
アドホック無線ネットワークにおける通信アルゴリズムと

ネットワークアーキテクチャに関するグラフ理論的研究

Graph Theoretic Study on Communication Algorithms

and Network Architectures in Ad Hoc Radio Networks

A Dissertation

Submitted to the Department of Computer Science and Engineering,

Graduate School of Engineering, Nagoya Institute of Technology

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

Jiro UCHIDA

2008

Preface

In this dissertation, radio broadcasting and cluster-based architecture for ad hoc radio

networks are studied.

A radio network is a collection of transmitter-receiver devices (referred to as nodes),

and can be represented by a directional graph G = (V,E) in which V denotes a set of

nodes and when node v is in the transmission range of node u, there exists a directed

edge (u, v) ∈ E. In our model each node performs transmission or reception at one

round. Each node does not have a collision detection capability and knows only own ID.

Acknowledged Radio Broadcasting(ARB) means transmitting a message from one

special node called source to all other nodes and informing the source about its comple-

tion. It is known that no ARB algorithm exists in the model without collision detection.

In this dissertation, we show that if n ≥ 2, where n is the number of nodes in the

network, we can construct ARB algorithms in O(n) rounds for bidirectional graphs and

in O(n4/3 log10/3 n) rounds for strongly connected graphs and construct Acknowledged

Radio Gossiping(ARG) algorithms in O(n log3n) rounds for bidirectional graphs and in

O(n4/3 log10/3 n) rounds for strongly connected graphs without collision detection.

About the lower bounds of deterministic radio broadcasting, the lower bound of

Ω(n) for bidirectional graphs when each node knows only own ID. In order to perform

a fast radio broadcasting, we propose a dynamic cluster-based architecture with two

atomic operations join and leave. Before joining to the network, each node knows only

self ID and even the number of nodes n in the network is unknown. During join and

leave operations each node maintains the neighbors’ information. Clustering breaks

the network into physical proximity clusters which are simpler to manage by the nodes

called as cluster head. The subsequent backbone construction formed from cluster heads

iii

provides the communication between the clusters. Furthermore, the backbone and the

clusters are combined into a spanning tree of G which we call cluster-based network of G,

denoted as CNet(G). Let |BT (G)| be the number of nodes of backbone in our clustering.

A CNet(G) has several novel properties: (1) the backbone consists of at most 2pG − 1

nodes, where pG is the cardinality of the minimum clique partition of G, and so when G

is a dense graph, pG ¿ n; (2) a broadcasting on G can be executed via the backbone in

O(|BT (G)|) time (it needs Ω(n) time on a flat network [2]); and (3) if G is a unit disk

graph, |BT (G)| ≤ 10 × |MDS |.

iv

Acknowledgements

The author would like to express his sincere thanks to supervisor Professor Koichi Wada.

He has given innumerable advice through the whole work.

The author is also deeply indebted the other members of the doctoral committee.

The author would like to note in particular Professor Naohisa Takahashi and Associate

Professor Nobuhiro Inuzuka.

The author is also deeply indebted Professor Wei Chen and Associate Professor Yoshi-

aki Katayama.

Along the way the author had substantial help from colleagues. The author would

like to thank to Mr. Naoki Inaba who supported me and achieved the results contributing

for this dissertation.

v

Contents

Preface iii

Acknowledgements v

1 Introduction 1

1.1 Research Backgrounds . 1

1.1.1 About Radio Networks . 1

1.1.2 Related Researches . 3

1.2 Contributions . 6

2 Preliminaries 10

2.1 Graph Theoretic Definitions . 10

3 Model of Radio Networks 12

4 ARB, ARG 13

4.1 ARB and ARG in Bidirectional Graphs 13

4.1.1 Overview of Our Algorithm . 13

4.1.2 Algorithm bi-ARB . 14

4.1.3 Algorithm bi-ARG . 19

4.2 ARB and ARG in Strongly Connected Graphs 21

4.2.1 Algorithm st-ARB . 21

4.2.2 Algorithm st-ARG . 25

vi

5 Cluster-based Architecture 27

5.1 Basic Architecture . 27

5.2 Properties of the Basic Architecture . 30

5.3 Broadcasting on A Cluster-based Architecture 32

5.4 Better Architectures . 33

5.4.1 Architecture I . 34

5.4.2 Algorithms . 34

5.4.3 Properties of Architecture I . 43

5.4.4 Improvement of I . 44

5.5 Simulation . 47

5.6 Conversion of Synchronization into Asynchronization 48

6 Conclusions and Future Works 50

A Algorithm bi-ARB for Each Node 52

B Simulating the Initialization Protocol 55

Bibliography 57

Publications 60

vii

Chapter 1

Introduction

1.1 Research Backgrounds

1.1.1 About Radio Networks

Recently, a wireless data communication is very active because of the spread of cellular

phones and an increase in Internet access from mobile terminals such as PDA and laptop.

Most of a existing wireless communication assumes the network infrastructure. It might

be difficult to establish a wireless network with the infrastructure by the reason such as

the high installation cost and geographical limitations.

There is increasing interest in multi-hop wireless ad-hoc networks composed of a

large number of autonomous nodes communicating via radio without any additional

infrastructure. They are constrained as for the critical resources in some cases. A

typical example is given by wireless sensor networks, where sensor nodes equipped with

transmitter-receiver devices are usually irreplaceable, and become unusable after energy

depletion or other failures.

Many applications for ad-hoc networks are considered. At first, it is considered for

the situation in which infrastructure is not available, such as in the war, disaster and

so on. In the situation in which the infrastructure is destroyed or cannot be provided,

the network can be constructed only with bringing the mobile node into there. Now its

potential value is evaluated, and applications except for military affairs are investigated

1

2 CHAPTER 1. INTRODUCTION

all over the world. For example, ecology observation of the seabird which can live only

at a specific place.

In ad-hoc networks, after the nodes of an ad-hoc network are deployed physically, a

flat network topology is formed in which a link exists between two nodes if they are in

each others communication range.

In one of the traditional network models, an ad-hoc radio network is a collection of

transmitter-receiver devices (referred to as nodes), and can be represented by a direc-

tional graph G = (V,E) in which V denotes a set of nodes and when node v is in the

transmission range of node u, there exists a directed edge (u, v) ∈ E. Each node takes

a synchronization per round and performs transmission or reception at one round. In

such an above network model, there are many researches about the completion times of

communication tasks and its solvabilities theoretically.

Communication such as broadcast, multicast, and data gathering are required on

ad-hoc networks. One of the fundamental tasks in network communication is radio

broadcasting (RB). Its goal is to transmit a message from one node of the network,

called the source, to all other nodes. The message which is disseminated is called source

message. Remote nodes get the source message via intermediate nodes, along directed

paths in the network. In an acknowledged radio broadcasting (ARB) the goal is not only

to achieve RB but also to inform the source about the completion of RB. This may be

essential, e.g., when the source has several messages to disseminate, none of the nodes

should receive the next message until all nodes get the previous one [7]. Another task

is radio gossiping (RG) which broadcasts the message of each node to all other nodes.

We also consider the task acknowledged radio gossiping (ARG) which achieves RG and

informs every node about the completion of RG.

In such a flat network topology after the nodes are deployed physically, there is

no established structure to facilitate efficient communication. Since an ad-hoc network

changes its geographical topology easily when physical conditions change, we need net-

work reconfiguration operations such as nodes getting out of and nodes joining into an

existing network.

Clustering is seen as the step to provide the flat ad-hoc network with a hierarchi-

cal architecture which minimizes communication overhead and accommodates network

1.1. RESEARCH BACKGROUNDS 3

organization. The basic idea is that of breaking the network into physical proximity clus-

ters which are simpler to manage by the nodes called as cluster head. The subsequent

backbone construction formed from cluster heads provides the communication between

the clusters. Clustering and the subsequent hierarchical architecture of a flat ad-hoc

network have been investigated in many literature, where many proposed approaches

select cluster heads through finding small dominating set or a large independent set of

the ad-hoc network [3,6,10,16,21,22]. Although communication tasks can be done more

efficient on cluster-based network, extra network maintenance expense is needed. A good

network architecture should be not only communication efficient but also reconfiguration

efficient.

1.1.2 Related Researches

About (Acknowledged) Radio Broadcasting

In the network model in Subsection 1.1.1, communication tasks and its completion times

have been investigated in many literatures. The network model is theoretical, and so are

the results.

The standard collision-free communication procedure for ad-hoc radio networks is

called Round Robin [11]. Round Robin contains n rounds. In the i-th round the node

with identifier i transmits its whole knowledge to all its out-neighbors. In every round at

most one node acts as a transmitter, hence collisions are avoided. Round Robin is used

as a subroutine in many RB and RG algorithms. An RG completes in O(n2) rounds,

where n is the number of nodes.

There are two situations for communication procedures in radio networks: one is

that nodes have full knowledge of the network (such as the topology of the network,

the number of the nodes in the network, IDs of the neighbors etc.), the other is that

nodes are ignorant of the network information. Various algorithms are studied in radio

networks, e.g. the centralized algorithms with the mechanism in which all nodes are

concentrated and managed, and the distributed algorithms without such a mechanism;

the deterministic algorithms whose process become settled uniquely, and randomized

algorithms which are not so [1, 5, 7–9,11,12,14,15,17,20].

4 CHAPTER 1. INTRODUCTION

Under the assumption that the nodes have full knowledge of the network, in [1] the

authors proved the existence of a family of n-node networks of radius 2, for which any

broadcast requires Ω(log2 n) time, while in [15] an optimal deterministic algorithm which

produces a broadcast scheme of time O(D + log2 n) is given, for any n-node network of

diameter D.

Hereafter, we assume that the nodes have neither the knowledge of the network nor

the knowledge of their neighborhood.

For randomized algorithms, the lower bound of Ω(D · log(n/D)) for bidirectional

graphs is shown by Kushilevitz and Mansour [17], and the lower bound of Ω(log2 n) for

constant diameter networks is obtained by Alon et al. [1].

For deterministic distributed algorithms, on the model without collision detection,

Chlebus et al. have presented an optimal linear-time broadcasting protocol for bidi-

rectional ad-hoc radio networks [7]. Also, on the model with collision detection, they

presented an O(r · ecc)-time RB algorithm for arbitrary graphs, an O(n)-time ARB al-

gorithm for bidirectional graphs, and an O(n · ecc)-time ARB algorithm for strongly

connected graphs, where ecc is the maximum distance from the source. It is not easier

to solve a problem for arbitrary directional graphs than for bidirectional ones. Note that

on the model without collision detection there does not exist any algorithm for ARB,

even for bidirectional graphs [7]. The best O(n4/3 log10/3 n) time gossiping algorithm for

strongly connected graphs is shown in [12].

About the lower bounds of deterministic RB, the lower bound of Ω(n) for bidirectional

graphs [14] and the lower bound of Ω(n log n) for arbitrary graphs [5] are shown.

Table 1.1 shows the results we discussed above. All these results are obtained from

deterministic algorithms under the same radio network model.

About Clustering

Distributed clustering for a flat ad-hoc network topology G has been investigated in

many literatures. Most of the proposed protocols end up generating cluster heads and

forming a corresponding backbone. Usually, cluster heads form a dominating set (DS)

or an independent set (IS) of G [3, 10, 16,21,22]. A set is a DS of G if any node of G is

either a node of DS or is neighbor of a node of DS. A set is an IS of G if no two nodes of

1.1. RESEARCH BACKGROUNDS 5

Problem Collision Graphs Computation
detection time

RB without bidirectional O(n) [7]
Ω(n) [14]

arbitrary O(n log2ecc) [9]
Ω(n log n) [5]

with bidirectional O(r + ecc) [20]

strongly connected O(n log2 ecc) [9]
arbitrary O(r · ecc) [7]

RG without strongly connected O(n
4
3 log

10
3 n) [12]

ARB without bidirectional algorithm does
not exist [7]

bidirectional
O(n)∗

(n ≥ 2)

strongly connected
O(n

4
3 log

10
3 n)∗

(n ≥ 2)
with bidirectional O(n) [7]

O(r + ecc) [20]
strongly connected O(n · ecc) [7]

ARG without bidirectional
O(n log3 n)∗

(n ≥ 2)

strongly connected
O(n

4
3 log

10
3 n)∗

(n ≥ 2)

(n:number of nodes, ecc:largest distance from the source, r:length of the source
message, ∗:our result)

Table 1.1: Previous results and ours∗ (Deterministic and Distributed)

6 CHAPTER 1. INTRODUCTION

the set are the neighbors in G. In most of these distributed algorithms, the nodes need

two hops knowledge, i.e., the knowledge of the neighbors and the neighbors’ neighbors

which need Ω(n) time to get. It is known that finding a minimum DS (MDS) of G is

an NP -complete problem. Therefore, finding a clustering with the minimum number of

clusters is also an NP -complete problem. Sometimes, an ad-hoc network can be modeled

by a unit disk graph, where an edge exists between two nodes iff the Euclidean distance

of two nodes is at most one. A cluster structure can be formed by selecting a DS or

an IS and then connect them to a backbone in O(n) - O(n2) time depending on if

the construction of clusters and a backbone is explicitly specified [3, 21, 22]. In [16], a

randomized algorithm is presented to compute an asymptotically optimal MDS (i.e., it

finds a set of cluster heads but not form a cluster structure) in polylogarithmic time.

