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Chapter 1

Introduction

1.1 Motivation

A complュter Vision systeITl processes iITlageS aCq11ired丘･oⅡ1 an electronic camera, which

is like the hllITlan Vision systeITI Where the brain processes iITlageS derived丘.oⅢ1 the eyes.

ColnPllter Vision is a rich and rewarding topic for study and research for electronic

engineers, coITlpllter scientists and Ⅲ1any Others. Increaslngly, it has a coⅡ1IIlerCial

future.

The structllre from motion probleln (SFM) in colnPuter Vision is to extract the 3D

shape of the scene as well as the calnera motion froln a Set Of images taken by a calnera

llndergoing llnknown Ⅲ10tion. The traditional methods in SFM provide TIS SOllltions, if

a movlng Calnera Observes a static scene or a set of static calneraS Observe a dynamic

scene [25,85]･In this paper, we consider SFM problem under dynatlnic environments,

where both the set of caIIleraS and the scene change non-rigidly. In partic111ar, we

consider =nultiple view geolnetry under non-rigid object lnOtions viewed from Inultiple

Ⅱ10Ving caⅢ1eraS.

Over the past decade there has been a rapid development in the llnderstanding and

modeling of the geoⅡ1etry Of rll111tipleviews in coIIlpllter Vision. The ITl111tipleview

geolnetry lS Very llnPOrtant for describing the relationship between images taken from

multiple cameras and for recovering 3D geometry from images [16,17, 21, 25, 29, 74,

79, 80]･ In the traditional =nllltiple view geometry, the projection froln the 3D space
to 2D iIIlageS has been assllmed [25].However, the traditional ll1111tipleview geoITletry
is limited for describing the case where enough nllmber of corresponding points are

visible丘･oⅠIla Static con丘g11ration of Ⅲ1111tiplecaⅢ1eraS.

Recently, some efforts for extending the multiple view geometry for InOre general

point-camera configurations have been made [24,27, 28, 82, 97, 98].From stationary
configurations [16,25, 26, 82]to dynamic configllrations [2,91, 92, 97, 98],the Inlll-
tiple view geolnetry

has been extensively developed. However, previous Inultiple view

geometry Involving dynalnic scenes are
constrained

from the motions of the cameras or

points movlng independently along some restricted trajectory,I.e., Straight
line path



2

and in some cases second-order [2,97, 98].
In this thesis we investigate the Ⅱ1111tipleview geoITletry

ln an absolllte dynaIllic

environment with a dynamic scene and In111tiple movlng Ca=neraS･ Moreover, the newly

proposed "Dynarnic Multiple View Geometry" can also describe the traditional multi-

ple view geoIIletry ln a Static environⅢ1ent.

1.2 0bjective and Apprloach

ln this research, we introdtlCe a newly de丘ned Ⅲl111tipleview geoITletry nallled dy-

namic mllltiple view geometry, in which points in 3D undergo non-rigid InOtion and
the calneraS do arbitrary InOtions modeled by Degree-n Bezier cllrVe. We find that

the projective projections of non-rigid
3D motion to Degree-n Bezier cllrVe Can be

represented by
a
projection from (n + 3)D to 2D･ If 3D point motions are tracked by

mllltiple arbitrary InOtion calneraS, the lnultilinear relationship llnder the projection
from (n + 3)D to 2D can be derived･ Then,. we analyze the projectiveprojections froln

(n + 3)D to 2D and dedllCed the degree of freedo=n of the extended projectivecalnera.

(n + 3)-Dimepsionm111tiple view geometry involving several such extended cam.eras

and a dynalnlC SCene Was also addressed. Multilinear relationships and the maxlmal

linear relationship in the (n+3)D space were derive from the multifocal point relations.
The collnting argllmentS are also execllted. FroⅢ1 the geoITletric degree of丘･eedoITI Of

extended projective cチ?1eraSand
the degree of freedom of the points in (n + 3)D and

all the images, the Inlnlmum nlllnber of points required for colnPllting the Inllltifocal

tensors were available.

We next take n - 1 and n
- 3 as two instances to introdllCe the dynamic multiple

view geometry ln the cases of non-rigid arbitrary motions viewed
from translational

Ⅲ10tion caIIleraS and cllrVilinear Ⅲ10tion caⅢ1eraS respectively.

We analyze the dynamic Inultiple view geometry ullder projectiveprojections
froln

4D space to 2D space, and showed that it can represent I11111tipleview geometry lュnder

space-time projections, in wllich the multilinear relationship
for 5 views is the maxi-

Ⅱ1al linear relationship in the 4D space llnlike the traditional IIl111tipleview geoⅢ1etry.

The new trilinear, quadrilinear and quintilinear relationships were analyzed. We show

that the newly defined Inultiple view geolnetry Can be used for describing the relation-

ship between ilnageS taken from non-rigid motions viewed
from Inultiple translational

calneraS and is very useful for generating Images Of non-rigid object motions viewed
from arbitrary translational cameras. Here, the Inultifocal tensors are colnPuted from

corresponding points. For instance, the trifocal tensor can be derived by uslng 13 cor-

responding points, which are not collinear and coplanar. The method is implelnented

and tested by uslng real ilnage SeqllenCeS. The stability of extracted trifocal tensors is

also evalllated.

We also extend the theory of the multiple view geolnetry ln space-tilne tO a Inultiple

view geometry of m111tiple calneraS With arbitrary curvilinear motions. We llSe afnne

camera model and projective
camera model to describe the multilinear relationship
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llnder the projection
froln 6D to 2D respectively, which can represent the geometric

relationship of Ⅱ1111tiplecllrVilinear Ⅲ10tion caⅢ1eraS Whose Ⅱ10tions are represented by

cubic Bezier cllrVeS. The multifocal tensors defined under 6D to 2D multilinear rela_

tionsbips can be coITlpllted froⅢ1 nOn-rigid object Ⅲ10tions viewed丘･oⅠIl Ⅱ1111tiple
caⅡ1eraS

with arbitrary cllrVilinear lnOtions･ We also showed that the multilinear relationships
are very useful for generating arbitrary view images and reconstructing 3D non-rigid
object IIIOtions viewed丘･oⅠII

CaITleraS
With arbitrary cllrVilinear IIIOtions. The Ⅲ1ethod

is tested in real iⅢ1ageS, and the stability is also evalllated.

Tbe dynaⅡ1ic Ⅲ1111tipleview geoⅢletry, 1n Wbicb the caITlera trajectoriesare Ⅲ10deled
by Degree-n Bezier curves, is proposed･ However, when n is large, the Inultiple view

geometry will become very colnPlex and uncomputable･ On the other hand, the Inain

problem with Bezier curves is their lack of local control･ To overcolne the problelnS,
we consider degree-n BISpline curve, a piecewise curve, to represent the camera tra-

jectories･ In the Inathematicalfield of nlllnerical analysis, B-spline curves are very

llSeflllfor representing arbitrary 3D shapes with small number of control points･ Tlms,

we can use low degree B-spline curve to describe a complex curve･ We gave the def-

inition of the B-spline cllrVe and especially took cllbic B-spline cllrVe aS an instance

of to represent the trajectory of the caⅢleraS･ Altbollgb the Ⅲ1111tipleview geometry

corresponding to each segment of B-spline curve InOtions is same as the case of Bezier

cllrVe, the camera motions could be lnOre COInPlex and less control points described

if the camera motions are
represented by B-spline curves･ For example, a 2-segment

cllbic BISPline curve is smooth, second-order differentiable and depends on 5 control

points, while two cubic sllCCeSSive Bezier cllrVeS are not Second-order differentiable and

deter-Ilined by 7 control points. The synthetic exper血1ent Shows that even if all the

calneraS undergo complex curvilinear lnOtions, the view transfer still can be realized
by using tile dynamic Inllltiple view geometry･

We also investigate efRcient, colnplltational methods for colnpllting the m111tiple

view geoITletry in space-time･ One disadvantage of the m111tiple view geoⅡ1etry in

space-tiITle is that it reqllires more corresponding points than the traditional Ⅲ1111tiple

view geometry･ It is also InOre Sensitive to the ilnage nOise･ Recently, it has been

shown that if some cameras are
projected

to the other cameras, the multiple view

geometry can be computed more
stably froln less corresponding points [75].This is

called lnlltual projections of
cameras. We investigate mutllal projections of

calneraS in

follr-dilnenSional space, and show it enables us to reduce the number of corresponding

points reqllired for coITlpllting the new IT-111tipleview geometry･ SllrprlSlngly, we no

longer needany corresponding points for computing the new mllltiple view geometry,

if all the cameras are
projected

to the other calneraS mutually for two time intervals.

