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Chapter 1

Introduction

1.1 Overview

Nowadays, the business climate has considerably changed. It is marked with globalization and high
competition between its different actors. In this environment, the consumers are spoiled with choices
and pay considerable attention to other dimensions of product or service. For that, Contemporary
business life is process driven and chain oriented where the core-seeking of companies is the
reduction of costs and the maximization of their profits through a set of entities that collectively
manufacture a product and sell it to an endpoint (see Stern ez al [1]). These entities form the so called
supply chain management (SCM). The SCM has a particular importance for the durability of
companies and it is a tool for them to compete efficiently at all economic scales. SCM has become a
necessity especially for manufacturing industry when it comes to deliver products at a competitive
cost and at a higher quality than their competitors.

Two major reasons prove the importance of SCM. The first one is the existence of strong
concurrence in the market and difference in companies’ competence. In this case, low cost
competition has become insufficient for operation of companies. New rational competences must also
be developed to distinguish one company from its competitors and stand it out in the market. To do
that, SCM has permitted to the companies to change their entire management operations and
restructure them so that they achieve their best performances. The strategy on applying SCM will not
only impact their market positioning but also strategic decision on choosing the right partners,
resources and manpower. To illustrate this point of view, Chan Kim stated in the Blue Ocean Strategy
the example of the Japanese automotive industries which capitalise on its resources to build small and
efficient cars. These industries increase their competitiveness using supply chain in order to maximise
their competencies and stand out a position in market. This strategy works well and actually Toyota
Motor Corporation is considered the number one auto car makér in the world beating Ford and
General Motors. The second reason concerns the achievement of mass customization instead of mass
production. Martin Christopher reported in his book, Logistics and Supply Chain Management:
Strategies for Reducing Cost and Improving Service, [2] “Productivity advantage gives a lower cost
profile and the value advantage gives the product or offering a differential 'plus’ over competitive
offerings.” SCM has permitted companies to not just have productivity advantage alone but also on

value advantage. Mass production offers productivity advantage, however, through effective SCM,
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mass customization can be achieved. With mass customization, customers are given the value
advantage through flexible manufacturing and customized adaptation instead of certain delivery delay
of customized products. It is, therefore, necessary to discuss about tradeoff between stocks and lead-
time based on competitions that strongly affect customer satisfactions.

The SCM has been studied extensively in management related Literature due to the various
contexts in which it can be used and described. In this chapter, we will introduce the framework of
SCM with its decision making modc;ls. In addition, we will present briefly the literature and models
related to our newly extended works. This chapter is organized as follow: In section 1.2, we will
introduce the basic of SCM structure, its different types, and its marketiné flows. In section 1.3, we
focus on competition between the same members of SCM, where we explain the reasons of analysis
competition and we introduce the models related to this work. In section 1.4, we will present the
impact of lead-time decision on SCM, where we explain the reasons of studying this decision variable
and we introduce the model related to this study. In section 1.5, we define the objective of this thesis.

In section 1.6, we present the different chapters of this thesis.

1.2 Supply Chain Management

1.2.1 Definition of SCM and its marketing flows

Stern et al., [1] have defined the SCM as “4 supply chain is the set off entities that collectively
manufactures a product and sells it to an endpoint”. The starting point is where rav;/ materials are

being manufactured; however, the end point is where products are consumed or recycled.

Physical

| ownentip f | ownewip ]

Financing

Risking
Ordering
Pa Payment |

Fig. 1.1 Flows in supply chain management as reported by Stern et al., [1]
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The work in a supply chain is defined with nine generic flows between the channel members as
reported by in [1] and described in Fig. 1.1. Some flows move forward through the chain (physical,
ownership, promotion), others move backwards (ordering and payment), whereas other flows move in
both directions (negotiation, financing, information). This schematic description of a SCM is given
for a single entity, however, in the market there are multiple manufactures, suppliers, retailers, and

consumers.

1.2.2 Centralized and decentralized SCM

Two opposite types of SCM exist based on the decision making power. The first one is centralized in
which the process of transferring and assigning decision-making authority is made at a central
location of the entire supply chain. The objective of this centralized chain is to minimize the total cost
of the system in order to satisfy some service level-requirements as reported by David et al., [3]. In
this case, the profits are shared across the entire network using some contracts between the different
members of the network. The centralized chain leads to a global optimization (see William J.
Stevenson [4]). The second type of SCM is decentralized in which a leader decides and the other
members are followers. The decentralized chain leads to a local optimization [4]. Theoretically, a
centralized chain is at least effective as decentralized chain because the centralized decision can be the

same in decentralized one even at a local position in the chain.

1.2.3 Modelling of SCM

The SCM can be formulated in different mathematical models. The easy way to understand this
modelling is to consider a chain of one supplier and one retailer in a single period model or the so
called Newsvendor or Newsboy problem. This model is a mathematical formulation in operations
management and applied economics used to determine optimal inventory levels. It is (typically)
characterized by fixed prices and uncertain demand (see Cachon and Netessine [5]). This elementary
problem was studied intensively in several publications such as in Cachon and Netessine , Zhao and
Atkins , and Solyali and Sural [5-7]. Although, the differences between these studies are the decision
criteria and the nature of ciemand function, the objective is relatively the same. In first stage, the
supplier and the retailer must take actions to optimize their proﬁts: In second stage, their objective is
to optimize the total supply chain. Finally, the problem is entirely solved. The actions can be taken
with coordination and/or by setting a contract between the supplier and the retailer as reported by Xue
et al. and Fugate et al.[8, 9]. The SCM has been modelled in different contexts based on the setting of
decision variables, type and form of demands (deterministic or stochastic, linear or multiplicative),
and contractual coordination between the members of the chain. Various decision variables were used

in the SCM such as the wholesale price, the retail price, the inventory, the service... etc.
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1.2.4 Problematic in SCM and context of this study

As given in Fig.1.1, the relationship between the members of a SCM is represented with nine generic
flows, where each flow can take various variables. Then, it is difficult or may be impossible to find a
complete study that gives answers to all problems in SCM, since there are a large number of models
and the market is in continuous and dynamic change. Therefore, there are too many problems in SCM
that are not evoked and/or completely solved. Furthermore, due to some mathematical restrictions, it
is impossible to find a close form solution to some models such as existence of non-linearity
multivariable equations. Thus, it ié important to complete these models by building appropriates
programming codes and solving them numerically. (

On another hand, the degree of profitability achieved by the members of a SCM
depends strongly on their competitive effectiveness. Here appears an important theme in SCM
which is competition. A little knowledge about competition is known in industrial management
and relatively few normative publications exist such as Greenhut and Ohta [10], Grossman
and Hart [11], and Ziss [12]. The competition can be considered between multiple retailers,
multiple suppliers, or multiple supply chains. Bernstein and Federgruen [13] study a dynamic
inventory and pricing game for a distribution system with one supplier and two competing
retailers on retail price. They actualize the study of Kirman and Sobel [14] by obtaining
sufficient conditions for the existence of a unique certain equilibrium point. Thé same authors

developed approximately the same problem except the uncertainty of the demand [15]. However,
the modeling in this study was analyzed en general setting and no distribution function of demand was
used. Therefore, it is important to simulate numerically this problem by setting one or more
distribution functions of demand, then evaluate the performances of the chain under each distribution,
and dress a comparison of results. The numerical analysis of the model presented by Bernstein and
Federgruen will be presented in this thesis. In the same competition context, Zhao and Atkins [6]
have introduced safety stock as a new competition factor either than retail price. This new factor is
important since the consumer can move from one retailer to another in case out stock. Although the
importance of this study, it lacks the setting of coordination contracts between the supplier and the
multiple retailers. In this context, we have introduced buyback contact to the model of Zhao and
Atkins and we have derived new conditions of existence of Nash solution. In addition, a numerical
analysis of the model was carried out. On other hand, it is common for a retailer to sell products from
competing suppliers. Then, the competing suppliers should manage their contract negotiations with
the retailer to maximize their profits. However, in industrial management literature, the supply chain

coordination have only focused on a single supplier who sells his products to a single or multiple
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retailers. The only recent study that discusses competition between two suppliers under different
contractual forms has been reported by Cachon and K&k [16]. In this study, the authors have studied
three types of contracts: wholesale-price contract, quantity-discount contract, and two-part-tariff
contract in a decentralized supply chain where the demand is deterministic and sensitive to retail price.
However, they did not study the sale-rebate contract and its impact on the different chain
performances. Then, we will focus on this point where we will discuss competing suppliers under sale
rebate contract in a decentralized supply chain, wherein the demand is sensitive to retail price.

To introduce new decision variables in competition in SCM, we have selected the lead-time due
to its importance in business market. We will only present the result in a single-echelon supply chain
without competition and the problem can be generalized in future to multiple retailers’ competition. In
this study, we will discuss the impact of lead-time decision on a decentralized supply chain for one

supplier and one retailer, and wherein the demand is sensitive to retail price and lead-time.

1.3 Competition in SCM

1.3.1 Competition related literature in SCM

In actual globalized and opened market, the SCM contains multiple suppliers and multiple retailers.
This reality leads to the study of newsvendor problems in multi-retailers and/or multi-suppliers supply
chains as in Soares ef al. [17]. In another term, a competition between the different actors of the chain
cannot be avoided. For example, the retailers compete in the market to attract the maximum number
of consumers. The recent competition related literature in SCM is limited where the important
quantitative and qualitative works are cited chronologically.

1. Boyaci and Gallego [18] have studied competing two-echelon supply chains which attract
Poisson demands that are proportional to their service rates.

2. Netessine, Rudi and Wang [19] have reviewed the literature in which customers substitute
one product with another or switch from one retailer to another when their first-choice
product or source is out of stock.

3. Bernstein and Federgruen [13] have modeled a dynamic inventory and pricing game for a
distribution system with one supplier and two retailers engaged in price competition. They
improve on Kirman and Sobel [14] by obtaining sufficient conditions for the existence of a
unique certain equilibrium point.

4. Bernstein and Federgruen [15] have considered one manufacturer and multiple retailers who
compete by choosing their retail prices. They assumed that the demand faced by each retailer
is stochastic with a distribution that depends on the retail prices of all retailers.

5. Cachon and Lariviere [20] have identified a class of revenue-sharing contracts that coordinate

the supply chain with one manufacturer and competing retailers.
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6. Netessine and Zhang [21] have considered a supply chain with one manufacturer and
competing retailers who face an exogenously determined retail price and a stochastic demand
whose distribution depends on the order quantities of all retailers.

7. Zhao and Atkins [6] have modeled a competitive newsvendor problem between a single
supplier and multiple retailers under simultaneous price and safety stock competition.

8. Cachon and K6k [16] have studied a competition between two suppliers who sell their
products to a common retailer using wholesale-price, quantity-discount, and two-part-tariff
contracts in a decentralizeci supply chain where the demand is deterministic and sensitive to

retail price.

1.3.2 Contribution of this thesis to competition in SCM

The models described in last subsection not only differ in competing members and scenarios in supply
chains but also on setting of decision variables, coordination contracts, and type of demand function
(deterministic or stochastic). The small change of these points will lead in fundamental change of
results such as the condition of existence and uniqueness of compromised solution (Nash solution).
Furthermore, most of these models which study stochastic demand require numerical analysis since
the close form solution depends on the setting of distribution function of demand. In management
literature there are different distribution and demand functions which differ in their in statistic
parameters and industry applications, respectively. Furthermore, the numerical ahalysis can be
extended to simulate the effect of chain parameters, competing factors, and distribution parameters
that limit generic understanding of SCM behaviours.

Therefore, we have focused on this thesis on to objectives:

The purpose of this study is to analyze numerically some competing models that were only
studied analytically, in order to make them useful in some industrial management applications. The
objective is study the effect of changing coordination contracts and decision variables on the results of
competition in SCM through the use of some existing models.

® Three different works were studied and will be reported in chapter 2, 3 and 4. The first
study reports the proprieties of Nash equilibrium retail prices in contract model with a supplier,
multiple retailers and price-dependent demand. As described by Bernstein and Federgruen [15], this
model is standard and can be used in several industrial management applications since retail price is
the very important decision variable in the market and buyback contact is a good example of
appropriate contracts, which redistributes the risk of overstocking.

® The second study discusses competition in a decentralized SCM under price and safety
stock sensitive stochastic demand and buyback contract. In this model, safety stock is introduced as a

new decision variable where its importance comes from its application in industry of perishable



Chapter 1 -7-

products that are sold by consumers every day. In case where a retailer faces out stock, his consumers
have high probability to move to another retailer and then a decrease in customization is obtained. For
that the safety-stock is necessary to keep customization, however, costs related inventory increase.

® The third model reports competing suppliers who sell their products to a common retailer
and coordinate with him using sales-rebate contract. In this study, the chain is decentralized and
sensitive to retail price. Suppliers’ competition is very important since it is common for a retailer to
sell products from competing manufacturers who should manage their contracts to maximize their

profits.

1.3.3 Description of models

1.3.3.1 Multiple retailers competition for retail price

This model was analytically introduced by Bernstein and Federgruen [15] where its schematic
illustration is given in Fig. 1.2. They have analyzed a contract model with single supplier and multiple
retailers with price dependent stochastic demands, where retailers compete on retail prices. Each
retailer decides a number of products he procures from the supplier and his retail price to maximize
his own profit, given the wholesale and buy-back prices, which are determined by the supplier as the

supplier’s profit is maximized.

P

D2

¢ —>
Di

Vi

PN

Fig. 1.2 Competing retailers’ model for wholesale-buyback scheme

As the demand is stochastic and the Nash solution is non linear, it is necessary to carry out
numerical analysis by setting the type of demand and its distribution in order to obtain real results that

can be used in some industrial management applications, such as the video rental industry mentioned
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by Bernstein and Federgruen. We have analyzed analytically and numerically the model under
exponential and uniform distributions and under linear and Logit demand function. This model will be

described in detail in next chapter.

1.3.3.2 Multiple retailers competition for retail price and stock inventory

In this study, we discuss a model of competitive newsvendor problem between a single supplier and
multiple retailers under simultaneous price and safety stock competition. The same schematic
illustration of this model is given in Fig. 1.2. A price competition and a spill rate factors translate the
price and safety stock competition, respectively. Our model is an extension of the problem analyzed
by Zhao and Atkins [6] by the adoption of a buyback rate in the chain, which gives new Nash
equilibrium conditions. Zhao and Atkins has not introduced coordination contract between the
supplier and the retailers which exist in real market and also they did not deeply analyzed the effect of
price and safety stock competition.

Keeping in mind the model of Bernstein and Federgruen where buyback contract was used, we
will introduce this coordination contract in the model of Zhao and Atkins and we will discuss the new
condition of existence and uniqueness of Nash solution. Buy-back contract is a good example of
appropriate contracts, which redistributes the risk of overstocking. Furthermore, the effect of price
and safety stock competition factors will be simulated numerically and compared to the case of only
price competition and non-competitive model. Concerning the application of this model in
management industry, it can be used in all industries perishable products that are needed by consumer

every day. A detail description of this model will be given in chapter 3.

