small values ofN andT; e.g., forN = 5 (states),T = 100 (observations), there
are on the order of 2· 100 · 5100 ≈ 1072 computations. Fortunately, there is an efficient
algorithm to calculate Eq. (2.8) using forward and backward procedures.
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2.2.2 Forward-Backward algorithm

Forward variablesαt(i) are defined as

αt(i) = p (o1, o2, . . . , ot,qt = i | Λ) (2.9)

that is, the probability of a partial observation vector sequence from time 1 tot and the
i-th state at timet, given the HMMΛ. We can calculateαt(i) recursively as follows:

1. Initialization

α1(i) = πibi (o1) , 1 ≤ i ≤ N (2.10)

2. Recursion

αt( j) =


N∑

i=1

αt−1(i)ai j

 bj (ot) ,
1 ≤ j ≤ N
t = 2, . . . ,T

(2.11)

3. Termination

p (o | Λ) =
N∑

i=1

αT(i). (2.12)

As the same way as the forward algorithm, backward variablesβt(i) are defined as

βt(i) = p (ot+1, ot+2, . . . , oT | st = i,Λ) , (2.13)

that is, the probability of a partial vector observation sequence from timet to T, given the
i-th state at timet and the HMMΛ. The backward variables can also be calculated in a
recursive manner as follows:

1. Initialization

βT(i) = 1, 1 ≤ i ≤ N (2.14)

2. Recursion

βt(i) =
N∑

j=1

ai j bj (ot+1) βt+1( j),
1 ≤ i ≤ N
t = T − 1, . . . , 1.

(2.15)

3. Termination

p (o | Λ) =
N∑

i=1

β1(i). (2.16)
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Figure 2.2: Implementation of the computation using forward-backward algorithm in
terms of a trellis of observations and states.

The forward and backward variables can be used to compute the total output probability:

p (o | Λ) =
N∑

j=1

αt( j)βt( j). 1 ≤ t ≤ T (2.17)

The forward-backward algorithm is based on the trellis structure shown in Fig. 2.2. In this
figure, the x-axis and y-axis represent observations and states of an HMM, respectively.
On the trellis, all possible state sequences will remerge into theseN nodes no matter how
long the observation sequence. In the case of the forward algorithm, at timet = 1, we
need to calculate values ofα1(i), 1 ≤ i ≤ N. At times t = 2, 3, . . . ,T, we need only
calculate values ofαt( j), 1 ≤ j ≤ N, where each calculation involves only theN previous
values ofαt−1(i) because each of theN grid points can be reached from only theN grid
points at the previous time slot. As a result, the forward-backward algorithm can reduce
order of probability calculation.
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2.3 Searching optimum state sequence

The single optimum state sequenceq̂ = {q̂1, q̂2, . . . , q̂T} of lengthT for a given observation
vector sequenceo= {o1, o2, . . . , oT} is also useful for various applications (e.g., decoding,
initializing HMM parameters).

The optimum state sequenceq̂ can be obtained by a manner similar to the forward algo-
rithm, which is often referred to as the Viterbi algorithm [53]. Letδt (i) be the likelihood
of the most likely state sequence ending in thei-th state at timet

δt(i) = max
q1,...,qt−1

p (q1, . . . ,qt−1,qt = i, o1, . . . , ot | Λ) , (2.18)

andψt (i) be the array to keep track. The complete procedure for finding the optimum
state sequence can be written as follows:

1. Initialization

δ1 (i) = πibi (o1) , 1 ≤ i ≤ N (2.19)

ψ1 (i) = 0, 1 ≤ i ≤ N (2.20)

2. Recursion

δt ( j) = max
i

[
δt−1 (i) ai j

]
bj (ot) ,

1 ≤ i ≤ N
t = 2,3, . . . ,T

(2.21)

ψt ( j) = arg max
i

[
δt−1 (i) ai j

]
,

1 ≤ i ≤ N
t = 2,3, . . . ,T

(2.22)

3. Termination

P̂ = max
i

[δT (i)] , (2.23)

q̂T = arg max
i

[δT (i)] . (2.24)

4. Back tracking

q̂t = ψt+1 ( ˆqt+1) , t = T − 1, . . . ,1. (2.25)

It should be noted that the Viterbi algorithm is similar in the implementation to the forward
calculation of Eqs. (2.10)–(2.12). The major difference is the maximization in Eq. (2.21)
over previous states, which is used in place of the summation in Eq. (2.11). It also should
be clear that a trellis structure efficiently implements the computation of the Viterbi pro-
cedure.
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2.4 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the
maximum likelihood (ML) criterion, that is, to obtainΛ which maximizes its likelihood
p (o | Λ) for a given observation sequenceo, in a closed form. Since this problem is a high
dimensional nonlinear optimization problem, and there will be a number of local maxima,
it is difficult to obtainΛ which globally maximizesp (o | Λ). However, the model param-
eter setΛ locally maximizesp (o | Λ) can be obtained using an iterative procedure such
as the expectation-maximization (EM) algorithm [54] (which is often referred to as the
Baum-Welch algorithm [55]), and the obtained parameter set will be a good estimate if a
good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the
HMM with discrete output distributions can also be derived in a straightforward manner.

2.4.1 Q-function

In the EM algorithm, an auxiliary functionQ(Λ, Λ̂) of the current parameter setΛ and the
new parameter set̂Λ is defined as follows:

Q(Λ, Λ̂) =
∑

all q

p(q | o,Λ) log p(o, q | Λ̂). (2.26)

Here, each mixture of Gaussian components is decomposed into a substate, andq is rede-
fined as a substate sequence, i.e.,

q = {(q1, s1) , (q2, s2) , . . . , (qT , sT)} , (2.27)

where(qt, st) represents being in thest-th substate (Gaussian component) of theqt-th state
at timet.

At each iteration of the procedure, the current parameter setΛ is replaced by the new
parameter set̂Λ which maximizesQ(Λ, Λ̂). This iterative procedure can be proved to
increase likelihoodp (o | Λ) monotonically and converge to a certain critical point, since
it can be proved that theQ-function satisfies the following theorems:

• Theorem 1

Q(Λ, Λ̂) ≥ Q(Λ,Λ) ⇒ p(o | Λ̂) ≥ p(o | Λ) (2.28)
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• Theorem 2
The auxiliary functionQ(Λ, Λ̂) has the unique global maximum as a function ofΛ,
and this maximum is the one and only critical point.

• Theorem 3
A parameter setΛ is a critical point of the likelihoodp(o | Λ) if and only if it is a
critical point of theQ-function.

2.4.2 Maximization ofQ-function

According to Eqs. (2.2) and (2.7), logp (o, q | Λ) can be written as

log p (o, q | Λ) = log p (o | q,Λ) + logP (q | Λ) , (2.29)

log p (o | q,Λ) =
T∑

t=1

logN
(
ot

∣∣∣ µqt st ,Σqt st

)
, (2.30)

logP (q | Λ) = logπq1 +

T∑

t=2

logaqt−1qt +

T∑

t=1

logwqt st . (2.31)

Hence,Q-function (Eq. (2.26)) can be rewritten as

Q(Λ, Λ̂) =
N∑

i=1

p (o, q1 = i | Λ) · logπi (2.32)

+

N∑

i=1

N∑

j=1

T−1∑

t=1

p (o, qt = i,qt+1 = j) · logai j (2.33)

+

N∑

i=1

M∑

m=1

T∑

t=1

p (o, qt = i, st = m | Λ) · logwim (2.34)

+

N∑

i=1

M∑

m=1

T∑

t=1

p (o, qt = i, st = m | Λ) · logN (ot | µim,Σim ) . (2.35)

The parameter setΛ which maximizes the above equation subject to the stochastic con-
straints

N∑

i=1

πi = 1, (2.36)

N∑

j=1

ai j = 1, 1 ≤ i ≤ N (2.37)

M∑

m=1

wim = 1, 1 ≤ i ≤ N (2.38)
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can be derived by Lagrange multipliers (Eqs. (2.32)–(2.33)) or differential calculus (Eq. (2.35))
as follows [56]:

πi = γ1(i), 1 ≤ i ≤ N (2.39)

ai j =

T∑

t=2

ξt−1(i, j)

T∑

t=2

γt−1(i)

,
1 ≤ i ≤ N
1 ≤ j ≤ N

(2.40)

wim =

T∑

t=1

γt(i,m)

T∑

t=1

γt(i)

,
1 ≤ i ≤ N
1 ≤ m≤ M

(2.41)

µim =

T∑

t=1

γt(i,m) · ot

T∑

t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m≤ M

(2.42)

Σim =

T∑

t=1

γt(i,m) · (ot − µim) (ot − µim)>

T∑

t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m≤ M

(2.43)

whereγt(i), γt(i,m), andξt (i, j) are the probability of being in thej-th state at timet, the
probability of being in them-th substate of thei-th state at timet, and the probability of
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being in thei-th state at timet and j-th state at timet + 1, respectively, that is

γt (i) = p (o, qt = i | Λ)

=
αt(i)β(i)

N∑

j=1

αt( j)βt( j)

,
1 ≤ i ≤ N
t = 1, . . . ,T

(2.44)

γt (i,m) = p (o, qt = i, st = m | Λ)

=
αt(i)β(i)

N∑

j=1

αt( j)βt( j)

· wimN (ot | µim,Σim )
M∑

k=1

wikN (ot | µik,Σik )

,

1 ≤ i ≤ N
1 ≤ m≤ M
t = 1, . . . ,T

(2.45)

ξt(i, j) = p (o, qt = i,qt+1 = j | Λ)

=
αt(i)ai j bj (ot+1) βt+1( j)

N∑

l=1

N∑

n=1

αt(l)alnbn (ot+1) βt+1(n)

.
1 ≤ i ≤ N
t = 1, . . . ,T

(2.46)

2.5 Summary

This chapter has outlined the basic theories of the hidden Markov models (HMMs) and
described its algorithms for calculating the output probability (forward-backward algo-
rithm), searching the optimum state sequence (Viterbi algorithm), and estimating its pa-
rameters (EM algorithm). Further chapters will apply the HMMs for acoustic modeling
both in speech recognition (Chapter 3) and synthesis (Chapter 4).
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Chapter 3

HMM-based speech recognition

Most of the current speech recognition systems uses HMMs as its acoustic model. This
chapter describes statistical speech recognition framework based on the HMM. General
speech recognition systems may be divided into five basic blocks: the front-end, acoustic
models, language models, lexicon and search algorithm. These blocks are introduced in
more detail in the following sections.

3.1 Statistical speech recognition

The goal of large vocabulary continuous speech recognition (LVCSR) systems is to take
an acoustic waveform as its input and generate a transcription of the words being uttered.
First the acoustic waveform is recorded and sampled to allow processing by a digital
device. Then front-end processor converts the sampled waveform into an observation
vector sequenceo = {o1, . . . , oT} by removing redundant or unimportant informations
such as fundamental frequencies or noises. The brief overview of the front-end processor
for speech recognition will be discussed later in Section 3.2. There is a considerable
amount of variability in observation vector sequences even if the same words were uttered
by the same speaker. Hence a statistical approach is adopted to map the observation vector
sequence into the most likely word sequence. The speech recognizer usually choose the
word sequence,w = {w1, . . . ,wL}, with the maximum a posteriori (MAP) probability
given the observation sequence as follows:

ŵ = arg max
w

P (w | o) (3.1)

Recently, discriminative models such as maximum entropy Markov models (MEMMs)
[57] or conditional random fields (CRFs) [58] have been applied for modelingP (w | o)
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Figure 3.1: General statistical speech recognition framework.

directly [59,60]. However, applying the discriminative models for LVCSR is still difficult
due to variabilities of the observation vector sequences and the vast number of possible
word sequences. Therefore, most of the current speech recognition systems uses gener-
ative models rather than the discriminative ones. By using Bayes’ rule, Eq. (3.1) can be
written as

P (w | o) =
p (o | w) P (w)

p (o)
. (3.2)

Sincep (o) is independent of the word sequencew, the MAP decoding rule of Eq. (3.1) is

ŵ = arg max
w

p (o | w) P (w) . (3.3)

A general statistical speech recognition system illustrated in Fig. 3.1 may be described
by the formulation in Eq. (3.3). The system consists of five main blocks: the front-end,
acoustic models, language models, pronunciation lexicon and search algorithm.

The first term in Eq. (3.3),p (o | w), corresponds to the acoustic model (second block), as
it estimates the probability of an observation vector sequenceo, conditioned on the word
sequencew. The way in which we computep (o | w), for large vocabulary continuous
speech recognition, is to build statistical models for sub-word speech units, build up word
models from these sub-word speech units using a pronunciation lexicon (fourth block),
and then postulate word sequences and evaluate the acoustic model probabilities via con-
catenated word models. It is possible to use any kind of generative models for modeling
p (o | w). Currently, most of speech recognition systems uses context-dependent sub-word
HMMs as its acoustic model. The HMM-based acoustic modeling will be discussed later
in Section 3.3.

The second term in Eq. (3.3),P (w), corresponds to the language model (third block), as it
describes the probability associated with a postulated sequence of words. Such language
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models can incorporate both syntactic and semantic constraints of the language and the
recognition task. Often, when only syntactic constraints are used, the language model is
called a grammar and may be of the form of a formal parser and syntax analyzer, and
word N-gram model, or a word pair grammar of some type. Generally such language
models are represented in a finite state network so as to be integrated into the acoustic
model in a straightforward manner. The wordN-gram model based language modeling is
also briefly reviewed later in Section 3.4.