We also show that the stability of the computation of new Inultiple view geolnetry is

drastically ilnPrOVed by considering the Inutual projectiollSOf
calneraS.
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1.3 Thesis Outline

This thesis is organized as follows:

Chapter 2
ゝ

The traditional lnultiple view geometry lS reViewed･ We describe the epipolar geometry

of two calneraS, the trifocal geometry of three calneraS and extend three view geometry

to four views.

Chapter 3

We describe (n + 3)-DilnenSionto 2-DilnenSion dynamic multiple view geometry. We

=nodel the calnera trajectory by uslng degree-r7/ Bezier Curve and show that the new

multiple view geometry system can represent the multiple view geolnetry in the case

where non-rigid arbitrary ITIOtions are viewed丘･oⅢ1 Ⅱ1111tiplearbitrary ITIOVlng CaⅢ1eraS,

and it can also be llSed to represent traditional IT1111tipleview geometry･

Chapter 4

We introdllCe the dynaIIlic Ⅱ1111tipleview geoITletry in 4D space. We also call it the

Ⅲl111tipleview geoITletry ln Space-tiITle･ In this case, the relationship among lⅡ1ageS taken

froln
nOn-rigid motions viewed from Inultiple translational cameras can be described

by the newly de丘ned II1111tipleview geoITletry. And, the IIl111tilinearrelationships is llp

to 5 views unlike the traditional multilinear relationships. The three view, four view

and丘ve view geoITletries are stlldied extensively and new trilinear, qlladrilinear and

quintilinear relationshipsunder the projectiveprojection
froln 4D to 2D are presented.

By solne experiments, we show that it is very useful for generating l甲1ageS Of non-rigid

object motions viewed
from arbitrary translational calneraS.

Chapter 5

We address the dynaITlic IIl111tiple view geoⅡ1etry ln 6D space which is a tensorial

representation of Ⅲ1111tiple caIIleraS With arbitrary cllrVilinear I110tions. It enables llS

to de丘ne ITl111tilinear relationship all10ng血1age points derived丘･oⅢl nOn-rigid object
Ⅱ10tions viewed丘･oIT=Tl111tiple caⅢleraS With arbitrary ctlrVilinea=110tions. We discllSS

the proposed ln111tiple view geolnetry lュnder a氏ne projection and projectiveprojection
respectively･ We show the new mllltilinear relationship IS useful for generating Images

and reconstrllCting 3D nob-rigid object lllOtions viewed血･oI11 CaIIleraS With arbitrary

cllrVilinear lnOtions･ The method is tested in real image sequences･

Chapter 6

We change the lnOdel of calnera trajectory into degree-n B-Spline Curve to discuss the
dynaITlic ITl111tipleview geoITletry.

Chapter 7

The mutual projection method is proposed to be applied to the multiple view geolnetry
in space-time, which makes it possible to derive InOre Stable results on multiple view



geolnetry With much less corresponding points･ The method is tested in real image

Seq11enCeS･

Chapter 8

The conclusion is given, Which reviews what has been learned from this work, describes

some natural extension of it, and presents afinal sulnlnary and futllre research topics･



Chapter 2

Multiple View Geometry

In this chapter, we will review the traditionalmtlltiple view geometry: the epipolar

geometry of two camera5, the trifocalgeometry of three cameras and the quadrifocal

geometry of follr Views.

2.1 Epipolar Geometry

Fig11re 2･1: A 3D point X is projected to two views
as land x′ respectively.

Firstl.y, we consider the relationship that holds betweell the cooI･dinates of a point

seen in two separateviews･ Let land x'be a pair Of corresponding points which are

the images of the same point X in space as seeninthe two separate views as shown in

Fig-ュre 2･11 We represent the two camera matrices by A and B. The projection from

space to image can now be expressed as kx - AX and k′x'- BX where k and k'

are two undetermincd constantsI And we denote the i-th row of the matrix A by at,

and similarly the i-th row of tile matrix a by bi. wealso write x
- [∬1,x2,iC3]Tand
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Ⅹ′ - 【.7:'1,x′2,

;r′3]T.
That pair of eqllations may be written down as one eq11ation‥

alこrl

a2
.7:2

a3
.T3

bl £/1

b2 二r招

b3
.T/3

[_-xk]- 0 (2･1)

This is a 6 × 6 set of eqllations which by hypothesis has a non-zero sollltion, the

vector [ⅩT,-k, -k′]T.
It follows that the Inatrix of coefhcients in (2.1)InllSt have zero

deterI-1inant･ It will be seen that this condition leads to a bilinear relationship between

the entries of the vectors x and x'expressed by the fundamental Inatrix F･ We will

now look specifically at the form of this relationship.

Consider the matrix appe.aring in､(2･1)･Denote it by M: The determinant of M

may be written as an expresslOn in terms Qf the qllantities 'rt and ･T'i･ Notice that the

entries xi and x/i appear in only two colllmnS Of M･ This ilnplies that the deterlninant

of M may be expressed as a quadratic expression in terms of the xi and I/i･ In fact,

since all the entries二ri appear in the salne COlumn, there can be no terlnS Of the forln

xixj or I/i;r/j･ Brieny, in terlnS Of the xi and I/i, the deterlninant of M is a bilinear

expression･ The fact that the determinant is zero may be written as an equation

xix'3'Fi,･
- 0 (2.2)

where F is a 6 × 6 matrix, the fundamental Inatrix. A way of writing the expression
for F makes use of the tensor E,st aS follows:

Fij - EipqEj,s det

aP

aq

bγ

bs

(2･3)

Tensor E,st represents a Sign based on even and odd perlnutation from (r,占,i)to

(1,2, 3) as follows:

unless r,s and i are distinct

if rst is an even perlnutation of 123

ifrst is an odd permutation of 123

(2.4)

2.2 Three View Geometry

The deterlninant lnethod of deriving the fundamental matrix can be llSed to derive

relationships between the coordillateS Of points seen in three views. This analysts

results in a formula for the trifocal tensor. Unlike the fundalnental matrix, the trifocal



8

Fig11re 212: A 3D point X is projected to threeviews as x, Ⅹ'and x′′ respectively.

tensor
relates both lines and points in the three images. We begin by descrit)illg the

relationships for corresponding poilltS.

CoIISider a point correspondence across three views: ∬i - x′i - E′′i as shownin

Figllre 2.2.Let the third camera matrix be C■alld let ci be its i-th row. Analogous to

(211),we can write an eqllation describing the projection of a point X into the three
images as

(2･5)

The leftmost matrix, M, has 9 rows and 7 colllllmS. From the existence of a sollltion

to this set of eqllations, we deduce that its rank must be at most 6. Hence any 7 × 7

minor has Zero determinant. This factgives rise to the trilinear relationships that hold

between the coordinates of the points xl, ;rh fuld `r/h･

There are essentially
two diqerent types of 7

× 7 Ininors of M. h choosing 7 rows

of M, only the case where three rows from one camera ma′trixand two rows from each

of the two others is meaningful, since the other case is that one of the camera matrices

only colltribllteS One row, Which leads to the biLinearrelationship expressed by the

fundamentalmatrix, as discllSSed in section 2.1. Tllen, We have the following trilinear

relat iomship :

Rもx''ヱ′′kejquEk,v7;qr
- Ouv (2.6)

where Wand v are free indices corresponding to the rows omitted from the matrices B

and
C,
and Tqr is the trifocaltensor and has the following form:

7;qr- film det

aJ

am

bq

cr

(2･7)
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Unlike the fundamentalmatrix, the trifocal tensor relates both lines and points in

the three images, which are stlmmarized here:

山/i lLIEjqu7;qr
xi LLIL17;qr

lpl;lLIEPiw7;qr

2･3 fbur View Geometry

- Ou

= 0

= Ow

Figllre 2･3･･ A 3D point X is projected tofollr Views
a5 X. X′, X′′ and x′′'_respectively.

