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Abstract

The topics of automatic speech recognition and synthesis have been active areas of re-
search focus. Hidden Markov models (HMMs) are one of widely used statistical models
for representing time series by well-defined algorithms. They have successfully been
applied to acoustic modeling in speech recognition. HMM-based speech synthesis also
has grown in popularity over the last few years. This framework makes it possible to
model different voice characteristics, speaking styles, or emotions without recording large
speech database. In this paper, improved acoustic modeling is proposed for HMM-based
speech recognition and synthesis.

First, hidden semi-Markov model (HSMM) based speech recognition system is designed.
In HMMs, state duration probabilities are implicitly modeled by state transition probabili-
ties; state duration probabilities decrease exponentially with time. Geometric distribution
calculated by the state transition probabilities of HMMs would be inappropriate state du-
ration probability distribution representation of the temporal structure of speech. One of
the solutions to this problem is using HSMM which integrate state duration probability
distributions explicitly into the HMM. A variety of attempts to include explicit duration
models in speech recognition systems have been reported. However, they are not fully
consistent because various approximations are used. Therefore, I constructed a fully con-
sistent HSMM-based speech recognition system and evaluated its performance. The result
showed an obvious improvement.

Next, a technique for reducing the footprints of HMM-based speech synthesis systems
by tying all covariance matrices is proposed. One of the attractive points of HMM-based
speech synthesis is its small footprints. However, further reduction is essential to put it on
embedded devices which have very small memories. We empirically know that covariance
matrices have smaller impact on the quality of synthesized speech than mean vectors.
Based on the knowledge, this paper proposes a context-clustering technique for mean
vectors while tying all covariance matrices. The experimental results showed that the
proposed technique efficiently shrinked the footprints of an HMM-based speech synthesis
system to less than half of its original size while retaining the quality of synthesized
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speech.

Next, I define a new integrated model for simultaneous linguistic and acoustic modeling.
Standerd text-to-speech (TTS) systems consist of two major modules: text analysis and
speech synthesis modules. Conventionally, these two modules are constructed indepen-
dently. Therefore, if these two modules were combined and trained simultaneously as a
unified model, we would expect improved overall performance of a TTS system. I define a
new integrated model and firectly-mormulate the TTS problem of synthesiszing a speech
waveform from a word sequence. The experimental results demonstrate that the proposed
system achives better F0 modeling accuracy than that of the conventional system.

Finally, unsupervised cross-lingual speaker adaptation system is designed. Many organi-
zation have forcused on speech-to-speech translation (S2ST) research topic. Speaker sim-
ilarity of synthesized speech should be conform to input speaker similarity. Therefore, we
integrate two developments, unsupervised adaptation techniques for HMM-based speech
synthesis using a word-based large-vocabulary continuous speech recognizer (LVCSR)
and cross-lingual speaker adaptation techniques for HMM-based speech sytnehsis sistem.
The listening tests show very promising results: it has been demonstrated that the adapted
voices sound more similar to the target speaker than the average voice.

For HMM-based speech recognition and synthesis system, avobe improved techniques
were proposed and systems using these techniques improved their performance.

Keywords: Speech recognition, speech synthesis, hidden Markov model, hidden
semi-Markov model, acoustic modeling, language modeling, unsupervised speaker adap-
tation, cross-lingual speaker adaptation, embedded device
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Abstract in Japanese

近年，音声を情報伝達の手段としたシステムの需要が高まっており，音声認識・合成
の研究が盛んに行われている．音声認識における代表的な枠組みとして，音響モデ
ルに統計モデルの一種である隠れマルコフモデル (Hidden Markov Model; HMM)を
用いる枠組みがある．HMMは学習データに基づきパラメータを推定する実現容易
なアルゴリズムが存在し，トポロジーを認識対象に応じて設計できる，現実的な計
算量で学習・認識を行えるなどの特徴があり，十分な学習データ量が与えられれば
高い認識性能を示すことが知られている．また，音声合成の分野でも近年HMMに
基づいた手法の研究が盛んに行われている．HMM音声合成では尤度最大化基準に
基づく音声パラメータ生成アルゴリズムを用いて直接音声パラメータを出力し音声
を合成するため，単位選択型の音声合成手法と比べて素片接続歪みが生じない，パ
ラメータを変換することで様々な声質に変換できるなどの特徴がある．本論文では，
より高性能なHMM音声認識・合成システムの構築のために，より高性能なモデル
化手法の提案を目的とする．

まず，隠れセミマルコフモデル (Hidden Semi-Markov Model; HSMM)を用いた音声
認識システムを設計する．HMMの状態継続長は単純な一次のマルコフ過程に基づ
く遷移確率によって決定されるが，音声のモデル化においてHMMの状態遷移は時
間方向に強い相関を持っていると考えられ，状態継続長の分布を考慮したモデル化
が必要である．この問題に対して，HMMパラメータおよび状態継続長のパラメー
タを同時に推定する形のHSMMを用いることで状態継続長を精度良くモデル化する
ことができる．しかし，状態継続長を考慮した認識ではモデルの複雑さから様々な
近似が用いられてきた．本論文ではそれらの近似を排除して認識性能を評価し，従
来法を上回る性能を示した．

次に，HMM音声合成における共分散パラメータの共有について考察する．HMM音
声合成の特徴の一つにフットプリントが小さい点がある．中でも組み込み向けのシ
ステムには携帯電話等の用途があるが，必要なメモリ等が制限されることが多く，更
なるフットプリントの縮小が必要である．HMM音声合成にコンテキスト依存モデル
を用いることで高性能な音響モデルを構築することができ，決定木に基づくコンテ
キストクラスタリングを用いて状態共有構造を構築する際に，組み込み用途向けに
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決定木のサイズを小さくすることも考えられるが，音質の劣化は避けられない．本
論文では平均に比べて共分散が音質に与える影響が小さいことに注目し，全てのパ
ラメータの共分散を共有する手法を示す．このパラメータ共有を仮定した上でのコ
ンテキストクラスタリングを行い，パラメータ数を大幅に削減するのみならず，若
干の品質改善を達成した．

次に，言語・音響モデルを統合した新しいモデルとその学習アルゴリズムを提案す
る．通常，HMM音声合成システムはテキスト解析部と音声合成部の二つのモジュー
ルで構成されており，言語・音響モデルの学習はそれぞれ違うデータベースから独
立に行われているが，統合モデルでは提案する学習アルゴリズムによって同時に学
習される．従って，文章から音声を合成するという音声合成システムの問題を直接
的に定式化しているので適切なモデルが推定できる．客観評価実験により，より適
切な言語モデルの推定を確認した．

最後に，教師無し異言語間話者適応システムを設計する．入力言語の音声を認識し，
それを出力言語に翻訳し，そして音声を合成する音声翻訳システムは，長年様々な
機関で研究されている．合成音声の話者性は入力音声の話者性と一致すべきなので，
入力音声を用いた異言語間の話者適応手法が必要となり，さらに，実環境での稼働
では，入力音声の認識結果を用いた教師無し話者適応手法も必要である．そこで，こ
の二つの手法を統合した教師無し異言語間話者適応システムを構築し，主観評価実
験を行った．教師有り・無しのシステム共に話者性の向上を確認した．

以上のように，本論文ではより高性能なHMM音声認識・合成システムの構築のた
めに，より高性能なモデル化手法を提案し，その有効性を示す．
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Chapter 1

Introduction

Speech is the most important ways for human communication, and a number of research
topic for human-machine communication have been proposed. Automatic speech recog-
nition (ASR) and text-to-speech synthesis (TTS) are fundamental technologies for human-
machine communication. In recent years, they are used in many application such as car
navibation system, information retrieval over the telephone, voice mail, speech-to-speech
translation (S2ST) system, and so on. The goal of ASR and TTS systems is perfect speech
recognition and speech synthesis with natural human voice characteristics.

Most state-of-art speech recognition and synthesis systems are based on large amounts
of speech data. This type of approach is generally called corpus-based systems. This
approach makes it possible to dramatically improve the performance compared with early
systems such as rule-based one. In these days statistical approaches based on hidden
Markov models (HMMs) have been dominant both in ASR [1] and TTS [2–5], due to
their ease of implementation and modeling flexibility. In this approach, the HMMs are
used for modeling sequences of speech spectra. In this paper, improved techniques for
acoustic modeling are proposed for HMM-based speech recognition and synthesis.

First, hidden semi-Markov model (HSMM) [6–8] based speech recognition system is de-
signed. In HMMs, state duration probabilities are implicitly modeled by state transition
probabilities; state duration probabilities decrease exponentially with time [9]. Geometric
distribution calculated by the state transition probabilities of HMMs would be inappro-
priate state duration probability distribution representation of the temporal structure of
speech. One of the solutions to this problem is using HSMM which integrate state du-
ration probability distributions explicitly into the HMM. A variety of attempts to include
explicit duration models in speech recognition systems have been reported. However, they
are not fully consistent because various approximations are used [5, 10–12]. Therefore, I
constructed a fully consistent HSMM-based speech recognition system and evaluated its
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performance. The result showed an obvious improvement.

Next, a technique for reducing the footprints of HMM-based speech synthesis systems
by tying all covariance matrices is proposed. One of the attractive points of HMM-based
speech synthesis is its small footprints. However, further reduction is essential to put it on
embedded devices which have very small memories. We empirically know that covariance
matrices have smaller impact on the quality of synthesized speech than mean vectors.
Based on the knowledge, this paper proposes a context-clustering technique for mean
vectors while tying all covariance matrices. The experimental results showed that the
proposed technique efficiently shrinked the footprints of an HMM-based speech synthesis
system to less than half of its original size while retaining the quality of synthesized
speech.

Next, I define a new integrated model for simultaneous linguistic and acoustic modeling.
Standerd text-to-speech (TTS) systems consist of two major modules: text analysis and
speech synthesis modules. Conventionally, these two modules are constructed indepen-
dently. Therefore, if these two modules were combined and trained simultaneously as a
unified model, we would expect improved overall performance of a TTS system. I define a
new integrated model and firectly-mormulate the TTS problem of synthesiszing a speech
waveform from a word sequence. The experimental results demonstrate that the proposed
system achives better F0 modeling accuracy than that of the conventional system.

Finally, unsupervised cross-lingual speaker adaptation system is designed. Many organi-
zation have forcused on speech-to-speech translation (S2ST) research topic. Speaker sim-
ilarity of synthesized speech should be conform to input speaker similarity. Therefore, we
integrate two developments, unsupervised adaptation techniques for HMM-based speech
synthesis using a word-based large-vocabulary continuous speech recognizer (LVCSR)
[13] and cross-lingual speaker adaptation techniques [14] for HMM-based speech syt-
nehsis sistem. The listening tests show very promising results: it has been demonstrated
that the adapted voices sound more similar to the target speaker than the average voice.

For HMM-based speech recognition and synthesis system, avobe improved techniques
were proposed and systems using these techniques improved their performance. The rest
of the present dissertation is organized as follows. The next chapter introduces basic the-
ories of the HMM. Chapters 3 and 4 describe statistical speech recognition and synthesis
framework based on the HMM, respectively. Charpter 5, 6, 7, and 8 show the HSMM-
based speech recognition, tied covariance technique for HMM-based speech syntheis,
simultaneous lingustic and acoustic model training for TTS conversion system, and un-
supervised cross-lingual speaker adaptation, respectively. Concluding remarks and future
plans are presented in the final chapter.

2



Chapter 2

Hidden Markov Models

Recently, hidden Markov models (HMMs) are widely used as statistical models for speech
recognition. The advantages of using the HMM are that i) it can represent speech as
probability distributions, ii) it is robust, iii) efficient algorithms for estimating its model
parameters are provided. Parameter estimation and calculation of output probability dis-
tributions are described in this chapter.

2.1 Definition of HMM

An HMM [15–17] is a finite state machine which generates a sequence of discrete time
observations. At each frame it changes states according to its state transition probabil-
ity distributions, and then generates an observation at time t, ot, according to its output
probability distribution of the current state. Therefore, the HMM is a doubly stochastic
random process model.

An N -state HMM consist of state transition probability distributions {aij}N
i,j=1, output

probability distributions {bj (ot)}N
j=1, and initial state probability distributions {πi}N

i=1.
For convenience, the compact notation is used to indicate the parameter set of the model
Λ as follows:

Λ =
[
{aij}N

i,j=1 , {bj (·)}N
j=1 , {πi}N

i=1

]
(2.1)

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic
model, in which every state of the model could be reached from every state of the model
in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state
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Figure 2.1: Examples of HMM structure.

index increases or stays the same state as time increases. The left-to-right HMMs are
generally used to model speech parameter sequences, since they can appropriately model
signals.