The final block, the search algorithm, implements the maximization in Eq. (3.3).

3.2 Front-ends

Comparing the sampled acoustic waveforms is not easy due to varying speaker and acous-
tic characteristics. Instead, the spectral shape of the speech signal conveys most of the sig-
nificant information [61]. Acoustic front-ends in speech recognizers produce sequences of
observation vectors which represent the short-term spectrum of the speech signal. There
are a lot of techniques for parameterizing speech spectra, i.e., linear prediction coeffi-
cients (LPC) [62, 63], line spectral pair (LSP), cepstrum [64], mel-cepstrum [65], and
so on. In most of the current speech recognition systems, mel filterbank cepstral coef-
ficients (MFCC) [66] or perceptual linear prediction (PLP) [67] is commonly used. In
all cases the speech signal is assumed to be quasi-stationary so that it can be decided
into short frames, often 20–30ms. In each frame period a new parameterized short-time
spectra vector is produced by analyzing a speech segment. In a typical final step, first
and second-order dynamic features (delta and delta-delta coefficients) are appended to
the acoustic vector [37–40]. Usually, the delta and delta-delta coefficients are calculated
as regression coefficients from their neighbouring static features as follows:

∆ct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, ∆2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ, (3.4)

wherect, ∆ct, and∆2ct are static, delta, and delta-delta coefficients at timet, respectively,
and
{
w(d)(τ)

}
d=1,2 τ=−L(d)

− ,...,L(d)
+

are regression window coefficients to calculate thed-th order

dynamic feature. As a result, the observation vector at timet, ot, consists of static and
dynamic features as

ot =
[
c>t ,∆c>t ,∆

2c>t
]>
. (3.5)
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3.3 HMM-based acoustic modeling

The HMMs may be used to provide the estimates ofp (o | w) in the speech recognizers.
For isolated word recognition with sufficient training data, it is possible to build an HMM
for each word. However, for LVCSR tasks it is unlikely that there are enough training
examples of each word in the dictionary. Therefore, sub-word units such as phone or
syllable have to be used. Usually an HMM is trained for each phone. The phone model
set does not have to represent every phone in the language and it often includes silence
and short pause models. The chosen phone set depends on the availability of sufficient
training data. The pronunciation lexicon is used to map word sequences to phone se-
quences. The brief overview of pronunciation lexicon will be shown later in Section 3.5.
The HMMs corresponding to the phone sequence may then be concatenated to form a
composite model representing words and sentences.

When the HMMs are trained for the set of phones, it is referred to as a monophone or
context-independent system. However, there is a considerable amount of variation be-
tween realizations of the same phone depending on the succeeding and preceding phones.
This effect is called co-articulation and is due to the inertia restricting any abrupt move-
ment of the articulators. Context dependent phone models acknowledge the influence of
the surrounding phones on the realization. Commonly used context-dependent phones
are triphones which take the preceding and succeeding phones into account. The number
of states, and model parameters, is significantly higher in a triphone system compared to
a monophone system. It is therefore unlikely that sufficient training data will be avail-
able for reliable parameter estimation. The most common solution is to share some of
the model parameters by tying the state output probability distributions among different
models. An important question is how to determine when states should share the same
parameters.

A phonetic decision tree [68–70] is often used to construct state tying structure in context-
dependent systems. Figure 3.2 shows an example of a decision tree where binary ‘yes/no’
questions are asked. All instances of a phone are first pooled in the root node and the
state clusters are split based on contextual questions. The splitting will terminate if the
number of training data examples per state falls below a threshold. Expert knowledge may
be incorporated into the decision tree and every state is guaranteed to have a minimum
amount of training data. A disadvantage of decision tree-based state clustering is that the
splits maximize the likelihood of the training data locally [71,72].
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Figure 3.2: Example of a phonetic decision tree for triphone models.

3.4 Word N-gram-based language modeling

The language model provides the estimates ofP (w) in the speech recognizers. Using
chain rule, this can be expressed as

P (w) =
L∏

l=1

P (wl | wl−1, . . . ,w1) . (3.6)

To reduce the number of parameters, different histories may be divided into equivalence
class using a functionh (wl−1, . . . ,w1). The simplest, commonly used, equivalence classes
are defined by truncating the history toN−1 words. These wordN-gram language models
may be defined as

P (w) =
L∏

l=1

P (wl | wl−1, . . . ,wl−N+1) . (3.7)

Typical values areN = 2,3 which are called bi-gram or trigram models, respectively. The
ML estimation of theN-grams are obtained simply by counting relative frequencies from
real, often domain specific, text documents. For a vocabulary ofV words there are still
VN N-gram models. Some of the word sequences may be so absurd that zero probabilities
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may be assigned. However, for given a finite training data, valid word sequences may
also be assigned a zero probability. A number of smoothing schemes such as discounting,
backing off and deleted interpolation have been proposed [73].

There is often a mismatch between the contribution of the acoustic model and language
model in the speech recognizers. This is due to different dynamic ranges of the discrete
probability mass function,P (w), estimated from a finite set of text documents and the
acoustic likelihood score,p (o | w), obtained from high dimensional observation densi-
ties. To compensate this mismatch many systems raise the language model probability of
the power of a constant called the grammar scale factor. The speech recognizers also tend
to favor short words resulting in many insertion errors. This is often compensated for by
introducing an insertion penalty which scales down the total scorep (o | w) P (w) depend-
ing on the number of hypothesized words in the sequence. By taking these modifications
into account in Eq. (3.3), a practical speech recognizer uses

ŵ = arg max
w

[
log {p (o | w)} + α log {P (w) + βL}

]
(3.8)

whereα is the grammar scale factor,β is the insertion penalty andL is the total number
of words in the hypothesis. The parametersα andβ are empirically set. The terms inside
the maximization are often called the acoustic and language model scores. Logarithms
are also taken to deal with the high dynamic range and prevent underflow due to repeated
multiplications of values between zero and one.

3.5 Pronunciation lexicon

The pronunciation lexicon contains a set of the HMMs for each word in the vocabulary.
Each word is defined by a pronunciation (or a set of pronunciations) obtained from a
dictionary. The word HMM for a pronunciation of a word is the concatenation of the
relevant sequence of basic sub-word HMMs. For computational efficiency, the lexicon
is stored as a tree, where each node in the tree corresponds to an instantiation of a basic
sub-word HMM. Tree-structured lexicon have been used by various researchers. This
allows pronunciations with similar heads to share memory and computation when being
evaluated. Owing to the tree structure, different pronunciations of a word are stored as
separate lexical items. The primary disadvantage of using a tree-based lexicon is that it
may not be an efficient approach to representing multiple pronunciations where there are
only minor differences between pronunciations.
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3.6 Search algorithms

The maximization problem in Eq. (3.3) can be compactly stated as follows:

Given a observation vector sequence, how can we determine the word
sequence yielding the maximum combined probability from the acoustic and
language model?

To solve this problem, the following problems must be resolved:

1. Usually the number of words in given utterance is unknown.

2. Usually word boundaries in given utterance are also unknown.

3. The word boundaries are often fuzzy.

4. For a set ofV word-reference patterns, and for the given number of words in the
utterance,L, there areVL possible combinations of composite matching patterns;
for anything but extremely small values ofV andL the exponential number of com-
posite matching patterns implies that the continuous speech recognition problem
cannot be solved by exhaustive means.

Hence, an efficient search algorithms is required to solve continuous speech recognition
problem. Fortunately, several efficient algorithms have been proposed that solve maxi-
mization problem in Eq. (3.3) without the exponential growth in computation. Most of
these algorithms can categorized into two basic classes: time-synchronous Viterbi decod-
ing [74] and stack decoding [75]. In its basic form, the Viterbi decoding may be regarded
as an efficient recursive algorithm that performs an exhaustive search. On the other hand,
stack decoding is an optimal, best-first search which is guided by a heuristic. However,
for either of these algorithms to be computationally feasible for continuous speech recog-
nition, the effective size of the search space must be reduced and the search algorithm
must be efficient as possible. This may be achieved through pruning, fast lookahead or
elimination of any repeated computations.

3.7 Summary

This chapter has outlined the statistical speech recognition framework and reviewd its
main blocks: front-ends, HMM-based acoustic modeling, wordN-gram-based language
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modeling, and search algorithm. The next chapter will describe statistical speech synthe-
sis framework using the HMM.
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Chapter 4

HMM-based speech synthesis

In the previous chapter, statistical framework for speech recognition system using the
HMM was described. This chapter describes general statistical speech synthesis frame-
work and speech parameter generation algorithm which is used in the HMM-based speech
synthesis system.

4.1 Statistical speech synthesis

Text-to-speech synthesis can be viewed as an inverse procedure of speech recognition.
The goal of a text-to-speech synthesizer is to take a word sequence as its input and pro-
duce an acoustic speech waveform. In a typical system, first given word sequencew is
processed in a text analysis part. In this part, contextual informations (e.g., accent, lexi-
cal stress, part-of-speech, phrase boundary, etc.) are assigned tow by a natural language
processor. Secondly,w is mapped into corresponding sub-word sequence with contextual
informationsu. Finally, speech synthesizer generates speech waveform for givenu.

Most of state-of-the-art speech synthesis systems is based on a large amount of speech
data. This type of system is generally called as acorpus-based speech synthesis system
[76]. This approach makes it possible to dramatically improve the naturalness of synthetic
speech compared with the early speech synthesis systems such as rule-based one.

One of the major approaches in the corpus-based speech synthesis area is sample-based
system, such asunit-selection and concatenation[77–79]. In this system, speech corpus
are segmented into small units, such as HMM state [4], half-phone [80], phone [81],
diphone, syllable, etc. and stored. Then a unit sequence corresponding to given sub-
word sequence is selected by minimizing total cost consisted of target and concatenation

22



Training of HMM

context-dependent HMMs

& duration models

Training part

Synthesis part

Label

Spectral

parameters

Excitation

parameters

Parameter generation

from HMM

TEXT

Label

Text analysis

SYNTHESIZED

SPEECH

Excitation

generation

Synthesis

filter

Spectral

parameters

Excitation

parameters

Speech signal

Spectral

parameter

extraction

Excitation

parameter

extraction

SPEECH

DATABASE

Figure 4.1: An overview of a typical HMM-based speech synthesis system.

costs [78]. These cost functions have been formed from a variety of heuristic or ad hoc
quality measures based on features of the acoustic signal and given text. Recently, target
and concatenation cost functions based on a statistical model have been proposed and
investigated [82–84].

Another major approach is statistics-based system, such asHMM-based speech synthe-
sis [5]. This system generates speech parameter sequenceo = {o1, o2, . . . , oT} with the
maximum a posteriori (MAP) probability given the sub-word sequenceu as follows:

ô= arg max
o

P (o | u) . (4.1)

The term in Eq. (4.1) has the same form to the first term (acoustic model) in Eq. (3.3).
For speech recognition problem, Bayes’rule is required to use generative models (see
Section 3.1). On the other hand, generative models can directly be applied for speech
synthesis problem. Although any kind of generative models can be applied for modeling
p (o | u), currently the HMM is the most popular one. The detail of the HMM-based
approach will be described later in the next section.
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4.2 HMM-based speech synthesis

4.2.1 Overview

Figure 4.1 shows a block diagram of the HMM-based speech synthesis system [5]. It con-
sists of the training and synthesis parts. In the training part, spectrum (e.g., Mel-cepstrum)
and excitation (e.g.,F0) parameters are extracted from a speech database and modeled
by context-dependent sub-word HMMs as the same manner in the speech recognition.
State duration models are also estimated. In the synthesis part, a sentence HMM is con-
structed by concatenating the context-dependent sub-word HMMs according to a context-
dependent label sequence which is mapped from a given text to be synthesized. Then,
sequences of spectrum and excitation parameters are generated from the sentence HMM
using speech parameter generation algorithm [41–43]. This algorithm will be briefly de-
scribed later in Section 4.2.2. Finally, a synthesis filter module synthesizes speech wave-
form using the generated the speech parameters. The attraction of this approach is in
that voice qualities of synthesized speech can easily be modified by transforming HMM
parameters. In fact, it has been shown that its voice characteristics can be modified by
speaker adaptation [44], speaker interpolation [45], or eigenvoice technique [46].

