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Chapter 1 
 

Introduction 
 
1.1 Introduction 
 
 Nowadays there are a lot of problems in which Japanese enterprises are afflicted. If 
these problems are not dealt with at all, Japanese economy tapers and becomes small. 
  Prices of crude oil, metals and foods have kept rising for several years. This makes 
Japanese economy sluggish. Japan is poor in natural resources, so relies on import from 
foreign countries for much of these. Rises of prices of raw materials give serious 
damage to Japanese economy. Enterprises cannot raise prices of products similarly 
when prices of raw materials increase. This is because if enterprises raise prices of 
products, then a consumer tends not to buy the products and profit of enterprises 
decreases. In these situations, it is very important for enterprises to try to absorb 
increment of costs of raw materials by cutting down costs which occur in manufacturing 
processes and raising productivity. 
 Moreover, a menace to Japanese industry is the growth of the emergent countries of 
Asia such as China and India. In China, since the year of 2003, the GDP is growing up 
at the rate which exceeds ten percents a year and Chinese economy will develop more 
and more in the future. The growth rate of India is also the second highest after that of 
China in BRICs (Brazil, Russia, India and China) countries. In these emergent countries, 
low-priced products are mass-manufactured by using the cheap labor force. For example, 
China is called “the factory of the world”, and products with the tag of “made in China” 
can be seen all over the world. A lot of products which are manufactured in these 
emergent countries are imported to Japan. Technological development power and 
improvement of the performance of production systems are keys for Japanese economy 
to survive in the world. 
  In the environment which surrounds Japanese manufacturer, a feature of production 
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method has changed from a large quantity production of a few kinds of products to a 
small quantity production of a lot of kinds of products. Recently, consumers have come 
to request various kinds of products and the time interval between an order placement 
and the delivery date has become short. Enterprises always have to cope with these 
changes. 

For problems mentioned above, a common matter for solutions is “improvement of 
performance of production systems.” It is important for manufacturers to produce high 
quality products at a low cost with meeting their due dates. On manufacturing stages, 
various costs occur, such as holding costs and backlog costs. To cut down these costs, a 
lot of production policies have been considered, such as kanban, CONWIP and base 
stock policies. Recently, there are some production models in which the idea of advance 
demand information is combined with these production policies. Advance demand 
information is information on demand for the next several days which is obtained in 
advance, and by using this information the amount of production at each machine can 
be decided every day. If we use advance demand information effectively, then the 
performance of production systems can be improved. 
  In this thesis, we analyze production/inventory systems with advance demand 
information. 

In section 1.2, we explain various production policies such as kanban, CONWIP and 
base stock policies. 
  In section 1.3, we introduce advance demand information and related previous studies. 
We explain advantages and effects on the use of advance demand information. 
  In section 1.4, we explain a join-type production line briefly. 
  In section 1.5, we state the objective of this study. 
  In section 1.6, we describe the outline of this thesis.  
  
            
1.2 Production Control Policies 
 

To improve the performance of production systems, it is important for manufacturers 
to process items into finished products with a lower cost. To do so, it is desirable that 
the numbers of work-in-processes and backlogs are reduced. A reduction of the number 
of work-in-processes is, however, in conflict with a reduction of the number of backlogs. 
To realize low cost production, a lot of production control policies have ever been 
considered and discussed well. MTO (Make-To-Order), kanban, CONWIP (constant 
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work-in-process), base stock and MRP (Material Requirements Planning) policies are 
well-known production control policies. 

Under MTO, production starts after the demand arrival. That is, a production order 
placement is triggered by the demand arrival. 

Under a kanban policy, the withdrawal kanbans specify the kind and quantity of the 
parts which the subsequent stage should withdraw from the preceding stage, while the 
production-ordering kanbans specify the kind and quantity of parts which the preceding 
stage must produce.  

Under a CONWIP policy, the number of work-in-processes in the production line is 
kept at a constant. That is, the number of work-in-processes in the line is pre-determined 
and a new item enters in the initial stage every time finished goods leave from the final 
stage. 

Under a base stock policy, a base stock level of each machine is predetermined. The 
inventory position at each machine is defined as the total amount of inventories that 
exist in the machine and machines of its downstream. If the inventory position at each 
machine is less than the base stock level of the machine, the machine produces products 
until the inventory position reaches the base stock level. 

MRP is developed in USA in the 1960’s. Under a bill of material and master 
production schedule which provides the production quantities of independent demand 
articles, the amount of parts which are required is calculated and the production order is 
placed according to an available amount of each stock.    

Production control policies mentioned above are classified into pull type and push 
type controls. In pull type policies, the timings of preparations for work, preparations of 
raw materials and production order placements are informed from downstream to the 
upstream machines. In push type policies, on the other hand, they are informed from 
upstream to the downstream machines. MTO and MRP are push type policies, and base 
stock, kanban and CONWIP policies are pull type policies.  

In previous studies on production control policies, for example, Clark and Scarf 
(1960) have analyzed a tandem line in which each stage sends products to downstream 
within a deterministic and positive lead time and shown that the base stock policy is 
optimal. Huh and Janakiraman (2008) have presented a new proof of the optimality of 
echelon order-up-to policies in serial inventory systems, first proved in the seminal 
paper by Clark and Scarf (1960). Their proof is based on a simple-path analysis as 
opposed to the original proof, based on dynamic programming induction. Daniel and 
Rajendran (2005) have presented simulation-based heuristic methodologies to compute 
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installation base-stock levels in a serial supply chain, which minimize the total supply 
chain cost. Dogru, van Houtum and de Kok (2008) have dealt with a stochastic serial 
inventory system with a given fixed batch size per stage and linear inventory holding 
and penalty costs. They have generalized newsvendor equations for the optimal reorder 
levels. In Buzacott and Shanthikumar (1993), a unified production line, which includes 
constant work-in-process (CONWIP), kanban and base stock controls, has been 
proposed. Dallery and Liberopoulous (2000) have proposed extended kanban 
production controls, in which a base stock control combined with kanbans is proposed.  
Veatch and Wein (1996) have analyzed kanban and base stock controls in a two-stage 
tandem line by assuming exponentially distributed processing times and using the 
theory of Markov decision processes. They have shown that a base stock control is 
near-optimal in this line when workload in a upper stage is heavy and the discount cost 
rate is small. Chen and Song (2001) have analyzed a multi-stage serial inventory system 
with Markov-modulated demand. They have shown that the optimal policy is an 
echelon base stock policy with state-dependent order-up-to levels. Shang (2008) has 
dealt with a multi-stage serial inventory system in continuous-review. They have 
presented a heuristic for finding base order quantities for stochastic inventory models 
and shown the heuristic is near optimal. Axsater and Marklund (2008) have considered 
a continuous-review two-echelon inventory system with one central warehouse and a 
number of non-identical retailers. They have presented a new policy for warehouse 
ordering and shown the presented policy is optimal in the broad class of position-base 
policies based on complete information about retailer inventory positions.  
   
 
1.3 Advance Demand Information 
 

In most previous studies on production control, it is assumed that each demand 
requires a finished product at the same time as the arrival of information on demand. In 
many facilities, however, information on demand for the next several days has been 
obtained in advance, and the amount of production at each machine is decided every 
day by using this information. This information is referred to as advance demand 
information, which is abbreviated as ADI. If ADI is used effectively, then the 
performance of production/inventory systems can be improved. By combining the 
concept of ADI with existing production control policies such as a base stock policy, a 
production order can be placed at an appropriate timing and, as a result, the amounts of 
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work-in-processes and backlogs can be reduced. The interval between an arrival of 
information on demand and the time at which the customer requires a finished product 
is referred to as demand lead time. In the case that demand lead time is longer than 
production lead time, if the production order is placed at the same time as the arrival of 
information on demand, then the finished products are completed before the due date. In 
this case, by delaying the timing of the production order placement afterwards, the 
amount of finished goods inventories can be reduced. The interval between a production 
order placement and the due date is referred to as release lead time. In the case that 
demand lead time is shorter than production lead time, if the production order is placed 
after the arrival of information on demand, then demand can not be met without 
inventory stocks. In this case, by having inventory stocks, backlogs can be reduced.  

Recently, production control problems with ADI have been discussed to improve 
performance of production-inventory systems. Liberopoulos and Tsikis (2003) have 
formulated production controls including base stock and kanban control in the tandem 
production line with ADI. In this model, the order date of each demand at each machine 
is decided from the predicted production lead time and the due date of the demand. 
They have expanded the framework for a tandem production line with lot sizing and 
ADI, and presented hybrid policies that combine an installation kanban policy and an 
installation stock policy or an echelon stock policy with ADI. Gallego and Ozer (2001) 
have shown that the state-dependent (s,S) and base stock policies are optimal for 
stochastic inventory systems with and without fixed costs, respectively, where the state 
of the system is composed of a modified inventory position which consists of the known 
requirement and observed demands beyond the protection period (the lead time plus a 
review period). They have shown that the management need not obtain ADI beyond the 
protection period for inventory control purposes. Tan, Gullu and Erkip (2007) have 
developed a model that incorporates imperfect ADI with inventory policies and shown 
the optimal ordering policy is of state-dependent order up-to type, where the optimal 
order level is an increasing function of the ADI size. In Karaesmen, Liberopoulos and 
Dallery (2004), a single-stage M/M/1 make-to-stock production/inventory system is 
considered and the value of ADI is investigated. The optimal base stock level and 
release lead time, which minimize the total expected average inventory and backorder 
related cost, are derived for given demand lead time.  
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1.4 A Join-Type Production Line 
  

Production controls in serial production lines have been studied by many researchers. 
Production lines, however, usually have join-type, fork-type or network-type figures. 
Recently, to cut down costs, a part is used for many products in common. In this case, 
parts processed at one stage are utilized at the several immediate downstream stages. 
This type of production line has a fork-type figure. In finished products manufacturing 
line, on the other hand, several parts from different machines or facilities are assembled 
into a new product. For example, in an engine assembly line, cylinder blocks are 
manufactured at an upstream machine. Then at the next machine pistons from another 
upstream machine are built into the cylinder block. Similarly, at the last machine 
camshafts from the other upstream machine are built into the cylinder block where 
pistons are attached, and the engine assembly is completed. This type of production line 
has a join type figure, which is shown in Fig.1.1. A network-type production line 
includes join-type and fork-type lines.  

Production controls in production lines mentioned above have not been considered 
well before. The reason is considered as follows. In analysis of these complicated types 
of production lines, the computation size becomes too large to analyze mathematically 

・・・ 

・・・ 

・・・ 

Machine 

The flow of work-in-processes 

Raw materials 

Finished products 

Fig. 1.1   A join-type production line 
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since the number of random variables increases. In fork-type production line, it is also 
difficult to determine the sequence in which parts processed at one machine are 
delivered to the several immediate downstream machines.  

To evaluate the performance of production control policies in more practical 
production lines, it is valuable to analyze production lines such as join type, fork-type 
and network type lines. Join type production lines are seen at many practical production 
systems. We deal with multi-stage join-type production lines in chapters 3 and 4 in this 
thesis.  