Simi1ar argllmentS WOrk in the case of four views. Once more,
consider a point

correspondence across 4 views･･ xi
- x佃-エ//i - xnh as shown in Figure 213･ With

camera matrices A, B, C and D. the projection equations may be written as

A 冗

B x/

C x//

D x///

(2.ll)

Since tllis equation has a sollltion, the lnatrix M on the left ha5 rank at most

7, and soal1 8 × 8 determinants are zero･Asinthe trilinear ea5e, any determinant

containing Only one row from one of the camera matrices glVeS rise to a trilillear Or

bilinear relation between the remainlng Views. A different case occurs when we consider

8 × 8 determinants containl皿g two rows from eadl Of the camera matrices. Such a

determinant leads to a new quadrilinear relationship of theforln

EiE/jx′′k;r′′′'Eipwfjq3Ek,yelsz QW9 - ow3yZ (2.12)
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Figure 2･4: A line-1ine11ille-1illeCOrreSpOndence 1 ←→ 1′‥ 1′′- l′′′involvlngfollr images

may beinterpreted as: the follr lines backTprOject to planes tha･t meet in a point in

SpaCe･

where each choice of the free variables IJ･,.r† y and 2･ glVeS a different eqllation, and tile

4-dimensional quadrifocal
teIISOr QPqrS is defilled by

Q押rS - det

ap

bq

cr

ds

(2･13)

As in the case of tile trifocal
tellSOr, there arealso relations between lines and points

il一the case of t.he follr-view tellSOr:

xi x'j xJJk l:′EipwE]qごe k,y QPqr8

1ri ir1'1L'lご′Eipu,
E,pqx QTqrS

irilLl;'lご′Eipw
Q耶

IpLLl;'L:′QPqrS

- Owry

- Owx

- Ou,

= 0.

(2･14)

(2･15)

(2･16)

(2･17)

2A Intersect.ions of Four Planes

The Inulti-view Censors may begiven a different derivation, which sheds a little more

light on their meal11ng･ In this interpretation, the basic geoITletric property is the

intersection of four planesI Fo-1r pla･nes illSPaCewill generally llOt lneet in a coll皿On

point. A necessary and s11氏ciellt CO11ditio11 for thelTl
tO do so is that tlle detenllinaJlt

of the 4 × 4 Inatrix formed丘.om the vectors represelltillg the planes sho111d vat.ユish.

Il】this sectioll Only we shall represellt the deterI血Iallt Of a 4
× 4 ma.trix witll rows

a. b, c and d by a ∧ b ∧ c^ d. In a rr10re genera-I collteXt, t･he symbol ∧ represents
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Figure 2･5: A point-line-line correspondence x - I'- 1//involving three images may

be interpreted as followsI Two arbitrary lines?re chosen
to pass throughthe point x

in the first image･ The four Lines then back-project to plalleS that meet in a point in

SpaCe･

the meet (orintersection)operator in the dollblealgebra. However, for the presellt

pllrPOSeS the reader need only consider it as a shorthand for the determinant.

We startwith the qlladrifocaltensor for which the derivation is easiest. Consider

6o11r lines 1, 1/,1//and 1/"inimages formed from four ca皿era5 With camera matrices A,

B, C and D･ The baJ:k projectiollOfa line I throllghcamera A is written as the plane
Lia81 The condition that these follr planes are coincident shown as Figllre 2.4 may be

written as

(lpaP)∧ (I;bq)∧ (LLIcr)∧ (I:"dB)- 0･ (2.18)

However, since the determinant is linear in each row, this may be written aB

o - lpILIL'l:I(aP∧ bq ∧ cr ∧ d8)dgflpI;lilt:'Q-s (2.19)

This corresponds to the de血ition (2･13)and lille relation (2.17)for the quadrifocal
tensor･ The basic geometric property is the intersection of the follr planes in space.

Trifocaltensor derivation. Consider now a point-line-line relationship xi ‥

I;‥ Lg,for threeviews and let lLand lq2be two linesinthe丘rst image that pass

throllghthe image point x. The planes back-projected丘･om thefollr lines meet in a

point (seeFig-1re 2･5).So we can write:

lLllStl;lil(a'∧am ∧ bq ∧
cr)

- 0. (2.20)

The next step is all algebraic trick-to mllltiply this eqllation by the EilTneilm, Which

is a scalar vallle. The restllt after regrouplllg is

(l111aLEum)l;I;'Eilm(al∧ a'n ^ bq ∧
c')

- 0･ (2･21)
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Figllre 2･6: A poillt･-pOillt COrreSpOndence x -
x'involves

two ilnageS
Wllell two ar-

bitrary lirleS a･re Chosen to pass thro11ght･11epoint x illt･he丘rst image alld ot･her two

al.bit･rary li=leS are Chosen to pass throughthe point x′ il一the second ilnage. The follr

lilleSt･hell back-proJeCt t･O
Planes that meet ill a pOillt illSpace.

Now t･he expressioll l[1LZt(itmis simpLLY the cross-prod､ユCt Of the two lines ll alld 12.
ill0tller WOrds t･IleirillterSeCtion poillt X. Th11S丘na11y we ca･11 Write

o -
J,iL;lil(亡um(a[

∧ a- ∧ bq ∧
cr))
dgf.rllLl;'7;qr (2.22)

which a･re tile definition (2･7)a･nd basic incidence relatioll (2.9)for the trifocal tellSOr.

nlnda皿entalmatriⅩ. We cal一 derive the fllndalnelltal lllatrix in t.he salne ma.Ⅰト

ner･ Given a corl.eSpOlldence x ‥ Ⅹ′ select pairs of lines l去a･ndl吉passlngt･hrollghx,
and l.Lland l㌘passlng thro11ghⅩ′.Tlle back-projected plalleS all meet il一a. pOillt a･S
Figllre 2.6, so we write

liLq21ニ1E?(aP∧ aq ∧ br ∧ bB) - 0･ (2･23)

Multiplying b.y (E叫=ipq)(Ejrs亡],8)a一l(1proceedil-g aS before lea･ds to the coplaI-a･rit･y

coIIStraint.

o -

･L･i.,,Jj(E加亡j,s(aP
∧ aq ∧ br ∧ bs))

wllich call be coulPared with (213)･

(2.24)

2.5 Summary

hl tllis chaptel∴ We il-trO〔l11Ce〔1t′llem111tiple view geolllet･rLY for two. three alld follr

views respectively. alld allalvsed the r11Ildal11ellta･1projective relatiollS
over lllllltiple

views arise fl.Om t･11e
illterSeCtiol1

0f lilleSa･Il(1pla･11eS. TlleSe illterSeCtioll properties a･11e
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represented by the vanishing of deterlninants formed from the calnera matrices of the

views. The fundamental Inatrix, the trifocal tensor and the quadrifocal tensor arise

naturally froln these deterlninants as the multiple view
tensors. Here, we glVe InOre

general properties of the Inultiple view geolnetry for readers
to see
why the Inultilinear

relationship is llp tO 4 views.

Wefirst consider a point X
- [Xl,x2,x3,x4]T in the 3D space and it is projected

to a point x
- [xl,x2,x3]Tin the 2D spac9. Then, the projection from X to x can be

described as follows:

lx=PX

where P denotes the 3 x 4 camera matrix and has ll degrees of freedoln.

Froln (2.25),we have the following equation for N calneraS:

P x 0 0

P/ 0 Ⅹ/ 0

P// 0 0 Ⅹ//

0

0

0

Ⅹ

A

A/

A//

0

0

0

(2.25)

(2.26)

where, the leftlnOSt matrix M in (2･26)is 3N x (N+4), and the (N+4) x (N+4)

minors Q of M constitute Inllltilinear relationships as follows:

detQ - 0･ (2.27)

We can choose any N +4 rows froln M to constitute Q, but we have to take at
least 2 rows froln each calnera for deriving Ineanlngful N view relationships. Thus,

the followlng condition lnuSt hold for defining Inultilinear relationships for N view

geoITletry:

2〃≦〃+4. (2･28)

Thus, we find that the multilinear relationship for 4 views is the InaXilnal linear rela-

tionship.

The geometric DOF of N calneraS is llN - 15, since each camera has ll DOF and

these N calneraS are in a
single3D projective space whose

DOF is 15. Therefore, the

DOF of bifocal, trifocal and qlladrifocal tensor is 7, 18 and 29 respectively.

