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Chapter 1

Introduction

1.1 Motivation

A computer vision system processes images acquired from an electronic camera, which
is like the human vision system where the brain processes images derived from the eyes.
Computer vision is a rich and rewarding topic for study and research for electronic
engineers, computer scientists and many others. Increasingly, it has a commercial
future.

The structure from motion problem (SFM) in computer vision is to extract the 3D
shape of the scene as well as the camera motion from a set of images taken by a camera
undergoing unknown motion. The traditional methods in SFM provide us solutions, if
a moving camera observes a static scene or a set of static cameras observe a dynamic
scene 25, 85]. In this paper, we consider SFM problem under dynamic environments,
where both the set of cameras and the scene change non-rigidly. In particular, we
consider multiple view geometry under non-rigid object motions viewed from multiple
moving cameras.

Over the past decade there has been a rapid development in the understanding and
modeling of the geometry of multiple views in computer vision. The multiple view
geometry is very important for describing the relationship between images taken from
multiple cameras and for recovering 3D geometry from images (16, 17, 21, 25, 29, 74,
79, 80]. In the traditional multiple view geometry, the projection from the 3D space
to 2D images has been assumed [25]. However, the traditional multiple view geometry
is limited for describing the case where enough number of corresponding points are
visible from a static configuration of multiple cameras.

Recently, some efforts for extending the multiple view geometry for more general
point-camera configurations have been made [24, 27, 28, 82, 97, 98]. From stationary
configurations [16, 25, 26, 82] to dynamic configurations [2, 91, 92, 97, 98], the mul-
tiple view geometry has been extensively developed. However, previous multiple view
geometry involving dynamic scenes are constrained from the motions of the cameras or
points moving independently along some restricted trajectory, i.e., straight line path



and in some cases second-order [2, 97, 98].

In this thesis we investigate the multiple view geometry in an absolute dynamic
environment with a dynamic scene and multiple moving cameras. Moreover, the newly
proposed " Dynamic Multiple View Geometry” can also describe the traditional multi-
ple view geometry in a static environment.

1.2 Objective and Approach

In this research, we introduce a newly defined multiple view geometry named dy-
namic multiple view geometry, in which points in 3D undergo non-rigid motion and
the cameras do arbitrary motions modeled by Degree-n Bezier curve. We find that
the projective projections of non-rigid 3D motion to Degree-n Bezier curve can be
represented by a projection from (n + 3)D to 2D. If 3D point motions are tracked by
multiple arbitrary motion cameras, the multilinear relationship under the projection
from (n + 3)D to 2D can be derived. Then, we analyze the projective projections from
(n+3)D to 2D and deduced the degree of freedom of the extended projective camera.
(n 4+ 3)-Dimension multiple view geometry involving several such extended cameras
and a dynamic scene was also addressed. Multilinear relationships and the maximal
linear relationship in the (n+3)D space were derive from the multifocal point relations.
The counting arguments are also executed. From the geometric degree of freedom of
extended projective cameras and the degree of freedom of the points in (n + 3)D and
all the images, the minimum number of points required for computing the multifocal
tensors were available.

We next take n = 1 and n = 3 as two instances to introduce the dynamic multiple
view geometry in the cases of non-rigid arbitrary motions viewed from translational
motion cameras and curvilinear motion cameras respectively.

We analyze the dynamic multiple view geometry under projective projections from
4D space to 2D space, and showed that it can represent multiple view geometry under
space-time projections, in which the multilinear relationship for 5 views is the maxi-
mal linear relationship in the 4D space unlike the traditional multiple view geometry.
The new trilinear, quadrilinear and quintilinear relationships were analyzed. We show
that the newly defined multiple view geometry can be used for describing the relation-
ship between images taken from non-rigid motions viewed from multiple translational
cameras and is very useful for generating images of non-rigid object motions viewed
from arbitrary translational cameras. Here, the multifocal tensors are computed from
corresponding points. For instance, the trifocal tensor can be derived by using 13 cor-
responding points, which are not collinear and coplanar. The method is implemented
and tested by using real image sequences. The stability of extracted trifocal tensors is
also evaluated.

We also extend the theory of the multiple view geometry in space-time to a multiple
view geometry of multiple cameras with arbitrary curvilinear motions. We use affine
camera model and projective camera model to describe the multilinear relationship



under the projection from 6D to 2D respectively, which can represent the geometric
relationship of multiple curvilinear motion cameras whose motions are represented by
cubic Bezier curves. The multifocal tensors defined under 6D to 2D multilinear rela-
tionships can be computed from non-rigid object motions viewed from multiple cameras
with arbitrary curvilinear motions. We also showed that the multilinear relationships
are very useful for generating arbitrary view images and reconstructing 3D non-rigid
object motions viewed from cameras with arbitrary curvilinear motions. The method
is tested in real images, and the stability is also evaluated.

The dynamic multiple view geometry, in which the camera trajectories are modeled
by Degree-n Bezier curves, is proposed. However, when n is large, the multiple view
geometry will become very complex and uncomputable. On the other hand, the main
problem with Bezier curves is their lack of local control. To overcome the problems,
we consider degree-n B-Spline curve, a piecewise curve, to represent the camera tra-
jectories. In the mathematical field of numerical analysis, B-spline curves are very
useful for representing arbitrary 3D shapes with small number of control points. Thus,
we can use low degree B-spline curve to describe a complex curve. We gave the def-
inition of the B-spline curve and especially took cubic B-spline curve as an instance
of to represent the trajectory of the cameras. Although the multiple view geometry
corresponding to each segment of B-spline curve motions is same as the case of Bezier
curve, the camera motions could be more complex and less control points described
if the camera motions are represented by B-spline curves. For example, a 2-segment
cubic B-spline curve is smooth, second-order differentiable and depends on 5 control
points, while two cubic successive Bezier curves are not second-order differentiable and
determined by 7 control points. The synthetic experiment shows that even if all the
cameras undergo complex curvilinear motions, the view transfer still can be realized
by using the dynamic multiple view geometry.

We also investigate efficient, computational methods for computing the multiple
view geometry in space-time. One disadvantage of the multiple view geometry in
space-time is that it requires more corresponding points than the traditional multiple
view geometry. It is also more sensitive to the image noise. Recently, it has been
shown that if some cameras are projected to the other cameras, the multiple view
geometry can be computed more stably from less corresponding points [75]. This is
called mutual projections of cameras. We investigate mutual projections of cameras in
four-dimensional space, and show it enables us to reduce the number of corresponding
points required for computing the new multiple view geometry. Surprisingly, we no
longer need any corresponding points for computing the new multiple view geometry,
if all the cameras are projected to the other cameras mutually for two time intervals.
We also show that the stability of the computation of new multiple view geometry is
drastically improved by considering the mutual projections of cameras.



1.3 Thesis Outline

This thesis is organized as follows:
Chapter 2

The traditional multiple view geofnetry is reviewed. We describe the epipolar geometry
of two cameras, the trifocal geometry of three cameras and extend three view geometry
to four views. '

Chapter 3

We describe (n + 3)-Dimension to 2-Dimension dynamic multiple view geometry. We
model the camera trajectory by using degree-n Bezier Curve and show that the new
multiple view geometry system can represent the multiple view geometry in the case
where non-rigid arbitrary motions are viewed from multiple arbitrary moving cameras,
and it can also be used to represent traditional multiple view geometry.

Chapter 4

We introduce the dynamic multiple view geometry in 4D space. We also call it the
multiple view geometry in space-time. In this case, the relationship among images taken
from non-rigid motions viewed from multiple translational cameras can be described
by the newly defined multiple view geometry. And, the multilinear relationships is up
to 5 views unlike the traditional multilinear relationships. The three view, four view
and five view geometries are studied extensively and new trilinear, quadrilinear and
quintilinear relationships under the projective projection from 4D to 2D are presented.
By some experiments, we show that it is very useful for generating images of non-rigid
object motions viewed from arbitrary translational cameras.

Chapter 5

We address the dynamic multiple view geometry in 6D space which is a tensorial
representation of multiple cameras with arbitrary curvilinear motions. It enables us
to define multilinear relationship among image points derived from non-rigid object
motions viewed from multiple cameras with arbitrary curvilinear motions. We discuss
the proposed multiple view geometry under affine projection and projective projection
respectively. We show the new multilinear relationship is useful for generating images
and reconstructing 3D non-rigid object motions viewed from cameras with arbitrary
curvilinear motions. The method is tested in real image sequences.

Chapter 6

We change the model of camera trajectory into degree-n B-Spline Curve to discuss the
dynamic multiple view geometry.

Chapter 7

The mutual projection method is proposed to be applied to the multiple view geometry
in space-time, which makes it possible to derive more stable results on multiple view



geometry with much less corresponding points. The method is tested in real image
sequences.

Chapter 8

The conclusion is given, which reviews what has been learned from this work, describes
some natural extension of it, and presents a final summary and future research topics.



Chapter 2

Multiple View Geometry

In this chapter, we will review the traditional multiple view geometry: the epipolar
geometry of two cameras, the trifocal geometry of three cameras and the quadrifocal
geometry of four views.

2.1 Epipolar Geometry

Figure 2.1: A 3D point X is projected to two views as x and x’ respectively.

Firstly, we consider the relationship that holds between the coordinates of a point
seen in two separate views. Let x and x’ be a pair of corresponding points which are
the images of the same point X in space as seen in the two separate views as shown in
Figure 2.1. We represent the two camera matrices by A and B. The projection from
space to image can now be expressed as kx = AX and k'x’ = BX where k and &’
are two undetermined constants. And we denote the i-th row of the matrix A by a’,
and similarly the i-th row of the matrix B by b'. We also write x = [z, 22, 23" and



x' = [z, 22, 2"%]T. That pair of equations may be written down as one equation:

Fal gl -

a? z?

a® 3 X

bl /L',l _k = 0. (2.1)
2 el LK

b T

b3 x/izj

This is a 6 x 6 set of equations which by hypothesis has a non-zero solution, the
vector [X T, —k, —k/] . It follows that the matrix of coefficients in (2.1) must have zero
determinant. It will be seen that this condition leads to a bilinear relationship between
the entries of the vectors x and x’ expressed by the fundamental matrix F. We will
now look specifically at the form of this relationship.

Consider the matrix appearing in (2.1). Denote it by M. The determinant of M
may be written as an expression in terms of the quantities z* and z"%. Notice that the
entries z* and z* appear in only two columns of M. This implies that the determinant
of M may be expressed as a quadratic expression in terms of the z¢ and z". In fact,
since all the entries z* appear in the same column, there can be no terms of the form
x'z? or 2"z, Briefly, in terms of the z* and z", the determinant of M is a bilinear
expression. The fact that the determinant is zero may be written as an equation

'z Fy; =0 (2.2)

where F is a 6 X 6 matrix, the fundamental matrix. A way of writing the expression
for 7 makes use of the tensor ¢, as follows:

q
.7:1;1' = €ipg€irs det a . (23)

Tensor €., represents a sign based on even and odd permutation from {r,s,t} to
{1,2,3} as follows:

0, wunless r,s and t are distinct
€rst = & +1, if rst is an even permutation of 123 (2.4)
—1, if rst is an odd permutation of 123

2.2 Three View Geometry

The determinant method of deriving the fundamental matrix can be used to derive
relationships between the coordinates of points seen in three views. This analysis
results in a formula for the trifocal tensor. Unlike the fundamental matrix, the trifocal
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Figure 2.2: A 3D point X is projected to three views as x, x’ and x” respectively.

tensor relates both lines and points in the three images. We begin by describing the
relationships for corresponding points.

Consider a point correspondence across three views: x' < 2" « 2" as shown in
Figure 2.2. Let the third camera matrix be C and let ¢’ be its i-th row. Analogous to
(2.1), we can write an equation describing the projection of a point X into the three
images as

A x E(A
B x | =0 (2.5)
C x” g

The leftmost matrix, M, has 9 rows and 7 columns. From the existence of a solution
to this set of equations, we deduce that its rank must be at most 6. Hence any 7 x 7
minor has zero determinant. This fact gives rise to the trilinear relationships that hold
between the coordinates of the points z!, " and ™.

There are essentially two different types of 7 x 7 minors of M. In choosing 7 rows
of M, only the case where three rows from one camera matrix and two rows from each
of the two others is meaningful, since the other case is that one of the camera matrices
only contributes one row, which leads to the bilinear relationship expressed by the
fundamental matrix, as discussed in section 2.1. Then, we have the following trilinear
relationship:

itk L
P Gt Ty = Dun (2.6)

where u and v are free indices corresponding to the rows omitted from the matrices B
and C, and T;”" is the trifocal tensor and has the following form:

a[

T = €;m det ";)q . (2.7)

c'n"



Unlike the fundamental matrix, the trifocal tensor relates both lines and points in
the three images, which are summarized here:

;ni.zr'jt,’f.ejquﬂzqr = 0 (2.8
FLITT = 0 )
LT = ¥ (2.10)

2.3 Four View Geometry

k™x” = DX
o—'o
» » V'
Kx"=CX}—
x’
V'

Figure 2.3: A 3D point X is projected to four views as x, x’, x” and x" respectively.

Similar arguments work in the case of four views. Once more, consider a point
correspondence across 4 views: z' < 2" & 2" < 2™ as shown in Figure 2.3. With
camera matrices A, B, C and D, the projection equations may be written as

X
' —k
i -k | =0. (2.11)
" — Kk

— k"

X

caw»

Since this equation has a solution, the matrix M on the left has rank at most
7, and so all 8 x 8 determinants are zero. As in the trilinear case, any determinant
containing only one row from one of the camera matrices gives rise to a trilinear or
bilinear relation between the remaining views. A different case occurs when we consider
8 x 8 determinants containing two rows from each of the camera matrices. Such a
determinant leads to a new quadrilinear relationship of the form

i,
"

iy .E”k. U

r r fipwejqrfkryelszgmm = Uuu:yz (212)
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Figure 2.4: A line-line-line-line correspondence 1 « I’ & 1" « 1" involving four images
may be interpreted as: the four lines back-project to planes that meet in a point in
space.

where each choice of the free variables w, z, y and z gives a different equation, and the
4-dimensional quadrifocal tensor QP is defined by

ap
bY
QP = det o | (2.13)
d |
As in the case of the trifocal tensor, there are also relations between lines and points
in the case of the four-view tensor:

L2 it it @ = Oy (2.14)
P i ae QT = O (2.15)
P 4y QT = 0, (2.16)
LUIQPTs = (2.17)

2.4 Intersections of Four Planes

The multi-view tensors may be given a different derivation, which sheds a little more
light on their meaning. In this interpretation, the basic geometric property is the
intersection of four planes. Four planes in space will generally not meet in a common
point. A necessary and sufficient condition for them to do so is that the determinant
of the 4 x 4 matrix formed from the vectors representing the planes should vanish.

In this section only we shall represent the determinant of a 4 x 4 matrix with rows
a, b, cand d by a AbAcAd Ina more general context, the symbol A represents
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Figure 2.5: A point-line-line correspondence x «<» 1’ < 1” involving three images may
be interpreted as follows. Two arbitrary lines are chosen to pass through the point x
in the first image. The four lines then back-project to planes that meet in a point in
space.

the meet (or intersection) operator in the double algebra. However, for the present
purposes the reader need only consider it as a shorthand for the determinant.

We start with the quadrifocal tensor for which the derivation is easiest. Consider
four lines 1, I, I” and 1" in images formed from four cameras with camera matrices A,
B, C and D. The back projection of a line 1 through camera A is written as the plane
l;a'. The condition that these four planes are coincident shown as Figure 2.4 may be

written as

(lpaP) A (I,b7) A (IcT) A (I7'd®) = 0. (2.18)
However, since the determinant is linear in each row, this may be written as
0 = LU (P ABIA T Ad®) E L1 Qrers (2.19)

This corresponds to the definition (2.13) and line relation (2.17) for the quadrifocal
tensor. The basic geometric property is the intersection of the four planes in space.

Trifocal tensor derivation. Consider now a point-line-line relationship z' <
l; < I, for three views and let I, and [? be two lines in the first image that pass
through the image point x. The planes back-projected from the four lines meet in a
point (see Figure 2.5). So we can write:

LRI (@ Aa™ AbTACT) = 0. (2.20)

miq'r

The next step is an algebraic trick-to multiply this equation by the ¢*™¢;;,,, which
is a scalar value. The result after regrouping is

(2™ eqm(a' Aa™ ABIACT) = 0. (2.21)



L2

Figure 2.6: A point-point correspondence x « X’ involves two images when two ar-
bitrary lines are chosen to pass through the point x in the first image and other two
arbitrary lines are chosen to pass through the point x’ in the second image. The four
lines then bhack-project to planes that meet in a point in space.

Now the expression [}{2¢"™ is simply the cross-product of the two lines 1* and 12,
in other words their intersection point x. Thus finally we can write

0 = L1 (cim(a' Aa™ A DI ACT)) E 2l T (2.22)

which are the definition (2.7) and basic incidence relation (2.9) for the trifocal tensor.
Fundamental matrix. We can derive the fundamental matrix in the same man-
ner. Given a correspondence x « x' select pairs of lines [} and lg passing through x,
and I and I passing through x’. The back-projected planes all meet in a point as
Figure 2.6, so we write
LIz 2 (a” Aa? ADT A D) = 0. (2.23)
Multiplying by (Giwfim)(fjr‘sﬁjrs) and proceeding as before leads to the coplanarity
constraint

0 = 2’27 (eipgejrs(a’? A a? AD” A b%)) (2.24)

which can be compared with (2.3).