 
 
1.5 Objective of This Study 
  

In many previous studies on production control policies, under given distributions of 
time intervals of demand arrivals and processing time, production systems are analyzed 
under the assumption that each demand requires a finished product at the same time as 
the arrival of information on demand. Recently, the means of conveyance of information 
on demand and production order placements are changing from physical ways to the 
way using information technology (IT) and network technology. Therefore all machines 
have been able to easily obtain information on demand and the amount of inventory 
stocks at the same time. Therefore, in a lot of practical production lines, the amount of 
daily production is determined with using information on future demand. By 
introducing the use of ADI into traditional production policies such as kanban and base 
stock policies, the performance of traditional production systems can be improved. In 
this thesis, we analyze production systems with ADI. We analyze a single stage 
production-inventory system with ADI and derive the optimal base stock level and 
release lead time theoretically. We also deal with production line with ADI under the 
base stock policy and propose the simulation-based heuristic algorithm for finding 
appropriate base stock levels of all machines. Moreover, we deal with a join-type 
production line with batch production, kanban, and ADI. Since the mechanism of base 
stock and kanban policies is simple, there are a lot of practical production lines 
controlled by these existing production control policies without ADI. Since ADI can be 
easily introduced into these existing production control policies, our models are able to 
be applied into practical production lines and results of our studies are helpful to solve 
practical problems on production control. 
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1.6 Outline 
 
  In this section, we outline this thesis. 

  In chapter 2, we deal with a single stage production-inventory system with a single 
product and continuous review with ADI. For a given demand lead time, we derive the 
optimal release lead time and base stock level which maximize the total expected 
average profit the manufacture receives theoretically. We also investigate a relation 
between demand lead time and the total expected average profit under the optimal 
release lead time and base stock level with changing the demand arrival rate function 
and the ratio of inventory and backlog cost rates. 

In chapter 3, we analyze a join type (assembly) production line under base stock 
control with ADI in discrete time. We propose the simulation-based heuristic algorithm 
for finding appropriate base stock levels of all machines at short time for determined 
information delay period, and evaluate the performance. We also show the relations 
between information delay period and base stock levels found by the algorithm. 

In chapter 4, we consider a join-type production line with batch production, kanban 
and ADI in continuous time. Recursive equations on release times of products at all 
machines are derived. In numerical examples, the line is simulated on a personal 
computer by using these equations, and we examine the average inventory and the 
fraction of backlogs by changing estimated production lead time and initial inventories 
of each machine. 

In chapter 5, we give the conclusion of this thesis and discuss future research. 
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Chapter 2 

Analysis of a Single Stage Production/Inventory System with 

Advance Demand Information 

 
2.1 Introduction 
  

In this chapter a single stage production/inventory system with advance demand 
information is analyzed. 

The demand lead time usually affects the number of demand. The appropriate length 
of demand lead time is different between part suppliers and manufacturers. If demand 
lead time is long, then a manufacturer has to wait for a long time after the order 
placement. If the manufacturer is not able to wait, he results in having stocks in his 
warehouse and holding costs are incurred. Therefore, if there are alternative suppliers 
with short demand lead time, then the manufacturer reduces orders to the supplier with 
long demand lead time and increases orders to different suppliers with short demand 
lead time. In the model of this chapter, it is assumed that the arrival rate is strictly 
decreasing with respect to the demand lead time. 

Demand lead timeτ  is also assumed to be fixed and constant among demands in this 
model. Fixed demand lead time is often seen between a part supplier and a manufacturer 
in the group companies. In group companies, a part supplier supplies parts into a single 
manufacturer, where demand lead time is often fixed and constant. Our model can be 
applied into such a case. 

In this chapter, for a fixed demand lead timeτ , we derive theoretically the optimal 
release lead time and base stock level which maximize the total expected average profit 
over an infinite horizon. We also investigate how the total expected profit under the 
optimal release lead time and base stock level changes when the length of demand lead 
time is changed. 
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  In the next section we introduce a single stage production-inventory system and show 
the expression on the total expected average profit. In section 2.3 the optimal release 
lead time and base stock level which maximize the total expected average profit are 
derived. In section 2.4 we investigate a relation between demand lead time and the total 
expected average profit under the optimal release lead time and base stock level. In 
section 2.5 we conclude the study of this chapter..  
 
 
2.2 A Single Stage Production-Inventory System 
 
2.2.1 Model Assumption 

   A single stage production-inventory system with a single product and continuous 
review is considered. The information on demand which requires a finished product at 
time t  is obtained at time t τ− , where τ  is referred to as the demand lead time. 
Demand follows a Poisson arrival process and the arrival rate depends on the demand 

lead time. The rate is denoted by ( )λ τ . The processing time follows an exponential 

distribution with rate μ . It is assumed that ( )0 λ τ μ< <  and ( ) 0λ τ′ <  for all 0τ ≥ . 

A parameter L , which is the margin between a production order placement and the 
delivery time, is defined as the release lead time. It is assumed that L τ≤ . If the system 
obtains information on demand at time t τ− , then the production order is placed at time 
t L− . A production cost for one product is c . A holding cost is incurred for finished 
products as long as they remain in the system. The holding cost for one product per 

unite time is h ( )0> . When a finished product is delivered to the customer, the 

manufacturer receives a reward r . When demand is not filled, it is backlogged and the 

backlog cost b ( )0>  is incurred for one backlog per unit time. The parameter S  

denotes a base stock level of the system and is assumed to be non-negative. 
 
 
2.2.2 Notations 
τ : demand lead time, 
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( )λ τ : a demand arrival rate when demand lead time is τ , 

μ : a service rate of a machine, 

( )ρ τ : ( )λ τ
μ

, 

L : release lead time, 
c : a production cost for one product,  
h : a holding cost for one product per unit time,  
r : a reward for one product which the manufacture receives, 
b : a backlog cost for one product per unit time, 
S : a base stock level of the system, 

nX : a random variable which denotes a time interval between the n S− th and n th 

demand arrivals, 

nW : a random variable which denotes the time interval from the n S− th production 

order placement to finishing production of the corresponding product, 

( ), ,p S Lτ : the total expected average profit, 

( )L τ∗ : the optimal release lead time, 

( )S τ∗ : the optimal base stock level, 

( ),L Sτ∗ : a solution of ( ), ,
0

p S L
L

τ∂
=

∂
, 

( )Ŝ τ : a solution of ( ), ,
0

p S
S

τ τ∂
=

∂
, 

1τ : a positive solution of ( ),0L τ τ∗ = ,  

2τ : a positive solution of ( )ˆ 0S τ = , 

( )p τ : ( ) ( ) ( )( ), ,p p S Lτ τ τ τ∗ ∗= , 

( )reward τ : rewards under ( )L L τ∗=  and ( )S S τ∗=  when demand lead time is τ , 
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( )cost τ : ( ) ( ) ( )cost p rewardτ τ τ= − , 

τ ∗ : demand lead time τ  at which ( )p τ  is maximized,  

( )S τ : a solution of ( ), 0L Sτ∗ = , 

( )S τ : a solution of ( ),L Sτ τ∗ = . 

 
 
2.2.3 Total Expected Average Profit  

The expected average profit is derived in the similar way to Karaesmen, et al.(2004). 
The relation between the demand arrival and the production order placement is shown 
in Fig.2.1. 

Let nX  be a random variable which denotes a time interval between the n S− th 

demand arrival and the n th one. Since the time interval of the demand arrival is 

exponentially distributed, the random variable nX  follows the Erlang distribution with 

parameters ( )( ), Sλ τ . Then the probability density function of random variable nX  

time

：the nth demand arrival 

Fig. 2.1  The relation between the demand arrival and the production 
 order placement     

：the nth production order placement
：the nth demand information arrival

nd

nb

na

nW

nd
nb

na
τ

L

nX

n Sd −

n Sb −
n Sa − L

τ
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can be expressed as 

( ) ( )
( )

( )
1

1 !

S S
x

X

x
f x e

S
λ τλ τ −

−=
−

. 

 Since the base stock level of the system is S , the finished product which the n th 
customer receives corresponds to the one whose processing is triggered by the n S− th 

production order placement. A random variable nW  denotes the time interval from the 

n S− th production order placement to finishing production of the corresponding 

product. Then, the limiting distribution of nW  is equal to the limiting sojourn time 

distribution of an M/M/1 queue with arrival rate ( )λ τ  and service rate μ , and the 

distribution function is given by  

( ) ( )( )11 w
WF w e μ ρ τ− −= − , 

where ( ) ( )λ τ
ρ τ

μ
= . From assumptions of ( )λ τ  we have ( )0 1ρ τ< <  and 

( ) 0ρ τ′ <  for all 0τ ≥ . Note that nW  and nX  are independent. 

  If n nW X L< + , the production is finished before the n th demand arrival and a 

holding cost is incurred for the finished product. If n nW X L> + , the production is not 

finished by the n th demand arrival and the demand is backlogged and a backlog cost is 

incurred. Let  random variables X  and W  follow the same distribution as nX  and 

nW , respectively. Then the total expected average profit ( ), ,p S Lτ  over an infinite 

horizon is given by 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) [ ] ( ) ( )( )

, ,

,

p S L r c hE X L W bE W X L

r c hE X L W W X L bE W X L

r c hE X L W h b E W X L

τ λ τ

λ τ

λ τ

+ +

+ +

+

⎡ ⎤ ⎡ ⎤= − − + − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − + − + − − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤= − − + − − + − −⎣ ⎦

           (2.1) 
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where { }max ,0a a+ = . Then 

[ ] ( ) ( )( )
1

1
SE X L W L

λ τ μ ρ τ
+ − = + −

−
,               (2.2) 

and 

( ) ( ) ( ) ( )
( )( )( )

( )( ) ( ) ( )
( )( )

( )( )

0

1
1

0
.

1 1

W Xx L

Sx L
L

X

E W X L w x L f w dwf x dx

e f x dx e
μ ρ τ

μ ρ τρ τ
μ ρ τ μ ρ τ

∞ ∞+

+

− − +
∞ − −

⎡ ⎤− − = − −⎣ ⎦

= =
− −

∫ ∫

∫
            (2.3) 

From Eqs. (2.1) through (2.3), the total expected average profit ( ), ,p S Lτ  over an 

infinite horizon can be calculated as follows: 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )
( )( )

1
1, , .

1 1

S
Lp S L r c h S L h b e μ ρ τρ τ ρ τ

τ λ τ λ τ
ρ τ ρ τ

+

− −⎛ ⎞
= − − + − − +⎜ ⎟⎜ ⎟− −⎝ ⎠

  (2.4) 

 
 
2.3 Optimal Release Lead Time and Base Stock Level 
 

For given demand lead timeτ , we derive the release lead time ( )L τ∗  and the base 

stock level ( )S τ∗  which maximize the expected average profit.  

  First, we show the following proposition. 
 