The bilinear, trilinear and qlladrilinear relationship have been derived and have the

followlng forlnS:

∬i･T/3Fij
- 0

.Ti;r'jx′′k亡]quEk,vてqr
- Ouv

xiJ:'j;r//k;r///lEipwEjqxEk,yEIszQPqrS
- Owxyz
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If we have N corresponding points in two, three and four views, the multilinear relation-

shipsgives
us N, 9N and 81N equations respectively, bllt Only N, 4N and 16N -NC2

of them are linearly independent･ On the other hand, Fij, Tqr and QPqrS has 9, 27 and
81 entries respectively, bllt except a SCale aⅢ1big11ity, they has 8, 26 and 80丘･ee paraIIl-

eters respectively･ Thus, Ininimuln Of 8, 7 and 6 corresponding points are required to

compute the Inultifocal tensors linearly.



Chapter 3

Dynamic､ Multiple View Geometry

3.1 CameraTrajectory Modeled by Degree-n Bezier

Curve

The traditional multiple view geometry as introduced in Chapter 2 is limited for de-

scribing the case where enoughnumber of corresponding points are visible froln a Static

configuration of multiple cameras･ In this chapter, we consider the multiple view ge-

olnetry ln a dynamic environment, in which the point motion in 3D space is non-rigid
and the camera trajectory lS modeled by the degree-n Bezier cllrVe.

A Bezier curve is a parametric curve frequently used in colnPuter graPhics and

related 丘elds. In vector graphics, Bezier cllrVeS are llSed to IIIOdel sIT100tb cllrVeS.

Bezier cllrVeS are also llSed in anilnation as a tool to control motion; Degree-r7, Bezier

cllrVe is defined as follows:

n

B-∑bi,n(i)Gi, t∈[0,1] (3･1)
i=O

where
Gi is the ith control point and the polynomials bi,n(i)known as Bernstein basis

polynolnials of degree rl, is written as:

bi,n(i) - (
rill

)ti(1-i)n-i
(/I_,:I)

n,12

ti∑
j-0
(
rl/-i

n-i-J )(-i)n-ill

書(川n;i)(-1)n-i-jtn-i
n-i

∑c(n,i,i)tn-i
i-0

(3･2)
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Here, (?)is the binomial coe氏cient and has the alternative notation,
nCi -

n!

i!(n-i)!'

and C(n, i,i)denotes the following function:

c(n,i,i)- (
rib

)(.n;i)(-1)n-i-j

(3･3)

(3･4)

Suppose T denotes time and Ta represents the total tilne Of the calnera motion. Then,

the relationship among paralneter i, time T and total tilne Ta can be described like

this:

t- ; (3･5)

Then, Bezier cllrVe B which we utilize to InOdel the trajectory of camera InOtion can

be rewritten as follows:

n

B - ∑bi,n(i)Gi
i=O

n n-i

- ∑Gi∑c(n,i,i)tn-i
i-0 i-0

- [Go Gl

= GAE

Tn

Tnll

1

Gn]A

tn

tn-1

1

(3･6)

G - [Go Gl

Aoo

AIO

A20

Aol

.･lll
A21

Ao2

A12

A22

Aon_1

Aln_1

0

Ano 0 0 0

Aon

O

0

0

where

Aij - C(rlJ,i,i),(i-0,-･,n, i-0,･･･,n-i),

E
1

dia･g[妄,軒,･-,1]･
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Consider a usual projective
camera

which projects points
in 3D to 2D images. The

Ⅲ10tions of a point in the 3D space can be represented by boIT10geneO11S COOrdinates,

X(T) - [X(T),Y(T),Z(T), 1]T. The motions are
projected

to ilnageS, and can be

observed as a set of points, Ⅹ(T)
- [.T(T),y(T),1]T.

Thus, point InOtions are projected
to the Bezier curve InOtion calnera aS follows:

lx(T) - P(X(T) - B) (3.7)

where P denotes a 3 × 4 projective
caIIlera Ⅲ1atrix, and入denotes a scalar which

represents a scale an.1biguity･ By substituting (3･6)into (3･7),we have the following

eqllatinos:

T

Tn

l

T)
■n

-1

n

-1

lx(T) - P(X(T)-GAE

Ⅹぐ
T

Tn

l

P[Ⅰ,-GAE]

1

X(T)

Y(T)
Z(T)
1

n-1

1

X(

y(
Z(

Tn

Tr7･-
1

1

(3･8)



18

where

Pα - P[Ⅰ,-GAE]
(3.9)

represents a 3 × (γけ5)Ⅲlatrix and P′ denotes a 3 × (†け4)extended caITlera
ITlatrix. The

(n+4)th colulnn Of P'is derived by =nerging the 4th colulnn and the (n+5)th collllnn
of Pa. We therefore find that, from (3.8),the projections of point motions to multiple
caⅢ1eraS With arbitrary Ⅱ10tions can be described by the Ⅲ1111tilinearrelationship lュnder

the projection
froⅡ1 (γけ3)Dto 2D. In the next section, the geoⅡ1etry Of sllCb projections

will
be analyzed in more detail.

3.2 Projective Projections from (n+3)D to 2D

We first consider a projection
from (rl/+ 3)D space to 2D space･ Let X - [X,Y, Z,Tn,

Tn-1, -

, 1]T be the homogeneollS coordinates of a (rlJ+ 3)D space point projected
to a point in the 2D space, whose boll10gelleO11S coordinates are represented by x

-

[xl,.r2,x3]T.Then, the extended a氏ne projection from X to x can be described as

follows:

Ⅹ～PX (3.10)

where (-) denotes equality llP tO a scale, and P denotes the following 3 x (n + 4)
matrix:

Pl(n+4)

P2(n+4)

P3(n+4) ] (3･11)

From (3･11),we find that the extended projective camera, P, has 3 x (n+4) - 1 -

3n + ll DOF except a scale･ In the next section, we consider the dynalnic multiple

view geoITletry Of the extended projective caITleraS.

3･3 (n + 3)-Dimension Multiple View Geometry

3.3.1 Multilinear Relationships

Froln (3･10),we have the following equation for K extended projective cameras:

P x 0 0

P/ 0 Ⅹ/ o

P// 0 0 Ⅹ//

0

0

0

Ⅹ

A

A/

A//

0

0

0 (3･12)

where, the leftmost matrix, M, in (3･12)is 3K x (K+n+4)･ From the existence ofa

sollltion to this set of eqllations, we dedllCe that its rank lnllSt be at most K + rlJ + 3.

ヽ
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Hence any (〟+γけ4) × (〟+†け4) Ⅲ1inors Q of M has zero deterIIlinant, that arises
the constitute Inultilinear relationships under the extended projection as follows:

detQ - 0･ (3.13)

We can choose any K + r7J + 4 rows from M to constitllte Q, bllt We have to take

at least 2 rows from each camera for deriving
m?ningful

K view relationships (note,

each camera has 3 rows in M). Thus, the.followlng inequality must hold for defining

multilinear relationships for K view geometry in the (n + 3)D space:

K+n+4>2K (3･14)

Thus, we find that, the m111tilinear relationship for n + 4 views is the InaXimal linear

relationship in the (γけ3)D space.

3.3.2 Counting Arguments

We next consider theminimum number of points reqllired for computing the Inultifocal

tensors･ The geometric DOF S of K extended projective cameras is as follows:

S- (3n+ll)K-(n+4)2+1, (3.15)

sラnceeach extended projective
camera has (3n+ ll) DOF and these K cameras are.in a

slngle (n+3)D projective space whose DOF is (rl/+4)2
- 1. Meanwhile, if we are glVen

M points in the (n + 3)D space, and let them be?rojectedto K cameras defined in

(3.10).Then, we derive 2〟〟 Ⅱ1eaS11reITlentS丘･oIT1 1I11ageS, While we have to coⅢ1p11te

(n+ 3)M + S components for fixing all the geometry in the (n + 3)D･space.ThllS, the
followlng condition InllSt hold for colnPllting the multifocal tensors from ilnageS:

2MK≧ (n+3)M+S.

Then, we have the followlng Inequality:

〟≧
2K-n-3

(3･16)

(3.17)

S
ThllS, We find that lninilnllIn Of元〒正喜pOints are reqllired to colnpute ln111tifocal

tensors in dynamic mllltiple view geometry. Theminimuln number of points required

in the cases of 3D, 4D, 5D and 6D ITl111tipleview geoITletry are illllStrated in Table 3.1.