The output probability distributions {bj (·)}N
j=1 can be discrete or continuous depending

on the observations. In continuous distribution HMM (CD-HMM), each output probabil-
ity distribution is usually modeled by a mixture of multivariate Gaussian components [18]
as follows:

bj (ot) =
M∑

m=1

wjm · N (ot | µjm,Σjm ) , (2.2)

where M , wjm, µjm, and Σjm are the number of Gaussian components, the mixture
weight, mean vector, and covariance matrix of the m-th Gaussian component of the j-th
state, respectively. Each Gaussian component is defined by

N (ot | µjm,Σjm ) =
1√

(2π)K |Σjm|
exp

{
−1

2
(ot − µjm)> Σ−1

jm (ot − µjm)

}
,

(2.3)

where symbol > means transpose of vector or matrix, and K is the dimensionality of an
observation vector ot. For each state, {wjm}M

m=1 should satisfy the stochastic constraint
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M∑
m=1

wjm = 1, 1 ≤ j ≤ N (2.4)

wjm ≥ 0,
1 ≤ j ≤ N
1 ≤ m ≤ M

(2.5)

so that {bj (·)}N
j=1 are properly normalized, i.e.,

∫
RK

bj (ot) dot = 1. 1 ≤ j ≤ N (2.6)

2.2 Calculation of output probability

2.2.1 Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence
o = {o1, o2, . . . , oT} and a state sequence q = {q1, q2, . . . , qT} is calculated by multi-
plying the state transition probabilities and state output probabilities for each state, that
is,

p (o, q | Λ) =
T∏

t=1

aqt−1qtbqt (ot) , (2.7)

where aq0q1 denotes πq1 . The total output probability of the observation vector sequence
from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

p (o | Λ) =
∑
all q

T∏
t=1

aqt−1qtbqt (ot) . (2.8)

The order of 2T · NT calculation is required, since at every t = 1, 2, . . . , T there are
N possible states that can be reached (i.e., there are NT possible state sequences). This
calculation is computationally infeasible, even for small values of N and T ; e.g., for
N = 5 (states), T = 100 (observations), there are on the order of 2 · 100 · 5100 ≈ 1072

computations. Fortunately, there is an efficient algorithm to calculate Eq. (2.8) using
forward and backward procedures.
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2.2.2 Forward-Backward algorithm

The forward-backward algorithm is generally used to calcurate p (o | Λ), which is the
probability of the observation sequence o given the model Λ. If we directly calculate
p (o | Λ), it requires on the order of 2T · NT calculation. The detail of the forward-
backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to t and the i-th state
at time t, given the HMM Λ is defined as

αt(i) = p (o1,o2, . . . , ot, qt = i | Λ) . (2.9)

αt (i) is calculated recursively as follows:

1. Initialization
α1(i) = πibi (o1) , 1 ≤ i ≤ N (2.10)

2. Recursion

αt(j) =

[
N∑

i=1

αt−1(i)aij

]
bj (ot) ,

1 ≤ j ≤ N
t = 2, . . . , T

(2.11)

3. Termination

p (o | Λ) =
N∑

i=1

αT (i). (2.12)

As the same way as the forward algorithm, backward variables βt(i) are defined as

βt(i) = p (ot+1, ot+2, . . . , oT | st = i, Λ) , (2.13)

that is, the probability of a partial vector observation sequence from time t to T , given the
i-th state at time t and the HMM Λ. The backward variables can also be calculated in a
recursive manner as follows:

1. Initialization
βT (i) = 1, 1 ≤ i ≤ N (2.14)

2. Recursion

βt(i) =
N∑

j=1

aijbj (ot+1) βt+1(j),
1 ≤ i ≤ N
t = T − 1, . . . , 1.

(2.15)
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Figure 2.2: Implementation of the computation using forward-backward algorithm in
terms of a trellis of observations and states.

3. Termination

p (o | Λ) =
N∑

i=1

β1(i). (2.16)

The forward and backward variables can be used to compute the total output probability
as follows:

p (o | Λ) =
N∑

j=1

αt(j)βt(j). 1 ≤ t ≤ T (2.17)

The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In
this figure, the x-axis and y-axis represent observations and states of an HMM, respec-
tively. On the trellis, all possible state sequences will re-merge into these N nodes no
matter how long the observation sequence. In the case of the forward algorithm, at time
t = 1, we need to calculate values of α1(i), 1 ≤ i ≤ N . At times t = 2, 3, . . . , T , we
need only calculate values of αt(j), 1 ≤ j ≤ N , where each calculation involves only the
N previous values of αt−1(i) because each of the N grid points can be reached from only
the N grid points at the previous time slot. As a result, the forward-backward algorithm
can reduce order of probability calculation.
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2.3 Searching optimal state sequence

The single optimal state sequence q̂ = {q̂1, q̂2, . . . , q̂T} for a given observation vector
sequence o = {o1,o2, . . . , oT} is useful for various applications (e.g., decoding, initial-
izing HMM parameters). By using a manner similar to the forward algorithm, which is
often referred to as the Viterbi algorithm [19], we can obtain the optimal state sequence
q̂. Let δt (i) be the likelihood of the most likely state sequence ending in the i-th state at
time t

δt(i) = max
q1,...,qt−1

p (q1, . . . , qt−1, qt = i, o1, . . . , ot | Λ) , (2.18)

and ψt (i) be the array to keep track. The complete procedure for finding the optimal state
sequence can be written as follows:

1. Initialization

δ1 (i) = πibi (o1) , 1 ≤ i ≤ N (2.19)

ψ1 (i) = 0, 1 ≤ i ≤ N (2.20)

2. Recursion

δt (j) = max
i

[δt−1 (i) aij] bj (ot) ,
1 ≤ i ≤ N
t = 2, 3, . . . , T

(2.21)

ψt (j) = arg max
i

[δt−1 (i) aij] ,
1 ≤ i ≤ N
t = 2, 3, . . . , T

(2.22)

3. Termination

P̂ = max
i

[δT (i)] , (2.23)

q̂T = arg max
i

[δT (i)] . (2.24)

4. Back tracking

q̂t = ψt+1 ( ˆqt+1) , t = T − 1, . . . , 1. (2.25)
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It should be noted that the Viterbi algorithm is similar to the forward calculation of
Eqs. (2.10)–(2.12). The major difference is the maximization in Eq. (2.21) over previ-
ous states, which is used in place of the summation in Eq. (2.11). It also should be clear
that a trellis structure efficiently implements the computation of the Viterbi procedure.

2.4 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the
maximum likelihood (ML) criterion to obtain Λ which maximizes its likelihood p (o | Λ)

for a given observation sequence o, in a closed form. Since this problem is a high dimen-
sional nonlinear optimization problem, and there will be a number of local maxima, it is
difficult to obtain Λ which globally maximizes p (o | Λ). However, the model parameter
set Λ locally maximizes p (o | Λ) can be obtained using an iterative procedure such as
the expectation-maximization (EM) algorithm [20], and the obtained parameter set will
be appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the
HMM with discrete output distributions can also be derived in a straightforward manner.

2.4.1 Q-function

In the EM algorithm, an auxiliary function Q(Λ, Λ̂) of the current parameter set Λ and the
new parameter set Λ̂ is defined as follows:

Q(Λ, Λ̂) =
∑
all q

p(q | o, Λ) log p(o, q | Λ̂). (2.26)

Each mixture of Gaussian components is decomposed into a substate, and q is redefined
as a substate sequence,

q = {(q1, s1) , (q2, s2) , . . . , (qT , sT )} , (2.27)

where (qt, st) represents being in the st-th substate (Gaussian component) of the qt-th
state at time t.

At each iteration of the procedure, the current parameter set Λ is replaced by the new
parameter set Λ̂ which maximizes Q(Λ, Λ̂). This iterative procedure can be proved to
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increase likelihood p (o | Λ) monotonically and converge to a certain critical point, since
it can be proved that the Q-function satisfies the following theorems:

• Theorem 1

Q(Λ, Λ̂) ≥ Q(Λ, Λ) ⇒ p(o | Λ̂) ≥ p(o | Λ) (2.28)

• Theorem 2
The auxiliary function Q(Λ, Λ̂) has the unique global maximum as a function of Λ,
and this maximum is the one and only critical point.

• Theorem 3
A parameter set Λ is a critical point of the likelihood p(o | Λ) if and only if it is a
critical point of the Q-function.

2.4.2 Maximization of Q-function

According to Eqs. (2.2) and (2.7), log p (o, q | Λ) can be written as

log p (o, q | Λ) = log p (o | q, Λ) + log P (q | Λ) , (2.29)

log p (o | q, Λ) =
T∑

t=1

logN (ot | µqtst ,Σqtst ) , (2.30)

log P (q | Λ) = log πq1 +
T∑

t=2

log aqt−1qt +
T∑

t=1

log wqtst . (2.31)

Hence, Q-function (Eq. (2.26)) can be rewritten as

Q(Λ, Λ̂) =
N∑

i=1

p (o, q1 = i | Λ) · log πi

+
N∑

i=1

N∑
j=1

T−1∑
t=1

p (o, qt = i, qt+1 = j) · log aij

+
N∑

i=1

M∑
m=1

T∑
t=1

p (o, qt = i, st = m | Λ) · log wim

+
N∑

i=1

M∑
m=1

T∑
t=1

p (o, qt = i, st = m | Λ) · logN (ot | µim,Σim ) . (2.32)
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The parameter set Λ which maximizes the above equation subject to the stochastic con-
straints

N∑
i=1

πi = 1, (2.33)

N∑
j=1

aij = 1, 1 ≤ i ≤ N (2.34)

M∑
m=1

wim = 1, 1 ≤ i ≤ N (2.35)

can be derived by Lagrange multipliers or differential calculus as follows [21]:

πi = γ1(i), 1 ≤ i ≤ N (2.36)

aij =

T∑
t=2

ξt−1(i, j)

T∑
t=2

γt−1(i)

,
1 ≤ i ≤ N
1 ≤ j ≤ N

(2.37)

wim =

T∑
t=1

γt(i,m)

T∑
t=1

γt(i)

,
1 ≤ i ≤ N
1 ≤ m ≤ M

(2.38)

µim =

T∑
t=1

γt(i,m) · ot

T∑
t=1

γt(i, m)

,
1 ≤ i ≤ N
1 ≤ m ≤ M

(2.39)

Σim =

T∑
t=1

γt(i,m) · (ot − µim) (ot − µim)>

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m ≤ M

(2.40)

where γt(i), γt(i,m), and ξt (i, j) are the probability of being in the j-th state at time t,
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the probability of being in the m-th substate of the i-th state at time t, and the probability
of being in the i-th state at time t and j-th state at time t + 1, respectively, that is

γt (i) = p (o, qt = i | Λ)

=
αt(i)β(i)

N∑
j=1

αt(j)βt(j)

,
1 ≤ i ≤ N
t = 1, . . . , T

(2.41)

γt (i,m) = p (o, qt = i, st = m | Λ)

=
αt(i)β(i)

N∑
j=1

αt(j)βt(j)

· wimN (ot | µim,Σim )
M∑

k=1

wikN (ot | µik,Σik )

,
1 ≤ i ≤ N
1 ≤ m ≤ M
t = 1, . . . , T

(2.42)

ξt(i, j) = p (o, qt = i, qt+1 = j | Λ)

=
αt(i)aijbj (ot+1) βt+1(j)

N∑
l=1

N∑
n=1

αt(l)alnbn (ot+1) βt+1(n)

.
1 ≤ i ≤ N
t = 1, . . . , T

(2.43)

2.5 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), its algorithm
for calculating the output probability (forward-backward algorithm), searching the opti-
mal state sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are
described. Following chapters show the HMMs for acoustic modeling in speech recogni-
tion.
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Chapter 3

HMM-based speech recognition

Most of the current speech recognition systems uses HMMs as its acoustic model. In
this chapter, statistical speech recognition framework based on the HMM is described.
General speech recognition systems may be divided into five basic blocks: the front-
end, acoustic models, language models, lexicon and search algorithm. These blocks are
introduced in more detail in the following sections.

3.1 Statistical speech recognition

The goal of large vocabulary continuous speech recognition (LVCSR) systems is to take
an acoustic waveform as its input and generate a transcription of the words being uttered.
First, the speech waveform is recorded and sampled by a digital device. Next, processor
converts the sampled waveform into an observation vector sequence o = {o1, . . . , oT} by
removing redundant or unimportant informations such as noises. There is a larage amount
of variability in observation vector sequences even if the same words were uttered by the
same speaker. Therefore, a statistical approach is adopted to map the observation vector
sequence into the most likely word sequence. The speech recognition system usually
choose the word sequence, w = {w1, . . . , wL}, with the maximum a posteriori (MAP)
probability given the observation sequence as follows:

ŵ = arg max
w

P (w | o) (3.1)

Recently, discriminative models such as maximum entropy Markov models (MEMMs)
[22] or conditional random fields (CRFs) [23] have been applied for modeling P (w | o)

directly [24,25]. However, applying the discriminative models for LVCSR is still difficult
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due to variabilities of the observation vector sequences and the vast number of possible
word sequences. Therefore, most of the current speech recognition systems uses gener-
ative models rather than the discriminative ones. By using Bayes’ rule, Eq. (3.1) can be
written as

P (w | o) =
p (o | w) P (w)

p (o)
. (3.2)

Since p (o) is independent of the word sequence w, the MAP decoding rule of Eq. (3.1)
is

ŵ = arg max
w

p (o | w) P (w) . (3.3)

A general statistical speech recognition system may be described by the formulation in
Eq. (3.3). The system consists of five main blocks: the front-end, acoustic models, lan-
guage models, pronunciation lexicon and search algorithm.

