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ABSTRACT 
 

 

There are many computer-generated images around us, in movies, advertising, or on the 

Internet that are already being taken for granted, and what impresses most people is their 

photorealistic quality. A picture, as we have often been told, is worth a thousand words and 

the information conveyed by an image can have many different forms.  

Non-photorealistic rendering (NPR) is an alternative to realistic depiction and is defined 

by what it is not, i.e., it concentrates less on the process and more on communicating the 

content of an image, bringing art and science closer together. Techniques that have long been 

used by artists can be applied to computer graphics to emphasize subtle attributes, and to 

omit extraneous information.  

I developed a method of rendering images that look similar to those found in painterly 

art. When artists create painterly art, they express their own feelings and sensitivities 

depending on their own style. These styles can be distinguished by various elements, such as 

motifs, colors, deformations in shape, and texture. Many computer graphics (CG) 

researchers are interested in these characteristics and have devoted a great deal of time to 

developing techniques that will produce NPR. 

CG researchers have explored many NPR algorithms, e.g., several methods of pasting 

textures from painterly art onto photographs have been suggested. Other methods of 

applying the coloration from painterly art to photographic images have also been put forward. 

Most previously proposed methods have used some absolute criteria, e.g., certain 

mathematical formulae to establish the nearest distance in CIE L*a*b color space to 

uniquely convert one color to another. However, I wanted to develop a method that could 

convert color depending on an individual’s personal feelings and sensitivities, like a painter 

who creates pictures in the real world. 

 I present an algorithm in this thesis for altering the colors of a photograph using 

reference images obtained from painterly art. Color transfer is one of major themes of NPR, 

and it is one of the major tasks confronting CG designers. Examples of color transfer are 

changing a blue sky into a sunset and changing a dark skin color into a lighter shade. 

Although Adobe Photoshop is a popular tool utilized by designers to transfer colors, it does 

not work automatically. They have to manually transfer the colors themselves. 



 vii

My algorithm can produce color transformations resulting from two input images, i.e., a 

target photograph and a reference painting. My method is based on interactive evolutionary 

computation (IEC) and it can produce a variety of images with transformed colors. The 

designer interactively selects various candidates from this variety until a final result is 

reached, which looks similar to the reference painting. I also discuss the exploitation of 

image-region matching for color transfer in this thesis. 

In the following, I will explain the image-region matching algorithms and present some 

results on transferring color from reference paintings to target photographs to obtain 

resulting images. There is also a discussion on results obtained for the searching efficiency 

of the algorithms. 

In the last chapter, I will also discuss my recent study on generating a calligraphic font 

that creates a scratched and blurred impression that was obtained using a reference font that 

was designed by a famous calligrapher. I will discuss the algorithm for generating the 

calligraphic font by transferring texture from a calligraphic font to a target font. 
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CHAPTER 1  
INTRODUCTION 

1.1. BACKGROUND 
Wikipedia states: “The term “non-photorealistic rendering” [NPR] was probably 

coined by David Salesin and Georges Winkenbach in a 1994 paper.” 

It also states: “The first conference on Non-Photorealistic Animation and Rendering 

included a discussion of possible alternative names. Among those suggested were 

“expressive graphics”, “artistic rendering”, “non-realistic graphics”, “art-based rendering”, 

and “psychographics”. All of these terms have been used in various research papers on the 

topic, but the term NPR seems to have none-the-less taken hold.”  

 
Fig. 1 Photorealistic image Fig. 2 Painterly art Fig. 3 Non-photorealistic 

result 

NPR is an alternative to photorealism. For example, Fig. 1 is a common photorealistic 

image, Fig. 2 is painterly art, and Fig. 3 is NPR produced from Fig. 1 using the reference of 

Fig. 2. We can see similarities between the reference painterly art and NPR. Figure 1 is a 

landscape in summer and Fig. 2 is a landscape in winter. We can see NPR can turn a summer 

landscape into a winter scene.  
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NPR has recently become an important field of tremendous interest in the graphics 

community with many papers on topics such as rendering with simulated watercolors, 

creating images in an impressionist style, and automatically extracting silhouettes. For 

example, some researchers have developed a method of applying the coloration of painterly 

art to photographic images. This method has been developed using certain mathematical 

formulae. The color space is automatically segmented into 11 categories based on the 

experimental results for the ratings of basic color categories for each test color. Then, for 

every pixel color value in the photograph, the algorithm finds its corresponding color in the 

reference painting. We can therefore produce an image whose color features are similar to 

those of the reference painting. [Proceedings of the Computer Graphics International 

(CGI’03) 1530–1052/03 @2003 IEEE] 

Another method of color transfer from image-to-image is to process within a special 

color space; Ruderman et al. developed a color space, called ɭαβ, which minimizes the 

correlation between channels for many natural scenes. This space is based on research on 

data-driven human perception that assumes the human visual system is ideally suited to 

processing natural scenes. There is little correlation between the axes in ɭαβ space, which 

lets us apply different operations in different color channels with a degree of confidence that 

objectionable cross-channel artifacts will not occur. Additionally, this color space is 

logarithmic, which as a first approximation means that uniform changes in channel intensity 

tend to be equally detectable. The color-transfer method is a simple algorithm for the ɭαβ

color space. As it is based on statistics, the mean and standard deviations along each of the 

three axes suffice. These measures for both the source and target images must be computed. 

It needs to be noted that the means and standard deviations for each axis are separately 

computed in the ɭαβ color space. 

First, the mean must be subtracted from the data points: 

ɭ* = ɭ -〈ɭ〉 

α* = α-〈α〉 

β* = β -〈β〉 
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Then, Ruderman et al. scaled the data points comprising the synthetic image by factors 

determined by the respective standard deviations: 

*ll
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After this transformation, the resulting data points have standard deviations that 

conform to the photograph. Next, instead of adding the averages that they previously 

subtracted, they added the averages computed for the photograph. Finally, they converted the 

results back to RGB color space. 

This method of color transfer between images is simple statistical analysis to impose 

one image’s color characteristics on another in the ɭαβ color space. I also intended to 

apply this method to my own algorithm for transferring colors from painterly art references  

to target photographs. 

There is an important branch in the field of NPR that involves the transfer and synthesis 

of textures. Efros and Freeman presented a simple image-based method of generating a novel 

visual appearance in which a new image is synthesized by stitching together small patches of 

existing images. This process is called image quilting. They used quilting as a fast and very 

simple algorithm for synthesizing texture that could produces surprisingly good results. They 

then extended the algorithm to render the texture of one object with a texture taken from a 

different object. Their algorithm for synthesis was not one-pixel-at-a-time being something 

more than a single pixel, i.e., a “patch”. The process of synthesizing texture would be akin to 

putting together a jigsaw puzzle, quilting together the patches, and making sure they all fitted 

together. Determining precisely what the patches for a given texture are and how they are put 
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together still remains unsolved. I will illustrate this method of “image quilting” in what 

follows. 

Bi  is defined as the unit of synthesis, being a square block of user-specified size in the 

input image. The next step is to introduce some overlap in the placement of blocks onto the 

new image, instead of picking a random block and searching its input image using some 

measure that agrees with its neighbors along the region of overlap. However, the edges 

between the blocks are still quite noticeable. Efros and Freeman then smoothed across these 

edges more systematically. 

They let the blocks have ragged edges, which allowed them to better approximate 

features in the texture. Before placing a chosen block into the texture, they looked at the 

error in overlap between it and the other blocks. They found the minimum cost path through 

that error surface and declared it to be the boundary for the new block.  

The minimum error-boundary cut is to make an incision between two overlapping 

blocks on pixels where two textures match the best (i.e., where overlap error is low). This 

can easily be done with dynamic programming (Dijkstra’s algorithm can also be used) [J. 

Davis. Mosaics of scenes with moving objects. In Proc. IEEE Conf. on Comp. Vision and 

Patt. Recog., 1998 ] 

The minimal cost path through the error surface is computed as follows. If B1 and B2 

are two blocks that overlap along their vertical edges with overlap regions of ovB1  and ovB2 , 

then the error surface is defined as e = ( ovB1  - ovB2 )2. To find the minimal vertical cut 

through this surface, we traverse e (i  = 2..N) and compute the cumulative minimum error, 

E, for all paths: 

),,min( 1,1,11,1,, +−−−−+= jijijijiji EEEeE  

 The minimum value of the last row in E indicates the end of the minimal vertical path 

though the surface and one can trace back and find the path for the best cut. A similar 

procedure can be applied to horizontal overlaps. When there is both vertical and horizontal 

overlap, the minimal paths meet in the middle and the overall minimum is chosen for the cut. 
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The complete quilting algorithm is as follows: 

• Go through the image to be synthesized in raster scan order in steps of one block (minus 

the overlap) 

•  Search the input texture for a set of blocks for every location that satisfies the overlap 

constraints (above and left) within some degree of error tolerance. Randomly pick one 

such block. 

• Compute the error surface between the newly chosen block and the old blocks in the 

overlap region. Find the minimum cost path along this surface and make that the 

boundary for the new block. Paste the block onto the texture. Repeat. 

The size of the block is the only parameter controlled by the user and it depends on the 

properties of a given texture, i.e., the block must be big enough to capture the relevant 

structures in the texture, but small enough so that the interaction between these structures is 

left up to the algorithm. 

This method has been applied to the transfer of textures, because the image-quilting 

algorithm selects output patches based on local-image information. They just augment the 

synthesis algorithm by requiring each patch to satisfy a preferred correspondence map, as 

well as satisfy the requirements for texture synthesis. The correspondence map is a spatial 

map if there is some quantity corresponding to the texture-source and controlling-target 

images. That quantity could include image intensity, blurred-image intensity, local-image 

orientation angles, or other derived quantities. 