3A Dynamic Configurations for Dynamic Multiple

View Geometry
′

In ollr dynamic Inultiple view geometry theory, it has different dynamic configllrations

in different dilnenSion space･ We list several typical and basic exalnPles of dynamic

con丘g11rations to deIT10nStrate this property.
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Table 3.1: The lninimum nllmber of points reqllired for computing the multifocal

tensorswith l10n-lil-ear method ill(n + 3)-Dimension multiple view geometry.

3D 7 6 6

4D 9 8 8

5D 16 ll 10 10

6D 16 13 12 12

3.4.1 Camera Motion Following a Degree-0 Be2:ier Curve

Figllre 3.1: Camera trajectory. Gi denotes the ith col】trOI point of the Bezier cllrVe.

We Arst consider the case of degree-0 Bezier cllrVe (rl- 0)･ By sllbstitute rl - 0

illtO (3.1).wefirld that the camera motion can be represellted as follows:

O

B - ∑bi,0(i)Gi
i-0

- bo,o(りGo
- Go (3･18)

Illthis case, the camera is not moving but static as shown in Figllre 3,1 which is a special

case alld jllStCOincides witll the traditiollal ITlllltipleview geollletry a･S introdllCed in

Chapter 2. Therefore, ollr dyllamic multipleview geometry theory cal一 also be llSed
to

describe the case of the traditionalrnultiple view geometry.
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Figure 312: Camera trajectory.Gi denotes the ith control poht of the Be21ier cllrVe.

3･4･2 Camera Motion Following a Degree-I Be2;ier Curve

When the camera movesfollowlng a degree1-1 Bezier curve, the motions of camera is

written like tllis:

1

∑bi,1(i)Gi
i=O

bo,1(t)Go+ bl,1(i)Gl

(1
-i)Go+tGl (3.19)

The trajectory of camera is a line which goes throughGo and Gl aS Shown il一Figure 3.2,

that means the ca･meras are translational･ The dyna.mic mllltiple view geometry de丘ned

here call repl･eSelltS tlle relatiollShip alnOng Several translatiollal motion camera乱This

casewill be analyzed in depth in Chapter 4.

3.4.3 Camera Motion Following a Degree-2 Bezier Curve

If the camera is moving following a Degree-2 Bezier curve:

2

I bi,2(i)Gi
i-0

bo,2(i)Go+ bl.2(I)Gl+ b2,2(i)G2

(1-i)2Go+2(1
-t)Gl+t2G2 (3･20)

as
shownin(3.20) and

Fig-ュre 3.3, the calnera lllOtioll is a quadratic cl.1rVe. The

geometry a1710ng SllCh cllrVilinear motion ca･meras canalso be described by tlle dynamic

lnultiple view geometry.
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●Gl

Figllre 3･3: Calnera trajectory.Gi denotes the it,h control point of the Bezier cllrVe.

●Gl

●G二

Figllre 3･4: Ca･mera trajectory.Gi denotes the ith colltrOl poillt Of the Bezier curve.

3.4A Camera Motion Following a Degree-3 Bezier Curve

We next consider the case where n
- 3･ By sllbstitllting n

- 3 into (3.1),we have tlle
followlng Camera mOtiollS:

B

3

∑bi,3(i)Gi
i-0

bo,3(I)Go+ bl,3(t)Gl+ b2,3(t)G2+ b3,3(()G3

(1 - i)3Go+3(1 -I)2tGl +3(1 - i)t2G2
+t3G3 (3.21)

As
shown in (3･21)and Figllre 3A, the calnera IIIOtioll is cllbic cllrVe. This casewill

be studied in Chapter 5 extensively.

Evell ifthe cameras Ill-dergo more complex cllrVilinear motion, the dyllalllic ln111tiple

view geolnetry is still competent.
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3.5 Summary

This chapter introdllCed a newly de丘ned ITl111tipleview geoITletry naITled dynarllic Ⅲ1111-

tiple view geometry, ln Which points in 3D undergo non-rigid lnOtion and the cameras

do arbitrary motions lnOdeled by Degree-n Bezier curve. We found that the projective

projections of non-rigid 3D =notion
to Degree-n Bezier curve can be represented by a

projection
from (n+ 3)D to 2D･ If 3D poipt motions are tracked by =nultiple arbitrary

Ⅱ10tion caITleraS, the Ⅱ1111tilinearrelationship lュnder the projection丘･oITl(γけ3)Dto 2D
can be derived･ Then, we analyzed the projective projections

froln (r1,+ 3)D to 2D and
dedllCed the degree of freedoln Of the extended projective camera. (n + 3)-Dimension
Ⅲl111tipleview geoⅢ1etry Involving several sllCb extended cameras and a

dynaITlic scene

was also addressed･ Multilinear relationships and the InaXilnal linear relationship in

the (γけ3)D space were derive丘･oITl tlle IIl111tifbcalpoint relations. Finally, collnting
arguments were executed･ Froln the geolnetric degree of freedoln Of extended projective
ca.m.eras and the degree of freedom of the points in (n + 3)D and all the images, the
mlnllnllln nulnber of points reqllired for computing the multifocal tensors were derived.



Chapter 4

Dynamic Multiple View Geometry

in 4D Space

4.1 Dynamic Multiple Vi'ew Geometry for Multiple

Translational Cameras

When cameras undergo Degreell Bezier cllrVeS aS Shown in Figure 4.1, the lnOtion of

the callleraS are tranSlational and the relationship among these caIIleraS is jllStthe
case of the dynamic Inultiple view geometry in 4D spase as discllSSed in the forlner

chapter. We next show that this camera model can be used for describing non-rigid

object motions ･viewed
froln Inultiple cameras with translational motions of constant

speed.

Substituting n - 1 into (3.6),we have the following eqllation of Degree-1 Bezier
CllrVe:

B

-GAE[T]
- [Go
Gl][-llJ[書?][T]

(4･1)

where, Gi denotes the ith control point of the Bezier curve, Ta is the total tilne Of the

camera InOtion and T denotes time.

Let llS COnSider a 11S11alprojective
caⅡ1era Which projectspoints

in 3D to 2D iIIlageS.

If the InOtions of the projective
camera are translational constrained by Degree-1 Bezier
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curve,
non-rigid InOtions X(T) are projected to i=nages x(T)

as･･

lx(T) P(X(T) -B)

P(Ⅹ(T) - GAE

P[Ⅰ,TGAE]

X(T)

Y(T)
Z(T)
T

I.i

｢']
[

[xiT
(4･2)

where P is a 3 x 4 projection matrix of
a usual ca=nera, and X(T), Y(T), Z(T) denote

coordinates of a 3D point at time T,

G

A

E

- [Go Gl]
- [-.1去]

-[i;]

(4.3)

(4.4)

(4･5)

and, P′ is a 3 × 5 projection matrix of
an extended projective

caITlera. In the next

sections, we will describe the dynaⅢ1ic IIl111tipleview geoⅡ1etry in 4D space.

4.2 Projective Projections丘･om 4D to 2D

We first consider projective projections
from 4D space to 2D space. This projection

isused to describe the relationship between the real space-tilne and 2D ilnageS, and

for analyzlng the Inultiple view geolnetry under space-time projections. Let X
-

[xl,x2, x3, x4, x5]T be the holnOgeneOuS coordinates of a 4D space point projected
to a point in the 2D space, whose hoIIIOgeneOllS COOrdinates are represented by x

-

[xl,.T2,こr3]T.Then,the extended projectiveprojection froln X to x can be described as
follows:

Ⅹ - PX (4.6)

where (-) denotes equality up to a scale, and P denotes the following 3 x 5 Inatrix:

P=

rnll rn12 rn13 rn14 rn15

rn21 rn22 rn23 rn24 rn25

rn31 rn32 rn33 rn34 rn35

(4･7)

From (4･6),we find that the extended projective camera, P, has 14 DOF･ In the next

section, we consider the IIl111tipleview geoⅢ1etry Of the extended projective caⅡ1eraS.
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Figllre 4･1: A Ⅲ10Ving point in 3D space and its projections in three translational

projective
calneraS. The multifocal tensor defined under space-time projections

can

describe the relationship between these血1age projections.