Proposition 2.1 For given S  and τ , ( ), ,p S Lτ  is concave with respect to L , and 

( ), ,p S Lτ  is maximized at ( ),L L Sτ∗=  on ( ),L∈ −∞ ∞ , where 

( ) ( )( ) ( )1, log log
1

hL S S
h b

τ ρ τ
μ ρ τ

∗ ⎛ ⎞= − −⎜ ⎟+− ⎝ ⎠
.          (2.5) 

For given τ , ( )( ), , ,p S L Sτ τ∗  is strictly decreasing with respect to S .       □ 
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Proof of Proposition 2.1: 
From Eq. (2.4), 

( ) ( ) ( ) ( ) ( )( )1 1, , S Lp S L
h h b e

L
μ ρ ττ

λ τ μρ τ + − −∂
= − + +

∂
 , 

and 
( ) ( ) ( )( ) ( ) ( )( )

2
1 12

2

, ,
1 0S Lp S L

h b e
L

μ ρ ττ
μ ρ τ ρ τ + − −∂

= − + − <
∂

.   (2.6) 

From Eq.(2.6), for given S  and τ , ( ), ,p S Lτ  is a concave function with respect to 

L . Since ( ),L Sτ∗  satisfies ( ), ,
0

p S L
L

τ∂
=

∂
, ( ), ,p S Lτ  is maximized at ( ),L L Sτ∗=  

on ( ),L∈ −∞ ∞ .  

From Eqs.(2.4) and (2.5), 

 ( )( ) ( )( ) ( )
( ) ( ), , , log log .

1
hp S L S r c h S S

h b
ρ τ

τ τ λ τ ρ τ
ρ τ

∗
⎧ ⎫⎪ ⎪⎛ ⎞= − − − −⎨ ⎬⎜ ⎟− +⎝ ⎠⎪ ⎪⎩ ⎭

  (2.7) 

From Eq.(2.7), 

( )( ) ( ) ( )
( )

, , , log
1 0

1
p S L S

h
S

τ τ ρ τ ρ τ
ρ τ

∗∂ ⎛ ⎞
= − + <⎜ ⎟⎜ ⎟∂ −⎝ ⎠

.            (2.8) 

From Eq. (2.8), for given τ , ( )( ), , ,p S L Sτ τ∗  is strictly decreasing in S .      □ 

 

  For given τ  and S , ( ), ,p S Lτ  is concave with respect to L . For given τ  and 

S , ( ), ,p S Lτ  is strictly increasing on ( ), ,L L Sτ∗⎡ ⎤∈ −∞⎣ ⎦  and strictly decreasing on 

( )( , ,L L Sτ∗∈ ∞⎤⎦ . Therefore, for given τ  and S , on [ ]0,L∈ ∞ , ( ), ,p S Lτ  is 

maximized at L τ=  when ( ),L Sτ τ∗≤ , at ( ),L L Sτ∗=  when ( )0 ,L Sτ τ∗≤ <  and 

at 0L =  when ( ), 0L Sτ∗ < .  
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Let ( )Ŝ τ  satisfy ( ), ,
0

p S
S

τ τ∂
=

∂
 for given τ . Then from Eq.(2.4) it is uniquely 

given by 

( ) ( )
( )

( ) ( )
( )( )111ˆ log

log log
hS e

h b
μ ρ τ τρ τ

τ
ρ τ ρ τ ρ τ

−⎧ ⎫−⎪ ⎪= ⋅ ⋅⎨ ⎬+⎪ ⎪⎩ ⎭
.      (2.9) 

 

Proposition 2.2  The equation ( ),0L τ τ∗ =  has a unique positive solution 1τ . If 

( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
< , then the equation ( )ˆ 0S τ =  has a unique positive solution 2τ  

and it holds that 2 10 τ τ< < . If ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
= ,  then the equation ( )ˆ 0S τ =  

has a unique solution 2 0τ = . If  ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
> , then the equation ( )ˆ 0S τ =  

has no non-negative solutions.  □ 
 
Proof of Proposition 2.2: 

If ( ),0L τ τ∗ = , then from Eq.(2.5) we have  

( )( )
1 log 0

1
h

h b
τ

μ ρ τ
− − =

+−
.                  (2.10) 

It holds that 

  
( )( )

( )
( )( )2

1 log log 1 0
1 1

d h h
d h b h b

ρ τ
τ

τ μ ρ τ μ ρ τ

⎛ ⎞ ′−
− − = − <⎜ ⎟⎜ ⎟+ +− −⎝ ⎠

      (2.11) 

since ( ) 0ρ τ′ <  and 0b > .  

Since ( ) 0ρ τ′ < , ( )0 1ρ τ< <  for 0τ >  and 0b > , we have 
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( )( )

1lim log ,
1

h
h bτ

τ
μ ρ τ→∞

⎛ ⎞
− − = −∞⎜ ⎟⎜ ⎟+−⎝ ⎠

               (2.12) 

and 

  
( )( ) ( )( )0

1 1lim log log 0.
1 1 0

h h
h b h bτ

τ
μ ρ τ μ ρ→

⎛ ⎞
− − = − >⎜ ⎟⎜ ⎟+ +− −⎝ ⎠

      (2.13) 

From Eqs.(2.11) through (2.13), Eq.(2.10) has a unique positive solution 1τ . 

  If ( )ˆ 0S τ = , then from Eq.(2.9) we have 

 ( )
( ) ( )

( )( )11
1

log
h e

h b
μ ρ τ τρ τ

ρ τ ρ τ
−−

⋅ ⋅ =
+

.                  (2.14) 

Since ( ) 0ρ τ′ <  and ( )0 1,ρ τ< <   ( )( ) ( ) ( )( ) ( )( )1 11 0d e e
d

μ ρ τ τ μ ρ τ τμ ρ τ τ ρ τ
τ

− −′= − + − >  

and ( )( )1lim eμ ρ τ τ

τ

−

→∞
= ∞ . We consider 1

log
x

x x
−  for 0 1x< < to show that ( )

( ) ( )
1

log
ρ τ

ρ τ ρ τ
−

 

is strictly increasing with respect to τ . We have 
( )2

1 log 1
log log

d x x x
dx x x x x

⎛ ⎞− − +
=⎜ ⎟

⎝ ⎠
. Since 

( ) 1log 1 1 0d x x
dx x

− + = − >   for 0 1,x< <   ( )
0

lim log 1
x

x x
→+

− + = −∞  and 

( )
1

lim log 1 0,
x

x x
→

− + =  it holds that 1 0
log

d x
dx x x

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
 for 0 1.x< <  Since ( ) 0ρ τ′ <  

and ( )0 1ρ τ< < ,  ( )
( ) ( )

1
log

ρ τ
ρ τ ρ τ

−
 is strictly increasing with respect to τ . It holds 

that ( )
( ) ( )

1
0,

log
ρ τ

ρ τ ρ τ
−

>  and so  ( )
( ) ( )

( )( )11
log

h e
h b

μ ρ τ τρ τ
ρ τ ρ τ

−−
⋅ ⋅

+
 is strictly increasing 

with respect to τ . We also have 
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  ( )
( ) ( )

( )( )11
lim

log
h e

h b
μ ρ τ τ

τ

ρ τ
ρ τ ρ τ

−

→∞

−
⋅ ⋅ = ∞

+
 , 

and 

 ( )
( ) ( )

( )( ) ( )
( ) ( )

1

0

1 0 1
lim

log 0 log 0
h he

h b h b
μ ρ τ τ

τ

ρ τ ρ
ρ τ ρ τ ρ ρ

−

→

− −
⋅ ⋅ = ⋅

+ +
. 

If ( )
( ) ( )

0 1
1

0 log 0
h

h b
ρ

ρ ρ
−

⋅ <
+

, then Eq.(2.14) has a unique positive solution 2τ . If 

( )
( ) ( )

0 1
1

0 log 0
h

h b
ρ

ρ ρ
−

⋅ =
+

, then Eq.(2.14) has a unique solution 2 0.τ =  If 

( )
( ) ( )

0 1
1

0 log 0
h

h b
ρ

ρ ρ
−

⋅ >
+

, then Eq.(2.14) has no non-negative solutions. 

 

  We discuss the relation between 1τ  and 2τ  when ( )
( ) ( )

0 1
1

0 log 0
h

h b
ρ

ρ ρ
−

⋅ <
+

.  

Since ( )1 1,0L τ τ∗ = , from Eq.(2.5) we have 

  ( )1
1

1 log 1h
h b

ρ τ
μτ

= +
+

. 

Since ( )2
ˆ 0S τ = , from Eq.(2.9) we have 

 ( ) ( )
( ) ( )

2
2

2 2 2 2

11 1log 1 log
log

h
h b

ρ τ
ρ τ

μτ μτ ρ τ ρ τ
−

= + +
+

. 

Since 1 0
log

d x
dx x x

⎛ ⎞−
<⎜ ⎟

⎝ ⎠
 and 

1

1lim 1
logx

x
x x→

−
= for 0 1x< < ,  it holds that 

( )
( ) ( )

1
1

log
ρ τ

ρ τ ρ τ
−

> . 
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Therefore ( )
( ) ( )

11 1 1log 1 log 1 log
log

h h
h b h b

ρ τ
μτ μτ μτ ρ τ ρ τ

−
+ < + +

+ +
for 0.τ >  Since 

( ) 0ρ τ′ <  and 
2

1 1log 1 log 0d h h
d h b h bτ μτ μτ

⎛ ⎞
+ = − >⎜ ⎟+ +⎝ ⎠

,  it holds that 2 1τ τ< .   □ 

 

  The release lead time ( )L τ∗  and the base stock level ( )S τ∗  which maximize 

( ), ,p S Lτ  are expressed as follows. 

 

Theorem 2.1   If ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
≥ , 

    ( )L τ τ∗ =  and ( ) 0S τ∗ = , for [ )10,τ τ∈  and 

    ( ) ( ),0L Lτ τ∗ ∗=  and ( ) 0S τ∗ = , for [ )1,τ τ∈ ∞ . 

   If ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
< , 

( )L τ τ∗ =  and ( ) ( )ˆS Sτ τ∗ = , for [ )20,τ τ∈ , 

( )L τ τ∗ =  and ( ) 0S τ∗ = , for [ )2 1,τ τ τ∈  and 

( ) ( ),0L Lτ τ∗ ∗=  and ( ) 0S τ∗ =  for [ )1,τ τ∈ ∞ .     □ 

 
Proof of Theorem 2.1: 

Let ( ) ( ),0f Lτ τ τ∗= − . Then 

( ) ( )
( )( )2 log 1 0

1
hf

h b
ρ τ

τ
μ ρ τ

′−
′ = − <

+−
. 
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Therefore if ( ),0L τ τ∗ ≤ , then 1τ τ≥ , and if ( ),0L τ τ∗ > , then 1τ τ< . 

Assume ( ),0L τ τ∗ ≤ . From Eq. (2.5) ( ),0 0L τ∗ ≥ . Since  ( ),L Sτ∗  is strictly 

decreasing with respect to S  from Eq. (2.5),  ( ),L Sτ τ∗ ≤  for [ )0,S ∈ ∞ . Let ( )S τ  

satisfy ( ), 0L Sτ∗ = . From proposition 2.1, for 0L = , ( ), ,p S Lτ  is maximized at 

( )S S τ=  on ( ) ),S S τ⎡∈ ∞⎣ . Therefore from proposition 2.1, for [ ]0,L τ∈  and 

[ )0,S ∈ ∞ , ( ), ,p S Lτ  is maximized at ( ) ( )( ), ,0 ,0L S L τ∗=  for given [ )1,τ τ∈ ∞ . 