4.2.2 Speech parameter generation algorithm

Problem

For a sentence HMMΛu corresponding to a given sub-word sequenceu (context-dependent
label sequence), the speech synthesis problem is to obtain an output vector sequence con-
sisted of spectral and excitation parameters

o= {o1, o2, . . . , oT} (4.2)

which maximizes its posterior probability with respect too, that is

ô= arg max
o

p (o | Λu) (4.3)

= arg max
o

∑

all q

p (o, q | Λu) (4.4)

= arg max
o

∑

all q

p (o | q,Λu) P (q | Λu) (4.5)

whereq = {(q1, s1), (q2, s2), . . . , (qT , sT)} is a substate (Gaussian component) sequence,
(qt, st) represents being thest-th substate of theqt-th state, respectively. Since there is
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no known method to analytically obtaino which maximizesp (o | Λu) in a closed form1,
this problem is approximated by a Viterbi approximation. As a result, this maximization
problem can be decomposed into two stages: finding the best substate sequenceq̂ for
givenΛu and obtainingo which maximizesp (o | q,Λu) with respect too, i.e.,

q̂ = arg max
q

P (q | Λu) , (4.6)

ô= arg max
o

p (o | q̂,Λu) . (4.7)

In the HMM-based speech synthesis system proposed in [5], the optimization of Eq (4.6)
is performed using explicit state duration models [85]. If the output vector at timet, ot,
is determined independently of preceding and succeeding frames, the output vector se-
quenceowhich maximizesp (o | q,Λu) is obtained as a sequence of mean vectors of sub-
states. This causes discontinuity in the output vector sequence at transitions of substates,
resulting in clicks in synthesized speech which degrade the naturalness [86]. To avoid this
problem, dynamic features (delta and delta-delta coefficients) have been introduced. We
assume that the output vectorot consists of a static feature vector

ct = [ct(1), . . . , ct(K)]> (4.8)

and its dynamic features, that is

ot =
[
c>t ,∆c>t ,∆

2c>t
]>
, (4.9)

where∆ct and∆2ct are the first and second-order dynamic feature vectors (delta and
delta-delta coefficients), respectively. They are calculated as the same manner used in the
speech recognition (see Section 3.2):

∆ct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, ∆2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ. (4.10)

Solution for the Problem

First, the output vector sequenceo is rewritten in a vector form as

o=
[
o>1 , o

>
2 , . . . , o

>
T

]>
, (4.11)

that is, o is a supervector composed of entire output vectors. In the same way, a static
feature vector sequencec is defined as

c =
[
c>1 , c

>
2 , . . . , c

>
T

]>
. (4.12)
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Then, the relationship betweenc and o can be expressed in a matrix form as (see also
Fig. 4.2):

o=Wc, (4.13)

whereW is a regression window matrix given by

W = [W1,W2, . . . ,WT ]> ⊗ I M×M, (4.14)

Wt =
[
w(0)

t ,w(1)
t ,w(2)

t

]
, (4.15)

w(0)
t =

[
0, . . . ,0︸  ︷︷  ︸

t−1

,1,0, . . . , 0︸  ︷︷  ︸
T−t

]>
, (4.16)

w(1)
t =

[
0, . . . ,0︸  ︷︷  ︸
t−L(1)

− −1

,w(1)(−L(1)
− ), . . . ,w(1)(0), . . . ,w(1)(L(1)

+ ),0, . . . ,0︸  ︷︷  ︸
T−
(
t+L(1)

+

)

]>
, (4.17)

w(2)
t =

[
0, . . . ,0︸  ︷︷  ︸
t−L(2)

− −1

,w(2)(−L(2)
− ), . . . ,w(2)(0), . . . ,w(2)(L(2)

+ ),0, . . . ,0︸  ︷︷  ︸
T−
(
t+L(2)

+

)

]>
, (4.18)

The output probability ofoconditioned onq is calculated by multiplying the output prob-
abilities of entire observation vectors,

p (o | q,Λu) =
T∏

t=1

N
(
ot

∣∣∣ µqt st ,Σqt st

)
, (4.19)

whereµqt st andΣqt st are the 3K × 1 mean vector and 3K × 3K covariance matrix, respec-
tively, associated with thest-th substate of theqt-th state. Equation (4.19) can be rewritten
as an output probability ofo from a single Gaussian component, that is

p (o | q,Λu) = N
(
o
∣∣∣ µq,Σq

)
, (4.20)

whereµq andΣq are supervector and supermatrix corresponding to entire substate se-
quenceq, that is

Σq = diag
[
Σq1s1,Σq2s2, . . . ,Σqt st

]
, (4.21)

µq =
[
µ>q1s1

,µ>q2s2
, . . . ,µ>qt st

]>
. (4.22)

Thus, the logarithm of Eq. (4.19) can be written as

logN
(
o
∣∣∣ µq,Σq

)
= −1

2

{
3KT log 2π + log

∣∣∣Σq

∣∣∣ +
(
o− µq

)>
Σ−1

q

(
o− µq

)}
. (4.23)

Under the condition (4.13), maximizingN
(
o
∣∣∣ µq,Σq

)
with respect too is equivalent to

that with respect toc. By setting

∂ logN
(
o
∣∣∣ µq,Σq

)

∂c
= 0KT , (4.24)

1An algorithm to obtaino which maximizesp (o | Λu) using the EM algorithm is shown in [41].
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we obtain a set of linear equations
Rqc = rq, (4.25)

where0KT is aKT-dimensional zero vector,Rq andrq are given as

Rq =WΣ−1
q W, (4.26)

rq =WΣ−1
q µq. (4.27)

For direct solution of Eq. (4.25),O(K3T3) operations is required becauseRq is aKT×KT
matrix. By utilizing the special structure ofRq, Eq. (4.25) can be solved by the Cholesky
or QR decomposition withO(K3L2T) operations2. Equation (4.25) can also be solved by
an algorithm derived in [41–43], which can operate in a time-recursive manner [88].

4.3 Summary

In this chapter, a statistical speech synthesis framework and the speech parameter gener-
ation algorithm has been reviewed. The next chapter will derive a new statistical model,
named trajectory HMM by imposing explicit relationship between static and dynamic
features into the HMM.

2This is reduced toO
(
KL2T

)
whenΣq is diagonal because each of theK-dimensions can be calculated

independently. Furthermore, whenL(1)
− = −1, L(1)

+ = 0, and∀i w(2)(i) ≡ 0, it is reduced toO (KT) as
described in [87].
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Chapter 5

Reformulating the HMM as a trajectory
model

In the previous chapters, theoretical overview of the HMMs and its applications for acous-
tic modeling both in speech recognition and synthesis were reviewed. However, a number
of limitations for modeling sequences of speech spectra by the HMMs have been pointed
out [6–8]. In the present dissertation, the following two limitations are considered:

1. One of the underlying assumptions in the HMMs is that observation vector se-
quences are quasi-stationary and each stationary part can be represented by a single
state of the HMM. The statistics of each state does not vary dynamically. There-
fore, intra-state time-dependency cannot be represented. Although this assumption
might be satisfied in reading speech, it isn’t valid in spontaneous speech because
they are dynamically affected by various factors such as speaking rate.

2. The output probability of an observation vector depends only on the current state,
neither on any other states nor observations. It is generally called asconditional
independence assumption.

To overcome these shortcomings of the HMM, a number of alternative acoustic mod-
els have been proposed. Most of them have attempted to capture explicit dynamics of
speech parameter trajectories. Although the above models can improve model accuracy
and speech recognition performance, they generally require an increase in the number of
model parameters and computational complexity.

Alternatively, dynamic features (delta and delta-delta coefficients) [37,38] have been used
to capture time dependencies in the HMM-based acoustic modeling framework. This
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greatly enhances the performance of the HMM-based recognizers [39,40] and it is essen-
tial in the HMM-based synthesizers. However, it has been thought as an ad hoc rather
than an essential solution. Generally, dynamic features are calculated as regression co-
efficients from their neighboring static features (see Eq. (3.4)). Therefore, relationships
between static and dynamic features aredeterministic(see Eq. (4.13)). However, these
relationships are ignored and static and dynamic features are modeled as independent
statistical variables. Ignoring these interdependencies allows inconsistency between the
static and dynamic feature vector sequences when the HMM is used as a generative model
in the obvious way.

In this chapter, a novel statistical model is derived by reformulating the HMM whose
state output vector includes both static and dynamic features. By imposing the explicit
relationships between the static and dynamic features, the HMM is naturally translated
into a trajectory model, referred to astrajectory HMM in the present dissertation. The
trajectory HMM can overcome the above two limitations of the HMM without any addi-
tional parameters. Furthermore, it provides a computational model for co-articulation of
human speech. Relationships between the trajectory HMM and other techniques is also
discussed.

5.1 Reformulating HMM as a trajectory model

5.1.1 Imposing explicit relationships between static and dynamic fea-
tures into HMM

The total output probability of an observation vector sequenceo = {o1, o2, . . . , oT} of
lengthT for an HMMΛ is given by

p (o | Λ) =
∑

all q

p (o | q,Λ) P (q | Λ) , (5.1)

whereot is an observation vector at timet. Here, we assume that each state output prob-
ability is modeled by a mixture ofM-Gaussian components (Eq. (2.2)) and each mixture
of Gaussian components is decomposed into a substate (Gaussian component). Then,q
is defined as a substate sequence, i.e.,

q = {(q1, s1), (q2, s2), . . . , (qT , sT)}, (5.2)
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where (qt, st) denotes being thest-th substate of theqt-th state at timet. Hence, the first
and second terms in Eq. (5.1) can be written as

p (o | q,Λ) =
T∏

t=1

p (ot | qt, st, λ) =
T∏

t=1

N
(
ot

∣∣∣ µqt st ,Σqt st

)
, (5.3)

P (q | Λ) =
T∏

t=1

P (qt, st | qt−1, st−1,Λ) =
T∏

t=1

aqt−1qtwqt st , (5.4)

wherewqt st , µqt st andΣqt st are the mixture weight, mean vector and covariance matrix of
thest-th substate of theqt-th state, respectively, andaqt−1qt is the state transition probability
from theqt−1-th state to theqt-th state, andaq0q1 denotes a initial state probability of the
q1-th state.

Typically, the observation vectorot is a 3K × 1 vector consists of aK-dimensional static
feature vector (e.g., cepstral coefficients, etc.)

ct = [ct(1), ct(2), . . . , ct(K)]> , (5.5)

and its dynamic feature vectors (e.g., delta and delta-delta cepstral coefficients), that is

ot =
[
c>t ,∆c>t ,∆

2c>t
]>
, (5.6)

where∆ct and∆2ct are first and second order dynamic feature vectors, respectively. Usu-
ally, the dynamic features are calculated as regression coefficients from their neighboring
static features, that is

∆ct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, ∆2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ, (5.7)

where
{
w(d)(τ)

}
d=1,2 τ=−L(d)

− ,...,L(d)
+

are window coefficients to calculate dynamic features.

As the same manner used in the speech parameter generation algorithm described in Sec-
tion 4.2.2, the observation vector sequenceo and the static feature vector sequencec can
be written in a vector form as

o=
[
o>1 , o

>
2 , . . . , o

>
T

]>
, (5.8)

c =
[
c>1 , c

>
2 , . . . , c

>
T

]>
, (5.9)

that is,o andc are supervectors made from entire observation and static feature vectors,
respectively. Then, the relationship betweeno andc can be arranged in a matrix form as

o=Wc, (5.10)
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whereW is a window matrix to calculateo from c, that is

W = [W1,W2, . . . ,WT ]> ⊗ I K×K , (5.11)

Wt =
[
w(0)

t ,w(1)
t ,w(2)

t

]
, (5.12)

w(0)
t =

[
0, . . . ,0︸  ︷︷  ︸

t−1

,1,0, . . . ,0︸  ︷︷  ︸
T−t

]>
, (5.13)

w(1)
t =

[
0, . . . ,0︸  ︷︷  ︸
t−L(1)

− −1

,w(1)(−L(1)
− ), . . . ,w(1)(0), . . . ,w(1)(L(1)

+ ), 0, . . . , 0︸  ︷︷  ︸
T−
(
t+L(1)

+

)

]>
, (5.14)

w(2)
t =

[
0, . . . ,0︸  ︷︷  ︸
t−L(2)

− −1

,w(2)(−L(2)
− ), . . . ,w(2)(0), . . . ,w(2)(L(2)

+ ), 0, . . . , 0︸  ︷︷  ︸
T−
(
t+L(2)

+

)

]>
. (5.15)

According to Eq. 5.3 and assuming independence between the static and dynamic fea-
tures, the output probability ofo conditioned onq can be calculated as

p (o | q,Λ) = N
(
o
∣∣∣ µq,Σq

)
, (5.16)

whereµq andΣq are 3KT×1 and 3KT×3KT supervector and supermatrix corresponding
to entire substate sequenceq, respectively, that is

µq =
[
µ>q1s1

,µ>q2s2
, . . . ,µ>qT sT

]>
, (5.17)

µqt st =
[
∆(0)µ>qt st

,∆(1)µ>qt st
,∆(2)µ>qt st

]>
, (5.18)

∆(d)µqt st =
[
∆(d)µqt st(1), . . . ,∆(d)µqt st(K)

]>
, d = 0,1,2 (5.19)

Σq = diag
[
Σq1s1,Σq2s2, . . . ,ΣqT sT

]
, (5.20)

Σqt st = diag
[
∆(0)Σqt st ,∆

(1)Σqt st , . . . ,∆
(2)Σqt st

]
, (5.21)

∆(d)Σqt st = diag
[
∆(d)σqt st(1), . . . ,∆(d)σqt st(K)

]
. d = 0,1, 2 (5.22)

However, the above model is mathematically improper in the sense of statistical modeling.
In this model,the static and dynamic features are modeled as independent statistical
variables. When it is used as a generative model, it allows inconsistent static and dynamic
features even though they are constrained by Eq. (5.10) [89]. To avoid this problem, the
statistical model should be defined as a function ofc because the original observation
is c rather thano. By introducing the explicit relationships betweeno andc, Eq. (5.16)
becomes invalid probability distribution because

∫

RKT
N
(
Wc
∣∣∣ µq,Σq

)
dc , 1, (5.23)
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where the integral is over theKT-dimensional feature-space. Therefore, it should be
normalized to yield a valid probability distribution. In the present paper, the output prob-
ability of c conditioned onq is defined using normalizedN

(
Wc
∣∣∣ µq,Σq

)
as follows (see

Appendix A for detail):

p (c | q,Λ) =
1
Zq
N
(
Wc | µq,Σq

)
= N
(
c | c̄q, Pq

)
, (5.24)

Zq =

∫

RMT
N
(
Wc | µq,Σq

)
dc (5.25)

=

√
(2π)MT

∣∣∣Pq

∣∣∣
√

(2π)3MT
∣∣∣Σq

∣∣∣
· exp

{
−1

2

(
µ>qΣ

−1
q µq − r>q Pqrq

)}
, (5.26)

whereZq is a normalization term, and̄cq, Pq, Rq and rq are calculated fromW, µq, and
Σq as

Rq =W>Σ−1
q W = P−1

q , (5.27)

rq =W>Σ−1
q µq, (5.28)

Rqc̄q = rq. (5.29)

5.1.2 Definition of trajectory HMM

By marginalizingp (c | q,Λ) P (q | Λ) over all possible substate sequences, a new statis-
tical model can be defined as follows:

p (c | Λ) =
∑

all q

p (c | q,Λ) P (q | Λ) (5.30)

where

p (c | q,Λ) =
1
Zq
N
(
Wc
∣∣∣ µq,Σq

)
(5.31)

= N
(
c
∣∣∣ c̄q, Pq

)
, (5.32)

P (q | Λ) =
T∏

t=1

aqt−1qtwqt st , (5.33)

In the present dissertation, the above model is referred to astrajectory HMM.