4･3 Projective Multiple View Geometry from 4D

to2D

Froln (4･6),we have the following equation for N extended projective cameras:

P x 0 0

P/ 0 Ⅹ/ o

P// 0 0 Ⅹ//

0

0

0

Ⅹ

A

A/

A//

0

0

0 (4･8)

where, the leftITIOSt I-1atrix, M, in (4･8)is 3Ⅳ× (5+〟),and the (5+〟) × (5十〃)Ⅱ1inors
Q of M constitllte IT1111tilinearrelatiollSbips lュnder the extended projective projection
as follows:

detQ - 0 (4.9)

We can
cllOOSe any 5十Ⅳ rows丘･olll M to constitllte Q, bllt We have to take at

least 2 rows from each calnera for deriving meaningfulN view relationships (note,
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Table 4.1: The number of corresponding points required for computing multifocal

tensors in three, four and five views with nonlinear method and linear Inethod.

γlews nonlinearⅠT10thod 1inearⅠ丁10tbod

three 9 13

follr 8 10

丘Ve 8 9

each calnera has 3 rows in M). Thus, the following condition must hold for defining

multilinear relationships for N view geometry in t･he 4D space.･

5+Ⅳ≧ 2Ⅳ (4･10)

Thus, we find that, unlike the traditional mllltiple view geolnetry, the Inllltilinear

relationship for 5 views is the lnaXilnal linear relationship in the 4D space.

We next consider theminilnllm nulnber of points required for compllting the mul-

tifocal tensors. The geolnetric DOF of N extended projective
cameras is 14N - 24,

since each extended projective
caITlera has 14 DOF and these 〟 caIIleraS are in a slngle

4D
projective space whose

DOF is 24. Meanwhile, if we are given M points in the 4D

space, and let these points be projected to 〟 projectivecaITleraS de丘ned in (4･6)･Then,

we derive 2MN measurelnentS froln ilnageS, While we have to compute 14N - 24+4M

components for fixing all the geolnetry in the 4D space. ThllS, the following condition

InuSt hold for computing the multifocal tensors from ilnageS:

2MN ～ 14N-24+4M (4.ll)

From (4･11),we find that minim.umof 9, 8, 8 points are required to compute multifocal

tensors in three, follr and five vleWS (seeTable 4･1)･

4.3.1 Three View Geometry

We next introduce the Inultiple view geolnetry Of three extended projective
cameras.

For three views, the square sllbmatrix Q is 8 x8. Froln det Q - 0, we have the following

trilinear relationship llnder extended projective
caIIlera
projections:

･rlx'31･T′′たEk,v7;,T
- Ov (4･12)

where ei3･k denotes a tensor, which represents
a sign based on perlnlltation froln (i,j,k)

to (1,2,3)･T,T is the trifocal tensor for the extended cameras and has the following

brⅡ1:

T,T- EilmEjqu det

al

am

bq

bu

cγ

(4.13)
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Table 4.2: Trilinear relations between point and line coordinates in three views. The

丘nal col11ⅠIlndenotes the nllmber of linearly independent eqllations.

correspondence relation # of eqllations

three points 'rlx/3.I//

two points, one line xi･T'31;'T,r
- 0

one point, two lines xilLl.;'EqjtT,T
- Ot

three lines lp lL'EPisEqj
i

where at denotes the ith row of P, bl denotes the ith row of P′ and ct denotes the ith

row of P′′respectively･ The trifocal tensor T,r is 3 × 3 × 3 and has 27 entries･ If the

extended calneraS are PrOjectiveas shown in (4.6),we have only 26 free parameters in

T,rexcept a scaleambiguity･ On the other hand, (4･12)provides llS 3 linear eqllations
on A,T,bllt Only 2 of theln are linearly independent･ Thus, at least 13 corresponding

points are reqllired to colnPllte T,rfrom images linearly･

Why only 2 eqllations of (4.12)are linearly independent? Let llS COnSider it･

Let the eqllaio?s
in (4･12)be written as At - 0 where A is a 3 × 27 ｡1atrix and t

is a vector containlng the entries of 7;,r･Then the lnatrix A may be written as:

A(v)(f'･)- XIx'3'x′′たEた,v (4･14)

where (v)indexes the row and (ij)index the column of A. We may write.7:′′kek,v- S,v.
Then the matrix A in (4.14)may be written as follows:

A(v)(i.3･)- Xix'3's,v･ (4･15)

It isknown that a 3 x 3 skew-symlnetric Inatrix has two equal non-zero slngular

vallleS. Since I//たEk,v
-
-i://kEkv, We See that S,v is a 3 × 3 skew-sylnmetric matrix, and

hence has two eqllal singular values. Therefore, by uslng the SVD, we have:

s,v - uvaDabV,b (4.16)

with tenosr notation. The Inatrix Dab is
diagonal with two equal non-zero diagonal

entries. By s11bstit11ting (4.16)into (4･15),we have

A(v)(至･j)- XtX131uvaDabVrb･

Let us consider a 3 x 27 Inatrix V/ as follows:

v('f;)
-

･T甘x'jv,b･

Then (4･17)can be written as:

A(v)(i.j)- UvaDabV('f;)･

(4･17)

(4･18)

(4･19)
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(a)Three poi=ltS

ヱトー-～ c.

(b) Two points and olle line

(c)One point and two lines

(d) Tllree lines

Figllre 4.2.･ nilinear relations amollg points and lines.
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since Vrb is orthogonal, V('i9)is also orthogonal･ Hence, (4･19)is the SVD of the matrix
A･ It Ⅲ1eanS that A has rank 2, and thllS, Only 2 eqllations of (4.12)are linearly

independent.

Up to now, we considered the trilinear relationship of points in three views. How-

ever, we can also consider the trilinear constraints aⅢ10ng points and lines. The inci-

dence relations among points and lines are shown in Figure 4.2. A complete set of the

trilinear equations among points and lines aregiven
in Table 4.2. All of these equations

are linear in the entries of the trifocal tensor T,r･

4.3.2 Four View Geometry

We next introdllCe the Inllltiple view geometry of four extended projective cameras.

The qlladrilinear relationship under extended porjectiveprojection is:

xix'j･T′′k･T′′'sE]luEkmvEsnwQ皇mn
- ouvw

Q!mn is the qlladrifocal tensor whose form is described as:

Q…mn- eipq det

aP

aq

bJ

cm

dn･

(4.20)

(4･21)

where al, bl, ci and di denote the ith row of P, P/, P// and P/// respectively･ The

quadrifocal tensor Q!mn has 81 entries. Excluding a scaleambiguity,.it has 80 free

parameters･ Silnilar argllInentS in the three-view case hold here, and we can see that

27 linear equations are derived from (4･20)but only 8 of them are linearly independent.
Therefore, Ininimuln Of 10 corresponding points are reqllired to colnPute Q!mn from
iⅢ1ageS linearly.

The quadrilinear relationships involving the quadrifocal tensor are surnlnerized in

Table4.3.

4.3.3 Five View Geometry

Silnilarly, the five view geometry can also be derived for the extended projective
caln-

eras. The qllintilinear constraint is expressed as follows:

xtx'3 x′′kx′′′s.T′′′′tEilaE,.mbEkncEsfdEtge7almnfg
- oabcde (4.22 )

where 7almn/g is the qllintifocal tensor (fiveview tensor)whose forln is represented as

follows:

7almnfg = det

al

bm

cn

dJ

e9

(4･23)
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Table 4.3: Qlladrilinearrelations between point and line coordinates in follr Views. The

final column denotes the number of linearly independent equations.

correspondence relation # of eqllations
four points

three points, one line

two points, two lines

one point, three lines

follr lines

x"'sEjlu亡たmvesnw Q王
mn

- Ouvw 8

xix'3-x′′kl:'EjluEkmvQ皇mn- ouv

.Tix'3'l㌫g:′E,･luQ皇mn
- ou

;ril:lニg:′Q…mn
- 0

lkl;lu:'EkiwQ皇mn
- ow

Table 4.4: Qllintilinearrelations between point and line coordinates in丘ve views. The

final colllmn denotes the nulnber of linearly independent equations.

correspondence relation eq.
///sx///〟

Eila Ejmbe knees fdEtge 7a g-Oabcde 32

I
1

7;ltxx',I,7xx:,I;slI;,;I;I;?,;le?i?ajE7:mEbkE7kCnEcskdle:;9nf=g岩
･ri･T′ji:lプ′l;"′EilaEj,nb7almnfg- oat

xi l'ml:lプ′l;′′Eila7almnfg
- oa

lllLLl:l'f"lご′′7almnf9- 0

丘ve points

four points, one line

three points, two lines

two points, three lines

one point, four lines

five lines

I Oabcd 16

abc
8

4

2

1

where
at, bも,cl, di and ei denote the ith row of P, P/, P//, P/// and P//// respectively･

The qllintifocal tensor 7almnfg has 243 entries. If the extended cameras are
projective

as shown in (4.6),we have only 242 free parameters in 7almnf9 except a scale. On

the other hand, (4.22)provides TIS 243 linear eqllations on 7almnfg, bllt Only 32 of

tbeHl are linearly independent, that can be proved illthe saIIle ITlanller With the tbree-

view case. However, it tllrnS Ollt that there exists
a linear dependency between the

64 constraints obtained for two different corresponding points. Therefore, the set of

eqllations (4･22)derived from a set of 〟 general point correspondences across丘ve views

has rank 32N IJ;2.
Tlms for 8 points there are only 228 independent eqllations, which

are not enollghto solve
for 7almn/g. For N - 9 points, the rank is 32N -NC2

- 252,

and we have enollghequations
to solve for the 243 entries of 7almnfg linearly.