The first term in Eq. (3.3), p (o | w), corresponds to the acoustic model, as it estimates
the probability of an observation vector sequence o, conditioned on the word sequence w.
For large vocabulary continuous speech recognition, the way of p (o | w) computation is
to build statistical models for sub-word speech units, build up word models from these
sub-word speech units using a pronunciation lexicon, and then postulate word sequences
and evaluate the acoustic model probabilities of concatenated word models. It is possible
to use any kind of models for p (o | w). Currently, context-dependent sub-word HMMs
are used for most of speech recognition systems as its acoustic model.

The second term in Eq. (3.3), P (w), corresponds to the language model, as it describes
the probability associated with a postulated sequence of words. Generally language mod-
els are represented in a finite state network so as to be integrated into the acoustic model
in a straightforward manner.

The final block, the search algorithm, implements the maximization in Eq. (3.3).

3.2 Front-ends

Comparing the sampled acoustic waveforms is difficult due to varying speaker and acous-
tic characteristics. However, the spectral shape of the speech signal have most of the
important information [26]. Front-end of speech recognition systems generate observa-
tion vector sequences which represent the short-term spectrum of the speech signal. There
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are many techniques for parameterizing speech spectra, i.e., linear prediction coefficients
(LPC) [27,28], line spectral pair (LSP), cepstrum [29], mel-cepstrum [30], and so on. Mel
filterbank cepstral coefficients (MFCC) [31] or perceptual linear prediction (PLP) [32] is
generally used in most of the current speech recognition systems. In all cases the speech
signal is assumed to be quasi-stationary so that it can be decided into short frames.In each
frame period a new parameterized short-time spectra vector is produced by analyzing a
speech segment. In a final step, delta and delta-delta coefficients are appended to the
acoustic vector [33–36]. The delta and delta-delta coefficients are usually calculated as
regression coefficients from their neighboring static features as follows:

∆ct =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)ct+τ , ∆2ct =

L
(2)
+∑

τ=−L
(2)
−

w(2)(τ)ct+τ , (3.4)

where ct, ∆ct, and ∆2ct are static, delta, and delta-delta coefficients at time t, respec-
tively, and

{
w(d)(τ)

}
d=1,2 τ=−L

(d)
− ,...,L

(d)
+

are regression window coefficients to calculate
the d-th order dynamic feature. As a result, the observation vector at time t, ot, consists
of static and dynamic features as

ot =
[
c>

t , ∆c>
t , ∆2c>

t

]>
. (3.5)

3.3 HMM-based acoustic modeling

The HMMs are used to provide the estimates of p (o | w) in the speech recognition sys-
tems. For isolated word recognition with sufficient training data, an HMM can be trained
for each word. However, for LVCSR tasks, it is unlikely that there are enough training
examples of each word in the dictionary. Therefore, sub-word units such as phone or syl-
lable is used. An HMM is generally trained for each phone. The HMMs corresponding
to the phone sequence may then be concatenated to form a composite model representing
words and sentences.

When the HMMs are trained for the set of phones, it is referred to as a monophone or
context-independent system. However, there is a large amount of variation between real-
izations of the same phone depending on the previous and next phones. Triphones which
take the previous and next phones into account are commonly used as context-dependent
phones. The number of states and model parameters of a triphone system is significantly
higher than a monophone system. However, it is unlikely that sufficient training data is
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Figure 3.1: Example of a phonetic decision tree for triphone models.

available for parameter estimation. To avoid this problem, the state output probability
distributions are generally shared.

A phonetic decision tree [37–39] is generally used to construct state tying structure in
context-dependent systems (Figure 3.1). First, all phones are pooled in the root node.
Next, the state clusters are split based on contextual questions. When the number of
training data per state falls below a threshold, the splitting will terminate. A disadvantage
of decision tree-based state clustering is that the splits maximize the likelihood of the
training data locally [40, 41].

3.4 Word N -gram-based language modeling

The language model provides P (w) in the speech recognition systems. Using chain rule,
this can be expressed as

P (w) =
L∏

l=1

P (wl | wl−1, . . . , w1) . (3.6)

To reduce the number of parameters, different histories can be divided into equivalence
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class using a function h (wl−1, . . . , w1). In general, equivalence classes are defined by
truncating the history to N − 1 words. These word N -gram language models are defined
as

P (w) =
L∏

l=1

P (wl | wl−1, . . . , wl−N+1) . (3.7)

Standard values are N = 2, 3 which are called bi-gram or tri-gram models, respectively.
The N -grams are estimated by counting relative frequencies from text corpus. For a vo-
cabulary of V words, there are still V N N -gram models. Word sequences can be assigned
a zero probability for given a finite training data. Many smoothing technique such as
discounting, backing off, and deleted interpolation have been proposed [42].

In the speech recognition systems, there is often a mismatch between the acoustic and
language model. Dynamic ranges is different between the discrete probability, P (w),
estimated from a text corpus and the acoustic likelihood, p (o | w), obtained from high
dimensional observation densities. For this mismatch, the language model probability is
generally increased by a constant called the grammar scale factor. The speech recognition
system also tend to output short words result in many insertion errors. To compensate this
problem, an insertion penalty which reduce the total score p (o | w) P (w) depending on
the number of hypothesized words in the sequence is generally used. By taking these
modifications into account in Eq. (3.3), a practical speech recognition system uses

ŵ = arg max
w

[
log {p (o | w)} + α log {P (w) + βL}

]
(3.8)

where α, β, and L are the grammar scale factor, the insertion penalty, and the total number
of words, respectively. The α and β are empirically set.

3.5 Pronunciation lexicon

Each word is defined by a pronunciation obtained from a dictionary. The word HMM is
the concatenation of the relevant sequence of sub-word HMMs. The lexicon is stored as a
tree for computational efficiency. A tree-based lexicon have been used in various speech
recognition system. Tree-based lexicon allows pronunciations with similar heads to share
memory when being evaluated. Therefore, different pronunciations of the same word are
stored as separate lexical items. The disadvantage of using the tree-based lexicon is that
it is not an efficient approach to represent multiple pronunciations of the same word.
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3.6 Search algorithms

To determine the word sequene yielding maximum combined probability from the acous-
tic and language model, the following problems must be resolved.

1. The number of words in given utterance is unknown.

2. Word boundaries in given utterance are also unknown.

3. The word boundaries are often fuzzy.

4. For a set of V word-reference patterns and L words in the utterance, there are V L

possible combinations of composite matching patterns.

To solve these problems, efficient search algorithm have been proposed. Most of these
algorithms can categorized into two basic classes: Viterbi decoding [43] and stack decod-
ing [44].

3.7 Summary

In this chapter, the statistical speech recognition framework and its main modules, front-
ends, acoustic modeling, language modeling, and search algorithm, are described. Fol-
lowing chapter show the HMMs for acoustic modeling in speech synthesis.
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Chapter 4

HMM-based speech synthesis

In the previous chapter, HMM-based speech recognition system was described. In this
chapter, statistical speech synthesis framework and the HMM-based speech synthesis sys-
tem are described.

4.1 Statistical speech synthesis

Text-to-speech synthesis system can be viewed as an inverse procedure of speech recogni-
tion system. The goal of a text-to-speech system is acoustic speech waveform generation
from a word sequence. In general, given word sequence w is processed by a text anal-
ysis module. In this part, contextual factors (e.g., accent, lexical stress, part-of-speech,
phrase boundary, etc.) are estimated. Next, a speech waveform is generated by a speech
synthesis module.

The majority of state-of-the-art speech synthesis systems is trained by using a large
amount of speech data. In general, this type of system is called as a corpus-based speech
synthesis system [45]. Compared with the previous speech synthesis systems, corpus-
based one especially improve the naturalness of synthesized speech.

One of the major approaches in the corpus-based speech synthesis is unit selection based
one [46–48]. In this system, the speech waveform is segmented into the small units,
phone, di-phone, syllable, etc.. Next, a unit sequence with minimum target and concate-
nation costs is selected [47] and connected.

Another major approach is statistical speech synthesis, such as HMM-based one [5]. This
system generates speech parameter sequence o = {o1, o2, . . . , oT} with the maximum a
posteriori (MAP) probability given the sub-word sequence u as follows:

19



Training HMM Training part

Spectral parametersExcitation parameters

Spectral parametersExcitation parameters

Synthesis part

Waveform

Input text

Text analysis

Synthesized speech

Context-dependent
label sequence

Context-dependent
label sequences

Context-dependent
HMMs

Parameter
generation

Speech

database

Synthesis

filter
Excitation

generation

Spectral

analysis

Excitation

extraction

Figure 4.1: An overview of a typical HMM-based speech synthesis system.

ô = arg max
o

P (o | u) . (4.1)

The term in Eq. (4.1) has the same form to the first term in Eq. (3.3). In speech recognition
system, Bayes’ rule is required to use generative models. On the other hand, generative
models can directly be applied in speech synthesis system. The HMM is the most popular
generative models.

4.2 HMM-based speech synthesis

4.2.1 Overview

Figure 4.1 shows the HMM-based speech synthesis system [5]. It consists of the training
and synthesis part. In the training part, spectrum and excitation parameters are extracted
from a speech database. These parameters are modeled by context-dependent HMMs.
State duration models are also estimated. In the synthesis part, a sentence HMM is con-
structed by concatenating the context-dependent HMMs fro a given text to be synthesized.
In synthesis part, the sequences of spectrum and excitation parameters are generated from
the sentence HMM using speech parameter generation algorithm [49–51]. Finally, speech
waveform is synthesized from a synthesis filter module. One of the advantage is that voice
qualities of synthesized speech can be modified by transforming HMM parameters. It has
been shown that its voice characteristics can be modified by speaker adaptation [52],
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speaker interpolation [53], or eigenvoice technique [54].

4.2.2 Speech parameter generation algorithm

Problem

For a sentence HMM Λu corresponding to a given sub-word sequence u, the speech syn-
thesis problem is to obtain an output vector sequence consisted of spectral and excitation
parameters.

o = {o1,o2, . . . , oT} (4.2)

which maximizes its posterior probability with respect to o, that is

ô = arg max
o

p (o | Λu)

= arg max
o

∑
all q

p (o, q | Λu)

= arg max
o

∑
all q

p (o | q, Λu) P (q | Λu) (4.3)

q = {(q1, s1), (q2, s2), . . . , (qT , sT )} (4.4)

where, q and (qt, st) represent a substate sequence and the st-th substate of the qt-th state,
respectively. This problem is approximated by a Viterbi approximation, because there is
not method to analytically obtain o which maximizes p (o | Λu) in a closed form. As
a result, this maximization problem can be separated into two stages: finding the best
substate sequence q̂ for given Λu and obtaining o which maximizes p (o | q, Λu) with
respect to o, i.e.,

q̂ = arg max
q

P (q | Λu) , (4.5)

ô = arg max
o

p (o | q̂, Λu) . (4.6)

The optimization of Eq. (4.5) is performed using explicit state duration models [55] in
the HMM-based speech synthesis system. If the output vector ot is independent from
previous and next frames, the output vector sequence o which maximize p (o | q, Λu)
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is obtained as a sequence of mean vectors of substates. This causes discontinuity in
the output vector sequence at transitions of substates. To avoid this problem, dynamic
features have benn introduced. We assume that the output vector ot consists of a static
feature vector

ct = [ct(1), . . . , ct(K)]> (4.7)

and its dynamic features, that is

ot =
[
c>

t , ∆c>
t , ∆2c>

t

]>
, (4.8)

where ∆ct and ∆2ct are delta and delta-delta coefficients, respectively. They are calcu-
lated as follows:

∆ct =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)ct+τ , (4.9)

∆2ct =

L
(2)
+∑

τ=−L
(2)
−

w(2)(τ)ct+τ . (4.10)

Solution for the Problem

First, the output vector sequence o and the static feature vector sequence c can be rewrit-
ten as follows:

o =
[
o>

1 ,o>
2 , . . . , o>

T

]>
, (4.11)

c =
[
c>

1 , c>
2 , . . . , c>

T

]>
. (4.12)

Then, the relationship between c and o can be expressed in a matrix form (Figure 4.2) as
follows:

o = Wc, (4.13)

where, W is a regression window matrix given by
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Figure 4.2: An example of the relationship between the static feature vector sequence c
and the speech parameter vector sequence o in a matrix form (the dynamic features are
calculated using L

(1)
− = L

(1)
+ = L

(2)
− = L

(2)
+ = 1, w(1)(−1) = −0.5, w(1)(0) = 0.0,

w(1)(1) = 0.5, w(2)(−1) = 1.0, w(2)(0) = −2.0, w(2)(1) = 1.0).