2.5 Summary

In this chapter, we introduced the multiple view geometry for two. three and four
views respectively, and analysed the fundamental projective relations over multiple
views arise from the intersection of lines and planes. These intersection properties are
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represented by the vanishing of determinants formed from the camera matrices of the
views. The fundamental matrix, the trifocal tensor and the quadrifocal tensor arise
naturally from these determinants as the multiple view tensors. Here, we give more
general properties of the multiple view geometry for readers to see why the multilinear

relationship is up to 4 views.
We first consider a point X = [X!, X2, X3, X4]T in the 3D space and it is projected
to a point x = [z',22%, 2% " in the 2D space. Then, the projection from X to x can be

described as follows:
Ax = PX (2.25)

where P denotes the 3 x 4 camera matrix and has 11 degrees of freedom.
From (2.25), we have the following equation for N cameras:

P x 0 O 0 })f 0
P 0 x 0 of 5 0
P// 0 0 X// 0 A" = 0 (226)

where, the leftmost matrix M in (2.26) is 3N x (N +4), and the (N +4) x (N + 4)
minors Q of M constitute multilinear relationships as follows:

det Q = 0. . (2.27)

We can choose any N + 4 rows from M to constitute Q, but we have to take at
least 2 rows from each camera for deriving meaningful N view relationships. Thus,
the following condition must hold for defining multilinear relationships for N view

geometry:
2N < N + 4. (2.28)

Thus, we find that the multilinear relationship for 4 views is the maximal linear rela-
tionship.

The geometric DOF of N cameras is 11N — 15, since each camera has 11 DOF and
these N cameras are in a single 3D projective space whose DOF is 15. Therefore, the
DOF of bifocal, trifocal and quadrifocal tensor is 7, 18 and 29 respectively.

The bilinear, trilinear and quadrilinear relationship have been derived and have the

following forms:

T2 F; = 0 (2.29)
22" ek T = Ou (2.30)

1.7 Mkl TS
227 2" €€ g €hry €152 QPY Owzyz (2.31)
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If we have N corresponding points in two, three and four views, the multilinear relation-
ships gives us N, 9N and 81N equations respectively, but only N, 4N and 16 N —nC,
of them are linearly independent. On the other hand, F;;, T.¥ and QP"* has 9, 27 and
81 entries respectively, but except a scale ambiguity, they has 8, 26 and 80 free param-
eters respectively. Thus, minimum of 8, 7 and 6 corresponding points are required to
compute the multifocal tensors linearly.



Chapter 3

Dynamic Multiple View Geometry

3.1 Camera Trajectory Modeled by Degree-n Bezier
Curve

The traditional multiple view geometry as introduced in Chapter 2 is limited for de-
scribing the case where enough number of corresponding points are visible from a static
configuration of multiple cameras. In this chapter, we consider the multiple view ge-
ometry in a dynamic environment, in which the point motion in 3D space is non-rigid
and the camera trajectory is modeled by the degree-n Bezier curve.

A Bezier curve is a parametric curve frequently used in computer graphics and
related fields. In vector graphics, Bezier curves are used to model smooth curves.
Bezier curves are also used in animation as a tool to control motion. Degree-n Bezier
curve is defined as follows:

B= i bi,n(t)Gi, te [O, 1] (31)

i=0

where G; is the 7th control point and the polynomials b; ,(t) known as Bernstein basis
polynomials of degree n is written as:

bia(t) = (?)ti(l—t)"‘l
- (7) ';(7,51 )(—t)"-i-j
- S ()5 )

= ZC(n,i, I (3.2)
=0
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n\ . . . . . .
Here, ( ; ) is the binomial coefficient and has the alternative notation,

ny [ M) _ n!
Ci= ( i ) Tl =) (3:3)

and C(n,1,j) denotes the following function:

coig= (1) ("7 ) 5.4

Suppose T denotes time and T, represents the total time of the camera motion. Then,
the relationship among parameter ¢, time T and total time T, can be described like
this:

T
t=— .
- (5:5)

Then, Bezier curve B which we utilize to model the trajectory of camera motion can
be rewritten as follows: '

B = ibi,n(t)Gi
i=0

= Zn: G; ni: C(n,i, j)t"I
i=0 j=0

t’l’l
tn—l
= [ GO Gl e Gn ] A :
1
Tn
Tn—l
= GAE : (3.6)
1
where,
G =[G, G -+ G,],
[ Aoo Ao Ap2 Aon-1 Aon ]
Ajg An Ao . Apy 0
A. = A20 A21 A22 “ee 0 O ,
A;;o 0 0 0 0
A'ij = C(?l,’i,j), (i:O’...7n’ j:O’...’n_i)7
. 1 1
E = qu[ﬁv T 1.



17

Consider a usual projective camera which projects points in 3D to 2D images. The
motions of a point in the 3D space can be represented by homogeneous coordinates,
X(T) = [X(T),Y(T),Z(T),1]". The motions are projected to images, and can be
observed as a set of points, x(T') = [z(T),y(T),1]". Thus, point motions are projected
to the Bezier curve motion camera as follows:

Ax(T) = P(X(T) - B) (3.7)

where P denotes a 3 x 4 projective camera matrix, and A denotes a scalar which
represents a scale ambiguity. By substituting (3.6) into (3.7), we have the following
equatinos:

™
n-1

M(T) = P(X(T)— GAE r )

X(T)

= P[I,—-GAE]| T
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where
P, = P[I, -GAE] (3.9)

represents a 3x (n+5) matrix and P’ denotes a 3 x (n+4) extended camera matrix. The
(n+4)th column of P’ is derived by merging the 4th column and the (n+5)th column
of P,. We therefore find that, from (3.8), the projections of point motions to multiple
cameras with arbitrary motions can be described by the multilinear relationship under
the projection from (n+3)D to 2D. In the next section, the geometry of such projections
will be analyzed in more detail.

3.2 Projective Projections from (n + 3)D to 2D

We first consider a projection from (n + 3)D space to 2D space. Let X = [X,Y, Z,T™,
T71,--- ,1]7 be the homogeneous coordinates of a (n + 3)D space point projected
to a point in the 2D space, whose homogeneous coordinates are represented by x =
[z!, 2%, 2%]7. Then, the extended affine projection from X to x can be described as
follows:

x ~ PX (3.10)

where (~) denotes equality up to a scale, and P denotes the following 3 x (n + 4)
matrix:

P11 P12 Pi(n44)
P=|pa P2 - Donss) ' (3.11)
P31 P32 0 DP3(n+d) '

From (3.11), we find that the extended projective camera, P, has 3 x (n +4) -1 =
3n + 11 DOF except a scale. In the next section, we consider the dynamic multiple
view geometry of the extended projective cameras.

3.3 (n+3)-Dimension Multiple View Geometry

3.3.1 Multilinear Relationships

From (3.10), we have the following equation for K extended projective cameras:

P x 0 O 0 )/\( 0

P 0o X O of |3 0

PII 0 0 x/l 0 /\" = 0 (312)
-EJ

where, the leftmost matrix, M, in (3.12) is 3K x (K +n+4). From the existence of a
solution to this set of equations, we deduce that its rank must be at most K +n + 3.
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Hence any (K +n+4) x (K +n+4) minors Q of M has zero determinant, that arises
the constitute multilinear relationships under the extended projection as follows:

det Q = 0. (3.13)

We can choose any K + n + 4 rows from M to constitute Q, but we have to take
at least 2 rows from each camera for deriving meaningful K view relationships (note,
each camera has 3 rows in M). Thus, the following inequality must hold for defining
multilinear relationships for K view geometry in the (n 4+ 3)D space:

K+n+42>2K (3.14)

Thus, we find that, the multilinear relationship for n + 4 views is the maximal linear
relationship in the (n + 3)D space.

3.3.2 Counting Arguments

We next consider the minimum number of pbints required for computing the multifocal
tensors. The geometric DOF S of K extended projective cameras is as follows:

S=0Bn+11)K — (n+4)2+1, (3.15)

since each extended projective camera has (3n+11) DOF and these K cameras are in a
single (n + 3)D projective space whose DOF is (n+4)? — 1. Meanwhile, if we are given
M points in the (n + 3)D space, and let them be projected to K cameras defined in
(3.10). Then, we derive 2M K measurements from images, while we have to compute
(n+3)M + S components for fixing all the geometry in the (n + 3)D-space. Thus, the
following condition must hold for computing the multifocal tensors from images:

2MK > (n+3)M + S. (3.16)

Then, we have the following inequality:

S

M>—
—2K—n-3

(3.17)

Thus, we find that minimum of ﬁ points are required to compute multifocal
tensors in dynamic multiple view geometry. The minimum number of points required
in the cases of 3D, 4D, 5D and 6D multiple view geometry are illustrated in Table 3.1.

3.4 Dynamic Configurations for Dynamic Multiple
View Geometry ‘

In our dynamic multiple view geometry theory, it has different dynamic configurations
in different dimension space. We list several typical and basic examples of dynamic
configurations to demonstrate this property.
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Table 3.1: The minimum number of points required for computing the multifocal
tensors with non-linear method in (n + 3)-Dimension multiple view geometry.

views [2| 3 |4 | 5|6 |7
3D 71 6 | 6 - - -
4D | -9 | 8|8 -] -
5D |- (16|11 10]10]| -
6D -l = [16] 13|12 ] 12

3.4.1 Camera Motion Following a Degree-0 Bezier Curve

Figure 3.1: Camera trajectory. G; denotes the ith control point of the Bezier curve.

We first consider the case of degree-0 Bezier curve (n = 0). By substitute n = 0
into (3.1), we find that the camera motion can be represented as follows:

0
B = ) bi(t)G;
1=0

boo(t)Go
= Gy (3.18)

In this case, the camera is not moving but static as shown in Figure 3.1 which is a special
case and just coincides with the traditional multiple view geometry as introduced in
Chapter 2. Therefore, our dynamic multiple view geometry theory can also be used to
describe the case of the traditional multiple view geometry.
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Figure 3.2: Camera trajectory. G; denotes the ith control point of the Bezier curve.

3.4.2 Camera Motion Following a Degree-1 Bezier Curve

When the camera moves following a degree-1 Bezier curve, the motions of camera is
written like this:

1
B = > b()G;
1=0

= bp1(t)Go+ by1(1)Gy

= (1-1)Go +1Gy (3.19)
The trajectory of camera is a line which goes through Gg and G, as shown in Figure 3.2,
that means the cameras are translational. The dynamic multiple view geometry defined

here can represents the relationship among several translational motion cameras. This
case will be analyzed in depth in Chapter 4.

3.4.3 Camera Motion Following a Degree-2 Bezier Curve

If the camera is moving following a Degree-2 Bezier curve:

2
B = ) by()G;
i=0
= bo2(t)Go + b12(t)G1 + baa(f)Go
= (1-1)*Go+2(1 - 1)G; + 3G, (3.20)

as shown in (3.20) and Figure 3.3, the camera motion is a quadratic curve. The
geometry among such curvilinear motion cameras can also be described by the dynamic
multiple view geometry.
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Figure 3.3: Camera trajectory. G; denotes the ith control point of the Bezier curve.

¢ G,

Figure 3.4: Camera trajectory. G; denotes the ith control point of the Bezier curve.

3.4.4 Camera Motion Following a Degree-3 Bezier Curve

We next consider the case where n = 3. By substituting n = 3 into (3.1), we have the
following camera motions:

3
B = ) bs(t)G,

=)
= bgs(t)Go+ b1 3(t)G + by 3(t)Gz + by 3(t)Gs
= (1-)°Gg+3(1 —t)%G; + 3(1 — 1)1’G, + *G3 (3.21)

As shown in (3.21) and Figure 3.4, the camera motion is cubic curve. This case will
be studied in Chapter 5 extensively.

Even if the cameras undergo more complex curvilinear motion, the dynamic multiple
view geometry is still competent.
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3.5 Summary

This chapter introduced a newly defined multiple view geometry named dynamic mul-
tiple view geometry, in which points in 3D undergo non-rigid motion and the cameras
do arbitrary motions modeled by Degree-n Bezier curve. We found that the projective
projections of non-rigid 3D motion to Degree-n Bezier curve can be represented by a
projection from (n 4+ 3)D to 2D. If 3D point motions are tracked by multiple arbitrary
motion cameras, the multilinear relationship under the projection from (n + 3)D to 2D
can be derived. Then, we analyzed the projective projections from (n + 3)D to 2D and
deduced the degree of freedom of the extended projective camera. (n + 3)-Dimension
multiple view geometry involving several such extended cameras and a dynamic scene
was also addressed. Multilinear relationships and the maximal linear relationship in
the (n + 3)D space were derive from the multifocal point relations. Finally, counting
arguments were executed. From the geometric degree of freedom of extended projective
cameras and the degree of freedom of the points in (n + 3)D and all the images, the
minimum number of points required for computing the multifocal tensors were derived.



Chapter 4

Dynamic Multiple View Geometry
in 4D Space

4.1 Dynamic Multiple View Geometry for Multiple
Translational Cameras

When cameras undergo Degree-1 Bezier curves as shown in Figure 4.1, the motion of
the cameras are translational and the relationship among these cameras is just the
case of the dynamic multiple view geometry in 4D spase as discussed in the former
chapter. We next show that this camera model can be used for describing non-rigid
object motions viewed from multiple cameras with translational motions of constant
speed. :

Substituting n = 1 into (3.6), we have the following equation of Degree-1 Bezier

curve:

B = GAEI:T;]

el (0] e

where, G; denotes the ith control point of the Bezier curve, T, is the total time of the
camera motion and T denotes time.

Let us consider a usual projective camera which projects points in 3D to 2D images.
If the motions of the projective camera are translational constrained by Degree-1 Bezier
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curve, non-rigid motions X(7') are projected to images x(T) as:

A(T) = P(X(T)-B)

— P(X(T)— GAE f-)
X(T)
= P[LL-GAE|| T
1
X(T)
Y(T)
- P |z (4.2)
T
1

where P is a 3 x 4 projection matrix of a usual camera, and X(T), Y(T'), Z(T') denote
coordinates of a 3D point at time 7T,

G = [Gy Gi] (4.3)
A = [—11 (1)] (4.4)
E = [% (1)} (4.5)

and, P’ is a 3 x 5 projection matrix of an extended projective camera. In the next
sections, we will describe the dynamic multiple view geometry in 4D space.

4.2 Projective Projections from 4D to 2D

We first consider projective projections from 4D space to 2D space. This projection
is used to describe the relationship between the real space-time and 2D images, and
for analyzing the multiple view geometry under space-time projections. Let X =
(X1, X2, X3, X% X5 be the homogeneous coordinates of a 4D space point projected
to a point in the 2D space, whose homogeneous coordinates are represented by x =
[£!, 2%, 23] 7. Then, the extended projective projection from X to x can be described as
follows:

x ~ PX (4.6)
where (~) denotes equality up to a scale, and P denotes the following 3 x 5 matrix:

mip; Mz Mz Mig Mis
P= Ma1 Mgy Moz Mag Migs (47)
M3y Mgz M3z MM34 M3g

From (4.6), we find that the extended projective camera, P, has 14 DOF. In the next
section, we consider the multiple view geometry of the extended projective cameras.
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camera
motion

camera C,(T+2)

motion

camera
motion

Figure 4.1: A moving point in 3D space and its projections in three translational
projective cameras. The multifocal tensor defined under space-time projections can
describe the relationship between these image projections.

4.3 Projective Multiple View Geometfy from 4D
to 2D '

From (4.6), we have the following equation for N extended projective cameras:

T
P x 0 O --- 0 }/\( 0
P ox 0 --- 0 \ 0
P" 0 0 x' --- 0 W = o (4.8)

where, the leftmost matrix, M, in (4.8) is 3N x (5+N), and the (5+N)x (54 N) minors
Q of M constitute multilinear relationships under the extended projective projection
as follows:

det Q =0 (4.9)

We can choose any 5 + N rows from M to constitute Q, but we have to take at
least 2 rows from each camera for deriving meaningful N view relationships (note,
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Table 4.1: The number of corresponding points required for computing multifocal
tensors in three, four and five views with nonlinear method and linear method .

views | nonlinear mothod | linear mothod
three 9 13

four 8 10

five 8 9

each camera has 3 rows in M). Thus, the following condition must hold for defining
multilinear relationships for N view geometry in the 4D space:

54N >2N (4.10)

Thus, we find that, unlike the traditional multiple view geometry, the multilinear
relationship for 5 views is the maximal linear relationship in the 4D space.

We next consider the minimum number of points required for computing the mul-
tifocal tensors. The geometric DOF of N extended projective cameras is 14N — 24,
since each extended projective camera has 14 DOF and these N cameras are in a single
4D projective space whose DOF is 24. Meanwhile, if we are given M points in the 4D
space, and let these points be projected to IV projective cameras defined in (4.6). Then,
we derive 2M N measurements from images, while we have to compute 14N —24 +4M
components for fixing all the geometry in the 4D space. Thus, the following condition
must hold for computing the multifocal tensors from images:

2MN > 14N — 24 + 4M | (4.11)

From (4.11), we find that minimum of 9, 8, 8 points are required to compute multifocal
tensors in three, four and five views (see Table 4.1).