In many cases, the correspondence map represents the (luminance) image intensities. 

That is, bright patches of the target image and bright patches of the reference image are 

defined to have low error in correspondence. In texture transfer, the image being synthesized 

has to conform to two independent constraints: (a) the outputs must be legitimate, 

synthesized examples of the source texture, and (b) corresponding images must be mapped. 

The authors Efros and Freeman modified the error term in the image-quilting algorithm to be 

a weighted sum, i.e., α times the block-overlap matching error plus (1-α) times the 

squared error between corresponding map pixels within the source-texture block and those in 
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the current target-image position. Parameter α determines the tradeoff between texture 

synthesis and fidelity to the correspondence map for the target image. 

 Sometimes one pass through the image is not enough to synthesize a visually pleasing 

result because of the added constraints. In such cases, we can iterate synthesis over the 

image several times, reducing the size of the block with each iteration. The only change from 

the non-iterative version is that in satisfying the local-texture constraint the blocks are 

matched not just with their neighboring blocks in the overlap regions, but also with whatever 

was synthesized in this block in the previous iteration. This iterative scheme works 

surprisingly well; it starts out using large blocks to roughly assign where everything will go 

and then uses smaller blocks to ensure the different textures will fit together well. 

In fact, despite its simplicity, this method works remarkably well when applied to 

texture synthesis, producing results that are equal to or better than the Efros & Leung family 

of algorithms but with improved stability and at a fraction of their computational cost.  

 I have also extended this method of synthesizing and transferring textures to a 

Chinese font to make it look like manually rendered calligraphy that looks scratched and 

blurred. 

1.2. Motivation 
 There have recently been many papers on producing non-photorealistic images, and 

some of the algorithms presented in them can produce magnificent results. However, most of 

the methods that have been proposed have used some absolute criteria, e.g., certain 

mathematical formulae as I previously explained, i.e., color-transfer, texture-synthesis, and 

texture-transfer algorithms, where they can uniquely create a non-photorealistic impression. 

In fact, when artists render painterly art, they can create it with their own feelings and 

sensitivities depending on their own individual styles. These styles can be distinguished by 

various elements, such as motifs, colors, deformations in shape, and textures. Graphic 

researchers are interested in these characteristics. Several researchers have developed 

numerous algorithms to produce NPR images. NPR is an alternative to photorealism and 

produces painterly images that feature various expressions similar to those used in actual 
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painterly art. As I have previously discussed, some methods of pasting the textures of 

painterly art to photographs have been suggested. Other methods of applying the coloration 

of painterly art to photographic images have also been suggested. I was interested in altering 

the colors of a photograph using a reference image taken from painterly art. Color transfer is 

one of the major themes of NPR, and it is one of the major tasks done by CG designers. 

Examples of color transfer are changing a blue sky into a sunset and changing a dark skin 

color into a lighter shade. Adobe Photoshop is a popular tool for color transfer and is being 

utilized by designers; however, it does not work automatically.  

What I wanted was to develop a method that could convert color depending on the 

feelings and sensitivities of designers themselves, like a painter who makes a picture in the 

real world. My algorithm can produce a color-transformed image resulting from two input 

images, i.e., a target photograph and a reference painting. My method is based on interactive 

evolutionary computation (IEC) and can produce a variety of images with transformed colors. 

The designer interactively selects some candidates from these varieties to obtain the final 

results, which look similar to reference paintings. This is different from the previous 

methods I have mentioned in that it can produce many kinds of intermediate and final results. 

This method is also different from Adobe Photoshop, which needs special design skill to 

manually achieve color transfer. Users just input their own evaluations, then my system can 

create more satisfactory candidates automatically until they are satisfied with them.  

Although the uniqueness of the transformations is indeed practical and efficient in 

some cases, it does not always satisfy what the user wanted. Assuming that you have a 

photograph with a red sunset sky for a target and a painting with both a blue sky and a red 

bird for a reference. If you want to change the sunset of the target into the blue of the 

reference, what happens? As the distance in color between the sunset and the red bird is 

nearer than the one between the sunset and the blue sky, you cannot change the sunset into a 

blue sky. I believe that the process of detecting color pairs not only depends on the distance 

between colors but also on other factors, such as the artistic subjectivity of users. 

I attempted to attain color transfer from a painting to a photograph with IEC [6–8]. My 

purpose was to supply a useful color transfer system to users. I believe that we can acquire 

color-transfer images that can create similar impressions to the reference images. Users in 
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some situations would be surprised by the breathtaking results that can be obtained from 

color transfer. This kind of software should be useful in many fields such as advertisements 

and movies. 

1.3. Contrast With Other Methods 
As I previously discussed, there have been many methods of producing NPR. Some 

researchers have applied coloration of painterly art to photographic images by taking 

statistics and color corrections into consideration on the basis of ɭαβ color space, as can 

be seen from Fig. 4. For example, Reinhard, Ashikhmin, Gooch, and Shirley (2001) 

discussed“Color transfer between images”in IEEE Computer Graphics and Applications. 

   
Painterly art Photograph  Non-photorealistic image 

Fig. 4 Color transfer 

Another method of generating NPR using transfer-texture patches with image quilting 

is shown in Fig. 5. This is Efros and Freeman’s“Image Quilting for Texture Synthesis and 

Transfer”in ACM Siggraph 2001. 
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Source texture image Target photograph Non-photorealistic result 

Fig. 5 Texture transfer 

The methods I previously mentioned are automatic, and can produce unique results. 

The transformation is indeed unique and effective in many cases. However, algorithms 

cannot always obtain the results that users need, and it is difficult for them to estimate the 

generated results. Adobe Photoshop is a popular tool utilized by designers for transferring 

colors; however, it does not work automatically. Users have to manually undertake color 

transfer themselves.  

I developed a method that could transfer color from painterly art to a photograph with 

IEC. This method is easy to operate as candidates produced automatically by the system are 

evaluated by users, who award either 0 or 1 for fitness, i.e., 0 for unacceptable, and 1 for 

acceptable. Users can also input their own subjective requirements into the results because 

their evaluations will be reflected in the next generation until the final result is achieved. My 

method is between photo retouching and automatic color transfer. 

1.4. Overview of Thesis 
The remainder of the thesis is organized as follows. Chapter 2 introduces methods of 

color transfer between images with IEC. Color transfer and IEC are important terms in this 

chapter. The method of color transfer is based on statistical analysis (REINHARD, 2001), and 

the encoding of chromosomes. This is usually a biological term indicating a string of DNA. 

In this thesis “chromosome” is a technical term for IEC and a chromosome indicates a 
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solution to completing the region-matching table and is represented as a bit string. I will then 

discuss GA and provide some examples. Finally, I will discuss its efficiency.  

Chapter 3 proposes another method of color transfer based on hierarchical 

image-region matching with IEC. It is based on the segmentation of hierarchical images, and 

IEC can also be done several times. I define Tr as the image-region matching table. Tr1 is 

completed after the first IEC. We can use the completed Tr1 and restrict the matching pair in 

the next phase table, Tr2 , to reduce the search space. This is done the same way in the final 

phase for Tr. The user’s history of evaluation is well reflected in the next generation using 

this method. I will also present some results, and discuss the efficiency of the hierarchical 

image-region matching algorithm. 

Chapter 4 proposes a method of transferring texture from a Chinese font created by a 

famous artist to another Chinese font printed by computer. I only have some intermediate 

results as this project is not yet finished. However, I think by improving the algorithm, better 

results could be obtained. This method is based on the algorithm for synthesizing and 

transferring textures from the reference to the target image, with the correspondence map. It 

also satisfies the texture-synthesis requirements, which I previously mentioned, as presented 

by Efros and Freeman. However, their algorithm just produces general texture synthesis in 

regular raster scan order when the patches are quilted. I had to face the problem of structural 

abnormity with my method of producing a Chinese font, and the directivity of strokes used 

in it. A Chinese font can be produced with transferred texture that looks like one created by a 

famous artist if these two problems are solved. 
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CHAPTER 2  

COLOR TRANSFER BETWEEN 

IMAGES WITH INTERACTIVE 

EVOLUTIONARY COMPUTATION 

(IEC) 

2.1. Introduction 
 All artists in the real world render paintings in their own style, which can be 

distinguished by elements, such as motifs, colors, deformations in shape, and textures. 

Graphic researchers, however, have demonstrated many techniques that can produce NPR 

images. One aim of NPR, which is an alternative to photorealism, is to produce painterly 

images that feature expressions similar to those used in actual painterly art (Gooch, 2001). 

Some methods of applying the texture of an image to a photograph were previously 

suggested (the texture in an image has some shape and stroke characteristics that can make 

the photograph look much more like the image) (Hertzmann, 2001; Wang, 2004).  Other 

methods of applying the coloration of painterly art to a photographic image have also been 

suggested (Chang, 2002; Reinhard, 2001). Altering the colors of an image is also one of the 

most common tasks in image processing, and this is the main interest of my work. 
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Fig. 1. Target photograph Iin 

 
Fig. 2. Reference painting Iref 

 Use of the color space should be considered when considering a method of applying 

the colors of a given painting to a photograph. Previous research used ɭαβ and CIE L*a*b* 

color space (Reinhard, 2001; Chang, 2002) (this color space was developed by the 

International Commission on Illumination, usually known as CIE for its French-language 

name of Commission Internationale de l'Éclairage. It was determined by physiological 

measurements of human color vision. L represents the luminance of color, and a and b 
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represent color) (Chang, 2002; Reinhard, 2001). Both ɭαβ and CIE L*a*b* color space are 

a kind of 3D color-space representation. 