W = [W1,W2, . . . , WT ]> ⊗ IM×M , (4.14)

Wt =
[
w

(0)
t , w

(1)
t ,w

(2)
t

]
, (4.15)

w
(0)
t =

[
0, . . . , 0︸ ︷︷ ︸

t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
T−t

]>
, (4.16)

w
(1)
t =

[
0, . . . , 0︸ ︷︷ ︸
t−L

(1)
− −1

, w(1)(−L
(1)
− ), . . . , w(1)(0), . . . , w(1)(L

(1)
+ ), 0, . . . , 0︸ ︷︷ ︸

T−
“

t+L
(1)
+

”

]>
, (4.17)

w
(2)
t =

[
0, . . . , 0︸ ︷︷ ︸
t−L

(2)
− −1

, w(2)(−L
(2)
− ), . . . , w(2)(0), . . . , w(2)(L

(2)
+ ), 0, . . . , 0︸ ︷︷ ︸

T−
“

t+L
(2)
+

”

]>
, (4.18)

The output probability of o conditioned on q is calculated by multiplying the output
probabilities of entire observation vectors,
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p (o | q, Λu) =
T∏

t=1

N (ot | µqtst ,Σqtst ) , (4.19)

where, µqtst and Σqtst are the 3K × 1 mean vector and 3K × 3K covariance matrix, re-
spectively. Eq. (4.19) can be rewritten as an output probability of o from a single Gaussian
component, that is

p (o | q, Λu) = N (o | µq,Σq ) , (4.20)

where, µq and Σq are supervector and supermatrix corresponding to entire substate se-
quence q, that is

Σq = diag [Σq1s1 ,Σq2s2 , . . . ,Σqtst ] , (4.21)

µq =
[
µ>

q1s1
,µ>

q2s2
, . . . , µ>

qtst

]>
. (4.22)

Therefore, the logarithm of Eq. (4.19) can be written as

logN (o | µq,Σq ) = −1

2

{
3KT log 2π + log |Σq| + (o − µq)

> Σ−1
q (o − µq)

}
.

(4.23)

Under the condition in Eq. (4.13), maximizing N (o | µq,Σq ) with respect to o is equiv-
alent to that with respect to c. By setting

∂ logN (o | µq,Σq )

∂c
= 0KT , (4.24)

we obtain a set of linear equations

Rqc = rq, (4.25)

where, 0KT is a KT -dimensional zero vector, Rq and rq are given as

Rq = WΣ−1
q W , (4.26)

rq = WΣ−1
q µq. (4.27)
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Since Rq is a KT×KT matrix, O(K3T 3) operations are required for solution of Eq. (4.25).
Eq. (4.25) can be solved by the Cholesky with O(K3L2T ) operations by utilizing the spe-
cial structure of Rq. Eq. (4.25) can also be solved by an algorithm derived in [49–51],
which can operate in a time-recursive manner [56].

4.3 Summary

In this chapter, a statistical speech synthesis framework and the speech parameter genera-
tion algorithm are described. Following chapter will derive a model which integrate state
duration probability distribution explicity into the HMM for speech recognition.
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Chapter 5

Hidden Semi-Markov Model-Based
Speech Recognition

Hidden Markov models (HMMs) (Figure 5.1(a)) have formed the basis of many speech
recognition systems since the 1970s. The advantages of using HMMs are: i) They can
represent speech as probability distributions. ii) They are robust to temporal structure
variations. iii) They provide efficient algorithms for estimating their model parameters.
However, a number of limitations of HMMs for modeling speech have been reported [9].
One of their major limitations is in duration modeling. In HMMs, state duration proba-
bilities are implicitly modeled by state transition probabilities; state duration probabilities
decrease exponentially with time. Geometric distribution calculated by the state transi-
tion probabilities of HMMs would be inappropriate state duration probability distribution
representation of the temporal structure of speech.

One of the solutions to this problem is to integrate state duration probability distribu-
tions explicitly into the HMM. This model is known as a hidden semi-Markov model
(HSMM) [6–8], and is illustrated in Figure 5.1(b). Unlike HMMs, HSMMs have state
duration probability distributions. Figure 5.2 shows the state duration probability dis-
tributions of an HMM and an HSMM. Geometric distribution in an HMM would be
inappropriate representation of the temporal structure of speech. Although the gamma,
Poisson and log Gaussian distributions have been applied to state duration modeling in
HMM-based speech recognition, in this chapter, we assume that each state duration prob-
ability distribution is represented by a Gaussian distribution because there exists a simple
clustering algorithm for Gaussian distributions. Although the clustering algorithm of the
gamma distributions was reported in [57], we choose Gaussian distributions for simplicity
in this chapter.

Although discrete probability distributions can represent any distributions, the lack of

26



)MMH(ledomvokraMneddih)a(

)MMSH(ledomvokraM-imesneddih)b(

b ( )
1

. b ( )
2

. b ( )
3

.

b ( )
1

. b ( )
2

. b ( )
3

.

1
a

12
a

23

a
33

a
22

a
11

1
a

12
a

23

Figure 5.1: Examples of a 3-state left-to-right HMM and an HSMM with no skip.

training data could be an issue. In [8], a smoothing technique is used to prevent over
training caused by the lack of training data. On the other hand, the use of continuous
probability distributions may remedy such a over training problem. However, it is nesses-
sary to choose an appropriate continuous probability distribution type previously. In this
chapter, we use continuous probability distributions because it can avoid additional pro-
cessing such as smoothing.

A variety of attempts to include explicit duration models in speech recognition systems
have been reported [10–12]. However, they are not fully consistent because various ap-
proximations are used in both training and decoding:

1) State duration probability distributions were estimated from statistical variables calcu-
lated by the forward-backward algorithm of the HMM, not of the HSMM [5].

2) State duration probability estimation utilizes a context-independent model or context-
dependent state tying structure of state output probability distributions [11].

3) State duration models were not applied directly in the decoding process. Instead, the
N -best hypotheses generated by the HMMs were rescored [12].

We propose a fully consistent HSMM-based speech recognition system to overcome the
above approximations. For approximation 1), we simultaneously estimate both state out-
put and duration probability distributions based on the HSMM statistics calculated by the
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generalized forward-backward algorithm [6]. For approximation 2), state output and du-
ration probability distributions are independently clustered using different phonetic deci-
sion trees [5] by a decision-tree-based state clustering technique [39]. For approximation
3), we design an HSMM-native speech decoder based on weighted finite-state transducers
(WFSTs) to apply HSMM directly to the input speech.

5.1 A fully consistent HSMM-based speech recognition
system

5.1.1 Training algorithms for HSMMs

We derived training algorithms for HSMMs based on the maximum likelihood (ML) cri-
terion [5]. However, there is an inconsistency: state duration probability distributions
have not been incorporated into the expectation step of the EM algorithm. In this sec-
tion, the generalized forward-backward algorithm (expectation step) and parameter re-
estimation formulas (maximization step) that are required to avoid the approximation in
training [6, 8, 10], are described.
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Generalized forward-backward algorithm

The output probability of an observation vector sequence o from an HSMM Λ can be
computed efficiently using the generalized forward-backward algorithm. The partial for-
ward probabilities αt (·) and partial backward probabilities βt (·) are defined as follows:

α0 (j) =

{
1 j = N

0 otherwise
, (5.1)

αt (j) = P (o1, . . . , ot, qt = j | qt+1 6= j, Λ)

=
t∑

d=1

N∑
i=1,
i 6=j

αt−d (i) aijpj (d)
t∏

s=t−d+1

bj (os) ,
t = 1, 2, . . . , T
1 ≤ j ≤ N

, (5.2)

(5.3)

βT+1 (i) =

{
1 i = N

0 otherwise
, (5.4)

βT (i) = aiNβT+1 (N) (1 ≤ i ≤ N) , (5.5)

βt (i) = P (ot+1, . . . , oT , qt = i | qt+1 6= i, Λ)

=
T−t∑
d=1

N∑
j=1,
j 6=i

aijpj (d)
t+d∏

s=t+1

bj (os) βt+d (j) ,
t = T − 1, . . . , 1
1 ≤ i ≤ N

, (5.6)

where aij , bj (ot), N , and pj (d), are a state transition probability from the i-th state to
the j-th state, a state output probability of an observation vector ot from the j-th state,
the total number of states, and a state duration probability of the j-th state, respectively.
From the above equations, the output probability of the observation vector sequence o =

{o1, . . . , oT} from the HSMM Λ is given by

P (o | Λ) =
N∑

i=1

N∑
j=1,
j 6=i

t∑
d=1

αt−d (i) aijpj(d)

t∏
s=t−d+1

bj(os)βt(j), t = 1, . . . , T , (5.7)

Parameter re-estimation formulas

In this chapter, we assume that each state output probability b (·) is represented by a mix-
ture of Gaussian distributions. Parameter re-estimation formulas of the mixture weight
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wjg, mean vector µjg and covariance matrix Σjg of the g-th mixture of the j-th state are
given by

wjg =

T∑
t=1

t∑
d=1

γd
t (j, g)

G∑
h=1

T∑
t=1

t∑
d=1

γd
t (j, h)

, (5.8)

µjg =

T∑
t=1

t∑
d=1

ζd
t (j, g)

T∑
t=1

t∑
d=1

γd
t (j, g)

, (5.9)

Σjg =

T∑
t=1

t∑
d=1

ηd
t (j, g)

T∑
t=1

t∑
d=1

γd
t (j, g)

, (5.10)

respectively, where G is the number of Gaussian distributions, γd
t (j, g), ζd

t (j, g) and
ηd

t (j, g) are occupancy probabilities, first, and second order statistics, respectively, given
by

γd
t (j, g) =

1

P (o | Λ)

N∑
i=1,
i6=j

αt−d (i) aijpj (d) βt (j)

·
t∑

s=t−d+1

wjgN (os | µjg,Σjg) ·
t∏

k=t−d+1,
k 6=s

bj (ok) , (5.11)

ζd
t (j, g) =

1

P (o | Λ)

N∑
i=1
i6=j

αt−d (i) aijpj (d) βt (j)

·
t∑

s=t−d+1

wjgN (os | µjg,Σjg) ·
t∏

k=t−d+1,
k 6=s

bj (ok) os, (5.12)
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ηd
t (j, g) =

1

P (o | Λ)

N∑
i=1

αt−d (i) aijpj (d) βt (j)

·
t∑

s=t−d+1

wjgN (os | µjg,Σjg) ·
t∏

k=t−d+1,
k 6=s

bj (ok) [os − µjg] [os − µjg]
> .

(5.13)

Let us assume that the state duration probability distribution of the j-th state of an HSMM
Λ is modeled by a Gaussian distribution with mean ξj and variance σ2

j . The re-estimation
formulas of ξj and σ2

j are derived as follows:

pj (dj) = N
(
dj | ξj, σ

2
j

)
, (5.14)

ξj =

T∑
t0=1

T∑
t1=t0

χt0,t1 (j) · (t1 − t0 + 1)

T∑
t0=1

T∑
t1=t0

χt0,t1 (j)

, (5.15)

σ2
j =

T∑
t0=1

T∑
t1=t0

χt0,t1 (j) · (t1 − t0 + 1)2

T∑
t0=1

T∑
t1=t0

χt0,t1 (j)

−
(
ξj

)2
, (5.16)

where χt0,t1(j) is the probability of occupying the j-th state of the HSMM Λ from time t0
to t1, which can be written as

χt0,t1 (j) =
1

P (o | Λ)

N∑
i=1
i 6=j

αt0−1 (i) aij

·
t1∏

s=t0

bj (os) · pj (t1 − t0 + 1) · βt1 (j) . (5.17)

5.1.2 Context-dependent duration modeling

There are a number of contextual factors that affect speech parameters. In HMM-based
speech recognition systems, context-dependent models such as triphones have been used.

31



However, if context-dependent models are used, the number of possible models increases
exponentially. To avoid this problem, a variety of parameter sharing techniques have
been developed [58]. The use of phonetic decision trees is one good solution to this
problem [39].

In the conventional HSMM-based speech recognition systems, either the context-independent
duration model or the same parameter tying structure as of state output probability distri-
butions was used [11] (Figure 5.3(a)). However, it is generally thought that state output
and duration probability distributions have different context-dependencies. We adopted
a context-dependent duration modeling technique used in HMM-based speech synthe-
sis [5]. The state duration probabilities of each HSMM are modeled by single multi-
variate Gaussian distributions whose dimensionality is equal to the number of states of
the HSMM. Thus, the Gaussian distribution of the i-th dimension has the mean and vari-
ance of the state duration probability distribution for the i-th state of the HSMM. In the
proposed system, state output and duration probability distributions are clustered inde-
pendently by phonetic decision trees [39] (Figure 5.3(b)). Constructed phonetic decision
trees represent different context-dependencies for state duration and spectral features.

5.1.3 HSMM-native WFST decoder

Most conventional HSMM-based speech recognition systems have not used state duration
models in their decoders [12]. Usually, the N -best hypotheses generated by the HMMs are
rescored using the HSMM likelihood. We constructed an HSMM-based speech recogni-
tion system using weighted finite-state transducers (WFSTs) to incorporate state duration
models into the decoding process.