Assume ( ),0 .L τ τ∗ >  From Eq.(2.5) ( )S τ  which satisfies ( ),L Sτ τ∗ =  is 

uniquely given by 

( ) ( ) ( )( )1 log 1
log

hS
h b

τ μ ρ τ τ
ρ τ

⎛ ⎞= + −⎜ ⎟+⎝ ⎠
.           (2.15) 

From proposition 2.1, for ( ) ),S S τ⎡∈ ∞⎣ , ( ), ,p S Lτ  is maximized  at 

( ) ( )( ) ( )( ) ( )( ), , , ,L S L S S Sτ τ τ τ τ∗= =  for given [ )10,τ τ∈ . Since ( ),L Sτ∗  is 

strictly decreasing with respect to S , ( ),L Sτ τ∗ >  for given ( ))0,S S τ⎡∈ ⎣ . Therefore 

from proposition 2.1, for given ( ))0,S S τ⎡∈ ⎣ ,  ( ), ,p S Lτ  is maximized at L τ=  on 

[ ]0,L τ∈ . We investigate the relation between ( ), ,p Sτ τ  and S . Let 

( ) ( ), , ,p S p Sτ τ τ= .  Then 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )
( )( )

1
1, .

1 1

S

p S r c h S h b e μ ρ τ τρ τ ρ τ
τ λ τ λ τ τ

ρ τ ρ τ

+

− −⎛ ⎞
= − − + − − +⎜ ⎟⎜ ⎟− −⎝ ⎠

 

We have 
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( ) ( ) ( )
( )

( )( ) ( ) ( )1,
log

1
Sp S

h h b e
S

μ ρ τ ττ ρ τ
ρ τ ρ τ

ρ τ
− −∂

= − − +
∂ −

,      (2.16) 

and 

( ) ( ) ( )
( )

( )( ) ( ) ( )( )
2

21

2

,
log 0.

1
Sp S

h b e
S

μ ρ τ ττ ρ τ
ρ τ ρ τ

ρ τ
− −∂

= − + <
∂ −

      (2.17) 

From the definition of ( )Ŝ τ , ( ),p Sτ  is maximized at ( )ˆS S τ=  on ( ),S ∈ −∞ ∞ . 

Since ( )
( ) ( )

1
1

log
ρ τ

ρ τ ρ τ
−

> , which is shown in proof of proposition 2.2, from Eqs.(2.15) 

and (2.16) we have 

( )
( )

( ) ( )
( )

, log
1 0

1
S S

p S
h

S
τ

τ ρ τ ρ τ
ρ τ

=

⎛ ⎞∂
= − − <⎜ ⎟⎜ ⎟∂ −⎝ ⎠

. 

Therefore ( ) ( )ˆ .S Sτ τ<  Note that ( )
( ) ( )

( )( )11
log

h e
h b

μ ρ τ τρ τ
ρ τ ρ τ

−−
⋅ ⋅

+
 is strictly increasing 

with respect to τ  from proof of proposition 2.2 and ( )log 0ρ τ < . From proposition 

2.2, if ( )
( ) ( )

0 1
,

0 log 0
h b

h
ρ

ρ ρ
− +

≥  then ( )
( ) ( )

( )( )11
1

log
h e

h b
μ ρ τ τρ τ

ρ τ ρ τ
−−

⋅ ⋅ ≥
+

 for 10 .τ τ≤ <   

Therefore, from Eq.(4.9) ( )ˆ 0S τ ≤  for 10 τ τ≤ < . If ( )
( ) ( )

0 1
,

0 log 0
h b

h
ρ

ρ ρ
− +

<  then 

( )
( ) ( )

( )( )11
1

log
h e

h b
μ ρ τ τρ τ

ρ τ ρ τ
−−

⋅ ⋅ <
+

for 20 τ τ≤ <  and 

( )
( ) ( )

( )( )11
1

log
h e

h b
μ ρ τ τρ τ

ρ τ ρ τ
−−

⋅ ⋅ ≥
+

 for 2 1τ τ τ≤ < .  Therefore, from Eqs.(2.9) and 

(2.17), ( )ˆ 0S τ >  for 20 τ τ≤ <  and ( )ˆ 0S τ ≤  for 2 1τ τ τ≤ < .  

From above, theorem 2.1 can be derived.         □ 
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From theorem 2.1, we get the following insights. When τ  is small, the arrival time 

interval between demand information and the corresponding demand is small. Therefore 
the production order is placed at the same time as the arrival of demand information in 
order to complete processing a product by the corresponding demand arrival. When τ  
is large, the production order is placed at a few periods after the arrival of demand 
information in order to reduce holding cost. If b  is large, then it tends to hold that 

( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
< . Then, the optimal base stock level is positive for small τ . This 

reason is as follows. When τ  is small, the processing of a product may not be 
completed by the arrival of corresponding demand with no finished products in stock. 
Hence the number of backlogs is reduced by having finished products in stock. 

From theorem 2.1, ( ) ( ),0L Lτ τ∗ ∗=  when 1τ τ≥ . Then ( )L τ∗  is decreasing for 

increase of τ  from Eq.(2.5) and the assumption of ( )ρ τ . If τ  is large, a demand 

arrival rate per unit time decreases from assumption. It reduces possibility that 
processing of the preceding product is not completed when a production order is placed. 
This makes the optimal release lead time decrease.    

Let ( ) ( ) ( )( ), ,p p S Lτ τ τ τ∗ ∗= . From the theorem 2.1, ( )p τ  can be expressed as 

follows: 

If ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
≥ , 

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )
( )( )1

1 1
p r c h h b e μ ρ τ τρ τ ρ τ
τ ρ τ μ μρ τ τ

ρ τ ρ τ
− −⎧ ⎫⎪ ⎪= − − − − +⎨ ⎬− −⎪ ⎪⎩ ⎭

 

[ )10, ,for τ τ∈　  

and 

( ) ( )( ) ( )
( )

log ,
1

hp r c h
h b

ρ τ
τ ρ τ μ

ρ τ
= − +

− +
      [ )1, .for τ τ∈ ∞　  
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If ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
< , 

( ) ( )( )

( )
( )

( ) ( )
( )( ) ( ) ( )

( ) ( )
111 log

log log 1 log

p r c
h hh e

h b
μ ρ τ τ

τ ρ τ μ
ρ τ ρ τ

μρ τ τ
ρ τ ρ τ ρ τ ρ τ ρ τ

−

= −
⎧ ⎛ ⎞ ⎫−⎪ ⎪− ⋅ ⋅ + − +⎜ ⎟⎨ ⎬⎜ ⎟+ − ⎪⎪ ⎝ ⎠ ⎭⎩

　　 　
              

                                               [ )20, ,for τ τ∈　  

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )
( )( )1

1 1
p r c h h b e μ ρ τ τρ τ ρ τ
τ ρ τ μ μρ τ τ

ρ τ ρ τ
− −⎧ ⎫⎪ ⎪= − − − − +⎨ ⎬− −⎪ ⎪⎩ ⎭

 

[ )2 1, ,for τ τ τ∈　  

and 

( ) ( )( ) ( )
( )

log
1

hp r c h
h b

ρ τ
τ ρ τ μ

ρ τ
= − +

− +
，     [ )1, .for τ τ∈ ∞　  

 
 
2.4 Numerical Examples 
 

  In this section, for given ( )ρ τ , we provide some insights into the relation 

Table 2.1  Numerical results 

0.01 10.8 10.5 31.6 7.98
0.1 3.62 3.30 3.43 7.95
1 1.44 0.95 0.32 7.54

0.01 16.1 15.8 51.1 5.40
0.1 5.60 5.22 5.48 5.38
1 2.59 1.72 0.54 4.47

10

2

b 1τ 2τ τ ∗ ( )p τ ∗a
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between ( )p τ  and τ . Let  ( ) ae τρ τ −= , where a  is constant and positive. Then 

( )ρ τ  satisfies ( )0 1ρ τ< <  and ( ) 0ρ τ′ < . We use the following combination of 

parameters: 
1h = , 20r = , 5c = , 1μ = ,  

and deal with cases of b = 2 and 10. Note that under these parameters and ( )ρ τ , it 

Fig. 2.2 The relation between the total expected profit  
and demand lead time under 0.01a =  

,reward cost
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holds that ( )
( ) ( )

0 1
0 log 0

h b
h

ρ
ρ ρ

− +
<  since 

0

1lim 1
log

a

a a

e
e e

τ

τ ττ

−

− −→

−
= .  

First, for the cases of a =1, 0.1 and 0.01, we investigate 1τ , 2τ , τ ∗  and ( )p τ ∗ , 

where the total expected average profit becomes the largest at τ τ ∗= . See Table 2.1. We 

also show the relation between ( )p τ  and τ  in Figs.2.2-2.4, where 

( ) ( )reward rτ ρ τ μ=  and ( ) ( ) ( )cost p rewardτ τ τ= − . When 0.01a = , it holds that 

Fig. 2.3 The relation between the total expected profit 
 and demand lead time under 0.1a =  
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1τ τ ∗< , when 0.1a = , 2 1τ τ τ∗< < , and when 1a = , 20 τ τ∗< < . From Table 2.1 and 

Fig.2.2-2.4, we get the following insights about the relation between a  and τ ∗ . 
  
(1) When a  is large, that is, when the arrival rate of demand is rapidly decreasing for 

increase of demand lead time, the total expected average profit becomes the largest 
for short demand lead time.  

 
(2) When a  is small, that is, when the arrival rate of demand is slowly decreasing for 
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( )p τ

( )cost τ
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10b =

τ

,reward cost
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( )cost τ ( )reward τ

,reward cost

( )p τ

Fig. 2.4 The relation between the total expected profit 
 and demand lead time under 1a =  
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increase of demand lead time, the total expected average profit becomes the largest 
for long demand lead time.  

 

From Table 2.1, the smaller a  becomes, the longer τ ∗  which maximizes ( )p τ  

becomes. When a  is large, the increase of demand lead time leads to the great 
decrease of the number of demand. This causes a great decrease of a reward which the 
manufacturer receives. Therefore a small demand lead time increases the total expected 
average profit. When a  is small, the number of demand is slowly decreasing for 
increase of demand lead time. Then a reward which the manufacturer receives does not 
change so much for increase of demand lead time. Increase of demand lead time 
reduces backlogs without increase of base stock levels. Hence a large demand lead time 
reduces backlog costs and increases total expected average profit. 
  Next, we investigate with changing the ratio of b  and h . We compare the cases of 

2b =  and 10 with keeping 1h = . From Table 2.1 and Fig.2.2-2.4, we get the following 
insights about the relation between b  and τ ∗ . 

 
(3) For a given τ , when b  is increased, the total expected average profit becomes 

small. 
 

If b  becomes large, a backlog cost in itself increases but a reward does not change 
for a given τ . Hence, the total expected average profit becomes small. 
 
(4) When b  is small, τ ∗  becomes short, that is, demand lead time at which the total 

expected average profit is maximized becomes short. 
 

From Figs.2.2-2.4, for short τ , ( )cost τ  under 2b =  decrease faster than that 

under 10b = . This reason is as follows. From Table 2.1, when 10b = , 2τ  is larger 

than when 2b = . Therefore, from proposition 2.1, when 10b = , there are more stocks 

than when 2b =  for short τ . Hence, in the case of 10b = , ( )cost τ  decreases more 

slowly for short τ . On the other hand, ( )reward τ  of 10b =  are the same as that of 
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2b =  for a given τ . Therefore, when 2b = , the difference between ( )reward τ  and 

( )cost τ  is maximized at shorter τ  than when 10b = . 