1.3.3.3 Multiple suppliers competition under Sale-rebate contract

This model focuses on competition between two independent suppliers who sell their products to a
common retailer in a decentralized supply chain, under sales-rebate contract, and wherein the demand
is sensitive to retail price. A schematic illustration of the model is given in Fig. 1.3. The model except
the nature of coordination was studied by Cachon and Ko6k [16]. In their work, the authors have
studied three types of contracts: wholesale-price contract, quantity-discount contract, and two-part-
tariff contract in a decentralized supply chain where the demand is deterministic and sensitive to retail
price. However, they did not study the sale-rebate contract and its impact on the different chain
performances. Therefore, our model focuses on the study of a competition between independent
suppliers who sell their products to a common retailer in a decentralized supply chain, under sales-
rebate contract, and wherein the demand is sensitive to retail price. This model can be used in fields of
hardware, software, and auto industries [17]. The literature of this model and its detail description will

be shown in chapter 4.
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Fig. 1.3 Model of a supply chain consisting of one retailer and multiple suppliers

1.4 Impact of Lead-time Decision in SCM

1.4.1 Importance of lead-time in SCM

In actual globalized and competitive market, the consumer benefits from the variety of choices.
Therefore, considering the selling price as a unique competition factor in a supply chain became
insufficient. For that, the market actors have been investigating new competition criteria based on
consumers’ satisfaction. Sterling et al. [22] and Ballou et al. [23] reported that the rapidity and the
regularity of delivery time have a particular importance in the customer service. Such delivery time is
related to the so called “lead-time” factor. The related literature of this study and its objective will be

reported in chapter 5.

1.4.2 Model

A schematic illustration of the model is given in Fig. 1.4. Three different seniors were studied to
determine the optimal decision variables and expected profits in a two level supply chain, consisting
of one supplier and one retailer. In the first scenario, the retailer decides the lead-time; however, this
decision is taken by the supplier in the second scenario and centralized in the third one. One of
reasons that deal with the importance of considering lead-time as a new decision variable in SCM is
the inefficiency of using selling price as a unique competition factor. The results of this study can be
used in several industrial management applications such as internet retailing, online selling transaction
or e-retailing, post services...etc. More details of this model will be presented in chapter 5.

w p
—_

[
v

Fig. 1.4 Schematic illustration of the model
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1.5 Objective of This Study

As discussed in §1.2.4, we will continue the analysis of competition in SCM by completing previous
studies and through new model settings. Three independent works will be discussed. The first study
reports the proprieties of Nash equilibrium retail prices in contract model with a supplier, multiple
retailers and price-dependent demand, essentially numerical analysis. The second one analyses
competition in a decentralized supply chain under price and safety stock sensitive stochastic demand
and buyback contract. In this study, safety stock is added as a new competition factor either than retail
price. In addition buyback contract between the supplier and the retailers is introduced in the supply
chain. In the last work, we study competing suppliers under sales-rebate clontract and price sensitive
demand in a decentralized supply chain. Although these studies are independent, however, their
objective is to set the conditions of existence and uniqueness of Nash solution and to analysis the
behaviour of the different decision variables under various chain parameters and distribution function

of demand.

In addition, we will present the results of study of impact of lead-time decision on the
performances of centralized and decentralized SCM, consisting of one supplier and one retailer and
wherein the demand is sensitive to lead-time, either than retail price. This work can be completed as a

future work by introducing competition between multiple retailers.

1.6 Outline of The Thesis

The outline of this thesis is described as follow: In chapter 2, the proprieties of Nash equilibrium retail
prices in contract model with a supplier, multiple competing retailers and price-dependent demand
will be studied, where the conditions of existence and uniqueness of Nash solution will be developed.
Exponential and uniform distribution functions for stochastic demand will be studied. In each case,
linear and Logit demand will be used to simulate the model numerically. Finally, numerical results
will be presented and discussed.

In chapter 3, we study competition in a decentralized supply chain under price and safety stock
sensitive stochastic demand and buyback contract. In this model, safety stock is added in the
formulation of competition. The conditions of existence and uniqueness of Nash solution will be
developed and exponential distribution stochastic linear demand will be used de derive theoretical
equations and numerical results. The effect of chain and demand parameters on decision variables and
expected profits will be evoked.

In chapter 4, we study competition between multiple suppliers who sells their products to a

common retailer where sales-rebate contract relates the chain members. The conditions of existence
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and uniqueness of Nash solution will be developed and numerical simulation of the model will take
place. The effect of chain parameters on decision variables and expected profits will be studied.

In chapter 5, we analyse the impact of centralized and decentralized lead-time decision in a
supply chain consisting of one supplier and one retailer, and wherein the demand is sensitive to retail
price. Three different scenarios will be studied based on lead-time decision making, where we
evaluate the optimal decision variables such as the wholesale price, the retail price, the demand,
optimal lead-time, and optimal profit in each scenario. Then, the different results will be compared
and discussed. In addition, the effect of chain and distribution parameters on decision variables and
expected profits will be reported.

In chapter 6, the different works will be summarized and possible future problems will be

discussed.
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Chapter 2

Properties of Nash equilibrium retail prices in contract
model with a supplier, multiple retailers and price-

dependent demand

2.1 Introduction

In this chapter, we analyze the properties of Nash equilibrium retail prices in contracting model in a
decentralized supply chain consisting of one supplier, multiple competing retailers, and wherein the
demand is sensitive to retail price. First, we introduce the literature related to this study, its objective,
and the application of this model in industrial management. Second, we present the competing
retailers model introduced by Bernstein and Federgruen [1] and discuss the sufficient conditions on
the existence and the uniqueness of the Nash solution. Third, we investigate the model with
exponential and uniform distribution functions and with linear and Logit demand functions. Finally,
we present numerical results and discuss the behavior of Nash equilibrium solutions and properties of

the profits and prices.

2.2 Literature and Objective

Recently, price contract models between suppliers and retailers with stochastic demand have been
analyzed based on well-known newsvendor problems. Cachon [2] has reviewed .models with one
supplier and one retailer under several types of contracts. In a market, however, many retailers exist
and they compete to maximize their customization. Song et al. [3] have studied the optimal prices and
the fraction of a total profit under individual optimization to that under supply chain optimization
theoretically. Bernstein and Federgruen [1] have analyzed a contract model with single supplier and
multiple retailers and price dependent demand, where retailers compete on retail prices. Each retailer
decides a number of products he procures from the supplier and his retail price to maximize his own
profit, given the wholesale and buy-back prices, which are determined by the supplier as the
supplier’s profit is maximized. They have proved that the retail prices become a unique Nash
equilibrium solution under weak conditions on the price dependent distribution of demand. This
model is very important since few publication related coordination mechanisms in decentralized

supply chains with price setting or competing retailers, under demand uncertainty exist. In

addition, the context of this study can be considered as a standard model which must be
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completely analysed. As reported by Bernstein and Federgruen, this model can be used in video
rental industry which has recently incorporated “revenue-sharing” mechanisms, where the studios
markedly drop their wholesale prices to store chains. However, it can be generalized to any retail
supply chain since the retail price is the important decision variable in SCM and buyback coordination
is good an example of appropriate contracts that redistributes the risk of overstocking. Bernstein and
Federgruen [1] have not mentioned the numerical values and properties on these retail prices, the
number of products and their individual and overall profits. Since the demand is stochastic and the
solution cannot be obtained analytically, it is necessary to fix the distribution and the type of demand
depending on industrial management application. For that, we will analyze'this model analytically and
numerically under exponential and uniform distribution of linear and Logit demand functions and we
will discuss the results and compare between the different settings with representative values for the

chain and distribution parameters.

2.3 Competing Retailers’ Model
The model of competing retailers for one supplier S and N retailer R;¢;<y , introduced in Ref. 1, is
shown in Fig 2.1. This model is set under a (w, b)-payment scheme. The supplier S incurs retailer
R; a wholesale price w; for each product, combined with an agreement to buy back unsold inventory
at b;. The supplier has ample capacity to satisfy any retailer demand and produce products at a
constant production cost rate ¢; , which includes the transportation cost to retailer i. When w; and b;
are given, each retailer R; orders his quantity y; and chooses his retail price p;. A salvage rate
—ow < v; <+ is adopted in the supply chain. To avoid trivial setting, the model parameters are
chosen as v; <b; <w; and v; <¢; . The demand D;(p;) is random and depends on the price
vector p = (py, P2, -, Py) , With a cumulative distribution function G;(x\p1,P2> -»DN) - It is
restrained to a multiplicative form D;(p;) = d;(p)¢;, where ¢; is a random variable with a cumulative
distribution function G;(.) and a probability density function g;(.), which is assumed to be positive
only on x € [x},;,, Xbax]. We assume that &;is independent of the price vector p, which implies that
G;(x\p) = G;(x/d;(p)) . The demand function d;(p) depends on the whole price vector. It is
supposed that d;(p)decreases in p;and increases in p;for all i,j € [1,...,N], that is, ad;(p)/dp; <
0 and 8d;(p)/dp; = 0 for alli # j € [1,..,N]. Lety = (¥1,¥2,.,¥n) denote the order vector of
the model. The expected profit function for the retailer R; is given by
m;(p,y) = p;E[min{y;, D;(p)}] + b;E[y; — D;(p)]* — w;y;, where [a]* = max (0,a). It can be
rewritten as

n;(p,y) = (p: — wi)yi—(pi — B)E[y: — Di(P)]™. @1
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While retail prices p impact on the profit of all retailers, his order quantity affects only his own profit.
Because the retailer wants to maximize his order quantity, the derivation of the retailer #’s profit

function on y; is equal to zero, that is,

oni(p,y)/dy; =0, (2.2)
From (2.1) and (2.2), the retailer i's optimal corresponding order is given by
vi(p) = di(p)G; [”‘_:_']. 2.3)
Pi 4 .

Fig. 2.1 Competing retailers model

This observation allows us to reduce the no-cooperative game in the (p,y)-space to a game in which
retailers compete with one parameter p (reduced retailer game). From Eq. (2.1) and (2.3), we get the

retailers profits as a function in p only, that is,

- _ p. — W. _ p. _— W. +

7u(p) = @) |~ w67 [P - - b [ [0~ o] ]
pi —b; pi — b

= 71 (P\w)L(fi(p), (2.4)
where ﬁfm (p\wi) = (p; — Wi)d-(p) is the profit function with a deterministic demand y; = d;(p) ,

fi (pl)‘ P 1s the critical fractile, and

- - - + G (S
L) = 67 (D) ~ FTE[G () - & = [, P ugidu/f..
We define L;(p;) = f_’ ) ug;(w)du and we apply the logarithm to (2.4), we get for i € [1,...,N]
logf;(p) = log(p; — b)) + logd;(p) + logL;(py). (2.5)
The supplier profit function is given bylly = XN, ((w; — ¢)y; — (b; — v)E[y; — D;(p)]*). From
(2.3) we have
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nM—z,ld(p)(m e [B] - b —woE 67 [B] - s,-]+>. (2.6)

]Blogﬁi(p)z 1 8di(p)
op;i di(p) 9pi

Differentiating (2.5) on p; fori € [1,...,N + U;(p;) with

_ (wi-b)G; (fi(p)
Ui(pi) = —bl+ G-bDLip) 2.7)

Bernstein and Federgruen [1] have proved that the existence of a Nash solution p* for the reduced
retailer game is assured by condition (A): For each i € [1, ..., N], the function logd;(p) is increasing
in (pi,pj) for all i # j. They have assumed that each retailer i chooses his price p; from a closed
interval [pl N “x] They also proved the uniqueness of the Nash solution in the price space
Hi[max(pim‘”, 2w — b), pj'-"“"] provided the following conditions (D) and (S) hold:

d2lognf® (p\w=by)
0p;dpj

9%logni® (p\wi=by)
ap?

(D): = 2 Yjsi

.

(S): ¥;(x) = [—Zx + g‘gx;]f ug;(wydu — G;(x)x? < 0,

for all i € [1, ..., N], wherex = m; (m; is the median of the distribution G;). In fact, however, the

solution under the above conditions may exist on the boundary of the area II; [max(p"”” 2w —

b), pmax] , and in this case it does not satisfy —lo‘g:w =0 . We modify condition (S) to the

following (8'): ¥;(x) = [-2x + (")] [* ugi(wydu — G;(x)x* < 0 for all x € [x]*",x/"4*]. Then

we have the following theorem.

Theorem If conditions (A), (D) and (S’) hold, then there is a unique set of Nash equilibrium prices on

I, [w;, 00) which satisfy "’“’g—:(”) =0 foralli € [1,..,N].

i
Proof In the same way as in Bernstein and Federgruen (2005), it is shown that there is a unique Nash
solution p* in I1;[w;, ). It also satisfies p; > O for all i € [1, ..., N], because for each i € [1, ..., N],

dlogt;(p)

= 0 when
ap;

m;(p) = 0 when p; = w; whereas m;(p) > 0 when p; > w; . It implies that

p= p* foralli € [1, ---:N]-

In the following, the retailers sell products at these equilibrium prices, whereas the supplier knows
this behavior of retailers and determines the wholesale and buyback prices to maximize his own profit.
This system is called ‘individual optimization. On the other hand, the problem of determining retail
prices and quantities of products to maximize the entire profits of supply chain is called ‘supply chain

optimization.
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2.4 Determination of The Nash Equilibrium
Each retailer i € [1,2] faces a random demand D;(p) where p = (py,p,). We assume two types of
cumulative distribution functions of demand. We consider first the exponential case and then the

uniform one.

2.4.1 Exponential case
The cumulative distribution function in the exponential case is given by G;(x) =1 —e™* for all

x = 0, where E¢; is set as 1 without loss of generality. The inverse function of G;(x) is given by

1(y) = —log (1 —y) for all0 <y < 1. With fi(p;)= PimW; , we get L;(f) = ﬁ(pi —w; +

w; — b)log C==1)) . Then by (2.7) U;(p;) = L
(Wi = bu)log (G, =,)) YD U = et bolog (Go7h) |

2.4.1.1 Linear demand function

The linear demand is given by

di(p) = a; — Bipi + Xj=i Bijpjwithe; > 0, B, Bi; = Ofor j # i,i,j € [1,2]. (2.8)
With this demand, we obtain the equations
dlogity(p) _ B _
ap, - a1-F1P1+P12D2 + Ul(pl) =0
OlogT,(p) _ —B. -0
dp1  a—BapatParp: +Uz(p2) =0

These equations can be rewritten as

_ Ba—ayUp(p2)+B2p02U2(p2)

P1= B21U>(p2) 2.9)
Py = B1—a1Us(p1)+B1p1U1(p1)’ ’
2 B12U1(p1)
We can now evaluate the optimal order quantities y; and y, :

-b
y1(p) = (ay — P1p1 + P12p2)log (:,ll_bll)

—b *
y2(p) = (a2 = B2 + Baapr)log (2)

Since E [G [’;‘_b‘] sl] = log (p‘ b‘) (W‘ p') by (2.6) we get the supplier profit function

My =Y¥%,d;(p) ((wi —b;) log (p‘ i) + b; p‘» bi> . Then the retailers’ profit functions are
given by

~ — p1-b;

T1(p) = () ((bs ~ wy) log (1) + (py = w))

73(p) = dy (p)(by — w;) log (& _bz) + (P2 = w2))




-18 - Chapter 2

2.4.1.2 Logit demand function
Now, we will study the problem with a logistic demand function given by

ke~ *Pi
C,'+Zf=1kje

d;(p) = ~79; for C;, A,and k; > 0. (2.10)

With this demand function we obtain the following equations

alOQﬁl(p) — —(C1+k2e_)*p2) _
p;  Ci+k e~ P14k eAp2 +Ui(p) =0
dlogtt, (p) —(Cy+k,e~?P1) :
= - 0
dp, Ci1+kie~AP1+kye=AP2 + U; (pz)

Then we have
_ _1 ACZ—CZUZ(pZ)—kze_Apz UZ(pZ)
& Alo'g k1(—A+U3(p2)

py = — Llog OGP ke P1U(p1)
27 2 ez (~A+U3 (P

The order quantities are given by

_ k13_1p1 pP1—by
yl(p) - C1+k18_1p1+kze_)‘p2 log (Wl—bl)

_ kpe~AP2 P2=bay
yz (p) - C2+k1€_1p1 +k29_1p2 log (Wz—bz)

The supplier profit function and retailers’ profit functions are obtained in the same way as for the

linear demand function.