Finite-state machines have been used in many areas of computational linguistics. These
transducers appear as very interesting in speech processing. WFSTs associate weights,
such as probabilities, duration, penalties, or any other quantity that accumulates linearly
along paths to each pair of input and output symbol sequences. This offers a unified
framework representing various models used in speech and language processing [59, 60].
An integrated WFST for speech recognition can be represented as

H ◦ C ◦ L ◦ G, (5.18)

where H , C, L, and G are WFSTs for a state transitions network, a context-dependent
model mapping, a pronunciation lexicon, and a language model, respectively.

The advantages of using WFSTs for speech decoding are
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structure as of state output probability distributions.

(b) Context-clustering that separates state duration probability 

distributions from HMM parameters.

Figure 5.3: Context-clustering for state output and duration probability distributions.

• Individually designed components can be combined.

• Each component can be individually optimized.

• The decoder is easily managed, because the network and the decoder itself are
constructed individually.

Furthermore, each component can be replaced easily (Figure 5.4). Using these advan-
tages, we can easily design a speech decoder for HSMMs and fairly compare the perfor-
mance of different acoustic models based on a common WFST decoding software.

Figure 5.5 shows the state transition of an HMM and an HSMM represented by WFSTs.
All arcs of Figure 5.5(a), and Figure 5.5(b) are weighted by state transition probabilities,
and state duration probabilities. The maximum state duration in Figure 5.5(b) is limited
because we cannot represent infinite duration in the WFST framework. In this chapter, the
normalization to satisfy the probability constraint

∑
d

pj (d) = 1 is not applied to state du-

ration models because no major difference was found in speech recognition performances
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Figure 5.4: WFSTs for speech recognition.

for normalized and unnormalized state duration probabilities, respectively. It is noted that
the normalization has similar effect to the duration weighting.

5.2 Experiments

To evaluate the performance of the proposed HSMM-based speech recognition system,
speaker-dependent continuous phoneme recognition experiments were conducted on the
ATR Japanese speech database B set (phonetically-balanced sentences). In all experi-
ments, the speech data was down-sampled from 20 kHz to 16 kHz, windowed at a 5 ms
frame rate using a 25 ms Blackman window, and parameterized into 25 mel-cepstral co-
efficients with a mel-cepstral analysis technique. Static coefficients including the zero-th
coefficients and their first and second derivatives were used as feature parameters. 3-state
left-to-right structures were used and 118 questions about left and right phonetic contexts
were prepared for decision tree construction. Each state output distribution was modeled
by a Gaussian distribution with a diagonal covariance matrix. A WFST for decoding was
constructed from WFSTs representing chained triphone HMMs and a phoneme network
(phoneme-pair grammar) based on the WFST composition and determinization. Maxi-
mum and minimum state duration of each HSMM state was limited to ξi ±

√
σ2

i × 2.

5.2.1 Model size

Phonetic decision-tree-based context-clustering [39] was applied independently to state
output and duration probability distributions. The MDL criterion was used to stop tree
growth [61]. We changed the weight for the penalty term of c (Eq. (9) in [61]) to con-
struct acoustic models with various numbers of parameters. The same weight c was used
to cluster both state output and duration probability distributions. Thus, the number of
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(b) WFST for state transition of an HSMM

(a) WFST for state transition of an HMM

Figure 5.5: WFSTs for state transitions of an HMM and an HSMM.

state duration probability distributions changed according to the number of state output
probability distributions.

Our WFST decoder for phoneme recognition can be represented as

log (O | Λ) ' max
Q

{log P (O | Q, Λ) + w log P (Q | Λ)} (5.19)

where, O, Λ, Q, and w are an observation vector sequence, a sequence of phoneme
HSMMs, an state sequence, and duration weight. In this experiment, we set w = 1 at all
frames.

In the first experiment, phonetically balanced 450 sentences uttered by a speaker MHT
were used for training HMMs and HSMMs. The remaining 53 sentences were used for
evaluation. We fixed the beam width to 2000 and evaluated the effect of modeling state
duration probability distributions.

Figure 5.6 shows the result. It can be seen from the figure that the proposed fully consis-
tent HSMM-based system represents an improvement over the conventional HMM-based
system in all settings.
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Figure 5.6: Average phoneme accuracy versus the number of state output probability
distributions.

5.2.2 Search efficiency

The proposed HSMM-based system has a larger search space because the state transi-
tion WFST of HSMMs is more complex than that of HMMs. Therefore, we expected
that its performance would depend strongly on beam width. To test this expectation, we
fixed MDL weight c to 1 and examined the effective beam width of both the HMM- and
HSMM-based systems. If the same beam width is used, the computational complexities
of both systems are almost equal.

Figure 5.7 shows the results. It can be seen from the figure that if the beam width is lower
than 200, the HSMM-based system does not perform as well as the HMM-based system.
However, if the beam width is larger than 200, the HSMM-based system performs better.

5.2.3 Duration weight

In the third experiment, we fixed the beam width to 2000 and evaluated the effect of
duration weight.

Figure 5.8 shows the results. As the duration weight increased, the performance improved,
peaking when the weight reached 20. At this point, performance of the HSMM-based
system achieved about 48% error reduction over the HMM-based system.
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Figure 5.7: Average phoneme accuracy versus beam width.

5.2.4 Number of Mixture

To test the effect of the number of mixtures, we changed the number of mixtures of both
the HMM- and HSMM-based systems1. The same MDL weight, beam width and duration
weight were used.

Figure 5.9 shows the results. It can be seen from the figure that if the number of mixtures
is higher than 4, the HSMM-based system does not perform as well as the HMM-based
system. However, comparing the best performance for each of the 2-mix HSMM-based
system and the 4-mix HMM-based system, we see that the 2-mix HSMM-based system
performs better.

5.2.5 Comparative experiment

To investigate the effects of the three approximations mentioned in Section 5.1, we con-
ducted a comparative experiment using 10 speakers (4 female speakers FKN, FKS, FTK,
FYM, 6 male speakers MHO, MHT, MMY, MSH, MTK, MYI). In this experiment, we
constructed the following 5 systems:

1In this experiment, we used fast forward-backward algorithm reported in [62] to reduce computational
time of mixture.
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Figure 5.8: Average phoneme accuracy versus duration weight.

HMM An HMM-based system.

HSMM (train) An HSMM-based system with the approximation that state duration prob-
ability distributions were estimated based on statistics calculated by the forward-
backward algorithm of the HMM [5].

HSMM (mono) An HSMM-based system with monophone state duration probability
distributions.

HSMM (state) An HSMM-based system with a common state sharing structure for both
state output and duration probability distributions2. In this experiment, context-
clustering was applied using state output likelihood only.

HSMM (rescore) An HSMM-based system with the approximation that the 100 best
hypotheses generated by the HMMs were rescored using the HSMM likelihood
[12].

HSMM The proposed fully consistent HSMM-based system.
2It is effective in the sense of speech recognition performance that state output and duration probability

distributions have independent state sharing structures. However, the system that state output and duration
probability distributions have common state sharing structures performs a more effective search because
their structures are combined by WFST optimization. Future work includes investigations of search ef-
ficiency with WFST optimization when state output and duration probability distributions have common
state sharing structures.
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Figure 5.9: Average phoneme accuracy versus number of mixture.

The beam width were fixed to 2000. Phoneme insertion penalty and duration weight were
optimized for each system.

Figure 5.10 shows the speech recognition performance of each system. Comparing “HSMM”
with “HSMM (train)” and “HSMM (rescore)”, we see that the approximation in training
and decoding, respectively, degrade the speech recognition performance significantly. Al-
though difference between “HSMM” and “HSMM (mono)” is small, “HSMM” performs
better than “HSMM (mono).” It is seen from Figure 5.10 that “HSMM (state)” is worse
than “HSMM (mono)”. It seems that the lack of training data was caused by common
state sharing structures of state output and duration probability distributions. By compar-
ing “HMM” with “HSMM (mono)” and “HSMM”, we found that the differences were
statistically significant [63] at the 5% level. Finally, we can see that by avoiding all three
approximations, the fully consistent HSMM-based system “HSMM” achieved about 9.1%
error reduction over the standard HMM-based system “HMM”.

5.2.6 Speaker-independent experiment

To test the effects of speaker-dependency, we conducted a speaker-independent continu-
ous phoneme recognition experiment using 10 speakers. In this experiment, nine speakers
data sets and one speaker data set are used as traing and testing, respectively. The beam
width were fixed to 2000. Phoneme insertion penalty and duration weight were optimized
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Figure 5.10: Comparative experiment: Average phoneme accuracy with insertion penalty
and duration weight.

for each system.

Figure 5.11 shows the speech recognition performance of each system. It can be seen
from the figure that the HMM-based system does not perform as well as the HSMM-
based system for both speaker-dependent and speaker-independent tasks. This means that
state duration modeling is effective not only for speaker-dependent tasks but speaker-
independent tasks.

5.3 Summary

In this chapter, we constructed a fully consistent HSMM-based speech recognition sys-
tem and evaluated its performance while avoiding approximations in training, context-
clustering, and decoding. The result showed an obvious improvement in phoneme recog-
nition accuracy. Future works include evaluation on speaker independent speech recogni-
tion tasks with multi-mixture state output probability distributions and investigation other
kind of distributions such as gamma, Poisson and log Gaussian distributions for state
duration modeling.
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Chapter 6

A covariance-tying technique for
HMM-based speech synthesis

The most widely used speech synthesis technique is unit selection synthesis [3, 46, 47],
in which appropriate sub-word units are selected from large speech databases. Although
this technique can synthesize high-quality speech, it requires large databases of recorded
speech. Furthermore, it usually requires excessively large footprints to put it on embedded
devices such as mobile phones, PDAs, car navigation systems, and game machines.

Statistical parametric speech synthesis based on HMMs [5, 64] has grown in usage. Fig-
ure 4.1 gives an overview of a typical HMM-based speech synthesis system. In this
system, the spectrum, excitation, and duration of speech are modeled simultaneously
by context-dependent HMMs, and speech parameter trajectories are generated from the
HMMs themselves under constraints between static and dynamic features [51]. One of
the attractive points of HMM-based speech synthesis is its small footprint. HMM-based
systems usually have smaller footprints than unit selection systems, because they store
statistics rather than speech waveforms. However, further reduction is essential to put
these systems on embedded devices that have little memory.

Speech parameters such as spectrum, excitation, and duration depend on a variety of
contextual factors such as phoneme identities, accent types, and parts-of-speech. In the
HMM-based speech synthesis system, context-dependent models are used to capture these
contextual factors. If more combinations of these contextual factors are taken into ac-
count, we should be able to obtain more accurate models. However, as the number of
contextual factors increases, the number of possible combinations also increases expo-
nentially. As a result, it is difficult to robustly estimate model parameters due to the
lack of training data. Furthermore, it is impossible for a finite set of training data to
cover every possible combination of contextual factors. Various parameter-tying tech-
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niques have been developed [58, 65–68] to avoid this problem. Among them, a decision
tree-based context-clustering technique [69] has been widely used. In the HMM-based
speech synthesis system, distributions of spectrum, excitation, and duration are clustered
individually because they have their own contextual dependencies.

In this technique, top-down clustering is performed to maximize the likelihood of model
parameters with respect to the training data by using questions about contexts. Then,
HMM identifies which of those clustered into the same leaf node are tied. Unseen models
can be generated by traversing the decision trees. Various criteria [69–73] have been
proposed for selecting the questions to be used.

Conventionally, we construct an HMM stream-level tying structure in HMM-based speech
synthesis, i.e., mean vectors and covariance matrices have exactly the same parameter-
tying structure (Figure 6.1 (a)). However, we empirically know that covariance matrices
have a smaller impact on the quality of synthesized speech than mean vectors. On the
basis of this knowledge, a technique for context-clustering mean vectors while tying all
covariance matrices (Figure 6.1 (b)) should be tested in HMM-based speech synthesis. If
each parameter is stored in a single-precision floating-point number and the dimensional-
ity of Gaussian distributions is 120, approximately 938 KBytes are required to store 1,000
Gaussian distributions with diagonal covariance matrices (statistics associated to the leaf
nodes). However, tying all covariance matrices reduced it almost by half (469 KBytes).

Semi-tied covariance is one of the major covariance-tying techniques. This technique is
a simple extension of the standard diagonal or full covariance matrices used with HMMs.
Instead of having a distinct covariance matrix for every distribution, each covariance ma-
trix consists of two elements, a component-specific diagonal covariance element and a
tied transform. It is important to make the difference between the semi-tied covariance
technique and the proposed technique clear.

The rest of this chapter is organized as follows. Section 6.1 describes the decision-tree-
based context clustering technique. Context clustering for semi-tied covariance matri-
ces are presented in Section 6.2. Section 6.3 describes the proposed decision tree-based
context-clustering technique for mean vectors while tying all covariance matrices. Sub-
jective listening test results are shown in Section 6.4. Finally, concluding remarks and
future plans are presented in final section.
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Figure 6.1: Context-dependent parameter-tying structure built by conventional and pro-
posed clustering techniques.