 
 
2.5 Conclusion 
   

    We consider a single stage production-inventory system with a single product and 
continuous review. For fixed demand lead time, the optimal release lead time and base 
stock level which maximize the total expected average profit are derived theoretically. 
In the case that a backlog cost rate is not so large for a holding cost rate, the optimal 
release lead time equals to demand lead time and the optimal base stock level is zero for 
short demand lead time, and the optimal release lead time decreases and the optimal 
base stock level remains zero for long demand lead time. In the case that a backlog cost 
rate is so large for a holding cost rate, the optimal release lead time equals to demand 
lead time and the optimal base stock level is positive for very short demand lead time, 
and otherwise the same as the former case. In numerical examples, we show when the 
arrival rate of demand is slowly decreasing for increase of demand lead time, the total 
expected average profit becomes the largest for long demand lead time. We also show 
that when backlog cost rate is small demand lead time at which the total expected 
average profit is maximized becomes short. 
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Chapter 3 

Base Stock Policy in a Join-Type Production Line with 

Advance Demand Information 
 
3.1 Introduction 
 

In this chapter, a join-type (assembly) production line under base stock control with 
advance demand information in discrete time is analyzed. The time interval between the 
arrival of ADI and the production order placement for informed ADI is referred to as 
information delay period. In the base stock policy, base stock levels of upstream 
machines are greater than ones of downstream. In machines in which the number of 
machines existing in the downstream is the same, the base stock levels of the machine 
which has upstream machines are desired to be greater than ones of the machine which 
has no upstream machines. Using these properties, we propose the simulation-based 
heuristic algorithm for finding appropriate base stock level of each machine for a given 
information delay period of each machine. In numerical examples the relation between 
information delay period and base stock level found by the algorithm is shown. 

In section 3.2 a multi-stage join-type production line is described. In section 3.3 the 
base stock policy with advance demand information is explained and the recursive 
equations are derived. In section 3.4 the heuristic algorithm for appropriate base stock 
levels is proposed. In section 3.5 the model is simulated on a personal computer with 
using proposed algorithm, and the relation between information delay period and base 
stock level found by the algorithm is discussed. In section 3.6 we conclude the study of 
this chapter. 
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3.2 A Multi-Stage Join-Type Production Line 
 
3.2.1 Model 

A join-type production line with K machines is shown in Fig. 3.1. A set of machines 

in the production line is denoted by { }ˆ 1, 2, ,K K= , and machine K  produces 

finished products. At each machine parts from multiple preceding processes one by one 
are processed or assembled as a single new product, and it is sent to the next machine. 

Let the machine following machine i  be denoted by ( )d i  for { }ˆi K K∈ − . Products 

processed at machine i  for ˆi K∈  are placed in the buffer for finished products of 

machine i , which is denoted by iFG . The quantity of finished products in iFG  at the 

beginning of period n  for {1,2, }n∈ is defined as ( )iJ n . At the end of period n  for 

{1,2, }n∈ , ( )nQi  products leave iFG  for { }ˆi K K∈ − , and at the end of period 

in T+  they arrive at the buffer for unfinished products, which is denoted by iST  for 

{ }ˆi K K∈ − . The maximal amount of products delivered from iFG to iST  for 

{ }ˆi K K∈ −  is denoted by iU . The amount of unfinished products in iST  at the 

beginning of period n  is denoted by ( )iI n  for { }ˆi K K∈ − and {1,2, }n∈ . The 

Fig. 3.1 A Join-type production line 

' ( )iI n'iT

''iT

'' ( )iI n

i ( )iJ n
( )iI n

( )d i

iFG

iSTiT
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capacities of iFG  for ˆi K∈  and iST  for { }ˆi K K∈ −  are denoted by iB  and iA , 

respectively. At machine K , finished products are placed in KFG , and the amount of 

finished products in KFG  at the beginning of period n  is denoted by ( )KJ n  for 

{1,2, }n∈ . When ( ) 0KJ n > , there are ( )KJ n  products. When ( ) 0KJ n < ,  ( )KJ n−  
demands are backlogged. At the beginning of period n  for {1,2, }n∈ , production 

order quantity ( )iP n  of machine i  for ˆi K∈  is decided. Production capacity of 

machine i  for ˆi K∈  in period n  for {1,2, }n∈  is distributed with 

( )( )i
k ip P C n k= =  for 0,1, , ik C=  and independent among periods, where ( )iC n  

denotes the production quantity of machine i  for in period n  and iC  denotes the 

maximal quantity of production of machine i . The amount of products processed at 

machine i  for ˆi K∈  in period n  for {1,2, }n∈  is denoted by ( )'iP n . Demand 

information informed in period n  for {1,2, }n∈  is denoted by ( )D n , which has the 

distribution ( )( )kq P D n k= =  for 0,1,k =  and is independent among periods. 

( )D n  products are required in period n L+ , where L  is demand lead time and 

deterministic. A set of machines in a downstream of machine i  for ˆi K∈  is denoted 
by ( )S i , which does not include machine i . A set of machines directly preceding 

machine i  for ˆi K∈  is defined as ( )R i . 

 
3.2.2 System Evaluation 

The performance measure of this model consists of a holding cost and the amount of 
backlogs. A total holding cost in period n  is denoted by ( )Z n . The holding cost rate at 

machine i  is defined as ih , and the holding cost is incurred for the products in iFG , 
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in iST  and under transportation from iFG  to iST . Since several parts from upstream 

machines one by one are assembled into a new product it is assumed that 
( )

k i
k R i

h h
∈

≤∑ . 

Then it holds that 

( ) ( ) ( ) ( ) ( )
1

ˆ
.

i

n

i i i i K K
l n Ti K K

Z n h J n Q l I n h J n
− +

= −∈ −

⎛ ⎞
= + + + ⎡ ⎤⎜ ⎟ ⎣ ⎦⎜ ⎟

⎝ ⎠
∑ ∑                      

 (3.1) 
  When ( ) 0KJ n < , ( )KJ n−  demands are backlogged, therefore the amount of backlogs 

in period n  is equal to ( )KJ n
+

−⎡ ⎤⎣ ⎦ , where [ ] ( )max 0,a a+
= . 

 
3.2.3 Notations 

We give notations which are not defined above. 

( ) ( )( )1n nd i d d i−=  for 1,2,3,n = , ( ) ( )1d i d i=  for ˆi K∈ , 

( )w i : the number of elements of ( )S i  for ˆi K∈ . 

 
 
3.3 Base Stock Policy with Advance Demand Information 
 

The inventory position at each machine is the total amount of inventory that exists in 
the machine and all machines in a downstream from the machine. In base stock system 
the base stock level of each machine is predetermined. The base stock level of machine 

i  is denoted by iN . If the inventory position at each machine is less than the base 

stock level of the machine, the machine produces products until the inventory position 
reaches the base stock level. 

The time interval between the arrival of ADI and the production order placement for 
informed ADI is referred to as information delay period. Information delay period at 

machine i  is denoted by il , where it is assumed that il  satisfies 1il L≤ + . In this 

model, the inventory position at machine i  in period n  is defined as the total amount 
of inventory that exists in machine i  and its downstream machines from the machine 
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minus the amount of demand which will be required at the system from n  to 

( )in L l+ −  periods. Note that machine i  produces without advance demand 

information when 1il L= + . It is assumed that ( ) ( )0i i d iI N N= −  for { }ˆi K K∈ − ,  

( )0 0iJ =  for { }ˆi K K∈ −  and ( )0K KJ N= . 

The inventory position at machine i  at the beginning of period n  is 

( ) ( ) ( ) ( ) ( )
( )

1 i

i

n ln

j j j K
j S i l n T l n L

J n Q n I n J n D l
−−

∈ = − = −

⎧ ⎫⎪ ⎪+ + + −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ ∑ . Under the base stock policy, the 

production order quantity of machine i  must be no more than the difference between 
the base stock level of machine i  and the inventory position at machine i . It is also no 
more than the minimal numbers of products of each machine directly preceding 

machine i , and the machine can produce products until the empty space of iFG  

becomes full. Since production capacity is iC , the production order quantity at machine 

i  in period n  is given by 

( )

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( )

1

,

min ,
min , ,

i

i

n ln

i j j j K
j S i l n T l n L

i

j i i ij R i

N J n Q n I n J n D l

P n
I n B J n C

−−

∈ = − = −

∈

⎧ ⎫⎡ ⎤⎧ ⎫− + + + −⎨ ⎬⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪−⎪ ⎪
⎪ ⎪⎩ ⎭

∑ ∑ ∑

  for ˆ { }i K K∈ −  

          (3.2) 
At the last machine, it holds that  

( ) ( ) ( )
( )

( ) ( )min , min , , .
in l

K K K j K K Kj R Kl n L
P n N J n D l I n B J n C

− +

∈= −

⎧ ⎫⎡ ⎤= − − −⎡ ⎤⎨ ⎬⎣ ⎦⎢ ⎥⎣ ⎦⎩ ⎭
∑       (3.3) 

When 1il =  in Eqs.(3.2) and (3.3), machine i  uses full advance demand 

information. When 1il L= + , machine i  uses no advance demand information. 

Since the production quantity at machine i  in period n  is defined as the minimum 
of the production order quantity at machine i  in period n  and the production 
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capacity at machine i  in period n , we have 

( ) ( ) ( ){ }' min , .i i iP n P n C n=                                   (3.4) 

Hence we have  

( )( ) ( )
( )

( )

,
'

0,1, 2, , 1.

i

i

C
i
l i

l P n
i

i
k i

p k P n
P P n k

p k P n
=

⎧ =⎪= = ⎨
⎪ = −⎩

∑
                   (3.5) 

It is assumed that the amount of products which leave iFG  at the end of period n  

is determined at the beginning of period n . Since the products under transportation are 

finally delivered to iST , the amount of products which leave iFG  at the end of period 

n  can not exceed the number of the empty buffers of iST  minus the amount of 

products under transportation. Only the products existing in iFG  at the end of period 

n  can be delivered, and the maximal delivery quantity at machine i  is iU . Therefore, 

the amount of products which leave iFG  at the end of period n  is given by 

( ) ( ) ( ) ( ) ( )
1

min , ' , .
i

n

i i i i i i i
l n T

Q n A I n Q l J n P n U
−

= −

⎧ ⎫= − − +⎨ ⎬
⎩ ⎭

∑             (3.6) 

Using the above equations, the amount of products in each stage at the beginning of 
the period 1n +  is derived. 

In period n , unfinished products in iST  are assembled at machine ( )d i . 