 
Fig. 3. Resulting image 1 

 
Fig. 4. Resulting image 2 

The ɭ- axis represents an achromatic channel in ɭαβ color space, while α and β 

channels are chromatic yellow-blue and red-green opponent channels. In CIE L*a*b*, each 

axis of L, a, and b represents similar channels as well as ɭαβ.  The first method is based 
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on simple statistical analysis in color space (REINHARD, 2001), whereas the second is based on 

color-categorization characteristics of human vision (CHANG, 2002). Although these methods 

have some differences in their approaches, they basically aim at similar goals. 

 
Fig. 5. Color matching table 

Algorithms for applying the colors of a given painting evaluate the distance in colors 

between the painting and target photograph in color space, and they acquire color pairs to 

uniquely transform the colors. The transformation is indeed unique and effective in many 

cases. However, algorithms cannot always generate results that satisfy user requirements, 

and it is difficult for them to estimate these. I believe that the process of detecting color pairs 

not only depends on the distance between colors but also on other factors, such as the artistic 

subjectivity of users. 

This thesis describes my attempts to transfer the colors of a painting to a photograph, 

where the subjectivity of users was the only criterion for assigning colors. Color-transfer 

processing exploits IEC (KATAGAMI, 2002; Takagi, 2001; TOKUI, 2000) and finds color 

correspondences between a painting and a photograph. IEC is applied in my algorithm to 

alter the photograph’s colors. Users can repeat operations to evaluate the output for 

re-colored images and assign various fitness values, which are either 1 or 0. IEC actually 

requires users to undertake part of the color-transfer operations themselves by showing them 

a variety of candidate images. Thus, IEC is semi-automatic as it does not automatically do 

all the processing.  
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Fig. 6. Region matching table Tr 

Figure 3 has an example of a color-transferred result obtained by exploiting IEC. 

Figure 1 is a target photograph, Iin, and Fig. 2 is a reference painting, Iref. IEC transferred the 

color from Fig. 2 into Fig. 1 to produce the coloration in Fig. 3. Figure 4 is another example 

of a color-transferred result; however, I did not exploit IEC to produce this image. Instead, I 

calculated the Euclid distance in CIE L*a*b* color space and applied the nearest neighboring 

color in the painting (Fig. 2) to the corresponding one in the photograph (Fig. 1) in a similar 

way to that used previously (REINHARD, 2001; CHANG, 2002), which is given as 

( ) ( )jiPyxP refout ,, = ........................................................ (1) 

This is where Pout (x, y) is a pixel value for the (x, y) coordinate on an output 

color-transferred result, and Pref (i, j) is a pixel value for the (i, j) coordinate on reference 

painting Iref.  The pixel values correspond to points in L*a*b* color space. Pref (i, j) is 

calculated as 

))),(),,(((minarg),(
),(

jiPyxPdistjiP refinref
jirefP

=
,........ (2) 

where Pin(x, y) is a pixel value for (x, y) on target photograph Iin , and dis(Pin(x, y), P(i, j)) 

represents the Euclid distance in CIE L*a*b* color space as follows. The ),( yxLin , ),( yxain , 
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and ),( yxbin  below are L, a, and b values for Pin(x, y). Then, ),( jiLref , ),( jiaref , and 

),( jibref  are L, a, and b values for Pref(x, y).  

( ) ( )( ) baLrefin dddjiPyxPdis ++=,,, ............................. (3) 

( ) ( )( )2,, jiLyxLd refinL −= , 

( ) ( )( )2,, jiayxad refina −= ,................................................................................... (4) 

( ) ( )( )2,, jibyxbd refinb −= . 

We can see that there are visual differences between Figs. 3 and 4. The coloration 

between Figs. 3 and 2 is much more similar than that between Figs.4 and 2. 

I will present problems and solutions in Chapters 2 and 3, where I discuss how IEC 

was exploited for color transfer. Chapter 4 has an overview of the algorithm. Chapter 5 

presents some output examples produced by the algorithm and an evaluation of the 

usefulness of the IEC approach. Finally, I will discuss some future directions for color 

transfer. Figures 1–4 and 13–22 were originally created from color images. They can be seen 

in a Web version of Forma. URL is http://www.scipress.org/journals/forma/frame/19.html. 

2.2. Color Transfer 
Color transfer is a kind of combinatorial optimization problem. Previous work on this 

subject has dealt with color transfer as a color-matching problem between a photograph and 

a painting. There is an example of the color-matching problem in Fig. 5. Cin(i) and Cref (j) 

represent the i-th color of target photograph Iin and the j-th color of reference painting Iref . 

The circles in the table indicate Cref (j) has been assigned to its corresponding Cin(i). The 

color-matching table has been completed using several criteria, e.g., the nearest distance in 

color space that was exploited to produce Fig. 4, as I previously mentioned. 
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I attempted to use a new type of table in this thesis, called a “region-matching table”, 

and denoted it by Tr. To begin with, I divided each image into several regions, which 

indicated areas in the image, i.e., the set of all regions is equivalent to a whole image. The 

regions in target photograph Iin  are represented as Rin(i) (i = 0, …,Nin-1) and the ones in 

reference painting Iref  are represented as Rref(j)  (j = 0, …,Nref -1). We can then determine 

pair (Rin(i), Rref(j)), and assign a mean color, which is calculated by Eq. (5), to the 

corresponding Rin(i). Figure 6 is an example of a region-matching table. The circles in the 

table indicate a color in Rref (j) has been assigned to Rin(i). 

( ) ( )

( )jn

yxL

jL
ref

jRyx
ref

ref
ref

∑
∈

=
,

),(

, 

( )
( )

( )

( )jn

yxa

ja
ref

jRyx
ref

ref
ref

∑
∈

=
,

,

, ................................................... (5) 

( )
( )

( )

( )jn

yxb

jb
ref

jRyx
ref

ref
ref

∑
∈

=
,

,

, 

where ( )jnref  is the total number of pixels in ( ).jRref  

Region-matching table Tr provides more solutions to color-transfer problems than the 

color-matching table. That is, even if the regions in Iin have the same color, Tr can assign 

different colors to each region. Instead, it needs a larger search space, and this will of course 

take more time to acquire an optimum solution. There is one further problem that cannot be 

ignored. This depends on the IEC’s features. IEC produces color-transformed images 

semi-automatically. The users themselves provide a fitness function for IEC, and they have 

to repeat operations to evaluate color-transformed candidates until they obtain an optimum 

result that satisfies them. These repeated operations force them to do a lot of work if the 

search space is huge. Thus, I had to introduce a method of reducing the number of 
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evaluations. My approach was based on the intuitive idea that painters roughly assign colors 

on a canvas first and when they draw and begin to render a painting, they decide the colors 

for the finer regions.  

On the basis of this idea, I first prepared coarse regions allowing me to roughly assign 

colors to regions. I adopted k-means to acquire the coarse regions, which is a method for 

segmenting images (TAKAGI, 1991). After that, I assigned fine colors to all regions based on 

statistical analysis (REINHARD, 2001). 

Once IEC had finished assigning rough colors, matching pair (Rin(i);Rref (j)) was 

determined. Fine colors were assigned between Rin(i) and Rref (j). To achieve this, I wanted 

some aspects of the distribution for data points in L*a*b* space to transfer between Rin(i) and 

Rref(j), where the means and standard deviations along each of the three axes were sufficient. 

Thus, I computed these measures for both Rin(i) and Rref (j).  

The precise process is as follows. In Eq. (6), each of ( )yxLin , , ( )yxain , , and 

( )yxbin ,  represents an L*a*b* color member of (x, y) in ( )iRin . Then, each ( )iLin , 

( )iain , and ( )ibin  represents a mean of the L*a*b* color member in ( )iRin . I computed 

the means and standard deviations for each axis separately in the L*a*b* space. I first 

subtracted the mean from the data at each point, (x, y): 

( ) ( ) ( )iLyxLyxL inin −=′ ,, , 

( ) ( ) ( )iayxayxa inin −=′ ,, ,....................................... (6) 

( ) ( ) ( )ibyxbyxb inin −=′ ,, , 

( )iRyx in∈, . 

 I then scaled the data points comprising the synthetic region by factors determined by 

respective deviations: 
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( )
( )
( )

( ) ( )jLyxL
i

j
yxL refL

in

L
ref

out +′= ,,
σ

σ
, 

( )
( )
( )

( ) ( )jayxa
i

j
yxa refa

in

a
ref

out +′= ,,
σ

σ
, ....................  (7) 

( )
( )
( )

( ) ( )jbyxb
i

j
yxb refb

in

b
ref

out +′= ,,
σ

σ
. 

where ( )yxLout , , ( )yxaout , , and ( )yxbout ,  represent the pixel values of (x, y) on 

color-transferred image outI . ( )jref
*σ  and ( )iin

*σ  { }( )baL ,,*∈  are standard deviations in 

( )jRref  and ( )iRin  for each axis. After these transformation, the resulting data have 

standard deviations that conform to ( )jRref . 