It is interesting to note that its mean vectorc̄q is exactly the same as the output vector
sequencec obtained by the speech parameter generation algorithm which has been de-
scribed in Section 4.2.2. By assumingc̄q is the mean for the static feature vector sequence
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c, corresponding to an utterance, the HMM whose state output vector includes both static
and dynamic features can naturally be translated into a trajectory model: statistics of
the state output probability distributions varies within a state, and they are affected by
statistics at neighboring times. Note thatc is modeled by a mixture of (NM)T-Gaussian
components whose dimensionality isKT, and their covariancesPq are generally full. As
a result, the trajectory HMM can alleviate the deficiency of the HMM. It is also noted
that parameterization of the trajectory HMM is completely the same as the HMM with
the same model topology. Therefore, any additional parameters are not required.

5.2 Example

Figure 5.1 shows an example of a trajectory HMM. Model training conditions are the
same as those in Section 8.2. To obtain a substate sequenceq, a concatenated model
composed of monophone models/sil/, /a/, /i/, /d/, /a/, /sil/ was aligned to a natural speech
not included in the training data using a delayed decision Viterbi algorithm which will be
described in later Chapter 7. Note that only elements corresponding to the first coefficient
of mel-cepstrum are shown in the figure. It can be seen that not only the mean vectorc̄q

varies in each state but also the inter-frame correlation can be modeled by the covariance
matrix Pq. It is also interesting to note that the mean vector and the inter-frame covariance
corresponding to each monophone model vary according to its durations and neighbor-
ing models (see phoneme/a/ in Fig. 5.1). This shows that the trajectory HMM has the
capability to capture the co-articulation effects naturally.

5.3 Relation to other techniques

5.3.1 Relation to HMM-trajectory method

The idea of the trajectory HMM was originally inspired from the HMM-trajectory method
[47, 48]. In this method, speech parameter vector sequence obtained by the speech pa-
rameter generation algorithm with sliding window [88]1 was used as its mean vector and
variance between mean trajectory and training data was modeled using additional param-
eters. The essential difference between this method and trajectory HMM is in that this
method requires additional parameters and the inter-frame correlations are not modeled
explicitly.

1This algorithm can be viewed as a Kalman filtering for mean vector sequence of the standard HMM
[90].
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Figure 5.1: An example of the static feature sequencec, the mean trajectorȳcq and co-
variance matrixPq for a word “aida”.
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5.3.2 Relations to structured precision matrix modeling techniques

Recently, a number of techniques for modeling inverse covariance (precision) matrices to
capture intra-frame correlation efficiently in large vocabulary continuous speech recog-
nition system have been proposed [91, 92]. Models that have been successfully applied
include Semi-Tied Covariance matrices (STC) [93], Extended Maximum Likelihood Lin-
ear Transform (EMLLT) [94], and Subspace for Precision And Mean (SPAM) [94]. The
precision matrix models mentioned above can be described within a generic framework
of basis superposition [95]. The trajectory HMM can be viewed as a basis superposition
for inter-frame precision matrices.

For notation simplicity, the dimensionality of static feature vectorK is assumed to be 1.
From Eqs. (5.11)–(5.15), (5.20)–(5.22) and (5.27), the precision matrix of the trajectory
HMM, Rq, can be rewritten as follows:

Rq = P−1
q (5.34)

=W>Σ−1
q W (5.35)

=

T∑

t=1

2∑

d=0

1
∆(d)σqt st(1)

·
[
w(d)

t

]>
w(d)

t . (5.36)

In the above equation,T × T precision matrixRq is represented as a weighted sum of
3T rank-1 symmetric matrices. This form can be viewed as the EMLLT for inter-frame
precision matrix. In the general EMLLT framework, both the basis and diagonal matri-
ces,W andΣq, are estimated. However, in the trajectory HMM the basis matrix is given
as a window matrix. In addition, the diagonal matrixΣq has parameter sharing structure
according to the substate sequenceq. Thus, inter-frame correlation can be captured ef-
ficiently without increasing the number of model parameters compared with the HMM.
Furthermore, the trajectory HMM can be viewed as the SPAM model because both mean
vector and covariance matrix is also constrained within a linear subspace.

5.3.3 Relation to product of Gaussian experts

Recently, there has been interest in the use of classifiers based on the product of experts
(PoE) framework [96]. It offers an alternative to the mixture of experts (MoE) frame-
work for combining multiple probabilistic models. This is an efficient way to model
high-dimensional data which simultaneously satisfies many different low-dimensional
constraints because each individual experts can focus on giving high probability to data
vectors that satisfy just one of the constraints.
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One interesting relationship between the basis superposition framework and product of
Gaussians (PoG) framework [97,98] has been shown [95]. They have indicated that basis
superposition could be viewed as an example of a PoG system. Because the trajectory
HMM can be viewed as an example of the basis superposition over time, it can also be
viewed as the PoG system. According to Eq. (5.24), the output probability ofc condi-
tioned onq can be rewritten as

p (c | q,Λ) = N
(
c
∣∣∣ c̄q, Pq

)
=

1
Zq

T∏

t=1

N
(
ot

∣∣∣ µqt st ,Σqt st

)
. (5.37)

The above equation shows that each static feature vector is augmented by their dynamic
features and modeled by a Gaussian expert. Then, these experts are producted over time
and normalized to yield a valid probability distribution. Similar discussions can be found
in [89,99].

5.4 Summary

This chapter has derived a new statistical model by reformulating the HMM whose state
output vector includes both static and dynamic features. By imposing the explicit relation-
ships between static and dynamic features, the HMM has been translated into a trajectory
model, referred to as trajectory HMM in the present dissertation. Relationships between
the trajectory HMM and other techniques were also discussed. The next chapter will
derive training algorithms for the trajectory HMM.
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Chapter 6

Training algorithm for trajectory HMM

In the previous chapter, the trajectory HMM was derived from the HMM whose state out-
put vector includes both static and dynamic features. In this chapter, training algorithms
for the trajectory HMM are derived. It should be noted that although the model has the
same parameterization as the HMM, the output probability is defined by Eq. (5.30) rather
than Eq. (5.1). Accordingly, the model parameters should be trained based on Eq. (5.30).

6.1 Q-function

The maximum likelihood criterion is used to estimate trajectory HMM parameters. Al-
though it is also possible to find a discriminative training scheme such as the minimum
classification error (MCE) or the maximum mutual information (MMI), for this initial
work only the ML training is considered. In common with the HMM training, the EM
algorithm may be used for estimating parameters of the trajectory HMM based on the ML
criterion. An auxiliary function of the current parameter setΛ and the new parameter set
Λ̂ is defined as follows:

Q(Λ, Λ̂) =
∑

all q

p (q | c,Λ) log p(c, q | Λ̂), (6.1)

38



The logarithm ofp (c | q,Λ) can be written as

log p (c, q | Λ) = log p (c | q,Λ) + logP (q | Λ) , (6.2)

log p (c | q,Λ) = logN
(
c
∣∣∣ c̄q, Pq

)
(6.3)

= −1
2

{
MT log(2π) + log

∣∣∣Pq

∣∣∣ +
(
c− c̄q

)>
P−1

q

(
c− c̄q

)}
(6.4)

= −1
2

{
MT log(2π) − log

∣∣∣Rq

∣∣∣ + c>Rqc+ r>q Pqrq − 2r>q c
}
, (6.5)

logP (q | Λ) = logπq1 +

T∑

t=2

logaqt−1qt +

T∑

t=1

logwqt st . (6.6)

Hence, the auxiliary function can be written as

Q(Λ, Λ̂) =
∑

all q

p (q | c,Λ) ·
[

logπq1 +

T∑

t=2

logaqt−1qt +

T∑

t=1

logwqt st

− 1
2

{
KT log(2π) − log

∣∣∣Rq

∣∣∣ + c>Rqc+ r>q Pqrq − 2r>q c
} ]
, (6.7)

p (q | c,Λ) =
p (c, q | Λ)∑

all q

p (c, q | Λ)
. (6.8)

6.2 Maximization of Q-function

First, N is redefined as the number of independent substates (Gaussian components) in
the whole model set and unique indexes are assigned for these independent substates.1

Then, a supervectorm and supermatrixφ are defined by concatenating the mean vectors
and covariance matrices of all independent substates, that is

m=
[
µ>1 ,µ

>
2 , . . . ,µ

>
N

]>
, (6.9)

φ =
[
Σ−1

1 ,Σ
−1
2 , . . . ,Σ

−1
N

]>
, (6.10)

whereµn andΣn are the mean vector and the covariance matrix of then-th independent
Gaussian component, respectively.

1We assume that both mean vectors and covariance matrices have the same tying structure.
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Figure 6.1: Relationships betweenµq andm, andΣq andφ in matrix form.

Secondly, we define a 3KT × 3KN matrix Sq which represents substate sequenceq, that
is

Sq =
[
s(q1,s1), s(q2,s2), . . . , sqt st

]>
⊗ I3K×3K , (6.11)

sqt st =
[
f (qt, st,1), f (qt, st), . . . , f (qt, st,N)

]>
, (6.12)

f (qt, st, i) =


1 index of thest-th substate of theqt-th state is equal toi

0 otherwise
, (6.13)

whereI3K×3K is the 3K × 3K identity matrix. By using the substate sequence matrixSq,
relationships betweenµq andm, andΣq andφ illustrated in Fig. 6.1 can be represented as

µq = Sqm, (6.14)

Σ−1
q = diag

(
Sqφ
)
. (6.15)

Thus, Eqs. (5.27) and (5.28) can be rewritten usingm andφ as

Rq =W> · diag(Sqφ) ·W, (6.16)

rq =W> · diag(Sqφ) · Sqm. (6.17)

After substituting Eqs. (6.16)–(6.17) for Eq. (6.7), a partial derivative of Eq. (6.7) with
respect tom is given by

∂Q(Λ, Λ̂)
∂m

=
∑

all q

p (q | c,Λ) ·
{

S>qΣ
−1
q W
(
c− c̄q

) }
. (6.18)

By setting Eq. (6.18) equal to03KN, a set of linear equations for determination ofm max-
imizing Eq. (6.7) are obtained as

∑

all q

p (q | c,Λ) ·
{

S>qWPqW>Sq

}
Φ−1m=

∑

all q

p (q | c,Λ) ·
{

S>qWc
}
, (6.19)
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where
Φ−1 = diag(φ) . (6.20)

The dimensionality of Eq. (6.19) is 3KN × 3KN: it could be millions when context-
dependent acoustic models with mixtures of Gaussian components are used. It is difficult
to store and solve such a huge set of linear equations using currently available computa-
tional resources. For such case,mcan be optimized by a gradient method using Eq. (6.18).
Please refer Appendix B for detail.

For maximizing Eq. (6.7) with respect toφ, a gradient method is applied using its first
derivative

∂Q(Λ, Λ̂)
∂φ

=
∑

all q

p (q | c,Λ) ·
{

1
2

S>q diag−1
(
WPqW> −Wcc>W> + 2µqc>W>

+Wc̄qc̄>qW> − 2µqc̄>qW>
)}
, (6.21)

because Eq. (6.21) is not a quadratic function ofφ.

By using Eqs. (6.19) and (6.21), the model parameters which maximizes the likelihood
can be estimated. However, the exact EM algorithm for the trajectory HMM is intractable.
Since joint probability of the static feature vector sequencec and the substate sequence
q depends on the entireq, marginalization becomes prohibitively expensive. Exact com-
putation of the total output probability (Eq. (5.24)) or the posterior probability of the
substate sequence given the static feature vector sequence (Eq. (6.8)) has to be carried out
overO

(
NT
)

paths.