The comparative performance evaluation of these above algorithms for clustering and

backbone formation is shown in [4].

1.2 Contributions

In this dissertation, we consider the ARB, the ARG, and the clustering algorithms on

the model of ad-hoc radio networks without collision detection.

First, we show the contribution for ARB and ARG.

In the network model in Subsection 1.1.1, communication tasks and its completion

times has been investigated in many literatures. The network model is theoretical, and

so are the results.

As we mentioned on the model without collision detection, there does not exist any

ARB algorithm even for bidirectional graphs [7], which is proved by using a special case:

when the source does not receive any message about the completion of the RB, the source

can not distinguish between the situations that the network has only the source node

(thus the source does not receive any message) and that at least two in-neighbors of the

source transmit some messages (thus collision occurs).

If we assume that each node knows the number of nodes or its in-neighbors in the net-

work, RB algorithms can be easily modified to ARB ones. It is interesting to know some

weakest conditions needed for performing an ARB. In this dissertation, we show that if

1.2. CONTRIBUTIONS 7

the network contains at least two nodes, we can construct ARB algorithms for bidirec-

tional graphs and strongly connected graphs under the assumption that the network has

no collision detection and each node knows only its ID.

The computation time of our ARB algorithm for bidirectional graphs is the same as

the existing best RB algorithm which uses O(n) rounds. The computation time of our

ARB algorithm for strongly connected graphs is O(6n +
∑dlog ne

i=1 {2·RB(2i) + RG(2i)}),
where RB(n) and RG(n) is the number of rounds which an RB and an RG requires for

n-node strongly connected graphs, respectively. It becomes O(n4/3 log10/3 n) when using

the O(n4/3 log10/3 n)-time gossiping algorithm from [12].

In addition, we consider acknowledged radio gossiping (ARG) algorithms. We show

that our ARB algorithms can be extended to ARG algorithms for both of bidirectional

graphs and strongly connected graphs. Our ARB algorithm for bidirectional graphs

needs a leader, and we use the source node to be the leader in the algorithm. In ARG,

since no source node is given, we need to elect a leader for ARG when we extend the

ARB algorithm to an ARG algorithm. For strongly connected graphs our ARB algorithm

does not need a leader, therefore , in this case, the ARB algorithm can be extended to

an ARG algorithm directly. The computation time of the extended ARG algorithms

is O(n +
∑dlog ne

i=1 {LE(2i)}) for bidirectional graphs and O(6n +
∑dlog ne

i=1 {RB(2i) + 2 ·
RG(2i)}) for strongly connected graphs, respectively, where LE(n) denotes the number

of the rounds needed to elect a leader for n-node bidirectional graphs. The computation

times of ARG algorithms become O(n log3n) and O(n4/3 log10/3 n), respectively, by using

the O(n log3n)-time leader election algorithm from [8] and the O(n4/3 log10/3 n)-time

gossiping algorithm from [12]. Our results for RB and ARB are also summarized in

Table 1.1.

The second contribution of this dissertation is clustering and its maintenance algo-

rithms.

Distributed clustering for a flat ad-hoc network topology G has been investigated in

many literatures, and most of the proposed protocols end up generating cluster heads

and forming a corresponding backbone. Although many efforts have been made for

establishment of a hierarchical clustering on an ad-hoc network, the research for the

maintenance of the cluster organization under the similar scenario is seldom seen. This

8 CHAPTER 1. INTRODUCTION

dissertation puts emphasis on the maintenance. In this dissertation, we consider an ad-

hoc network in which the network topology dynamically changes. We propose a novel

cluster architecture on which two operations join and leave are defined for maintaining

the cluster organization.

First, we show a basic cluster architecture. In our clustering, the nodes of a flat

network G are grouped into disjoint clusters, and the backbone is a tree consisting of

cluster heads and gateway nodes (if any, gateway nodes are used to connect heads).

Furthermore, the backbone and the clusters are combined into a spanning tree of G

which we call cluster-based network of G, denoted as CNet(G). Let n be the number

of nodes in G and |BT (G)| be the number of nodes of backbone in our clustering. A

CNet(G) has several novel properties: (1) the backbone consists of at most 2pG − 1

nodes, where pG is the cardinality of the minimum clique partition of G, and so when G

is a dense graph, pG ¿ n; (2) a broadcasting on G can be executed via the backbone in

O(|BT (G)|) time (it needs Ω(n) time on a flat network [2]); and (3) if G is a unit disk

graph, |BT (G)| ≤ 10 × |MDS |.
In our clustering, when a CNet(G) is established, each node keeps one hop knowledge

(i.e., each node knows its neighbors in CNet(G) and G, respectively). We will show that

a CNet(G) can be established either in a static way or in a dynamic way. The static way

refers to the process of gathering all topological information somewhere and the problem

is solved there. On the other hand the dynamic way refers to solve the problem locally

without gathering all information. Using these methods a CNet(G) can be established

in O(n) time or in expected O(|E|) time, respectively. The operations join and leave

maintain the cluster architecture for G with the same properties when a node gets out

of or joins into G.

Moreover, we propose another cluster architecture on which a join operation that

merge two or more networks (G1, G2, . . . , Gm) by a joining node and a leave operation

that separates a network into two or more ones by a leaving node can be performed

efficiently and the size of its backbone is small. The join operation can be performed in

O(q + max
1≤i≤m

{|BT (Gi)|}) expected time on unit disk graphs, where q is the number of

neighbors of joining node in G, and |BT (G)| is the size of backbone tree of G1. And the

1For the join operation for general graphs, it takes a little bit more time (see section 5.4.2).

1.2. CONTRIBUTIONS 9

leave operation can be performed in O(|T |) time on general graphs, where T is a subtree

of the cluster-based network CNet(G) with the leaving node as the root. Simulation

shows a better result that the size of the backbone decreases by 10 percent compared

with our first proposed basic architecture. Moreover, we remove the assumption that

each node works in a synchronous round.

The rest of the dissertation is organized as follows: We give definitions for some

technical terms in Chapter 2. Chapter 3 deals with the communication model of the

networks. Chapter 4 describes ARB and ARG algorithm which is the first contribution

of this dissertation. The proposed cluster-based architectures and its maintenance al-

gorithms is presented in Chapter 5. Finally, we conclude the dissertation and show our

future works in Chapter 6.

Chapter 2

Preliminaries

2.1 Graph Theoretic Definitions

We give definitions for some technical terms which will be used throughout the disser-

tation. Let G = (V,E) be a directed graph.

• Bi-directional graph: A graph G is a bi-directional graph if there is an edge from

node u to node v, then there is an edge from v to u.

• Induced subgraph: For a graph G = (V,E), the graph H = (U, F), where U ⊆ V

and F is the set of all edges in E with both ends in U , is called the subgraph of G

induced by U , denoted by G[U].

• Strongly connected component : A directed graph, in which there exists at least

one path from u to v for any two distinct nodes u and v, is said to be strongly

connected. A strongly connected component C = G[U] of a directed graph G is a

subgraph of G induced by U which satisfies that no node of G can be added to U

such that C is strongly connected.

• Tree: For a graph G = (V,E), let G′ = (V,E ′) be the graph obtained by replacing

all edges in E with undirected ones. G is a tree if G′ is a connected graph without

cycle.

• In-neighbors: Node u is an in-neighbor of node v, if there is a directed edge from

node u to node v.

10

2.1. GRAPH THEORETIC DEFINITIONS 11

• Independent set : An independent set of G is a set U ⊆ V in which no pair of nodes

is adjacent in G.

• Maximal independent set (MIS): An independent set I of nodes in a graph G such

that no more nodes can be added and it still be an independent set.

• Dominating set : A set D(⊆ V) of nodes is a dominating set of G if any node in G

is either in D or the neighbor of a node in D.

• Unit disk graph: In a unit disk graph G = (V,E), there is an edge (u, v) ∈ E iff

the Euclidean distance between u and v is at most 1.

Since a bi-directional graph can be treated as an undirected graph, in this disser-

tation, our networks are represented by undirected graphs, and the figure of a graph

and technical terms also follow it (e.g. strongly connected component → connected

component).

Chapter 3

Model of Radio Networks

In this dissertation, we consider the radio networks without a collision detection. We

describe the model of radio networks:

• A priori knowledge of every node is limited to its own ID.

• Each node knows whether itself is a source or not in broadcasting.

• Nodes in the radio network work per round synchronized by a global clock.

• In every round, each node acts either as a transmitter or as a receiver.

• A node acting as a receiver in a given round gets a message iff exactly one of its

in-neighbors transmits in this round.

• If more than one in-neighbor transmit simultaneously in a given round, collision

occurs and none of the messages is received in this round.

• A node cannot notice the occurrence of a collision (i.e. without collision detection).

For simplicity we assume that each node is labeled with distinct integers between

1 and n in an n-node network. But note that all the arguments hold if the labels are

distinct integers between 1 and Z = O(n), and we do not use the property that the

labels are in {1, 2, . . . , n}.
For our clustering maintenance algorithms, we will remove the assumption that a

round is synchronized in section 5.6.

12

Chapter 4

ARB, ARG

4.1 ARB and ARG in Bidirectional Graphs

In this section, we describe ARB and ARG algorithms for bidirectional graphs where

the number of nodes in the network is at least 2. First, we describe the overview of

our algorithms, secondly we show an ARB algorithm and then modify it to an ARG

algorithm.

4.1.1 Overview of Our Algorithm

We organize the algorithms into phases. Each node judges whether ARB or ARG has

ended in each phase, and if the task has not ended, proceeds to the next phase. The

main idea of our algorithms is that, in k-th phase, there will have 2k nodes will confirm

their in-neighbors. In the k-th phase, first the in-neighbors of any node v whose IDs are

no more than 2k send their own IDs, thus the node v can recognize its in-neighbors’ IDs

that are no more than 2k. Then in the same phase the node whose ID is the minimum

one among the in-neighbors with IDs no more than 2k, and nodes whose IDs are more

than 2k send their IDs simultaneously. If the node v receives the minimum ID (i.e.

collision does not occur), it recognizes that it knows all of the in-neighbor in this phase.

It is easy to perform the ARB if every node knows all of its in-neighbors. If the node

v does not receive the minimum ID (i.e. collision occurs), v recognizes that it does not

13

14 CHAPTER 4. ARB, ARG

know all of the in-neighbors and the algorithm performs the next phase.

4.1.2 Algorithm bi-ARB

We show an ARB algorithm named bi-ARB for bidirectional graphs in an n-node radio

network, where n ≥ 2.

Algorithm bi-ARB works phase by phase, numbered by consecutive positive integers.

Phase k lasts 9 · 2k−1 rounds divided into four stages. Stage A consists of 2k−1 rounds,

Stage B consists of 2k rounds, Stage C consists of 2k rounds, and Stage D consists of

2k+1 rounds. We denote the ID of node v as ID(v). We define the following notations.

• Lk : the set of nodes with IDs in {1, . . . , 2k}.

• Gk : the connected component containing the source of the network induced by

Lk. Gk = φ if the ID of the source node is larger than 2k.

• Nk
v : the set of IDs smaller than or equal to 2k from the in-neighbors of node v.

• min(Nk
v) : the minimum ID in Nk

v . If Nk
v = φ, min(Nk

v) = ⊥.

• Qv : the set of v’s out-neighbors in Gk which were not yet visited by the token

(mentioned in the algorithm). Qv is initialized to Nk
v .

Note that in bidirectional graphs the in-neighbors of each node v are the same as the

out-neighbors of v.

Informally we show the algorithm of phase k. Stage A is a Round Robin which

intends to let each node v know its in-neighbors (and out-neighbors) whose IDs are at

most 2k (Nk
v). In Stage B each node v in Lk sends min(Nk

v), which will be the only node

in in-neighbors of v that can transmit to v in the next stage C. Stage C is used to judge

whether the node v of Gk knows all of its in-neighbors or not. In Stage C the node whose

ID is min(Nk
v) and nodes not in Lk send their IDs, then according to whether receiving

min(Nk
v) or not every node v in Gk recognizes whether it knows all its in-neighbors or

not. In Stage D the source node in Gk broadcasts the source message to every node of

Gk. In this stage the source node also collects the information that whether each node

in Gk knows all its in-neighbors. Thereby the source node can confirm the completion

of RB. We modify and use a broadcasting technique shown in [7] in this stage. The

technique is also used in the next chapter, and we call it as procedure Eulerian.