The number of corresponding points required for compllting Inultifocal tensors is

s11Ⅲ1Hlarized in Table 4.1. The qllintilinear relationships
are glVen in Table 4.4.
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4.4 Intersections of Five Hyperplanes

The multiple view tensors may be glVen a different derivation, that is the basic geo-

Ⅲ1etric property is the intersection of丘ve hyperplanes.

We start with the quintifocal tensor for which the derivation is easiest. Consider

five lines I, I/,lW
,
lW'and lWW in images formed from five cameras with calnera Inatrices

P, P′, P′′,P′′′and P"′′.The back projection of
a line 1 throllgb camera P is written

as the hyperplane llal, where
ai denotes the ith row of P･ The condition that these five

hyperplanes are coincident may be written
as

(llal)∧ (lLLbm)∧ (i:cn)∧ (lTdf)∧ (I;′′eg)- 0･ (4･24)

where b甘, cl, di and ei are ith row of P/, P//, P/" and P////. However, since the

determinant is linear in each row, (4･24)may be written as:

o - I,lLl:lrl;′′(al∧ b- ∧ cn ∧ df ∧
eg)dgflllLl:lTl;′′7al-nfg(4.25)

This corresponds to the definition (4･23)and five lines relation for the quintifocal
tensor. The basic geometric property is the intersection of the丘ve hyperplanes in 4D

SpaCe･

Quadrifocal tensor derivation. Consider now a point-line-line-line relationship

xi - I;- 1㌫- I:′,for four views and let lsl,lt2be two lines in the first ilnage that pass

throughthe ilnage point x. The hyperplanes back-projected from the five lines Ineet
in a point in 4D space. So we can write:

lsllt21;lュ∫:′(as∧ at ∧ bl ∧ cm ∧ dn) - 0. (4.26)

Next, multiply this equation by a scalar EistEist･ The result after regrollPlng is

(l三It2Eist)I;lュ∫:′Eist(aS∧ al ∧ bl ∧ cm ∧ dn) - 0. (4.27)

Now the expression lilt?亡istis silnply the cross-product of the two lines ll and 12, in

other words their intersection point x. Tb11S丘nally we can write

o -
xill'lニ～:I(fist(aS

∧ al ∧ bl ∧ cm ∧ dn))dgfxill'lニJ:′Q皇-n(4.28)

which are the definition (4･21)and a point-line-line-line relationship for the quadrifocal
tensor.

Trifocal tensor derivation. We can derive the trifocal tensor in the same Inanner.

Given a
correspondence

x - Ⅹ′ - 1′′select pairs of lines liand lq2passing thro11ghⅩ,
and I;1and I:2passlng throughx'. The back-projected planes all meet in a point, so
we write

lsllt21LllL21;I(as∧ al ∧ bu ∧ bv ∧
cr)

- 0. (4.29)

Multiplying by (EistEist)(EjuvEjuv)and proceeding as before leads to the coplanarity

constraint

o -

xi;r'3'l;I(Eist亡juv(as
∧ at ∧ bu ∧ bv ∧

cr))
dgfxi;r'jlL'T,T

which can be coITlpared with (4.13)･

(4･30)
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Figllre 4･3: Experilnental circllmStanCe. Three cameras are fixe(I oll t･11reeSlllgle a3(is

robots respectivelv
to capture the 3D motions.

4.5 Experiments

We lleXt･ Show t･he res111t･sof experiments. We first show the reslllts froln real
images

that the trifocal t･el-SOT for ext･ellded projective calneraS Can be compllted from illlage

lnOt･iollS Viewed froln arbitrary t･ranslatiolla･1 ca･111eraS, alld ca･11 be llSed for generatillg

the tllird view from t･he first view alld t･he secolld view of movlng Cameras. We next

evalllate the st･abilit･LYOf ext･racted trifocal tensors for ext･ende(I proJeCtiv-e cameras･

4.5.1 Real lmage Experiment

hl this sectioll, We SllOW the res111t･sfroln Smgle poillt motion and m111tiple poillt motion

experilnent･S･

The experil-1e11tal circlmlSta･IICe is showll aS Fig-Ire 4･3･ Three cameras (Sony DFW-

VL 500) are Bxed oll three single axis robots (Oriel-talMotor Elect･ric Actuat･or EZS6)

respectively to control t･he 3D lllOtioIIS Of cameras. These t上ll-eeCameras are trallSlating

with (liHerellt CO11Sta11t Speed alld diHerellt direct･ioll.

In the first experilnellt, We used tllree Calnera･S tO COmpllte trifocal tellSOrS betweell

these calneraS bLV llSlllg a Slllgle lllOVlllg pOillt il一the 3D space, SillCe m111tiple cameras

are (lvnamic, we can not compllte the traditional trifocal tensor of these calneraS froITl

a slllgle movll】g pOillt. Nolletheless we call COlnPllte the extellded trifbcal t･ensor and

call generat･e illlage lnOtiollS il一Olle Of thl･ee views from the otller
two Views. ln tllis

experilnellt We generat･ed ilnage lnOtiollS in caIllera 3 by uslllg llIlage mOt･io11S
ill Camera

1 and calnera
2･ Figure

Ll･4 (a), (b) and (c) sllOW image motioIIS Of a sillgle movil.1g

poillt in translational camera 1. calnera 2 alld camera 3 respectivel.v. The trifocal

tellSOr is compllted froln 13 point･s oll t･he illlage lnOt･iollS ill tllree Views.
TlleSe are

showll b.v greell POilltS ill (a). (b) a･Ild (c). The ext･racted t･rifoca-1t･ellSOr is llSed for
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(a)Camera 1 (b) Camera 2

(c)Camera 3

Figul､e i･4‥ Sillgle poillt lnOtioll eXpe血ent. (a),(b) alld (c) show
,ilnage

lnOtions of

a
sil1gleI)Oillt Viewed

fro171 Ca･1nera 1, 2 alld 3. Tile 13 greell pOilltS ln each ilrlage are

correspoll⊂1illg pOilltS llSe(1for co111P11ting t･he t･rifocal
tellSOr. Note tlla･tthese 3 ca･1neraS

are trallSlatlllg Witll differellt COnStallt Speed and diffel･ent
directioll.

generatlng llnage lnOt･iollS il一Calnera 3 froln ilTlage lllOtions ill Calllera 1 a･11d 2. The

white cul･Ve ill Fig-Ire Ll.5 (a) sllOWS ilnage lnOt･io11Sincal=lera 3 generated frolll the

ext-elided I.rifocal
tensor.

alld the black curve shows t･11ereal illlage l110tiol】SViewed frolII

calnera 3. As sllOWll ill Figllre 4･5 (a).t･11ege11el･ated image lnOt･iol-S almost recovered
the orlgllla･1complex

illlage l110t･ions evel】 ifthese 3 camera･s halve llnkl10Wn traIISlat･iollal

lnOtioIIS. To show tile advalltage Of the extellded trifocal tensor. we also sllOW iIIlage

motiollS gellel,ated frol工It･he traditiolla･1 trifocal
tellSOr, that is, trifocal t･ellSOr defined

for projectiollS FrolI1 3D spa･ce to 2D space. 7 r)oilltSt･akellfroln tlle fo上,mer 13 point･s are

llSed a･s correspolldillg pOillt･S ill tllree Views for complltillg the traditiollal proJeCtive

trifoca.1 tellSOr. The ima･ge lr10t･iollin camera 3 generated frolll tlle image l110tions
in

car[lera 1 al】d 2 bv llSlllg the extractecl t･raditiollal trifocal tensor is showll by white

cll,Ve ill Figll,e 4･･5 (b)･ A."howll ill Figl.re 4･5 (b).the gellerated image lnLofioll is

very diLrerellt frolll t･11ereal illlage lIIOtioll SllOWll hy black cllrVe flS We expected, alld
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Figure i.5: IITlage lllOtioll
in calnera 3 recovered froln the extellded tri6oca･1 tensol.

a･nd the traditiollal trifoca･1
te11SOr･ The white cllrVein(a) sl-ows ima･ge motions

recov-

ered froITl tlle eXtellded trifocal
t･ensor.

alld the blELCk ctlrVe Shows real image l110tiollS

observed ill Calnera 3･ (b) shows those recovered frolll the tra(1itiollal trifocal tellSOr.