6.3 Approximate training algorithms

To estimate such an intractable model, a number of approximate training techniques have
been proposed. In the present dissertation, a Viterbi approximation and a Markov Chain
Monte Carlo method are employed for estimating parameters of trajectory HMM.

6.3.1 Viterbi approximation

The Viterbi approximation keeps only the path with the highest log-likelihood active.
Unfortunately, since the output probability of static feature vector sequence depends on
the entire substate sequence, the Viterbi algorithm [53] is not admissible. To avoid this
problem, a delayed decision Viterbi algorithm for the trajectory HMM will be used. It can
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find a better sub-optimal substate sequence for given static feature vector sequence. The
detail of the delayed decision Viterbi algorithm will be described later in Chapter 7.

Under the Viterbi approximation, the auxiliary function can be expressed as follows:

Q(Λ, Λ̂) ≈ log p(c, q̂ | Λ̂). (6.22)

where
q̂ = arg max

q
p (c, q | Λ) . (6.23)

Hence summations in Eqs. (6.18)–(6.21) can be ignored and they can be rewritten as

∂Q(Λ, Λ̂)
∂m

≈ S>qΣ
−1
q W
(
c− c̄q

)
, (6.24)

∂Q(Λ, Λ̂)
∂φ

≈ 1
2

S>q diag−1
(
WPqW> −Wcc>W> + 2µqc>W> +Wc̄qc̄>qW> − 2µqc̄>qW>

)
.

(6.25)

As a result, a set of linear equations for determination ofm under the Viterbi approxima-
tion are obtained as

S>qWPqW>SqΦ
−1m= S>qWc. (6.26)

6.3.2 Markov chain Monte Carlo

It is generally considered that the Viterbi approximation might be too strict for model-
ing spontaneous speech because phone boundaries are ambiguous in spontaneous speech.
Furthermore, this approach is unable to marginalize model parameters over hidden vari-
ables (substate sequences). This may degrade model robustness and recognition perfor-
mance. To relax this approximation, the auxiliary function is approximated over small
number of substate sequences sampled by the Markov chain Monte Carlo (MCMC) algo-
rithm. This case is known to as the Monte Carlo EM (MCEM) [100].

The auxiliary function of the trajectory HMM for the EM algorithm can be approximated
by summation overV substate sequences as follows:

q(v) ∼ P (q | c,Λ) 1 ≤ v ≤ V, (6.27)

Q(Λ, Λ̂) ≈
V∑

v=1

1
V

log p(c, q(v) | Λ̂), (6.28)

whereq(v) is av-th substate sequence sampled by the MCMC2.
2In the case of Markov chain Monte Carlo, the∼ symbol is used to indicate that the sample on the left

hand side was drawn from the density function on the right hand side.
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There are several instances of the MCMC algorithms, in the present dissertation the Gibbs
sampler is employed. The Gibbs sampling algorithm for the trajectory HMM can be
summarized as follows:

1. Initialization
q(1) =

{
(q(1)

1 , s(1)
1 ), . . . , (q(1)

T , s(1)
T )
}

(6.29)

2. For iterationv = 2, . . . ,V draw a substate

(q(v)
t , s

(v)
t ) ∼ p

(
(qt, st) | c, q(v)

−t ,Λ
)
, t = 1, . . . ,T (6.30)

where

q(v)
−t =
{
(q(v)

1 , s
(v)
1 ), . . . , (q(v)

t−1, s
(v)
t−1), (q

(v−1)
t+1 , s(v−1)

t+1 ), . . . , (q(v−1)
T , s(v−1)

T )
}
. (6.31)

However, exact computation ofP
(
(qt, st) | c, q(v)

−t ,Λ
)

is still expensive. Thus, we introduce
additional approximation for dependency between static feature vector sequence and sub-
state sequence. Instead of using exact posterior probability distribution, (qt, st) is sampled
from posterior probability distribution depending only on past, current and furtherJ ob-
servations and substates. The sampling algorithm is rewritten as follows:

1. Initialization
q(1) =

{
(q(1)

1 , s(1)
1 ), . . . , (q(1)

T , s(1)
T )
}

(6.32)

2. For iterationv = 2, . . . ,V draw a substate

(q(v)
t , s

(v)
t ) ∼ p

(
(qt, st) | c, q(v)

−t,J,Λ
)
, t = 1, . . . ,T (6.33)

where

q(v)
−t,J =

{
(q(v)

1 , s
(v)
1 ), . . . , (q(v)

t−1, s
(v)
t−1), (q

(v−1)
t+1 , s(v−1)

t+1 ), . . . , (q(v−1)
t+J , s(v−1)

t+J )
}
. (6.34)

The partial derivative of Eq. (6.28) with respect tom andφ is given as

∂Q(Λ, Λ̂)
∂m

≈
V∑

v=1

1
V
·
{

S>q(v)Σ
−1
q(v)W

(
c− c̄q(v)

) }
, (6.35)

∂Q(Λ, Λ̂)
∂φ

≈
V∑

v=1

1
V
·
{

1
2

S>q(v) diag−1
(
WPq(v)W> −Wcc>W> + 2µq(v) c>W>

+Wc̄q(v) c̄>q(v)W> − 2µq(v) c̄>q(v)W>
) }

. (6.36)

As a result, a set of linear equations for determination ofm using the MCMC algorithm
are obtained as

V∑

v=1

S>q(v)WPq(v)W>Sq(v)Φ−1m=
V∑

v=1

S>q(v)Wc. (6.37)
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6.4 Summary

In this chapter, the training algorithms for the trajectory HMM based on the Viterbi ap-
proximation and Markov chain Monte Carlo method have been derived. Although the
trajectory HMM has the same parameterization as the HMM, the definition of the output
probability is different. Accordingly, the training algorithms should be re-derived for the
trajectory HMM. In the next chapter, the delayed decision Viterbi algorithm based on a
time-recursive likelihood calculation will be described. It can find a better sub-optimum
substate sequence for given static feature vector sequence.
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Chapter 7

Search algorithm for trajectory HMM

In the previous chapter, training algorithms for the trajectory HMM based on the Viterbi
and the Markov chain Monte Carlo approximations were described. This chapter dis-
cusses the maximization problem of Eq. (6.23). Solution of this problem is essential
because it is used not only in the training part but also the decoding part of the system.

In the trajectory HMM, inter-frame correlations can be captured because the inter-frame
covariance matrixPq is generally full. However, this property makes it intractable to
find the most likely substate sequence using the Viterbi algorithm [53]. Based on the
approximation

qmax = arg max
q

p (c, q | Λ) (7.1)

= arg max
q

p (c | q,Λ) · P (q | Λ) (7.2)

= arg max
q

1
Zq
N
(
o
∣∣∣ µq,Σq

)
· P (q | Λ) (7.3)

≈ arg max
q
N
(
o | µq,Σq

)
· P (q | Λ) , (7.4)

the Viterbi algorithm can be used. However, this approximation reduces the accuracy of
the alignment.

To avoid this problem, a delayed decision Viterbi algorithm based on a time-recursive
likelihood calculation is derived. This algorithm can find a better sub-optimum Gaussian
component sequence.
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7.1 Time recursive output probability calculation

Before describing the delayed decision Viterbi algorithm, a time-recursive algorithm to
calculatep (c | q,Λ), which is used in the delayed decision Viterbi algorithm, is derived.

According to Eq. (5.24), the joint probability of the static feature vector sequence and
substate sequence is given as

p (c, q | Λ) = p (c | q,Λ) P (q | Λ) (7.5)

p (c | q,Λ) =
1
Zq
N (Wc | q,Λ ) , (7.6)

Zq =

√
(2π)KT

∣∣∣Pq

∣∣∣
√

(2π)3KT
∣∣∣Σq

∣∣∣
· exp

{
−1

2

(
µ>qΣ

−1
q µq − r>q Pqrq

)}
. (7.7)

Equations (7.6)–(7.7) show that calculatingN
(
Wc
∣∣∣ µq,Σq

)
,
∣∣∣Σq

∣∣∣, µ>qΣqµq,
∣∣∣Pq

∣∣∣, and
r>q Pqrq are required to obtain the output probability ofc conditioned onq.

SinceΣq is diagonal,N
(
Wc
∣∣∣ µq,Σq

)
,
∣∣∣Σq

∣∣∣ andµ>qΣqµq can be rewritten as follows:

N
(
Wc
∣∣∣ µq,Σq

)
=

T∏

t=1

N
(
ot

∣∣∣ µqt st ,Σqt st

)
, (7.8)

∣∣∣Σq

∣∣∣ =
T∏

t=1

∣∣∣Σqt st

∣∣∣ , (7.9)

µ>qΣ
−1
q µq =

T∏

t=1

µ>qt st
Σ−1

qt st
µqt st . (7.10)

However, decomposing
∣∣∣Pq

∣∣∣ and r>q Pqrq in the same manner is unable becausePq is
generally full. Fortunately, by utilizing the special structure ofPq, both r>q Pqrq and

∣∣∣Pq

∣∣∣
can be computed in a recursive manner.

For notation simplicity, the dimensionality of the static feature vector,K, is assumed
to be 1. The precision matrixRq becomes a positive definite (4KL + 1)-diagonal band
symmetric matrix and it can be decomposed into its Cholesky factorization:

Rq = U>q Uq, (7.11)

whereUq is a upper-triangular (2KL + 1)-diagonal matrix. Elements ofUq is calculated
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in a recursive manner as

U (t,t)
q =

√√
R(t,t)

q −
t−1∑

i=t−2L

U (i,t) 2
q , t = 1, . . . ,T (7.12)

U (t,i)
q =

√
R(t,i)

q −
∑t−1

j=t−2L U ( j,t)
q · U ( j,i)

q

U (t,t)
q

,
t = 1, . . . ,T
t + 1 ≤ i ≤ t + 2L

(7.13)

R(t,i)
q = R(i,t)

q =

2∑

d=0

L(d)
+∑

τ=−L(d)
−

1
∆(d)σqt+τst+τ(1)

w(d)(−τ) · w(d)(i − t − τ), t = 1, . . . ,T
t ≤ i ≤ t + 2L

(7.14)

whereU (i, j)
q andR(i, j)

q are the (i, j)-th elements ofUq andRq, respectively.

Thus,
∣∣∣Pq

∣∣∣ can be written as

∣∣∣Pq

∣∣∣ =
∣∣∣Rq

∣∣∣−1
(7.15)

=
∣∣∣U>q Uq

∣∣∣−1
(7.16)

=
∣∣∣Uq

∣∣∣−2
. (7.17)

The determinant of a triangular matrix is simply the product of its diagonal elements.
Hence,

∣∣∣Pq

∣∣∣ is given by
∣∣∣Pq

∣∣∣ =
T∏

t=1

∣∣∣U (t,t)
q

∣∣∣−2
. (7.18)

SinceU (t,t)
q are computed in a recursive manner and depends only on the substates from

time 1 tot + L,
∣∣∣Pq

∣∣∣ can be computed recursively.

Next we definite a vectorgq which is given by solving following a set of linear equations:

U>q gq = rq, (7.19)

Uqc̄q = gq, (7.20)

From Eqs. (7.19)–(7.20),r>q Pqrq can be rewritten as

r>q Pqrq = r>q P>q RqPqrq (7.21)

= c̄>qU>q Uqc̄q (7.22)

= g>q gq (7.23)

=

T∑

t=1

g(t) 2
q , (7.24)
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whereg(t)
q andr (t)

q are thet-th elements ofgq andrq, respectively, given as

g(t)
q =

r (t)
q −
∑t−1

i=t−2L U (i,t)
q · g(i)

q

U (t,t)
q

, t = 1, . . . ,T (7.25)

r (t)
q =

2∑

d=0

L(d)
+∑

τ=−L(d)
−

1
∆(d)σqt+τ(1)

w(d)(−τ) · ∆(d)µqt+τ(1), t = 1, . . . ,T (7.26)

Sinceg(t)
q is calculated recursively and depends only on the substates from time 1 tot + L,

r>q Pqrq can also be calculated in a recursive manner.

As a result, the output probability ofc conditioned onq is given by

p (c | q,Λ) =
T∏

t=1

1

Z(t)
qt+L

N
(
ot

∣∣∣ µqt st ,Σqt st

)
, (7.27)

whereqt+L = {(q1, s1), . . . , (qt+L, st+L)} is a partial substate sequence from time 1 tot + L,
andZ(t)

qt+L is a decomposed normalization term at timet given by

Z(t)
qt+L
=

√
(2π)
∣∣∣U (t,t)

qt+L

∣∣∣−2

√
(2π)3

∣∣∣Σqt st

∣∣∣
exp

{
−1

2

(
µ>qt st
Σ−1

qt st
µqt st − g(t) 2

qt+L

)}
. t = 1, . . . ,T (7.28)

7.2 Delayed decision Viterbi algorithm

In this section, the delayed decision Viterbi algorithm for the trajectory HMM to find a
better sub-optimum substate sequence is described. This algorithm is based on the time-
recursive algorithm described in the previous section. In the delayed decision Viterbi
algorithm, the substate at timet − J is determined at timet, according to its partial joint
probability.