6.1 Decision tree-based context clustering

In the decision-tree-based context-clustering technique, top-down clustering is performed
to locally maximize the likelihood of model parameters with respect to the training data
using pre-defined questions about contexts. Then, mean vectors and covariance matrices
of HMM states clustered to the same leaf (terminal) node are tied. As a result, an HMM
state-level tying structure can be constructed. The mean vector and the covariance matrix
associated to the leaf node S, µS and ΣS , can be estimated using the ML criterion as
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µS =

T∑
t=1

∑
m∈MS

γm (t) ot

T∑
t=1

∑
m∈MS

γm (t)

, (6.1)

ΣS =

T∑
t=1

∑
m∈MS

γm (t) (ot − µS) (ot − µS)>

T∑
t=1

∑
m∈MS

γm (t)

, (6.2)

where T is the total number of frames in the training data, MS is a set of HMM states
clustered to the leaf node S, and γm (t) is the posterior probability of an HMM state m for
an observation vector at frame t, ot. The total log likelihood of the Gaussian distribution
of node S to the associated training data is calculated as

L (S) =
T∑

t=1

∑
m∈MS

γm (t) logN (ot; µS,ΣS)

= −1

2

T∑
t=1

∑
m∈MS

γm (t) {n + log (2π |ΣS|)} , (6.3)

where n is the dimensionality of µS .

The minimum description length (MDL) criterion [69] has been used in the HMM-based
speech synthesis system to automatically control the size of decision trees. When cluster
S is divided into Sq+ and Sq− by a question q, the change of total description length by
this split is calculated as follows:

∆q = L (S) −
{
L (Sq+) + L (Sq−)

}
+ α

N

2
log Γ (S0) , (6.4)

where S0 denotes a root node, α is a heuristic weight1 for the penalty term of the MDL
criterion, N is the number of parameters increased by this split, and

1The standard value of α is unity in the MDL criterion.
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Γ (S) =
T∑

t=1

∑
m∈MS

γm (t) . (6.5)

If all covariance matrices are diagonal covariance matrices, N = n + n. Note that the
context-clustering based on the MDL criterion can be viewed as that based on the ML
criterion with a threshold given by αN

2
log Γ (S0).

6.2 Context clustering for semi-tied covariance matrices

In this section, we describe the semi-tied covariance technique since it will be evaluated as
a conventional method in Section 6.4. In the HMM-based speech synthesis system, there
is a choice of the form of the covariance matrices. When diagonal covariance matrices
are used, elements of the feature vector are assumed to be independent. On the other
hand, when full covariance matrices are used, all correlations are explicitly modeled.
However, when full covariance matrices are used, the number of parameters per Gaussian
component increases exponentially. Compared with a diagonal covariance matrix, the
number of parameters per distribution increases to n + n(n+1)

2
from n + n. Furthermore,

the number of training samples per distribution decreases. Due to this massive increase
in the number of parameters, diagonal covariance matrices are generally used in HMM-
based speech synthesis. Using the semi-tied covariance matrix is a good solution to this
problem [74].

Semi-tied covariance matrices are a simple extension of the standard diagonal or full
covariance matrices used with HMMs. Instead of having a distinct covariance matrix for
every distribution, each covariance matrix consists of two elements, a component-specific
diagonal covariance element, Σ(diag), and a tied transform, H. The form of the covariance
matrix of state S is defined as

Σ
(stc)
S = HΣ

(diag)
S H>. (6.6)

The number of parameters increased by a split, N , becomes n + n.

46



6.3 Context clustering while tying all covariance matri-
ces

The decision-tree-based context-clustering techniques used in HMM-based speech syn-
thesis systems construct an HMM state-level tying structure, i.e., the same tying structure
is used for both mean vectors and covariance matrices. However, covariance matrices
have less impact on the quality of synthesized speech than mean vectors. For example,
even if we manually modify values of covariance matrices, the speech parameter trajecto-
ries generated from the original and modified models are often close to each other. In this
chapter, we construct the tying structure of mean vectors using decision trees while tying
all covariance matrices.

If all covariance matrices are tied, the total log likelihood of the leaf node S to the asso-
ciated training data is calculated as follows:

L′ (S) =
T∑

t=1

∑
m∈MS

γm (t) logN (ot; µS,Σg)

= −1

2

T∑
t=1

∑
m∈MS

γm (t) (ot − µS)> Σ−1
g (ot − µS)

= −1

2

T∑
t=1

∑
m∈MS

γm (t) log
(
2π

∣∣∣Σg

∣∣∣)
= −1

2
Tr

{
T∑

t=1

∑
m∈MS

γm (t) (ot − µS) (ot − µS)> Σ−1
g

}

−1

2

T∑
t=1

∑
m∈MS

γm (t) log
(
2π

∣∣∣Σg

∣∣∣)
= −1

2

T∑
t=1

∑
m∈MS

γm (t)
{

Tr
(
ΣSΣ

−1
g

)
+ log

(
2π

∣∣∣Σg

∣∣∣)}
, (6.7)

where Σg is a globally tied covariance matrix, and ΣS is defined in Eq. (6.2). Note that
Σg is fixed in the context-clustering process because the computational cost is large.

When cluster S is divided into Sq+ and Sq− by a question q, the change of total description
length by this split is calculated as follows:
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∆′
q = L′ (S) −

{
L′ (Sq+) + L′ (Sq−)

}
+ α

N

2
log Γ (S0) . (6.8)

Unlike Eq. (6.4), the number of parameters N increased by the split becomes n in this
case because only mean vectors are split. We can expect that the proposed technique can
efficiently reduce the footprints of HMM-based speech synthesis systems while retaining
the quality of the synthesized speech.

6.4 Experiments

6.4.1 Experimental condition

To evaluate the effectiveness of the proposed technique, subjective listening tests were
conducted. The first 450 sentences of the phonetically balanced 503 sentences from the
ATR Japanese speech database B-set [75], uttered by male speaker MHT, were used for
training. The remaining 53 sentences were used for evaluation. Speech signals were
sampled at 16kHz and windowed with a 5-ms shift, and mel-cepstral coefficients [76]
were obtained from STRAIGHT spectra [77]. Feature vectors consisted of spectrum and
excitation parameters. The spectrum parameter vectors consisted of 39 STRAIGHT mel-
cepstral coefficients including the zero coefficient and their delta and delta-delta coeffi-
cients. The excitation parameter vectors consisted of log F0 and its delta and delta-delta.
A seven-state (including the beginning and ending null states), left-to-right, no-skip struc-
ture was used for the hidden semi-Markov model [7]. The spectrum stream was modeled
by single multi-variate Gaussian distributions. The excitation stream was modeled by
multi-space probability distributions [78], each of which consists of a Gaussian distri-
bution for voiced frames and a discrete distribution for unvoiced frames. State dura-
tions of each model were modeled by a five-dimensional (equal to the number of emit-
ting states in each model) multi-variate Gaussian distribution. The decision tree-based
context-clustering technique was separately applied to distributions for spectrum, exci-
tation, and state duration. A speech parameter generation algorithm considering global
variance (GV) [79] was used for parameter generation.

The MDL criterion [69] was used to control the size of decision trees. We changed the
heuristic weight for the penalty term of α in Eq. (6.4) and Eq. (6.8) to construct acoustic
models with various numbers of parameters. The weights used here were 8.0, 4.0, 2.0,
1.0, 0.5, and 0.25. Although the decision tree-based context-clustering technique was
separately applied to distributions for spectrum and excitation, the same α was used.
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Figure 6.2: Subjective experimental results: Conventional method versus semi-tied co-
variance method. The same mean tying structures are constructed.

Ten subjects participated in these listening tests. Ten sentences were randomly selected
from 53 sentences for each subject. The subjects were asked to rate the naturalness of the
synthesized speech on a scale from 1 (completely unnatural) to 5 (natural). All experi-
ments were carried out using headphones in a soundproof room.

6.4.2 Semi-tied covariance technique

To reduce the burden on listeners, the listening tests were split into five parts.

To confirm the effect of the covariance matrix type for naturalness and footprint, we eval-
uated the semi-tied covariance technique in the first experiment. The following two meth-
ods were evaluated.

BASELINE : The same structure tied by conventional context-clustering was used for
mean vectors and diagonal covariance matrices.

SEMI-TIED (baseline structure) : Although the tying structure of mean vectors was
exactly the same as the BASELINE system, all covariance matrices were semi-
tied.

Figure 6.2 shows the subjective listening test results. The SEMI-TIED (baseline struc-
ture) system did not improve compared with BASELINE system. Although elements of
the feature vector are assumed to be dependent in the semi-tied covariance technique, the
assumption seems to have little impact on the quality of the synthesized speech.
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Figure 6.3: Subjective experimental results: Conventional method versus tied full covari-
ance method. The same mean tying structures are constructed.

6.4.3 Tied covariance technique

Next, a listening test was designed to confirm the empirical knowledge that covariance
matrices have little impact on the quality of synthesized speech. The following two meth-
ods were evaluated.

BASELINE : The same structure tied by conventional context-clustering was used for
mean vectors and diagonal covariance matrices.

PROPOSED0 : Although the tying structure of mean vectors was exactly the same as
the BASELINE system, all full covariance matrices were tied.

Figure 6.3 shows the subjective listening test results. The PROPOSED0 system reduced
scores slightly compared with the BASELINE system. A large amount of memory is re-
quired for full covariance matrices, even using the tying technique. Furthermore, covari-
ance matrices without diagonal elements have little impact on the quality of synthesized
speech. Therefore, it seems that the use of full covariance matrices is not appropriate for
the embedded devices.

Next, we replaced full covariance matrices with diagonal covariance matrices. The fol-
lowing two methods were evaluated.

BASELINE : The same structure tied by conventional context-clustering was used for
mean vectors and diagonal covariance matrices.
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Figure 6.4: Subjective experimental results: Conventional method versus tied diagonal
covariance method. The same mean tying structures are constructed.

PROPOSED1 : Although the tying structure of mean vectors was exactly the same as
the BASELINE system, all diagonal covariance matrices were tied.

Figure 6.4 shows the subjective listening test results. The PROPOSED1 system achieved
almost the same subjective scores with almost half the number of parameters (footprints)
when α = 1.0. Tying diagonal covariance matrices seems to be more efficient than reduc-
ing the size of decision trees to achieve the same footprints.

The fourth listening test evaluated the performance of the proposed clustering technique
while tying all diagonal covariance matrices. Note that the proposed clustering technique
was not applied to full covariance matrices because of its large computational cost. The
following two methods were compared.

BASELINE : The same structure tied by the conventional context-clustering was used
for mean vectors and diagonal covariance matrices.

PROPOSED2 : Mean vectors were clustered by decision trees while tying all diagonal
covariance matrices using the technique described in Section 6.3.

Figure 6.5 shows the experimental results. The PROPOSED2 system significantly re-
duced the number of parameters. Furthermore, it achieved slightly better subjective scores
than BASELINE. When each parameter was stored in a single-precision floating-point
number, the footprint of the BASELINE system with α = 1.0 was about 813 KBytes. On
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Figure 6.5: Subjective experimental results: Conventional method versus tied diagonal
covariance method. Different mean tying structures are constructed.

the other hand, that of the PROPOSED2 system with α = 1.0 was 649KBytes. Further-
more, the PROPOSED2 system with α = 2.0 consumed only 300 KBytes while retaining
the quality of synthesized speech close to the BASELINE system with α = 1.0. Fig-
ure 6.6 shows the average log probabilities per frame of the BASELINE, PROPOSED1,
and PROPOSED2 systems. In terms of ML estimation of HMM parameters, tying all
the covariance matrices decreased the likelihood function. The PROPOSED2 system
had a slightly higher probability than the PROPOSED1 system because of the proposed
context-clustering technique, which constructs appropriate mean vector structures while
tying all covariance matrices.

The final listening test evaluated the performance of the two proposed systems compared
with the baseline system. To guarantee the generalizability of the proposed method, the
first 450 sentences of the phonetically balanced 503 sentences from the ATR Japanese
speech database B-set [75], uttered by male speaker MHT and female speaker FKN, were
used for training speaker-dependent models. The remaining 2 sets of 53 sentences were
used for evaluation. Ten subjects participated in this listening test. Twenty sentences
were randomly selected from 106 sentences for each subject. The BASELINE system
with α = 1.0, the PROPOSED1 system with α = 1.0, and the PROPOSED2 systems
with α = 1.0 and 2.0 were compared. Figure 6.7 shows the subjective results. All pro-
posed methods had a smaller footprint than the BASELINE system while maintaining
the quality of the synthesized speech. The PROPOSED2 system with α = 1.0 had better
subjective scores than the PROPOSED1 system with α = 1.0. Table 6.1 shows the num-
ber of leaf nodes of each system with α = 1.0. In the PROPOSED2 system, the number
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Figure 6.6: Objective experimental results: Conventional method versus two proposed
methods.

of mean parameters can be increased even when the total number of parameters is de-
creased. It is supposed that the balance between model complexities of mean parameters
and covariance parameters can be adjusted by using the proposed context-clustering tech-
nique, which constructs the appropriate mean vector structure while tying all covariance
matrices.