2.3. IEC 
2.3.1. Encoding a chromosome 

IEC manages and completes region-matching table Tr as we can see from Fig. 6, where 

refN  indicates the total number of refI  regions and inN  indicates that for inI . When the 

problem of assigning ( )( )1,,0 −= refref NjjR L  to ( )( )1,,0 −= inin NiiR L  in table Tr is 

considered, there are ( ) inN
refN  total combinations. My approach uses the table itself as a 

chromosome for IEC. The expression of a chromosome (even though “chromosome” is 

usually a biological term indicating a string of DNA, it is a technical term for IEC in this 

thesis, indicating a solution to completing Tr and is represented as a bit string.) is as follows: 

[ ]
1

,,, 10 −inNxxx L
, 

( ).1,,010 −=−≤≤ inrefn NnNx L ....................................... (8) 
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Fig. 7. Divided region-matching table 

 
Fig. 8. Search tree to obtain final solution 

The length of a chromosome will be refin NN log  bits, which is too long when the 

table is large. To solve this problem, my approach divides the whole table Tr, to K-small 

tables as shown in Fig. 7, if inN , the total number of inI  regions, is beyond a threshold 

value. k
rT  indicates a k-th small table (k = 0,…,k - 1). Thus, each k

rT  has ( refin NN log )/K  

bits as the length of a chromosome. Then, a user evaluates and completes 0
rT , and repeats 

the same operations for 1
rT ,…, 1−K

rT . This means that the user decomposes a whole path to a 

final solution into K-subgoals. This is a kind of depth-first search as shown in the search tree 

in Fig. 8, and users are only allowed to evaluate and complete k
rT  on the k-th layer of the 

tree. 
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Furthermore, as part of the preprocessing before a search is begun, I sorted the order of 

regions in area order. The order of regions is given by 

( )( ) ( )( )1+≥ iRsumiRsum inpinp , .......................... (9) 

where ( )( )iRsum inp  is the total number of pixels in ( )iRin . Equation (9) determines the 

order of the horizontal axis throughout the entire region-matching table, Tr. Thus, a user 

begins to evaluate and complete a small table, 0
rT , which occupies the largest areas in inI , 

then treats smaller tables, 11 ,, −K
rr TT L . This sorting is also based on the intuitive idea that 

painters tend to begin assigning colors to large areas first. I believe that the size of the area is 

an important factor in assigning colors and that larger regions have a higher visual impact. 

Therefore, my approach mimics a painter’s process of drawing in the real world. 

( ) ( ) ( ) ( )[ ]1,,1,1:1 110 −inNxxxChromosome L  

( ) ( ) ( ) ( )[ ]2,,2,2:2 110 −inNxxxChromosome L  

⋮ 

( ) ( ) ( ) ( )[ ]MxMxMxMChromosome
inN 110 ,,,: −L  

Fig. 9. Population 

( ) ( ) ( ) ( ) ( ) ( )[ ]axaxaxaxaxaChromosome
inNnn 1110 ,,,,,,: −+ LL  

( ) ( ) ( ) ( ) ( ) ( )[ ]bxbxbxbxbxbChromosome
inNnn 1110 ,,,,,,: −+ LL  

⇓ 

( ) ( ) ( ) ( ) ( ) ( )[ ]axaxbxbxbxaOffspring
inNnn 1110 ,,,,,,: −+ LL  

( ) ( ) ( ) ( ) ( ) ( )[ ]bxbxaxaxaxbOffspring
inNnn 1110 ,,,,,,: −+ LL  

Fig. 10. Crossover 

2.3.2. GA operations 
The operations for IEC I established are illustrated by the algorithm below which runs 

for each k
rT  (k = 0, …,K -1). However, we can use K = 1 to simplify explanation. 
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1. [Start] Initialize the initial adaptive probability by ( )jiP ,0 , which is calculated by Eq. 

(10). ( )jiP ,0  indicates the probability that ( )jRref  will be assigned to ( )iRin  in the 

initial generation. Generate a population (“population” indicates a set of chromosomes 

and is an IEC technical term.) of M chromosomes, illustrated in Fig. 9, under ),(0 jiP . 

2. [Fitness] A user evaluates and assigns a fitness value of 0 or 1 to each chromosome in 

the population. 

3. [New population] Generate a new population by executing the following steps. 

(i) [Selection] Select a parent chromosomes whose fitness value is 1 from a 

population, if there are more than two chromosomes whose fitness value is 1. 

(ii) [Crossover] Cross over with the crossover probability the parents will form new 

offspring (“Offspring” indicates a chromosome in the next generation, which is 

also an IEC technical term). The crossover probability decides whether crossover 

is executed or not, and in my system this was set to 0.5. Figure 10 illustrates the 

operation for crossover. When crossover is executed, a crossover point is 

determined at the locus between n and n + 1, which is randomly selected. 

Offspring (a) and (b) are generated from parent chromosomes (a) and (b). 

(iii) [Mutation (1)] Randomly generate new offspring under adaptive probability 

),( jiPg , which indicates probability in the g-th generation and is defined by Eqs. 

(10) and (11), except for offspring that the crossover formed. 

( ) ( ) ( ) ( ) ( )[ ]axaxaxaxaOffspring
inNn 110 ,,,,,: −LL  

⇓ 

( ) ( ) ( ) ( ) ( )[ ]axayaxaxaOffspring
inNn 110 ,,,,,: −LL  

Fig. 11. Mutation (2) 

(iv) [Mutation (2)] Randomly mutate all the new offspring at each locus with a 

mutation probability of 0.025. Figure 11 illustrates [Mutation (2)] operation. When 

locus n is selected with the mutation probability, ( )axn  changes random value 

( ).ayn  

(v) [Accepting] Place the new offspring in a new population. 
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4. [Replace] Use a newly generated population for a further run of the algorithm. 

5. [Update] Update adaptive probability ( )jiPg ,  for the next generation according to Eq. 

11. 

6. [Test] Stop and return the best solution if a user finds a chromosome that satisfies his or 

her subjective criteria in the current population. 

7. [Loop] Go to Step 2. 

The definition of ( )jiP ,0  is given below. It is based on the same idea that a larger 

area could create a higher visual impact. 

( )
( )( )
( )( )∑

−

=

= 1

0

0 ,
refN

k
refp

refp

kRsum

jRsum
jiP

. .............................. (10) 

Adaptive probability ( )jiPg ,  in the g-th generation is assigned to ( )jRref  for ( )iRin . 

( )jiPg ,1+ , which indicates the (g+1)-th generation, is given by 

( ) ( )

( )∑
−

=

+ = 1

0

1

,

,,
refN

k

g

kiq

jiqjiP
,. .......................................  (11) 

where ω is a coefficient in these equations to update adaptive probability, and determined as: 

⎪
⎩

⎪
⎨

⎧
=

otherwise:0.1
0fitnessfor :
1fitnessfor :

0

1

ω
ω

ω
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The relation between 1ω  and 0ω  is given by 0.00.1 01 ≥>> ωω . For example, 

0.21 =ω  and 5.00 =ω  in my experiments. Thus, note that the adaptive probabilities of 

regions included in a chromosome, where a user awarded 1 for fitness, increase in the next 

generation. The higher the adaptive probability, the larger the chance of being selected in 

[Mutation (1)]. The adaptive probabilities of regions included in a chromosome, on the other 

hand, where a user awarded 0 for fitness, decrease in the next generation. The history of user 

evaluations is well reflected in the evolution process. 

 
Fig. 12. System overview  

2.4. System Overview 
Figure 12 overviews the system I developed. A user prepares two images, i.e., target 

photograph inI  and reference painting refI . The system divides each image into coarse 

regions by exploiting image segmentation. The regions acquired from inI  and refI  

constitute the xy-axes of the region matching table rT  (see Fig. 6). The IEC interface is 

located between the users and rT . They evaluate and complete rT  through the IEC 

interface. Of course, they do not need to handle rT  directly as the IEC interface of the 

system produces it, and users just have to award a fitness of 0 or 1 to them. The system 

produces new candidates based on fitness, and users evaluate them again. Such processing is 

repeated until a candidate satisfies their subjective criteria. 

I will present some results produced by IEC in the next section. I will then discuss the 

efficiency of the algorithm. I will present problems with the algorithm in the last section, and 

what needs to be done in future work. 
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2.5. Experimental Results 

 I applied color-transfer processing to 10 pairs of images in my experiments with each 

pair made up of a target photograph and a reference painting. Figures 13–22 are examples 

generated by my color-transfer algorithm. The figures labeled a are the input photographs, 

and those labeled b are the reference painterly art. The figures labeled c are examples of 

color-transformed images resulting from the target photographs labeled a. The similarities 

between b and c can clearly be seen in each.  

I asked users to assign the colors of the reference paintings to the target photographs 

using the IEC system under the condition that the result had to have a similar look and feel to 

the reference paintings. Color-transfer processing finished when an output result satisfied 

their own subjective criteria. Five trials for each pair of images were done, and five 

color-transformed resulting were acquired for each pair. The five results might have had 

slight visual differences although they were made using the same pair. This is because my 

system depended on the users’ subjective criteria. This is one of my system’s features that 

exploits IEC. Figures 24 and 25 plot the mean processing time and the mean for the total 

number of generations until the user was satisfied with each final result. My system operated 

on a PC with a Celeron 2.40-GHz CPU with 512 MB of memory, running Sun 

Microsystem’s Solaris 9 operating system. 

We can see from the targets and references for the experiments in the a and b figures 

that the compositions are comparatively simple. Thus, it was not difficult for users to 

consider the combinations they needed to assign color to the target photograph. The 

generation in Fig. 25 might represent the time a user spent in considering his or her choices. 