The delayed decision Viterbi algorithm illustrated in Fig. 7.1 involves the following re-
cursion:

1. Initialization: t = 1; ∀q1+L
1−J

δ1

(
q1+L

1−J

)
=

t+L∏

t=1

aqt−1qtwqt st · b (q1+L)

ψ1

(
q1+L

1−J

)
= 0
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select likely path

Figure 7.1: An overview of the proposed delayed decision Viterbi algorithm (J = 2, L =
1).

2. Recursion:t = 2, . . . ,T; ∀qt+L
t−J

δt

(
qt+L

t−J

)
= max

(qt−J−1,st−J−1)

[
δt−1

(
qt+L−1

t−J−1

)
aqt+L−1qt+Lwqt+Lst+L

]
b(qt+L)

ψt

(
qt+L

t−J

)
= arg max

(qt−J−1,st−J−1)

[
δt−1

(
qt+L−1

t−J−1

)
aqt−+L1qt+Lwqt+Lst+L

]

3. Termination:

P̂ = max
qT+L

T−J

[
δT

(
qT+L

T−J

)]

q̂T+L
T−J = arg max

qT+L
T−J

[
δT

(
qT+L

T−J

)]

= {(q̂T−J, ŝT−J) . . . , (q̂T+L, ŝT+L)}

4. Back tracking:t = T, . . . ,1

(q̂t−J−1, ŝt−J−1) = ψt

(
q̂t+L

t−J

)

q̂t+L−1
t−J−1 = {(q̂t−J−1, ŝt−J−1), . . . , (q̂t+L−1, q̂t+L−1)}

q̂ = {(q̂1, ŝ1), (q̂2, ŝ2), . . . , (q̂T , ŝT)}

whereqt+L
t−J is a partial substate sequence from timet − J to t + L, andb (qt+L) is given by

b(qt+L) =
1

Z(t)
qt+L

N
(
ot

∣∣∣ µqt st ,Σqt st

)
. (7.29)
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The optimum substate sequence can be found ifJ is equal toT, because this is equivalent
to evaluating all possible substate sequences. While this algorithm with longer delayJ
could obtain more likely substate sequence, it requires a huge amount of computations.
Hence, the delayJ should be set to a proper value balancing its performance and compu-
tational complexity. It is generally considered that the co-articulation affects neighboring
frames within 100–200 ms. This indicates that the optimum substate sequence might be
obtained when the number of delayJ is set to around 10–20 for a 10-ms frame shift.

7.3 Decoding

For decoding, we can use i) rescoring scheme, or ii) decoder based on the delayed decision
Viterbi algorithm. In approach i), each hypothesis generated by the HMMs is rescored by
the Eq. (7.6). The substate sequence for each hypothesis can also be adjusted using the
delayed decision Viterbi algorithm. On the other hand, in approach ii), the normalization
termZq is calculated in the decoding procedure. However, implementing a decoder based
on approach ii) is difficult. In the speech recognition experiment described in Chapter 8,
approach i) was adopted.

7.4 Summary

In this chapter, the delayed decision Viterbi algorithm based on the time-recursive out-
put probability calculation has been described. It can find a better sub-optimum substate
sequence for given static feature vector sequence. The next chapter will evaluate perfor-
mances of the trajectory HMM both in speech recognition and synthesis experiments.
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Chapter 8

Experiments

In the previous two chapters, the training and search algorithms for the trajectory HMM
have been derived. In this chapter, the performance of the trajectory HMM was evaluated
both in speech recognition and synthesis experiments.

8.1 Simulation experiment

A simple simulation experiment was conducted to show that trajectory HMM was a proper
generative model.

Phonetically balanced 503 sentences uttered by a male speaker MHT from the ATR
Japanese speech database b-set [101] were used. The first 450 sentences were used for
training. Speech analysis conditions are shown in Tab. 8.1. To simplify the experiment,

Table 8.1: Speech analysis conditions.

Sampling frequency 16kHz
Frame shift 10ms

Frame length 25.6ms
Window Blackman window

Parameterization 18-th order Mel-cepstral analysis [65]
Feature vector 19 Mel-cesptral coefficients including zeroth coefficient,

its delta and delta-delta
∆ct = −0.5ct−1 + 0.5ct+1

∆2ct = ct−1 − 2ct + ct+1
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Figure 8.1: Convergence of the Gaussian components estimated from drawn samples from
original distributions.

we used the single state with a Gaussian component structure for modeling HMM and
trajectory HMM.

Static feature vector sequences of 1000-frame length were drawn from the HMM and
trajectory HMM under the constraints between the static and dynamic features. Then
we reconstructed a HMM and trajectory HMM using drawn samples, and confirmed that
the estimated model converged to the original model, by measuring the KL divergence
between the original and reconstructed models.

Figure 8.1 shows the result of the experiment. It can be seen from the figure that as the
number of drawn sample increased, the KL divergence between the original and recon-
structed trajectory HMMs decreased. On the other hand, the reconstructed HMM did not
converge to the original HMM. It indicates that trajectory HMM is a proper generative
model and HMM is not.
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8.2 Speech recognition experiments

8.2.1 Experimental conditions

The performance of the trajectory HMM was evaluated in a speech recognition experi-
ment. The phonetically balanced 503 sentences uttered by the speaker MHT from the
ATR Japanese speech database b-set [101] was used. The first 450 sentences were used
for training both the context-independent HMMs and trajectory HMMs. The remaining
53 sentences were used for evaluation. Speech analysis conditions were the same used in
the previous section.

Three-state left-to-right structure was used for modeling 36 Japanese phonemes including
silence and short pause. Each state had a single Gaussian component with a diagonal
covariance matrix.

First, the HMMs were initialized by the segmentalk-means algorithm and reestimated
using the EM (Baum-Welch) algorithm. Then, the trajectory HMMs were iteratively rees-
timated by the Viterbi training (Viterbi), the MCEM training with 10 samples (MCEM10)
and 50 samples (MCEM50). For training the trajectory HMMs, the HMMs were used as
their initial models. We constructed models by changing the number of delayJ from 2 to
5 in the delayed decision Viterbi algorithm and Gibbs sampling. In the MCEM training,
the initial Gaussian component sequencesq(1) were determined by the delayed decision
Viterbi algorithm. The same number of delayJ was used both in the delayed decision
Viterbi algorithm and the Gibbs sampling.

8.2.2 Experimental results

Evaluation of the parameter reestimation formulas

First we evaluated the parameter update formulas derived in Chapter 6. For this exper-
iment, the substate sequence maximizingp (q | o,Λ) was obtained by the conventional
Viterbi algorithm and Eqs. (6.25)–(6.26) were used for updating model parameters.

Table 8.2 shows average log likelihoods of the trajectory HMMs. It is shown that by using
the derived reestimation formulas the model likelihoods were improved considerably for
both training and test data sets.
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Table 8.2: Average logp(c | q,Λ) of the trajectory HMMs (“w/o update”: model param-
eters were not updated, i.e., those of the were used, “m”: only means were updated, “φ”:
only variances were updated, “m & φ”: both means and variances were updated).

trajectory HMM
w/o update m φ m & φ

training data 6.86 7.91 12.0 14.8
test data 6.93 7.83 12.1 14.8

Evaluation of the delayed decision Viterbi algorithm

Secondly, we evaluated the performance of the delayed decision Viterbi algorithm in the
likelihood of the obtained substate sequence. To compare with the conventional Viterbi
algorithm and the delayed decision Viterbi algorithm in the same condition, the HMMs
which was used as the initial models for training the trajectory HMMs were used. Fig-
ure 8.2 shows the averagep (c | q,Λ) per frame of substate sequences for an utterance
included in the training data. In this figure, “HMM” corresponds to the substate sequence
obtained by the conventional Viterbi algorithm, and “J = 2, J = 3, . . . , J = 10” means
that the substate sequences were obtained by the delayed decision Viterbi algorithm with
J-frame delay. It shows that the delayed decision Viterbi algorithm could obtain more
likely substate sequences than the HMM. Furthermore, asJ increased, the likelihood was
gradually increased and converged.

Evaluation of the iterative training

Thirdly, effectiveness of the iterative training was evaluated. The average log likelihoods
of the trajectory HMMs for the training data against the number of Viterbi training itera-
tion are illustrated in Fig. 8.3. The average log likelihood of the initial models (HMMs)
according to substate sequences found by the Viterbi algorithms was 6.87. After updating
m andφ, the average log likelihood improved to 14.8. Then Viterbi training was iterated.
Therefore, the same models were used at the first iteration in Fig 8.3. It can be seen
from the figure that the delayed decision Viterbi algorithm with longerJ could find better
sub-optimum Gaussian component sequences. In addition, iterative training improved the
model likelihood for the training data.
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Figure 8.4: Average log-likelihoods of utterances “mhtsda01” (above) and “mhtsda10”
(below) for the substate sequences generated by the Gibbs sampler.
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Evaluation of the Gibbs sampling

Figure 8.4 shows average log-likelihoods for utterances included in the training data
against the number of Gibbs sampling iterations. We used trajectory HMM estimated
by the Viterbi training with 1 iteration and 2-frame lookahead for samplingq. The ini-
tial substate sequence was given by the delayed decision Viterbi algorithm with 2-frame
delay. It shows that the more likely substate sequences compared with the initial one
found by the delayed decision Viterbi algorithm were sampled during the Gibbs sampling
iteration.

In all recognition experiments reported in this section, a 100-best rescoring paradigm was
used. The 100-best lists were generated for each test utterance using the HTK Viterbi
decoder [51] with the HMMs used as the initial models for training the trajectory HMMs.
These initial models (HMMs) were described as the baseline system in the following
recognition experiments. Then, each candidate was re-segmented by the delayed deci-
sion Viterbi algorithm and re-scored with its Eq. (7.5). In this experiment, the delayed
decision Viterbi algorithm with the same number of delayJ was used both in training
and evaluation. To give an idea of the range of these 100-best lists, the error rates of the
baseline (1-best hypotheses by the HMMs), best, worst, and average of randomly selected
hypotheses (100 times) were 19.7%, 13.9%, 27.4%, and 21.2%, respectively. These are
the bounds on subsequent rescoring results.

Figures 8.5 and 8.6 show that recognition experimental results of the trajectory HMMs
with and without reference included in the hypotheses, respectively. When reference hy-
potheses were not included, trajectory HMMs estimated by the MCEM using 50 samples
(4 iterations and 4 frames delay) achieved the best result. Compared with the Viterbi-
trained trajectory HMMs and HMMs, MCEM-trained trajectory HMMs achieved about
3% and 11% error reductions, respectively. When reference hypotheses were included,
trajectory HMMs estimated by the MCEM using 10 samples (3 or 5 iteration and 4 frames
delay) achieved the best result. When reference hypotheses were included, about 55% er-
ror reduction over the HMM was achieved by the MCEM. Although it is difficult to know
how to interrupt such results, they might suggest that the decoder based on the approach
ii) in the Section 7.3 could further improve the recognition accuracy.

Compared with the Viterbi-trained trajectory HMMs, the MCEM-trained ones were rela-
tively unstable. In Fig. 8.5, phoneme error rates of the Viterbi-trained trajectory HMMs
ranged from 18.0% to 18.5%. On the other hand, that of the MCEM-trained ones ranged
from 17.6% to 19.0%. It may be caused by that the MCEM is based on a stochastic
method. Inconsistency between decoding and training (sampling method was used only
on training) could be another reason of this phenomenon.
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Figure 8.5: Phoneme error rates (%) for the test data against the number of training it-
eration for the trajectory HMM with various number of delay (J). In this experiment,
references were not included in the hypotheses).
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Figure 8.6: Phoneme error rates (%) for the test data against the number of training it-
eration for the trajectory HMM with various number of delay (J). In this experiment,
references were included in the hypotheses).
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8.3 Speech synthesis experiments

To evaluate the performance of the trajectory HMM in speech synthesis, a subjective
listening test was conducted. The first 1096 sentences from CMU ARCTIC database [102]
uttered by a male speaker AWB were used for training the HMM-based speech synthesis
system. Speech signals were sampled at a rate of 16 kHz and windowed by a 25.6-ms
Blackman window with a 5-ms shift, and mel-cepstral coefficients were obtained by a
mel-cepstral analysis technique [65]. Fundamental frequency (F0) values were extracted
by the ESPS getf0 [103] for 5-ms intervals. Static feature vector consisted of spectrum
vector and logF0: the spectrum vector consisted of 25 mel-cepstral coefficients including
the zeroth coefficient. They were augmented by adding 1st and 2nd dynamic features
which were computed in the same manner described in Section 8.2. We used 5-state
left-to-right with noskip structure. Each state output probability distribution consisted of
spectrum andF0 parts. The spectrum part was modeled by a single Gaussian component
with diagonal covariance matrix. TheF0 part was modeled by a multi-space probability
distribution [104] consisted of a single Gaussian component with a diagonal covariance
matrix (voiced space) and a single discrete distribution which outputted only one symbol
(unvoiced space).