6.5 Summary

A technique for reducing the footprints of HMM-based speech synthesis systems by tying
all covariance matrices is described. Experimental results showed that the proposed tech-
nique efficiently reduced the footprints of an HMM-based speech synthesis system to less
than half of its original size while retaining the quality of the synthesized speech. Future

Table 6.1: Comparison of the number of leaf nodes.

Number of leaf nodes
Spectrum F0

Mean Covariance Mean Covariance
BASELINE 808 808 2015 2015
PROPOSED1 808 1 2015 1
PROPOSED2 1311 1 2210 1
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methods. Their footprints were calculated on the assumption that each parameter was
stored in a single-precision floating-point number.

work includes using a separated clustering technique for mean vectors and covariance
matrices.
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Chapter 7

Simultaneous linguistic and acoustic
model training for TTS conversion
system

Standard text-to-speech (TTS) systems consist of two major modules: text analysis and
speech synthesis modules. Conventionally, these two modules are constructed indepen-
dently. The text analysis module is trained using text corpora. The module includes
phrasing and prosodic models. On the other hand, the speech synthesis module is trained
using a labeled speech database. The module includes acoustic models used for speech
synthesis, which are based on the hidden Markov model (HMM). Therefore, if these two
modules were combined and trained simultaneously as a unified model, we would expect
improved overall performance of a TTS system.

In this chapter, we define a new integrated model for simultaneous linguistic and acoustic
modeling. Two model parameter sets were simultaneously optimized by the proposed
training algorithm. In this manner, we directly-formulate the TTS problem of synthesizing
a speech waveform from a word sequence. Another advantage of the proposed approach
is that hand-labeling of phrasing and prosodic events not required for neither linguistic
nor acoustic model training because these labels are regarded as latent variables in the
model.

7.1 Linguistic model

Text analysis modules in TTS systems consist of several parts (e.g., pronunciation, part-
of-speech (POS) tagging, phrasing, and prosodic models), and we call the set of those
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parts a “linguistic model.” In this study, phrasing and prosodic models in particular are
used as the “linguistic model” in accordance with tones and break indices “ToBI” [80].

We used two phrasing models. The first model is based on a 7-gram model, and the
second model is based on a 4-gram POS model. Two types of pitch events are marked by
the prosodic model: pitch events associated with accented syllables (pitch accents) and
pitch events associated with intonational boundaries (phrasal tones). Therefore, we used
two decision trees for the prosodic model in this chapter.

7.2 Integration of linguistic and acoustic models

In this section, we define a new integrated model to optimize linguistic and acoustic mod-
els simultaneously. First, a linguistic and an acoustic model are defined. The likelihood of
the linguistic model λW , e.g., N -gram, decision tree model, is written as P (L | W , λW ),
where L and W are label sequence and word sequence, respectively. On the other hand,
the likelihood of the acoustic model λH is given by

P (O | L, λH) =
∑

q

P (O | q, λH) P (q | L, λH) , (7.1)

where O = (o1, o2, . . . , oT ) and q = (q1, q2, . . . , qT ) are observation vector sequence
and state sequence, respectively.

An integrated model λ that directly models the observation vector sequence O for the
word sequence W is derived by combining the linguistic model λW and acoustic model
λH , as follows:

P (O | W , λ) =
∑

L

∑
q

P (O | q, λH) P (q | L, λH) P (L | W , λW ) , (7.2)

where

λ = {λH , λW} . (7.3)

We performed the linguistic model λW and acoustic model λH training simultaneously
to optimize all parameters of the integrated model λ. The derivation of the algorithm is
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Figure 7.1: Conventional model optimization

.

.

.

Figure 7.2: Proposed model optimization

shown in the next Section. Differences between the conventional and proposed training
criteria are shown in Figure 7.1 and Figure 7.2, respectively. In the conventional model,
training data has to be labeled by hand or an automatic labeling tool, which is time con-
suming or causes labeling errors, respectively. On the other hand, in the proposed model,
the label sequence is regarded as a latent variable and marginalized like a state sequence
in HMM. Labeling the training data accordingly in not necessary.
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7.3 Parameter estimation formulas

7.3.1 EM algorithm

The expectation maximization (EM) algorithm [20] was used for training the proposed
model. In the EM algorithm, the likelihood is maximized at each iteration using an aux-
iliary function called the Q-function:

Q
(
λ, λ

′
)

=
∑

L

∑
q

P (q,L | O,W , λH , λW )

log
[
P

(
O | q, λ

′

H

)
P

(
q | L, λ

′

H

)
P

(
L | W , λ

′

W

)]
, (7.4)

where λ, λ
′ , and P (q,L | O, W , λH , λW ) are the integrated model before updating, that

after updating, and posterior probabilities of state sequence q and label L, respectively.
Posterior probabilities are calculated by Bayes’ rule:

P (q,L | O, W , λ) =
P (O, q,L | W , λ)∑

L

∑
q

P (O, q,L | W , λ)

=
P (O | q, λH) P (q | L, λH) P (L | W , λW )∑

L

∑
q

P (O | q, λH) P (q | L, λH) P (L | W , λW )
.(7.5)

Increasing the value of the Q-function causes an increase in the likelihood of the training
data:

Q
(
λ, λ

′
)
≥ Q (λ, λ) ⇒ P

(
O | λ

′
)
≥ P (O | λ) . (7.6)

Hence, maximization of the Q-function value at each iteration maximizes the likelihood
of the training data. The EM algorithm starts with an initial model parameter λ0, and
iterates between the following two steps:

º
¹

·
¸

E-step : compute Q
(
λ, λ(t)

)
M-step : λ(t+1) = arg max

λ
Q

(
λ, λ(t)

)
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where t denotes the number of the iteration. In this procedure, each step increases the
value of the Q-function. Therefore, the likelihood of the training data either increases or
remains unchanged at each iteration.

In the M-step of the integrated model λ, the linguistic model λW and the acoustic model
λH were updated individually. The Q-function of the linguistic model λW is defined as

QW

(
λ, λ

′
)

=
∑

L

P (L | O,W , λ) log P
(
L | W , λ

′

W

)
. (7.7)

The acoustic model λH was optimized by setting derivatives of the Q-function to zero.
As a result, the mean µi and variance Σi of the i-th state output probability distribution
(Gaussian distribution) were estimated as:

µi =

∑
t

∑
L

γi (t,L) ot∑
t

∑
L

γi (t,L)
(7.8)

Σi =

∑
t

∑
L

γi (t,L) (ot − µi) (ot − µi)
>

∑
t

∑
L

γi (t,L)
, (7.9)

respectively, where

γi (t,L) = P (qt = i,L | O, W , λ)

= P (qt = i | L,O, λ) P (L | O,W , λ) . (7.10)

Posterior probabilities P (qt = i | L,O,W , λ) of state qt were computed by the forward-
backward algorithm [1] using label sequence L. On the other hand, posterior probabilities
P (L | O,W , λ) of label sequence L were written as follows:

P (L | O, W , λ) =
P (L | W , λ) P (O | L, λ)∑

L

P (L | W , λ) P (O | L, λ)
. (7.11)
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7.3.2 N -best approximation

Direct implementation of the EM algorithm is not feasible because the total number of
possible combinations of label sequence L is too large. Thus, the N -best hypotheses gen-
erated by the text analysis module were used in this study1. The E-step was implemented
accordingly as follows:

'

&

$

%

1 : generate N -best label sequences Li, i = 1, . . . , N

2 : compute P (O | Li,W , λH) for each label sequences Li

3 : compute P (Li | O,W , λ) for each label sequences Li

4 : compute Q
(
λ, λ

′)
In the M-step, model parameters were updated using the N -best label sequences. The
above procedure optimizes the linguistic and acoustic models simultaneously. Further-
more, a state-sharing structure of HMM that matches the linguistic model was constructed
by a context-clustering technique [69].

7.4 Experiment

7.4.1 Experimental conditions

Objective evaluations were conducted on the CMU-ARCTIC speech database to eval-
uate the performance of the proposed system. Training data, testing data, and speech
analysis conditions are shown in Table 7.1. Each feature vector consisted of spectrum
and F0 parameter vectors. Each spectrum parameter vector consisted of the 0th - 39th
STRAIGHT [77] mel-cepstral coefficients, their delta coefficients, and delta-delta coef-
ficients. The F0 parameter vector consisted of log F0, its delta coefficient, and delta-
delta coefficient. We used a 5-state left-to-right HMM structure with no-skip. Forty-one
phonemes including the pause were used as speech units. Context-clustering based on a
decision tree was applied to spectrum, F0, and state duration models, individually. The
minimum description length (MDL) criterion [69] was used to stop tree growth.

We trained linguistic models using the Boston University Radio Speech Corpus for the
conventional automatic labeling technique. In the proposed system, these models were
used as initial linguistic models.

1Although variational approximation is one of the methods for solving this problem, we chose the N -
best approximation because label sequence L is strongly correlated with state sequence q.
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7.4.2 Evaluation

We calculated the root mean square error (RMSE) and correlation coefficient (Corr) of
F0 contour generation with respect to original speech in the voiced portions of the data.
The RMSE and Corr are widely used to measure the accuracy of F0 contour generation
[81–84]2. In this experiment, 4 systems were constructed as follows:

BASELINE: Only acoustic models were trained. The one-best label sequence was used.

PROSODIC: Both acoustic and prosodic models were trained simultaneously.

PHRASING: Both acoustic and phrasing models were trained simultaneously.

PROSODIC + PHRASING: Acoustic, prosodic, and phrasing models were trained si-
multaneously.

In the N -best approximation of simultaneous linguistic and acoustic model training, 100-
best label hypotheses were used. About 20 days were taken to train the integrated models
of the proposed system.

Calculations of RMSE and Corr are shown in Figure 7.3 and Figure 7.4, respectively.
Three systems, PROSODIC, PHRASING, and PROSODIC + PHRASING, using simul-
taneous training of linguistic and acoustic models achieved a smaller RMSE and larger
Corr, than those of “BASELINE.” A graph of F0 contours is shown in Figure 7.5. The F0

contour generated by “PROSODIC” seems to exhibit a better goodness of fit with respect
to original speech than that of “BASELINE.”

Table 7.1: Experimental conditions
Database CMU-ARCTIC speech database

a female speaker SLT 1132 sentences
train : 1000 sentences
test : 132 sentences

Sampling rate 16kHz
Frame shift 5ms
Window length 25ms
Window function Blackman window

2Although subjective evaluation experiments are also required, they have to be postponed because find-
ing a sufficient number of native English speakers was not easy.
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Figure 7.3: F0 RMSE results
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Figure 7.4: F0 Corr results

7.5 Summary

In this chapter, we defined a new integrated model in which linguistic and acoustic models
were combined into one model, and all model parameters were estimated simultaneously
by the proposed training algorithm. We conducted objective evaluation experiments us-
ing phrasing and prosodic models as linguistic models to evaluate the effectiveness of the
proposed system. The results demonstrate that the proposed system achieves better F0

modeling accuracy than that of the conventional system. Future work will include simul-
taneous training of POS tagging modules and acoustic models. Subjective listening tests
performed by native English speakers on a large database are also planned.
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Chapter 8

Unsupervised cross-lingual speaker
adaptation

The goal of Speech-to-Speech Translation (S2ST) research is to “enable real-time, inter-
personal communication via natural spoken language for people who do not share a com-
mon language” [85] and many large-scale projects (Verbmobil, Babylon, TC/LC-STAR,
EU-Trans, ATR, etc.) have focused on this topic. In our EU FP7 project EMIME [86],
we are developing a mobile device that performs personalized S2ST, such that a user’s
spoken input in one language is used to produce spoken output in another language, while
continuing to sound like the user’s voice.

Contrary to previous ‘pipeline’ S2ST systems that combined isolated automatic speech
recognition (ASR), machine translation (MT), and text-to-speech (TTS) systems, or sys-
tems that coupled ASR with MT [87, 88], EMIME places the main emphasis on coupling
ASR with TTS, specifically to enable cross-lingual speaker adaptation for HMM-based
ASR and TTS [5, 89]. The principal modeling framework of speaker-adaptive HMM-
based speech synthesis [89] is conceptually similar to conventional ASR systems (al-
though without discriminative training) and it is therefore possible to share Gaussians,
decision trees or linear transforms between the two [90].

In the EMIME project, we have conducted extensive experiments exploring the possibili-
ties for combining ASR and TTS models. We have also developed unsupervised adapta-
tion techniques for HMM-based TTS using either a phoneme recognizer [91] or a word-
based large-vocabulary continuous speech recognizer (LVCSR) [13], and cross-lingual
adaptation techniques for HMM-based TTS [14].

In this chapter, we integrate these developments into a single architecture which achieves
unsupervised cross-lingual speaker adaptation for HMM-based speech synthesis. We
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demonstrate an initial S2ST system built for four languages – American English, Man-
darin, Japanese, and Finnish. Although all language pairs and directions are possible in
our framework, only the English-to-Japanese adaptation was evaluated in the perceptual
experiments presented here; these experiments focus on measuring the similarity between
the output Japanese synthetic speech to the speech of the original English speaker. The
following sections give an overview of the system built, the unsupervised cross-lingual
speaker adaptation method and the TTS evaluation results.