4.3.1 Three View Geometry

We next introduce the multiple view geometry of three extended projective cameras.
For three views, the square submatrix Q is 8 x8. From det Q = 0, we have the following
trilinear relationship under extended projective camera projections:

iz’ .’L‘”kfkm'];; =0, (4.12)

where ;5 denotes a tensor, which represents a sign based on permutation from {i,j,k}
to {1,2,3}. T is the trifocal tensor for the extended cameras and has the following
form:
al
am
TJ = €ilmCjqu det | b? (413)
bu

CT‘
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Table 4.2: Trilinear relations between point and line coordinates in three views. The
final column denotes the number of linearly independent equations.

correspondence relation # of equations
three points ;t’x’fx”kekm’];; =0, 2
two points, one line T =0 1
’ ‘ r2ij
one point, two lines I} 1/e¥' T;% = Of 2
three lines Ll eP s eV T = O 4

where a’ denotes the ith row of P, b* denotes the ith row of P’ and ¢! denotes the ith
row of P” respectively. The trifocal tensor TJ is 3 x 3 x 3 and has 27 entries. If the
extended cameras are projective as shown in (4.6), we have only 26 free parameters in
T.% except a scale ambiguity. On the other hand, (4.12) provides us 3 linear equations
on T, but only 2 of them are linearly independent. Thus, at least 13 corresponding
points are required to compute 7.7 from images linearly.

Why only 2 equations of (4.12) are linearly independent? Let us consider it.

Let the equaions in (4.12) be written as At = 0 where A is a 3 x 27 matrix and t

is a vector containing the entries of 7;7. Then the matrix A may be written as:
A = 29" e, (4.14)

where (v) indexes the row and (¥) index the column of A. We may write 2"%€xr, = Sy
Then the matrix A in (4.14) may be written as follows:

It is known that a 3 x 3 skew-symmetric matrix has two equal non-zero singular
values. Since z'%¢x,,, = —1" €y, we see that S,, is a 3 x 3 skew-symmetric matrix, and
hence has two equal singular values. Therefore, by using the SVD, we have:

) )

Spy = UlDg VP (4.16)

with tenosr notation. The matrix D, is diagonal with two equal non-zero diagonal
entries. By substituting (4.16) into (4.15), we have

A, iy = 22U DV (4.17)
Let us consider a 3 x 27 matrix V' as follows:
V;_’;) = 2'z7VP, (4.18)
Then (4.17) can be written as:
Ay = U;}DG,,V(':-_’}). (4.19)
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(a) Three points
L
CI
¥od
(b) Two points and one line
Ted
Cl
(c) One point and two lines
L
.C'

C.I
(d) Three lines

Figure 4.2: Trilinear relations among points and lines.
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Since V? is orthogonal, V(',’j) is also orthogonal. Hence, (4.19) is the SVD of the matrix

A. It means that A has rank 2, and thus, only 2 equations of (4.12) are linearly
independent.

Up to now, we considered the trilinear relationship of points in three views. How-
ever, we can also consider the trilinear constraints among points and lines. The inci-
dence relations among points and lines are shown in Figure 4.2. A complete set of the
trilinear equations among points and lines are given in Table 4.2. All of these equations
are linear in the entries of the trifocal tensor 7.

4.3.2 Four View Geometry

We next introduce the multiple view geometry of four extended projective cameras.
The quadrilinear relationship under extended porjective projection is:

1k 11s Imn
T €lu€kmosnw Qi = Oypw (420)

Qﬁ’"" is the quadrifocal tensor whose form is described as:

'z

Q™™ = ¢, det | bl (4.21)

d"

where a, b', ¢! and d' denote the ith row of P, P/, P” and P" respectively. The
quadrifocal tensor Q™™ has 81 entries. Excluding a scale ambiguity, it has 80 free
parameters. Similar arguments in the three-view case hold here, and we can see that
27 linear equations are derived from (4.20) but only 8 of them are linearly independent.
Therefore, minimum of 10 corresponding points are required to compute Q™" from

images linearly.
The quadrilinear relationships involving the quadrifocal tensor are summerized in

Table 4.3.

4.3.3 Five View Geometry

Similarly, the five view geometry can also be derived for the extended projective cam-
eras. The quintilinear constraint is expressed as follows:

i 05 Mk s 1t Imn,
Eo A A 6ilaejmbfkncesfdetgetR'm f9 = Oabede (422)

where R!™"/9 is the quintifocal tensor (five view tensor) whose form is represented as
follows:

R™™MI = det | c” (4.23)
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Table 4.3: Quadrilinear relations between point and line coordinates in four views. The
final column denotes the number of linearly independent equations.

correspondence relation # of equations
four points T2 T 2" € 1y €k €5 Q™™ = Oy 8
three points, one line T H 1 € 1€y Q™ = Oy 4
two points, two lines ' e i, QI = 0, 2
one point, three lines I Qlmn = 1
four lines L 1 ekiv Qlmn — u 2

Table 4.4: Quintilinear relations between point and line coordinates in five views. The
final column denotes the number of linearly independent equations.

correspondence : relation eq.
five points TS € 1€ rmbEhnce s fdetgele"f 9=0gbcde 32

T

four points, one line il a:”k;rr"’sl;’” €ila€imbEincEsfdR ™™ I=00pca 16
three points, two lines x’x"x”kl;{' l;’” €ila€ jmbEncRI™™I = 04pe 8
two points, three lines 'z’ lZl’f" lg”eilaejmbR"""f 9=0p 4

one point, four lines x’l’mlﬁl;{' l’g’” €1 RI™f9 =0, 2

. o lmnfg
five lines LW UL R =0 1

where a’, b?, ¢!, d* and €’ denote the ith row of P, P/, P”, P” and P" respectively.
The quintifocal tensor R!™"f9 has 243 entries. If the extended cameras are projective
as shown in (4.6), we have only 242 free parameters in R'™"/9 except a scale. On
the other hand, (4.22) provides us 243 linear equations on R'™"/9  but only 32 of
them are linearly independent, that can be proved in the same manner with the three-
view case. However, it turns out that there exists a linear dependency between the
64 constraints obtained for two different corresponding points. Therefore, the set of
equations (4.22) derived from a set of N general point correspondences across five views
has rank 32N — (5. Thus for 8 points there are only 228 independent equations, which
are not enough to solve for R'™*f9. For N = 9 points, the rank is 32N —yCy = 252,
and we have enough equations to solve for the 243 entries of R"™"/9 linearly.

The number of corresponding points required for computing multifocal tensors is
summarized in Table 4.1. The quintilinear relationships are given in Table 4.4.
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4.4 Intersections of Five Hyperplanes

The multiple view tensors may be given a different derivation, that is the basic geo-
metric property is the intersection of five hyperplanes.

We start with the quintifocal tensor for which the derivation is easiest. Consider
five lines [, I/, I” , I" and " in images formed from five cameras with camera matrices
P, P’, P”, P"” and P". The back projection of a line 1 through camera P is written
as the hyperplane [;a’, where a’ denotes the ith row of P. The condition that these five
hyperplanes are coincident may be written as

Lah) A (I b™) A (Ic™) A (I7dF) A (17e9) = 0. 4.24
m n f 9

where b?, ¢!, d* and e’ are ith row of P/, P”, P"” and P"’. However, since the
determinant is linear in each row, (4.24) may be written as:

— LU @ AT A G A DY A e%) E Ll 1 RIS (4.25)

This corresponds to the definition (4.23) and five lines relation for the quintifocal
tensor. The basic geometric property is the intersection of the five hyperplanes in 4D
space.

Quadrifocal tensor derivation. Consider now a point-line-line-line relationship
i ol o " « I, for four views and let 11, I? be two lines in the first image that pass
through the image point x. The hyperplanes back-projected from the five lines meet
in a point in 4D space. So we can write:

LR I" (@ Aat AbP Ac™ Ad™) = 0. | (4.26)
Next, multiply this equation by a scalar €%*’¢;;;. The result after regrouping is
(RN "¢ (a® Aa® AB Ac™ Ad™) = 0. (4.27)

Now the expression [112¢%! is simply the cross-product of the two lines 1! and 12, in
other words their intersection point x. Thus finally we can write

0= 21" (e;(a® Aat AD' Ac™ Ad)) S L1 QImn (4.28)

which are the definition (4.21) and a point-line-line-line relationship for the quadrifocal

tensor.
Trifocal tensor derivation. We can derive the trifocal tensor in the same manner.

Given a correspondence x < x’ « 1" select pairs of lines I and [? passing through x,
) q g g
and ! and I”? passing through x’. The back-projected planes all meet in a point, so
r s P g
we write

22 (@ Aat AD* ADY ACT) = 0. (4.29)
Multiplying by (e***€;s)(e7*"¢;uy) and proceeding as before leads to the coplanarity

constraint
0 = 22l (™ (a® Aa' Ab* AbYACT)) E BT (4.30)

which can be compared with (4.13).
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Figure 4.3: Experimental circumstance. Three cameras are fixed on three single axis
robots respectively to capture the 3D motions.

4.5 Experiments

We next show the results of experiments. We first show the results from real images
that the trifocal tensor for extended projective cameras can be computed from image
motions viewed from arbitrary translational cameras, and can be used for generating
the third view from the first view and the second view of moving cameras. We next
evaluate the stability of extracted trifocal tensors for extended projective cameras.

4.5.1 Real Image Experiment

In this section, we show the results from single point motion and multiple point motion
experiments.

The experimental circumstance is shown as Figure 4.3. Three cameras (Sony DFW-
VL 500) are fixed on three single axis robots (Oriental Motor Electric Actuator EZS6)
respectively to control the 3D motions of cameras. These three cameras are translating
with different constant speed and different direction.

In the first experiment, we used three cameras to compute trifocal tensors between
these cameras by using a single moving point in the 3D space. Since multiple cameras
are dynamic, we can not compute the traditional trifocal tensor of these cameras from
a single moving point. Nonetheless we can compute the extended trifocal tensor and
can generate image motions in one of three views from the other two views. In this
experiment we generated image motions in camera 3 by using image motions in camera
1 and camera 2. Figure 4.4 (a), (b) and (c¢) show image motions of a single moving
point in translational camera 1, camera 2 and camera 3 respectively. The trifocal
tensor is computed from 13 points on the image motions in three views. These are
shown by green points in (a), (b) and (c¢). The extracted trifocal tensor is used for



(b) Camera 2

(c) Camera 3

Figure 4.4: Single point motion experiment. (a), (b) and (c¢) show image motions of
a single point viewed from camera 1, 2 and 3. The 13 green points in each image are
corresponding points used for computing the trifocal tensor. Note that these 3 cameras
are translating with different constant speed and different direction.

generating image motions in camera 3 from image motions in camera 1 and 2. The
white curve in Figure 4.5 (a) shows image motions in camera 3 generated from the
extended trifocal tensor, and the black curve shows the real image motions viewed from
camera 3. As shown in Figure 4.5 (a), the generated image motions almost recovered
the original complex image motions even if these 3 cameras have unknown translational
motions. To show the advantage of the extended trifocal tensor, we also show image
motions generated from the traditional trifocal tensor, that is, trifocal tensor defined
for projections from 3D space to 2D space. 7 points taken from the former 13 points are
used as corresponding points in three views for computing the traditional projective
trifocal tensor. The image motion in camera 3 generated from the image motions in
camera 1 and 2 by using the extracted traditional trifocal tensor is shown hy white
curve in Figure 4.5 (b). As shown in Figure 4.5 (b), the generated image motion is
very different from the real image motion shown by black curve as we expected, and
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(a) Image motions recovered from
the extended trifocal tensor

(b) Image motions recovered from
the traditional trifocal tensor

Figure 4.5: Image motion in camera 3 recovered from the extended trifocal tensor
and the traditional trifocal tensor. The white curve in (a) shows image motions recov-
ered from the extended trifocal tensor, and the black curve shows real image motions
observed in camera 3. (b) shows those recovered from the traditional trifocal tensor.
The 13 black points in (a) and 7 black points in (b) show points used for computing
the trifocal tensors.

thus we find that the traditional multiple view geometry cannot describe such general
situations, while the proposed multiple view geometry can as shown in Figure 4.5 (a).

The results from other 3 single point motions are also given. In Figure 4.6, (ai),
(bi) and (ci) show three views of the ith motion. The 13 green points in each image
are corresponding points used for computing the trifocal tensor. Note that these 3
cameras are translating with different speed and different direction. The white curve
in (d7) shows image motions recovered from the extended trifocal tensor in camera 3,
and the black curve shows real image motions observed in camera 3. The 13 black
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points in (di) show points used for computing the trifocal tensor. As we can see, the
trifocal tensor defined under space-time projective projections can be derived from
arbitrary single point motions viewed from the 3 cameras with arbitrary translational
motions, and they are practical for generating images of single point motions viewed
from translational cameras.

Next we show the results from multiple point motions. In Figure 4.7, (ai), (bz) and
(ci) show three views of the ith motion. The green curve and the red curve represent
two different image motion. The 7 green points on the green curve and the 6 red
points on the red curve in each image are corresponding points used for computing
the trifocal tensor. Note that these 3 cameras are translating with different speed and
different direction. The white curve in (di) shows image motions recovered from the
extended trifocal tensor in camera 3, and the black curve shows real image motions
observed in camera 3. The 13 black points in (di) show points used for computing the
trifocal tensor. According to these experiments, we found that the extended multifocal
tensors can be derived from non-rigid object motions viewed from multiple cameras
with arbitrary translational motions, and they are useful for generating images of non-
rigid object motions viewed from cameras with arbitrary translational motions.

4.5.2 Stability Evaluation

We next show the stability of extracted trifocal tensors under space-time projections.
Figure 4.8 shows a 3D configuration of 3 moving cameras and a moving point. The
black points show the viewpoints of three cameras, C;, Cs and Cjs, before translational
motions, and the white points show their viewpoints after the translational motions.
The translational motions of these three cameras are different and unknown. The
black curve shows a locus of a freely moving point. For evaluating the extracted
trifocal tensors, we computed reprojection errors derived from the trifocal tensors.
The reprojection error is defined as follows:

1 X

N Zd(mi,rhi)2 (431)

i=1

where d(m;, ;) denotes a distance between a true point m; and a point mm; recovered
from the trifocal tensor.

We increased the number of corresponding points used for computing trifocal tensors
in three views from 13 to 25, and evaluated the reprojection errors. Gaussian noise of
standard deviation of 1 pixel is added to each image. Figure 4.9 shows the relationship
between the number of corresponding points and the reprojection errors. As we can
see, the stability is obviously improved by using a few more points-than the minimum
number of corresponding points.



37

4.6 Summary

In this chapter, we analyzed multiple view geometry under projective projections from
4D space to 2D space, and showed that it can represent multiple view geometry under
space-time projections. In particular, we showed that multifocal tensors defined un-
der space-time projective projections can be computed from non-rigid object motions
viewed from multiple cameras with arbitrary translational motions. We also showed
that they are very useful for generating images of non-rigid motions viewed from pro-
jective cameras with arbitrary translational motions. The method was implemented
and tested by using real image sequences. The stability of extracted trifocal tensors
was also evaluated.
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(d1) (d2) (d3)

Figure 4.6: Other 3 single point motion experiments. (az), (bi) and (ci) show three
views of the 7th motion. The 13 green points in each image are corresponding points
used for computing the trifocal tensor. Note that these 3 cameras are translating
with different speed and different direction. The white curve in (di) shows image
motions recovered from the extended trifocal tensor, and the black curve shows real
image motions observed in camera 3. The 13 black points in (di) show points used for
computing the trifocal tensor.
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(al) Camera 1

(c3) Camera 3

;?'0;:? 3 ., /t):ﬁv

(d1) (d2) (d3)

(c1) Camera 3

S

Figure 4.7: Multiple point motion experiments. (az), (bi) and (ci) show three views
of the ith motion. The green curve and the red curve represent two different image
motion. The 7 green points on the green curve and the 6 red points on the red curve in
each image are corresponding points used for computing the trifocal tensor. Note that
these 3 cameras are translating with different speed and different direction. The white
curve in (d7) shows image motions recovered from the extended trifocal tensor, and the
black curve shows real image motions observed in camera 3. The 13 black points in
(di) show points used for computing the trifocal tensor.
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Figure 4.8: Three translating cameras and a moving point in the 3D space. The black
points show the viewpoints of three cameras before translational motions, and the
white points show those after the translational motions.
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Figure 4.9: The relationship between the number of corresponding points used for
computing trifocal tensors and the reprojection errors.



Chapter 5

Dynamic Multiple View (Geometry
in 6D Space

5.1 Dynamic Multiple View Geometry for Multiple
Curvilinear Motion Cameras

In chapter 4, we considered the multiple view geometry of multiple cameras with trans-
lational motions. In this chapter, we extend the theory discussed in chapter 4, and
introduces a multiple view geometry of multiple cameras with arbitrary curvilinear
motions. The curvilinear motion means curved motion without rotation. The multiple
view geometry analyzed in this chapter enables us to define multilinear relationship
among image points derived from non-rigid object motions viewed from multiple cam-
eras with arbitrary curvilinear motions as shown in Figure 5.1. We show the new mul-
tilinear relationship is useful for generating arbitrary view images and reconstructing
3D non-rigid object motions viewed from cameras with arbitrary curvilinear motions.
The method is tested in real image sequences.

In this chapter, we derive multiple view geometry under two different camera mod-
els. One is an affine camera model and the other is a projective model. In Section 5.2,
we show multiple view geometry of affine cameras, and in Section 5.3, we introduce
the multiple view geometry of projective cameras.