4.1. ARB AND ARG IN BIDIRECTIONAL GRAPHS 15

Eulerian(H) performs a broadcast on a bi-directional graph H, where each node of

H knows all its neighbors’ IDs in H. Let Nv be the set of IDs of v’s neighbors. In every

round, at most one node acts as a transmitter and all other nodes act as receivers. A

message called token containing the source message starts from the source node, visits

every node and turns to the source node. At the beginning, the token is in the source

node. It then visits each node in H from the source node in depth-first order, and the

movement of the token constructs a spanning tree T of H and an Eulerian cycle C on

this tree. Every node v maintains a list Qv containing the set of its neighbors in H which

were not yet visited by the token. Qv is initialized to Nv. Whenever v gets the message

visited from some neighbor w, or whenever v gets the token from w, node v removes

w from the list Qv. When v gets the token then:

If Qv = ∅ then

• v sends the message <ID(v),visited>;

• v sends the token to the node w from which it got it for the first time.

If Qv 6= ∅ then

• v sends the message <ID(v),visited>;

• v sends the token to the node w with the smallest ID in the list Qv.

In both cases both messages are concatenated and are sent in a single round. The

procedure finishes when the list Qs of the source node s is empty and s receives the

token. This concludes the description of procedure Eulerian(H).

The following lemma holds for Eulerian.

Lemma 4.1. [7] Let H = (V,E) be a connected bi-directional graph. If each node of H

knows all its neighbors’ IDs in H, procedure Eulerian(H) completes broadcasting for H

in O(|V |) rounds.

Now we formally show our algorithm bi-ARB.

bi-ARB Phase 0 consists of one round, the node with ID 1 (if it possibly exists) acts

as a transmitter and sends its ID in this phase. The other nodes act as receivers.

Hereafter, we explain phase k > 0, of bi-ARB.

16 CHAPTER 4. ARB, ARG

Stage A. The rounds in Stage A of phase k are numbered by integers 2k−1+1, . . . , 2k−1+

2k−1. In round number i of Stage A only the node v with ID i acts as a transmitter and

sends a message ID(v).

Stage B. The rounds of this stage are numbered by integers 1, . . . , 2k. In round i of

Stage B only the node v with ID i acts as a transmitter and sends a message min(Nk
v).

If min(Nk
v) = ⊥, the node v sends no message. The node w that receives min(Nk

v) stores

it if ID(w)=min(Nk
v).

Stage C. The rounds in Stage C of phase k are numbered by integers 1, . . . , 2k. In round

i of Stage C, the node v with ID i acts as a receiver. The node with ID=min(Nk
v) acts

as a transmitter and sends its ID and all the nodes whose IDs are larger than 2k (not

only in-neighbors of v) also send their own IDs in the round.

Every node v not receiving min(Nk
v) in the round ID(v), is set to the state warned

which means that v does not know all its in-neighbors, or in other words, v has the

in-neighbors whose IDs are larger than 2k.

Stage D. The rounds in Stage D of phase k are numbered by integers 1, . . . , 2k+1. The

source initiates Stage D if its ID is less than or equal to 2k. Otherwise all nodes do

nothing in these 2k+1 rounds. We use a message called token. At the beginning of

this stage every node v ∈ Gk knows its out-neighbor Nk
v in Gk and maintains a list Qv

containing the set of its out-neighbors in Gk which were not yet visited by the token.

When a warned node sends the token to an out-neighbor, it appends a warning

message to the token, and the out-neighbor getting the token becomes warned.

When node v gets the token, it acts as follows:

step 1. Node v sends the message <ID(v),visited>. If a node u receives the message,

it removes v from the list Qu.

step 2. Node v sends the token <source message, ID(w), (warning)> to the fol-

lowing node w:

– (i) If Qv = φ, w is the node from which v got the message in step 1 for the

first time.
– (ii) If Qv 6= φ, w is the node with the smallest ID in the list Qv.

the messages are concatenated and are sent in a single round. Node w which gets the

token repeats the procedure of step 1 and step 2.

4.1. ARB AND ARG IN BIDIRECTIONAL GRAPHS 17

If, at the end of phase k, the source is warned, it knows that the RB has not been

completed, and proceeds to the next phase. Otherwise the algorithm terminates.

In Appendix A we give the pseudocode of bi-ARB that each node executes.

Correctness of Algorithm bi-ARB

Lemma 4.2. The following invariants are maintained after phase k of bi-ARB, for any

positive integer k.

• Every node v knows the Nk
v , the set of IDs at most 2k from the in-neighbors(and

out-neighbors) of v.

• Every node in Gk knows the source message, if Gk contains the source node.

Proof. In phase k = 0, Gk contains only the source node if its ID equals 1, and Nk
v = φ.

Therefore, Lemma 1 holds obviously in this case.

Assume that the invariants hold after phase k−1, k ≥ 1. We show that the invariants

are maintained after phase k.

In Stage A of phase k, the nodes whose IDs are between 2k−1 and 2k transmit their

IDs. In every round, exactly one node acts as a transmitter and the other nodes act as

receivers, hence collisions are avoided. Any node v has already known Nk−1
v after phase

k − 1 from the assumption, v learns Nk
v − Nk−1

v the remaining neighbors in Gk during

phase k.

In Stage D if Gk contains the source node, the token is patrolled from the source

node to all nodes in Gk. At the beginning of Stage D the token is in the source node. It

visits each node of Gk from the source node in depth-first order. When node v got the

token, it sends the token with the source message and its ID to its out-neighbors which

have not received the token yet, following the Eulerian cycle Ck of a spanning tree of Gk

as follows: Qv is the set of out-neighbors of v in Gk which were not yet visited by the

token. The node v that receives the token has to send the message <ID(v), visited>

to its in-neighbors, node w that receives the message removes v from the list Qw. If v

has the neighbors which are not visited by the token, it passes the token to the one with

the smallest ID. Else, v returns the token to the node from which it got the token for the

18 CHAPTER 4. ARB, ARG

4

8

1

5
2

transmit

Figure 4.1: knowing all in-neighbors (k=3)

4

10

1

5
2

transmit transmit

Figure 4.2: otherwise (k=3)

first time. In Stage A every node v in Gk knows its out-neighbors in Gk, so the token

patrols every node in Gk and returns to the source finally.

Theorem 4.3. Algorithm bi-ARB performs an ARB in time O(n), for any n-node bidi-

rectional graph with n ≥ 2.

Proof. Let l be such that 2l−1 < n ≤ 2l. It is sufficient to show that

(1) After phase l all nodes of the network get the source message.

(2) At the end of phase l the source is not warned.

In order to prove (1) consider phase l. Since Gl is the entire network, (1) follows from

Lemma 4.2. The number of the rounds needed for this algorithm is at most
∑l

i=1 9·2i−1 ≤
9 · 2l ≤ 18n.

We prove (2). At the end of Stage A each node v knows Nk
v . It sends min(Nk

v) in

round i=ID(v) of Stage B. The node w receiving min(Nk
v) memorizes the number of the

round if ID(w)=min(Nk
v), otherwise ignores the message. Thereby in round i of Stage

C only the node with ID i can act as transmitter.

A node in Gk recognizes whether it knows all its in-neighbors in Stage C. In round i

of this stage for the node v with ID i, the node with ID=min(Nk
v) and the nodes with

IDs larger than 2k send their own IDs. Therefore the node v having in-neighbors with

ID larger than 2k cannot receive min(Nk
v) in round ID(v) due to a collision. Then v

recognizes that it does not know all in-neighbors, and becomes warned. If v knows all

in-neighbors, it can receive min(Nk
v) and will not become warned. Figure 4.1 shows the

case where a node knows all in-neighbors, and Figure 4.2 shows the other case in round

4 of phase 3, where the number of node represents its ID.

Consider phase l. Since there is no node whose ID is larger than 2l, each node v can

receive min(Nk
v) in the round ID(v) in Stage C. Therefore no node becomes warned in

Stage D. Hence the source node is not warned at the end of phase l.

4.1. ARB AND ARG IN BIDIRECTIONAL GRAPHS 19

Message size. Let S be the maximum length of the message transmitted each time and

let r be the length of the source message. In Stage A,B and C each node transmits at most

one ID respectively, thus S =O(log n). In Stage D each node transmits message <ID(v),

visited> and the token <source message, ID(w), (warning)>, thus S =O(r+log n).

Hence the maximum message size is at most O(r + log n) for algorithm bi-ARB.

4.1.3 Algorithm bi-ARG

The ARG algorithm bi-ARG for bidirectional graphs is obtained by changing a part of

bi-ARB.

Algorithm bi-ARG works in phases, numbered by consecutive positive integers similar

to bi-ARB. Each phase consists of four stages A,B,C and D. Stage A,B,C are the same as

these of algorithm bi-ARB but Stage D is different. It needs a leader election procedure

and an extra token patrolling. Recall that in bi-ARB, the source node is used to be

the starting point of the token patrolling. Furthermore, each node knows whether itself

is a source or not. But the source node does not exist for ARG. We have to elect one

leader for each connected component induced by Lk so that the token patrolling can be

performed in each component. We use a leader election procedure. The leader of each

connected component acts as initiator and makes the token patrol twice in its connected

component in Stage D. In the first patrol the leader of each connected component collects

the messages which each node has and warning messages from the nodes to the leader

(the same as that in bi-ARB), then in the second patrol it disseminates the messages

which were collected in the first patrol to all the nodes in the component. Thereby any

node knows whether RG have completed or not.

In order to use an leader election algorithm, each node must know the completion

time of the algorithm, since the leader election procedure must finish in each phase of

bi-ARG.

For example, we can use the algorithm FIND MAX shown in [8] as a leader election

procedure. The algorithm FIND MAX elects a leader by calculating the maximum

ID on a strongly connected graph under the assumption that each node knows the

upper bound of IDs of nodes in the network. Moreover, if each node knows (the upper

20 CHAPTER 4. ARB, ARG

bound of) the number of nodes n in the network, it can compute the completion time

of FIND MAX, which is cn log3n for some known constant c. Algorithm FIND MAX

finds idmax = maxv ID(v), using binary search. At each step, all nodes know that the

idmax (the node having this ID is elected as a leader) among all nodes is between a and

b, where a ≤ b. Initially a = 0 and b = n. If a = b, then idmax = a, and the computation

of idmax is complete. For a < b, we proceed as follows. Let c = d(a+ b)/2e. Each node v

for which c ≤ ID(v) ≤ b sends the message [c, b] to all other nodes. Since all these nodes

send the same message, we consider an extension of the RB that broadcasts from several

source nodes with the same messages to all reachable nodes, and use the algorithm that

performs such an extended RB with completion time RB(n). Then, after RB(n) steps,

either all nodes will receive the message [c, b], in which case they know that the maximum

is between c and b, or (informing by silence) all nodes will not receive anything for time

RB(n), in which case they know the maximum is between a and c − 1. Depending

on the outcome, either all nodes update their [a, b] intervals (containing maximum) to

[d(a + b)/2e, b] or all of them update it to [a, d(a + b)/2 − 1e].
In each phase we use this algorithm to elect a leader for each connected component.

In phase k, the upper bound of IDs and that of the number of nodes in the connected

components induced by Lk is known to be 2k.

Theorem 4.4. Algorithm bi-ARG performs an ARG in time O(n +
∑dlog ne

i=1 {LE(2i)}),
for any bidirectional graph with n ≥ 2, where LE(k) denotes the number of the rounds of

any leader election algorithm for k-node bidirectional graphs in which each node knows

the completion time.

Proof. Algorithm bi-ARG works in phases and stages similar to bi-ARB. Stage A,B,C are

the same as these of algorithm bi-ARB. In Stage D, it needs a leader election procedure

and an extra token patrolling. From the proof of Theorem 4.3, all the process except

for the leader election can be done in time O(n). For each phase i, the leader election

algorithm takes at most LE(2i) rounds. Therefore, algorithm bi-ARG performs an ARG

in time O(n +
∑dlog ne

i=1 {LE(2i)}).

We obtain the following corollary from Theorem 4.4 using the O(n log3n)-time leader

election algorithm FIND MAX.

4.2. ARB AND ARG IN STRONGLY CONNECTED GRAPHS 21

Corollary 4.5. Algorithm bi-ARG performs ARG in time O(n log3n), for any bidirec-

tional graph with n ≥ 2.

Proof. From Theorem 4.4 and the O(n log3n)-time leader election algorithm FIND MAX,

the completion time of bi-ARG is

n +

dlog ne∑
i=1

2i log3 2i ≤ n +

dlog ne∑
i=1

2i · i3

≤ n + 2(2dlog ne − 1) · (log n + 1)3

≤ n + 4n · (log n + 1)3.