2.4.2 Uniform case

The cumulative distribution function in the uniform case is given by

G)=""4"% 1 g <x<l+4a, 0<a; <1, fori=1,2,

2a;
where Eg; = 1. The inverse function of G;(x)is given by G; *(¥)1 —a; +2a;y for0 <y <1.

With f; (p;)= zi:‘:.i, we get L;(p;) = %(1 —a;+a; (%)). Then, using (2.7) and i = {1,2},

1-ap+20,(22)

U- i) = — 1 - : = ’
l(pl) i-bi) + (pi—Wi) 1—ai+ai(%)
i i

2.4.2.1 Linear demand function ,
With the linear demand given by (2.8) and U;(p;), we obtain equations on p,and p,:

_ B2-a,Us(02)+B2p2U; (02)
B21U2(p2)

— B1—a U1 (p1)+B1p1U1(p1)’
B12U1(p1)

The optimal order quantities are given by

P1

P2
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y1(@) = (a3 — B1p1 + P12p2) (1 — ay + 2a4 (1;11:‘::))
Y2(p) = (a2 — B2p2 + B21p1)(1 — a; + 2a, (1;22—_\;’22))

The supplier profit function is equal to

My = Y2, di(p) ((wi - ;) (1 —a; +2aq; (ﬁ)) — a;b; (w)2>

Pi—b;

The retailers’ profit functions are given by

P1—by p1—by

He) =) [(”1 e (1 —a+2 ("l”wl)> — 4y — ) (222’

i, (p) = d2(p) [(Pz —ws) (1 —a; + 2a, (1;22__‘;’:)

2.4.2.2 Logit demand function
With the Logit function given by (2.10), we obtain p,and p, as

_ 1 AC2—CU,(p2)—k e~ *P2U, (p,)
p1=—;log =
k1(-A+U3(p2)
Dy = _ll AC1—C1 U3 (p1)—k1e~*P1U4 (py)’
272 ka(=A+U; (p1)

The optimal order quantities are given by

kie~P1

_ _ P1—Wq
() = Citk e *P1+kye—2P2 (1 a, +2a4 (pl_bl))

— kpe~AP2 (pz—Wz) -
¥2(p) = Co+k e~*P1 4k e~2P2 1-a, +2a, p2—b,
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The supplier profit function and retailers’ profit functions are obtained in the same way as for the

linear demand function.

2.4.3 Supply chain optimization

When the supplier and retailers determine the prices and order quantities as to maximize the overall

profit of the supply chain, the wholesale and buyback prices are meaningless because they are

payments between the supplier and retailers. As the whole of the supply chain is equivalent to a single

retailer with wholesale price (c;, ¢,) and buy back (vy,v,), by (2.3) the optimal order quantity (the

amount of products) is y{ (p) = d;(p)G;* [ﬁ], and by (2.4) the overall expected profit of the

supply chain is

' (p) = Lioa (i — ¢) di(p)Ls [ﬁ],

2.11)
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when retail prices (p;, py)are given. The optimal retail prices (p!, p3) in this integrated supply chain

maximize the profit (2.11).

2.5 Numerical Examples

2.5.1 Geometric analysis of the Nash solution

We have found the equilibrium prices (p4, p,) that solve the profit functions for the two retailers. In
the case with exponential demand and linear functions, we denote the right hand sides of two
equations in (2.9) by f,(p,) and f;(p,), respectively. Then the equations (2.9) become p; = f>(p,)
and p, = f;(p,). Note that in other cases the equations satisfied by (py,p,) form p; = f,(p,) and
p2 = f1(p;) similarly. Geometrically, to analyze the behavior of the system around the Nash solution,
we plot the functions f;(p;) for p;and p, in Fig. 2.2. There are multiple solutions for the equations,
but there is a unique Nash solution (p,, p,) with p; > w; for i = {1,2}, which has been proved in

Theorem of section 2.3.

Fig. 2.2 Nash solution and system of equations

Given wholesale and buyback prices, we derive these Nash retail prices, and profits of the supplier
and two retailers. We compute them for all combinations of wholesale and buyback prices, which are
integers and satisfy ¢; < w; < w/ and v; < b; < w;, where w/is set as the upper bound for the
optimal wholesale price for the supplier, and derive optimal wholesale and buyback prices for the
supplier. We also compute the overall profits and retail prices under the supply chain optimization,

and compare them with the ones under individual optimization.
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2.5.2 Numerical results

In numerical examples we set parameters as shown in the following: (v4,v,) = (0,0), (a;,a,) =
(100,100), (B1,B82) = (1,1), (B12.B821) = (0.3,0.3) (linear function ) , 1 =0.03, (C;,C,) =
(0.005,0.005), (kq,k;) = (1,1), (Logit function). Program is coded by C and the computations are
done by using Fujitsu C compiler on PC. In Table 2.1, we assume exponential demand and Logit
functions, whereas in Table 2.2 the linear function is assumed. In these tables two cost parameter
settings are considered: (cq,c,) = (30,30) (symmefric) and (cq,¢;) = (30,20) (anti-symmetric).
The values in tables are the optimal profit for supplier, the profit for each retailer; entire expected
profit (sum of supplier’s and retailers’ profits), optimal whole-sale and buyback prices for the supplier,
Nash equilibrium retail prices and order quantities. The values in parenthesis () are the total profit,
optimal retail prices and order quantities for retailers under the supply chain optimization.

Table 2.1 Exponential Demand and Logit Function

Ci 30 30 30 20
ITu(p) 32.195 35.792
(i Vi) 10.227 10.227 8.917 13.843
Entire expected profits 22649 °8.332
(62.430) (70.153)
w; 98 98 100 88
b 47 47 47 47
175.420 175.420 175.376 168.444
P (172.428) (172.428) (182.095) (161.07)
0311 0.311 0.276 0.418
Y (0.606) (0.606) (0.444) (0.965)

In the cases of Tables 2.1 and 2.2, optimal whole sale prices and buybacks determined by the supplier
give more profits to the supplier than retailers. In the symmetric cost cases, the optimal retail prices of
two retailers become the same. Compared to supply chain optimization, the retail prices are higher
and the quantities of orders are smaller in the individual optimal case. It is because under the chain
optimization more amounts of demand are satisfied by decreasing retail prices and increasing order
quantities, whereas in the individual optimal case the supplier wants to obtain its own profit, which
leads to higher wholesale prices and as a result retail prices become higher. In the anti-symmetric cost

case, the optimal wholesale price to the retailer with the smaller production cost is smaller than that to
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another retailer, which leads to more profits for the former retailer. The reason is that the retailer with
small wholesale price sets the less retail price and more quantities of order, which implies that more
amounts of demand occur in total and the supplier can sell more products to customers. In particular,
with Logit demand function the demand depends on the retail prices more intensively, and the
wholesale prices, retaii prices and the order quantities change more. In both cases the entire expected
profits in the individual optimal cases is about 80 to 85 % of that under supply chain optimization.
When the chain consists of one supplier and one retailer, it is shown in Song et al. [3] that the fraction
is 3/4(in linear case) or 2/e = 0.736 (in Logit case). The competition among retailers makes retail
prices lower, which makes the fraction higher. In Table 2.3, the uniform distribution of demand is
assumed with the symmetric production costs ((cy, c;) = (30, 30)), and the a;, which corresponds to
the width of the uniform distribution, is changed from 0.1 to 0.7. It implies that large a; means the
high variance of demand. As the variance increases, retail prices are higher, and profits of the supplier
and retailers decrease. This is because when the variance increases, the quantity of order must be

increased to apply the fluctuation of demand, whereas the retail price must be also increased to obtain
profits of retailers. When a, changes the optimal wholesale prices and buyback prices for the supplier
are almost the same. Note that even if it is compared with results in the exponential case shown in Fig.
2.2, which has more variance than these uniform distributions, the difference on these prices is very
small. It means that the optimal wholesale and buyback prices for the supplier are robust in the

variance of the demand distribution.

Table 2.2 Exponential Demand and Linear Function

Ci | 30 30
Tu(p) 1200.548 1473.307
s Vi) 242.306 242.306 228.119 380.888
Entire expected profits 1685.160 2082314
(2041.22) (2515.01)
w; 89 89 89 82
b; 77 , 77 77 73
116.154 116.154 115.532 112.445
P (96.902) (96.902) (97.788) (90.259)
22.105 22.105 21.233 32.826
Y (37.717) 37.717) (34.608) (58.887)
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Table 2.3 Uniform Demand and Linear Function

I
2176.38

2003.38

~ Tu(p) 2531.42 235236
5D ) 513.03 48151 450.56 414.12
Entire expected profits 3557.49 3315.38 3077.51 2832.62
(4303.71) (3999.12) (3700.00) (3407.00)
Wi(=w2) 87 87 87 87
bi(= b2) 75 75 75 74
110.31 110.97 111.69 112.55
pi(=p2)
(87.08) (88.46) (89.96) (91.56)
2351 24.55 25.59 26.05
yi(=y2)
(40.26) (41.75) (43.20) (44.57)

2.6 Conclusion

In this study, we first show the sufficient condition that unique Nash equilibrium retail prices exist
and they are greater than wholesale prices. We then give the equations whose solutions are those retail
prices. In numerical examples we compute these equilibrium prices, optimal wholesale and buy-back
prices for the supplier and supply chain optimal retailers’ prices, and discuss properties on these
values. As mentioned in above, this model can be considered as a benchmark for other competition
studies where new decision variables and coordination contracts can be introduced. In next chapter,
we will focus on multiple competing retailers on retail price and safety-stock where this new decision

variable is extremely important in the increase or decrease of customization degree.
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Chapter 3

Competition in a Decentralized Supply Chain under Price
and Safety Stock Sensitive Stochastic Demand and
Buyback Contract

3.1 Introduction

In this chapter, we study a model of competitive newsvendor problem between a single supplier and
multiple retailers under simultaneous price and safety stock competition and under buy-back contract.
In this model, we compute Nash equilibrium prices, safety stocks, optimal wholesale, optimal supplier
and retailers’ profits, numerically. In addition, we discuss the effect of chain and distribution
parameters on optimal decision variables and expected profits. This chapter is organized as follows:
First, we introduce the literature related to this study, its objective, and the application of this model in
industrial management. Second, we present our contract model and we discuss the sufficient
conditions on the existence and the uniqueness of the Nash solution. Third, we investigate the model
with exponential distribution function and with linear demand function. Forth, we present the supply
chain optimization and its solution. Finally, we present numerical results and discuss the behavior of
Nash equilibrium solution with the competition and distribution parameters. The results will be

compared to that of non-competitive case and chain optimization.

3.2 Literature and Objective

The majority of problems in supply chain management can be translated into mathematical models,
which are solved based on the setting of the chain parameters. As a simple model, we find the
newsvendor problem, in which a single supplier sells his products to a single retailer. This elementary
problem was studied intensively in several publications such as in Cachon and Netessine , Zhao and
Atkins, and Solyali and Sural [1-3]. Although, the differences between these studies are the decision
criteria and the nature of the demand function, the objective is relatively the same. In first stage, the
supplier and the retailer must take actions to optimize their profits. In second stage, their objective is
to optimize the total supply chain. Finally, the problem is entirely solved. The actions can be taken
with coordination and/or by setting a contract between the supplier and the retailer as reported by Xue
et al. and Fugate et al. [4, 5]. However, there are not only one retailer and one supplier in the market.

This reality leads to the study of newsvendor problems in multi-retailers and/or multi-suppliers supply
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chains as in Soares et al. [6]. In another term, a competition between the different actors of the chain
cannot be avoided. For example, the retailers compete in the market to attract the maximum number
of consumers. This competition was studied in some types of contracts, such as the contract models
between multiple retailers with stochastic demand and under various variables of decision.

As discussed in chapter 1, Bernstein and Federgruen [7] have studied the competition between
multiple retailers in the case of price dependent demand, where retailers compete on retail prices.
Zhao and Atkins [2] have developed, through a contraction mapping approach, the sufficient
conditions of existence and uniqueness of Nash equilibrium in simultaneous price and safety-stock
dependent demand function. Safety-stock is extremely important in the increase or decrease of
customization degree since in case where a retailer faces out of stock, his consumer can move to
another retailer. In this model, Zhao and Atkins [2] has not introduced coordination contract between
the supplier and the retailers which exist in real market and also they did not deeply analyzed the
effect of price and safety stock competition.

Keeping in mind the model of Bernstein and Federgruen where buyback contract was used, we
will introduce this coordination contract in the model of Zhao and Atkins and we will discuss the new
condition of existence and uniqueness of Nash solution. Buy back contract is a good example of
appropriate contracts, which redistributes the risk of overstocking. Furthermore, the effect of price and
safety stock competition factors will be simulated numerically and compared to the case of only price
competition (chapter 1) and non-competitive model. Concerning the application of this model in
management industry, it can be used in all perishable products industries that are needed by consumer
every day. In this application, the retailer orders a limited quantity depending on its random
customization. This retailer can lose some of his consumers who can move to another retailer to by the
same product in case of out of stock. From this interpretation, it is necessary for each retailer to
introduce a safety stock to keep his consumers. However, this safety stock increases the total
inventory and can result in decrease of profits and increase of costs related inventory.

For this model, we compute Nash equilibrium prices, optimal wholesale, and optimal buyback
rates for the supplier’s and the retailer’s profits, and supply chain optimal retailers’ prices,
numerically. We also discuss properties on a relationship between these values and the demand
distribution. We present our contract model and we discuss the sufficient conditions on the existence
and the uniqueness of the Nash solution. We investigate the model with exponential distribution
function and with linear demand function. We present the supply chain optimization and its solution.
Finally, we present numerical results and discuss the behavior of Nash equilibrium solution with the
competition and distribution parameters. The results will be compared to that of non-competitive case

and chain optimization.
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3.3 Competing Retailers’ Model

The model of competing retailers for one supplier (S) and N retailers (R;),<;<y is shown in Fig. 3.1.
The supplier incurs retailer R; a wholesale price w; for each product. The supplier produces products
at a constant production cost rate ¢; including transportation cost to R;. We assume that the supplier
has ample capacity to satisfy any retailer demand. A buyback rate —co < v; < +oo for unsold items is
used in the supply chain. To avoid trivial setting, the model parameters are chosen as v; < ¢; < w; for
1< i < N . Each R; fixes his selling price p; and safety stock y; before ordering his quantity from the
supplier. The demand function is expressed as L;(B) + €;, where B = (p1, P2, -, Pn) » Li(P), and ¢;
denote the retailer price vector, the deterministic part of demand, and the stochastic part of demand,
respectively. The deterministic part of demand decreases with retail price p; and increases with other
retailers’ prices p; , which gives dL;()/dp; <0 and L;(5)/dp; >0 for (i # j)1;jcn - The
stochastic parts of the demand ¢; are assumed to be mutually independent for 1 < i < N with a
Cumulative Density Function (cdf) F;, and a Probability Distribution Function (pdf) fe;- The total
inventory level of R; is expressed as Y; = L;(p) + y;. A price-independent coefficient Yji> called spill
rate, is used to characterize lost sales of retailer j in regards to retailer i. The total demand of R; can
be expressed as D;(y_;) = L;(B) + DJ(y—;), where y_; = (¥1,¥2, -, Viz1, Vis1, > Yn) denotes the
safety stocks vector without y; and D] (y_;) = & + Z?’#yji (5 — yj)+ is the effective stochastic
component of the demand of R; with (a)* = max (a, 0). The cdf and pdf of D;(y_,) are given by

F DiY_D) and f DiY—i) respectively. They are calculated from cdf and pdf of ¢;. A failure rate of a

stochastic variable X is defined by ry = fyx/(1 — Fy).