5.2 Multiple View Geometry for Affine Curvilinear
Motion Cameras

Let us consider a single moving point in the 3D space. If the multiple cameras are
stationary or translational, we can compute the multifocal tensors with the methods
proposed in chapter 2 and chapter 3 to figure out the multiple view geometry. How-
ever, if these cameras have independent curvilinear motions, the mentioned multifocal
tensors cannot be computed from the image motion of the point. Therefore, we in this
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Figure 5.1: A moving point in 3D space and its projections in seven curvilinear motion
cameras. The multifocal tensor defined under projections from P® to P? can describe
the relationship among these image projections.

section show that if the camera motions are curvilinear as shown in Figure 5.1, the
multiple view geometry under extended projections can be computed from the image
motion of the point, and they can be used to, for example, generate image motions
viewed from arbitrary curvilinear motion cameras.

Consider a usual affine camera which projects points in 3D to 2D images. The
motions of a point in the 3D space can be represented by homogeneous coordinates,
X(T) = [X(T),Y(T),Z(T),1]", where T denotes time. The motions are projected
to images, and can be observed as a set of points, x(T) = [z(T),y(T),1]". Here,
we make use of cubic Bezier curves to describe the arbitrary 3D motions of cameras
AX = [AX,AY,AZ,AW]" in homogeneous coordinates in this paper. The camera
motion is relative to the camera initial position, and hence its fourth entry is equal to
0, and thus it is represented as AX = [AX,AY,AZ,0]". The cubic Bezier curve is
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defined as written in (3.6):
T3
AX = GAE (5.1)

[y

where,

G =[Gy G Gy Gy],

-1 3 -3 1
3 -6 3 0
A=1.33 0 o0 (5:2)
1 0 0 O
) 1 1 1
E = dmg[JTg’,T_a?’i_’l]' (53)

Go, G1, Gy, G3 denote four control points and T, is the total time of camera’s motion.
Thus, point motions are projected to affine camera as follows:

z(T)
y(T)| = Pu(X(T)-AX)
1
T3
T2

= Pu(X(T)- GAE [ |)

= P,I,—GAE] | T?

= P,[I, ~GAE]
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where P, denotes a 3 x 4 affine camera matrix, whose third row is [0,0,0,1], and P,
represents a 3 X 8 matrix. In (5.4), P denotes a 3 x 7 extended affine camera matrix,
whose third row is [0,0,0,0,0,0,1]. The 7th column of P is derived by merging the 4th
column and the 8th column of P,. We therefore find that, from (5.4), the projections
of point motions to multiple cameras with curvilinear motions can be described by the
multilinear relationship under the projection from 6D to 2D. In the next sections, the
geometry of such projections will be given in more detail.

5.2.1 Projection from 6D to 2D

We first consider a projection from 6D space to 2D space. Let X = [X?, X2 X3,
X4 X% X6 X"|T be the homogeneous coordinates of a 6D space point projected to
a point in the 2D space, whose homogeneous coordinates are represented by x =
[z!,22,23)7. Then, the extended affine projection from X to x can be described as

follows:
x ~ PX (5.5)
where (~) denotes equality up to a scale, and P denotes the following 3 x 7 matrix:

P11 P12 P13 P4 P15 Pie P17

P = [pa1 p22 p23 Paa P25 P26 Por (5.6)
o o0 o0 0 o0 o 1

From (5.5), we find that the extended affine camera, P, has 14 DOF. In the next
section, we consider the multiple view geometry of the extended affine cameras.
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Table 5.1: Quadilinear relations between point and line coordinates in four views. The
final column denotes the number of linearly independent equations.

correspondence relation eq.
four points mix’jx"km"'he;bde;’J-k =04 2
three points, one line ez QY = 0 1
two points, two lines e QY = 0¥ 2
one point, three lines  z*l, /1) e¥' e QY = 0™ 4
four lines LI ePisetbteriu gy, = Qstv 8

5.2.2 Affine Multiple View Geometry from 6D to 2D

From (5.5), we have the following equation for N extended affine cameras:

P x 0 O 0 )j 0
PPOox 0 - 0|0 0
PII 0 0 xll . 0 A” = 0 (57)

where, the leftmost matrix, M, in (5.7) is 3N x (7 + N), and the (7+ N) x (7+ N)
minors Q of M constitute multilinear relationships under the extended projection as:
det Q = 0. We can choose any 7+ N rows from M to constitute Q, but we have to take
at least 2 rows from each camera for deriving meaningful N view relationships (note,
each camera has 3 rows in M). Thus, 7+ N > 2N must hold for defining multilinear
relationships for N view geometry in the 6D space. Thus, we find that, the multilinear
relationship for 7 views is the maximal linear relationship in the 6D space.

We next consider the minimum number of points required for computing the mul-
tifocal tensors. The geometric DOF of N extended affine cameras is 14N — 42, since
each extended affine camera has 14 DOF and these N cameras are in a single 6D affine
space whose DOF is 42. Meanwhile, if we are given M points in the 6D space, and let
them be projected to N cameras defined in (5.5). Then, we derive 2M N measurements
frorh images, while we have to compute 14N — 42 + 6 M components for fixing all the
geometry in the 6D space. Thus, the following condition must hold for computing the
multifocal tensors from images: 2MN > 14N — 42+ 6M. We find that minimum of 7
pdints are required to compute multifocal tensors in four, five, six and seven views.

5.2.2.1 Four View Affine Geometry

We next introduce the multiple view geometry of four extended cameras. For four
views, the sub square matrix Q is 11 x 11. From det Q = 0, we have the following
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quadrilinear relationship under extended camera projections:

P zl]mllk ///h6 de;}jk — Od (5.8)
where €p,4 (or its contravariant counterpart, e’“’d) denotes a tensor, which represents a
sign based on permutation from {h,v,d} to {1,2,3}. Q% is the quadrifocal tensor for
the extended cameras and has the following form:

- -

a?
ad

Vik = €ipg€irs€hiy det | B (5.9)

where a' denotes the ith row of P, b* denotes the ith row of P’, ¢! denotes the ith
row of P” and d' denotes the ith row of P" respectively. The quadrifocal tensor
Qiir 18 3 X 3 x 3 x 3 and has 81 entries. Since all the third rows of the extended
affine camera matrices are [0,0,0,0,0,0,1], many zero entries arise in Qz - As a result,
9133, 91337 Q233, Q233, Qsma Q3137 9323» Q323, Q331» Q3317 Q3327 Q332, 93337 Q333, Q333 are
non-zero entries and thus we have only 14 free parameters in Q7 except a scale am-
biguity. On the other hand, (5.8) provides us 3 linear equations on Qf;, but only 2 of
them are linearly independent. Thus, at least 7 corresponding points are required to
compute Q7 from images linearly.

Since corresponding points with time marks induce linear constra,mt% for computing
quadrifocal tensor, we reformulate (5.8) as follows:

E(t)q =0 (5.10)

1 2 1 2 1
where q = [Qiss, Qts3, Qas3, Qa3 D13 Lz, Cszss Qiosr Lisr> D3s1y Diszr a2y Ly
Q%.., 03..]7, and E(t) is a 3 x 15 matrix whose elements are calculated from the

corresponding points x(t), x'(t), x"(¢t) and x"(t). Then, if we have N corresponding
points, q can be computed by solving the following linear equations.

Uq = 0 (5.11)
U = [E(tl)Ta'HvE(tN)T]T

where N > 7. The solution on q is the eigenvector corresponding to the smallest

eigenvalue of UTU.
]III

Since two points @ and z”™* in the forth view can be used to represent a line 1’

which goes through ¢ and ™" as: z""x"epq = I, (5.8) becomes

xzml]a:llkzlllhxllld de”k = I/g T”kl"' Qv = =0 (5.12)
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Table 5.2: Quintilinear relations between point and line coordinates in five views. The
final column denotes the number of linearly independent equations.

relation # of eq.

Ik JMth  im tuv __
rr fktcfhudfmveRi;"v - Ocde 8

1k Jrhyin tuv __
" extcenudRy;" = Oca

'z x
'z 4
Etmlj‘,r”kl::/lgllektck:;l,v =0, 2
YU REY =0 1

UL MR = O0n 2
Ll pime R = (e 4

by multiplying " on both sides. Then, (5.12) shows the connection of the quadrifocal
tensor with three points and one line. Furthermore, if multiplying "%, a point in the
third view, to (5.12), we can derive:

L 1 . ..
P ) LT3 1 e (o S | /] /. 7) rkujm v
gzl Q= —x T ek L) Qi
1 . ..
— Tt tku v nu
= 5% LI e™ Q=0 (5.13)

where 1" is a line in the third view going through z”* and z"*. (5.13) is the corre-
spondence on point-point-line-line. The other correspondences may be obtained in the
same manner. .

A complete set of the quadrilinear equations involving the quadrifocal tensor are
given in Table 5.1. All of these equations are linear in the entries of the quadrifocal
tensor Q}’jk.

As described in Section 5.2, this multiple view geometry can be applied to multiple
affine cameras with curvilinear motions. Meanwhile, since the position of points in our
research includes the information of time, we can derive the multiple view geometry
from fewer time instants if we observe more than one point. For example, in the case of
four views, we need 7 time instants, if we observe a single point in the space. However,
if we observe 2 point motions in 3D, we only need to observe them 4 time instants to
figure out the multiple view geometry.

5.2.2.2 Five View, Six View and Seven View Affine Geometry

Similarly, the five view, six view and seven view geometry can also be derived for the
extended cameras. The quintilinear relationship under extended projection is:

107 Mk Mth _ im, tuv
Tl " ke hud€mve Riy - = Ocde (5.14)
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Table 5.3: Sextilinear relations between point and line coordinates in six views. The

final column denotes the number of linearly independent equations.

relation eq.

T Ip! R MMM € se Entd€mue€ny £ ST Y =0 cde § 32
bl ;L‘"k xmh pm l:,””fjrb €kscEhtdEmue Sirstuvzobcde 16
mi :I:'j .’E”k xmh lg// lZ/// €jrb€RscChtd Sirstuv — Obcd

ripli !k l;” lZ” l;”” €jrb€hsc sttw =04
ximlj lgl;”lZ"l{,””ejrbS{“"” — Ob
.Z‘il:,l:l;"lzﬂlg”'s:ﬂuv =0

1 e p it _miw Qrstuv __
Ll i gmiv grstu —

BN = N &= 00

Table 5.4: Septilinear relations between point and line coordinates in seven views. The

final column denotes the number of linearly independent equations.

relation # of eq.
.’EZ.’E/J:E"k.’EI"h.’E””mSC/””niltmmoCipa ejqbfkrcehsd
emteenuffongWTStuv = Oabcdefg 128
sl Fn K Th, 1000 Hinn
IRy Mg "l tfz'paqubfkrc
stuv __

€hsd€mte€nuf HPT = Oabcde f 64

] /j K hy I JInen it .

T IR € €
EkrcfhsdemteHWStuv =0abede 32
O S L T LT .

TR I €€ g

fkrcfhsdeqmtm) =0gbca 16

x&ljxllkl‘lsﬂ l;lll lZ’” l{)llll/ €ipa€igh Eklrc7_{;)«;{1'.«#14141 — Oabc
VI LA U I L LI . pgratuy __
a2 L L € pat jgp H t =04
B LG UL LU pgrstuv __
o LI e H =0,

lpl;lTInll'IslllillllZII/l:}IIIIHquStU’U — 0

= N =~ 00

R is the quintifocal tensor whose form is described as:
——
aP
a?
b1‘

Rf;-“’ = €;pg€jrs det | b?

(5.15)
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where a®, b?, ¢!, d* and e’ denote the ith row of five camera matrices. The quintifocal
tensor Rf}“’ has 243 entries. Excluding 191 zero entries and a scale ambiguity, it has
51 free parameters. And 27 linear equations are given from (5.14) but only 8 of them
are linearly independent. Therefore, minimum of 7 corresponding points are required
to compute 'Rf;“’ from images linearly. The quintilinear relationships involving the
quintifocal tensor are summerized in Table 5.2.

We next introduce the multiple view geometry of six extended cameras. The sexti-
linear constraint is expressed as follows:

1171 xlj .’L'”k x///hxllllmxmlln € b€ € 1€ €raf ‘S-irstuv= Obcdef ( 5.1 6)

where ST is the sextifocal tensor (six view tensor) whose form is represented as
follows:

a?
a?
~|b”
Sretw — ¢, det | ¢ (5.17)
dt
eu
£

b -

where a*, b?, c¢?, d*, e’ and f* denote the ith row of six camera matrices. The sextifocal
tensor S7*™ has 729 entries. If the extended cameras are affine as shown in (5.5), we
have only 175 free parameters in S7*"“” except zero entries and a scale. On the other
hand, (5.16) shows one set of corresponding points provides us 243 linear equations
on ST but only 32 of them are linearly independent. Furthermore, the constraints
between multiple sets of points are not independent. As a result, at least 7 corre-
sponding points are required to compute ST***¥ from images linearly. The quintilinear
relationships are given in Table 5.3.

Finally, let us have a look at the multiple view geometry of seven extended cameras.
The septilinear constraint is described as:

nk_nth_nim Hitm, 1111o
r r r xr €ipa€igb€krc€hsdEmte

€nuf€ongHPT ™ =04pedefg (5.18)

e’z

where HPI™™" ig the septifocal tensor (seven view tensor) whose form is represented
as follows:

o
b?
CT
HPITSW — et | d? (5.19)
et
fu,
g’U
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where a*, b', ¢!, d’, €, f* and g* denote the ith row of seven camera matrices. The
septifocal tensor HPI"$'“ has 2187 entries, including 576 non-zero entries. Then we
have 575 free parameters in HP¥*'** except a scale. On the other hand, (5.18) provides
us 2187 linear equations on HP***¥ but only 128 of them are linearly independent.
Excluding the dependences between the corresponding points, 7 sets of corresponding
points are enough to compute HP*"? from images linearly. The septilinear relation-
ships are given in Table 5.4.

5.2.3 Applications on Multiple View Geometry of Curvilinear
Motion Cameras

5.2.3.1 View Transfer

The constraints between corresponding points and multifocal tensors have been de-
rived (see (5.8), (5.14), (5.16), (5.18)), and multifocal tensors can be computed by 7
corresponding points in 4, 5, 6 and 7 views. Thus, if we have the image motions in
N —1 images, the image motion in the remaining image can be calculated from N view
tensor. It realizes the view transfer from N — 1 views to the other view.

5.2.3.2 3D Reconstruction

From (5.5), if image points and extended camera matrix are given, the coordinates of
points in 3D can be obtained. Therefore, computing the extended camera matrix is

very important. A
Assuming that the first viewpoint is at the origin, the camera matrices may now

be written as:

P, = [I]|0]
Pn [Hln ' enl]

where H;,, denotes the 3 x 3 homography from the first view to the nth view, and
e,1 denotes a 3 X 4 matrix which represents the epipole, the projection of the first
viewpoint in the nth view. Since we consider the affine mapping, the third row of P,
is [0,0,1,0,0,0,0] as same as P;. Although the order of 1 in the third row is different
from that of (5.4), P; and P, are still extended affine camera matrices. Note, from P,
and P, [X(T),Y(T),1,Z(T), T3 T2 T]" can be recovered. The epipole of projection
from 6D to 2D is a 3D space, and the four column vectors in e,; are four basis points
in this space [98].

Take four views for instance. In (5.12), z*z72"*QY, can be considered as a point,
™. Then p* and I have the following relation:

Pl = 0. (5.20)

That is, p" is a point on the line I in the fourth view. If ¢, 7 and z"* are corre-
sponding points, then p” is also a corresponding point " in the fourth view. Thus,
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(5.12) may be rewritten as:
.Iix'j:L‘”kQ%k — .”L"”v. (5.21)

Then, the following equations can be derived:

"

" = HYr (5.22)
v itk AU
14a — IT°T Qijk (5.23)

H7y; denotes a homography from the first view to the fourth view. If we have two pairs
of " and z, two H?Y,; can be obtained:

Hiy = 371j$111kajk (5.24)
Hjy = ‘Efzjmzk %k (5.25)

Thus, we have the following constraints:

ey = Hygeyy (5.26)
ey = Hieyy (5.27)

If Hy4 and H), are independent, we can obtain:
(H14 - H'14)e14 =0 (528)

Since Hy4 and H/, have been figured out, epipole ej4 can also be deriVed. However,
here we only can derive one column vector in e;4. For obtaining the other three column
vectors, we need other three homography pairs. Once e;4 and Hy4 are known, e4; can
be calculated from (5.26). Thus, the camera matrix P4 can be computed from Hj,
and e4;. P2 and P3 can also be derived in the same manner. Then, using Py, Pj, P3,
P,4 and a set of corresponding points in these camera images, we can reconstruct X in
(5.5), and hence the point in 3D space and time T'.

5.2.4 Experiments

We next show the results of some experiments. We at first discuss the approximate
relationship between affine cameras and projective cameras. We next show that the
quadrifocal tensor for extended affine cameras can be computed from image motions
viewed from arbitrary curvilinear motion cameras by the results from real images, and
can be used for generating one view from the others and for recovering 3D motions.
We finally evaluate the stability of extracted quadrifocal tensors for extended affine
cameras.
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Figure 5.2: The relationship between the distance ratio and the reprojection errors
under the projective camera model.

5.2.4.1 Approximate Relationship between Affine Camera and Projective
Camera

Affine camera is an ideal model whose optical center is at infinity. It does not exist
in the real world. Therefore, we here desire to find some clue to the approximate
relationship between affine camera and the most general camera model, projective
camera.

We consider a ratio between the “radius” of the 3D motion (the average distance
between the center and the boundary of the motion) and the distance between motion’s
center and projective camera, which we call distance ratio. The relationship between
distance ratio and reprojection error (its definition is same to stability evaluation)
is shown in Figure 5.2. The image size is 640x480. As we can see, when distance
ratio< 0.4, reprojection error is less than 10.