Figure 25 indicates that 8–32 generations are needed until an output result satisfies a user’s 

own subjective criteria. The average is 18 to 19 generations.  This is not as high as for the 

conventional IEC system. However, Fig. 24 indicates that is takes users a considerable 

amount of time to acquire the final result.  
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(1) 

Fig. 13(a). Target photograph 

 
(1) 

Fig. 13(b). Reference painting 

 
(1) 

Fig. 13(c). Resulting image 
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(2) 

Fig. 14(a). Target photograph 

 
(2) 

Fig. 14(b). Reference painting 

 
(2) 

Fig. 14(c). Resulting image 
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(3) 

Fig. 15(a). Target photograph 

 
(3) 

Fig. 15(b). Reference painting 

 
(3) 

Fig. 15(c). Resulting image 
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(4) 

Fig. 16(a). Target photograph 

 
(4) 

Fig. 16(b). Reference painting 

  
(4) 

Fig. 16(c). Resulting image 
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(5) 

Fig. 17(a). Target photograph 

 
(5) 

Fig. 17(b). Reference painting 

 
(5) 

Fig. 17(c). Resulting image 
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(6) 

Fig. 18(a). Target photograph 

 
(6) 

Fig. 18(b). Reference painting 

 
(6) 

Fig. 18(c). Resulting image 
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(7) 

Fig. 19(a). Target photograph 

 
(7) 

Fig. 19(b). Reference painting 

 
(7) 

Figure 19(c). Resulting image 
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(8) 

Fig. 20(a). Target photograph 

 
(8) 

Fig. 20(b). Reference painting 

 
(8) 

Fig. 20(c). Resulting image 
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(9) 

Fig. 21(a). Target photograph 

 
(9) 

Fig. 21(b). Reference painting 

  
(9) 

Fig. 21(c). Resulting image 
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(10) 

Fig. 22(a). Target photograph 

 
(10) 

Fig. 22(b). Reference painting 

  
(10) 

Fig. 22(c). Resulting image 
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2.6. Conclusion 
In this thesis, I described my attempts to represent color transfer from a painting to a 

photograph to produce a resulting image with IEC.  I acquired color-transferred images in 

the (c) figures that created a similar impression to the reference images in (b). The system 

using IEC only required users to push buttons in the system window on a display monitor. 

Such easy operations enabled them to award either 0 or 1 for fitness and evolve 

color-transferred images interactively. Although photo retouching tools, e.g. Adobe 

Photoshop, are also available to obtain colors interactively, users must acquire high-level 

skills and it is difficult for them to reflect their own subjective criteria in automatic color 

transfer. My method is positioned between photo retouching tools and automatic color 

transfer.  

Some output examples from the experiments were obtained, and I evaluated the 

processing time as plotted in Fig. 23. Although the processing time largely depends on the 

PC specifications, the present system took too long for processing. The processing time is 

one of the most important factors in an IEC system because the faster the processing, the less 

the user has to do.  This problem needs to be resolved immediately. I prepared 

comparatively simple images for the experiments, and I did not need to divide them into 

many regions. If the processing time can be shortened, more complex images can be handled. 

These problems need to be solved in future work. 
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Fig. 23. Processing time to obtain satisfactory results 

 

 
Fig. 24. Generations of IEC to obtain final satisfactory results  
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CHAPTER 3  
COLOR TRANSFER BASED ON 
HIERARCHICAL IMAGE-REGION 
MATCHING WITH IEC 

3.1. Background 
I discussed a method of transferring color from reference paintings to target 

photographs with IEC in the previous chapter, superior to those presented by other 

researchers who have also transferred color between images. In the previous chapter, I 

introduced the region matching table, rT . In this chapter, I will discuss the transfer of 

color between images using IEC, based on image-region matching. I developed a new 

concept of a “hierarchical image-region matching table, rT ” to reduce the IEC 

processing time when users need to derive more complex images. I think that the 

hierarchical image-region matching table is better than the region-matching table, 

although there is still room for improvement. I will describe my algorithm for color 

transfer using the hierarchical image-region matching table in this chapter, and some 

experiments conducted with this method. I will then discuss the efficiency of the 

algorithm. 

3.2. Introduction 
When artists render painterly art, they can express their feelings and sensitivities 

based on their individual styles. These can be distinguished by various elements, such as 

motifs, colors, deformations in shape, and texture. Graphic researchers are interested in 
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these characteristics and have developed numerous algorithms to produce NPR images. 

NPR is an alternative to photorealism and produces painterly images that feature 

various expressions similar to those used in the actual painterly arts [1]. Some methods 

of pasting the textures of painterly art to photograph had previously been suggested 

[2–3]. Other methods of applying the coloration of painterly art to photographic images 

have also been suggested [4–5].  I was interested in altering the colors of a photograph 

using painterly art as a reference image. Color transfer is one of the major themes of 

NPR, and it is one of the major tasks faced by CG designers. Examples of color transfer 

are changing a blue sky into a sunset and changing a dark skin color into a lighter shade. 

Although Adobe Photoshop is a popular tool for color transfer and is utilized by 

designers, it does not work automatically. They have to transfer the colors manually. 

Before explaining my work of transforming color from painterly art to a 

photograph, the color space needs to be determined. In my thesis, I used CIE L*a*b* 

color space, which is a kind of 3D color-space representation, where the L*-axis 

represents an achromatic channel, while a* and b* channels are chromatic channels. 

One of the most common methods of color transformation in CIE L*a*b* color space 

uses the nearest distance between the painting and photograph, and can uniquely and 

automatically acquire color pairs. The transformations are indeed unique and efficient in 

some cases, but they do not always satisfy what users require. Assuming that you 

prepare a photograph with a red sunset for the target and a painting with both a blue sky 

and a red bird for reference. Even if you want to change the sunset of the target into the 

blue of the reference, what happens? As the color distance between the sunset and the 

red bird is nearer than the one between the sunset and the blue sky, the sunset cannot be 

changed into a blue sky. I believe that the process of detecting color pairs not only 

depends on the distance between colors but also on other factors, such as the user’s 

artistic subjectivity. 

In this chapter, I describe my attempts to represent the transfer of color from a 

reference painting to a target photograph with IEC to produce a resulting image [6–8]. 

My purpose was to provide users with a useful system for transferring colors. I acquired 

images with transferred colors that created similar impressions to the reference images. 

Users would be surprised by the astonishing transfer of color in some areas of the 
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resulting image. This kind of software should be extremely useful in many fields such 

as advertising and movies. 

 

Fig. 1: Target photograph inI  

 

Fig. 2: Reference painting refI  
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Fig. 3:  Result 

 
Fig. 4:  Another result 

 I used IEC in my system, which only requires users to push buttons on the 

windows of their display monitors. They only need to determine 0 or 1 for fitness and 

they can interactively evolve the color transfer in their images. The fitness of 0 or 1 

depends on their individual subjectivity and feelings. The “0” means unacceptable and 

the “1” means acceptable. Although photo retouching tools such as Adobe Photoshop 

can also be used to obtain colors interactively, users need to acquire a high degree of 

skill, and automatic color transfer makes it difficult to reflect their subjective criteria. 

My method is positioned between photo retouching tools and automatic color transfer. 

 I applied IEC in my algorithm to detect color pairs between a reference painting 

and a target photograph to alter the color in the photograph. The users themselves 

provided the fitness function for IEC. They could repeat the operations to evaluate the 
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output re-colored images and assign the fitness values, which are 1 or 0. IEC actually 

requires users to do some of the color-transfer operations themselves by showing them a 

variety of candidate images. Thus, my algorithm does not do all the processing 

automatically; it needs the users’ evaluations, and leaves the color-transfer work to the 

computer. In this way, the color-transfer images result from the users’ individual 

subjective feelings and sensitivities. Of course, users may not always obtain the same 

results for a color-transferred image from the same reference painting and target 

photograph. 

Figure 1 shows a target photograph, inI , and Fig. 2 shows a reference painting, 

refI . Figure 3 has an example of the result of color transfer by exploiting the IEC 

method. Figure 4 has another example of a color-transfer result; however, I did not 

exploit IEC to produce this image. Instead of IEC, I calculated the Euclid distance in 

CIE L*a*b* color space and applied the nearest neighboring color in the painting (Fig. 

2) to the corresponding one in the photograph (Fig. 1) in a similar way to that 

previously used [4–5], as follows. 

)( ( )jipyxp refout ,, =
, .....................................  (1) 

where ( )yxpout ,  is a pixel value for the (x, y) -coordinate in an output color-transfer 

result, and ( )jiPref ,  is a pixel value for the (i, j) -coordinate on reference painting 

refI . The pixel value corresponds to a point in L*a*b* color space. ( )jipref ,  is 

calculated as: 

( ) )( )( )(( )jipyxpdistngmiarjip refinref ,,,, = ,  

(2) 

where ( )yxpin ,  is a pixel value for (x, y) on target photograph inI , and 
( ) ( )),,,( jipyxpdist refin  represents the Euclid distance in CIE L*a*b* color space 

as given below. The following ( )yxLin , , ( )yxain , , and ( )yxbin ,  are the L, a, and 
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b values for ( )yxpin , . Then, ( )jiLref , , ( )jiaref , , and ( )jibref ,  are the L, a, and 

b values for ( )jipref , . 

( ( ) ( )) baLrefin dddjipyxpdist ++=,,, ,  (3) 

( ) ( )( )2,, jiLyxLd refinL −= , 

( ) ( )( )2,, jiayxad refina −= , .................................. (4) 

 ( ) ( )( )2,, jibyxbd refinb −= . 

We can see the visual differences between Figs. 3 and 4. The coloration between 

Figs. 2 and 3 is much more similar than that between Figs. 4. and 2. 