wy

——— D2

— Di

G)\g

Fig. 3.1 Competing retailers model
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As mentioned in the introduction, this model studies multiple retailers> competition in a decentralized
supply chain, where the demand depends simultaneously on price and safety- stock. The safety stock
competition factor is given by the spill rate yj;, defined in the stochastic part of the demand. The price
competition factor is given in the deterministic part of the demand. In this study, we use a linear form
of demand with symmetric price competition factor 6. It is expressed with L;(5) = a — bp; +
Z?’# O(p;j —p;) for1 <i <N, witha > 0 and b > 0. This form of demand is largely used in supply
chain management literature. It goes back to Shubik and Levitan [8]. Then, it is used in many models
such as: in Dixit [9], Banker et al. [10], Tsay and Agrawal [11], and Boyaci and Ray [12]. In practice,
Shubik and Levitan reported that this linear form of price competition is used in automobile market in

the United States. The profit function of R; is expressed asm;(p,) = p;E[min(¥;, D; -))] +

v;E [(Yz - Di(y—i))+] —wi¥; . Using (Y- Di(y_))" =max ((Yz - Di(y-9), 0) =Y -
min(Y;, D;(y_;)), it can be rewritten as:
m(B,Y) = nd () + (v; — w)y; + (p; — v)E[min(y;, D (y_))] (3.1)

where nl(B) = (p; — w;)L; () denotes the deterministic part of the profit function. This model is
studied under the assumption that(p;, y;) € {w; < p; < p[***,0 < y; < y/™**}, where p*** and

yi"**are chosen arbitrarily large. The supplier profit function is given by
M = ZiLa(wi — ¢) Li(@) + ZiLawi — ¢; — v)y; + viE[min(y;, Df (v-))]-

3.4 Nash Equilibrium Conditions
In this model, the supplier is a Stackelberg leader who decides the wholesale price for each retailer.
The retailers compete each other on retail prices and safety stocks to maximize their own profits. To
derive the conditions of existence and uniqueness of Nash solution, we apply theorem 1 of reference
[2], where the difference between our model and that of this reference is the adoption of buyback cost
in the chain. In [2], Zhao and Atkins proved that the quasi-concavity of retailer’s profit
function 7;(B, ¥) in p; and y; requires two conditions (A) and (B), given by

A)  0°nf(F)/op? < 0and 3*n(B)/ap} <O,

(B) €; has an increasing failure rate' (IFR) distribution for 1< i < N
Then, the quasi-concavity of retailer’s profit function 7;(B, ) in p; and y; proves the existence of
Nash solution. The conditions (A) and (B) are independent of buyback cost. Thus, they are used to
prove the existence of Nash solution in our model. In addition, Zhao and Atkins reported that the best

solution for the profit function ;(, y) is given by (3.2) — (3.3):
on{'(B)/9p; + E[min(y;, D} (v-))] = 0, (3.2)
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—w; + pE[min(y;, Df (y_))] = 0. (3.3)
By introducing buyback cost v; in the chain, only equation (3.3) is changed and becomes
(v; —w;) + (p; — v)E[min(y;, Df (y_))] = 0. _ (3.4)

About the uniqueness of the Nash solution, Zhao and Atkins decomposed the demand on three
components: deterministic, demand depends only on retail price, and demand depends only on safety
stock. From the conditions of uniqueness of Nash solution in each part, they developed strong
conditions of uniqueness for the entire problem, as given by

—32nl(B)/op? > XN, 02nl () /0pidpj and X} vji + 1/ Wirpsy_n 1)) < 1
The first condition is valid for our model because it is independent of buy-back cost. However, the
second condition is changed by introducing buy-back parameter and given by:

YN ¥+ 1/ (Wi = vdTpsy_p 1)) < 1.

With the demand function described above, the deterministic part of R; profit function is expressed as
(@) = (pi —w;)(a — bp; + Z?’#G(pj —p;)). The first and second derivatives of m&(7) on
p; are ant(F)/dp; = a+ (w;—2p)(b+(N—-1)8)+60X),;p; and 0°nf(p)/op} = -2(b+
(N — 1)6) < 0. This result satisfies the condition (A). The demand function is linear and symmetric
on price competition. Then, the first condition of Nash solution’s uniqueness is satisfied if 2b +
(N — 1)6 > 1. In addition, to satisfy condition (B), the pdf of ; must have an IFR. This property is
satisfied only by some kind of pdf such as exponential and uniform distributions. In this study, we
restrain our study to exponential distribution because it facilities theoretical analysis more than in case
of uniform one. In addition, our essential objective is studying the effect of chain parameters on
decision variables and expected profits, which is insensitive to the distribution function of stochastic
variables. Then, for 1< i < N, the cdf and pdf of ¢; are expressed for all x > 0 by F,,(x) =1 —
e % and fe,(X) = A;e %% | respectively. Now, we have to explicit the cdf and pdf of effective
stochastic component of R; demand function D (y_;).

At this step, we have to avoid progressive difficulties when the number of retailers exceeds two
because the number of stochastic variables will be equal or greater than two. Then, we restrain our
theoretical and numerical analysis to the case of two retailers, and we believe that this condition does
not limit our fundamental understandings of this model. We start by evaluating the cdf of D7 (y,)

using the following equation:
R(DI () <0 = [ B (D3 () < %l € = w) fi, W)du.
The right hand side can be written as

Az joyz P.(€, < x) e~ M2Mdu + 2, f;;z”/yu (€1 + v21(€2 — ¥2) < €, = u) e *2¥du
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After calculation, for i = 1,2, the cdf and pdf of D; (y,) and D3 (y;) are given by:

-2 A2
- Ya1he™"2Y2 . x Y2
Fps X =1—811x""_——€ 1% —e Y21
D1(3’2)( ) A’Z_YZIA& ( )’
—A2y2 j, -2y
= ~Agx _ Yarhae TPZ Ay m X A e~Mx
fo(yz) () = 4,e A2=Y21A41 V21 ¢ 1€ ),
-A1y1 M
~tpx _ Yizhpe T (e~%* — ¢ 71z"), and

Fbg(yl) G)=1-e A1—Y1242

-ly1 a, -
_— —Azx }’12128 1 yle —Azx
- e e (— —_— e
ng (yl) (x) 22 e AI—Y1ZAZ (YIZ e /12 )’

From equation (3.3), we obtain fori = 1,2:
wi=viFpsc, )

= FAS ol 2 5

bi 1=Fps(y_n @0 (3.5)

Then, the retail prices can be expressed from (3.5). For i = 1,2 we have :

A
; —42y2 -2z
wl—vl(1—«3-101-Y__—Z;ZA_Z;Z111 (e-M1Y1-¢ Y2171y \
P1= y21i2eA2Y2 A2, = h1(y1,¥2)
9—11Y1+L__(9-113’1—e Y217 %)
< A2-v2141
A
—A1y1 M
Wz-vZ(l—e‘lzJIz______h;AZ:lzlz (e~*2Y2-¢ Y12y2))
= 1~ - h
Pe e—A22 +y1212e-/11>'1 (e-A272 _eﬂyillgyz) 2(V1,¥2)
\ A1-v1242

The equation (3.5) shows the relationship between retail prices and safety stocks in case of Nash
equilibrium. From that, the decision variables can be simplified to only safety stock variables. To

explicit the solution of the problem we have to evaluate the equation (3.2). The second term of (3.2)
. + .
can be expressed as E[mm(yi,Dis(y_i))] =y;—E [(yi, -Di(y_i)) ] =E;(y;,y-i) , Wwith

+ i .
E [(Yi: —D{ (y-1)) ] = ¥iFpsy_p ) = Jy ' Fos(y_ (W) du. Then, we obtain

_A2
_ (—eTM)  ypdetz [y (a-e T2t | (a-emhavyy
Ei(y1,¥2) = N o N +

1 2=Y21M1 2 Ay

_M ’
_ (1—e~4292) YizAze 411 [ yip(1-e Y12y2) (1-e~4272)
E;(y1,y2) = mary— 1 +
2 A1-Y1242 1 Az

The left hand side of equation (3.2) depends on demand function. The equations (3.2) and (3.3) can be
rewritten in a non-linear system of equations g1 (y1,y2) = 0 and g,(y;,¥,) = 0, with:

{91(3’1»3’2) =a+ (0 + b)w, — 2(6 + b)h;(¥1,¥2) + 0h(y1,¥2) + E1(¥1,¥2) =0
9270, y2) = a+ (8 + b)wy — 2(6 + b)h,(y1,¥2) + 6h1(¥1,¥2) + E; 1,y2) =0

The Newton method is used to solve this non-linear system of equation, simultaneously. We set the

o . . . . T
initial value Y° = (¥?,y9)T and we make an iterative computation Yk = (yf,yé‘) to solve

91(y1,¥2) = 0 and g,(y1,y,) = 0, according to the following solution:



Chapter 3 -31-

39,5 09,05
yhH = yk _ ay, 9y, (91 (y{c))
39;00) 89,05\ g1 (%)
9y, 9y

The computation starts to search the wholesale price which maximizes the supplier profit function by
incrementing its value from ¢; + 1. After that, the Nash safety stocks solution is obtained using the
Newton method as described before. The Nash retail prices will be calculated according to equation
(3.4). Finally, the retailers” profit functions are given by ‘

{”1(1_5. ) = (1 —w)Li(@) + W —w)y + (p1 — v1)E;(¥1,¥2)
(B, 7) = (P2 — w2)Lo(B) + (v —w2)y2 + (P2 — V2)Ei(y1,¥2)

Three parameters in the model have a particular importance. These parameters are the spill rate, the
price competition factor, and the distribution parameter. It is important to note that in the case of zero
spill rates, the competition is restrained to retail prices. In the case of zero price competition factors,
we obtain safety stock competition model. However, if the two parameters are equal to zero, we
obtain a non-competitive model with only price sensitive demand. Thus, it will be important to
compare our results to that non-competitive case. Furthermore, the effect of the model parameters on
the wholesale price, the safety stock, the retail prices, the total inventory, the retailer’s profit
functions, the supi)lier profit function, and the total profit function will be compared with the solution

of supply chain optimization, studied in next section.

3.5 Supply Chain Optimization
Supply chain optimization is the setting of processes and tools to ensure the optimal operation of
manufacturing and distribution in a supply chain. For example, this can be translated to the setting of
the optimal prices and safety stocks to maximize the total profit of the chain. For exafnple, in our case,
to search the optimal solution, we consider the total profit function for two retailers and one supplier
as given by

My 3,3 = X5a((i — L) — ciyi + PiEi (1, 72)) (3.6)
The optimal solution can be obtained by differentiating equation (3.6) on the four independent

variables (retail prices and safety stocks) and set the system to zero. Then, we obtain

raH;I(’PaLV) =a—2(8 + b)p; +20p, + (6 + b)cy — Oc; + Ex(y1,¥2) =0
1
MG _ o — 200+ bYp; +20p, + (8 + b)cy —Bes + Ey(00,2) = 0
2
\ onr(B,5) =—c,+p 9E; (¥1.y2) 0E;(¥1,Y2) -0 3.7
0y, 1 1 3y, 2 9y
an'[‘(ﬁ,j’.) - _Cz + plz aEZ(ylry]) + aEl(yl,yz) — 0

\ 9y, 9y 1 0y>
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The system of equations (3.7) is independent of wholesale prices and buyback rates. It is a nonlinear
system. Thus, Newton method is used to solve it. The solution will be compared with that of Nash

equilibrium in the next section.

3.6 Numerical Results

Our computation is restrained to symmetric parameters and we define for i,j = 1,2, the spill rate
Y = Vij» the distribution parameter A = ;. The numerical values of chain and distribution parameters,
used for simulation are: a =300, b=1,0=05,y=02,41=1, v; =45, and ¢; = 60. The
program is coded by C and the computations are done using Fujitsu C compiler on PC. As explained
in section 3.4, the strategy of the simulations is based on the maximization of the supplier profit
function to set the wholesale price. In Tables 3.1, 3.2, and 3.3, we present the numerical results for
different values of the spill rate y, the price competition factor 0, and the distribution parameter A. We
report the optimal-supplier profit function, the two retailer’s profit functions, the entire profit function,
the wholesale prices which maximize the supplier profit function, the two retail prices, the two retail
safety stocks, and the two retail total demand functions. As a first result, we find that the optimal
wholesale prices to maximize the supplier profit function are not affected by the various of y, A, and 6.
The prices and the safety stocks for the two retailers are the same due to the symmetric value of the

chain parameters.

3.6.1 Behavior of the Nash solution with the chain parameters

3.6.1.1 Non-completive model

The case of non-competitive model is obtained by setting the spill rate and the price competition
factor to zero. The results are given in the second column of Table 3.1. This elementary newsvendor
problem was studied by Petruzzi and Dada [13]. The retail prices, the safety stocks, the profit function
of retailers are higher than that found in case of competition. However, the supplier profit function,
the total profit function in case of Nash, and the total inventories of the retailers are less than in the

case of competition.

3.6.1.2 Effect of the spill rate y

First, in absence of safety stock competition (y = 0), the effective stochastic component of the demand
is restrained to & and the model is only under price competition and price sensitive-demand. In this
case, we find our results published in [14]. In addition, the retail prices are high and the total
inventory is low. Increasing the spill rate y increases the stochastic part of the demand function and

consequently increases the total demand function. As a consequence, the retail prices and the retailers’
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profit functions decrease. However, the supplier profit function increases but it cannot compensate the

decrease of the retailers’ profit functions, thus the total profit function decreases.

3.6.1.3 Effect of price competition factor 0

As in last paragraph, we discuss the model in absence of price competition (6 = 0). In this case, the
results are near that of the case of non-competitive model except the safety stock. This is explained by
the low value of the spill rate (= 0.2) which depends directly the safety stock. In addition, increasing
the price competition factor 8 affects the Nash solution due its existence in the left hand side of
equation (3.2). In reference [2], Proposition 2, it was proved that in the case of linear demand
function, the total demand increases with 8 in contrast to the safety stocks. Our results are in
accordance with this proposition. Thus, as the intensity of price competition increases, the increase of
the deterministic part of the total demand function exceeds the decrease of the safety stocks.
Therefore, the retailers increase their total demand and keep lower their safety stocks, which results in

decrease of their selling prices. In addition, the supplier’s profit increases and compensates the

dropping of retailers’ profits, which results in increase of total profit function.

Table 3.1 Effect of spill factory

Supplier p tio 17324.14 | 1733470 | 173
Retailers profit functions . | 3465.48 3459.58 3448.80 3433.22
Entire expected profits ( EEP-Nash) ‘ I 24255.08 24253.86 | 24240.52 | 24215.51
Wholesale price 180 180 180 180
Retail prices 228.11 228.11 228.11 228.08
Safety stocks 0.304 0.376 0.430 0.469
Total Inventories 72.20 72.26 72.32 72.38
. Table 3.2 Effect of retail price competition factor 0
( 1.5
Supplier profit function 1446476 | 17342.93 | 1819521 | 20628.74
Retailers profit functions 3592.34 3448.79 3350.73 293091
Entire expected profits ( EEP-Nash) 2164945 | 24240.52 | 24896.67 | 26490.56
Wholesale price 180 180 180 180
Retail prices 240.15 228.11 224.54 214.35
Safety stocks 0.492 0.430 0411 0.351
Total Inventories 60.43 72.32 75.87 86.004
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3.6.1.4 Effect of the distribution parameter A
The distribution parameter A characterizes the distribution function rate in the stochastic part of the
demand function. Increasing A has a weak impact on retail prices, supplier profit function, total

demand function, and total profit; however drops the safety stock.