Hence, algorithm bi-ARG performs ARG in time O(n log3n).

Our algorithm bi-ARG is improvable if more efficient leader election algorithms can be

designed for bidirectional graphs under the condition that each node knows the maximum

of IDs and n.

Message size. Let S be the maximum length of the message transmitted each time

and let r be the length of the message each node has. In Stage A,B and C, S =O(log n)

which are the same as that of bi-ARB. In Stage D first S = O(log n) for the leader

election procedure FIND MAX [8]. Next each node adds its own message to the token,

S = O(rn + log n). Hence the maximum message size is at most O(rn + log n) for

algorithm bi-ARG.

4.2 ARB and ARG in Strongly Connected Graphs

4.2.1 Algorithm st-ARB

The ARB algorithm st-ARB for strongly connected graphs is obtained by changing a

part of bi-ARB.

Algorithm st-ARB works in phases, numbered by consecutive positive integers. Every

phase starts in the round following the end of the previous phase. Phase k(> 0) lasts

3 · 2k−1 + 2 ·RB(2k) + RG(2k) rounds divided into four stages. Stage A consists of 2k−1

22 CHAPTER 4. ARB, ARG

rounds, Stage B consists of RG(2k) rounds, Stage C consists of 2k rounds, and Stage D

consists of 2·RB(2k) rounds.

Here we show the outline of this algorithm in phase k. Stage A and C of st-ARB are

the same as those of bi-ARB, and the purpose of Stage B and D also does not change.

Although in bidirectional graphs a node v can transmit min(Nk
v) to its in-neighbor w

whose ID=min(Nk
v) because the in-neighbors of v is also its out-neighbors, node v cannot

do that in strongly connected graphs since w may not be an out-neighbor of v. To do

this, v must gossip on the subgraph induced by Lk in Stage B. In Stage D each node

other than the source node in Lk transmits the warning message and the source node

broadcasts the source message. Thereby the source node can confirm the completion of

RB.

In st-ARB we use the RB and RG in the subgraph induced by Lk (not necessarily

strongly connected). In order to apply the RB algorithm for strongly connected graphs

to our algorithm, it is sufficient to perform the task for all reachable nodes. About RG

algorithm, it is not necessary to perform the task for all reachable nodes. Any algorithm

of RB and RG can be applied to our algorithm if each node knows the completion time.

We consider an extension of the RB that broadcasts from several source nodes with

the same messages to all reachable nodes, and use the algorithm that performs such an

extended RB in Stage D. Since the algorithm does not depend on the information of the

source node, it can perform an RB in the situation such that several source nodes exist.

st-ARB Phase 0 consists of one round, the node with ID 1 acts as transmitter and

sends its ID in this phase. The other nodes act as receivers.

Hereafter, we explain phase k(> 0) of st-ARB. Stage A and C is the same as that of

bi-ARB. Every node that is not transmitter is receiver in the explanation.

Stage A. Rounds in Stage A of phase k are numbered by integers 2k−1+1, . . . , 2k−1+2k−1.

In round number i of Stage A the only node v with ID i acts as a transmitter and sends

a message ID(v).

Stage B. Stage B consists of RG(2k) rounds. In Stage B each node v in Lk acts as

a transmitter, gossiping the message <ID(v), min(Nkv)>. If min(Nk
v) = λ, the node v

sends no message.

Stage C. Rounds in Stage C of phase k are numbered by integers 1, . . . , 2k. In round

4.2. ARB AND ARG IN STRONGLY CONNECTED GRAPHS 23

number i of Stage C the node v with ID i acts as a receiver. The node with ID min(Nk
v)

and the nodes whose IDs are larger than 2k act as transmitter, sending their own IDs.

Every node v not receiving min(Nk
v) in the round ID(v), is set to the state warned.

Stage D. Stage D consists of 2 ·RB(2k) rounds. First, each node sends a warning

message if it is warned. Next, if the source does not receive the warning message, it

knows that there is no node in Lk whose in-neighbors with ID> 2k and then broadcasts

the source message, otherwise it knows that there still exist nodes in Lk whose in-

neighbors with ID> 2k and then it becomes warned, and shifts to the next phase.

Correctness of Algorithm st-ARB

Lemma 4.6. If there are warned nodes in the strongly connected graph after phase k

of st-ARG then there is a path from at least one warned node to the source node that

contains only nodes whose IDs are not larger than 2k.

Proof. Let v be some warned node. In the original graph there is a path from v to the

source. If there are nodes with ID> 2k in this path, let the out-neighbor of the last of

them in the path be v′. The path from v′ to the source proves the lemma.

Theorem 4.7. Algorithm st-ARB performs ARB in time O(6n +
∑dlog ne

i=1 {2·RB(2i) +

RG(2i)}), in any strongly connected graphs with n nodes, where n ≥ 2 and RB(k)

and RG(k) denotes the number of the rounds of any extended RB and RG algorithm

for k-node strongly connected graphs in which each node knows the completion time,

respectively.

Proof. Let l be such that 2l−1 < n ≤ 2l. It is enough to show that

(1) After phase l all nodes of the network get the source message.

(2) At the end of phase l the source node does not warned.

In order to prove (1) consider phase l. Since Ll is the entire network, each node

considers the upper bound of the number of nodes is 2l and does broadcasting, then

every node gets the source message. The completion time of this algorithm is at most

l∑
i=1

{3 · 2i−1 + 2·RB(2i) + RG(2i)} ≤ 6n +

dlog ne∑
i=1

{2·RB(2i) + RG(2i)}

24 CHAPTER 4. ARB, ARG

We prove (2). Since Stage A is the same as that of bi-ARB for phase k, any node v

knows Nk
v in the stage.

In Stage B each node v in Lk gossips <ID(v), min(Nkv)>. If the gossiping are per-

formed correctly, in Stage C only one node in Nk
v can act as transmitter. If Lk does not

contain all nodes of the graph, the induced subgraph by Lk is not necessarily strongly

connected and the gossiping of all messages is not secured. But Ll contains all node in

the graph, all messages are gossiped correctly.

Stage C is also the same as that of bi-ARB, each node v recognizes whether it knows

all its in-neighbors. Similar to bi-ARB the node v having in-neighbors with ID larger

than 2k cannot receive min(Nk
v) in round ID(v). The node v which could not receive

min(Nk
v) recognizes that it does not know all in-neighbor, and becomes warned. If there

is no node with ID> 2k in the graph, all messages are gossiped in Stage B. It means that

v can receive min(Nk
v) in Stage C and does not become warned.

In Stage D each node confirms whether it receives the warning message or not, and

the source node sends the source message. From Lemma 4.6 if there exists at least one

warned node, its warning message reaches the source node. Then the source node

knows that there exist the nodes in the graph with ID> 2k. Consider phase l, since there

is no node in the graph with ID> 2l, each message of any node is gossiped to all nodes

in Stage B correctly. Therefore any node does not become warned in Stage C. Hence,

the source node confirms the completion of RB and is not warned at the end of phase

l since Ll is the entire network and there is no warned node in the graph.

We obtain the following corollary from Theorem 4.7 using the O(n log2n)-time broad-

casting algorithm from [8] and the O(n4/3 log10/3 n)-time gossiping algorithm from [12].

The broadcasting Algorithm DOBROADCAST from [8] which can perform the extended

RB is as follows: All sets considered in this algorithm are subsets of {1, . . . , n}. We say

that a set S hits a set X iff |S∩X| = 1, and that S avoids X iff S∩X = ∅. Given a posi-

tive integer w, a family S of sets is called a w-selector if it satisfies the following property:

“For any two disjoint sets X,Y with w/2 ≤ |X| ≤ w and |Y | ≤ w there exists a set in

S which hits X and avoids Y ”. The algorithm is specified as a sequence of transmission

sets. At each round t, the nodes that transmit the message are those that belong to the

t-th transmission set and have already received the message. For each j = 0, . . . , log n let

4.2. ARB AND ARG IN STRONGLY CONNECTED GRAPHS 25

Sj = (Sj,0, Sj,1, . . . , Sj,mj−1) be a 2j-selector with mj = O(2j log n) sets. The algorithm

DOBROADCAST consists of stages, with each stage having log n + 1=O(log n) steps.

The transmission set at the j-th round of stage s is Sj, s mod mj
. Since each node does not

use the information whether it is the source or not and does not depend on the message

it received in the previous round, RB can be done on condition that several source nodes

have the same message. Each node can compute the completion time of each algorithm

under the assumption that it knows the upper bound of IDs of nodes in the network.

Corollary 4.8. Algorithm st-ARB performs ARB in time O(n4/3 log10/3 n), for any

strongly connected graphs with n ≥ 2.

Message size. Let S be the maximum length of the message transmitted each time

and let r be the length of the source message. In Stage A and C each node transmits

at most one ID, thus S =O(log n). In Stage B each node v gossips ID(v) and min(Nk
v),

thus S = O(n log n). In Stage D each node transmits a warning message, the source

node transmits the source message, thus S =O(r). Hence the maximum message size is

at most O(r + n log n) for algorithm st-ARB.

4.2.2 Algorithm st-ARG

The ARG algorithm st-ARG for strongly connected graphs is obtained by changing a

part of st-ARB.

Algorithm st-ARG works in phases, numbered by consecutive positive integers as

well as st-ARB. Stages A,B and C are the same as those of st-ARB. We perform ARG

by changing Stage D. Stage D consists of RB(2k) + RG(2k) rounds. First step where

each node confirms whether it receives the warning message or not is the same as that

of Stage D of st-ARB. If a node does not receive warning message, it knows that there

is no node with ID> 2k and gossips its own message, otherwise it knows that there still

exist nodes with ID> 2k and becomes warned, then shifts to the next phase.

Theorem 4.9. Algorithm st-ARG performs ARG in time O(6n +
∑dlog ne

i=1 {RB(2i) +

2 ·RG(2i)}), for any strongly connected graph with n nodes, where n ≥ 2 and RB(k)

and RG(k) denotes the number of the rounds of any RB and RG algorithm for k-node

strongly connected graphs in which each node knows the completion time, respectively.

26 CHAPTER 4. ARB, ARG

We obtain the following corollary from Theorem 4.9 using the O(n log2n)-time broad-

casting algorithm from [8] and the O(n4/3 log10/3 n)-time gossiping algorithm from [12]

as well as Corollary 4.8.

Corollary 4.10. Algorithm st-ARG performs ARG in time O(n4/3 log10/3 n), for any

strongly connected graph with n nodes, where n ≥ 2.

Message size. Let S be the maximum length of the message transmitted each time

and let r be the length of the message each node has. In Stage A,B and C, S =O(n log n)

is the same as that of st-ARB. In Stage D each node v broadcasts a warning message

and gossips its own message, thus S = O(rn). Hence the maximum message size is at

most O(rn + n log n) for algorithm st-ARG.

Chapter 5

Cluster-based Architecture

As shown in the previous chapter, the upper bound and the lower bound for deterministic

distributed broadcasting are O(n) rounds and Ω(n) rounds for bidirectional graphs. And

we propose the O(n) rounds ARB algorithm when n ≥ 2 in Chapter 4. In order to provide

the flat ad-hoc network with a hierarchical architecture and perform broadcasting fast,

clustering is considered. Distributed clustering for a flat ad-hoc network topology G

has been investigated in many literatures. Although many efforts have been made for

establishment of a hierarchical clustering on an ad-hoc network, the research for the

maintenance of the cluster organization is seldom seen. In this chapter, we consider

an ad-hoc network in which the network topology dynamically changes, and propose a

novel cluster-based architecture on which two operations join and leave are defined for

maintaining the cluster organization. On the architecture faster broadcasting can be

archived.

5.1 Basic Architecture

In this section, we define a basic architecture which is used our proposed architectures.

Let G = (V,E) be a connected bi-directional graph. A cluster of G is a star subgraph

of G, where one node, called a head, has an edge to each other node called a member.

No edge exists between any two members in the cluster. A clustering of G is to partition

G into node disjoint clusters. The union of the clusters is produced by the clustering

27

28 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

of G and denoted as C(G) = (V,EC), where EC is the set of edges between the heads

and their members. In order to minimize the number of clusters, our clustering does not

allow two heads to be neighbors with each other. In other words, the set of the heads

in our clustering is a maximal independent set in G. Our clustering makes any two

heads are joined by one special member called gateway node which is in an intersection

of neighbors in G of two heads.

Clustering provides a hierarchical organization to a flat graph G. A backbone of G is

a connected subgraph of G formed by only heads and gateway nodes, where a gateway

node is connected with two or more heads. Since heads can not be neighbors with each

other, any edge in a backbone must be formed between a head and a gateway node.