 I will talk about image segmentation in the following sections, which is basic to 

preparing the image-region matching table [9]. I will then present the problem with 

searching the result and propose a solution, which is a hierarchical region-matching 

table. After that, I will talk about the process of IEC and present an overview of the 

algorithm. Finally, I will present some experimental outputs produced by the algorithm 

and discuss its efficiency. I will discuss some future directions for color transfer in the 

final section. 
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3.3. Image Segmentation  

 
Fig. 5: Segmented image by K-mean 

 When artists in the real world render painterly art, they apply some color to the 

coarse regions. For example, the sky in a painterly landscape will always be blue or 

other predictable colors and the sea will always be blue or green. The colors of faces, 

within races, are also roughly similar. If we effectively use region-matching between 

painterly art and the target photograph, we can obtain a resulting image that has the 

coloration of the reference painterly art. For example, Fig. 3 has the coloration of the 

reference painterly art in Fig. 2 because the sky, mountains, and foreground are a good 

match. Based on this, we should first segment the image into regions with objective 

shapes. 

I first used the K-mean to segment the image into several small regions, as seen in 

Fig. 5. This is calculated as follows: 

1. Prepare some seeds in the image. 

2. Calculate the distance between all pixels from the seeds. 

3. Pixels belong to seeds where this distance is minimal. 

4. Calculate the centers of all small regions, taking them as the new seeds.  
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5. Go to Step 3 and calculate the distance again if this is less than a constant and the 

loop is over. The constant is one of the parameters in my system. 

The distance is calculated as: 

) )( )(( baLYXseed dAdAdAdAdAjipyxpDist 54321,,, ++++=

 

( )( ( )) ,,, 2jiXyxXd seedX −=  

( )( ( )) ,,, 2jiYyxYd seedY −=
 

( )( )( ) ,,, 2jiLyxLd seedL −=
.......................  (5) 

)(( )( ) ,,, 2jiayxad seeda −=
 

)(( )( ) .,, 2jibyxbd seedb −=
 

 
Fig. 6: First segmentation of image  
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This is where p(x, y) is the pixel value for (x, y) in the image and ( )jipseed ,  is the 

seed value for (i, j) in the image. X(x, y) and Y(x, y) are the axial values for p(x, y). L(x, 

y), a(x, y), and b(x, y) are the L, a, and b values for p(x, y). ( )jiX seed ,  and ( )jiYseed ,  

are the axial values for ( )jiPseed , . ( )jiLseed , , ( )jiaseed , , and ( )jibseed ,  are the L, a, 

and b values for ( )jipseed , . A1, A2, A3, A4, and A5 are the parameters. 

The segmented image in Fig. 5 cannot be directly used for IEC; we need to unify 

these small pieces side by side if both colorations are similar. We can then obtain the 

resulting image in Fig. 6 that has a coarsely objective shape. This method of segmenting 

images will also be discussed later. I will next discuss the relationship between image 

segmentation and color transfer. 

 

 

 

 

 

 

 

Fig. 7: Image-region matching table, rT  

My color-transfer algorithm is a kind of combinatorial optimization problem. 

Previous work on this subject has dealt with color transfer as an “image-region 

matching table” [9] between a photograph and a painting. Figure 7 has an example of 

image-region matching table rT . The regions in target photograph inI  are represented as 

( )( )1,,0 −= inin NiiI K  and the ones in reference refI  are represented as 

( )( )1,,0 −= refref NjjI K . We then determine pair ( ) ( )( )iIiI refin ,  and assign a mean 

color, which is calculated with Eq. 6. ( )yxLref , , ( )yxaref , , and ( )yxbref ,  are the 

values for pixels in CIE L*a*b* color space, where ( )jnref  is the total number of pixels 

1−refN  

refI  

inI

1−inN

1 
 
0 

0     1
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in ( )jI ref . The circles in the image-region matching table indicate a color in ( )jI ref  

has been assigned to ( )iI in . This image-region matching table is useful for transferring 

colors, e.g., it is possible to closely match the shapes of the sky and mountains (Fig.1) in 

the target photograph to the sky and houses with hills (Fig. 2) in the reference painting. 

)(

),(

)(
)(,

jn

yxL

jL
ref

jrefIyx
ref

ref

∑
∈

=〉〈  
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)(
)(,
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However, this method causes another problem with the search space. That is, if 

the number of divided regions, inN  and refN , become larger, the search space 
( ) inN

refN  will become huge, and it will of course take more time to acquire an 

optimum solution. We thus have to find a better method of solving this problem. My 

approach is based on the intuitive idea that painters first assign rough colors on the 

canvas and when they draw and render the painting they determine the coloration for the 

finer regions. Based on this, I roughly divided the image, and then divided these coarse 

regions into finer regions. That is, I first prepared the coarse regions to assign rough 

colors, and I then prepared the finer regions. The main point here is that the process of 

assigning colors is hierarchical. I divided the image and prepared finer regions three 

times in my experiments using the method I have described. This process is illustrated 

in Fig. 8. 
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Fig. 8: Process of hierarchical image-region matching  

The ( )iIin ′′  is the thi −′  region in the first divided target image and 
( )jIref ′′  is the thj −′ region in the first divided reference image. In the second 

dividing phase, ( )iiIin ′′′′′ ,  is the thi −′′  region in the ( )iIin ′′  and )( jjIref ′′′′′ ,  is 

the thj −′′ region in the ( )jIref ′′ . In the third dividing phase, ( )iiiIin ,, ′′′  is the 
thi − region in the ( )iiIin ′′′′′ ,  and ( )jjjIref ,, ′′′  is the thj −  region in 

the )( jjIref ′′′′′ , . The gray areas in the image-region matching table represent the search 
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spaces eliminated through the previous steps. We can see the search space has been 

reduced with this method. When IEC finishes, all the matching pairs 

( ( )iiiIin ,, ′′′ , ( )jjjIref ,, ′′′ ) are decided. Based on these pairs, we can achieve finer 

color assignment. 

3.4. IEC 
3.4.1. Chromosome management 

IEC manages and completes region-matching table rT , where refN  and inN  

indicate the total number of sI ref
′  pixel regions and that of sI in

′ . My approach uses 

the table itself as a chromosome for IEC. The expression of a chromosome is: 

[ ],,,, 110 −inNxxx L
 

10 −≤≤ refn Nx    ( ).1,,0 −= inNn K .........................  (7) 

As I previously mentioned, I divided both the target photograph and reference 

painting three times to render finer regions. The image-region matching table and the 

chromosome were managed three times, from smaller to larger. This means the user 

does IEC three times as we can see from the image-region matching process in Fig. 8. 

3.4.2. GA processing  

The IEC operations I established can be illustrated as follows: 

1. Initialize the initial adaptive probability, p0, which is evaluated by the distance in 

color between ( )iIin ′′  and ( )jIref ′′ ; this method is based on the idea that 

similar objects have similar colors in real photographs or in painterly art . For 

example, the color of the sea in both a photograph and a painting are a similar blue. 

This means that the probability that ( )jIref ′′  will be assigned to ( )iIin ′′  will be 

higher if the color of ( )jIref ′′  is closer to ( )iIin ′′ . The IEC generates a 

population of M chromosomes under p0 in this way. 
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2. Evaluate and award a fitness value of 0 or 1 to each chromosome in the population. 

3. Generate a new population by executing the following steps. 

(i). Select parent chromosomes whose fitness value is 1 from a population, if 

there are more than two chromosomes whose fitness value is 1. 

(ii). Cross over the parents to form new offspring with the crossover probability. 

The crossover probability decides whether crossover is executed or not, and in 

my system this is set to 0.5. When crossover is executed, the crossover point 

is established at the locus between n  and 1+n , and n is the crossover 

point selected randomly in the chromosomes. 

(iii). Generate new offspring by randomly mutating all the offspring at each locus 

with the mutation probability. The mutation probability is set at 0.025. 

(iv). Replace the new offspring in a new population. 

4. Use the new population that has been generated for a further run of the algorithm. 

5. Stop and return the optimum solution if a user finds a chromosome that satisfies his 

subjective criteria in the current population. 

6. Else go to Step 2. 

1rT  is completed after these IEC operations. I used the completed 1rT  and 

restricted the matching pair in the next phase table, 2rT , to reduce the search space. The 

final phase for rT  is done in the same way. These IEC operations were done in each 

table. The history of user evaluations in the evolution process is accurately reflected in 

the next generation. Figure 9 has examples of offspring generated by the third 

image-region matching table, rT , which have been assigned mean colors. 
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Fig. 9: Offspring generated by rT  

3.5. Color Transfer 
 After the IEC operations, the result image is coarsely color-assigned image with 

the mean colors of the reference painterly art, refI . This image-region matching table 

and the coarsely color-assigned image mean the color transfer relationship between 

target image inI  and reference painting art refI . Finer color-assigned operation is 

necessary after IEC in my algorithm. This approach is also based on the intuitive idea 
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that the painters roughly assign colors on a canvas first and when they draw and render 

a painting they determine the colors for the finer regions. 

Some researchers have transferred color between images based on statistical 

analysis [5]. My aim was to introduce a simpler method of transferring color into my 

algorithm. This calculation is also based on the image-region matching table. It is given 

as: 

( )( ) ( )( ),jIpiIp refrefinout =  

( )( ) ( )
( ) ( )( ) .sS
in

jn
jIp iin

in

ref
refref ⋅=

....................................  (8) 

( )( )iIP inout is the pixel in the target-image region of ( )( )1,,0 −= inin NiiI K . 

( )( )jIP refref  is the pixel in the reference-painterly-art region of 

( )( )1,,0 −= refref NjjI K . ( )inin  is the total number of pixels in the region of ( )iI in . 