Table 3.3 Effect of distribution parameter A

tout 7
Supplier profit function 1734293 | 1731144 | 17300.96
Retailers profit functions 3448.79 3452.39 3453.59
Entire expected profits ( EEP-Nash) 24240.52 | 24216.23 | 24208.15
Wholesale price 180 180 180
Retail prices 228.11 228.05 228.03
Safety stocks 0.430 0.215 0.143
Total Inventories 72.32 72.16 72.11

3.6.2 Comparison between the Nash solution and the optimal one

The results of the optimal solution, analyzed in section 3.4, are given in Tables 3.4, 3.5, and 3.6. In
the case of supply chain optimization, the retail prices are not affected considerably by the increase of
v in contrast to the safety stocks which increase with it. This can be explained by the correlation
between the spill rate y and the stochastic part of the demand function. The ratio (EEP-Nash)/(EEP-
optimal) is nearly constant because the impact of retail prices on the total profit function is higher than
the impact of the safety stocks and in the two cases of Nash solution and optimal one. The factor 8
does not affect the optimal solution due to the symmetric values of the retail prices. However, the
comparison between the Nash solution and the optimal one shows a large difference on the retail
prices and the safety stocks. The retails prices in the optimal solution are lower than in the case of
Nash solution in contrast to the safety stocks. This result affects considerably the total demand
functions which are high in the case of optimal solution due essentially to the effect of the retail
prices. The ratio (EEP-Nash)/(EEP-optimal) increases with increase of the competition factor0. This
can be explained by the effect of the strong price competition which leads retailers to reduce their
safety stocks and increase their profits. The impact of the distribution rate . on the safety stocks is
considerable in contrast to the retail prices which are nearly constant. This can be explained by the
same effect of the spill rate y, however in this case the safety stocks decrease dramatically. The ratio

(EEP-Nash)/(EEP-optimal) is nearly constant because the impact of retail prices on the total profit
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function is higher than the impact of the safety stocks and in the two cases of Nash solution and

optimal one the retail prices are not considerably affected by the various of A.

Table 3.4 Effect of spill factor y

Entire expecdtxe‘;d' | proﬁts( EEP-

) 28908.39 28908.39 | 28898.30 | 28883.52 | 28863.46
optimal)
(EEP-Nash)/ (EEP-optimal) 0.749 0.839 0.839 0.839 0.839
Retail prices 180.33 180.33 180.33 180.32 180.32
Safety stocks 1.10 1.10 1.15 1.25 1.39
Total Inventories 120.76 120.76 120.82 120.92 121.07

Table 3.5 Effect of retail price competition factor 8

 Price competition: ;

Entire expected proﬁts( EEP-optimaly)‘ 28883.52
(EEP-Nash)/ (EEP-optimal) 0.749 0.839 0.917
Retail prices 180.32 180.32 180.32
Safety stocks 1.24 1.24 1.24
Total Inventories 120.92 120.92 120.92

128883.52

Table 3.6 Effect of distribution parameter A

Entire expected profits( EEP-optimal) 2884127 28827.79
(EEP-Nash)/ (EEP-optimal) 0.840 0.840 0.840
Retail prices 180.32 180.16 180.11
Safety stocks 1.24 0.62 0.41
Total Inventories 120.92 120.46 120.30

3.7 Conclusion

In this study, the condition of Nash equilibrium solution are presented for a buyback contract model

for one supplier and multiple retailers, where the demand is stochastic and depends on price and

safety stock. The performances of the Nash solution are discussed numerically for various price and
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safety stock competition factors. They are also compared with that of the optimization solution and
the case of non-competitive model. The Nash solution is computed based on the maximization of the
supplier profit function and the use of the Newton method to solve the non-linear equations. This
solution is found to depend strongly on the price competition factor, the spill rate, and the distribution
parameter. In addition, the ratio of entire profit function of the Nash solution and the optimal one is
found to increase with price completion factor; however, it is nearly constant when the spill rate and
the distribution parameters are varied. This problem can be extended by introducing new decision
parameters such as the lead-time.

In chapter 2 and 3, we have focused our study to retailers’ competition. In next chapter, we
move to suppliers’ competition under sale rebate contract in a decentralized supply chain with price

sensitive demand.
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Chapter 4

Competing Suppliers under Sale-Rebate Contract and

Price sensitive Demand in a Decentralized Supply Chain

4.1 Introduction

The current chapter focuses on the study of a competition between two independent suppliers who sell
their products to a common retailer in a decentralized supply chain, under sales-rebate contract, and
wherein the demand is sensitive to retail price. This chapter is organized as follows: First, we
introduce the literature related to this study, its objective, and the application of this model in
industrial management. Next, we formulate the model. Then, we explore the condition of existence
and uniqueness of the retailer’s optimal solution and also that that of suppliers. Finally, we present the

numerical results and their discussion.

4.2 Literature and Objective

Competition in supply chain management has been reported rarely in the literature of economics,
where different contracts and scenarios have been studied. Most of these publications have focused
only on competition between retailers who order their products from a single supplier and compete on
different types of decision variables, such as retail price, lead-time, order quantity, time service,... etc.
The contracts that have been studied in supply chain management are the wholesale price contracts,
the buyback contracts, the revenue—sharing contracts, the quantity—flexibility contracts, the
quantity—discount contracts, and the sale-rebate contracts (see Cachon [1]). The common conclusion,
from the study of these contracts, is the favor that the supplier achieves than the competing retailers.
In actual globalized and competitive market, however, the retailer has the possibility to provide his
products from different suppliers, in order to maximize his profits and to compensate the spoiled
choices of the consumers. For that, the impact of competition between suppliers should be studied
with the same importance as in retailers’ case.

Actually, few studies were focused on this subject. The only recent study that discusses the
competition between two suppliers under different contractual forms is reported by Cachon and Kok
[2]. In this work, the authors have studied three types of contracts: wholesale-price contract, quantity-
discount contract, and two-part-tariff contract. However, they did not study the sale-rebate contract

and its impact on the different chain performances. For that, the current chapter focuses on the study
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of a competition between two independent suppliers who sell their products to a common retailer in a
decentralized supply chain, under sales-rebate contract, and wherein the demand is sensitive to retail
price. In addition, retailer’s inventory related operational costs are included based on economic order
quantity (EOQ) model Hax et al. [3].

As described by Taylor [4], two forms of sale-rebate contracts exist. The first one is called
linear, in which the supplier offers channel rebate to the retailer for any product sold. This form of
sale rebate contract was used by Nissan Company and the market of hardware [4].The second form is
more restrictive, in which the channel rebate is conditioned by the setting of a target. This last type of
contract was studied in several publications [4-5]. Its main objective is tot incite the retailer to make
effort to order a quantity more than the target. It is used in the fields of hardware, software, and auto
industries [4]. In personal computer hardware industry and during the last decade, Compaq, Hewlett-
Packard (HP), and IBM have introduced sale rebate contracts based on the volume of sales to their
consumers and increase of channel rebate between 3% and 6% [4]. Channel rebates are also important
in the software industry. Microsoft and Novel have offered channel rebates between 3% and 5.5% [6].
Furthermore, Lotus and Symantec have also used channel rebates [7-8]. In automobile field, sale-
rebate contracts were characterized to be more incentive and have included 13 auto industrials
through more than 188 models [9]. This form of sale rebate contract will be the essence of this chapter.
The conditions of existence and uniqueness of the retailer’s optimal solution and that of the suppliers
are characterized, however, due to the non-linearity of the inventory costs, it was difficult to obtain a
close theoretical solution form. The optimal demand rates and wholesale prices of the model are
calculated numerically. The profit functions of the retailers and suppliers are evaluated and the total
Nash profit is compared to that of the integrated system. Furthermore, the impact of the inventory

related costs is investigated numerically.

4.3 Model Formulation

A schematic illustration of our model is given in Fig. 4.1. It consists of a common retailer who buys
two products from two competing suppliers (S;);<i<n)- Each supplier announces his payment scheme
by offering his whole-sale price w;, and his channel rebate u; (i.e., the amount paid by the supplier to
the retailer for each sold unit beyond a target ;. The supplier S; has ample capacity to satisfy any
retailer demand and produces products at a constant production cost rate c¢;. To avoid trivial setting, it
is assumed that 0 < ¢; <w; < p;,u; = 0, and t; = 0. The demand rate vector d = (di,dj) depends
on retail price for the pair of products. This study is restrained to the linear form of demand, which

satisfies for all i,j €[1,2], dd;(p)/dp; <0 and 8d;(p)/dp; =0 . It can be expressed as

d; (pl-,p]-) = a; — a;p; +V;;jp; where a;, a;, and y;; (min(ai, aj) > y;j) are the base market potential
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from the supplier i, the sensitivity of the demand to the product i, and the sensitivity of the demand to
product j, respectively. This linear form of demand was largely used in management literature [10-
15]. For simplicity, the inverse form of the demand is used as p; (di, dj) =0, — p;d; +v;d;
where 0; = (a;a; + vija;)/(a; — vij¥;i) » Bi = aj/(@a; — vi;vi) » Vi = Vij/(@ja; — vi;¥5) , and
Bi >yj > 0for alli,j € [1,2] (Cachon and K&k [2]). Note that the demand rates d; and d; will be
different when f; = B; = B, y; = y; = v, and 6; # 6;. As the retailer will profit from the sale-rebate
contract by ordering large quantity, he will face an increase in the inventory related operational costs.
In this model, the inventory costs that exist in the economic order quantity (EOQ) model is adopted
(Hax and Candea [3]). In such case, the retailer’s inventory related operational costs are given
byG;(d;) = K;d} where K; = \/Tlhl >0, k;, h;, and 1 = 0.5 denote the economics of scale, the
cost per order quantity, the holding cost, and a coefficient, respectively. Let R;(d4, d,) = p;(dy, d,)d;
be the revenue of the retailer from the selling of producti without considering the sale-rebate contract.
The total retailer profit function is expressed as

m(dy, dy) = Y7-1[(6; — Bid; — v3-id3—; — w;)d; — K;d} + wymax ((d; — t,), 0)]. 4.1)

wy dy, 4, uy
\ pl’ p2

wydy touy, — %
(&)

=
ON

—
Fig. 4.1 Model of a supply chain consisting of one retailer and two suppliers

This profit function can take four different forms based on the position of the demand rate from the

two sides of the target. If a unique optimal solution exists, it will be localized in one of the four

regions limited by the targets or at the boundaries. The position of the solution depends on the chain

parameters. In the case where the two demand rates are less or equal to the targets given by the

suppliers, the problem is equivalent to the wholesale contract. For i € [1, 2], the profit function of the

supplier i is given by
;(dy, dz, wi) = (W; — ¢;)d; — wymax ((d; — t;),0). (4.2)
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In the next section, the conditions of existence and uniqueness of the optimal solution are discussed

by considering the concavity of the profit function of the retailer.

4.4 Retailer’s Optimal Decision
Let S;(d,, d3) denote the first order derivative of the total retailer profit function with respect to d;.
Fori,j € [1,2], it is expressed as

Si(dy,dy) = 6; — 2B;d; — w; — AK;d} ™ +w; 1(d; > ) — (v + ¥j)d:, (4.3)
where 1(4) denotes the indicator function which takes 1 if A is satisfied and 0 otherwise. Equation
(4.3) depends on the on the sale-rebate u;, wholesale price w;, and independent of the targets t; . Then,
the position of the solution cannot be known from the two sides of the targets or at the boundaries.
This random situation makes the problem difficult. In addition, the second order derivative of the
retailer profit function is given by

0%m;(dy,dy)/0d? = —2B; + A(1 — D)K;d} 2. (4.4)
It is worth to note that if K; > 0, lim,_,y+ S;(d;,d;) = . For that, it is optimal for the retailer and
the system to carry both products. The condition of concavity of the profit function for the retailer is

given by Lemma 1.

Lemma 1 For a given whole-sale price vector (Wi,Wj), i,j €[1,2], the retailer profit function is
strictly concave on {(d;, d;), d;d; > 0} under the following conditions:
Bi=Bj=B,vi=v;=v,and 4.5)
2R;(dy,d3)/Gi(dy) > [Bi/ (BiBj — vivj)]l i/ d;. (4.6)

Proof The retailer profit function depends on both d; and d;. Then, it is strictly concave if its Hessian
is a negative definite matrix, which can be satisfied by the two following conditions:

(A) 0%m/dd? < 0 fori € [1,2],

(B) |0%m/0d?| > 0n/dd;dd; for i,j € [1,2] (ie., the Hessian is strictly diagonally
dominant).
First, 32m/dd} can be translated to 2p;d;/G;(d;) > A(1 — )B;* p;/d;, which holds under (4.6)
since B(B2 —y2) > B~1, and 171(1 — 2)~! = 4. The condition given by (4.6) means that two times
of the ratio between the revenue of the retailer without any contract and the inventory-related costs
must be greater than the absolute value of the own price elasticity. This condition was developed by

Bernstein and Federgruen [11] for decentralized retailers and then used by Cachon and Kok [2].
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Second, as B >y in price equation, B(B%—y?)> (28 —2y)™' and p;d;/G;(d;) > A(1—
M(2B — 2y)~1p,/d; holds under Eq. (4.6).

The satisfaction of conditions given by (4.5) and (4.6) guarantees the existence of a uniqueness of the
optimal demand rate (df , djf)that maximizes the profit function of the retailer. However, this solution
depends on the wholesale price. In addition, under positive economics of scale K; > 0, the system of
equation S;(d,,d,) = 0 for i € [1,2] that gives (df , d}‘)is non-linear, which requires a numerical

resolution.

4.5 Competing Suppliers’ Optimal Decision
In this section, a competition between two suppliers, who offer sale-rebate to a common retailer, is
studied. It is worth to note that the optimal demand rate that the retailer searches for depends on the

wholesale prices. Differentiating the profit function /I; with respect of w; gives

0ll;(wy, w3)/0w; = (w; — ¢; — wy) 8d;(wq, wp)/0w; + d;(wy, wy). 4.7)
Its second order derivative gives
021 (W, wa)/OW] = (w; — ¢; — u;) 8%d; (w1, w;) /OW? + 2 8d;(wy, W) /Ow;. (4.8)

The concavity of profit function of the supplieridepends on the sign of the first and second orders
derivative of the demand rate d; of product i on the wholesale price w;. Normally with increasing w, ,
the demand rates d; decreases and d; increases simultaneously. This statement will be proved in the

next part of this study and the conditions of concavity of the supplier profit function will be discussed.