Since G is a connected bi-directional graph, a backbone must exist. A backbone tree of

G, denoted as BT (G) = (VBT , EBT), is defined to be a spanning tree of a backbone of

G (see Figure 5.1).

: edge in CNet(G)

: head

: gateway node

: pure member

cluster

backbone tree BT(G)

: edge in G

Figure 5.1: G, BT (G) and CNet(G)

Backbone tree BT (G) can be considered as a communication highway on G. To

see this, let u and v be two members, and hu and hv be their heads, respectively. If

u wants to send a message to v, u first sends the message to its head hu. hu then

sends the message to hv via BT (G), and finally hv sends the message to its member

v. A transmission between a head and its members is called local transmission, and a

transmission between heads is called backbone transmission.

Now we use the backbone tree to connect the clusters for forming a structured network

on G. A cluster-based network of G = (V,E) is a rooted tree CNet(G) = (V,EBT ∪EC)

with one head as a root. The edges of EBT come from the backbone tree and the edges

5.1. BASIC ARCHITECTURE 29

of EC come from all the clusters (see Figure 5.1). Since gateway nodes are also members,

we also call the members which are not gateway nodes as pure members. In CNet(G),

pure members are connected only with their heads.

In the following sections, we will show how a graph G can be organized and maintain

to a cluster-based network CNet(G). Before we discuss the algorithms, we first define a

data structure for CNet(G) clearly.

A CNet(G) has two level structures: a set of clusters, and a backbone tree which

is used to connect the clusters. Each node v in G maintains the information described

below:

• v.stat: v’s status, head, gateway or member.

• v.prt, v.chd: the ID of v’s parent and the set of IDs of v’s children on CNet(G),

respectively. For a root r, r.prt = ⊥, and for each node m who has no child,

m.chd = ∅.

• v.oneigh: the set of IDs of v’s neighbors on G except v.prt and v.chd.

• v.rootID : the ID of the root of CNet(G) to which v belongs.

Each node maintains its neighbor’s status and ID as pairs. Hereafter we use v.neigh

as the neighbors of v on G and v.bneigh as the neighbors of v on BT (G), respectively

(these can be derived from v.prt, v.chd and v.oneigh). We call above information as

total 1-hop data. When the information are maintained for each node in G, it is called

that G is organized with total 1-hop data.

We define two operations join and leave on a CNet(G).

• join: Given disjoint graphs G1, G2, . . . , Gm, CNet(G1),CNet(G2), . . . ,CNet(Gm)

and a joining node u which connects these graphs, CNet(G1), CNet(G2), . . . ,

CNet(Gm) are reconfigured to one CNet(G).

• leave: Given a graph G, CNet(G) and a leaving node which divides G into disjoint

graphs G1, G2, . . . , Gm, CNet(G) is reconfigured to CNet(G1), CNet(G2), . . . ,

CNet(Gm).

Fig.5.2 shows the operations join and leave.

30 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

CNet(G)

leave

G1

G2 G3

Gm
G1

G2 G3

Gm

v v
join

CNet(G1)

CNet(G2) CNet(G3)

CNet(Gm)

Figure 5.2: Operations join and leave

In what follows, we also call the join which makes two or more graphs to one con-

nected graph as merge, and call the leave which separates a graph to two or more disjoint

graphs as separation.

Since any two heads are not adjacent with each other on G and any two gateway

nodes are not adjacent with each other on BT (G), if a joining node v connects a head

and a gateway node in different CNet(G) and CNet(G′), v cannot be head nor gateway

node and the merge are not done efficiently. So, we consider better architectures in

Section 5.4 where the two operation can be performed efficiently, moreover, the size of

its backbone tree is smaller than this architecture.

5.2 Properties of the Basic Architecture

The basic architecture in Section 5.1 has the following properties.

Lemma 5.1. Let G be a connected bidirectional graph and BT (G) be a backbone tree of

G. If BT (G) has p heads, then the number of nodes in BT (G) is at most 2p − 1 nodes.

Proof. We define a red-connected-by-blue tree to be a tree which contains only red and

blue nodes. Each blue node connects two or more red nodes, and no edge exists between

any two red nodes. From the definition a blue node can not be a leaf.

Obviously, BT (G) is a red-connected-by-blue if we consider heads to be red and

gateway nodes to be blue. We prove the conclusion that if a red-connected-by-blue tree

has p red nodes, then it has at most 2p − 1 nodes totally.

5.2. PROPERTIES OF THE BASIC ARCHITECTURE 31

Let T be a red-connected-by-blue tree with p red nodes. If p = 1, T contains only

one node which is red. Therefore, the conclusion holds when p = 1. Assuming that the

conclusion holds when p = k, we prove the conclusion holds for the case p = k + 1.

Let u be a leaf of T . Obviously, u is red and is adjacent to some blue node g in T .

If g connects more than two red nodes, then remove u from T . Otherwise, g connects

two red nodes in which one is u, and in this case we remove both u and g from T . No

matter which situation the resulting tree T ′ is a red-connected-by-blue tree with k red

nodes. From the induction assumption, |T ′| ≤ 2k − 1, therefore |T | ≤ 2k − 1 + 2 =

2(k + 1) − 1.

The following lemmas use the fact that heads are not adjacent to each other on G.

Lemma 5.2. Let G be a connected bidirectional graph and pG be the cardinality of

minimum clique partition of G. The number of heads in CNet(G) is at most pG.

Proof. From the definition of the clustering of G, there is only one head in one cluster,

and the heads are not connected with each other. On the other hand, any two nodes

are connected with each other in a complete graph. Therefore, there exists at most one

head in any complete subgraph of G. Hence, the number of clusters in CNet(G) is at

most pG.

Lemma 5.3. Let G = (V,E) be a unit disk graph, and MDS (G) be the minimum

dominating set of G. The number of heads in CNetC(G) is not larger than 5×|MDS (G)|.

Proof. For a minimum dominating set MDS (G), we show that each node x ∈ MDS (G)

has at most 5 heads as its neighbors in the CNet(G).

If x ∈ MDS (G) is a head, then it does not have any other head as its neighbor.

Otherwise, we prove that x can have at most 5 heads as its neighbors. Let’s consider

the nodes of G as the points on the plane.

Assume that x has heads u and v as its neighbors.

In triangle uxv, (u, x) and (x, v) are the edges in G. Therefore, |ux| ≤ 1 and |vx| ≤ 1.

On the other hand, since u and v are heads, there is no edge between them in G.

Therefore, |uv| > 1. Hence, the angle between (u, x) and (x, v) is larger than 60◦. It

means that x has at most 5 heads as its neighbors.

32 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

Lemma 5.4. Let G = (V,E) be a unit disk graph, and BT (G) be a backbone tree of G.

The maximum degree of BT (G) is constant.

Proof. Gateway nodes are adjacent to only heads on BT (G). Therefore, the degree of

gateway nodes on BT (G) is less than 6 from the proof of Lemma 5.3.

Heads are adjacent to only gateway nodes and gateway nodes connect two or more

heads on BT (G). So, the degree of any head h on BT (G) is less than or equal to the

number of heads within two hops from h. Since the number of heads within two hops is

less than 20 [13], the maximum degree of BT (G) is at most 19.

5.3 Broadcasting on A Cluster-based Architecture

In this section, we present our broadcasting algorithm using BT (G).

We show our broadcasting algorithm BroadcastALG in CNet(G), where s is the

source node with a message M and needs to be informed to the rest of the nodes in a

given network G.

A broadcasting in CNet(G) can be completed by performing Eulerian on BT (G).

Algorithm 1 shows our algorithm BroadcastALG.

Algorithm 1 BroadcastALG

1: if source node s is a pure member then
2: s sends source message M to s.prt;
3: s.prt calls procedure Eulerian(BT (G));
4: else
5: s calls procedure Eulerian(BT (G));
6: end if

Theorem 5.5. Given G and BT (G) = (VBT , EBT), a broadcasting on G can be done in

O(|VBT |) rounds.

Proof. Each node in BT (G) knows its neighbors in BT (G). If a source node is in BT (G),

a broadcasting on BT (G) is completed in O(|VBT |) rounds from Lemma 4.1. Since every

cluster head in CNet(G) is in BT (G) and participates in relaying the source message,

all the members in CNet(G) receive the source message from their cluster heads when

5.4. BETTER ARCHITECTURES 33

: edge in CNet(G)

: cluster head

: gateway node

: cluster member

cluster

backbone tree BT(G)

: edge in G

(b) I(a) M

Figure 5.3: Architectures M, and I

they relay the source message on BT (G). If the source node is not in BT (G), it takes

one more round to send message to its cluster head. Hence, a broadcasting from any

node can be done in O(|VBT |) rounds.

The time of above broadcasting algorithm is based on BT (G), so the smaller the size

of BT (G), the faster a broadcast can be done.

5.4 Better Architectures

In this section, we present the main proposed architecture I and its algorithms that

enables merge/separation efficiently. And then we improve I to have a smaller backbone

tree. Before the description of I, we introduce other derivative architecture [18] where

merge/separation can be done efficiently.

Architecture M in [18]: On architecture M, the backbone tree consists of heads

and gateways, where the set of heads is an independent set of G as well as the basic

architecture in Section 5.1. Gateways are allowed to be adjacent to each other on the

backbone tree (see Fig.5.3). By allowing gateway nodes to be adjacent on backbone tree,

merge/separation operations can be performed on M, but the size of the backbone tree

is larger than that of the basic architecture.

34 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

5.4.1 Architecture I

On the basic architecture in Section 5.1, the merge of two or more cluster-based networks

caused by joining of a node and separation of a cluster-based network into two or more

ones caused by a leaving node are not done efficiently since the condition of a backbone

tree is strict (that is, heads are not adjacent on G and gateway nodes are not adjacent

on BT (G)). If a head in one cluster-based network is connected to a gateway of the

other cluster-based network via a joining node, in a simple way, all of the nodes in a

cluster-based network need to call join operations to reconstruct a new one. We propose

architecture I that enables merge/separation efficiently and is constructed by only heads

and members.

Let CNetI(G) be the cluster-based network of G with architecture I, and BT I(G)

be its backbone tree. CNetI(G) and BT I(G) have the same properties CNet(G) and

BT (G) have. In addition, on architecture I, a set of heads is not independent set of G

and a backbone tree is constructed only by heads (see Fig.5.3).

5.4.2 Algorithms

Join operation:

First we show the join algorithm for I.

Let new be a node who wants to join a network G = (V,E), where G consists of

disjoint subgraphs G1, G2, . . . , Gm. Let G′ = (V ∪ {new}, E ∪ Enew) in this subsection,

where Enew = {(u, new)|u is in the transmitting range of the node new, u ∈ V }. Let

q = |Enew|. We simply use “neighbors” as “neighbors in G′” in this subsection.

What should be performed by the join operation is to decide the status of new,

construct a backbone tree, and update the information which the neighbors of new in

G′ have.

First, in order to decide the status of new and whether a merge is caused, new needs

to know the status of its neighbors and their rootIDs. In the case that new receives only

one rootID from its neighbors, no merge is necessary. In this case, if there exist heads in

the neighbors of new in G′, new selects one to be it’s head and itself becomes a member.

Else there are no heads in its neighbors, new becomes a head and sets one neighboring

5.4. BETTER ARCHITECTURES 35

member to be a head. Based on the decided status of new, the neighbors of new update

their information. This process is shown in Procedure I-status. In any case, the process

affects only 2-hop neighbors of new.

In the case that new receives two or more rootIDs, we merge G1, G2, . . . , Gm. If every

node in Gi simply calls I-status one after another to construct CNetI(G), the size of

the backbone tree does not become larger (will prove later) but the join operation takes

O(n) rounds and is not efficient, where n is the number of nodes in G. Here, we control

the order of I-status called by each node, and let each node b in BT I(Gi) (1 ≤ i ≤ m)

call I-status first. If b becomes a head, b’s children can become its member without

calling I-status. In this way, we can reduce the completion time of join.

Now we show the detail of our algorithm for merging CNetI(Gi) (1 ≤ i ≤ m), called

Procedure I-merge. Let R be CNetI(G1) with rootID r and the joining node new. In

I-merge, first new determines its rootID. Then, each node b in BT I(Gi) (2 ≤ i ≤ m),

change their status by I-status(b, R) for R, and move into R one by one. R grows as

nodes move into it, and we also denote the grown graph as R. After b in BT I(Gi) call

I-status(b, R), (i) if b become heads, their member nodes in CNetI(Gi) can remain as

the children of them, (ii) otherwise, when b does not become a head, not all of the b’s

children can remain as its members. But, if there is a child m which is not adjacent to

any head in R, all other children of b can remain b’s members by I-status(m, R) and

changing b and m into heads. Therefore, we need to find such a child m which is not

adjacent to a head in R by the procedure called deliver-member. The node b asks each

child c one by one whether it is adjacent to a head in R. If c is adjacent to a head, c

changes its parent to the adjacent head. Else c calls I-status(c, R) as b is its parent (i.e.,

they become heads), and this procedure ends. If all of the children of b are adjacent to

heads in R, b remains member.