In this work, the following contextual factors were taken into account:

• phoneme:

- {before preceding, preceding, current, succeeding, after succeeding} phoneme

- position of current phoneme in current syllable

• syllable:

- number of phonemes at{preceding, current, succeeding} syllable

- {stress1, accent2} of {preceding, current, succeeding} syllable

- position of current syllable in current{word, phrase}
- number of{preceding, succeeding} {stressed, accented} syllables in current phrase

- number of syllables{from previous, to next} {stressed, accented} syllable

- vowel within current syllable

• word:

- guess at part of speech of{preceding, current, succeeding} word

- number of syllables in{preceding, current, succeeding} word

1The lexical stress of the syllable as specified from the lexicon entry corresponding to the word related
to this syllable.

2An intonational accent of the syllable predicted by a CART tree (0 or 1).
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- position of current word in current phrase

- number of{preceding, succeeding} content words in current phrase

- number of words{from previous, to next} content word

• phrase:

- number of syllables in{preceding, current, succeeding} phrase

- position in major phrase

- ToBI endtone of current phrase

• utterance:

- number of{syllables, words, phrases} in current utterance

These contextual factors were extracted using feature extraction functions implemented
on the Festival speech synthesis system [105] from utterance informations included in the
database. We applied a decision-tree based context clustering technique [70] to distri-
butions for spectrum,F0, and duration independently. In this dissertation, the minimum
description length criterion [106] was used for stopping tree growth [5,107]. For spectrum
andF0, the decision trees were constructed for each state position. The resultant trees for
spectrum,F0, and duration had 978, 1180, and 449 leaf nodes in total, respectively.

To compare the influences of the parameter estimation criteria for the quality of synthetic
speech, we trained 3 acoustic models based on different criteria. First, we estimated the
HMMs using the Baum-Welch algorithm (model parameters maximizingp (o | Λ) were
reestimated). Then, the trajectory HMMs were estimated using the HMMs as its initial
model (model parameters maximizingp (c | q,Λ) were reestimated). To investigate the
influence of the Viterbi (single path) approximation, the Viterbi-trained HMMs were also
prepared (model parameters maximizingp (o | q,Λ) were reestimated). Both the trajec-
tory HMMs and the Viterbi-trained HMMs were not iteratively reestimated. A single pass
of reestimation was used both for the trajectory HMMs and the Viterbi-trained HMMs. In
this experiment, model parameters of theF0 part and duration models were not updated.
Therefore, prosodic informations (F0 and duration) of synthetic speech generated from
these 3 models were completely the same.

Figure 8.7 shows an example of 2nd mel-cepstral coefficient of a natural speech included
in the training data, generated trajectoriescmax from the HMMs and trajectory HMMs. It
can be seen that the generated trajectory from the trajectory HMMs was almost always
closer to the training data than that from the HMMs.

Figure 8.8 shows sequences of speech spectra generated from the HMMs and trajectory
HMMs for a sentence fragment “tropic land” taken from a sentence not included in the
training data. It can be seen from Fig. 8.8 that formant structures generated from the
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Figure 8.9: Preference scores of the standard HMMs and trajectory HMMs.

trajectory HMMs were slightly clearer than that from the HMMs.

To evaluate the effectiveness of the trajectory HMMs for the HMM-based speech syn-
thesis system, a subjective listening test was conducted. We compared the naturalness of
the synthesized speech by paired comparison tests. Subjects were 8 graduate students in
our research group, and presented a pair of synthesized speech from different models in
random order and then asked which speech sounded more natural. For each subject, 20
test sentences were chosen at random from 42 test sentences not included in the training
sentences.

Figure 8.9 shows the preference scores. It can be seen from the figure that the introduction
of trajectory HMMs improved the reported naturalness of synthetic speech. Although the
Viterbi approximation was used both in the Viterbi-trained standard HMMs and trajectory
HMMs, average preference score of the trajectory HMMs was much better than that of
the standard HMMs. It indicates that this improvement was achieved by the introduction
of the trajectory HMMs, not by the Viterbi approximation.

8.4 Summary

In this chapter, the performances of the trajectory HMM has been evaluated both in
speech recognition and synthesis experiments. Both in the speaker-dependent continuous
phoneme recognition and the subjective listening test experiments, the trajectory HMMs
have achieved significant progress over the corresponding HMMs.

63



Chapter 9

Conclusions

9.1 Summary

The present dissertation described a novel statistical model named trajectory HMM. This
model was derived from the HMM whose state output vector includes both static and
dynamic features. In particular, the present dissertation examined the application of the
trajectory HMM for acoustic modeling both in speech recognition and synthesis. The
trajectory HMM can alleviate two known limitations of the HMM, which are i) constant
statistics within a state and ii) conditional independence assumption.

Basic theories and fundamental algorithms of the HMM were reviewed in Chapter 2. Sta-
tistical speech recognition and synthesis frameworks based on the HMM were presented
in Chapters 3 and 4, respectively. In Chapter 5, the trajectory HMM was derived by refor-
mulating the HMM whose state output vector includes both static and dynamic features.
By imposing the explicit relationships between static and dynamic features, the HMM was
naturally translated into a trajectory model. This model can overcome two known limi-
tations of the HMM without any additional parameters and it provides a computational
model for co-articulation and the dynamics of the human speech. Relationships between
the trajectory HMM and other techniques, such as the HMM-trajectory method, the struc-
tured precision matrix modeling technique, and product of experts were also discussed
in this chapter. In Chapter 6,the training algorithms for the trajectory HMM were de-
scribed. Unfortunately, exact EM algorithm for the trajectory HMM is intractable. Thus,
approximate training algorithms based on the Viterbi and Markov chain Monte Carlo ap-
proximations were derived. Chapter 7 showed the search algorithm for the trajectory
HMM. The Viterbi algorithm is not applicable for the trajectory HMM. To alleviate this
problem, the delayed decision Viterbi algorithm was derived. This algorithm can find a
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better sub-optimal substate sequence for given static feature vector sequence. The speech
recognition and synthesis experiments using the trajectory HMM in acoustic modeling
were presented in Chapter 8. In the speaker-dependent continuous speech recognition
experiment using the ATR speech database b-set, significant improvements over the cor-
responding HMM was achieved. In the subjective listening test experiment, reported
naturalness of the trajectory HMMs was much better than that of the HMMs.

9.2 Future work

The trajectory HMM was evaluated only in simple speaker-dependent, continous phoneme
recognition task using context-independent models with single Gaussian components. To
investigate more practical performance of the trajectory HMM, evaluations in speaker-
independent, large vocaburary continuous speech recognition task using context-dependent
models with mixtures of Gaussian components should be conducted. Due to the huge
amount of computational cost both in training and decoding, it is difficult to apply the
trajectory HMMs for such a large task. However, improvements of computational power
may resolve this problem.

Currently, the ML criterion was used to optimize the model paramters in the present
dissertation. However, the ML training is optimal only if the model is close the the true
system. One may argue whether there exists a true model for speech, but it is clearly
the case that the trajectory HMM does not provide one. For the HMM, systems trained
using discriminative training typically outperform ones using the ML training. Different
discriminative training schemes for the trajectory HMM could be investigated.

In the present dissertation, rescoring scheme was used for speech recognition experi-
ments. As mentioned in Section 8.2, the decoder based on the delayed decision Viterbi
algorithm could further improve the recognition accuracy. It may be hard task, however,
it may be worthy of exploring.
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Appendix A

Derivation of trajectory HMM

By imposing the explicit relationships between static and dynamic features represented
by Eq. (5.10), Eq. 5.16 can be rewritten as follows:
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Appendix B

Derivation of reestimation formula for
the concatenated mean vectorm

From Eq. (6.7), the auxiliary function of the trajectory HMM is given as follows:

Q(Λ, Λ̂) =
∑
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According to Eq. (6.17), the auxiliary function can be rewritten as
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By taking a partial derivative with respect tom, we obtain
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By setting the above equation equal to0, a set of linear equations for determination ofm
maximizing the auxiliary function are obtained as follows:
∑

all q

p (q | c,Λ) · S>qΣ−1
q W
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q Sqm
)
= 0 (B.10)

∑

all q

p (q | c,Λ) · S>qΣ−1
q WPqW>Σ−1

q Sqm=
∑

all q

p (q | c,Λ) · S>qΣ−1
q Wc (B.11)

∑

all q

p (q | c,Λ) ·Φ−1S>qWPqW>SqΦ
−1m=

∑

all q

p (q | c,Λ) ·Φ−1SqWc (B.12)

∑

all q

p (q | c,Λ) · S>qWPqW>SqΦ
−1m=

∑

all q

p (q | c,Λ) · S>qWc (B.13)

78



List of Publications

Publications

Journal papers

[1] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “Decision tree based simultaneous
clustering of phonetic contexts, dimensions, and state positions for acoustic model-
ing,” IEICE Trans. Inf.& Syst., vol.J87-D-II, no.8, pp.1593–1602, Aug. 2004 (in
Japanese).

[2] Heiga Zen, Keiichi Tokuda and Tadashi Kitamura, “Reformulating HMM as a tra-
jectory model by imposing explicit relationships between static and dynamic fea-
tures,”Computer, Speech& Language(Accepted).

International conference proceedings

[3] Heiga Zen, Keiichi Tokuda and Tadashi Kitamura, “Decision tree distribution tying
based on a dimensional split technique,”Proc. of ICSLP 2002, pp.1257–1260, Sept.
2002.

[4] Heiga Zen, Keiichi Tokuda and Tadashi Kitamura, “Decision tree based simulta-
neous clustering of phonetic contexts, dimensions, and state positions for acoustic
modeling,”Proc. of Eurospeech 2003, pp.3189–3192, Sept. 2003.

[5] Keiichi Tokuda,Heiga Zenand Tadashi Kitamura, “Trajectory modeling based on
HMMs with the explicit relationship between static and dynamic features,”Proc.
of Eurospeech 2003, pp.865–868, Sept. 2003.

[6] Heiga Zen, Keiichi Tokuda and Tadashi Kitamura, “A Viterbi algorithm for a tra-
jectory model derived from HMM with explicit relationship between static and dy-
namic features,”Proc. of ICASSP 2004, pp.837–840, Montreal, May 2004.

79



[7] Heiga Zen, Keiichi Tokuda and Tadashi Kitamura, “An introduction of trajectory
model into HMM-based speech synthesis,”Proc. of 5th ISCA Speech Synthesis
Workshop, Pittsburgh, June 2004.

[8] Keiichi Tokuda,Heiga Zen and Tadashi Kitamura, “Reformulating the HMM as
a trajectory model,”Proc. of Beyond HMM – Workshop on statistical modeling
approach for speech recognition, Kyoto, Dec. 2004.

[9] Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda and Tadashi Kitamura, “Estimat-
ing trajectory HMM parameters using Monte Carlo EM with Gibbs sampler,”Proc.
of ICASSP2006, May 2006 (Accepted).

Technical reports

[10] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “Decision tree based simultaneous
clustering of phonetic contexts, dimensions, and state positions for acoustic model-
ing,” Technical Report of IEICE, SP2003-6, Apr. 2003 (in Japanese).

[11] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “A trajectory model derived from
HMM with explicit relationship between static and dynamic features,”Technical
Report of IEICE, SP2003-122, Dec. 2003 (in Japanese).

[12] Heiga Zen, Tomoki Toda, Masaru Nakamura, Keiichi Tokuda, “Details of Nitech
HMM-based speech synthesis system for Blizzard Challenge 2005,”Technical Re-
port of IEICE, Jan. 2006.

Domestic conference proceedings

[13] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “HMM state partial sharing method
based on tree-based clustering,”Proc. of Spring Meeting of the ASJ, 2-5-2, March
2002 (In Japanese).

[14] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “Decision tree based simultaneous
clustering of phonetic context, dimension, and state position,”Proc. of Autumn
Meeting of the ASJ, 1-9-20, Sept. 2002 (In Japanese).

[15] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “A trajectory model derived from
continuous density HMM with static and dynamic features,”Proc. of Spring Meet-
ing of the ASJ, 1-4-7, March 2003 (In Japanese).

80



[16] Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “A Viterbi algorithm for trajectory
HMM,” Proc. of Autumn Meeting of the ASJ, vol. I, pp. 65-66, 2-6-3, Sept. 2003
(In Japanese).

[17] Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda, Tadashi Kitamura, “An EM-type
training algorithm for trajectory-HMM using Gibbs sampling,”Proc. of Autumn
Meeting of the ASJ, 2-7-16, Sept. 2005 (in Japanese).

[18] Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda, Tadashi Kitamura, “Speaker adap-
tation of trajectory-HMM using constrained MLLR,”Proc. of Autumn Meeting of
the ASJ, 3-7-6, Sept. 2005 (in Japanese).

Related Publications

Journal papers

[1] Amaro Lima,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi Tokuda
and Tadashi Kitamura, “On the use of kernel PCA for feature extraction of speech
recognition,” IEICE Trans. Inf. & Syst., vol.E87-D, no.12, pp.2802–2811, Dec.
2004.

[2] Amaro Lima,Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda, Tadashi Kitamura
and Fernand. G. Resende, “Applying sparse KPCA for feature extraction in speech
recognition,”IEICE Trans. Inf.& Syst., vol.E88-D, no.3, pp.401–409, March 2005.

[3] Hiroyuki Suzuki, Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyzjima, Keiichi
Tokuda and Tadashi Kitamura, “Continuous speech recognition based on general
factor dependent acoustic models,”IEICE Trans. Inf. & Syst., vol.E88-D, no.3,
pp.410–417, March 2005.