Lemma 2 Under the conditions given by (4.5), (4.6), and symmetric optimal demand rates solution
d* = dj = d;, there exists a Nash (w/, w]-*) that satisfies for i € [1, 2]

d; + (w; —¢; —u;) dd; /ow; = 0. 4.9
Proof Under the conditions given by (4.5) and (4.6), the unique (d;k , dj’-") exists and satisfies
Si(di, d}) = S;(d,d;) = 0, The first order derivative of S;(dj, d; )and S;(d;, d;)on the wholesale

price w; gives the following system of equations

as;(dyd; (] R

%.’) = 1+ (=2B; + A1 — DK;d; *"2 ad; /ow; — (v; +v;) dd; /ow; = 0

as;j(d;.d; (— . . :
j(gwi ) =0 +(_2ﬁ] +/1(1_/1)I{]d}(l 2) ad]/an - (}’l +]/]) adl/aw, =0

LetA; = 28; — A(1 - DK;d;* ™ > 0, 4; = 28, — A(1 - NKd;*? >0, and B=y; +y;. The

impact of w; on the two demand rates is given by
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(0 70m) = e () @10
Note that A;4; — B? > 0 because the Hessian of retailer’s profit function is strictly diagonally
dominant. The demand functions d,‘ and d; decreases and increases with the wholesale price w;,
respectively. Then, the sign of d°d;/dw? must be evaluated in order to evaluate the sign of
8211;(w,, w,)/dw?. Using equation (4.10), B/dw;, 0A;/dw; = (aAj/ad]’-*)B(AiAj - Bz)—l, and
9A;/w; = —(9A;/3d})A;(AA; — B2) ™. Therefore,0%d] /aw? = (A;4; — B2) "[(04;/0d;)B® —
(aAi/adf)Af]. As AA,—B* >0 , the sign of 0%d;/dw? depends on the sign of(04;/0d;)B3 —

(04;/8d})A3, which is negative under symmetric optimal demand rates solution d* = d} = d}.
i i /)

When the economics of scale are zero (K; > 0), the optimal demand and Nash wholesale price are

o _ 2Bj(0i+ui—w)+ ity (0 +u-w))
. 4.11
d; 4BiBj-(yi+vj)? ’ ( )
wr = 4B:B(0;+ci+2u)-2Bi(vi+y )(0+u;)
! 4BiBi—(vi+vj)? )

(4.12)

The condition of symmetry of the optimal demand rates limits the regions in which the optimal
solution of the retailer is located, to only two regions or at the boundaries. These two regions are
delimited by the targets and differ on the setting of the sale-rebate rate. Then, the retailer and suppliers
profit functions will be discussed depending on the value of this parameter. When u; = u; = u, the
problem is restrained to a wholesale contract and the target has no meaning. However; if u > 0, the
setting of the target will not affect the optimal demand rate or the wholesale price. It affects only the
profit functions of the different actors of the chain. For the retailer, its profit function decreases
linearly with increasing the target and will be limited by its maximum at a zero target and its
minimum when the target is equal to the optimal demand rate solution. In addition, in contrast to the
retailer, the supplier profit function increases linearly with decreasing its target. Its minimum will be
obtained at a target equal to zero; however, its maximum will be achieved at a target equal to the
optimal demand rate. In contrast to the supplier, the retailer seems to achieve more profits whenu >
0; however, this intuitive result will be not guarénteed and depends on the impact of the value of zon

the optimal wholesale price and optimal demand rate.

4.6 Numerical Results
This section presents the numerical results of the different equilibrium solutions under symmetric

parameters (Bizﬁjzﬁ’yizyjzy,ei=6j=9,Ki=I(j=K,ui=uj=u,Ci=Cj=C,ti=tj=
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t) and especially with a positive economic of scale K > 0. The following combination of parameters
is used for the simulation (8 = 2,y = 0.75,6 = 100, K = {1,2,3}, u = {0,5}, ¢ = 10) a.. To obtain
the Nash solution, a non-linear system of equations is formed from the first order derivatives of the
profit functions of the suppliers and the retailer. This system is given by

g dw)=0+u—w-—-2B+y)d—-AKd* 1 =0

{gz(d, w) = ((/1(1 —DKd*2 —2p)" - 4y2) d+w—c-u) (A1 - HKd*2 - 28) =0’ (4.13)

This system of equations is solved using the Newton method as expressed by
(d"+1)=( d") _ <agl(d")/ad 09 (d")/OW)_1 (gl(d")) @.14)
wk*t) \wk 0g.(w¥)/ad  ag,(w*)/ow G .

In this numerical study, the solutions of the wholesale price contract and the sale-rebate contract will
be presented, compared, and their effect on the profits of the retailer, the suppliers, and the integrated
system in presence of inventory related costs, will be discussed. For the optimization problem, the
total profit function of the integrated system is obtained by excluding the endogenous parameters of
the chain and it is given by

;= 2((0 —c— (B +y)d)d — Kd*) = 0. (4.15)
The optimal solution of the profit function of the integrated system is obtained by solving its first
order derivative, as given by

om;/dd = 2(6 — c — 2(B + y)d — AKd*1) = 0. (4.16)
The different optimal results for the Nash equilibrium and for the integrated system are summarized in
Table 1. In this simulation, the target takes two different values (t = 0 or t = d). For 0 < ¢ < d, the
profit function of the retailer decrease linearly with the target. However, the profit of the supplier
increases linearly in such target range. The case, in which the optimal demand rate is high than the
target, is not studied here. For the wholesale contract, the profit functions of tﬁe retailer and the
suppliers are the same. However, in the sale-rebate contract, they increase and decrease with varying
the target between t = 0 and t = d, respectively. The Nash wholesale price in the sale-rebate contract
is higher than of that in the wholesale contact and the difference between them is equal to the rebate
rate (u = 5). However, the optimal demand rate and retail price are unchanged. This can be explained
by the leadership of the supplier to take decision in the chain. Although the competition is between
the suppliers, the retailer did not benefit from it in the sale rebate contract. It seems here that the
decision variables depend on the leadership decision and not on the competition. The total profit of
the chain under Nash equilibrium is independent of the contracts. It is explained by the linear change
of profits with the target between t = 0 and t = d (what is gained by a retailer is lost by two suppliers
together to make a compensation). The demand rate in the optimization problem (integrated system) is

high than that of the Nash equilibrium, in contrast to the retail price. This can be explained by the
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remove of the leadership decision in the optimization problem, where the wholesale price is an
endogenous parameter. The integrated system achieves around 30 % profit more than the Nash profit.
Furthermore, increasing the economics of scale drops the different performances of the chain in the
two forms of contract. Finally, using sophisticated contract is proven to increase the profits of the
system, in accordance with the results of Cachon and K&k [2]. However, using sale rebate contract

increases the profit of the supplier, in contrast to the same result of Cachon and K&k [2].

Table 4.1 Summary of Nash and optimal numerical results for the different parameters.

Nash wholesale price (w) 44499 | 44383 | 44267 49383 | 7
Optimal demand rate (d) 10.062 10.055 10.047 10.055 10.047
Optimal retail price (p) 72.328 72.349 72.370 72.349 72.370
Retailer profit
553.709 | 549.699 | 545.695 553.709 | 549.699 | 545.695
Target | function
t=0 | supplier profit
347.147 | 345.718 | 344.289 347.147 | 345.718 | 344.289
function —_ —_
() wy
Retailer profit | ! L
] S | 553.709 | 549.699 | 545.695 |= | 453.085 | 449.151 | 445.223
Target | function 8 S
T =} i
t=d | supplier profit | § 8 '
S | 347.147 | 345.718 | 344.289 | 2 | 397.459 | 395.992 | 394.525
function z 2
@ RS TN A e R Fo
Nash profit of the chain | | !@#8‘.’00@3” 1241.136 | 1234.273 | E 1234273
Optimal demand for § 3
) 16.341 16.319 16.296 16.341 16.319 16.296
integrated system
Optimal price for
. 55.062 55.124 55.186 55.062 55.124 55.186
integrated system
Profit function of

integrated system

Nash profit / integrated
0.706 0.706 0.705 0.706 0.706 0.705

profit

4.7 Conclusion

In summary, the existence and uniqueness of optimal demand rate for the retailer in a target sale-
rebate based decentralized supply chain was found to be conditioned by the symmetric of the chain
parameters f; and y; for i € [1, 2]. The existence of the optimal wholesale price solution was found to
be conditioned by the symmetric of the optimal demand rate solution. Further, the setting of the target

affects only the profit functions of the supplier and the retailer and does not affect the optimal
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wholesale and demand rate. As important result, the optimal wholesale price; in the case of sale rebate

contract; increases with approximately a difference equals to the channel rebate rate. The total profit

of the chain under Nash equilibrium is independent of the contracts.
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Chapter 5

Impact of Lead-time Decision in a Decentralized Supply

Chain under Price and Lead-time Sensitive Demand

5.1 Introduction

This chapter analyses the impact of lead-time decision in a decentralized supply chain, where the
retailer demand is sensitive to price and lead-time. First, we introduce the literature related to this
study, its objective, and the application of this model in industrial management. Second, we formulate
the models in the three scenarios. Third, we describe the modelling of lead-time using exponential
distribution. Then, the power distribution of lead-time will be modelled and the different scenarios are
studied and compared. Furthermore, the impact of own price and lead-time sensitivity demand factors

on the performances of the chain are discussed theoretically and numerically.

5.2 Literature and Objective

In actual globaiized and competitive market, the consumer benefits from the variety of choices.
Therefore, considering the selling price as a unique competition factor in a supply chain became
insufficient. For that, the market actors have been investigating new competition criteria based on
consumers’ attention. Sterling et al. [1] and Ballou et al. [2] reported that the rapidity and the
regularity of delivery time have a particular importance in the customer service. Such delivery time is
related to the so called “lead-time” factor. Generally, lead-time depends on the efficiency and the
capacity of the selling system.

For example, So [3] reported that a retailer needs to provide sufficient capacity and guarantees
the efficiency of his delivery system to achieve desired lead-time performances. This competition
factor is widely discussed jin supply chain management literature. It started with Yano [4-6], Li [7],
Hopp and Spearman [8], Li and Lee [9], Lederer and Li [10], Palaka et al. [11], So and Song [12],
Song et al. [13], Cachon and Harker [14], Boyaci and Ray [15]. Recently, Liu et al. [16] have studied
pricing and lead-time decisions in a two level decentralized supply chain consisting of one supplier
and one retailer, in which the supplier decides the lead-time and faces related costs. Furthermore,
Pekgun et al. [17] have compared centralized and decentralized supply chains under price and
lead-time sensitive demand.

In most cases of these studies, the supplier is a lead-time decision maker. However, the

consumer places his order to the retailer and gets information about the time of delivery. The retailer
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is more suitable to determine the lead-time in the practice. Thus, the scenario in which the retailer is a
lead-time decision maker should be considered and studied. However, in literature related to industrial
management, this scenario has not been deeply studied. For that reason, we will focus in the current
work on effect of lead-time decision on the performances of the supply chain management.
Furthermore, we will compare the optimal decision variables and expected profits in this scenario
with that when the supplier is a lead-time decision maker.

In this chapter, we study the impact of centralized and decentralized lead-time decision in a
two-level supply chain management, consisting of one supplier, one retailer, and wherein the demand
is sensitive to both retail price and lead-time. The decentralized chain is based on a leader-follower
model. However, in the centralized chain a single decision maker is considered. The lead-time is
defined, in this work, as the interval of time separating the moment of placing an order by a consumer
to the moment of receiving that order, including the time of intermediary process between the retailer
and the supplier. When a consumer places an order to the retailer, a promised time to receive this
order will be announced. Such time is defined as the promised delivery lead-time (PDL), which is also
expressed in literature as quoted lead time or planned lead time.

However, this PDL can be smaller or greater than the exact interval of time to deliver the order
of the consumer. Such period of time is defined as the realized delivery lead-time (RDL) or as
referred in the literature to the response time or cycle time. The RDL is a stochastic variable and may
deviate from the PDL due to many reasons such as high demands. As consequence, the actor of the
chain who decides the lead-time faces holding and tardiness costs incurred by the difference between
PDL and RDL. Three different scenarios based on lead-time decision are studied and compared. In the
first scenario, the retailer is a leader and the supplier is a follower. The retailer decides the PDL and
the retail price to be quoted to the consumer, however, the supplier determines the wholesale price.
The second scenario describes a supply chain in which the supplier is a leader and the retailer is a
follower. The supplier determines the PDL and the wholesale price, however, the retailer quotes the
retail price. The lead-time decision in these two first scenarios is decentralized. The third scenario is a
centralized problem, where a single lead-time decision maker is considered. In addition, another
problem is faced when choosing the using the distribution function of lead-time.

In general, the exponential distribution function is the commonly used distribution in
management literature; however, with it, we cannot obtain a close form solution and some
assumptions must be satisfied to compute the solution numerically. To overcome these limitations, the
power distribution of lead-time is used under some conditions to imitate the properties of exponential
distribution. Under such distribution, the optimal decision variables and expected profits are

characterized and compared in the three scenarios. Further, the effect of own price and lead-time
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sensitive demand are studied numerically. The results of this study can be used in several industrial
management applications such as internet retailing, online selling transaction or e-retailing, post
services...etc. Mike Eskew, the chairman and chief executive officer of UPS, explains: “Globalization
has raised the competitive stakes, forcing companies to compete on more than just product features
and price. Companies can achieve competitive differentiation based on how well they deliver the right
product to the right place at the right time [18]”. This citation deals with the importance of shot lead-
time in posting services applications. In internet retailing, most of websites in this field announce their
delivery lead-time and try to minimize it as possible in order not only to satisfy their consumers but

also to increase to battle their competitors.

5.3 Formulation of the Models

Three different seniors are studied to determine the optimal decision variables and expected profits in
a two level supply chain, consisting of one supplier and one retailer. In the first scenario, the retailer
decides the lead-time; however, this decision is taken by the supplier in the second scenario and
centralized in the third one. The supplier produces products at a constant production cost rate (c),
including the transportation cost to the retailer or to the consumer. The supplier has ample capacity to
satisfy any received demand. The retailer faces an administrative cost per unit (¢c,.). The actor of the
chain who decides the lead-time faces lead-time costs incurred by the difference between the PDL and
the RDL. If the RDL is less than the PDL, the product is kept in stock and a holding cost (k) per unit
per unit time is introduced; however, he faces a tardiness cost (b) per unit per unit time, when the
RDL exceeds the PDL. We assume a demand rate A dependent cumulative distribution function (cdf)
R; and a probability distribution function (pdf) r; for lead-time. The lead-time costs are defined as in
[16] and [22], where they are expressed, for a given A, by ‘

C(LRY=h fol(l —tn(®)dt+ b fl°°(t — Dy (t)de, 5.1
where the demand function A is deterministic and linear in retail price and lead-time. It is expressed as
AP, D) =Ap —ap - B, (5.2)

with 4y, a, B are the base market potential, own price sensitivity demand factor, and own lead-time

sensitivity demand factor, respectively. We define the standard waiting cost ¢, = gper unit of PDL

and the maximum retail price p™** = %9 . The demand function is similar to that reported by Boyaci

and Ray [15], Pekgun el al. [17], Tsay and Agrawal [19], and Balasubramanian and Bhardwaj [20].
In the first scenario, to maximize their profits, the supplier decides his wholesale price wy,; however,

the retailer decides his lead-time [, and retail price py;. The optimization problem of the supplier is

given by maxy,, 7Ts1(Wd1,Pd1(Wd1): ld1(Wd1)) = Wa1 — g1 (Pa1Wa1), lgs(Wgq)) ,  where
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pa1 (W) and Lz, (wg,) are the optimal solutions for following retailer’s optimization problem. The
index d1 refers to decentralized chain in scenariol. For a given wy4, the optimization problem of the

retailer is expressed as
max p,. 14, Tr1(Pass lar) = (pdl —way — ¢ — C(lg1, Ry dl)) Aa1(@a1(Wa1), la1(wa1)) . The supplier

decides his wholesale price wy, and lead-time l;,. His problem is given by

maxy,,, Ts;(Waz, laz) = (Wdz —c—C(lg2 R/ldz)) a2 (Paz(Waz), laz(Wg2)),
where the index d, refers to the decentralized chain in scenario 2. The optimization of the retailer is
given for given wgp, by max,,, 1., T2 (Pazi laz) = Paz — Waz — ¢r)az2(Paz laz)-
In the third scenario, one of the chain’ actors is a decision maker and the other one is a follower. The

wholesale price is excluded from the optimization problem, as an internal variable. The total profit

function of the centralized chain is given by m.(A:.(p,1)) = (pmax - % —cple—c—c, —

( (lch)lc)) Ac(p, 1), where the index c refers to the centralized chain. In all these scenarios, we

assume that the right hand-sides of the optimization problems are positive.