( )i iQ n T− products which leave iFG  at the end of period in T−  arrive in iST  at the 

end of period n . Therefore the amount of unfinished products in iST  at the beginning 

of the period 1n +  is given by 

( ) ( ) ( ) ( ) ( )1 'i i i id iI n I n P n Q n T+ = − + −    ( )1, 2, , 1i K= −          (3.7) 
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In period n , ( )'iP n  products which are assembled at machine i  are placed in 

iFG  and ( )iQ n  finished products leave iFG  to iST . Therefore the amount of 

products in iFG  at the beginning of period 1n +  is given by 

( ) ( ) ( ) ( )1 'i i i iJ n J n P n Q n+ = + −   ( )1, 2, , 1i K= −           (3.8) 

At machine K , products assembled are sent to KFG , and the products corresponding 

to the demand which arrived before n L−  periods leave the system.  Therefore it 
holds that 

( ) ( ) ( ) ( )1 'K K KJ n J n P n D n L+ = + − − .                      (3.9) 

( )KJ n  can take a negative value, which implies backlogs. When ( ) 0KJ n <  

( )KJ n−  demands are backlogged, therefore the amount of backlogs becomes 

( )KJ n
+

−⎡ ⎤⎣ ⎦ . 

 
 
3.4 Algorithm for Computing Appropriate Base Stock Levels 
 

In the base stock policy, base stock levels of upstream machines are greater than ones 
of downstream. Among machines having the same number of their downstream 
machines, the base stock levels of the machine which has upstream machines are 
desired to be greater than ones of the machine which has no upstream machines, 
because machines which have upstream machines are affected by variations of 
productions of upstream machines. In this section a simulation-based algorithm which 
can find appropriate base stock levels minimizing the average holding cost is proposed, 
under the condition that the number of backlogs must be no more than a certain value. 

Since the holding cost rate is set as 
( )

k i
k R i

h h
∈

≤∑ , the total holding cost decreases when 

base stock levels are reduced. 
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In the proposed algorithm it is assumed that the number of backlogs must be no more 
than N̂  in m  periods. After base stock levels of upstream machines are determined, 
base stock levels of the downstream machines are determined. Also, among the 
machines having the same number of their downstream machines, after base stock 
levels of the machines having its upstream machines are determined, base stock levels 
of the machines having no upstream machines. Base stock levels which are not yet 
determined are reduced while the amount of backlogs is more than N̂  by simulation. 
If the amount of backlogs is more than N̂ , the base stock levels are determined. 
Repeating these procedures, base stock levels of all machines are determined. Finally 
base stock levels which reduce the average inventory cost are found by simple local 
search. 

The notation ( )w i  represents the number of elements of ( )S i . Let 

( ) ( ){ } ( ){ }{ };E k i w i k R i φ= = ∩ =  and ( ) ( ){ } ( ){ }{ };F k i w i k R i φ= = ∩ ≠  for 

0 k k
−

≤ ≤ , where ( )
ˆ

max
i K

k w i
∈

= . It is noted that ( )F k φ= , ( )F k φ≠  ( )0 1k k≤ ≤ − , 

and ( )0E φ= . Let { }1 2, , , KN N N N= . The neighborhood of N in simple local 

search is denoted by ( )H N . ( )H N  is defined as  

( ) ( )
( ) ( )

( )
( ){ }1 2

max 0, , max 0, 1,
, , , ;

, min min ,
i i

K i
j ij R i

N t N t
H N n n n n

N N t
∈

⎧ ⎫− − +⎧ ⎫⎪ ⎪ ⎪⎪= ∈⎨ ⎨ ⎬⎬+⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭
 ,  (3.10) 

where t  is an arbitrary positive integer which denotes the size of neighborhood. 
 

Algorithm : 
Step 1. 

Let { }1, 2,3, ,M K= . Set k k= , 
( ){ } { }

max ( )k k Ki M K k i S i
N A B B

∈ − ∈ ∪

⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑  and 

iN N= ( )i M∈ , and compute ( )Z n  by simulation. If the amount of backlogs is 

more than N̂ , then stop. Otherwise 1N N= − . 
Step 2. 
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Set iN N= ( )i M∈ , and compute ( )Z n . If the amount of backlogs is no more 

than N̂ , then set 1N N= − and go to Step 2. 
Step 3. 

Set 1N N= + , iN N= ( )i M∈  and ( )M M E k= − , and then set 1k k= − . 

Step 4. 

Compute ( )Z n . If the amount of backlogs is no more than N̂ , then set 

1N N= − , iN N= ( )i M∈  and go to Step 4. 

Step 5. 

Set 1N N= + , iN N= ( )i M∈  and ( )M M F k= − . If ( )E k φ=  and M φ≠ , 

then 1k k= −  and go to Step 4. If M φ= , go to Step8. 
Step 6. 

Compute ( )Z n . If the amount of backlogs is no more than N̂ , then set 1N N= − , 

iN N= ( )i M∈  and go to Step 6. 

Step 7. 

Set 1N N= + , iN N= ( )i M∈  and ( )M M E k= − , and then set 1k k= − . Go 

to Step 4. 
Step 8. 

Find improvement solution of N  by simple local search and stop. 
 
 
3.5 Numerical Examples 
 

In this section the performance of algorithm proposed in Section 3.4 is evaluated 
and the property of base stock system with advance demand information mentioned in 
Section 3.3 is examined by simulation. Program was written by C language and run on a 
personal computer with 2.4GHz Pentium CPU and 512 Mbytes memories. 

The join-type production line for numerical examples is illustrated in Fig. 3.2. It is 
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assumed that demand follows a binominal distribution with 10n =  and 1
2

p = .  

Demand lead time L  is set as 3 and it is assumed that 0iT =  ( 1,2, , 4)i = . 

iA ( 1,2, , 4)i =  and iB ( 1,2, ,5)i =  are large enough compared with production 

capacity and demand.  

Cost coefficient ih ( 1,2, ,5)i =  is set as 1 2 0.15h h= = , 3 0.35h = , 4 0.30h = and 

5 0.75h = . The positive integer t  which denotes the size of neighborhood is set as 2. 

For the following two cases, average inventory costs are computed. Excluding first 
1000 periods, average inventory cost over 300000 periods is computed, that is 

300000m = . It is assumed that the number of backlogs over 300000 periods must be no 

more than 300, that is 
^

N  is set to be 300. In numerical examples, optimal base stock 

levels that minimize the average inventory cost are also found. For all possible 
combinations of base stock levels of all machines, average inventory costs are 
computed.  
 
Case 1: 

This is the case that there is machine failure. The probability distribution of 

 1

2

3
5

4

1

2

3
5

4

Fig. 3.2  A Join-type production line with 5 machines  
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production capacity is set as  
0.90 ( 10),
0.02 ( 5,6,7,8,9),

0 ( 0,1, 2,3, 4).

i
j

j
p j

j

=⎧
⎪= =⎨
⎪ =⎩

 

Case 2: 
This is the case that there is no machine failure. The probability distribution of 

production capacity is set as  
1 ( 10),
0 ( 0,1, 9).

i
j

j
p

j
=⎧

= ⎨ =⎩
 

 
 

For two cases mentioned above, base stock levels found by using algorithms 
proposed in Section 3.4 and optimal base stock levels are shown in Tables 3.1 and 3.2. 

backlogs avarage cost
1,1,1,1,1 5,5,0,0,0 259 9.99
2,2,2,2,2 13,13,5,5,0 229 10.1
1,1,2,2,3 6,5,5,5,5 242 9.77
2,2,1,1,1 14,12,0,0,0 294 10.6
4,4,4,4,4 27,27,20,20,13 289 11.6

1 2 3 4 5, , , ,l l l l l 1 2 3 4 5, , , ,N N N N N

backlogs avarage cost
1,1,1,1,1 0,0,0,0,0 0 7.8
2,2,2,2,2 10,10,0,0,0 0 7.05
1,1,2,2,3 0,0,0,0,0 0 5.92
2,2,1,1,1 10,10,0,0,0 0 9.49
4,4,4,4,4 26,26,19,19,10 208 10.8

1 2 3 4 5, , , ,l l l l l 1 2 3 4 5, , , ,N N N N N

Table 3.1  Base stock level, average cost and backlogs for Case1 

Table 3.2  Base stock level, average cost and backlogs for Case2 
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For 22 combinations of ( )1 2 3 4 5, , , ,l l l l l  including the combinations not shown in 

tables, appropriate base stock levels found by using the proposed algorithm equal to the 
optimal base stock levels. The computation time for finding appropriate base stock 
levels using the proposed algorithm is 5 to 10 minutes. Almost part of computation time 
is consumed for simple local search. On the other hand the computation time for finding 
optimal base stock levels is several days.  
  When the demand arrives at the system, raw material is assembled into new parts at 
machines 1 and 2. In the next period, the parts are assembled into new parts at machine 
3 and raw material is assembled into new parts at machine 4. In the next period the parts 
are assembled into finished products. Machines 1 and 2 have two machines in their 
downstream, machines 3 and 4 one machine and machine 5 no machines, respectively. 
The number of periods required for the assembling into finished products is 3 at 
machines 1 and 2, 2 at machines 3 and 4, and 1 at machine 5, respectively. Since the 
maximal amount of demand is 10 and the average production capacity of each machine 
is 9.7 in Case 1 and 10 in Case 2, respectively, parts of the same number as the demand 
for 1 period are assembled into new parts at one machine in 1 period in almost cases. 

When ( ) ( )1 2 3 4 5, , , , 1,1, 2, 2,3l l l l l = , machines 1 and 2 utilize ADI for 3 periods, machines 

3 and 4 for 2 periods and machine 5 for 1 period . Since due date of demand is 3 periods,  
assembling parts into finished products is just finished on the due date. On the other 

hand, when ( ) ( )1 2 3 4 5, , , , 1,1,1,1,1l l l l l = , all machines begin the assembling parts at the 

same time as the arrival of the demand. Since assembling the parts in machines 3, 4 and 
5  into finished products is finished before the due date, the numbers of products 
increase at downstream machines. Therefore the average inventory cost under 

( ) ( )1 2 3 4 5, , , , 1,1,1,1,1l l l l l = is greater than that under ( ) ( )1 2 3 4 5, , , , 1,1, 2, 2,3l l l l l = . 

  From Tables 3.1 and 3.2, it is found that the average inventory cost under 

( ) ( )1 2 3 4 5, , , , 2, 2, 2, 2, 2l l l l l =  is greater than that under ( ) ( )1 2 3 4 5, , , , 1,1,1,1,1l l l l l =  in 

Case 1, whereas in Case 2, the average inventory cost under ( ) ( )1 2 3 4 5, , , , 1,1,1,1,1l l l l l =  

is greater than that under ( ) ( )1 2 3 4 5, , , , 2, 2, 2, 2, 2l l l l l = . The reason is as follows. In Case 
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1, when ( ) ( )1 2 3 4 5, , , , 1,1,1,1,1l l l l l = , machines 1 and 2 utilize ADI for 3 periods. If the 

production begins at machines 1 and 2 after the demand arrives at the system, 
assembling into finished products is finished before the due date in almost cases. When 

( ) ( )1 2 3 4 5, , , , 2, 2, 2, 2, 2l l l l l = , machines 1 and 2 utilize ADI for 2 periods. If the 

production begins at machines 1 and 2 after the demand arrives at the system, 
assembling parts in machines 1 and 2 into finished products is not finished before the 
due date. To complete the assembling before the due date, machines 1 and 2 have 
work-in-processes. This is why the values of the base stock levels of machines 1 and 2 
are positive as shown in Table 3.1. Since the system has a lot of work-in-processes 
because of the base stock levels, the average inventory cost increases. In Case 2, when 

( ) ( )1 2 3 4 5, , , , 1,1,1,1,1l l l l l = , all machines begin the assembling at the same time as the 

arrival of the demand. Assembling the parts in machines 3 and 4 into finished products 
is finished in 1 period before the due date. Similarly, assembling parts in machine 5 into 
finished products is finished in 2 periods before the due date. Therefore the amount of 

products increases at downstream machines. When ( ) ( )1 2 3 4 5, , , , 2, 2, 2, 2, 2l l l l l = , 

machines 1 and 2 have work-in-processes because the value of the base stock level is 
positive as shown in Table 3.2. Since the values of base stock levels of machines 3, 4 
and 5 are 0, work-in-processes tend not to flow into downstream machines. Since the 
inventory cost in upstream machine is smaller than that of downstream, the average 
inventory cost decreases. 