5.2.4.2 Real Image Experiment

We next show the result from a real image experiment.

In this experiment, we used four cameras (Sony DFW-VL500), one of which is static
(Camera 4) and three of which (Camera 1, Camera 2 and Camera 3) are controlled by
3-axis robots (Originalmind 3-Axis Robot) respectively to undergo different curvilinear
motions as shown in Figure 5.3. We computed quadrifocal tensors among these four
cameras by using two moving points in the 3D space. The experimental circumstance
is shown in Figure 5.4. Figure 5.5(a), (b), (c) and (d) show image motions of two 3D



53

Figure 5.4: Experimental Circumstance.

points viewed from Camera 1, 2, 3 and 4 respectively. Here, distance ratio is about
0.25. Such configuration could he considered approximating with affine camera models
as addressed.

The green and red curves n Figure 5.5 represent two different image motions. The 7
white points on the two curves in each image are corresponding points used for comput-
ing the quadrifocal tensor. The curves in Figure 5.6(b) show image motions computed
from the extended quadrifocal tensor in camera 2. The average error of the recovered
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(c) Camera 3 (d) Camera 4

Figure 5.5: Multiple point motion experiment. Figures (a), (b), (c¢) and (d) show four
views of the motion in camera 1, 2, 3 and 4. The green and red curves show two
different image motions in each view. The 7 white points on the two curves in each
image are corresponding points used for computing the quadrifocal tensor. Note that
Camera 1, Camera 2 and Camera 3 have curvilinear motion.

image motion is 6.0 pixels. The error is caused by the following reasons according to
our analysis: (1) camera motion error. It is difficult for controlling four cameras to do
rigorous spline curve motions; (2) approximate error. We used projective cameras to
approximate affine cameras; (3) selection of corresponding points. The correct results
are derived from corresponding points which have 6D variety. For example, coplanar
corresponding points may arise degeneration.

As we can see, the quadrifocal tensor defined under extended projection can be
derived from multiple point motions viewed from three curvilinear motion cameras
and one static camera, and they are practical for generating images of multiple point
motions viewed from curvilinear motion camera.



53]

2

5010 10 200 3% 300
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Figure 5.6: Computed result of the multiple point motion experiment. The curves in
(b) show image motions computed by the extended quadrifocal tensor in camera 2.

5.2.4.3 3D Reconstruction

We next show the results of 3D reconstruction using the 3D configurations shown
in Figure 5.7 to verify another application, 3D reconstruction. For convenience, we
assumed camera C; a static camera in this experiment. The non-rigid 3D motion is
projected to four cameras as shown in Figure 5.8. Figure 5.9(a) shows the real 3D
motion. The corresponding points with Gaussian noise of standard deviation of 1 pixel
in the four images were used to figure out the coordinates of each point in the 3D space
by using the method addressed in section 5.2.3.2. The reconstructed result is shown in
Figure 5.9(b). We can see the shape of the 3D motion is recovered properly.

5.2.4.4 Stability Evaluation

We next show the stability of extracted quadrifocal tensors under extended projec-
tions. For evaluating the extracted quadrifocal tensors, we computed reprojection
errors derived from the quadrifocal tensors. The reprojection error is defined as:
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Figure 5.7: One static camera, three curvilinear motion cameras and a moving point
in the 3D space.

(a) Camer 1 (b) Camera 2

(c) Camera 3 (d) Camera 4
Figure 5.8: Non-rigid motion in the 3D space is projected to four cameras.

Tif Zfil d(m;,m;). where d(m,;, 1m;) denotes a distance between a true point m; and
a point 1m; recovered from the quadrifocal tensor. We increased the number of corre-
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(a) Real 3D motion (b) Result of 3D reconstruction

Figure 5.9: 3D reconstruction.
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Figure 5.10: The relationship between the number of corresponding points used for
computing quadrifocal tensors and the reprojection errors. Camera trajectories and 3D

point motions are randomly generated for 1000 times by changing the control points
of the Bezier curves.

sponding points used for computing quadrifocal tensors in four views from 7 to 20, and
evaluated the reprojection errors. Camera trajectories and 3D point motions are ran-
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domly generated for 1000 times by changing the control points of the B-spline curves.
For each camera trajectory and 3D point, the images motions are generated 100 times
by adding Gaussian noise with the standard deviation of 1 pixel. Figure 5.10 shows the
relationship between the number of corresponding points and the reprojection errors.
As we can see, the stability is obviously improved by using a few more points than the
minimum number of corresponding points.
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5.3 Multiple View Geometry for Projective Curvi-
linear Motion Cameras

If all the cameras are projective cameras and the cameras are moving following cubic
Bezier curves, point motions are projected to projective camera as follows:

AMy(T)| = P,(X(T) - AX,)

1
T3
T2
= P.(X(T) - GAE T )
1
X(T)
: T3
= P,I,-GAE]| T?
T
e 1 -
X(T]
Y(T)
Z(T)
= P,[I,—~GAE] 733
T2
T
L. 1 -
[ X(T)]
Y (T)
Z(T)
1
= P, T3
T2
T
- 1 -
X (T
Y (T)
Z(T)
= P| T3 (5.29)
T2
T
- 1 -
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where P, denotes a 3 x 4 projective camera matrix, and P denotes a 3 x 7 extended
camera matrix. We therefore find that, from (5.29), the projections of point motions
to multiple cameras with curvilinear motions can be described by the multilinear rela-
tionship under the projective projection from 6D to 2D. In the next sections, we will
discuss the geometry of projective projections.

5.3.1 Projective Projections from 6D to 2D

We first consider a projection from 6D space to 2D space. Let X = [X!, X2, X3,
X4 X% X8 X7]T be the homogeneous coordinates of a 6D space point projected to
a point in the 2D space, whose homogeneous coordinates are represented by x =
[1, 22,2 7. Then, the extended projection from X to x can be described as follows:

x ~PX (5.30)
where (~) denotes equality up to a scale, and P denotes the following 3 x 7 matrix:

mi; My Mz M4 M5 Mg May
P=|mgy, mgyy mgs Moy Maos Mmos Moy (5.31)
Mgy Mgz Mgz T34 M35 Mgze M37

From (5.30), we find that the extended camera, P, has 20 DOF except a scale. In the

next section, we consider the multiple view geometry of the extended cameras.

5.3.2 Projective Multiple View Geometry from 6D to 2D

From (5.30), we have the following equation for N extended projective cameras:

P x 0 O 0 )f 0
P 0 x 0 of {3 0
Pll O 0 x/l O A” = 0 (5.32)

where, the leftmost matrix, M, in (5.32) is 3N x (7+ N), and the (7+ N) x (7T+ N)
minors Q of M constitute multilinear relationships under the extended projection as:
det Q = 0. We can choose any 7+ N rows from M to constitute Q, but we have to take
at least 2 rows from each camera for deriving meaningful N view relationships (note,
each camera has 3 rows in M). Thus, 7+ N > 2N must hold for defining multilinear
relationships for V view geometry in the 6D space. Thus, we find that, the multilinear
relationship for 7 views is the maximal linear relationship in the 6D space.

We next consider the minimum number of points required for computing the multi-
focal tensors. The geometric DOF of N extended projective cameras is 20N — 48, since
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Table 5.5: Quadilinear relations between point and line coordinates in four views. The
final column denotes the number of linearly independent equations.

relation # of eq.
;I:ia:'jm”ka:’”lqu QZk =04 2
" QY, =0
xixlj l;./lg'frku Q:;k =
Jiil;l:./lgleqjterku sz = Otu
lpl;l'rllzlﬁmsqutfrku Q;’ik — Ostu

QO = DN =

each extended projective camera has 20 DOF and these N cameras are in a single 6D
projective space whose DOF is 48.

Meanwhile, if we are given M points in the 6D space, and let them be projected to
N cameras defined in (5.30). Then, we derive 2M N measurements from images, while
we have to compute 20N — 48 4+ 6M components for fixing all the geometry in the
6D space. Thus, this condition must hold for computing the multifocal tensors from
images: 2MN > 20N — 48 4+ 6M. We find that minimum of 16,13,12,12 points are
required to compute multifocal tensors in four, five, six and seven views nonlinearly.

We next introduce the multiple view geometry of four extended projective cameras.
For four views, the sub square matrix Q is 11 x 11. From det Q = 0, we have the
following quadrilinear relationship under extended camera projections:

mzx/]a://kxmlquQ%k =0y : (5.33)

where €,,4 denotes a tensor, which represents a sign based on permutation from {l,v,d}
to {1,2,3}. Q} is the quadrifocal tensor for the extended cameras and has the following
form:

Qlik = €ipg€irs€ry det | b® (5.34)

.dv.J
where a’ denotes the ith row of P, b denotes the ith row of P’, ¢’ denotes the ith
row of P” and d’ denotes the ith row of P” respectively. The quadrifocal tensor ik
is 3 x 3 x 3 x 3 and has 81 entries. If the extended cameras are projective as shown in
(5.30), we have only 80 free parameters in Qf, except a scale ambiguity. On the other
hand, (5.33) provides us 3 linear equations on Q7 but only 2 of them are linearly
independent. Thus, at least 40 corresponding points are required to compute sk from

images linearly.
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A complete set of the quadrilinear equations involving the quadrifocal tensor are
given in Table 5.5. All of these equations are linear in the entries of the quadrifocal
tensor Q.

As described in Section 5.3, this multiple view geometry can be applied to multiple
projective cameras with curvilinear motions. Meanwhile, since the position of points in
our research includes the information of time, we can derive the multiple view geometry
from less time intervals if we observe more than one point. For example, in the case
of four views, we need 40 time intervals, if we observe a single point in the space.
However, if we observe 4 point motions in 3D, we only need to observe them 10 time
intervals to figure out the multiple view geometry.

5.3.3 Experiments

We next show the results of some experiments. We first show the results from real
image experiment, in which the quadrifocal tensor for extended cameras is computed
from image motions viewed from arbitrary curvilinear motion cameras, and is used to
generate a view from the other three views of moving cameras. We next evaluate the
stability of extracted quadrifocal tensors for extended cameras.

5.3.3.1 Real Image Experiment

In this. experiment, we used four cameras, three of which have curvilinear motions
and one of which is static. The experimental setup is same as Section 5.2.4.2. We
computed quadrifocal tensors among these 4 cameras by using two moving points in
the 3D space. Figure 5.11(a), (b), (c) and (d) show image motions of two points viewed
from three curvilinear motion cameras and one static camera. The green curves and
red curves represent two different image motions. The 20 white points on each curve
are corresponding points used for computing the quadrifocal tensor. The extracted
tensor is next used to generate the image motion of camera 2 from the image motions
of camera 1, 3 and 4. The green and red curve in Figure 5.12(b) shows image motions
computed from the extended quadrifocal tensor in camera 2. The 40 points in (e) show
points used for computing the quadrifocal tensor. Comparing Figure 5.12(a) and (b),
we find that the computed motions are reasonably accurate. Thus, we can see that
the quadrifocal tensor defined under extended projection can be derived from arbitrary
multiple point motions viewed from 4 cameras, even if three of them undergo arbitrary
curvilinear motion, and it is practical for generating images of multiple point motions
viewed from curvilinear motion camera.

5.3.3.2 Stability Evaluation

We next show the stability of extracted quadrifocal tensors under extended projections.
Figure 5.13 shows a 3D configuration of 4 curvilinear motion cameras and a moving
point used in this experiment. The black points show the viewpoints of four cameras,
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(c) Camera 3 (d-) Came;‘a-él

Figure 5.11: Multiple point motion experiment. Figures (a), (b), (c¢) and (d) show
image motions of two points viewed from three curvilinear motion cameras (Camera
1, Camera 2 and Camera 3) and one static camera (Camera 4). The green curves and
red curves represent two different image motions. The 20 points on each curve are
corresponding points used for computing the quadrifocal tensor.

C,, C,, C3 and Cy, before motions, and the white points show those after the Bezier
curve motions. The motions of these four cameras are different and unknown. The
black curve shows a locus of a freely moving point, which is projected to four curvilinear
motion cameras as shown in Figure 5.14. For evaluating the extracted quadrifocal
tensors, we computed reprojection errors derived from the quadrifocal tensors. The
reprojection error is defined as: SN d(my, 1i;)?, where d(m;, 1h;) denotes a distance
between a true point m; and a point rh; recovered from the quadrifocal tensor. We
increased the number of corresponding points used for computing quadrifocal tensors
in four views from 40 to 60, and evaluated the reprojection errors. The Gaussian
noise with the standard deviation of 1 pixel is added to every point on the locus.
Figure 5.15 shows the relationship between the number of corresponding points and
the reprojection errors. As we can see, the stability is drastically improved by using a
few more points than the minimum number of corresponding points.
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Figure 5.12: Computed result of the multiple point motion experiment. The green and
red curve in (b) shows image motions computed from the extended quadrifocal tensor
in Camera 2.

5.4 Summary

In this chapter, we used affine camera model and projective camera model to describe
the multilinear relationship under the projection from 6D to 2D respectively, which
can represent the geometric relationship of multiple curvilinear motion cameras whose
motions are represented by cubic Bezier curves. The multifocal tensors defined under
6D to 2D multilinear relationships can be computed from non-rigid object motions
viewed from multiple cameras with arbitrary curvilinear motions. We also showed that
the multilinear relationships are very useful for generating images of non-rigid motions
viewed from cameras with arbitrary curvilinear motions. The method was implemented
and tested by using real image sequences. The stability of extracted quadrifocal tensors
was also evaluated.
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Figure 5.13: 3D configuration of four curvilinear motion cameras and one moving point.
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Figure 5.14: Non-rigid motion in the 3D space

cameras.

(d) Camera 4

is projected to four curvilinear motion



66

[pixel]
20

g
=]
: !
15 ]
=
&<
5 10
.d)
3
2 5
5]
B

40 45 50 55 60
number of points

Figure 5.15: The relationship between the number of corresponding points used for
computing quadrifocal tensors and the reprojection errors.



Chapter 6

Dynamic Multiple View Geometry
with B-Spline Curve Motion
Cameras

6.1 Camera Trajectory Modeled by Degree-n B-
Spline Curve

In chapter 3, 4 and 5, we introduced the dynamic multiple view geometry, in which
the camera trajectories are modeled by Degree-n Bezier curves. However, when n is
large, the multiple view geometry will become very complex, uncomputable. Moreover,
the main problem with Bezier curves is their lack of local control. - To overcome the
problems, we consider degree-n B-Spline curve, a piecewise curve, to represent the
camera trajectories. Thus, we can use low degree B-spline curve to describe a complex
curve.

6.2 B-Spline Curve

Given m knots t; with

1<t <--- <t (6.1)
A B-spline of degree-n is a parametric curve composed of a linear combination of basis
B-splines b; ,, of degree-n

m—n—1

S= ) Pibiat), tE€ [t tmn] (6.2)
=0

The basis B-splines of degree-n is defined as follows:

Lt <t<t; .
bj,O(t) = { 0 eJlse j+1 j= 0’ ,M — 1 (63)
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t—1t; tivner — 1T .
= b () + =T i), §=0,-- m—n—1 (6.4)

b, n(t)
inl titn — t; tignt1 — bit1

If the knots are equidistant the B-spline curve is called to be uniform, otherwise
non-uniform.

6.3 Non-Rigid Object Motions viewed from B-Spline
Curve Motion Cameras

6.3.1 Cubic B-Spline Curve

Cubic (degree-3) B-spline curve with uniform knot-vector is the most commonly used
form of B-spline curve. In this section, we will make use of uniform cubic B-spline
curve to represent the trajectory of the camera.

The ith segment of a cubic B-spline curve is defined using four control points, Q;,
Qit1, Qit2, Qiy3, a basis matrix B and a parameter t as follows:

t3
t2
Si = [Qiy Qi+17 Qi+23 Qi+3] B te (65)
1
tef0,1, i=01--,n—1

where, the fourth entries of Q;, Qi+1, Qiv2, Qi+3 are equal to 0, and B denotes the
following 4 x 4 matrix:

-1 3 -3 1
3 -6 0 4

B= -3 3 3 1 /6,
1 0 0 O

6.3.2 Non-Rigid Object Motions viewed from Cubic B-Spline
Curve Motion Cameras

Consider an affine camera which projects points in 3D to 2D images. The motions
of a point in the 3D space can be represented by homogeneous coordinates, X(T) =
[X(T),Y(T), Z(T),1]", where T denotes time. The motions are projected to images,
and can be observed as a set of points, x(T') = [z(T),y(T),1]".

The camera motion is relative to the camera original position, and hence its fourth

entry is equal to 0, and thus represented as S; = [AX, AY, AZ,0]".
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Assume each motion segment S; spends time 7,. Then ¢t = T/T, — i. Thus, the

parameter vector can be written as:

t3 /T2 -3i/1,2 32/T, -7 [T
N 0 /T, -2/T, T?
t| 0 0 /T, —i T
1 0 0 0 1 1

T3

o | T?