[4] Yohei Itaya,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi Tokuda
and Tadashi Kitamura, “Deterministic annealing EM algorithm in acoustic mod-
eling for speaker and speech recognition,”IEICE Trans. Inf.& Syst., vol.E88-D,
no.3, pp.425–431, March 2005.

International conference an workshop proceedings

[5] Keiichi Tokuda,Heiga Zenand Alan W. Black, “An HMM-based speech synthesis
system applied to English,”Proc. of IEEE Speech Synthesis Workshop, Sept. 2002.

81



[6] Hiroyuki Suzuki, Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi
Tokuda and Tadashi Kitamura, “Speech recognition using voice-characteristic de-
pendent acoustic model,”Proc. of ICASSP 2003, vol.1, pp.740–743, Apr. 2003.

[7] Takahiro Hoshiya, Shinji Sako,Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao
Kobayashi and Tadashi Kitamura, “Improving the performance of HMM-based
very low bitrate speech coding,”Proc. of ICASSP 2003, vol.1, pp.800–803, Apr.
2003.

[8] Ranniery S. Maia,Heiga Zen, Keiichi Tokuda and Tadashi Kitamura, “Towards
the development of a Brazilian Portuguese text-to-speech system based on HMM,”
Proc. of Eurospeech 2003, pp.2465–2468, Sept. 2003.

[9] Amaro Lima,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi Tokuda
and Tadashi Kitamura, “On the use of kernel PCA for feature extraction in speech
recognition,”Proc. of Eurospeech 2003, pp.2625–2628, Sept. 2003.

[10] Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi and Tadashi Kita-
mura, “Hidden semi-Markov model based speech synthesis,”Proc. of ICSLP 2004,
vol.II, pp.1397–1400, Jeju, Oct. 2004.

[11] Yohei Itaya,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi Tokuda
and Tadashi Kitamura, “Deterministic annealing EM algorithm in parameter esti-
mation for acoustic model,”Proc. of ICSLP 2004, vol.I, pp.433–436, Jeju, Oct.
2004.

[12] Ryosuke Tsuduki,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, Murtaza Bu-
lut and Shrikanth S. Narayanan, “Constructing emotional speech synthesizers with
limited speech database,”Proc. of ICSLP 2004, vol.II, pp.1185–1188, Jeju, Oct.
2004.

[13] Amaro Lima, Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda and Tadashi Ki-
tamura, “Sparse KPCA for feature extraction in speech recognition,”Proc. of
ICASSP2005, vol.I, pp.353–356, Philadelphia, PA, Mar. 2005.

[14] Heiga Zenand Tomoki Toda, “An overview of Nitech HMM-based speech synthe-
sis system for Blizzard Challenge 2005,”Proc. of Interspeech2005 (Eurospeech),
pp.93–96, Lisbon, Sept. 2005.

[15] Wael Hamza, Raimo Bakis, Zhang Wei Shuang andHeiga Zen, “On building a con-
catenative speech synthesis system from the Blizzard Challenge speech databases,”
Proc. of Interspeech2005 (Eurospeech), pp.97–100, Lisbon, Sept. 2005.

82



Technical reports

[16] Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, Tadashi Kita-
mura, “A pitch pattern modeling technique using dynamic features on the border
of voiced and unvoiced segments,”Technical Report of IEICE, SP-69, Sept. 2001
(in Japanese).

[17] Heiga Zen, Jinlin Lu, Jinfu Ni, Keiichi Tokuda, Hisashi Kawai, “HMM-based
prosody modeling and synthesis for Japanese and Chinese speech synthesis,”Tech-
nical Report of ATR-SLT, TR-SLT-0032, March 2003 (in Japanese).

[18] Y. Nankaku,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, Takashi Masuko, “A
Bayesian approach to HMM-based speech synthesis,”Technical Report of IEICE,
SP2003-77, Aug. 2003 (in Japanese).

[19] R. Tsuduki,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, Murtaza Bulut, Shrikanth
Narayanan, “Emotional speech modeling in HMM-based speech synthesis,”Tech-
nical Report of IEICE, SP2003-78, Aug. 2003 (in Japanese).

[20] Y. Itaya,Heiga Zen, Y. Nankaku, C. Miyajima, Keiichi Tokuda, Tadashi Kitamura,
“Deterministic annealing EM algorithm for speaker and speech recognition,”Tech-
nical Report of IEICE, SP2003-113, Dec. 2003 (in Japanese).

[21] Hiroyuki Suzuki, Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi
Tokuda, Tadashi Kitamura，“Acoustic modeling in consideration of unknown vari-
ation factors at the time of recognition,”Technical Report of IEICE, SP2003-139,
Dec. 2003.

Domestic conference proceedings

[22] Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, Tadashi Kitamura,
“An accurate modeling method of pitch pattern considering dynamic features,”
Proc. of Autumn Meeting of the ASJ, 1-2-7, Oct. 2001 (In Japanese).

[23] Amaro Lima,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi Tokuda,
Tadashi Kitamura, “On the use of KPCA for feature extraction in speech recogni-
tion,” Proc. of Autumn Meeting of the ASJ, 1-9-4, Sept. 2002.

[24] Hiroyuki Suzuki, Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi
Tokuda, Tadashi Kitamura, “Speech recognition using voice characteristic depen-
dent acoustic models,”Proc. of Autumn Meeting of the ASJ, 1-9-19, Sept. 2002 (In
Japanese).

83



[25] Takahiro Hoshiya, Shinji Sako,Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao
Kobayashi, Tadashi Kitamura, “Improving the performance of HMM-based very
low bitrate speech coding,”Proc. of Autumn Meeting of the ASJ, 1-10-3, Sept.
2002 (In Japanese).

[26] Yuka Kishimoto,Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi,
Tadashi Kitamura, “A postfiltering technique for HMM-based speech synthesis,”
Proc. of Autumn Meeting of the ASJ, 2-1-1, Sept. 2002 (In Japanese).

[27] Heiga Zen, Takayoshi Yoshimura, Masatsune Tamura, Takashi Masuko, Keiichi
Tokuda, “A toolkit for HMM-based speech synthesis,”Proc. of Autumn Meeting of
the ASJ, 3-10-14, Sept. 2002 (In Japanese).

[28] Keiichi Tokuda,Heiga Zen, Alan W. Black, “An HMM-based approach to English
speech synthesis,”Proc. of Autumn Meeting of the ASJ, 3-10-15, Sept. 2002.

[29] Tsuyoshi Ishikawa, Yuko Sawada,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miya-
jima, Keiichi Tokuda, Tadashi Kitamura, “Audio-visual large vocabulary continu-
ous speech recognition based on early integration,”Proc. of Meeting of the Forum
of Information Technology, Sept., 2002 (In Japanese).

[30] Yuka Kishimoto,Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi,
Tadashi Kitamura, “Automatic estimation of postfilter coefficients for HMM-based
speech synthesis,”Proc. of Spring Meeting of the ASJ, 1-6-11, March 2003 (In
Japanese).

[31] Heiga Zen, Keiichi Tokuda, Hisashi Kawai, “Designing texts for speech synthesis
corpus by sentence generation from language model,”Proc. of Spring Meeting of
the ASJ, 1-6-18, March 2003 (In Japanese).

[32] Ryosuke Tsuduki,Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi,
Tadashi Kitamura, “A study on HMM-based emotional speech synthesis,”Proc. of
Spring Meeting of the ASJ, 1-6-24, March 2003 (In Japanese).

[33] Tsuyoshi Ishikawa,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi
Tokuda, Tadashi Kitamura, “Bimodal continuous speech recognition using late in-
tegration method based on acoustic likelihood rescoring,”Proc. of Spring Meeting
of the ASJ, 3-Q-21, March 2003 (In Japanese).

[34] Hiroyuki Suzuki, Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi
Tokuda, Tadashi Kitamura, “Speech recognition using acoustic models depend on
noise environments,”Proc. of Autumn Meeting of the ASJ, vol. I, pp. 25-26, 1-6-13,
Sept. 2003 (In Japanese).

84



[35] Yoshihiko Nankaku,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, Takashi Ma-
suko, “Speech synthesis based on variational Bayesian HMM ,”Proc. of Autumn
Meeting of the ASJ, vol. I, pp. 207-208, 1-8-13, Sept. 2003 (In Japanese).

[36] Ranniery da S. Maia,Heiga Zen, Keiichi Tokuda, Tadashi, Kitamura, Fernand G.
V. Resende Jr. “On the application of HMM-based speech synthesis to Brazilian
Portuguese ,”Proc. of Autumn Meeting of the ASJ, vol. I, pp. 215-216, 1-8-17,
Sept. 2003 (In Japanese).

[37] Kikuo Emoto,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, “Accent type recog-
nition for automatic prosodic labeling ,”Proc. of Autumn Meeting of the ASJ, vol.
I, pp. 225-226, 1-8-22, Sept. 2003 (In Japanese).

[38] Ryosuke Tsuduki,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, Murtaza Bulut,
Shrikanth S. Narayanan, “A study on emotional speech synthesis based on HMM,”
Proc. of Autumn Meeting of the ASJ, vol. I, pp. 241-242, 2-6-4, Sept. 2003 (In
Japanese).

[39] Yohei Itaya,Heiga Zen, Yoshihiko Nankaku, Chiyomi Miyajima, Keiichi Tokuda,
Tadashi Kitamura, “Continuous speech recognition using HMM based on DAEM
algorithm ,” Proc. of Autumn Meeting of the ASJ, vol. I, pp. 67-68, 2-6-4, Sept.
2003 (In Japanese).

[40] Masaru Sugiura,Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda, Tadashi Kita-
mura, “Context clustering based on maximum mutual information criterion,”Proc.
of Autumn Meeting of the ASJ, vol. I, pp. 69-70, 2-6-5, Sept. 2003 (In Japanese).

[41] Heiga Zen, Keiichi Tokuda, Takashi Masuko, Takao Kobayashi, Tadashi Kita-
mura, “HMM parameter reestimation with explicit duration model for HMM-based
speech synthesis,”Proc. of Spring Meeting of the ASJ, vol. I, pp. 223-224, 1-7-6,
March 2004 (In Japanese).

[42] Ryosuke Tsuduki,Heiga Zen, Keiichi Tokuda, Tadashi Kitamura, Murtaza Bulut,
Shrikanth S. Narayanan, “Emotional speech synthesis based on HMM using sub-
jective evaluation,”Proc. of Spring Meeting of the ASJ, vol. I, pp. 251-252, 1-7-20,
March 2004 (In Japanese).

[43] Amaro Lima,Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda, Tadashi Kitamura,
Fernand G. Resende, “Feature extraction for speech recognition using sparse KPCA,”
Proc. of Autumn Meeting of the ASJ, vol. I, pp. 69-70, 2-1-17, Sept. 2004.

[44] Hiroaki Kuwabara, Ryosuke Tsuduki,Heiga Zen, Shinji Sako, Yoshihiko Nankaku,
Keiichi Tokuda, Tadashi Kitamura, “A study on designing context-dependent labels

85



based on musical score for HMM-based singing voie synthesis,”Proc. of Autumn
Meeting of the ASJ, vol. I, pp. 323-324, 3-2-4, Sept. 2004 (in Japanese).

[45] Yusuke Morioka, Shunsuke Kataoka,Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda,
Tadashi Kitamura, “Minutuarization of HMM-based speech synthesis,”Proc. of
Autumn Meeting of the ASJ, vol. I, pp. 325-326, 3-2-5, Sept. 2004 (in Japanese).

[46] Shunsuke Kataoka,Heiga Zen, Yoshihiko Nankaku, Keiichi Tokuda, Tadashi Ki-
tamura, “Simultaneous backing-off of spectrum, f0 and duration decision trees in
HSMM-based speech synthesis,”Proc. of Spring Meeting of the ASJ, vol. I, pp.
193-194, 1-1-20, March 2005 (in Japanese).

[47] Masaru Nakamura,Heiga Zen, Tomoki Toda, Keiichi Tokuda, “An evaluation
of improvements of HMM-based speech synthesis system for Blizzard Challenge
2005,”Proc. of Autumn Meeting of the ASJ, 3-6-18, Sept. 2005 (in Japanese).

Research talks

[48] Heiga Zen, “A trajectory model derived from the HMM by imposing explicit re-
lationship between static and dynamic features for statistical speech recognition
and synthesis,” Research Seminar, IBM T.J.Watson Research Center, Yorktown
Heights, NY, Dec. 2004.

[49] Heiga Zen, “Reformulating the HMM as a trajectory model by imposing explicit
relationship between static and dynamic features,” Research Seminar, Microsoft
Research, Redmond, WA, June 2005.

[50] Heiga Zen, “Reformulating the HMM as a trajectory model by imposing explicit
relationship between static and dynamic features,” SSLI Seminar, University of
Washington, Seattle, WA, June 2005.

[51] Heiga Zen, “Reformulating the HMM as a trajectory model by imposing explicit
relationship between static and dynamic features,” MIL Speech Seminar, Cam-
bridge University, Cambridge, England, July 2005.

[52] Heiga Zen, “Reformulating the HMM as a trajectory model by imposing explicit
relationship between static and dynamic features,” CSTR Seminar, Edinburgh Uni-
versity, Edinburgh, Scottland, July 2005.

86