( )jnref  is the total number of pixels in the region of ( )jI ref . We then sort the pixel 

points in both regions of ( )iI in  and ( )jI ref  in the CIE L*a*b* color space using the 

brightness value of L . ( )( )SS iin  is the s-th pixel in the sorted pixels of region 

( ) ( )( )1,,0, −= insiI inin K . Using Eq. 8, we move the pixels from region ( )jI ref  to 

( )iI in . 

Of course, users can still obtain different results with IEC even though the same 

input target and reference images are used. This is illustrated in Fig.10; the results are 

similar, but not exactly the same. 
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Fig. 10: Similar results 
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3.6. System overview 
Figure 11 overviews the system I developed. The user prepares two images, i.e., a 

target photograph, inI , and a reference painting, refI . The system divides both images 

into coarse regions by exploiting the image segmentation that I previously mentioned. 

The regions acquired from inI  and refI  constitute the xy-axes of the region-matching 

table, rT . The IEC interface is located between the user and rT . He or she evaluates and 

completes rT  through the IEC interface. Of course, the user does not need to handle rT  

directly. He or she sees and confirms the color-assigned images through the interface, 

which are candidates for the solution the system has produced, and the user just awards 

a fitness of 0 or 1 to them. The system produces new candidates based on the fitness, 

and the user evaluates them again. Such processes are repeated until a candidate 

satisfies his or her subjective criteria. 

Reference image refI

user 

Input image inI  

Hierarchical 
Region-matching 
table Tr 

 
Fig. 11: System overview  

3.7. Discussion of Results  
Twenty graduate-school students of the Department of Computer Science and 

Engineering at the Nagoya Institute of Technology tested my system and obtained the 

following results. Figures 12 to 19 have eight sets of images. Each set has a target 

photograph, a reference painting, and a resulting image. Clear similarities between the 
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references and results can plainly be seen. These similarities not only concern color but 

also feelings. The system also has another special characteristic. Although users create 

results using the same pair of images (a target and a reference), their visual results might 

differ slightly, because the system outputs results based on their individual subjective 

criteria. I previously mentioned that IEC generates a population of M chromosomes 

with initial adaptive probability 0P , which is evaluated by the distance in color in the 

CIE L*a*b* color space between ( )iI in  and ( )jI ref .  

Figure 20 plots the mean processing time and Fig. 21 plots the mean total 

generations until users were satisfied with their final results. In both figures, the 

horizontal axis is the ln(z) and z is the search space, ( ) inN
refN . Each x' out of {a', b', ..., 

g', h'} is a result produced with the initial adaptive probability, and each x'' out of {a'', 

b'', ..., g'', h''} is a result produced without it, only randomly. Both x' and x'' are created 

using the same pair of a target (x) and a reference (x) illustrated in Figs.12 to 19. Of 

course, there are some visual difference between x' and x'' as I previously mentioned. 

We can see that the processes with 0P  are more efficient than those without 0P . As we 

can observe that 0P  is evaluated by the distance in color between ( )iIin ′′  and 
( )jIref ′′  in the CIE L*a*b* color space, then if ( )iIin ′′  is nearer to ( )jIref ′′ , the 

probability of ( )jIref ′′ being assigned to ( )iIin ′′  is higher. Although this works well 

in many cases, it is not optimal. As it did not work as well as I wanted in some other cases, 

I need to find a more efficient method in future work. The search space for both x' and x'' 

depends on target (x) and reference (x) because search space z = ( ) inN
refN . Although 

the set of images from Figs. 12 to 19 are arranged in ascending order of z, it may be 

difficult to recognize the search space at a glance. As we can see from Figs. 20 and 21, 

x' and x'' are also arranged in order. The processing time includes the calculation time 

for the computer, and the total thinking and operating time spent by users in considering 

and determining the fitness values. Although the total generation has no factors 

corresponding to users’ thinking time, this is similar to the processing time required by 

the computer. The processing time and total generation increase much more as the 

search space increases. Of course, there are some occasional exceptions when the 

processing time and total generation are less with smaller search spaces, because the 

user needs to spend less time thinking even though the searching space is much bigger. 
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My system operated on a PC with a Celeron 2.4-GHz CPU and 512 MB of memory,  

running Sun Microsystem's Solaris 9 operating system. 

Figure 22 has some more evaluation results for the system. When test subjects 

finished creating five color-transfer images, I required them to evaluate the system's 

validity or effectiveness in transferring colors. They awarded grades based on a 

five-point Likert scale from A to E. A was the best and E was the worst. Before grading, 

I explained that they could evaluate the system by awarding a grade depending on their 

own subjective criteria. 

We can see that about half awarded the best grade (Fig. 22). There were only 

twenty subjects at that time; however, I was surprised by the results. Some also made 

comments and suggestions as to why they awarded scores.  

1. Those who graded the system with an “A” thought color transfer were a good idea 

in that they could effectively exert their imaginations and feel like artists who 

applied their paintings to a canvas. 

2. Although those who graded it with a “B” approved of its transfer of colors, they 

thought it could not transfer any of the important textural characteristics in the 

reference painting. They thought the system could be improved if it could transfer 

textures. 

3. Those who graded it with a “C” thought that it took too long to search for 

satisfactory results in some cases. However, they would have liked to use it more if 

the search time could be reduced because it would not then be too hard for them to 

transfer colors. 

4. Those who graded the system with a “D” thought that too many strange candidates 

appeared during IEC processing. They thought if it could reduce the number of 

peculiar candidates, appropriate candidates would appear sooner, and it would then 

be more beneficial. 
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5. Those who graded it with an “E” thought it was very unsatisfactory; they claimed 

it was useless because they could not obtain any results unless they initially 

divided the image well. 

Based on these comments, I came to the following conclusions. 

3.8. Conclusions 
I proposed an algorithm in my thesis that could transfer color from a painting to a 

photograph with IEC. This method is also based on hierarchical image segmentation. In 

some cases, I could not divide an image sufficiently well and thus could not obtain a 

satisfactory result. I intend to continue my research to develop a better and more 

efficient way of dividing an image. 

Another problem was the processing time. Some output examples were obtained 

in the experiments, and I evaluated the processing time, as shown in Fig. 20. Although 

this largely depends on the PC specifications, my system takes far too long for 

processing. The processing time is one of the most serious factors affecting an IEC 

system because the faster the processing, the fewer the manual tasks involved. I need to 

resolve this problem immediately. I prepared comparatively simple images for the 

experiments, and I did not need to divide these into many regions. If the processing time 

can be reduced, more complex ones can be handled. I are also considering some other 

methods where the system can process regions when they appear to satisfy the 

region-matching results; it can then continue to treat these regions with GA. I intend to 

continue to develop a more efficient region-matching method in future work. 

The last problem is the transfer of textures. My system just transferred colors on 

the basis of region-matched information recorded on the chromosome. Region-matched 

information can also be applied to transferring textures. If we want to transfer textures 

from a reference painting to a target image to produce a resulting image, we have to 

utilize region-matching information, e.g., if there are sea and sky in both the target 

photograph and the reference painting, we obviously need to transfer texture from 

sky-to-sky and sea-to-sea; if not, the result will appear bizarre. My research has taken us 
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a step closer to making texture transfer feasible. However, these problems have also 

been left to be addressed in future work. 

3.9. Addenda: Contrast Between Methods in 
Chapters 2 and 3 

Chapters 2 and 3 discuss two methods of transferring colors from painterly art to a 

photograph to produce NPR. Although both these methods can produce satisfactory 

results, there are three major differences, which are listed below.  

1. First, the candidates produced by both methods were different. Those produced 

with the method in Chapter 2 were not colored entirely. However, those produced 

with the method in Chapter 3 were colored throughout. Therefore, the system in 

Chapter 3 is more efficient and less time consuming than that in Chapter 2. 

2. Second, the processing time for the method in Chapter 3 was less than that for the 

one in Chapter 2. This time included the calculation time for the computer and the 

total thinking and operating time by users, who needed to consider and determine 

the fitness values. They obviously needed more time for thinking about and 

considering candidates when they used the system in Chapter 2, because these 

were not colored entirely.  

3. Third, the method discussed in Chapter 3 could effectively reduce search space. The 

gray areas in the hierarchical region-matching table were the search spaces that 

were eliminated.  

In many cases, the processing time in Chapter 3 was equal to or less than the 

processing time in Chapter 2. I input same pairs of images in both of the systems in 

Chapters 2 and 3, to compare the processing time. Fig.12 to19 are images which I input 

into both of the systems in chapter 2 and 3. Fig. 23 plots the mean processing time with 

both methods in chapter 2 and 3. In the figure, the horizontal axis is the ln(z) and z is the 

search space, ( ) inN
refN . Each x out of {a, b, ..., g, h} is a result produced with the 

method in chapter 2, and each x'' out of {a'', b'', ..., g'', h''} is a result produced with the 
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method in chapter 3. I stopped the process if the time was over 800 seconds. It is 

obvious that the method in chapter 3 is faster than the method in the chapter2.  
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Target (a) 

 

Reference (a) 

 

Result (a) 

Fig. 12. Experimental result 1 
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Target (b) 

 
Reference (b) 

 
Result (b) 

Fig. 13. Experimental result 2 
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Target (c) 

 
Reference (c) 

 
Result (c) 

Fig. 14. Experimental result 3 
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Result (d) 

Fig. 15. Experimental result 4 
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Target (e) 

 
Reference (e) 

 
Result (e) 

Fig. 16. Experimental result 5 
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Target (f) 

 
Reference (f) 

 
Result (f) 

Figure 17: Experimental result 6 



 68

 

Target (g) 

 

Reference (g) 

 
Result (g) 

Fig. 18. Experimental result 7 
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Target (h) 

 
Reference (h) 

 
Result (h) 

Fig. 19. Experimental result 8 
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Fig. 20. Processing time  

( z = ( ) inN
refN  ) 

 
Fig. 21. Generations 

( z = ( ) inN
refN ) 
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Fig. 22. Evaluation results  

Fig. 23. Compare of processing time 

( z = ( ) inN
refN ) 
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CHAPTER 4  
FUNDAMENTAL STUDY ON 

GENERATING CALLIGRAPHY USING 

FONTS MANUALLY PREPARED BY 

ARTISTS AS REFERENCES 

4.1. INTRODUCTION 
This chapter presents an approach to generating artistic calligraphy, which looks 

scratched or blurred, like those rendered by famous calligraphers. Although I have obtained 

some intermediate results for this project, final results still need to be obtained. If this 

algorithm can be more finely tuned, far superior results can be attained. In the following, I 

will explain the method and the algorithm, and discuss future problems with this project. 