= CO) | p

1

Let G; = [Qi, Qi+1, Qit+2, Qits]- Then, S; can be rewritten as follows:

T3
2
S, = GBC(i) | -
1
Thus, point motions are projected to affine camera as follows:
z(T)
y(T)| = PX(T)-8;)
1
T3
T2
= P(X(T) - G,BC(7) T )
1
X(T)
T3
= P[I,-G;BC(i)] | T?
T
1
[ X(T)]
Y(T)
Z(T)
= P | 18
1 T2
T
- 1 -

(6.6)

(6.7)

(6.8)

where P denotes a 3 x 4 affine camera matrix, and P} denotes a 3 x 7 extended
camera matrix for ith camera motion segment. We therefore find that, from (6.8), the
projections of point motions to multiple cameras with cubic B-spline curve motions
can be described by the multilinear relationship under the projection from 6D to 2D.
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6.4 Multiple View Geometry with Cubic B-Spline
Curve Motion Cameras

We first consider a projection from 6D space to 2D space. Let X = [X1, X2 X3
X* X5 X% X7 be the homogeneous coordinates of a 6D space point projected to
a point in the 2D space, whose homogeneous coordinates are represented by x =
[z!, 22,237, Then, the extended projection from X to x can be described as follows:

x ~PX (6.9)
where (~) denotes equality up to a scale, and P denotes the following 3 x 7 matrix:

miyy My M1z Mig Mag Mg Miy
P = [mg; mgy mo3 Moy mos Mog Mor (6.10)
0 0 0 0 0 0 1

From (6.9), we find that the extended camera, P, has 14 DOF. Next, we consider the

multiple view geometry of the extended cameras.
From (6.9), we have the following equation for N extended projective cameras:

P x 0 0 ---0 ))f 0
P’ 0 x 0 - 0f 0
PII 00 X” ..o 0 A” = 0 (611)

where, the leftmost matrix, M, in (6.11) is 3N x (7 + N), and the (7+ N) x (7+ N)
minors Q of M constitute multilinear relationships under the extended projection as:
det Q = 0. We can choose any 7+ N rows from M to constitute Q, but we have to take
at least 2 rows from each camera for deriving meaningful N view relationships (note,
each camera has 3 rows in M). Thus, 7+ N > 2N must hold for defining multilinear
relationships for N view geometry in the 6D space. Thus, we find that, the multilinear
relationship for 7 views is the maximal linear relationship in the 6D space.

We next consider the minimum number of points required for computing the mul-
tifocal tensors. The geometric DOF of N extended affine cameras is 14N — 42, since
each extended affine camera has 14 DOF and these N cameras are in a single 6D affine
space whose DOF is 42. Meanwhile, if we are given M points in the 6D space, and let
them be projected to N cameras defined in (6.9). Then, we derive 2M N measurements
from images, while we have to compute 14N — 42 + 6 M components for fixing all the
geometry in the 6D space. Thus, the following condition must hold for computing the
multifocal tensors from images: 2MN > 14N — 42+ 6M. We find that minimum of 7
points are required to compute multifocal tensors in four, five, six and seven views.

We next introduce the multiple view geometry of four extended cameras. For four
views, the sub square matrix Q is 11 x 11. From det Q = 0, we have the following
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quadrilinear relationship under extended camera projections:

z’x"x"km’”hehdefjk =04 (6.12)

where €p,q (or its contravariant counterpart, e'"’d) denotes a tensor, which represents a
sign based on permutation from {h,v,d} to {1,2,3}. Qf, is the quadrifocal tensor for

the extended cameras and has the following form:

a?

?jk = €ipg€irsCktu det | b* (613)

L -

where a’ denotes the ith row of P, b* denotes the ith row of P/, ¢! denotes the ith
row of P” and d' denotes the ith row of P" respectively. The quadrifocal tensor
Qi 18 3 x 3 x 3 x 3 and has 81 entries. Since all the third rows of the extended
affine camera matrices are [0,0,0,0,0,0,1], many zero entries arise in Q%k. As a result,
Qlss» Qlss» Q233> Q333> L D313, Dizss Diasr Ll Qisns Qises Dszs Qissy Qiszy Qi are
non-zero entries and thus we have only 14 free parameters in QY except a scale am-
biguity.  On the other hand, (6.12) provides us 3 linear equations on Qlik, but only 2
of them are linearly independent. Thus, at least 7 corresponding points are required
to compute Q}, from images linearly. '

6.4.1 Experiment
6.4.1.1 View Transfer

We next show two view transfer experiments by using synthetic images.

Figure 6.1 shows a 3D configuration of 4 moving cameras and a moving point. The
black points show the viewpoints of four cameras, C;, Cy, C3 and C4, with B-spline
motions which consist of two B-spline segments. The curvilinear motions of these four
cameras are different and unknown. The black curve shows a locus of a moving point
S. Figure 6.2 (a), (b),(c) and (d) show image motions of S viewed from C;, C,, C3
and C, respectively. Note, the original locus of S is closed in the 3D space as shown
in Figure 6.1, but its loci in images are not closed as shown in Figure 6.2 because of
the camera motions. We added Gaussian image noises with the standard deviation of
1 pixel to all the points on the loci in images. The 7 black points on the black loci
and the 7 white points on the white loci in Figure 6.2 (a), (b), (c) and (d) are used to
compute the two quadrifocal tensors on these four moving cameras with two B-spline
motions. The quadrifocal tensors are used to recover the image motion in C; from
image motions in Cy, C;3 and Cy. Figure 6.3 (b) shows the recovered result. The black
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Fiigure 6.1: Four curvilinear motion cameras and a moving point in the 3D space. Each
camera motion consists of two B-spline segments.

curve shows the real trajectory, and the white curve shows the computed motion. The
average error of the recovered image motion is 6.03 pixels.

Another view transfer experiment is also done. Figure 6.4 shows the 3D configura-
tion of 4 moving cameras and a moving point. The black points show the viewpoints of
four cameras, C;, C3, C3 and C4. Each camera undergoes two-segment B-spline curve
motion. The curvilinear motions of these four cameras are different and unknown.
The black curve shows the trajectory of a moving point. Figure 6.5 (a), (b),(c) and (d)
show image motions viewed from C;, Cy, C3 and C, respectively. We added Gaussian
image noises with the standard deviation of 1 pixel to all the image motions. The 7
black points on the black loci and the 7 white points on the white loci in Figure 6.5 (a),
(b), (c) and (d) are used to compute the two quadrifocal tensors on these four moving
cameras with two B-spline motions. The quadrifocal tensors are used to recover the
image motion in C; from image motions in Cy, C3 and C4. Figure 6.6 (b) shows the
recovered result. The black curve shows the real trajectory, and the white curve shows
the computed motion. The average error of the recovered image motion is 4.51 pixels.

6.4.1.2 Stability Evaluation

We next show the stability of extracted quadrifocal tensors under extended projec-
tions. For evaluating the extracted quadrifocal tensors, we computed reprojection
errors derived from the quadrifocal tensors. The reprojection error is defined as:
N Zf\i 1 d(m;, ), where d(m;, ;) denotes a distance between a true point m; and
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(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4

Figure 6.2: Figure (a), (b), (c) and (d) show four views of the motion in camera 1, 2,
3 and 4. The black curves represent the image motions when the cameras undergo the
first curvilinear motions. The white curves correspond to the second camera motions.
The 7 black points on each black loci and the 7 white points on each white loci in
Figure (a), (b), (c) and (d) are used to compute the two quadrifocal tensors.

(a) Camera 1 (b) Computed result

Figure 6.3: View transfer experiment 1. Figure (a) show the view of the motion in
camera 1. The black curves represent the image motions when the cameras undergo the
first curvilinear motions. The white curves correspond to the second camera motions.
The white curve in (b) shows image motions computed by the extended quadrifocal
tensors in the image plane of camera 1. The black curve is the true value.
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Figure 6.4: Four curvilinear motion cameras and a moving point in the 3D space. Each
camera motion consists of two B-spline segments.

a point 1Mm; recovered from the quadrifocal tensor. We increased the number of corre-
sponding points used for computing quadrifocal tensors in four views from 7 to 20, and
evaluated the reprojection errors. Camera trajectories and 3D point motions are ran-
domly generated for 1000 times by changing the control points of the B-spline curves.
For each camera trajectory and 3D point, the images motions are generated 100 times
by adding Gaussian noise with the standard deviation of 1 pixel. Figure 6.7 shows the
relationship between the number of corresponding points and the reprojection errors.
As we can see, the stability is obviously improved by using a few more points than the
minimum number of corresponding points.

6.5 Summary

In this chapter, we introduced B-Spline curve for representing camera motions and
derived the multiple view geometry for multiple cameras, whose motion trajectories
are described by B-Spline curves.

As we know, in the mathematical field of numerical analysis, B-spline curves are
very useful for representing arbitrary 3D shapes with small number of control points.
And it can overcome the main problem with Bezier curves, that is their lack of local
control, and, when the degree of Bezier curve is large, the multiple view geometry will
become very complex, uncomputable. Hence, in this chapter we make use of cubic
B-spline curves to describe the arbitrary 3D motions of cameras.



75

(ﬁ .

(b) Camera 2

(a) Camera 1

(c) Camera 3 (d) Camera 4

Figure 6.5: Figure (a), (b), (c) and (d) show four views of the motion in camera 1, 2,
3 and 4. The black curves represent the image motions when the cameras undergo the
first curvilinear motions. The white curves correspond to the second camera motions.
The 7 black points on each black loci and the 7 white points on each white loci in
Figure (a), (b), (c) and (d) are used to compute the two quadrifocal tensors.

.

(a) Camera 2 (b) Computed result

Figure 6.6: View transfer experiment 2. Figure (a) show the view of the motion in
camera 2. The black curves represent the image motions when the cameras undergo the
first curvilinear motions. The white curves correspond to the second camera motions.
The white curve in (b) shows image motions computed by the extended quadrifocal
tensors in the image plane of camera 1. The black curve is the true value.
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Figure 6.7: The relationship between the number of corresponding points used for
computing quadrifocal tensors and the reprojection errors. Camera trajectories and 3D
point motions are randomly generated for 1000 times by changing the control points
of the B-spline curves.

We provided the definition of the B-spline curve. Especially, we took cubic B-spline
curve as an instance to represent the trajectory of the cameras. B-spline curve is a
kind of piecewise curve. Although the multiple view geometry corresponding to each
segment of cubic B-spline curve motions is same as the case of Bezier curve described in
chapter 5, the camera motions could be more complex and less control points required
if the camera motions are represented by B-spline curves. For example, a 2-segment
cubic B-spline curve is smooth, second-order differentiable and is defined by 5 control
points, while two cubic successive Bezier curves are not second-order differentiable and
determined by 7 control points.

We showed the result from the synthetic experiment. We can see that even if all the
cameras undergo complex curvilinear motions, the view transfer still can be realized
by using the dynamic multiple view geometry.



Chapter 7

Computing Dynamic Multiple View
Geometry in 4D space from Mutual
Projections of Multiple Cameras

7.1 Mutual Projections of Multiple Cameras

So-called mutual projections of multiple cameras describe the case where some cameras
are projected to other cameras. Under such configuration, we can directly use the actual
projection of cameras as the approximation of epipoles and derive the multiple view
geometry more stably with less corresponding points [75]. _

However, the known mutual projection method is applied to the traditional multiple
view geometry, in which all the cameras are assumed to be static. That means all the
projections of cameras, the epipoles, are single points.

Whereas the dynamic multiple view geometry in 4D space proposed in chapter 3
describes the relationship between images viewed from multiple translational cameras.
In this case, a set of epipoles derived from a translational camera is no longer a single
point but a line. Thus, the problem becomes much more complex than the case of
traditional mutual projections of multiple cameras. Then, how about the case of mutual
projections in 4D space? In this chapter, we show the answer to this question.

7.2 Computing Dynamic Multiple View Geometry
in 4D Space from Mutual Projections

Let us consider the mutual projections of three moving cameras in sequential images.
Then, we can derive at most 3 pairs of epipoles: {e1,es1}, {e12,es2} and {ei3,ex3} at
an instance. Here, {e2;, e3;}, for example, denote epipoles which can be approximately
regarded as the projections of camera 1 to camera 2 and 3.

At time ¢, the epipole eq(t) is a point in view 2, which corresponds to any point
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in view 1. Also, the epipole es;(t) at time ¢ is a point in view 3, which corresponds to
any point in view 1. This means, by substituting e;;(¢) and es;(¢) into x’ and x” in
(4.12), we have the following trilinear relationship which must be hold for any point m
in view 1.

miel, (t)ek (e Ty =0,  "m (7.1)
Since (7.1) must hold for any m, the remaining part, eél(t)e’gl(t)ekm'];;, must be zero

tensor. The similar discussions hold for the pairs of epipoles {e;2,e32} and {e;3,es3}.
Thus, we have the following relationships between epipoles and trifocal tensors:

eh(t)es (e Ty = O (7.2)
ela(t)es(t)ernT; = 0 (7-3)
eis(t)e(t)T; = 0O (7-4)

Although (7.2) provides us 9 linear equations on trifocal tensor, only 6 of them are
linearly independent. And if we use {es;,e3 } at N different time, the number of
independent equations derived from (7.2) is not always 6 N. The same thing happens
to other two pairs of epipoles. Furthermore, if we combine some pairs of epipoles and
use N of them respectively to compute trifocal tensor, the results are very different.
In the following subsections, let us consider the number of independent equations and
the minimum number of corresponding points required for computing trifocal tensors
under mutual projection of cameras in 4D space by using one, two and all three epipole
pairs respectively.

7.2.1 Using One Epipole Pair
7.2.1.1 Using Epipole Pair {ez;, €3} or {ei2, es.}

We first consider why (7.2) has only 6 independent equations. In general, a tensor
m%wk represents three lines which go through a point m. Thus e’gl(t)ekw in (7.2)
represents three epipolar lines in view 3, which go through an epipole es; (). So, (7.2)
describes relationships between epipole eq(¢) in view 2 and epipolar lines 1”(¢) which
go through es;(t) in view 3 as follows:

(O TF = 0; (7.5)

Since (7.5) must hold for any point m in view 1, (7.5) is considered as a point-point-line
incidence on any point m in view 1, epipole e9;(t) and any epipolar line 1”(¢) which
goes through es; () as follows:

miel, (LTS = 0 (7.6)

For finding the number of independent equations in (7.2) in sequential images, we
need to count the number of independent incidence relations described by (7.6) when

we use N pairs of {eq(t),es1(t)}, (t =11, ,tn).
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C2

Figure 7.1: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {m;,m; ms} show three basis points in view 1. 1j shows
epipole line which goes through ey, in view 2. Ij shows epipole line going through es;
in view 3. {17,13,15} show three basis lines in view 3.

We note that any point m in view 1 can be described by a linear combination of
three basis points m;, my; and m3. And any epipolar line 1”(¢) which goes through
es;(t) in view 3 can be described by a linear combination of two basis lines. Since
e3;(t) are collinear, one of these two basis lines can be a line which goes through all
the epipoles e3;(t) (t = t1,--- ,tn) as shown in Figure 7.1. We call the line epipole
line and denote it by 1. Suppose 17, 15 and 1§ go through es; (1), e31(t2) and es(t3)
respectively as shown in Figure 7.1. Then, if we have one pair of epipoles {ey; (), e3;(¢)}
at tq, any incidence relation represented by (7.5) at time ¢; can be described by a linear
combination of the following 6 basis incidence relations:

mieh ()l T =0 mich ()T = 0
myeh (t)lge Ty =0 mbedy ()11, TF =0 (7.7)
maed (1)l T =0 mied; (h)IT5 = 0

Therefore, we have only 6 linearly independent equations in (7.2).

For simplification of (7.7), we define a new notation for describing all the 6 equations
as follows:

m; "
g {em(tl)}{ o } (7.8)

ms
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The number of equations is the product of the number of rows of each column. So, the
number of equations in (7.8) is 3 x 1 x 2 =6.

Thus, if we have a pair of epipoles {ex;(t), es1(t)} at two different time, ¢; and ¢,
then we can derive the following equations:

Ei {egl(tl)}{ :ﬁl),} | E% {921(t2)}{ }f} (7.9)

Then, the number of equations in (7.9) is 3 x 1 x 2+ 3 x 1 x 2 = 12. It means that by
using a pair of epipoles {eq;(t), e31(f)} at two different time, there exist 12 independent

equations.
How about the case of 3 different time, t;, t; and t37 At time ¢3, we have:

m; 16,
m eutn { | (7.10)

Since e91(t1), €21(t2) and eq(t3) are collinear, ey;(t3) can be written by the linear
combination of ep;(¢1) and eq(t2) as:

ez (t3) = ciean(t1) + coen(t2) (7.11)

Then (7.10) can be described as follows:

m; 1" :
my p {(ciea1(t1) + coean(t2))} < 0 (7.12)
m L )
Now, since
m;
my  {(crex(t1) + czea(t2))} {lo} (7.13)
mg

can be described by a linear combination of

m; m;
m; » {ex(t1)}{lg} and m; o {ex(t2)} {Ig},
ms ms

it is linearly dependent with (7.9). Therefore, only

m,
m; ¢ {(ciex(t1) + czen(t2))} {15} (7.14)
msg
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is linearly independent, and then we have only 3 independent equations in (7.10). Thus,
we find that from a pair of {e2;(¢), es1(¢)} at 3 different time, 15 independent equations
can be derived.