The number of backlogs is zero for 4 results in Table 3.2. The reason is as follows. 
The production capacity is 10 in all machines and the maximal amount of demand is 10. 

When 1 2 3 4 5 2l l l l l= = = = = , for example, all machines utilize ADI for 2 periods. 

Assembling parts in machines 3, 4 and 5 into finished products is finished before the 
due date. The values of base stock levels of machines 1 and 2 are positive as shown in 
Table 3.2. To complete assembling parts in machines 1 and 2 into finished products 
before the due date, machines 1 and 2 have work-in-processes.   

In Tables 3.1 and 3.2, the average inventory cost increases when 

( ) ( )1 2 3 4 5, , , , 4, 4, 4, 4, 4l l l l l = . The utilization of ADI is efficient for reducing the average 
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inventory cost.   
 
 
3.6 Conclusion 
 

In this chapter, a join-type production line with ADI under the base stock policy is 
analyzed. The time interval between the arrival of ADI and the production order 
placement for informed ADI is referred to as information delay period. We propose the 
simulation based heuristic algorithm for finding appropriate base stock levels of all 
machines for determined information delay period and evaluate the performance. By 
using this proposed algorithm, appropriate base stock levels of all machines are found in 
a short time. For numerical results computed, the base stock levels found by this 
algorithm equal to the optimal base stock levels. We show the relation between 
information delay period and the appropriate base stock level found by using the 
algorithm. We also show that the average holding cost and backlogs in the case that ADI 
is not utilized are both greater than those in the case that ADI is utilized. 
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Chapter 4 

Production Control with Advance Demand Information in a 

Join-Type Production Line 
 
4.1 Introduction 
 

In this chapter, production control with advance demand information is introduced 
into the join-type (assembly) production lines, in which at each machine multiple items 
from multiple preceding processes are processed or assembled as a single new product, 
and it is sent to the successive machine. The products are produced with a batch, and 
multiple items from each machine are used as parts of one product at the next machine. 
For a given demand lead time the timing of the production order placement for 
informed ADI is determined by estimating production lead time of each machine. It is 
assumed that time intervals for demand and processing time are random. The control 
method of the system is closer to hybrid policy C reported in Liberopoulos and Tsikis 
(2003). The synchronization mechanism in the model is associated with simultaneous 
extended kanban control system proposed in Liberopoulos and Dallery (2000). The 
model is formulated by recursive equations on the release time of products at each 
machine. These equations reduce the computation times for computer simulation on the 
join-type production lines with ADI.  Sensitivity on parameters of production control 
such as estimated production lead time and initial inventory is analyzed. 

In the next section the join-type production controlled by kanban policy with ADI 
and batch production is described. In section 4.3 the recursive equations on the release 
dates of products at each machine are derived. In section 4.4 the model is simulated on a 
personal computer and we examine the average inventory and the fraction of backlogs 
by changing estimated production lead time and initial inventories of each machine. In 
section 4.5 we conclude the study of this chapter. 
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4.2 A Join-Type Production Line with Batch Productions, Kanban and 
ADI 

 
4.2.1 Model Assumption 

A join-type production line with N  machines is shown in Fig. 4.1. A set of machines 
is {1,2, , }M N= , and machine N  produces finished products. For machine ,n M∈  

( )U n  denotes a set of machines directly preceding machine n , and ( )d n  represents  a 
machine succeeding machine n .  
    Figures 4.2 and 4.3 show flows of information tags, kanban and products. For each 

product processed at machine n , it is assumed that ka  products processed at machine k  

are needed for each k  in ( ).U n Therefore, for one finished product at machine ,N nb  

products are needed at machine n , where nb  is ( )n d n Na a a . Each demand has 

deterministic demand lead time T . A lot size of machine n  is denoted by nQ . When 

demand for each product occurs, nb demand information tags are sent to the tag store, 

Fig. 4.1 A join type production line 
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named nSD  for all n M∈ . When the number of demand information tags in nSD  

attains nQ , they are collected and replaced with a requisition tag, and it is sent to nOD . 

The information delay for demand at machine n is denoted by nT . The requisition tag 

stays at nOD  during nT , and after then it is sent to nBD . nT  satisfies 0 nT T≤ ≤ .  For 

example, we set nT  as     

max( ,0)n nT T L= − , 

where nL means the estimated production lead time from the time when requisition tag 

Fig. 4.2  Flow of information and products 
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is sent to nBD  at machine n  to the time when the corresponding finished product is 

released from machine N . This setting means that at machine n  satisfying 0nT >  the 

unfinished product is processed as the corresponding finished product is released into 
the inventory of finished products just on due date for the demand, and at upper stream 

machines satisfying 0nT = , the products are processed as the base stock policy with 

ADI. Initially, it is assumed that there are no demand information tags in nSD  and no 

Fig. 4.3  Flows of information and products around process n  
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requisition tags in nOD  and nBD . 

nFG  in the figure is the inventory of products finishing process at machine n , and 

nFK  is the space for the production kanbans for machine n . The number of kanbans of 

machine n  is denoted by nK . When k na Q  products are in kFG  for all ( )k U n∈ , one 

kanban is placed in nFK , and one requisition tag  and machine n exist in nBD , they are 

collected and move to nWIP , where nWIP  represents an inventory buffer and machine n . 

At machine n , collected products are processed in a FIFO order. Then they are released 

to nFG  as a finished product, and one kanban is moved to  nFG  every time when 

nQ products are released to nFG . When nQ  products in nFG  is released to ( )d nWIP , one 

kanban is returns to nFK . It is assumed that ( )/( )n n d nQ a Q  is a positive integer, and it is 

denoted by nj . 

Initially, 0
ni  products which complete processing at machine n  are placed at nFG . 

The 0
ni  means safety stocks, and it is assumed that 0

ni  satisfies n nl Q , where nl  is an 

integer and 0 n nl K≤ ≤ . Therefore, initially there is n nK l−   kanbans in nFK . At the last 

machine N , NL  is set to be 0 and for convenience we set 1,11 ==+ NN aQ , and 

( ) 1+= NNd . When a demand occurs, a demand tag for machine N stays during T . 

After that, it is sent as a requisition tag to 1NBD + . If there is a finished product in NFG  , 

then the demand is satisfied and leaves the system with the product. If there is no 
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product when the tag arrives at 1NBD + , the demand waits for the arrival of a finished 

product from machine N , and the delay for its due date occurs.   
 
4.2.2 Notations 

( )d n : the machine succeeding machine n , 

( ) nnd =0 , ( )( )1( )z zd n d d n−=  for 1, 2,z n M= ∈， , 

ne : the number of successive machines from machine n  to machine N , excluding 

machine n  for 1,2, , 1n N= − , that is, ( )ned n N= ， 

0Ne = , 

na : the number of products required for processing one product in ( )nd  for 

1,2, , 1n N= − , 
1Na = , 

( )n n Nd nb a a a=  for 1,2, , 1n N= − , 

T : demand lead time, 

nQ : lot size of machinen  for 1,2, , 1n N= − , 

nSD : the space for demand information for machine n  for 1, 2, ,n N= , 

nOD : the space in which requisition tag stay for nT  for 1, 2, , 1n N= + , 

nBD : the space for requisition tag for machine n  for 1,2, , 1n N= + , 

nFG :  the inventory of products processed at machine n  for 0,1, ,n N= , 

nFK : the space for production kanbans for machine n  for 1,2, ,n N= . 

*
1,N iD + : the i th  arrival epoch of demand, 
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,n iσ : the i th processing time at machine n, which is a random variable for n M∈  and 

1,2,i = , 

,'n iD : the i th release time from nWIP  to nFG  at machine n  for n M∈ and 1, 2,i = , 

*
,n iD : the arrival epoch of i th demand information tag at  nSD  for n M∈ , 

,n iD : the ith release time of products from kFG ( )nk U∈  to nWIP  for n M∈  and 

1,2,i = . 
 

Decision  variables. 

nL : the estimated production lead time for 1, 2, , 1n N= − , 

max( ,0)n nT T L= −   for 1,2, , 1n N= − , 

0
ni : the number of initial inventory in nFG  for 1, 2, , 1n N= − , 

nK : the number of kanbans of machine n  for 1, 2, , 1n N= − . 

 
 
4.3 Recursive Equations on Release Times of Products 
 

In this section, we derive the recursive equation on release time of products at all 
machines.  Since the arrival epoch of the i th demand information tag for machine n  is 

the arrival epoch of  
n

i
b
⎡ ⎤
⎢ ⎥
⎢ ⎥

 th demand for finished products, it holds that 

* *
,

1,
n

n i iN
b

D D ⎡ ⎤
+ ⎢ ⎥

⎢ ⎥

=                for n M∈ and 1, 2,i = , 

where x⎡ ⎤⎢ ⎥  is the smallest integer which is more than or equal to .x   

 
Since the machine processes products one by one in a FIFO order, it holds that  
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( ), , 1 , ,' max ' ,n i n i n i n iD D D σ−= +        for n M∈  and  1, 2,...i =                             

    (4.1) 
Now we discuss the release time of products for the i th production at machine 

n M∈ from preceding inventories to nWIP . First, for each nk U∈ , products completing 

process at machine k  for the i th product at machine n must be in kFG . Since the size 

of products for each batch at machine n is k na Q  and there are 0
ki   products initially, the 

0
k n k

n

i a Q i
Q

⎛ ⎞⎡ ⎤
−⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠

th products must be in kFG  for the release. Next, the requisition tag for 

the lot including the i th demand must be located in nBD . Therefore, from the model 

description, the arrival epoch of the requisition tag at nBD   is given by *

, i QnQn

nn
D T⎡ ⎤

⎢ ⎥
⎢ ⎥⎢ ⎥

+ . 

Lastly, the kanban for i th product at machine n must be located in nFK . Initially, there 

are n nK l−  kanbans in nFK . Since the kanban is one for one batch with size nQ , the  

( )n n
n

i K l
Q

⎛ ⎞⎡ ⎤
− −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠

th kanban must be returned to nFK . To do this, 

( )n n n
n

i K l Q
Q

⎛ ⎞⎡ ⎤
− −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠

products must be released from nFG  to ( )d nWIP . One product at  

machine ( )d n  needs na  products in nFG . Therefore, when products necessary for the  

( )n n n
n

n

i K l Q
Q

a

⎛ ⎞⎡ ⎤
− −⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠

0( )n n n n
n

n

i Q K Q i
Q

a

⎡ ⎤
− −⎢ ⎥

⎢ ⎥= th process at machine ( )d n  are released into 

( )d nWIP , the kanban for the i th  product at machine n  returns to nFK . From these 

results, we have the following equations for ,n iD : 
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( )

0 0

*
,

, , ( )
,

max max ' , ,
n k n k n n n n n

n n n

n

n i ni i ik U k a Q i n Q Q K Q i
Q Q Q

d n
a

D D T D D⎡ ⎤ ⎡ ⎤ ⎡ ⎤∈ − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟= +
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

    Nn ,,2,1= .        