In order to determine the status of new, new needs to know all of its neighbors. To

do so, it is sufficient that the neighbors of new transmit their own IDs and status one

by one. It can be done by numbering the neighbors of new from 1 to q and transmitting

their information in order of the numbers.

Lemma 5.6. The neighbors of new can be numbered from 1 to q in O(q) expected rounds,

where q is the number of neighbors of new in G′.

36 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

Proof. By simulating the Initialization Protocol [19] on a complete graph in O(1) rounds,

it is possible to number the nodes from 1 to q on a star graph with new as a center node.

(See APPENDIX B about how to simulate the protocol).

Now, we present our join algorithm I-join and subroutines used in I-join, Procedure

I-status, I-merge and deliver-member to organize the architecture I, respectively.

Algorithm 2 I-join(new,G)

1: The joining node new sends AddMe message;
2: The nodes receiving AddMe message are numbered from 1 to q, and send their IDs

and status to new one by one;
3: if new does not receives two or more rootIDs then
4: I-status(new,G);
5: else
6: I-merge(new,G);
7: end if

Procedure 3 I-status(new,G)

1: if there are heads in neighbors of new then
2: new sends I’mMember message to the neighboring head h with minimum ID;
3: new.rootID := h.rootID , new.stat := member,

new.prt := h, h.chd := h.chd ∪ {new};
4: else {There are only members in neighbors of new}
5: new sends BeHead message to a neighboring member m with minimum ID;
6: new.rootID := m.rootID ,

new.stat := head, m.stat := head,
new.prt := m, m.chd := m.chd ∪ {new};

7: m sends ChgHead message to its neighbors;
8: Neighbors of m change m’status into head in their information;
9: end if

Lemma 5.7. Let CNetI(G) be a cluster-based network of G. When G is organized with

total 1-hop data, after an execution of I-join for a node new, G′ is organized with total

1-hop data.

Proof. We show that the information of each node is maintained correctly and it satisfies

the property of BT I(G
′) and CNetI(G

′) as follows: a set of heads is a dominating set

of G, BT I(G
′) is connected and any edge in BT I(G

′) is formed between heads, and

CNetI(G
′) is rooted spanning tree of G′.

5.4. BETTER ARCHITECTURES 37

Procedure 4 I-merge(new,G)

1: % Let r be the minimum rootID in neighbors of new;
2: % Let R = G[{v|v ∈ CNetI(Gi) with rootID r}∪{new}∪{v|v has called I-status}];
3: % Let t be a node with a token during Eulerian;
4: new performs I-status(new,R) to the nodes with rootID r;
5: for each rootID i of new’s neighbors do
6: if there is no head in new’s neighbors with rootID i then
7: new sends DoJoin message to a neighboring member u with rootID i and min-

imum ID;
8: else
9: new sends DoJoin message to a neighboring head u with rootID i and minimum

ID;
10: end if
11: u call I-status(new,R);
12: u calls Eulerian on the backbone tree with rootID i which works as follows in

each round:
13: t joins into R by I-status(new,R);
14: if t becomes a member then
15: deliver-member(t, G);
16: end if
17: Nodes in t.chd set their parent into t;
18: end for

A new node new will become a head or a member through I-join. If there are heads

in G as neighbors of new, new becomes a member of one of the heads h and new.prt = h,

h.chd = h.chd∪{new}. Else if there are no neighboring heads, new becomes a head. In

this case, one of the members m in the neighbors of new becomes a head and a parent for

head new and m.chd = m.chd ∪ {new}. Whenever new becomes a head, it is adjacent

to a head, and the head is neighbor of a head (which is parent of it) in CNetI(G). So,

the backbone tree BT I(G
′) of G′ is connected and any edge in BT I(G

′) is formed by

heads.

In each case, since only one edge and one node are added to existing cluster-based

network CNetI(G) which is spanning tree of G, the constructed new cluster-based net-

work CNetI(G
′) is also a spanning tree of G′. And new becomes a head or member as a

child of a head, so a set of heads is a dominating set of G′. Finally, since all neighbors of

new send their IDs and status, new.oneigh and their status are updated correctly.

Theorem 5.8. For disjoint graphs G1, G2, . . . , Gm and CNetI(G1), CNetI(G2), . . .,

38 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

Procedure 5 deliver-member(v,G)

1: v.mlist := v.chd − v.bneigh;
2: v.chd := ∅;
3: v.stat := member;
4: while v.mlist 6=∅ and v.stat = member do
5: v sends ChkM message to a member m ∈ v.mlist;
6: if there is no head in m.neigh then
7: m calls I-status as v is its parent for R;
8: else
9: m sends GetNM message to one head h ∈ m.neigh;

10: h sends its neighboring members’ IDs NM to v via m;
11: v sends CoveredM message with CM := v.mlist ∩ NM, and nodes in CM set

their parent to h;
12: m sends CM to h, and h.chd := h.chd ∪ CM ;
13: v.mlist := v.mlist − CM;
14: end if
15: end while
16: v.chd := v.mlist;
17: Nodes in v.chd set their parent into v;

CNetI(Gm), when these graphs are organized with total 1-hop data, the operation join

can be done in O(q) expected rounds provided that no merge occurs or in O(q + max
1≤i≤m

{
∑

v∈BTI(Gi)
min(|Nm(v)|, |N2

h(v)|)} expected rounds when merge occurs, and G′ is or-

ganized with total 1-hop data, where q is the number of neighbors of new in G′, Nm(v)

is neighboring members of v, and N2
h(v) is heads in 2-hop distance of v.

Proof. In the join algorithm I-join, the neighbors of new in G′ can be numbered from

1 to q in expected O(q) rounds by Lemma 5.6. After numbering of the neighbors, they

send their IDs and status. It takes expected O(q) rounds. If merge is caused, moreover,

an Eulerian for each CNetI(Gi) and deliver-member are performed. The Eulerians

in FOR loop (line 5) of I-merge can be performed in parallel for each CNetI(Gi) and

deliver-member requires min(|Nm(v)|, |N2
h(v)|) time. So I-merge can be done in O(max

1≤i≤m

{
∑

v∈BTI(Gi)
min(|Nm(v)|, |N2

h(v)|)}).

Corollary 5.9. For disjoint unit disk graphs G1, G2, . . ., Gm and CNetI(G1), CNetI(G2),

. . ., CNetI(Gm), when these graphs are organized with total 1-hop data, the opera-

tion join can be done in O(q) expected rounds provided that no merge occurs or in

5.4. BETTER ARCHITECTURES 39

O(q + max
1≤i≤m

{|BT I(Gi)|}) expected rounds when merge occurs, and G′ is organized with

total 1-hop data, where q is the number of neighbors of new in G′.

Proof. The degree of the backbone tree is constant for an unit disk graph from Lemma

5.4 and the proof of Lemma 5.13 (described later). Hence this corollary can be derived

easily from Theorem 5.8.

Leave operation:

Next, we show our leave algorithm I-leave. Let lev be a node who wants to leave from G

and G′ be the graph after lev leaves, that is, G′ = G[V −{lev}] in this subsection, where

G′ consists of disjoint graphs G1, G2, . . . , Gm (see Fig.5.4). We will show that we can

judge whether G′ is connected (i.e., m = 1) in O(|T |) rounds, where T = (V (T), E(T))

is a subtree of CNetI(G) with the leaving node lev as the root.

lev

root

G

G1G3 G2Gm

Figure 5.4: G and subgraphs sepa-
rated by lev

lev

root a subgraph of CNetI(G)
induced by V(G1)

edge in G

Cl

C2

C1

v

v
v

H

Figure 5.5: G1 and its connected components

Our leave algorithm is executed when lev wishes to leave from the network. If lev is

a member, it sends I’mLeaving message and simply leaves from the network. Otherwise,

the leave algorithm works as follows: First, we consider the case where lev is not the

root of CNetI(G). The case where lev is the root is described later. If lev is a head,

CNetI(G) is divided into two subtrees. One is the tree T with lev as the root (not

including the root in CNetI(G)), and one is the tree H with the root of CNetI(G) as

40 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

the root. The algorithm I-leave removes lev from T , adds other nodes of T to H if they

connect with H. Then the remaining nodes in G1, G2, . . . , Gm will be reconfigured to

CNetI(G1), CNetI(G2), . . . , CNetI(Gm) by repeating I-join one by one.

Let Ci(i = 1, 2, . . . , l) be the connected components of G[V (T)−{lev}] (see Fig.5.5).

H always changes and grows larger each time a node in T is added to H.

The edges in G between T and H are used in order to add the nodes of T to H. We

make all of the nodes in T that have path to H join into H by I-join. First, lev calls

Eulerian(T) to wake up each node of T . Whenever the waken node v ∈ Ci has an edge

connected with H, v moves to H by I-join, then v calls Eulerian(Ci) and each node in

Ci moves to H following v by I-join one by one. Each node already knows its neighbors

in G and their status, therefore this I-join can be performed deterministically in O(1)

rounds (just call of I-status).

The above process will be repeated until all of lev’s children have received a token

or moved to H.

After the process is finished, lev checks its children whether they move to H. If all of

the children move to H, G is a connected graph after lev leaves, then the leave operation

is completed. Else G is disconnected. Node lev sends message to its each child in Gj

which is not joined to H. The child becomes a new root of CNetI(Gj) and all nodes in

Gj repeat I-join to construct CNetI(Gj).

Here we describe about an exception, when lev is a root of CNetI(G). If lev.bneigh 6=
∅, electing a head which is 2-hop neighbor of lev and setting it to a new root of CNetI(G),

which is shown in change-root, our algorithm in the general case can be used. Otherwise

lev selects one node in lev.neigh becomes the new root of CNetI(G
′). The new root

calls Eulerian(G[V −{lev}]) and a cluster-based network is constructed sequentially by

repeating I-join for the node with token.

Our leave algorithm I-leave is described in Algorithm I-leave and Procedure sub-

routines of I-leave.

The following lemma can be easily derived.

Lemma 5.10. Let CNetI(G) be a cluster-based network of G. When G is organized

with total 1-hop data, after an execution of I-leave for a node lev, G′ is organized with

total 1-hop data.

5.4. BETTER ARCHITECTURES 41

Algorithm 6 I-leave

% Let T =(V (T), E(T)) be a subtree of CNetI(G) with root lev;
% Let Ci(i = 1, 2, ...) be the connected components of G[V (T) − {lev}];
% Let H = G[V − V (T) ∪{v|v∈V (T), v has called I-join}];
% Let t be a node with a token in Eulerian;

for each v ∈ G do
v.link := v.neigh;

end for
lev sends I’mLeaving message;
if lev.stat = member then

nodes that received I’mLeaving delete lev from neighbor list in G;
else

if lev is a root of CNetI(G) then
if lev.bneigh 6= ∅ then

lev sends chkchild message;
Each node v ∈ lev.bneigh sends v.child to lev one by one;

end if
if There is a head 2-hop away from lev then

change-root ;
else

exception; exit;
end if

end if
if lev is a head and |(lev.prt).bneigh| = 2 then

(lev.prt).chd := (lev.prt).chd − lev;
deliver-member(lev.prt);
Nodes in (lev.prt).chd set their parent into lev.prt;

end if
% Let T ′ := T ;
lev calls Eulerian(T) which works as follows in each round:

v.link := v.link − {t} for each node v who receives messages from t;
while there is a node in lev.chd who has not received a token and not joined to H
do

lev calls Eulerian(T ′), and it works as follows in each round:
if t.link 6= ∅ then the procedure finishes;

t ∈ Cj calls Eulerian(Cj), and it works as follows in each round:
t joins into H by I-join except line 1,2, and each neighbor v of t adds t to

v.link;
t sends the token back to lev by Eulerian(T ′);
nodes who have joined to H are removed from T ′;

end while
while there is a lev’s child v ∈ Ci who has not determined its status do {separation}

lev sends a message to v;
v makes CNetI(Ci) with root v by Eulerian(Ci) performing I-join one by one;

end while
end if

42 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

Procedure 7 subroutines of I-leave
exception

1: lev sends a message to one of its neighbors r, and r becomes the root and has a
token (t := r);

2: r sends I’mRoot message and v.link := v.link ∪ {r} for each neighbor v of r;
3: % Let G′′ := G[{r}];
4: t calls Eulerian(G[G(V)−{lev}]) which works as follows in each round:
5: if t has not joined then
6: t joins into G′′ according to the status of nodes in t.link by I-join;
7: Each neighbor v′ of t adds t to v′.link;
8: end if

change-root

1: lev sends a message to a head h in lev.bneigh;
2: lev.prt := h, h.chd := h.chd ∪ {lev};
3: h sends a message to a head h′ in h.bneigh;
4: h.prt := h′, h′.chd := h′.chd ∪ {h};
5: h′.prt := ⊥ and h′ becomes a root;

Proof. When lev is a member, only node lev and the edge between lev and lev.prt are

removed from CNetI(G). Therefore, BT I(G
′)=BT I(G), the status of each node is not

changed, and CNetI(G
′) is also rooted spanning tree. The information of each node is

maintained by removing lev from it.