At time t4, it seems that we have another independent equation as follows:

m;
m, § {ex(ts)} {14} (7.15)
mg

However, this is not the case. Since any line on the plane can be described by a set of
three basis lines, 15 can be described by 1fj, 1 and 17 as follows:

15 = dilg + dol + d313
Then, at 3, (7.14) can be represented as:
m; :
my {61821 (tl) + Czezl(tz)} {d]lg + dzllll + d3 12,} (716)
mgs
Simplifying (7.16), we have:
m;
my {621 (t2)l] + _deZl(tl) '2'} (7.17)
m €202 _
3
Similarly, at t4, (7.15) can also be described as:
m;
ms {c3e21(t1) + 04821(t2)} {d4 g + d5llll + d(; ,2,} (718)
mgj

and their simplified forms are:

m; C3d6
ms {621 (tg)l’{ + (‘—43—921 (tl)lg} (7.19)
ms 455

We find that (7.17) and (7.19) are very similar, only the coefficient g%g and gﬁg are
different, but in fact they are equal and relate to the initial position of camera 1, camera
motions, camera matrices, t; and ¢, all of which are constants. As a result, there is no
independent equation at 4. The same thing happens at time t5, tg, ---. Thus when
we use 3 or more pairs of {ey;(t), es;(t)}, the number of independent equations we can
derive is 15.
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Table 7.1: The number of independent equations derived by using {ej;(t),es;(t)} or
{ei2(t), es2(t)} for N time (t = t;,--- ,tx), and the number of corresponding points
required for computing trifocal tensors in each case of mutual projections of cameras.
3* denotes 3 or greater than 3.

N x {eq(t),e31(t)} | # of independent | # of corresponding
or {e1(t), es2(t)} equations points required

1 6 10

2 12 7

3* 15 6

Since N sets of corresponding points provide us 2N linearly independent equations,
the following inequality must hold for computing 26 free parameters of the trifocal
tensor 7.%, if we have a pair of epipoles at time #;:

171
2N +6> 26

Thus we need 10 corresponding points. Similarly, if we have a pair of {e;(t),es:(f)}
at time #; and {5, the number of corresponding points required for computing 7:;“ is
(26 —12)/2 = 7, and if we have a pair of {es;(t), es1(t)} at time #;, t2 and t3, we require
6 corresponding points.

The case of epipole pair {e;2, €32} is almost same as {ep1, €31 }. We summarize the
number of corresponding points required for computing trifocal tensors in each case of
mutual projections of cameras in Table 7.1. '

7.2.1.2 Using Epipole Pair {e;3, ey}

The case of epipole pair {e;s, €23} is much simpler than other two epipole pairs and
the analysis process can refer to the previous section. The number of independent
equations by using N pairs of {ej3, ez}, and the number of corresponding points
required for computing trifocal tensors in each case of mutual projections of cameras
are summarized in Table 7.2.

7.2.2 Using Two Epipole Pairs
7.2.2.1 Using Epipole Pair {e;,e;3 } and {ej2, e3}

(l) 1x {ezl(t),e31(t)} +1 X {elz(t),eg2(t)}
Suppose at time t; and t; we have one pair of {ea(t),e3;(t)} and {e2(t), es(t)}
respectively:

egl(tl)elgl(tl)fls:rvT,T = 0y (7.20)
ena(t2)esy(ta)enre Ty = Oj (7.21)
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Table 7.2: The number of independent equations derived by using {e;3(t), ey3(t)} for N
time (t =t3,--- ,tn), and the number of corresponding points required for computing

trifocal tensors in each case of mutual projections of cameras. 3* denotes 3 or greater
than 3.

N x {e13(t),e23(t)} | # of independent eq. | # of points required
1

3 12
2 6 10
3* 9 9

We have known that (7.20) can be written as:
m'ed, (1)l (t) T = 0 (7.22)

where m denotes any point in view 1, and 1”(¢;) denotes any epipolar line which goes
through es; (¢;) in view 3. Since (7.21) is quite similar to (7.20), (7.21) can also be
described as follows:

ela(t)m I (t2) T = 0 (7.23)

where m’ denotes any point in view 2, and 1”(¢;) denotes any epipolar line which goes
through es;(f2) in view 3. As shown in Figure 7.2, 1f and 15 go through e3;(¢;). 15 and
15 go through esy(t2). The three lines do not coincide. Then (7.22) can be written as:

E eat { }f } (7.20

which denotes 6 independent equations. Similarly, (7.23) can also be written as:

!

m; 14

(ente { w5 { 1 } (7.25)
m} 2

However, (7.25) provides us less than 6 independent equations because of (7.24). Let

us explain it in detail.

(7.25) can be described as two parts:

m;

{ewn(tz)} § my o {I5} (7.26)
myj
m

{ewz(tz)} ¢ my {15} (7.27)
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Figure 7.2: The basis points and lines for representing incidence relations in three
views. {mj, my, m3} show three basis points in view 1. {mj}, m), m}} show three basis
points in view 2. {17,15,15} show three basis lines in view 3.

Since (7.26) is independent relative to (7.24), (7.26) brings us 3 independent equations.
But (7.27) is dubious.
If we consider one of the basis points mj as ep;(t1), (7.27) becomes to:

fen()}{ m, S (7.28)

e (1)

where
(ent) { i by (7.29)

are independent with (7.24). However, the third equation

{ewa(t2)} {ex(t1)} {12} (7.30)

is dependent, since e;3(t2) can be represented by the basis points {m;, my, ms} in view
1. Then (7.30) can be written as:

{clml + CoINy + c3m3} {921 (tl)} {1121} (731)

which is just the linear combination of three equations in (7.24). Then, (7.25) provides
us 3 + 2 = 5 independent equations. Thus, 1 pair of {e(t),es;(f)} and 1 pair of
{e12(t), es2(t)} provide us 6 + 5 = 11 independent equations.
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(2) 1x {em(t),egl(t)} +2 X {elz(t),e:;z(t)}
If we have a pair of {e3(t),e31(t)} at time 1, and a pair of {e2(t), e32(t)} at time
t2 and t32

e (t))ehy (t)en Ty = O (7.32)
ela(t2)en(t)ern T = 05 (7.33)
ela(ts)es(ta)ern T = Op (7.34)
their simplified forms we can obtain are as follows:
m; 1
m; {ezl(tl)}{ 1/2/ } (7.35)
ms 3
m )
{er2(t2)} { mj { " } (7.36)
m} 2
m{l lII
(et { mj 1 { 3} (7.37)
m; 3
3

where 17 and 15 go through es(t;), 1 and 15 go through es;(t;), and, 17 and 1§ go
through ess(t3) as shown in Figure 7.3.

The former discussions also hold here, so we can see that (7.35) provides us 6 in-
dependent equations, (7.36) and (7.37) brings us 5 independent equations respectively.
Thus, a pair of {eg;(t),es;(t)} at 1 time and a pair of {e;5(t), e32(¢)} at 2 different
time provide us 6 + 5+ 5 = 16 independent equations.

(3) 1 x {egl(t), €31 (f)} + 3* x {912(t), e32(t)}

Here, 3* denotes 3 or greater than 3. We first consider the case of 1 x {ez:(t), es1(f)}
+3 x {e12(t), es2(t)}, which is the case of 1 x {e2:1(t), es1(t)} +2 x {e12(t), es2(t)}, (7.35),
(7.36) and (7.37), plus the following equations:

{e1z(ts)} 2; {E:} (7.38)

m;y

where 1 goes through es;(f1) and esz(t4) as shown in Figure 7.4.
1 x {ex(t),es1(t)} +2 x {e12(t),es2(t)} provide us 16 independent equations. Then
how many independent equations does (7.38) include?
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Figure 7.3: The basis points, basis lines and epipole line for representing incidence
relations in three views. {m;, my, m3} show three basis points in view 1. {m}, mj}, mj}
show three basis points in view 2. {13,15} show two basis lines in view 3. 1{ shows
epipole line which goes through ess.

Figure 7.4: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {mj, my, m3} show three basis points in view 1. {m}, mj, mj}
show three basis points in view 2. {15,15,1;} show three basis lines in view 3. 1; shows
epipole line which goes through e;;. 1{ shows epipole line which goes through es,.
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(7.38) can be written into two parts:

fen(t)}{ m) (1) (7.39)

{eiz(ta)} ¢ my o {14} (7.40)

Since eia(t2), €12(t3) and ejz(ty) are collinear, e12(t4) can be described by ej2(t2) and
ei2(t3). Then, (7.39) can be changed to:

{61912(t2)+02912(t3)} m’2 {lﬁl} (7.41)

which can be represented by the combination of some equations from (7.36) and (7.37).
So (7.39) does not bring us any independent equation. Then how about (7.40)? If we
consider one of the basis points mj as ez (¢;), (7.40) can be written as:

fen(t)}{ mj {1 (7.42)
ez (t)

The first two equations are independent to others, but the third equation is not. Since
eiz(t4) and 1j can be described by {m;, my, m3} and {13,15} respectively, the third
equation can be represented as follows:

{alml + asms + a3m3} {ezl(tl)} {dl],Z, + dglg} (743)

which is the combination of 6 equations in (7.35). Therefore, (7.40) involves 2 in-

dependent equations. Thus, using one more pair of {e;s(t),ess(t)}, we can derive

2 more independent equations than 1 x {e2;(t),es1(t)} + 2 x {e12(t), es2(t)}, that is,

1x {e2(t),es(t)} +3 x {e12(t), es2(t)} can bring us 16+2 = 18 independent equations.
On the other hand, (7.40) can also be written into:

my
{01612(?52) + c2e12(t3)} m:2 {dlllzl + dglg} (744)
m;
Simplifying it, we have:
/
cod ™
Llelg(tg)l’z’ + 612(t2)lg m’2 (745)
c1dy /
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At time t,,n > 4, we can derive similar equations in which only the coefficient 52%1- is
different, but it can be proved that this coefficient is a constant. That means more pairs
of {e12(t), e32(t)} do not bring new independent equations. Thus, 1 x {eq1(t), es1(t)} +
3* x {e12(t), es(t)} still provide us 18 independent equations.

(4) 2 x {ex(t),es1(f)} + 2 x {e12(t), esa(t)}
In this case, we have the following simplified equations:

lll
ms {e2l(t1)} }, (746)
m feat {y }
m, 1,1,
m/
1. lll
{eiz(ts)} § my ” (7.48)
e2(l3 2{3 { 1 }

llI
{ewn(ts)} ¢ m; { 1 } (7.49)
mj 3
where 1/ and 1§ go through es;(¢;), If and 1j go through es;(t2), 1§ and 1% go through
es2(t3), and 1§ and 1] go through esy(t4) as shown in Figure 7.5. (7.46) and (7.47) first
. 4 3 .

provides us 6 independent equations respectively. Next, let us consider (7.48). It can
be separated into:

fenlt)} { w111 (7.50)
mg

fen(t)} { m)y §{1) (751)
m

Since (7.50) is independent with (7.46) and (7.47), (7.50) brings us 3 independent
equations. Moreover, it can be written as:

m
{(cim; + comy + c3m3)} m) {1 (7.52)
e (t2)

Then (7.51) can also be rewritten into:
{en(ts)} {mi} {3} (7.53)
{clml + comy + C3m3} {821 (fl)} {1,2,} (754)
{C1m1 + como + C3m3} {621 (f2)} {d]llll + d2ll3l + d'glg} (755)
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Figure 7.5: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {m;, my, mz} show three basis points in view 1. {m}, mj, m}}
show three basis points in view 2. {15,15} show two basis lines in view 3. 17 shows
epipole line which goes through es;. 1 shows epipole line which goes through es,.

(7.53) is independent to (7.46), (7.47) and (7.50), but (7.54) can be described by
(7.46), in addition, (7.55) can be represented by (7.47) and (7.52). Therefore, (7.51)
contributes only 1 independent equation. Thus, (7.48) provides us 3 + 1 = 4 inde-
pendent equation. For the same reason, (7.49) also brings us 4 independent equations.
Then, 2 x {eq(t), e31(t)}+2 x {e€12(t), es2(t) } provides us 6+6+4+4 = 20 independent
equation.

(5) 2 x {ex(t), ea1(t)} + 3" x {en2(t), exa(t)}

We have derived 20 independent equations from the case 2 x {eq1(t),es1(t)} + 2 x
{e12(t), es2(t)}. What will happen when we use one more pair of {e12(t), es2(t)}? We
can add the following equations to (7.46)~(7.49) to consider this case:

m/ 14
feut{ wf H{ 1 } (756

!
mg

where 1 is a epipole line which goes through es;, and 1 denotes a line going through
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Figure 7.6: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {m;, mz, m3} show three basis points in view 1. {m}, mj, mj}
show three basis points in view 2. {13,15,17} show three basis lines in view 3. 1; shows
epipole line which goes through e;2. 17 shows epipole line which goes through es;. 1
shows epipole line which goes through es,.

Table 7.3: The number of independent equations derived by using {e (t),es (t)} for
N; time (t = t1,--- ,tn,), and {eq2(t), es2(t)} for Ny time (t = ¢1,--- ,tn,), and the
number of corresponding points required for computing trifocal tensors in each case of
mutual projections of cameras. 3* denotes 3 or greater than 3.

Ny x {ez(t), es(t)}
+ # of independent eq. | # of points required

N; x {e(t), es(t)}

1+1 11 8

1+ 2 16 5

1+ 3 18 4

242 20 3

2+ 3 21 3

3+ 3 22 2

esz(t5) as shown in Figure 7.6. Then (7.56) can be rewritten into:

mj
{(J,lelz(t3) + (12912(t4)} m'2 {IZ} (757)
my
m;
{eimy + comy + c3ms} Q ex(ty) P {15} (7.58)

ez (t2)
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Figure 7.7: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {mj, mz, m3} show three basis points in view 1. {m}, mj, m}}
show three basis points in view 2. {17, 15,17} show three basis lines in view 3. 1; shows
epipole line which goes through e;2. 1j shows epipole line which goes through es;. 17
shows epipole line which goes through es;. 1j shows epipole line which goes through

€32.

(7.57) can be described by (7.48) and (7.49), so it does not provide any independent
equation. In addition, 1f goes through es(¢5). Then it can be a line going through not
only es;(t1) and esy(t5), but es;(t2) and esz(ts) as shown in Figure 7.6. Thus, (7.58)
can be written as:

{clml + ¢comy + c3m3} {m'l} {lg} (759)
{c1m1 + coImsy + c3m3} {ezl(tl)} {d]ll{ + dzlg} (760)
{clml + comy + C3m3} {ezl(tz)} {d3llll + d4lg} (761)

(7.59) is independent to other equations, but (7.60) and (7.61) can be represented by
(7.46) and (7.47) respectively. Then (7.56) provides us 1 independent equation. Thus,
in the case of 2 x {eg(¢), e31(¢)} +3 x {e12(t), es52(t) }, we have 20+ 1 = 21 independent

equations.
On the other hand, (7.56) can also be described by:

m;
{(Llelg(t3) + (1,2812(134)} mé {blllzl + bglg + b3 Z} (762)
m;z
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Modifying it, we have:

azb m)
{“2312(154)1/2/ + el2(t3)lg} my (7.63)
a1b2

!
mg

Since gf%; is a constant, even if we use more {e;2(#), es2(t)}, the number of independent
equations could not increase for the sanie reason mentioned before. Therefore, 2 x

{ea1(t),es ()} + 3* x {e12(t), es2(t)} provides us 21 independent equations.

(6) 3" x {ex(t), es1(t)} + 3" x {en(t), e52(t) }

The discussion on the number of independent equations in this case is very similar
to the previous case, 2 X {eq1(t),es31(t)} + 3* x {e12(t), e32(t)}, so we do not give the
explainer here, only the configuration (see Figure 7.7).

Up to now, we have considered all the cases of using epipole pair {e (t),es;(t)}
and {ejo(t),es2(t)}. They are summarized in Table 7.3.

7.2.2.2 Using Epipole Pair {e;;,e3} and {e;3, ey}, or {eis, e} and {e;3, es3}

In such combinations, the number of independent equations and corresponding points
required in all the cases are summarized in Table 7.4. Most of them can be obtained
by Table 7.1 and Table 7.2 directly. Only the following two cases need to be explained:

N; x {921(t),831 (t)} or {elz(t),e32(t)} # of "# of
No. + independent | points
Ny x {eys(t), exs(t)} eq. required
1 24+ 3 20 3
2 3+ 3 22 2

We first consider 2 x {eq;(t),e31(¢)} + 3 x {e13(t),exs(t)} in No.1.
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Table 7.4: The number of independent equations derived by using of {ey (t),es3(¢)}
or {ei2(t),es(t)} for Ny time (t = t1,--- ,tn,), and {e13(t),eqx3(t)} for N, time (t =
t1,--+ ,tn,), and the number of corresponding points required for computing trifocal
tensors in each case of mutual projections of cameras. 3* denotes 3 or greater than 3.

N] X {921 (t), 631(t)} or {elz(t), egz(t)} # of

' + : # of independent eq. | points
Ny x {elg(t), e23(t)} required

1+1 9 9

1+ 2 12 7

1+ 3" 15 6

241 15 6

3+ 1 18 4

2+2 18 4

2+ 3" : 20 3

3+ 2 21 3

3+ 3 22 2

Figure 7.8: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {m;, m,, ms} show three basis points in view 1. {13,15} show
three basis lines in view 3. 1; shows epipole line which goes through e;3. 1) shows
epipole line which goes through eqs. 1] shows epipole line which goes through es;.
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In this case, we have 5 sets of simplified equations:
m; 1”
me ¢ {eat} { 1

ms

(7.64)

m, %
my {e2l(t2)}{ lé

mg

(7.65)

I

1

{eis(ta)} {e2s(ta)} }%

Y

{ews(ts)} {exs(ts)} § L2 (7.68)
I3

1y
{ews(ts)} {exs(ts)} § 13 } (7.66)
} (7.67)

where 1 and 1§ go through e (¢1), and, 1 and I go through es; (¢2) as shown in
Figure 7.8. (7.64)~(7.67) represent the case of 2 x {e31(t), e31(t)} +2 x {e13(t), ex3(t)},
which provides us 18 independent equations. Then based on it, how many independent
equations can we derive from (7.68)?