8.1 Overview of the S2ST system using HMM-based ASR
and TTS

All acoustic models, for both ASR and TTS, are trained on large conventional speech
databases, comprising speech from hundreds of speakers, which were originally intended
for ASR: WSJ0/1 (for English), Speecon Mandarin, JNAS (Japanese), and Speecon Finnish
databases. Details of the front-end text processing used to derive phonetic-prosodic labels
from the word transcriptions can be found in [92].

For each language, state-tied context-dependent speaker-independent HMMs (or multi-
space distribution hidden semi-Markov models – MSD-HSMMs) are trained using speaker-
adaptive training (SAT) [93]. For the state tying, minimum description length (MDL) au-
tomatic decision tree clustering is used [5]. The acoustic features for ASR are either the
same as those for TTS or more typical ASR features such as MFCCs or PLPs. TTS acous-
tic features comprise the spectral and excitation features required for the STRAIGHT mel-
cepstral vocoder with mixed excitation [89]. For unsupervised cross-lingual speaker adap-
tation and decoding, a multi-pass framework is used: in the first pass, initial transcriptions
are obtained from speaker independent (SI) HMMs, and then CSMAPLR adaptation [94]
is applied to SAT-HMMs (ASR) using these obtained transcriptions. In the second pass,
using these adapted models, the transcriptions are refined. In the final pass, CSMAPLR
transforms are estimated for SAT-HSMMs (TTS) with the refined transcriptions. These
transforms can then be applied to the SAT-HSMMs for the output language, by employing
a state-level mapping that has been constructed based on the Kullback-Leibler divergence
(KLD) between pairs of states from the input and output TTS HMMs [14]. The ASR lan-
guage models used for English, Mandarin and Japanese each contain about 20k bi-grams;
the language model for Finnish is a word 10-gram plus a morph bi-gram [95]. For MT we
simply used Google’s AJAX language API1. In future work, this will be replaced by our
own MT system based on one being developed for the AGILE project2. In the TTS mod-

1http://code.google.com/intl/ja/apis/ajaxlanguage/
2http://svr-www.eng.cam.ac.uk/research/projects/AGILE/
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Search state with minimum KLD

State sharing structure (Input language) State sharing structure (output language)

Accent? Left = ae?

Right = nn?

Center = vowel?

Left = t? Right = i?

Accent?

Center = pau?

Figure 8.1: The state-mapping is learned by searching for pairs of states that have mini-
mum KLD between input and output language HMMs. Linear transforms estimated with
respect to the input language HMMs are applied to the output language HMMs, using
the mapping to determine which transform to apply to which state in the output language
HMMs.

ule, acoustic features are generated from the adapted HSMMs in the output language [89]
and an MLSA filter is used to generate the speech waveform.

8.2 Unsupervised cross-lingual adaptation based on a state-
level mapping learned using minimum KLD

A cross-lingual adaptation method based on a state-level mapping, learned using the KLD
between pairs of states, was proposed by Wu et al. [14] and is summarized here. We call
this approach “state-level transform mapping”.

8.2.1 Learning the mapping between states

For each state ∀j ∈ [1, J ] in the output language HMM λoutput, we search for the state
î in the input language HMM λinput with the minimum symmetrized KLD to state j in
λoutput:

î = argmin
1≤i≤I

DKL(j, i), (8.1)

where λoutput has J states and DKL(j, i) represents the KLD between state i in λinput and
state j in λoutput (Figure 8.1). DKL(j, i) is calculated as [96]:

66



DKL(j, i) ≈ DKL(j || i) + DKL(i || j), (8.2)

DKL(i || j) =
1

2
ln

(
|Σj|
|Σi|

)
− D

2
+

1

2
tr

(
Σ−1

j Σi

)
+

1

2
(µj − µi)

>Σ−1
j (µj − µi),

(8.3)

where µi and Σi represent the mean vector and covariance matrix of the Gaussian pdf
associated with state i.

8.2.2 Estimating the transforms for the input language HMM

Next, we estimate a set of state-dependent linear transforms Λ̂ for the input language
HMM λinput in the usual way:

Λ̂ =
(
Ŵ1, · · · , ŴI

)
= argmax

Λ
P (O|λinput, Λ)P (Λ), (8.4)

where Wi represents a linear transform for state i, I is the number of states in λinput,
and O represents the adaptation data. P (Λ) represents the prior distribution of the linear
transforms, which is a uniform distribution for MLLR and CMLLR and a matrix variate
normal distribution for SMAPLR and CSMAPLR [94]. Note that the linear transforms
will usually be tied (shared) between groups of states known as regression classes, to avoid
over-fitting and to enable adaptation of all states, including those with no adaptation data.

8.2.3 Applying the transforms to the output language HMM

Finally, these transforms are mapped to the output language HMM. The Gaussian pdf
in state j of λoutput is transformed using the linear transform for state î, which is trans-
form Ŵ

bi. By transforming all Gaussian pdfs in λoutput in this way, cross-lingual speaker
adaptation is achieved.

8.2.4 Unsupervised cross-lingual adaptation

We can extend this method to unsupervised adaptation simply by automatically transcrib-
ing the input data using ASR-HMMs. For supervised adaptation, λinput and λoutput are
both TTS-HMMs (for the input and output languages, respectively). For unsupervised
adaptation of HMM-based speech synthesis, λinput may be either a TTS-HMM, or an
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ASR-HMM that utilizes the same acoustic features as TTS. No other constraints need
to be placed on the ASR-HMM. In particular, it does not need to use prosodic-context-
dependent-quinphones (which would be necessary for TTS models).

8.3 Experiments

8.3.1 Experimental conditions

We performed experiments on unsupervised English-to-Japanese speaker adaptation for
HMM-based speech synthesis. An English speaker-independent model for ASR and aver-
age voice model for TTS were trained on the pre-defined training set “SI-84” comprising
7.2k sentences uttered by 84 speakers included in the “short term” subset of the WSJ0
database (15 hours of speech). A Japanese average voice model for TTS was trained on
10k sentences uttered by 86 speakers from the JNAS database (19 hours of speech). One
male and one female American English speaker, not included in the training set, were
chosen from the “long term” subset of the WSJ0 database as target speakers. The adapta-
tion data comprised 5, 50, or 2000 sentences selected arbitrarily from the 2.3k sentences
available for each of the target speakers.

Speech signals were sampled at a rate of 16 kHz and windowed by a 25ms Hamming
window with a 10 ms shift for ASR and by an F0-adaptive Gaussian window with a 5 ms
shift for TTS. ASR feature vectors consisted of 39-dimensions: 13 PLP features and their
dynamic and acceleration coefficients. TTS feature vectors comprised 138-dimensions:
39-dimension STRAIGHT mel-cepstral coefficients (plus the zeroth coefficient), log F0,
5 band-filtered aperiodicity measures, and their dynamic and acceleration coefficients.
We used 3-state left-to-right triphone HMMs for ASR and 5-state left-to-right context-
dependent multi-stream MSD-HSMMs for TTS. Each state had 16 Gaussian mixture
components for ASR and a single Gaussian for TTS. For speaker adaptation, the linear
transforms Wi had a tri-block diagonal structure, corresponding to the static, dynamic,
and acceleration coefficients. Since automatically transcribed labels for unsupervised
adaptation contain errors, we adjusted a hyperparameter (τb in [94]) of CSMAPLR to
higher-than-usual value of 10000 in order to place more importance on the prior (which
is a global transform that is less sensitive to transcription errors).

68



1.5

2.0

2.5

3.0

3.5

0 5 50 2000

No adaptation
Supervised adaptation

Unsupervised adaptation
95% confidence intervals

Figure 8.2: Experimental results: comparison of supervised and unsupervised speaker
adaptation. “0 sentences” means the unadapted average voice model for the output lan-
guage.

8.3.2 Listening tests

Synthetic stimuli were generated from 7 models: the average voice model and supervised
or unsupervised adapted models each with 5, 50, or 2k sentences of adaptation data. 10
Japanese native listeners participated in the listening test. Each listener was presented
with 12 pairs of synthetic Japanese speech samples in random order: the first sample
in each pair was a reference original utterance from the database and the second was a
synthetic speech utterance generated from one of the 7 models. For each pair, listeners
were asked to give an opinion score for the second sample relative to the first (DMOS),
expressing how similar the speaker identity was. Since there were no Japanese speech
data available for the target English speakers, the reference utterances were English. The
text for the 12 sentences in the listening test comprised 6 written Japanese news sentences
randomly chosen from the Mainichi corpus and 6 spoken English news sentences from the
English adaptation data that had been recognized using ASR then translated into Japanese
text using MT.

Figure 8.2 shows the average DMOS and their 95% confidence intervals. First of all,
we can see that the adapted voices are judged to sound more similar to target speaker
than the average voice. Next, we can see that the differences between supervised and
unsupervised adaptation are very small. This is a very pleasing result. However, the
effect of the amount of adaptation data is also small, contrary to our expectations. This
requires further investigation in future work.

Figure 8.3 shows the average scores using Japanese news texts from the corpus and En-
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Figure 8.3: Experimental results: comparison of Japanese news texts chosen from the cor-
pus and English news texts which were recognized by ASR then translated into Japanese
by MT. “0 sentences” means the unadapted average voice model for the output language.

glish news texts recognized by ASR and translated by MT. It appears that the speaker
similarity scores are affected by the text of the sentences. Interestingly the gap becomes
larger as the number of adaptation sentences increases; this also deserves further investi-
gation in future work.

8.4 Summary

In this chapter, we described the integration of several techniques we have developed for
model adaptation into a single architecture which achieves unsupervised cross-lingual
speaker adaptation for HMM-based speech synthesis. The listening tests show very
promising results: it has been demonstrated that the adapted voices sound more simi-
lar to the target speaker than the average voice and that differences between supervised
and unsupervised cross-lingual speaker adaptation are small. It appears that the speaker
similarity scores are affected by the text of the sentences, which needs further investiga-
tion.

Although all language pairs and directions are possible in our system, only English-to-
Japanese adaptation has been evaluated in the perceptual experiments presented here.
Evaluation of other language pairs and directions is ongoing. Other future work includes
unsupervised cross-lingual speaker adaptation using linear transform estimated directly
by ASR-HMMs, which must then use the same acoustic features as TTS-HSMM.
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Chapter 9

Conclusions

The present paper described improved acoustic modeling for HMM-based speech recog-
nition and synthesis. Basic theories and fundamental algorithms of the HMM were re-
viewed in Chapter 2. Statistical speech recognition and synthesis frameworks based on
the HMM were presented in Chapters 3 and 4, respectively. In Chapter 5, we constructed
a fully consistent HSMM-based speech recognition system and evaluated its performance
while avoiding approximations in training, context-clustering, and decoding. The result
showed an obvious improvement in phoneme recognition accuracy. Future works include
evaluation on speaker independent speech recognition tasks with multi-mixture state out-
put probability distributions. In Chapter 6, we proposed a technique for reducing the foot-
prints of HMM-based speech synthesis systems by tying all covariance matrices. The ex-
perimental results showed that the proposed technique efficiently shrinked the footprints
of an HMM-based speech synthesis system to less than half of its original size while
retaining the quality of synthesized speech. Future work includes applying the technique
to full covariance matrices. In Chapter 7, we defined a new integrated model in which
linguistic and acoustic models were combined into one model, and all model parameters
were estimated simultaneously by the proposed training algorithm. We conducted objec-
tive evaluation experiments using phrasing and prosodic models as linguistic models to
evaluate the effectiveness of the proposed system. The results demonstrate that the pro-
posed system achieves better F0 modeling accuracy than that of the conventional system.
Future work includes simultaneous training of POS tagging modules and acoustic mod-
els. Subjective listening tests performed by native English speakers on a large database
are also planned. In Chapter 8, we described the integration of several techniques we
have developed for model adaptation into a single architecture which achieves unsuper-
vised cross-lingual speaker adaptation for HMM-based speech synthesis. The listening
tests show very promising results: it has been demonstrated that the adapted voices sound
more similar to the target speaker than the average voice and that differences between

71



supervised and unsupervised cross-lingual speaker adaptation are small. It appears that
the speaker similarity scores are affected by the text of the sentences, which needs fur-
ther investigation. Although all language pairs and directions are possible in our system,
only English-to-Japanese adaptation has been evaluated in the perceptual experiments
presented here. Evaluation of other language pairs and directions is ongoing. Other fu-
ture work includes unsupervised cross-lingual speaker adaptation using linear transform
estimated directly by ASR-HMMs, which must then use the same acoustic features as
TTS-HSMM.
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Appendix A

Coverage
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Figure A.2: News paper of NIKKAN KOGYO (Sep. 22th, 2008)
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Figure A.3: News paper of NIKKEN SANGYO (Sep. 22th, 2008)
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Figure A.4: Yahoo Japan! (Sep. 22th, 2008)
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Appendix B

Software

Figure B.5: HTS: http://hts.sp.nitech.ac.jp/
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Figure B.6: hts engine API: http://hts-engine.sourceforge.net/
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Figure B.7: Open JTalk: http://open-jtalk.sourceforge.net/

93