           (4.2) 

Let 1,N iD +  be the epoch when a finished product leaves the system with the i th demand. 

It occurs when the i th demand arrives at 1NBD +  and the corresponding finished product 

is placed at NFG . Since there are 0
ni  finished products in NFG  initially, we have   

( )0
*

1, 1,,
max ' ,

N
N i N iN i i

D D T D+ +−
= + .                                                        (4.3) 

To derive the recursive equations on '
,n iD , we introduce the following function: 

( ), , 0 ,
n

ig n i
Q
⎡ ⎤

= ⎢ ⎥
⎢ ⎥

 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1

1 1

, , , , 1

                

z z z

z z

d n d n d n

d n d n

g n i z g n i z j K j

l j

− − −

− −

= − −

+
                     for 1, 1,2, , ni z e≥ = . 

( ), ,g n i z corresponds to the lot number of semi-finished product at  machine ( )zd n  

whose process must be finished at machine ( )zd n  for the i th  processing at machine  n . 

Using this function we have the next recursive equations. 

( )
( )

( )

( ) ( ) ( ) ( )

( ) ( )
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

=

−−+−

=

−∈=

*
)(,,,1,,,

*
,,,0

,,,0

,

0

0

,'

,max

,'maxmax

max

NNNNnNNNn

nzd
zz

n

knzdk
nzd

n

iQKQeingNQKQeingN

Qzingndnd

e

z

iQazingkUk

e

z

in

DTD

DT

D

D             for  1,i n M≥ ∈        

          (4.4) 
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From equations (4.1) , (4.3)and (4.4), recursive equations on inD ,'  is give by  

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0

0

, 1

, , ,0

, ,
*

, , ,0

*
, , , 1, , , ( )

' ,

max max ' ,
' max

max ,

' ,

n

k z kd nzd n

n

z z
zd n

n N N N n N N N N

n i

e

k g n i z a Q iz k U

n i n ie

d n d n g n i z Qz

N g n i e Q K Q N g n i e Q K Q i

D

D
D

T D

D T D

σ

−

−= ∈

=

− + − −

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟= +

⎜ ⎟⎛ ⎞+⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟+⎝ ⎠

      ( 1, )i n M≥ ∈  

                (4.5). 

In (4.5), we note that  ( ) ( )nd zQzing ,,   can be computed as  

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1

1

0

2

0

0, ,
, ,

1, ,

                          , ,

x

z

x z

z

n n n nd n
xn

d n z

n n n nd n d n
x

n n

i J e K J x e
Q

g n i z Q
l J x e l J z e

A z e

−

−

=

−

=

⎛ ⎞⎡ ⎤
−⎜ ⎟⎢ ⎥

⎢ ⎥⎜ ⎟= ⎜ ⎟
⎜ ⎟+ + +⎜ ⎟
⎝ ⎠
×

∑

∑
 

where  

( ) ( ) ( ) ( ) ( ) ( )ndndndndndn yyxxx jjjjjyxJ 121, −++=  

and  

( ) ( ) ( ) ( ) ( ) ( )ndndndndndn yyxxx aaaaayxA 121, −++= . 

 

Note that in the model, controllable parameters are nT , nK  and 0
ni .  The lot size nQ  can 

be also controlled, but in this paper it is assumed to be predetermined. In the following 

section we mainly discuss the relation between nT  and performance measure such as the 

amount of finished products inventories and the fraction of backlogs. 
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4.4 Numerical Examples 
 

In this chapter the recursive equations are utilized to simulate the model and discuss 
the relation between estimated production lead time and the amount of finished goods 
inventories or the fraction of backlogs. Program was written by C language and run on a 
personal computer with 2.4GHz Pentium CPU and 512 Mbytes memories. 

The join-type production line for numerical experiments is illustrated in Fig. 4.4. We 

assume that the demand process is Poisson with rate 1/8. All of na  and nj  are set as 1 

and nK  is set as 5. nl is also set as 1 except for 5n = . We also set max( ,0)n nT T L= −  

where ( )1n nL x e= × + . We change x  and ,T  and discuss the effect of ,T nT and 5l  

on the average inventory of finished products and the fraction of backlogs against 
demand. The service time at each machine is uniformly distributed on [3,4].  In each 
simulation 105000 items are produced and divided into 21 batches with 5000 items, and 
derive the 95% confidence interval by discarding the first batch. The interval is, 
however, very small and in the following numerical results only the expectations are 
presented. 

1 

2 

4

3

5 6

Fig. 4.4  Join-type production line for numerical experiments 
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Note that for each simulation the computation time is only 3 or 4 seconds. This 
means that by equation (4.5) the performance under given parameters can be easily 
obtained. 

Figures 4.5 and 4.6 show the average amount of finished products in inventory and 
the fraction of backlogs against demand when 5T =  and 7T = , respectively. From the 
figures we have the following insights. 

 
1.  When T  is long, that is, demand lead time is long, the fraction of backlogs 

decreases with a little increase on the amount of finished products.  

  Fig. 4.5 Average inventory and fraction of backlogs ( 55,  T l= =1 or 2) 
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2. When x  increases (that is, nL  increases and nT  decreases), the fraction of backlogs 

decreases rapidly whereas the average inventory increases slightly. We note that for 

x T> , 0nT =  for all n , that is, the performance measure is the same for all x T> . 

3. When 5l  increases, that is, the initial work-in-process at machine 5 (which is the 

preceding machine of the last processing machine) increases, and x  (or 5T ) is small, 

the fractions of backlogs decreases although the average inventory of finished 
products is almost the same. That is, having the appropriate safety stock on the 

  Fig. 4.6 Average inventory and fraction of backlogs ( 57,  T l= = 1 or 2) 
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preceding machine of the last processing machine decreases the backlogs, as the 
amount of finished products does not increase.   

 
 
4.5 Conclusion 
 

In this chapter we analyze the join-type production line with batch productions, 
kanbans and ADI. For given demand lead time, the timing of the production order 
placement for demand informed by ADI is determined according to estimated 
production lead time of each machine. The recursive equations on the release time of 
products at all machines are derived, and by these equations the system can be 
simulated on a personal computer in a few seconds. In numerical examples, for a given 
demand lead time, the amounts of inventory and the fraction of backlogs are examined 
with changing estimated production lead time and initial inventory at each machine. As 
estimated production lead time at each machine is increased, the fraction of backlogs 
decreases rapidly whereas the average inventory increases slightly. This property is 
especially remarkable when demand lead time is long. We show that backlogs can be 
reduced with little increase of inventory by appropriate settings of estimated production 
lead time and initial inventory at each machine for given demand lead time. 
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Chapter 5 

Conclusion 
 

In this thesis, we deal with production systems with ADI.  
In chapter 2, we analyze a single stage production-inventory system with ADI on 

continuous review theoretically. We derive the optimal release lead time and base stock 
levels which maximize the total expected profit for a given demand lead time 
theoretically. We get the following theoretical result. In the case that a backlog cost rate 
is not so large for a holding cost rate, when demand lead time is short, the optimal 
release lead time equals to demand lead time and the optimal base stock level is zero, 
and as demand lead time becomes long, the optimal release lead time decreases and the 
optimal base stock level remains zero. In the case that a backlog cost rate is so large for 
a holding cost rate, the optimal release lead time equals to demand lead time and the 
optimal base stock level is positive for very short demand lead time, and otherwise the 
same as the former case. We also show the relation between demand lead time and the 
total expected profit under the optimal release lead time and base stock level. 

In chapter 3, we deal with a join-type production line with ADI under a base stock 
policy in discrete time. For determined information delay periods of all machines, a 
simulation-based heuristic algorithm which can find appropriate base stock levels of all 
machines is proposed, and the performance is evaluated. For numerical results 
computed, the base stock levels found by using this proposed algorithm are equal to the 
optimal base stock levels. We show the relation between information delay period and 
base stock levels found by using the proposed algorithm. In the case that ADI is not 
used at all machines the average cost and backlogs are both greater than those in the 
case that ADI is used at any machines. 

In chapter 4, we consider a join-type production line with batch productions, kanbans 
and ADI in continuous time. For a given demand lead time, the timing of the production 
order placement for informed ADI is determined by estimating production lead time of 
each machine. We derive recursive equations on release times of products at all 
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machines. With using these recursive equations, the model is simulated on a personal 
computer. We investigate the amount of average inventory and the fraction of backlogs 
with changing estimated production lead time and initial inventory at each machine. We 
show that when estimated production lead times of all machines are increased, the 
fraction of backlogs decreases rapidly whereas the average inventory increases slightly. 
This property is especially remarkable when demand lead time is long. 

In models dealt with in this thesis, to reduce holding costs, appropriate timings of 
production order placements are determined by setting release lead time or information 
delay period appropriately for given demand lead time. Moreover, by setting the base 
stock levels or the number of kanbans appropriately, backlogs are reduced with little 
increase of holding costs. That is, if demand lead time is shorter than production lead 
time at a machine, then the machine has inventory stocks and starts the production at the 
same time as the arrival of ADI. This is because the demand can not be met without 
inventory stocks if the production starts after the arrival of ADI. If demand lead time is 
longer than production lead time at a machine, then the machine delays the start of the 
production afterwards from the arrival of ADI. This is because the finished product is 
completed before the due date and a holding cost is incurred if the production starts at 
the same time as the arrival of ADI. The advantage of using ADI is that the timing of the 
production order placement for final demand can be determined appropriately with 
taking demand lead time and production lead time into consideration. Though a 
reduction of the amount of inventory is generally in conflict with a reduction of the 
number of backlogs, we show that backlogs can be reduced with little increase of 
work-in-processes by using ADI. There are a lot of production lines controlled by 
existing production policies without ADI because of the simple control mechanism. Our 
studies on production controls with ADI are very valuable in a sense that the use of ADI 
can be easily introduced into production lines controlled by existing production control 
mechanisms. 

In models dealt with in this thesis, there are a lot of hypotheses which are different 
from practical production lines. For example, it is assumed that demand lead time is 
constant among demands. In practical production lines, however, there are cases where 
the length of demand lead time is different among demands. Analyses for these cases 
remain in future researches. In the theoretical analysis in chapter 2, it is also assumed 
that arrival intervals of demand and processing times of products follow exponential 
distributions because of easiness of the analysis. To apply our studies into practical 
cases, it is necessary to analyze the case where they follow general distributions. 
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Though the model dealt with in chapter 2 is analyzed theoretically, the models dealt 
with in chapters 3 and 4 are analyzed in the simulation-based methods because of the 
difficulty of theoretical analyses. It is valuable to analyze these models theoretically in 
future. Especially, in chapter 3 we propose simulation-based algorithm for finding 
appropriate base stock levels. The performance of this algorithm can be evaluated more 
certainly by the theoretical analysis. 
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