5.4 Exponential Distribution

In M/M/1 system, the service times are independent and identically exponentially distributed. As
reported by Boyaci and Ray [15], the exponential distribution gives an important apiaroximation of
waiting times. Its cdf and pdf of lead-time are given byR;, (t) =1 — e~r=4at and ry n)=
(y — Ag1)e~~2at for 0 < t < o0, respectively, where y is the mean service rate. Here, only the
first scenario will be studied under the exponential distribution of lead-time. The other scenarios were
studied by Liu et al. [16]. For a given wholesale price w4, the retailer profit function depends on
three dependent parameters; the price, the lead-time, and the demand. To solve this technical problem,
the retail price is expressed as a function of lead-time and demand function. Then, the optimal lead-

time solution will be obtained for a given demand. Using Eq. (5.2), we obtain
A
Par =™ == —cylyy. (5.3)
The optimization problem of the retailer can be rewritten by

_ Ada
max,.,la mr1(Aq1s lar) = (Pmax e Cwlar —way — ¢ — C(ld1, Rldl)) Aq1-

Lemma 5.1 For a given wholesale price wy; and demand 444, there is a unique optimal lead-time

131 (A41), which depends on A4, and expressed by 13, (141) = R;. d11 (1_:—+_c;:,)’ where R,{dll is the inverse

of the distribution function Ry, .
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Proof By differentiating 7,4 ( Agq,lq1) on the lead-time ly;, we obtain ?_”_% = (—cw _
1

ac(ldl’le)
Olgq

azc(ldl’le)
lg,”

2 a%c(lg1.R . ac(lyq,R
)Adl and STritlale) - ) ——(a‘l’ 2““) , with 2c{larfag,) = )y y (b + h)R;(lg1)
d1 di d1

and = (b + h)ny,,(131) > 0 for all ly;. Thus, the retailer profit function is strictly

concave on ly; and the unique optimal lead-time 13, (44,) is given by 13, (141) = R;. d11 (%—_f—"l”-).

The ratio (b?__:—h‘”) reflects the cost parameter [22]. The optimal lead-time is dependent on retail price

through A4, . Note that if b —c, <0, the optimal lead-time is zero. Using the exponential

d
Y441

distribution, the optimal lead-time can be expressed if b > ¢, as [,(A41) = , where

h+cy,
b+h

hd+cy,
Y—Ada1

d= —ln( ) Substituting 13, (444) in (1), gives (ldl,R,l m) = . Then, the retailer profit

max Z’dl (CW+h)d+Cw

function is given by m,1(A41) = (p —_— " — Wy, — cr) Aa1 -

Lemma 5.2 For a given wholesale price wy;, there are unique optimal demand A%, and retail price

Pai- The unique optimal demand is given by A%, =y — ¢*, with ¢p*is the solution of the cube

equation ¢*3+A¢p*> +Bep*+C=0 , with A EW—)/ , B=0 , and
_a{(cwth)d+cw)y

C =
2

Proof By differentiating the retailer profit function on the demand function 1;; we obtain

0ntr1(Ad1) _ _max _2Agy 1 Ady _ _ 8%mr(Aa1) _ _2
o2 P s~ ((w+hd+a,) (y—adl + (y—adl)z) War — ¢ and =0 =4

((CW +h)d + CW) ((y ;d B + (;d;:Y)S) < 0 for all A4;. Thus, the retailer profit function is strictly
—Adi —Ad1

concave on Ag; and the unique optimal demand function is given by A3, =y — ¢*, with ¢*is the

max _ —
solution of the third order equation ¢*3 + A¢p*?> + Bp* + C =0, with A = w -7,

B=0 andC = _a((cw+h)d+cw)y

=0, = - =
The cube equation on Ay, has three possible solutions. However, the retailer profit function is concave
in A, , which guarantees the existence of unique positive solution. This solution cannot be obtained

analytically or numerically because it depends on wholesale price wg,, which is an unknown decision
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variable. Liu et al. [16] discussed nearly the same cube equation, where the constants depend on
chain and distribution parameters only and can be solved numerically using the formulas reported in
Spiegel and Liu [21]. They introduced some approximations to model the lead-time as function of
demand. In this study, a new approach based on the so called power distribution is used to solve the
problem analytically. Such a distribution has, under some conditions, the properties of exponential
distribution of lead-time in M/M/1 system. Its advantages will be discussed in detail in the next

section.

5.5 Power Distribution

As mentioned in last section, the problem cannot be solved under exponential distribution. Then, a
new approach based on the power distribution function is used. This distribution function of lead-time
was introduced by Zhengping et al. in [22]. It is a parametric function which models a wide variety
of distributions such as uniform and triangular distributions. In addition, we will show that the power
distribution is more suitable in the context of modelling lead-time in a general environment industrial
management. It has the same properties as the exponential distribution for specific parameters. The

advantages of this distribution will be discussed after its definition. The cdf and the pdf of lead-time

wt@-1
(PAa1)®

where @ > 0 and p > 0 are the shape and the scale parameters, respectively. The interval pAz, =T

t (02
are expressed by R, (t) = (m) and my, (t) =

for 0<t<ply , respectively,
represents the longest possible lead-time for a job in the system, when the demand rate is A4;. The
properties of power distribution function of lead-times are summarized in the following points:

- The service mean rate and the demand are 1/p and A4,, respectively. They are analogous to ¥ and
Aq1 » respectively, in the exponential distribution.

- Infinite lead-time is not allowed as in practice.

- It can be used in different situation by varying the shape parameter @. As shown in Fig. 5.1, the pdf
of lead-time under various @ has different behaviors. For @ = 0 or @ = oo, the optimal lead-time is
deterministic and equal to 0. For 0 < @ < 1, the pdf drops with increasing lead-time as in M/M/1
system. In this case, short lead-times have high probability, indicating a rapid delivery of the order.
The cases where @ = 1 and 2 correspond to thev uniform and the triangular distributions, respectively.
Forw > 1, the pdf increases with lead-time, which indicates that long lead-time has high probability,
in contrast to exponential distribution. The order that the supplier receives from the retailer tends to
stay long in the system, which is consistent with common practice where deliveries normally take

place near end of promised lead-time (PDL) or even beyond in some cases.
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pdf (lead-time

lead-time

Fig. 5.1 Probability distribution function of lead-time for various shape parameters @.

5.5.1 Retailer decides the lead-time

Using results of lemma 1 and the expression of power distribution function, the optimal lead-time can

be expressed as lj,(A41) = pAg1T, Where T = w/bl:":’ . The lead-time costs can be expressed by

m+1h b w+1 SEP . . .
(A41) = npAgqs , wheren = : * (Tm+1+w i m). Then, the retailer profit function can be rewritten

A
as pq(Aq1) = (Pmax - “il = CwPAa1T — Wqq — Cr — UPAm)Acu-

Lemma 5.3 For given wholesale price w4, there are unique optimal demand function 1* and retail

a(pmax_wdi_cr),, *  _ .max 1:11
2 (1+acwpr+anp)andpd1 =p . 1+ ac,1p).

price p*. They are expressed asdy; =

Proof By differentiating the retailer profit function on the demandA;,, we obtain W = pMa* —

2441
a

8271'r1( Ad1) —

3 ~2_ 2¢,pt — 2np < 0. Thus, the retailer
5).,11 a

Wy — Cp — - 2cwplqlr — 2npA4, and

profit function is strictly concave on A;; and the unique optimal demand function is given by

x« _ a@™*-wgy—cr) NPT . = . . e
Agr = Fracprianp) Substituting 13, and A3, in Eq. (5.3), the unique optimal retail price is given

. %
by pay = p™* — =2 (1 + frp) .

Inserting the optimal demand in the supplier profit function, we obtain

a(@™*-wgi—cr)

sy (Wa1) = (Wgq — ©) 2(l+acypr+anp)
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Lemma 5.4 There is a unique optimal wholesale price wg;, given by

max
p

p__—ate (5.4)

* —
Wq1 = 2

Proof By differentiating the supplier profit function on the wholesale price wy;, we obtain

g (wgq) —a(2wg, -p"m ¥ +cr—c) 82ms1(Way) - .
= n = ) rofi
wa, A(Ltac,prrang) and owal? Trac.prianp < 0. Thus, the supplier profit

function is strictly concave on wy, and the unique optimal wholesale price is given by wg; =

pMaX_c.+c
2

Then, the optimal decision variables and expected profits are expressed by

la, = %;—) (5.5)

a1 = Z—((%, (5.6)
Par =P — % (1 + Brp), (5.7)
myy = S@eel A ymax _ ¢ () (5.8)

8(1+Bpt+anp) T2

a(@™-c-cr)? _ Ap

* d1 (. max _ . _
r1 = 16(1+BpT+anp) 4 o ¢ —cr). (.9)

The sum of the supplier and retailer profits is given by

* * * 3
gy =Ty + 751 = —% @™ —c—¢) (5.10)

5.5.2 Supplier decides the lead-time
Using lemma 1 in Liu et al. [16]; for given wy, and lead-time l;,, the optimal retail price is given by

. maxic. —c,l o . . .
Paz = - ZCW datWaz Substituting p;, in Eq. (5.2) and expressing the wholesale price as

function of demand, we obtain wy,(Ag2) = P™* —cplys — 2442/a — ¢, . Using the same
methodology as in §4.1; for a given demand function A4,, there is a unique optimal lead-time
15, (A42), which depends on 14, and given by 13, (A42) = pA4,T. Then, the supplier profit function is
rewritten as sy (Agz) = (P™%* — ¢, — ¢ — Ag2 (CwpT + 2/ + 1)) Ag,.

Lemma 5.5 Under power distribution, there is a unique optimal demand function Ay, expressed by

. _ @™ -cmcp)
Aa2 = Gt gprransy , (5.11)
sz (Ady) =

Proof By differentiating the supplier profit function on the demand A4,, we obtain o1,
2

82m5(Ag2) _

p™M* — ¢ — ¢, — 2A45(cypT + 2/ + np) and v —2(cy,pt+2/a+1np) <0. Thus, the

supplier profit function is strictly concave on A4, and the unique optimal demand function is given by

a(p™**—c—cr)

A =
a2 ™ 2(2+Bpr+anp) °
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Then, the unique optimal lead-time is expressed by

x _ pra("®-c—c,)
ld2 T 2(2+Bpt+anp) . (5.12)

Substituting 1}, and Ay, in wg,, the unique optimal wholesale price can be given by

max_ ._
max __ Cr _ (p c CT)(2+ﬂpT) (5.13)

*
Waz =P 2(2+Bpt+anp)

From that, we obtain the unique optimal retail price as
Paz =™ — %(ﬁpr +1) (5.14)

Finally, the retailer and supplier profit functions are given, respectively by

= ./}.*di — _a(pmax_c_cr)z

T2 =" = 4(2+BpT+anp)? (5.15)
* A2

ms, = (2 + Bpt + anp) =22 = (2 + Bpt + anp)my, (5.16)

The sum of the supplier and retailer profits is given by

o « _ a(B3+Bpt+anp)(p™*F—c—c,)?
T[dZ - an + nSZ - 4(2+ﬁpT+aTlP)2 (2.17)

5.5.3 Centralized scenario

In this case, one of the chain’ actors is a decision maker and the other one is a follower. The
wholesale price is excluded from the optimization problem because it is an endogenous variable. This
scenario is considered as a benchmark to be compared with decentralized scenarios. As calculated in §

5.5.1, the optimal lead-time and lead-time cost are given, respectively, by I*(1) = pAt and C(A) =

npA. The profit function of the centralized chain is given by m( 1) = (pm“x - % —CcypPAT—Cc—cp —

npzl)l. Using the same methodology as in lemma 5.2, we obtain the optimal demand function,

optimal price, optimal lead-time, and expected profit as

¥ __ a(pmax"c-cr) _ *

A= 2(1+Bpt+anp) 2/1‘11’ (5.18)

p*=pm* —%*(1 + Bp) (5.19)
sry _ o @™ —c—cy)

*(A) =pt 2007 Borranpy (5.20)
. _ A*Z _ d(pmax—C—Cr)z

== 1+ Bpt+anp) = T Borranp) (5.21)

5.5.4 Comparison between the scenarios
In this sub-section, the optimal decision variables and expected profits are compared in the three
scenarios. As reported in [16], an inefficiency of lead-time decision factor is used to evaluate the gap

between the centralized and decentralized solutions. This factor is expressed by
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Grg =1~ "4 for i = {1,2) (5.22)

5.5.4.1 Comparison between scenariol and centralized one

From results of §5.5.1 and §5.5.3, the optimal demand function and the optimal lead-time in the
centralized chain are the double of that in the first scenario, where the retailer decides the lead-time,
that is A* = 243, and I* = 2l3,. However, the optimal retail price in scenario 1 is higher than in that

max *

14 tp

of centralized chain, that is pj; = > p*. Concerning the comparison of total profits, we have

Ty = %. Therefore, an inefficiency of lead-time decision, when the retailer decides the lead-time, is

independent of chain and distribution parameters and equal to q,, = 0.25.

5.5.4.2 Comparison between scenario 2 and centralized one
From results of §5.5.2 and §5.5.3, the optimal demand function, the optimal lead-time, and the optima
retail price in the centralized chain are higher than that in the case of the second scenario, where the

Ay 1+Bpt+a I; max _py

supplier decides the lead-time which satisfies this equation A = 2tpprianp — I = praip

Tap _ 3+4(Bpr+anp)+(Bpr+anp)? 1
n* 4+4(BpT+anp)+(BpT+anp)? ’

1
B 4+4(Bpr+anp)+(ﬁp‘r+anp)2 < 0-25.

Concerning the comparison of total profits, we have 0.75 <

which results in an inefficiency of lead-time decision of g,

This result depends on chain and distribution parameters; however, it is often less than that in the case

when the retailer decides the lead-time.

5.5.4.3 Comparison between scenario 1 and 2

From results of §5.4.2 and §5.4.3, we have 11%3 = lf—z — 2+Bprranp) > 1. From that, the retailer
Agq lgy 2+Bpt+anp

orders more quantity when the supplier decides the lead-time. It can be explained by the non
responsibility of the retailer to compensate the waiting cost for the consumer. As consequence to high

demand, long lead-time is required to complete the job. Concerning the retail prices, we have

PP M25 9 which gives pl, <py, . From Eq. (5.9) and (5.15), we have
pdl_pmax )'dl g de dl

ny, _ 4(1+Bpr+anp)

ot = iBprianp)? < 1. This means that the retailer achieves more profits when he decides lead-time.
rl !

> 1. Therefore, the

The same result is found for the supplier, where =2 = 2Q+Bprtanp)(2+fprtanp)
T (2+Bpt+anp)?

chain’s actor who decides the lead-time achieves more profits. Concerning the total profits in the two

. ) 4(3+4(Bpt+anp)+(Bpt+anp)?
scenarios, we have —22 = (3+4(Bpr+anp)+Bp np)z) 1.
g, 3(4+4(Bpr+anp)+(Bpt+anp)?)
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5.5.5 Numerical results

In this section, we compute numerically the optimal decision variables and expected profits under
power distribution function. Two different values of shape parameter will be used. The first one is set
to @ = 0.2, where the pdf of lead-time drops with increasing lead-time. This case imitates the
properties of the exponential distribution. However, the second value is set to @ = 1.2, where the
pdf of lead-time increases with increasing lead-time. For all our simulations, the numerical values of
chain parameters are set as Ao = 100, a =1 if B is varied, B =1 ifais varied b=2,h=0.3,
¢ =5,c=20,w€{0.2,1.2} , and p = 10 . The decision variables and expected profits that can

be discussed theoretically will not be presented in the numerical results.