There are many calligraphic fonts such as TrueType and Bitmap, but the software 

cannot generate calligraphic fonts that look scratched and blurred. Assistant Professor 

Tsuyoshi Nakamura of the Department of Computer Science and Engineering at the Nagoya 

Institute of Technology has written a system that can generate various calligraphic characters 

that look scratched or blurred and has applied for a patent. Users have been satisfied with the 

speed with which it generates calligraphic characters. The system involves two processes. In 

the first, an original calligraphic font is input, and then transformed into a bitmap image. In 

the second, the skeleton of the image is found by using a thinning algorithm. Furthermore, 

brush-touch cursors are placed on each pixel of the skeleton [1-6]. The brush-touch cursors 
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are expressed as dot patterns. Calligraphic characters can be made to look scratched and 

blurred using these two processes. Various degrees of scratching and blurriness can be 

obtained for artistic calligraphic fonts by adjusting some parameters. 

The brush-touch texture with this method involves using only one cursor, as seen in 

Fig. 1 below. 

 

Fig. 1. Example brush-touch cursor 

The system places this brush-touch cursor on each pixel of the skeleton to generate the 

artistic calligraphic fonts. As previously mentioned, various degrees of scratching and 

blurriness can be obtained for artistic calligraphic fonts by adjusting some system parameters. 

Although this method produces wonderful results in many cases, it creates a different look to 

the calligraphy done by renowned specialists. I wanted to develop a method that could 

extract the unique characteristics from calligraphic fonts created by famous calligraphers, 

and pass these characteristics on to original calligraphic fonts like TrueType or Bitmap. This 

method is similar to the texture synthesis I previously mentioned. Efros and Freeman [7-10] 

developed a method of synthesizing texture. It directly removed patches from given input 

images, then synthesized the patches to form a new image with the same texture as that in 

the input image. It could also transfer texture from one input image to a target image, to 

make it look like the given image. Its most important feature is that the same patches are 

used in both the input and synthesized images. I wanted to apply this method to obtain 

scratched and blurred results for the reference font created by a renowned calligrapher. Had I 

succeeded completely, I would have been able to generate a calligraphic font that would 
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have resembled a calligrapher’s font more than the calligraphy font generated by the 

previous system. 

The method I propose also encountered a problem with the directivity of calligraphic 

fonts. Common textures have no directivity, but directivity in calligraphic fonts is obvious 

and important. The generated font will appear peculiar if directivity in texture-synthesis 

processing is not taken into account. 

The other problem I faced in this research was the integrity of the stroke; this meant 

that all the strokes in the generated font needed to look like those in the reference font, 

except for some patches. This was very difficult to achieve, because I could not identify 

whether all the strokes looked like the references from the intermediate results except for 

some patches. I need to change the algorithm to improve the quality of the results. The 

following explains my method. 

4.2. FONT THINNING 
I had to obtain the skeleton for the font, and the thinning algorithm I used to find it was 

the Hilditch [11] algorithm. I first converted the input font into a bitmap image. The 

blackness pixel in the bitmap image was set to 1, and the whiteness pixel in the bitmap 

image was set to 0.  

The algorithm can be presented as follows. The outermost layer of the font was cut off 

step-by-step until the skeleton was reached; of course, the thickness of the skeleton was just 

one pixel. If the time to cut off the outside layer of the font is t (t≥0), the thickness of the 

skeleton will probably be t. Figure 5 has one example of a thinned font. 

4.3. REFERENCE-FONT DATABASE 
I built up a reference database that contained many script/calligraphic fonts. As these 

looked scratched and blurred, the following process has to be done on them: 

1. Convert the image file into a bitmap file if it is not a bitmap file. 

2. If part of the font looks scratched blacken it. 
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3. Thin the font using Hilditch algorithm. 

4. Place the skeleton in the original script/calligraphic font. 

5. Then find the contour line for the font using the blackened font. 

These steps are in Figs. 2 to 6. Figure 7 shows how to build a scratched 

calligraphic-font database. 

 

Fig. 2 Script/calligraphy font 

 
Fig. 3 Converted to bitmap font 
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Fig. 4 Non-scratched font 

 
Fig. 5 Skeleton of font 



 77

 
Fig. 6 Font with contour lines and skeleton 

 

 
Fig. 7 Scratched calligraphic-font database 

4.4. SEAMLESS TEXTURE MAPPING 
4.4.1. Introduction of Quilting for Synthesizing Textures  

I have already mentioned Efros and Freeman’s [12-21] method of synthesizing textures. 

They removed patches of texture from given input images and then seamlessly quilted these 
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texture patches together. The quilting algorithm they presented found the minimal-cost path 

through the overlapping error surface. For example, if B1 and B2 are two blocks that overlap 

along their edges with OVB1 and OVB2  regions of overlap, then the error surface can be 

defined as ( )221
OVOV BBe −= . I traversed e  ( )Ni ..2=  and computed the cumulative 

minimum error, E, for all paths to find the minimal cut through this surface, i.e., 

( )1,1,11,1,, ,,min +−−−−+= jijijijiji EEEeE  . .............................................. (1) 

 The minimum value for the last row in E  will indicate the end of the minimal path 

though the surface and one can track back and find the path for the best cut. 

I applied this method to remove texture patches from a scratched calligraphic font 

saved in the database. I then placed a patch on the target font. To do this, I had to find the 

skeleton for the font. Figure 8 has a target font with skeleton lines. 

 
Fig. 8 Target font with skeleton 

4.4.2. Overview of Texture Mapping 
I transferred a scratched texture from the reference font to the target font by quilting 

patches taken from the reference. This method is outlined in Fig. 9.  This method should 

generate a scratched and blurred font similar to the reference, because it is generated by 

patches directly cut from the reference font. Efros and Freeman also presented a method of 

transferring textures. They augmented the synthesis algorithm by requiring each patch to 

satisfy a wanted correspondence map, C , as well as satisfy the texture-synthesis 
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requirements. The correspondence map is a spatial map of some quantities corresponding to 

both the texture-source and controlling-target images. These could include image intensity, 

blurred-image intensity, local-image orientation angles, or other quantities that are derived. 

In their experiments on texture transfer, their correspondence maps were the (luminance) 

image intensities. The image being synthesized in their texture transfer had to conform to 

two independent constraints: (1) the output needed to be legitimate, synthesized examples of 

the source texture, and (2) that mapping of corresponding images needed to be done. They 

modified the error term for the image-quilting algorithm to be a weighted sum, i.e., α times 

the block overlap matching error plus (1-α) times the squared error between the 

correspondence-map pixel within the source texture block and those at the current 

target-image position. The parameter, α, determines the tradeoff between texture synthesis 

and fidelity to the correspondence map of the target image. In my research, the luminance of 

the font was black; therefore,α was set to 1. Texture synthesis was only determined using 

the texture patches without the correspondence map. 

 
Fig. 9 Texture transfer to input font  
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4.5. Experimental Results 
4.5.1. Intermediate Results 

Texture patches were transferred from the reference to the target font in the intermediate 

results. As this experiment was not completely finished, I just transferred texture patches to 

one of the strokes. What I wanted was to transfer the entire stroke from the reference to the 

target stroke; this meant I wanted to transfer the entire character in the stroke. However, the 

results were not as I expected, only some patches looked like the reference stroke not the 

whole stroke. The intermediate results reveal that this algorithm can quilt patches seamlessly, 

but it cannot identify the entire character of the stroke in my target stroke. The algorithm has 

to be improved to solve this problem. Before discussing the improvements, I will explain 

how the intermediate results are generated.  

4.5.2. Method of Quilting Patches 

 
Fig. 10 Quilting patches  

• First cut the patch from the reference font. 

• Then place it on the target font. 

• The next patch is constrained by overlap. 

• The minimum error boundary cuts the overlap. 
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• Repeat the steps until the texture is transferred to all fonts. 

I found why the transfer could not remove whole characters from the reference font by 

quilting the patches. This was because the next patch was constrained by overlap. In certain 

cases, it is possible for transfer to be successful, e.g., if the target and reference strokes have 

the same length, orientation, and breadth. In fact, those cases are very limited. In most cases, 

the length, orientation, and breadth are not the same. Therefore, I have to develop a new 

algorithm to deal with this problem. 

4.6. CONCLUSION 
I introduced patch-quilting in this chapter, which is a method of transferring texture to 

generate a new calligraphic font by stitching together small patches of a reference font. 

Despite the unsatisfactory results, I developed a new idea for generating scratched and 

blurred calligraphic fonts. Although there were no problems with seamless patch quilting, 

the finished look I expected could not be achieved. I also discussed why the system could 

not generate the finished look of transferred textures. I intend to improve this algorithm to 

deal with this problem and extend it to generate satisfactory results. 
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