Now we consider the case that lev is a gateway node or a head. Let T = (V (T), E(T))

be a subtree of CNetI(G) with root lev and H = (V (H), E(H)) = G[V −V (T)∪{v|v ∈
V (T), v has called I-join}]. Since an edge between V (T) and V (H) is only (lev, lev.prt)

in CNetI(G), just lev.prt updates its information about stat, prt, chd, and each neighbor

v of lev removes lev from v.oneigh. G is organized from the assumption, so H is also

organized. Eulerian procedure calls determines the order of I-join for each node in

V (T), a node v, s.t. v ∈ u.neigh, u ∈ V (H), joins to H by I-join. So, from Lemma 5.7,

if H is organized, G[V (H) ∪ v] is organized. Since this is performed repeatedly for all

v ∈ V (T), H = G[V − {lev}] is organized after an execution of I-join for a node lev.

When lev is the root of CNetI(G), the root is changed and I-join is performed in

order similarly.

Theorem 5.11. Let CNetI(G) be a cluster-based network of G and T be the subtree of

CNetI(G) with the leaving node lev as root. When G is organized with total 1-hop data,

5.4. BETTER ARCHITECTURES 43

leave of lev can be done in O(|T |) rounds, and G′ is organized with total 1-hop data.

Proof. lev calls Eulerian(T) so that each node knows its neighbors in T . Next, Eulerian(

G[V − V (H) − {lev}]) is called to find the edge (u, v), u /∈ V (H), v ∈ V (H), and to

make each node in T join to H. These calls of Eulerian takes O(|T |) rounds.

When lev is a root in CNetI(G) and lev.bneigh = ∅, lev calls Eulerian(T) once and

each node joins in some round during the procedure. It takes O(|T |) rounds. Otherwise,

if lev is a root in CNetI(G), replacing the role of lev by other head can be done in O(1)

rounds. Then each node in T joins to H as already mentioned above.

So, a leave operation can be done in O(|T |) rounds.

5.4.3 Properties of Architecture I

On I, a join/leave operation which enables merge/separation for ad-hoc network(s) can

be performed with a backbone tree which has the same size as C. Moreover, the nodes

of I has only two kinds of status as member or head and the backbone tree is simplified.

The architecture I constructed with above two operations has the following property.

Lemma 5.12. The number of clusters in CNetI(G) is equal to |BT I(G)|.

Proof. Since BT I(G) consists only of heads on I, the number of clusters in CNetI(G)

is |BT I(G)|.

Lemma 5.13. Let G be a connected bidirectional graph and pG be the cardinality of

minimum clique partition of G. |BT I(G)| is at most 2pG − 1 on I which is constructed

by I-join/leave.

Proof. We consider the process of forming BT I(G) by I-join. For convenience sake, we

divide the heads in BT I(G) into H1 and H2, and H1 contains one node in the initial

state (H1 and H2 represent not only the status but the set of nodes whose status are H1

and H2 unless confusion is caused, respectively). This is not real status and can be used

only for explanation. Then we show that the following properties hold:

(i) |H2| < |H1|,
(ii) nodes in H1 are not adjacent each other.

44 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

In the initial state, (i) and (ii) hold since there is only one node which is H1.

First, we consider I-join in the case that merge does not happen. From Procedure

I-status, we show the following virtual I-status: (a) if there are neighbors of new in H1

and H2, new becomes a member; (b) else change a status of one of them into H2, and

new becomes H1. Thus, nodes in H1 are not adjacent each other. |H1| and |H2| increase

in the same number respectively, so |H2| < |H1|. When merge of cluster-based networks

occurs, we just control the order of joining of each nodes. Therefore above argument in

the case that merge does not happen can hold.

Next, we consider I-leave. When lev is a member, H1 and H2 do not change. When

lev is H1, the parent, which is H2, of lev becomes a member, or one H1 node appears

except lev by deliver-member. In the case that the parent becomes a member, |H1| and

|H2| are decrease by one, so (i) and (ii) hold. Another case that an H1 node appears

except lev，since lev leaves and a new H1 node appears, |H1| and |H2| are unchanged

and (i) is satisfied. Then a new H1 node is not adjacent to other head except for the

parent, which is H2. Therefore (ii) is also satisfied. We can apply the same argument

for the proof when lev is H2.

Hence, (i) and (ii) are always satisfied. Since |H1| is at most the cardinality of

minimum clique partition of G from Lemma 5.2, |BT I(G)| < 2pG.

Lemma 5.14. Let G = (V,E) be a unit disk graph, and MDS (G) be the minimum

dominating set of G. |BT I(G)| is not larger than 10 × |MDS (G)|.

Proof. This lemma can be derived easily from Lemma 5.3 and 5.13.

The properties shown in lemmas 5.13, 5.14 are not derived from the definition of

structure of I, but derived from the algorithm (Algorithm I-join and I-leave).

5.4.4 Improvement of I

Here we show some improvement in order to reduce the size of backbone tree on I while

preserving the completion time of the join/leave operations.

On the original architecture I, new always joins as a head, however, it can be member

if its parent changes the status to head even if there is no head in the neighbors of new.

5.4. BETTER ARCHITECTURES 45

In this case, the size of backbone tree can be reduced. To make theoretical analysis easy,

we divide status member into status member1 and status member2. The nodes in status

member1 are not adjacent to each other in G. Then the size of a backbone tree can be

analyzed in a similar way as the proof of Lemma 5.13. A member1 node is candidate

of H1 in the proof which becomes a head next time. Thereby we can obtain the same

property about the size of a backbone tree as Lemma 5.13. Moreover |BT I(G)| can

be decreased by the number of members in status member1. We will give a simulation

result for the size reduction caused by the improved architecture.

Structure: We divide members into two classes, member1 and member2, on the im-

proved architecture. Other structure is the same as original architecture I. Here mem-

ber1 nodes are not adjacent each other.

Algorithms: First we show the join algorithm for improved I.

The joining node new becomes a head in I-status if there is no head in its neighbor.

Then in the improved algorithm, new always becomes a member and we divide the

member into member1 and member2 so that member1 nodes are not adjacent each

other.

We extract only the part relative to a determination of status in Procedure I-

status(improved). Most part of the other algorithm and procedure of improved I are

not changed.

Procedure 8 I-status(improved)

1: if there are heads in neighbors of new then
2: % Let h be a head with minimum ID in neighbors of new;
3: new.stat := member2, new.prt := h, h.chd := h.chd ∪ {new};
4: else if there are member1s in neighbors of new then
5: % Let m1 be a member1 with minimum ID in neighbors of new;
6: new.stat := member2, m1.stat := head;
7: new.prt := m1, m1.chd := m1.chd ∪ {new};
8: else {only member2}
9: % Let m2 be a member2 with minimum ID in neighbors of new;

10: new.stat := member1, m2.stat := head;
11: new.prt := m2, m2.chd := m2.chd ∪ {new};
12: end if

Our leave algorithm is basically the same as Algorithm I-leave. Only in the case

46 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

that the leaving node lev is a root or member1, the algorithm differs slightly. If lev is

member1, lev changes its status into head, and performs I-leave. Else if lev is a root,

it searches a head which is away from lev by 2-hop. If such a head does not exist, it

searches a member1 which is away from lev by 2-hop, changes its status into head, and

performs I-leave. Else it simply performs I-leave.

The completion times and properties of these algorithms remain the same.

Improved architecture I which is constructed with above two operations has the same

property as I we showed before. We also show that the size of a backbone tree on our

architecture is reduced by a simulation in the next section.

5.5. SIMULATION 47

5.5 Simulation

We compare the sizes of backbone trees for the three architectures M, I and improved

I and its algorithms by simulation. The setting of the simulation is as follows: Each

node is treated as a point without volume; The field where nodes are deployed is infinite

plane; Nodes are added to the field from the initial state with one node until the number

of nodes reach n; Each node is set randomly within a range where existing nodes can

transmit.

Under above setting, we measure the size of backbone tree from n = 1000 to 8000 by

1000 nodes (Fig.5.6). Each plot point represents a average value for 100 trials.

The size of backbone tree of I is less than that of the other architectures within the

limit of n = 1000, . . . , 8000, and it is expected that I is also superior to the others for

n À 8000 from Fig.5.6.

We can consider that the size of backbone tree of I is less than that of M for

the reason that the number of nodes which become members increases by constructing

backbone tree with only heads, i.e. the nodes that are able to have children. And as

another reason, it is also considered that improved I can greatly decrease the number of

heads which exist in a part of the outer of the region where nodes are deployed actually

owing to member1. Comparison with the size of backbone (n=1000～8000)

020040060080010001200

1000 2000 3000 4000 5000 6000 7000 8000The number of nodes
|BT(G)| MII (improved)

Figure 5.6: Comparison with the size of backbone tree

48 CHAPTER 5. CLUSTER-BASED ARCHITECTURE

1 round

v

w

time

time

time

time

v

w

RC RC TR

RC RCTR

1 round

TR

TRRCTR

TR: transmit

RC: receive

 o : collision

(b) synchronous round(a) asynchronous round

u

v

w

u timetimeu
TR TR RCRC TR RC

RC

Figure 5.7: Synchronous and asynchronous rounds

5.6 Conversion of Synchronization into Asynchro-

nization

In this section, we describe how our algorithms can work in asynchronous rounds. The

algorithms proposed in this dissertation look like synchronized ones; however, essentially

they have the properties that asynchronized algorithms have, in other words, they can

run in an asynchronized fashion by introducing a delay D.

Now we consider the following asynchronous rounds:

• Nodes repeat transmissions and receptions.

• Each node transmits in fixed intervals, called rounds, otherwise acts as receiver.

• Node u acting as a receiver gets a message which neighbor v sends in a given round

r iff no neighbor of u except for v transmits in a round which is overlapped with

r. When more than one neighbor transmits simultaneously in rounds which are

overlapped with r, collision occurs at u and none of the messages is received in r

(see an example of three nodes in Fig.5.7(a)).

Algorithms in synchronous system do not work correctly in asynchronous system

directly. Two or more messages that are transmitted in different rounds in synchronous

system may cause a collision in asynchronous system even if these messages do not cause

a collision in synchronous system. We should prevent them from colliding.

We let the interval of rounds for every node be fixed. However, we allow each node

starts the interval at any time. When a node act as transmitter, it can keep sending a

message during the interval. When two or more intervals of transmitting nodes overlap,

5.6. CONVERSION OF SYNCHRONIZATION INTO ASYNCHRONIZATION 49

collision occurs. We allow a delay of receiving a message. We take a delay D into account

and it is much shorter than the interval of rounds, say, less than the half of the interval.

Now we consider the case that node v sends a massage and neighbor(s) of v sends

back a reply to v. Let t0 be the time when v has finished sending a message, then the

time when v finishes receiving the replies of its neighbors is at most t0 + 2D + I, where

I is the interval of one round. Since D < 1
2
I, t0 + 2D + I < t0 + 2I.

If two or more replies are sent to v, a collision occur at v during [t0 . . . t0+2I) because

it takes two or more rounds to receive these messages, then v can not receive the replies.

Else no collision occurs.

Therefore, in order to simulate a round in synchronous system, “node v enters re-

ceiving state and waits for replies during two rounds after it sends a message, then v

does its next action”. By doing so, in asynchronous system, it is possible for a node

which sends message and waits for its replies (if any) to simulate the same situation of

collision/non-collision in synchronous system. If a transmitting node v receives a mes-

sage in the following two rounds in asynchronous system, v must receive a message in

synchronous system, and if collision occurs at v for these two rounds in asynchronous

system, it must occur at v in synchronous system.

Now we mention the application to our proposed algorithms: (i) for broadcast, it

works for above asynchronous system since at most one node repeats “if receives token,

then sends it to a neighbor” by Eulerian in each round and there is no collision in

synchronous system. (ii) for move-in, at first the neighbors of new are numbered. In

the algorithm new and its neighbors send message in turn after waiting replies, so the

above discussion can be applied. After numbering of neighbors, no collision occurs since

only new and its parent send messages in two rounds. (iii) for move-out, the number of

transmitting nodes is at most one and it repeats “if receives token, then sends it to a

neighbor” as well as broadcast algorithm. So it also works in asynchronous system.