5.5.5.1 Effect of own price sensitivity o

1-w

B\ @
: ot _ B b—2 A(a(@™*—c—cp)) on_ 1
First, we have —== p— (——b+h) >0, Py =—Cc—¢ <0, -=— [(@+

@ _ _ _B 8(1+pptranp) _ , 3t o dt _
Db+ h)t® —b(w+1)] = ~ <0, and ———— —Bpaa+17p+ap 313 = 1P > 0. From

ans;
Isi < 0 for
da

«
Iy

da

. . . . ANy,
that, it is easy to see in the first and the second scenarios thataTT <0, < 0, and

i = 1,2. Then, increasing the own price sensitivity demand factor adecreases the demand function
and the expected profits. The sensitivity of the other decisions variables to @ will be discussed
numerically. In all figures, the solid, the dashed and the dot-dashed lines correspond to the first,

second, and third scenarios, respectively.

e Case of shape parameter @ =0.2
For w = 0.2, the pdf decreases with increasing the lead-time as in M/M/1 system. As shown in Fig. 5

(a), at low values of a, the wholesale price in the second scenario is more high than that in the first

. . A .-
one. However, it converges in the two cases to the product cost rate ¢ for a, = C+°C In addition, as

T

plotted in Fig. 5.2 (b-left), the retail price decreases with increasing a. Its sensitivity to lead-time
decision is weak. For such a., the optimal price is equal to ¢ + ¢, and the others decision variables
are zero. Furthermore, the important result in this sub-section concerns the lead-time, which is found
to be a non-monotone function with @. As shown in Fig. 5.2(c-left), it reaches its maximum for
@ = (ymayx, Which depends on the setting of chain and distribution parameters. It is worth to note that
the non-monotony of lead-time disappears for high tardiness cost b. Further, it is easy to see

numerically that in contrast to the other parameters, &, q, right shifts with increasing own lead-time
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sensitive demand factor . As conclusion to this sub-section, an infinity lead-time is not allowed in

the chain, which is in accordance with the practice.

Fig. 5.2 Own price sensitive demand dependence of wholesale, retail price, and lead-time

for a shape parameter @ = 0.2 (left) and @ = 1.2 (right).

e Case of shape parameter @ = 1.2
Forw = 1.2 , the pdf decreases with increasing the lead-time. This means that long lead-times have
high probabilities. This case is in contrast to the behavior of the pdf in M/M/1 system. The
dependence of the wholesale, the retail price, and the lead-time to the own price sensitivity demand
factor a is plotted in Fig. 5.2 (a-right), (b-right), and (c-right), respectively. At low values of , the gap
between the retail price in the centralized and decentralized decisions are sharp more than in the case

where @ = 0.2 . In addition, @}, 4, shifts to low values of @ with increasing the shape parameter.



Chapter 5 -61 -
5.5.5.2 Effect of own lead-time sensitivity 8

1-w

=z
- o ___ 1 (P4} " n_ 1 w _ =8
First, we have 6= amrn) <b+h> <0, = o [((@+ DB +n)T b(@+1)] = - <
0, anda—(H—ﬁgZ;a—nm =pT+ ,B’p o8 4+ pg" gB = pt > 0. Then, it is easy to see, in the first and the
ary amy; anﬂ . . .
second scenarios, that 2 5 1< 0 <0 < 0, and < 0 for i = 1, 2. Then, increasing the own

I? ap > oB
lead-time sensitivity demand factor 8 drops the lead—time, the demand function, and the expected
profits. For the wholesale and retail prices, we will discuss their behavior with 8, numerically. In all
figures, the solid, the dashed and the dot-dashed lines correspond to the first, second, and third

scenarios, respectively.
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Fig. 5.3 Own lead-time sensitive demand dependence of wholesale and retail price for a

shape parameter @ = 0.2 (left) and @ = 0.2 (right).

e Case of shape parameter @ = 0.2
The wholesale price in the first scenario is independent of own lead-time sensitivity demand factor 3.
However, as shown in Fig. 5.3 (a-left), it is not monotone in the second scenario and limited by a
minimum wholesale price value w,,;,. Further, as given in Fig. 5.3 (b-left), the retail price in the
three scenarios is also not monotone and limited by a minimum price py,;,. The value of own lead-

time sensitivity demand factor B = B,,inthat corresponds to wy,;, and pyi,is not the same and it
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depends on the chain and distribution parameters. This value depends strongly on the tardiness cost b
and the own price sensitivity demand factor a. It is worth to note that the non-monotony of wholesale
and retail price disappears for high tardiness cost b. In addition, in contrast to the other parameters,
Bmin shifts to high values with increasing . As important results of this sub-section, the wholesale
and retail prices are limited with minimum values, under them the supplier and retailer cannot sell

their products.

e Case of shape parameter @ = 1.2
In contrast to the wholesale and retail prices, increasing the shape parameter increases the lead-time
for all values of . The optimal demand and profits start with high values for high shape parameter,
however they drop rapidly with increasing £ more than in the case of low @. Furthermore, as shown

in Fig. 5.3 (a-right) and (b-right), fS;in shifts to high values with increasing @.

5.6 Conclusion .

As summary, in a supply chain consisting of one supplier and one retailer and wherein the demand is
sensitive to retail price and lead-time, three different scenarios based on lead-time decision are studied
and compared theoretically and numerically. The important results are:

- Under the exponential distribution of lead-time, it is difficult to obtain a close form solution due
to the non-linearity of lead-time and waiting costs with the demand function.

To overcome this problem, we have used a specific form of power distribution, where, under some

conditions, it has the properties of exponential distribution. The important results are:

- Under the power distribution function, the chain’s actor who decides the lead-time is found to
achieve more profits than the other one, independently of chain and distribution parameters.
Furthermore, when the retailer decides the lead-time, an inefficiency of lead-time decision is found to
be constant (= 0. 25). However, when the supplier decides it, the inefficiency of lead-time decision is
less than 0.25 and depends strongly on chain and distribution parameters. Numerically, we find that
the consumers are sensitive to the own price sensitive demand factor, where infinity lead-time is not
allowed. Further, the retailer is sensitive to the own lead-time sensitive demand factor, where he
cannot decrease his retail price under a minimum value. The two limits of lead-time and retail price

are sensitive essentially to the tardiness cost.
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Chapter 6

Conclusions

In this thesis, we focused on the modeling and analysis of competition in a decentralized supply chain
with retail price sensitive demand. Some models were inspired from previous recent publication with
the addition of new parameters and/or numerical analysis. Three competition based works were
completely done with an introduction to a new model based on lead-time in a single echelon supply
chain. The results of these studies are summarized in the following points:

In chapter 2, we analyze the properties of Nash equilibrium retail prices in contracting model in
a supply chain consisting of one supplier, multiple competing retailers, and wherein the demand
stochastic and sensitive to retail price. As summary, optimal whole sale prices and buybacks
determined by the supplier give more profits to the supplier than retailers. In the symmetric cost cases,
the optimal retail prices of two retailers become the same. Compared to supply chain optimization, the
retail prices are higher and the quantities of orders are smaller in the individual optimal case. It is
because under the chain optimization more amounts of demand are satisfied by decreasing retail
prices and increasing order quantities, whereas in the individual optimal case the supplier wants to
obtain its own profit, which leads to higher wholesale prices and as a result retail prices become
higher. In the anti-symmetric cost case, the optimal wholesale price to the retailer with the smaller
production cost is smaller than that to another retailer, which leads to more profits for the former
retailer. The reason is that the retailer with small wholesale price sets the less retail price and more
quantities of order, which implies that more amounts of demand occur in total and the supplier can
sell more products to customers. In particular, with Logit demand function the demand depends on the
retail prices more intensively, and the wholesale prices, retail prices and the order quantities change
more. In both cases the entire expected profits in the individual optimal cases is about 80 to 85 % of
that under supply chain optimization. When the chain consists of one supplier and one retailer, it is
shown in Song et al. (2008) that the fraction is 3/4(in linear case) or 2/e = 0.736 (in Logit case). The
competition among retailefs makes retail prices lower, which makes the fraction higher. Furthermore,
it was found that as the variance increases in uniform distribution, retail prices are higher, and profits
of the supplier and retailers decrease. This is because when the variance increases, the quantity of
order must be increased to apply the fluctuation of demand, whereas the retail price must be also
increased to obtain profits of retailers. When the distribution parameter increases, the optimal
wholesale prices and buyback prices for the supplier are almost the same. It means that the optimal

wholesale and buyback prices for the supplier are robust in the variance of the demand distribution.
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In chapter 3, the condition of Nash equilibrium solution are presented for a buyback contract
model for one supplier and multiple retailers, where the demand is stochastic and depends on price
and safety stock. The performances of Nash solution are discussed numerically for various price and
safety stock competition factors. They are also compared with that of the optimization solution and
the case of non-competitive model. The Nash solution is computed based on maximization of supplier
profit function and use of Newton method to solve non-linear equations. This solution is found to
depend strongly on price competition factor (), the spill rate (y), and the distribution parameter (A).
In addition, the ratio of entire profit function of Nash solution and optimal one is found to increase
with price competition factor; however, it is nearly constant when the spiil rate and the distribution
parameters are varied. In the case of supply chain optimization, the retail prices are not affected
considerably by the increase of v in contrast to the safety stocks which increase with it. This can be
explained by the correlation between y and the stochastic part of the demand function. The ratio (Nash
profit)/(Optimal profit) is nearly constant because the impact of retail prices on the total profit
function is higher than the impact of the safety stocks and in the two cases of Nash solution and
optimal one. The factor © does not affect the optimal solution due to the symmetric values of the retail
prices. However, the comparison between the Nash solution and the optimal one shows a large
difference on the retail prices and the safety stocks. The retails prices in the optimal solution are lower
than in the case of Nash solution in contrast to the safety stocks. This result affects considerably the
total demand functions which are high in the case of optimal solution due essentially to the effect of
the retail prices. The ratio (Nash profit)/(Optimal profit) increases with increase of 6. This can be
explained by the effect of the strong price competition which leads retailers to reduce their safety
stocks and increase their profits. The impact of (A) on the safety stocks is considerable in contrast to
the retail prices which are nearly constant. This can be explained by the same effect of y, however in
this case the safety stocks decrease dramatically. The ratio (Nash profit)/(Optimal profit) is nearly
constant because the impact of retail prices on the total profit function is higher than the impact of the
safety stocks and in the two cases of Nash solution and optimal one the retail prices are not
considerably affected by the various of A.

Chapter 4 has studied a competition between two independent suppliers who sell their products
to a common retailer in a decentralized supply chain, under sales-rebate contract, and wherein the
demand is sensitive to retail price. As concluded remarks, the wholesale contract, the profit functions
of the retailer and the suppliers are the same. However, in the sale-rebate contract, they increase and
decrease with varying the target between target = 0 and target = optimal demand, respectively. The
Nash wholesale price in the sale-rebate contract is higher than of that in the wholesale contact and the

difference between them is equal to the rebate rate. However, the optimal demand rate and retail price
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are unchanged. This can be explained by the leadership of the supplier to take decision in the chain.
Although the competition is between the suppliers, the retailer did not benefit from it in the sale rebate
contract. It seems here that the decision variables depend on the leadership decision and not on the
competition. The total profit of the chain under Nash equilibrium is independent of the contracts. It is
explained by the linear change of profits with the target between target = 0 and target = optimal
demand (what is gained by a retailer is lost by two suppliers together to make compensation). The
demand rate in the optimization problem (integrated system) is high than that of the Nash equilibrium,
in contrast to the retail price. This can be explained by the remove of the leadership decision in the
optimization problem, where the wholesale price is an endogenous parameter. The integrated system
achieves around 30 % profit more than the Nash profit. Furthermore, increasing the economics of
scale drops the different performances of the chain in the two forms of contract.

In Chapter 5, three different scenarios based lead-time decision were studied in a supply chain.
The two first scenarios are decentralized and lead-time decision is made by the retailer and the
supplier in the first scenario and in the second one, respectively. The supply chain in the third scenario
is centralized. The optimal decision variables and expected profits were evaluated and compared each
others in decentralized case and to that in centralized one. As concluded remarks, the chain’s actor
who decides the lead-time is found to achieve more profits than the other one, independently of chain
and distribution parameters. Furthermore, when the retailer decides the lead-time, an inefficiency of
lead-time decision is found to be constant (= 0.25). However, when the supplier decides it, the
inefficiency of lead-time decision is less than 0.25 and depends strongly on chain and distribution
parameters. Numerically, we found that the consumers are sensitive to the own price sensitive demand
factor, where infinity lead-time is not allowed. Further, the retaiier is sensitive to the own lead-time
sensitive demand factor, where he cannot decrease his retail price under a minimum value. The two
limits of lead-time and retail price are sensitive essentially to the tardiness cost.

As concluding remarks of this thesis, we have:

- In case of retailers’ competition, the existence and uniqueness of Nash solution is conditioned
with specific conditions reldted to the context of the model and there is no global condition that can be
used. The unique Nash equilibrium retail prices are greater than wholesale prices; however, they
depend strongly on competition factors setting, essentially related to retail price.

- In case of suppliers’ competition, the problem is more complicated and the existence of Nash
solution is restrained by the symmetry of both chain parameters and optimal demand rates.

- The chain’s member who decides the lead-time is found to achieve more profits than the other

one, independently of chain and distribution parameters. Furthermore, an inefficiency of lead-time



- 68 - Chapter 6

decision is found to be less than 0.25 when the supplier decides lead-time in contrast to the case of
retailer

The study of competition in retail supply chain is very important in actual globalized and opened
market. Its objective is optimizing the profits of chain members and setting the conditions of existence
and uniqueness of Nash solution. However, in SCM there are many contexts in which it can be
modelled owing to the existence of various decision variables and coordination contracts. For that, we
propose to continue the analysis of competition in new models based on new decision variables such

as lead-time, service after delivery... etc.



ACKNOWLEDGMENTS

I am thankful for having so many wonderful people in my life to support me.
First and foremost, I was tremendously fortunate to have Professor Koichi
Nakade as a supervisor. His high expectations, enthusiasm, and valuable advices
drove me to make this thesis.

I am grateful to Professor Ichiro Koshifima and Professor Takayoshi Tamura
for taking the time to review this thesis and to serve on my committee for its
evaluation. I also thank, them for their valuable comments. I also thank, all
professors belonging to Architecture, civil Engineering and industrial management
Engineering Department of Nagoya Institute of Techinology.

I express my sincere thanks to my colleagues in the Laboratory of Prof.
Nakade Koichi.

I dedicate this thesis to my family who has always been very supportive of my
scientific endeavours. All my love to my father Bechir, my mother Aziza, my
brothers Ahmed and Houssem Eddine.

Finally, I express my special and sincere consideration for my husband
Boussairi and my daughter Nersyen for their patience and assistance during the
writing of this thess.

Ibtinen Sediri,
Nagoya Institute of Technology, Nagoya, Japan
January 2011



PUBLICATION

Chapter 2: K. Nakade, S. Tsubouchi, and S. Ibtinen, “Properties of Nash equilibrium

retail prices in contract model with a supplier, multiple retailers and
price-dependent demand” , Journal of Software Engineering and
Applications , Vol. 3 (2010) pp. 27-33.

Chapter 3: S. Ibtinen and K. Nakade, “Competition in a Decentralized Supply Chain

Chapter 4:

Chapter 5

under Price and Safety Stock Sensitive Stochastic Demand and Buyback
Contract”, Journal of Advanced Mechanical Design, Systems, and
Manufacturing, Vol. 4 (2010) , No. 3, pp. 627- 636.

S. Ibtinen and K. Nakade, “Competing Suppliers under Sales-Rebate
Contract and Price Sensitive Demand in a Decentralized Supply Chain”,
to be presented in: The 2nd International Conference on Industrial

Engineering and Operations Management (IEOM 2011).

S. Ibtinen and K. Nakade, “Impact of Lead-time Decision in a
Decentralized Supply Chain under Price and Lead-time Sensitive
Demand “, under review in Journal of the Japan Industrial Management

Association.