Since ej3(t4) and eg3(t4) can be described by {m;, me, ms} and {eq (1), ex(ts),
eq3(t3)} respectively, the first equation in (7.67) has the following calculations:

{e13(ta)} {eas(ta)} {11} (7.69)
= {c1m1 + comgy + c3m3} {dlem(tl) + d2€21 (tz) + d3923(t3)} {llll} (770)
= {c1m; + comy + cgmg} {eg3(ts)} {17} (7.71)
= {exs(ts)} {e2s(ts)} {11} (7.72)

For the same reason, the first equation in (7.68) can also be rewritten as:
{es(ts)} {eas(ts)} {17} (7.73)

and since it can be described by:

{caers(ts) + csers(ta) } {eas(ts)} {17} (7.74)

which can be represented by (7.66) and (7.72), the first equation in (7.68) is not in-
dependent. Whereas the other 2 equations in (7.68) are independent to all the others.
Therefore, (7.68) brings us only 2 independent equations. Even if one more pair of
{eq3(t), exs(t)} is given, it will not provide us more independent constrains.

Next, let us discuss the case of 3 x {e2:1(t),es1(t)} + 3 x {e13(t), ex3(t)} in No.2.
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Figure 7.9: The basis points, basis lines and epipole lines for representing incidence
relations in three views. {mj, my, mz} show three basis points in view 1. {15,15,17}
show three basis lines in view 3. 1; shows epipole line which goes through e;3. 1} shows
epipole line which goes through ey;. 15 shows epipole line which goes through ess. 1/
shows epipole line which goes through e3;.

All the equations with simplified forms are as follows:

my 1 )
my o {exn(t1)}{ @ (7.75)
2 been )

"
11

% (7.76)
3

m;
{ m; o {ex(t2)}

mo {621(t3)} (777)

{4}
{1}
{ews(ta)} {823(t4)}{ i% } (7.78)

{es(ts)} {exs(ts)} (7.79)

{ews(ts)} {e2s(ts)} (7.80)
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The configuration of them is shown in Figure 7.9. If we only focus on (7.75)~(7.79),
we know that they describe the case of 3 x {e; (), e31(t)} + 2 x {e13(t), ex3(¢)} which
brings us 21 independent equations. How about (7.80)7

Since (7.79) can be represented by:

I
{clml + comy + c3m3} {dlegl(tl) + d2e21 (tz) + d3€23(t4)} { 1/2/ } (781)

Expanding and simplifying them, we obtain:

{es(ts)} {ezs(ts)} {17} (7.82)
{e13(ts)} {dz2eni(t2) + dzeas(ta)} {15} (7.83)
{913 t }{dlezl(tl) + d3€23 t4)} {1 } (784)
For the same reason, (7.80) also equals to:
{eus(ts)} {exs(ta)} {17} (7.85)
{ews(te)} {dzea(t2) + dyezs(ta)} {15} (7.86)
{ews(te)} {diea(t1) + dyezs(ta)} {15} (7.87)

(7.85) can be described by (7.78) and (7.82), so in (7.80), only 2 independent equation
candidates exit.
On the other hand,

m, ’
{ m; }{921(t3)} {13} (7.88)
ms
n (7.77) can be rewritten into:
e13(ts)
{ 613(t6) } {alezl(tl) + €921 (fz)} {b]lg -+ bzlg} (789)
ms
So we have these 2 equations:
“"’”1 g, (eus(t)} fem(12)} {18} + {ers(ts)} fem (1)} {15} (7.90)
“"’"1 22 fea(to)} {ean (1)} 12} + {ena(to)} fom(t)} (1) (7.91)

Combining (7.87) and (7.91) we have:

(],2[)1

{els(fe )} {ean(t2)} {15} + {dses(ts)} {exs(ta)} {15} (7.92)
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Then, by substituting (7.86) into (7.92), we obtain:

~ 2% fes(to)} fen(ta)} {18} + {ers(io)} {eas(ta)} () (7.9)

(1,11)2(112
Similarly, the following equation can also be derived:

_222131 {es(ts)} {e2s(ta)} {12} + {e13(ts)} {e23(ta)} {15} (7.94)
1bad; ,

Since
_azbldl _ agbld'l
a1b2d2 - (llbzdlz’

we denote them as A. For ej3(tg) = cser3(ts) + cseis(ts), (7.93) can be written as
follows:

(7.95)

Acs{ei3(ts)} {e2s(ta)} {15} + ca{e13(ta)} {eas(ts)} {15}
+es(A{eis(ts)} {exs(ta)} {12} + {es(ts)} {es(ta)} {15})

which is the pure combination of (7.78) and (7.94). Therefore, (7.87) can be described
by other equations. Thus, (7.80) only provides us 1 independent equation. Then, from
the case of 3 x {eg(t), es1(t)} + 3 x {e13(t), e23(t) }, we derive 21 + 1 = 22 independent
equations. Increasing the number of {e2;(t),es1(t)} or {ei3(t),e23(¢t)} will not bring
more independent constrains. So, in case No.2, we still have 22 independent equations.
And if we change the epipole pair {e;;,es1} to {eis, es2}, the same results will be
derived.

7.2.3 Using All Three Epipole Pairs

From Table 7.1~Table 7.4, we can deduce the number of independent equations and
corresponding points required by using all three epipole pairs. The results are sum-
marized in Table 7.5. The most interesting thing is when we have 2 or more samples
of each epipole pair, we do not need any corresponding point to derive trifocal tensors
anymore.

7.3 Experiments

We next show the results of experiments and discuss the efficiency of making use of
mutual projections of cameras in the computation of trifocal tensors in 4D space.

We first show the results from real images that the trifocal tensor in 4D space
can be computed from three epipole pairs at different time viewed from arbitrary
translational cameras with no corresponding points, and can be used for generating
the third view from the first view and the second view of moving cameras. We next
evaluate the stability of extracted trifocal tensors in this brand new case and compare
it with traditional method.
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Table 7.5: The number of independent equations derived by using {es;(t), e3;(t)} for Ny
time (t = tl, T ,tNl), {elz(t),egz(t)} for N2 time (t = tl, v ,th) and {913(t),823(t)}
for N3 time (¢t = t1,---,tn,;), and the number of corresponding points required for
computing trifocal tensors in each case of mutual projections of cameras. z* denotes
x or greater than z.

N1 X {ezl(t),egl(t)}
+
Ny x {e12(t),es(t)} | # of independent eq. | # of points required
+
Ns x {e13(t), exs(t) }
1+1+1 14 6
14+41+2 17 5
1+2+1 19 4
1+1+3 50 3
1+3+1 21 3
14+2+2 22 2
24+2+1 23 2
1+2+4 3 24 1
1+3*+2 24 1
243 +1 24 1
1+3+ 3 25 1
3F+3+1 25 1
28 + 2 + 2F 26 0 -

7.3.1 Real Image Experiment

In this section, we show the results from the following case:
2 X {ezl (t),e31 (t)} + 2 X {elz(t),eg,g(t)} +2 X% {813(t),323(t)}.

That is, we use each epipole pair at two different time respectively to compute trifocal
tensor, but do not use any corresponding point.

In the first experiment, we used 2 omnidirectional cameras and 1 general cam-
era. These 3 cameras are translating with different constant speed and different di-
rection. We computed the trifocal tensor between these three cameras by using 3
epipole pairs. We can compute the extended trifocal tensor and can generate arbitrary
image motions in one of three views from the other two views. In this experiment
we generated image motions in camera 3 by using image motions in camera 1 and
camera 2. Figure 7.10 (a), (b) and (c) show image motions of a single moving point
and 6 epipole lines in translational camera 1, camera 2 and camera 3 respectively.
The trifocal tensor is computed from 3 epipole pairs, each of which is sampled at two
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(c) image of camera 3 (d) recovery result

Figure 7.10: Real image experiment 1. (a), (b) and (¢) show epipole lines and image
motions of a single point viewed from camera 1, 2 and 3. The black points on epipole
lines in each image are used for computing the trifocal tensor. The white curve in (d)
shows image motions in camera 3 generated from the extended trifocal tensor, and the
black curve shows the real image motions.

different time, {elg(f]).e;gg(tl)}. {elg(fg).e:gz(fgj}. {elg(fg)‘ez;g(fg)}. {el;;(f4). egg(fq)}.
{e2(ts). es1(ts)}, {e21(ts), es1(t6)}, which are shown by black points in (a), (b) and (c).
The extracted trifocal tensor is used for generating image motions in camera 3 from
image motions in camera 1 and 2. The white curve in Figure 7.10 (d) shows image
motions in camera 3 generated from the extended trifocal tensor, and the black curve
shows the real image motions viewed from camera 3. As shown in Figure 7.10 (d), the
generated image motions almost recovered the original image motions even if these 3
cameras have unknown translational motions.

The other experiment is also given. Figure 7.11, (a), (b) and (c) show three views
of the epipole lines and image motions. The 2 black points on each epipole line are
used for computing the trifocal tensor. Note that these 3 cameras are translating with
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(c) image of camera 3 (d) recovery result

Figure 7.11: Real image experiment 2. (a), (b) and (c) show epipole lines and image
motions of a single point viewed from camera 1, 2 and 3. The black points on epipole
lines in each image are used for computing the trifocal tensor. The white curve in (d)
shows image motions in camera 3 generated from the extended trifocal tensor, and the
black curve shows the real image motions.

different speed and different direction. The white curve in (d) shows image motions
recovered from the extended trifocal tensor in camera 3, and the black curve shows real
image motions observed in camera 3. As we can see, the trifocal tensor defined under
4D to 2D projections can be derived only from 2 samples of the projection of each
camera with arbitrary translational motion, and it is practical for generating images
of arbitrary motions viewed from translational cameras.

7.3.2 Stability Evaluation

We next show the stability of extracted trifocal tensors under 4D to 2D projections
with 13 point method and mutual projection method.
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Figure 7.12: Three translating cameras and a moving point in the 3D space. The
black points show the viewpoints of three cameras before translational motions, and
the white points show those after the translational motions.

Figure 7.12 shows a 3D configuration of 3 moving cameras and a moving point. The
black points show the position of three cameras, C;, C, and Cs, before translational
motions, and the white points show those after the translational motions. The trans-
lational motions of these three cameras are different and unknown. The black curve
shows a locus of a freely moving point. For evaluating the extracted trifocal tensors,
we computed reprojection errors derived from the trifocal tensors. The reprojection
error is defined as follows:

L
NZ mz,m1 (7.96)

where d(m;, ;) denotes a distance between a true point m; and a point m; recovered
from the trifocal tensor.

The case of mutual projections is still 2 X {e21(t),e31(¢)} +2 x {e12(t), es2(t)} +2 X
{e13(t), e23(t)}. We increased the number of corresponding points used for computing
trifocal tensors in three views from 0 to 25, and evaluated the reprojection errors.
In the same way, we also evaluated the 13 point method with same corresponding
points from 13 to 25. Gaussian noise of standard deviation of 1 pixel is added to each
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[pixel]

=8—@— mutual projection method
—0—0— 13 point method

reprojection error

5 10 15 20 25
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Figure 7.13: The relationship between the number of corresponding points used for
computing trifocal tensors and the reprojection errors. The black points show the
result from mutual projection method, and the white points show that from 13 point

method.

image. Figure 7.13 shows the relationship between the number of corresponding points
and the reprojection errors. The black points show the result from mutual projection
method, and the white points show that from 13 point method. As we can see, the
stability is obviously improved by using a few more points than the minimum number
of corresponding points. Moreover, with less or even no corresponding points, the
mutual projection method can derive more stable trifocal tensors than the 13 point

method.

7.4 Summary

In this chapter, we analyzed the computation of dynamic multiple view geometry in 4D
space from mutual projections of multiple cameras. Taking three translational cameras
for example, we discussed using one, two and all three epipole pairs at different time
how many independent equations we can derive and then how many corresponding
points are required to compute the trifocal tensor. As a result, with one epipole pair
at 3 different time we need 6 corresponding points, with two epipole pairs we at least
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require 2 corresponding points, and when we use three epipole pairs at 2 different time
respectively, we do not need any corresponding point to figure out the trifocal tensor.
That means arbitrary image motions tracked by moving cameras can be recovered even
if they are coplanar or collinear, as long as we have the projections of cameras. The
method was implemented and tested by using real image sequences. The stability of
extracted trifocal tensors was also evaluated.



Chapter 8

Conclusion

In this thesis, we presented the dynamic multiple view geometry which includes the
the traditional multiple view geometry and the high-dimension multiple view geometry.
We modeled the camera trajectory by Degree-n Bezier curves and made points in 3D
undergo non-rigid motions. We found that the projective projections of non-rigid 3D
motion to Degree-n Bezier curve can be represented by a projection from (n + 3)D
to 2D. If 3D point motions are tracked by multiple arbitrary motion cameras, the
multilinear relationship under the projection from (n + 3)D to 2D can be derived.
Then, we analyzed the projective projections from (n + 3)D to 2D and deduced the
degree .of freedom of the extended projective camera. (n + 3)-Dimension multiple
view geometry involving several such extended cameras and a dynamic scene was also
addressed. Multilinear relationships and the maximal linear relationship in the (n+3)D
space were derive from the multifocal point relations. Finally, counting arguments were
executed. From the geometric degree of freedom of extended projective cameras and
the degree of freedom of the points in (n+3)D and all the images, the minimum number
of points required for computing the multifocal tensors were derived.

We next analyzed the dynamic multiple view geometry under projective projections
from 4D space to 2D space, and showed that it can represent multiple view geometry
under space-time projections, in which the multilinear relationship for 5 views is the
maximal linear relationship in the 4D space unlike the traditional multiple view ge-
ometry. The new trilinear, quadrilinear and quintilinear relationships were analyzed.
We showed that the newly defined multiple view geometry can be used for describing
the relationship between images taken from non-rigid motions viewed from multiple
translational cameras and is very useful for generating images of non-rigid object mo-
tions viewed from arbitrary translational cameras. Here, the multifocal tensors are
computed from corresponding points. For instance, the trifocal tensor can be derived
by using 13 corresponding points, which are not collinear and coplanar. The method
was implemented and tested by using real image sequences. The stability of extracted
trifocal tensors was also evaluated.

We also extended the theory of multiple view geometry in space-time, and intro-
duced a multiple view geometry of multiple cameras with arbitrary curvilinear motions.
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We used affine camera model and projective camera model to describe the multilin-
ear relationship under the projection from 6D to 2D respectively, which can represent
the geometric relationship of multiple curvilinear motion cameras whose motions are
represented by cubic Bezier curves. The multifocal tensors defined under 6D to 2D
multilinear relationships can be computed from non-rigid object motions viewed from
multiple cameras with arbitrary curvilinear motions. We also showed that the multilin-
ear relationships are very useful for generating arbitrary view images and reconstructing
3D non-rigid object motions viewed from cameras with arbitrary curvilinear motions.
The method was tested by real images. We also evaluated the stability of extracted
quadrifocal tensors.

We have introduced the dynamic multiple view geometry, in which the camera
trajectories are modeled by Degree-n Bezier curves. However, when n is large, the
multiple view geometry will become very complex and uncomputable. On the other
hand, the main problem with Bezier curves is their lack of local control. To overcome
the problems, we consider degree-n B-Spline curve, a piecewise curve, to represent the
camera trajectories. In the mathematical field of numerical analysis, B-spline curves are
very useful for representing arbitrary 3D shapes with small number of control points.
Thus, we can use low degree B-spline curve to describe a complex curve. We gave the
definition of the B-spline curve and especially took cubic B-spline curve as an instance
of to represent the trajectory of the cameras. Although the multiple view geometry
corresponding to each segment of B-spline curve motions is same as the case of Bezier
curve, the camera motions could be more complex and less control points described
if the camera motions are represented by B-spline curves. For example, a 2-segment
cubic B-spline curve is smooth, differentiable and depends on 5 control points, while two
successive Bezier curves are not differentiable and determined by 7 control points. The
synthetic experiment showed that even if all the cameras undergo complex curvilinear
motions, the view transfer still can be realized by using the dynamic multiple view
geometry.

We also proposed the computation of multiple view geometry in space-time under
the case where cameras are projected each other and epipoles are given as the projec-
tions of cameras in images. Since all the cameras are dynamic, an epipole at different
time has different value. Making use of those values, we worked out many interest-
ing results, such as, in computing the trifocal tensor, if we use one epipole pair at 3
different time, we require at least 6 corresponding points; using two epipole pairs at
3 time respectively, we need only 2 corresponding points; if we have all the epipole
pairs at 2 time respectively, the corresponding points are no longer required. In the
last two cases, computing the trifocal tensor is not restricted by the relative positions
of the corresponding points any more and arbitrary image motions can be recovered.
Furthermore, the mutual projection method enables us to obtain the multiple view
geometry much more stably.

The dynamic multiple view geometry proposed in this thesis describes the relation-
ship among a dynamic scene and multiple moving cameras, which is a more general
configuration than the traditional multiple view geometry. By using it, we can recover
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not only the non-rigid object motions in one of the camera views, but also their original
shapes in the 3D space. Moreover, it can also be used for measuring and modeling the
real objects, recognizing human actions, navigating robots, etc. In the future, we will
try to apply the new theory to some fields and further extend it. On the other hand,
the proposed theory also has its limitations. For example, the cameras are assumed
to have no rotations and the motions of the cameras are constrained by parametric
equations, such as Bezier curve or B-spline curve. These problems will be solved in our

future works.
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