For above discussion, each node takes only one more round by waiting replies for

each round. Therefore, the order of completion times of our algorithms does not change

due to the conversion into asynchronous system.

Chapter 6

Conclusions and Future Works

In this dissertation, we consider the ARB, the ARG, and the clustering algorithms on

the model of ad hoc radio networks without collision detection.

We show that we can construct deterministic and distributed ARB algorithms for

bidirectional graphs in time O(n), and for strongly connected graphs in time O(6n +∑dlog ne
i=1 {2 · RB(2i) + RG(2i)}), where n is the number of the nodes in the graphs and

n ≥ 2. We also show that our each ARB algorithm can be extended to ARG algorithm

which completes ARG in time O(n +
∑dlog ne

i=1 {LE(2i)}) for bidirectional graphs and in

time O(6n +
∑dlog ne

i=1 {RB(2i) + 2 · RG(2i)}) for strongly connected graphs.

Our algorithms can be improved if we can find more efficient leader election algo-

rithms for bidirectional graphs and if ARB can be achieved without using RG for strongly

connected graphs. The leader election algorithm FIND MAX uses broadcast algorithm

as its subroutine, and we use gossiping algorithm to collect the warned information of

all nodes for strongly connected graphs. So, we would like to find out if leader election

may be done faster than using broadcast algorithm, and gathering may be done faster

than gossip.

We also have proposed a novel cluster-based architecture CNet(G) for dynamic ad

hoc radio networks G, in which broadcasting can be done in O(pG) rounds, where pG is

the cardinality of the minimum clique partition of G, and so when G is a dense graph,

pG ¿ n. In order to support dynamic changes of the architecture we have used two

operations join and leave, and proposed some algorithms for them.

50

51

In future work, we will concentrate on the following aspects. First, we plan to

improve the time complexity for a join and a leave operations. Second, we plan to

deal with data gathering and routing problems on this architecture. Third, we plan to

propose new architectures with better properties than that of the architecture CNet(G)

in this dissertation.

Moreover, for the sake of better theoretical model of an ad-hoc network, we must

consider the fault-tolerance and self-stability. Dealing with fault is necessary because

of the instability of node itself and the communication via radio. We recognize that

the achievement of the fault tolerance is an important point as our development in the

future. The self-stabilization is considered as a promising paradigm about that. The

most important point for the self-stabilization is to get rid of the assumption that the

node joins one by one from an initial state (one node), which is our present model. It is

necessary to consider clustering from an arbitrary situation.

Finally, we should consider not only the problems on this network communication

model but also the validity of the model itself in order to bring it close to reality, and

this is also our future work.

Appendix A

Algorithm bi-ARB for Each Node

Here we show the pseudocode of our algorithm bi-ARB in Figure A.1. Each node v

executes the pseudocode, where receive(R) is the procedure which tries to receive a

message, denoted as R. It returns “true” if received a message, or “false” if not. Since

the goal of ARB is to achieve RB and inform the source about the completion of RB,

only the source node terminates the pseudocode in Figure A.1. But, we can easily modify

the pseudocode for each node to terminate it by repeating one more phase. It is enough

that the source node informs every node about the completion of RB in an additional

phase.

var Nk
v : set of integers init ∅;

Qv : set of integers init ∅;
Minv : set of integers init ∅;
v.id : integer init ID of node v itself;

first : integer init −1;

i, k : integer;

begin

{ Phase 0: }
if v.id=1 then send <ID(v)>

else if receive(R) then Nk
v := {sender’s ID of R};

52

53

k := 1

{ Phase 1, . . . : }
repeat

{ Stage A: }
for i := 1 to 2k−1 do

if v.id = 2k−1 + i then send <ID(v)>

else if receive(R) then

Nk
v := Nk

v ∪ {sender’s ID of R};
{ Stage B: }
for i := 1 to 2k do

if v.id = i then send a message to min(Nk
v)

else if receive(R) then

if R is the message to v then

Minv := Minv ∪ {sender’s ID of R};
{ Stage C: }
for i := 1 to 2k do

if v.id = i then

if receive(R)=false then become warned

else if i ∈ Minv then send <ID(v)>

else if v.id ≥ 2k then send <ID(v)>

else receive(R);

{ Stage D: }
Qv := Nk

v ; i := 0;

if v is the source then begin

send <ID(v), visited>; i := i + 1

end

while i < 2k+1 − 2 do begin

if receive(R) then begin

Qv := Qv − {sender’s ID of R};
if R is a token to v then begin

if first = −1 then first := sender’s ID of R;

54 APPENDIX A. ALGORITHM BI-ARB FOR EACH NODE

if R contains warning message then

become warned ;

if Qv = ∅ then

send <ID(v), visited> to its neighbors and a token

to the node first (append warning message if warned);

else

send a token to the node with the smallest ID in Qv;

i := i + 1

end

end;

i := i + 1

end;

k := k + 1

until v is the source & v is not warned ;

end.

Figure A.1: pseudocode of bi-ARB

Appendix B

Simulating the Initialization

Protocol

For a given n-node network, Initialization is to give a unique ID ranging from 1 to n for

a set of nodes.

We simulate the Initialization Protocol called Protocol for Unknown n: The No-

Collision Detection Case in [19]. In the process of this Initialization protocol, every

node can send its ID without collision.

The network in [19], denoted by IN, differs from our model in the following:

• IN is single-hop (IN is an n-node complete graph).

• Each node can receive its own message (if no collision).

• Each node has no ID.

Suppose that the nodes in a subset P transmit. Each node v in IN gets in each round

as follows:

• |P | = 1 (including the case that v ∈ P).

• |P | = 0 or |P | ≥ 2.

that is, (i) only v transmits or (ii) other node transmits or (iii) two or more nodes

transmits or no node transmit.

55

56 APPENDIX B. SIMULATING THE INITIALIZATION PROTOCOL

Our network can simulate one round of the IN in two rounds. In other words, it can

determine whether “|P | = 1 (even whether v ∈ P or not)” or “|P | = 0 or |P | ≥ 2”. Let

new be a joining node. Each round in IN is simulated as follows (Fig B.1):

simulate IN

1. v ∈ P sends v.id;

2. if new receive ID i in previous round then

new sends i;

else

new waits;

Figure B.1: simulation of IN

Each node v can determine whether “|P | = 1 (including the case that v ∈ P)” or

“|P | = 0 or |P | ≥ 2” according to the message received in the second step in Fig B.1.

Case1: v received its own ID. Then, |P |=1 and v∈P .

Case2: v received other’s ID. Then, |P |=1 and v /∈ P .

Case3: v received no message. Then, |P |=0 or |P |≥2.

Thus, it is sufficient to simulate IN in two rounds.

Bibliography

[1] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A lower bound for radio broadcast.

Journal of Computer and System Sciences 43, pages 290–298, 1991.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai, On the time-complexity of broadcast

in radio networks: an exponential gap between determinism and randomization,

Journal of Computer and System Science, no. 45, pages 104–126, 1992.

[3] S. Basagni, Distributed clustering for ad hoc networks, Proceedings of the 1999

International Symposium on Parallel Architectures, Algorithms, and Network, pages

310–315, 1999.

[4] S. Basagni, M. Mastrogiovanni, C. Petrioli, A performance comparison of proto-

cols for clustering and backbone formation in large scale ad hoc networks, The 1st

Internatinal Conderence on Mobile Ad-hoc and Sensor Systems, pages 70-79, 2005.

[5] D. Brusci and M. Del Pinto. Lower bounds for the broadcast problem in mobile

radio networks. Distributed Computing 10, pages 129–135, 1997.

[6] I. Chlamtac, A. Farago. , A new approach to the design and analysis of peer-to-peer

mobile networks, Wireless Networks, vol. 5, no. 3, pp. 149–156, 1999.

[7] B. S. Chlebus, L. Ga̧sieniec, A. M. Gibbons, A. Pelc, and W. Rytter, Deterministic

broadcasting in ad hoc radio networks, Distributed Computing 15, pages 27–38,

2002.

57

58 BIBLIOGRAPHY

[8] M. Chrobak, L. Ga̧sieniec, and W. Rytter. Fast broadcasting and gossiping in radio

networks. Journal of Algorithms, Volume 43, Issue 2 (May 2002), pages 177–189,

2002.

[9] A. Czumaj and W. Rytter. Broadcasting Algorithms in Radio Networks with Un-

known Topology. in Proc. of the 44th Annual IEEE Symposium on Foundations of

Computer Science (FOCS’03), pages 492–501, 2003.

[10] D. Dubhashi, A . Mei, A. Panconesi, J. Radhakrishnan, A. Srinivasan, Fast dis-

tributed algorithms for (weakly) connected dominating sets and linear-size skeletons,

Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 717–724, 2003.

[11] L. Ga̧sieniec, M. Christersson and A. Lingas. Gossiping with bounded size messages

in ad hoc radio networks. 29th International Colloquium on Automata, Languages

and Programming, (ICALP’02), pages 377–389, 2002.

[12] L. Ga̧sieniec, T. Radzik, Q. Xin. Faster Deterministic Gossiping in Directed Ad

Hoc Radio Networks. In Proc. of 9th Scandinavian Workshop on Algorithm Theory

(SWAT’2004), pages 397–407, 2004.

[13] M. Goldberg, Packing of 14, 16, 17 and 20 Circles in a Circle, Mathematics Maga-

zine, Vol. 44, No. 3 (May, 1971), pages 134–139, 1971.

[14] D. R. Kowalski and A. Pelc. Time of radio broadcasting: adaptiveness vs. oblivious-

ness and randomization vs. determinism. in Proc. , 10-th International Colloquium

on Structural Information and Communication Complexity, SIROCCO 2003, pages

195–210, 2003.

[15] D. R. Kowalski and A. Pelc, Optimal deterministic broadcasting in known topology

radio networks, Distributed Computing, vol.19 no.3 (2007), pages 185–195, 2007.

[16] F. Kuhn, T. Moscibroda, T. Wattenhofer, Initializing Newly Deployed Ad Hoc and

Sensor Networks, in Proceedings of 10 Annual International Conference on Mobile

Computing and Networking (MOBICOM), 2004.

BIBLIOGRAPHY 59

[17] E. Kushilevitz and Y. Mansour. An Ω
(
D log n

D

)
lower bound for broadcast in radio

networks. SIAM Journal on Computing, Volume 27, Issue 3 (June 1998), pages

702–712, 1998.

[18] S. Miyanaga, Y. Katayama, K. Wada, N. Takahashi, M. Kobayashi, and M. Morita,

Efficient Clustering Algorithms for Dynamic Wireless Ad-hoc Networks with Con-

sidering Mergence and Partition of Clusters, to appear in IEICE transactions on

Information and Systems.

[19] K. Nakano and S. Olariu. Randomized initialization protocols for radio networks.

Handbook of wireless networks and mobile computing, pp. 195–218, 2002.

[20] T. Okuwa, W. Chen and K. Wada. An optimal algorithm of acknowledged broad-

casting in ad hoc networks. Proc. of 2nd Int’l Symp. Parallel and Distributed Com-

puting(2003), pages 178–184, 2003.

[21] P.-J. Wan, K. M. Alzoubi, and O. Frieder, Distributed construction of connected

dominating sets in wireless ad hoc networks, ACM/Kluwer Mobile Networks and

Applications, MONET, bol. 9, no. 2, pp. 141–149, 2004.

[22] J. Wu and H. Li, On calculating connected dominating set for efficient routing in

ad hoc wireless networks, Telecommunication Systems, vol. 18, no. 1/3, pp. 13–36,

2001.

Publications

1. Jiro Uchida, Wei Chen, and Koichi Wada, “Acknowledged Broadcasting and Gos-

siping in Ad Hoc Radio Networks”, 7th International Conference on Principles of

Distributed Systems (OPODIS), pp.223–234, December. 2003.

2. Jiro Uchida, Wei Chen, and Koichi Wada, “Acknowledged broadcasting and gossip-

ing in ad hoc radio networks”, Theoretical Computer Science, Volume 377, Issues

1-3, pp.43–54, May. 2007.

3. Jiro Uchida, Muzahidul A.K.M. Islam, Yoshiaki Katayama, Wei Chen, and Koichi

Wada, “Construction and Maintenance of a Cluster-Based Architecture for Sensor

Networks”, Proceedings of the 39th Annual Hawaii International Conference on

System Sciences (HICSS’06), Volume 09, p. 237.3 (10 pages), January 2006.

4. Jiro Uchida, Muzahidul A.K.M. Islam, Yoshiaki Katayama, Wei Chen, and Koichi

Wada, “Construction and maintenance of a novel cluster-based architecture for

ad hoc sensor networks”, to appear in the Journal of Ad Hoc & Sensor Wireless

Networks, 2007.

60