The 13 black point･s in (a) an(I 7 black poilltS ill (b) show poilltS used for colnpllt･illg
the trifocal tellSOrS.

thllS We find tllat the traditiollal multiple view geometry ca11110t describe sllCh general

sit-1atio11S. While the proposed I71111tipleview geollletry Can aS Sl10Wll il一Figllre Ll･5 (a).
The res111ts from other 3 sillgle poillt mOtiollS are alsogivell･

hl Figllre 4･6. (aり,

(b?L)alld (c?:)sllOW three views of t･he 7-th motioll. The 13 greell pOilltS illeach image

are correspolldillg pOillt･S used
for colrlput･ing the trifocalt･ellSOr. Note that these 3

calneraS are t･rallSlating wit･lldifferent speed a･11(idifferellt directioll. The wllite cllrVe

ill((17')sl10WS ilTlage mOt･iollS I,eCOVered frolll tlle eXtenderl trifocal tensor ill Calllera 3,

and t･lleblack curve sllOWS real ilTla･ge lTIOtiollS Obsel･ved ill Camel･a 3. Tlle 13 hla･ck
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points in (di)show points used for computing the trifocal tensor.Aswe can see, the

trifocal tensor definedumder space-tilne PrOjective projections
can be derived froln

arbitrary slngle point也otions viewed丘･olll the 3 caIIleraS With arbitrary translational

motions, and they are practical for generating Images Of single point motions viewed
froln tranSlational cameras.

Next we show the reslllts fro=n multiple point lnOtions･ In Figllre 4･7, (ai),(bi)and
(ci)show three views of the ith InOtion. The green curve and the red cllrVe represent
two di鮎rent image motion. The 7 green points on the green cllrVe and the 6 red

points on the red curve in each image are corresponding points used for computing

the trifocal tensor. Note that these 3 cameras are translating with different speed and

different direction･ The white curve in (di)shows image motions recovered from the

extended trifocal tensor in calnera 3, and the black curve shows real image motions

observed in calnera 3･ The 13 black points in (di)show points llSed for computing the
trifocal tensor. According to these experilnentS, We found that the extended multifocal

tensors can be derived from
non-rigid object motions viewed

froln multiple cameras

with arbitrary translational motions, and they are llSeful for generating llnageS Of non-

rigidobject motions viewed from cameras with arbitrary translational InOtions.

4.5.2 Stability Evaluation

We next show the stability of extracted trifbcal tensors llnder space-time projections.
Figure 4.8 shows a 3D configuration of 3 movlng Cameras and a moving point. The

black points show the viewpoints of three cameras, Cl, C2 and C3, before translational

motions, and the white points show their viewpoints after the translational II10tions.

The translational InOtions of these three calneraS are different an'd llnknown. The

black cllrVe Shows a locllS Of a freely Ⅱ10Ving point. 臥)r evalllating the extracted

trifocal tensors, we computed reprojection
errors derived from the trifocal tensors.

The
reprojection

error is de丘ned as follows:

去皇d(-i,di)2 (4･31)
El--i!

where d(mi,血i)denotes a distance between a true point mi and a point血i recovered

froln the trifocal tensor.

We increased the nllmber of corresponding points llSed
for
compllting trifocal tensors

in three views丘･oITl 13 to 25, and evalllated the reprojection
errors. GallSSian noise of

standard deviation of 1 pixel is added to each iIIlage. Figllre 4.9 shows the relationship

between the nllITlber of corresponding points and the reprojection
errors. As we can

see, the stability is obviously llnPrOVed by uslng a few more points･than the minilnum

n11Ⅲ1ber of corresponding points.
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4.6 Summary

In this chapter, we analyzed multiple view geometry under projective projections
from

4D space to 2D space, and showed that it can represent m111tiple view geometry lュnder

space-time projections. In particular, we showed that multifocal tensors defined lln-

der space-time projective projections
can be comp11ted丘･om non-rigid object motions

viewed froln multiple cameras with arbitr?ry translational motions･ We also showed

that they are very useful for generating Images Of non-rigid InOtions viewed
from pro-

jective cameras with arbitrary translational motions. The method was ilnPlemented

and tested by llSlng real image sequences. The stability of extracted trifocal tensors

was also evalllated.



38

(al)Camera I

(bl) Camera 2

(cl)CaⅢ1era 3

(a2)Camera 1

(b2) Camera 2

(c2)Camera 3

(a3) Carnera 1

(b3) Camera 2

(c3)Calllera 3

･;;t
-;'';:i:i1:.T

(dl) (d2) (d3)

Figllre
⊥1･6:
Other 3

single poillt mOtioI- eXperimelltS･ (ai).(bi) a･nd (CIT)show tllree
views of the ith lnOtion. The 13 green points in ea･cll illlage are COrreSpOllding poilltS

tlSed for coITIPutlllg the trifocal
tensor. Note that these 3 calTleraS are trallSlatillg

with diffel'ent Speed alld differel-t directioll･ The whit･e curve ill (d7T)shows ilnage

motiollS recovered from t･he extended trifocal
tellSOr†

alld t･11eblack cllrVe SllOWS real

ilna･ge mOtiollS Observedincamera 3･ The 13 black points in (dりshow poilltS llSed for

colllpllting the t･rifocal
tensor.
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(al)CむIlera 1

(bl)Camera 2

(cl)Cal一-era 3

(a2)Camera 1

(b2) Camera 2

(c2)Camera 3

0~転 去㌻･壷
(dl) (d2)

(a3)Camera 1

(b3) Camera 2

(c3)Camera 3

(d3)

Fig-ire 4･7: Multiple point motion experime11tS･ (ai),(bi)alld (ci)show three views

of the ith l110tion, The green cllrVe and the red cllrVe represent two diffel･ent image

motion. The 7 green points on the green curve and the 6 red points oll the red cllrVe ill

each ilnage
a･re COrreSpOnding poilltS llSed for computing the trifocal tellSOr. Note that

these 3 cameras are tra･nslating with different speed and different direction. The white

cllrVe ill (d71)shows iulage InOtions recovered from the extended trifocal tensor, a･nd the
black cllrVe Shows real ilnage mOtiollS Observed in camera 3. The 13 black poilltS in

(di)show poilltS llSed for complュting the trifocal tensor･
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Figllre 4･8: Three translating caI‡leraS and a IIIOVlng point in the 3D space. The black

points show the viewpoints of three caⅢ1eraS before translational Ⅲ10tions, and the

white points show those after the translational IT10tions.

【pixel】
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Figllre 4･9: The relationship between the nlllnber of corresponding points used for

colnPllting trifocal tensors and the reprojection
errors.



Chapter 5

Dynamic Multiple View Geometry

in 6D Space

5.1 Dynamic Multiple View Geometry for Multiple

Curvilinear Motion Cameras

ln chapter 4, we considered the ITl111tipleview geoITletry Of ITl111tiple
caITleraS

With trans-

lational IT10tions. In this chapter, we extend the theory discllSSed in chapter 4, and

introdllCeS a Ⅱ1111tipleview geoITletry Of ITl111tiple caⅢleraS With arbitrary cllrVilinear

motions. The cllrVilinear motion means curved motion withollt rotation. The multiple

view geoⅢ1etry analyzed in this chapter enables llS tO de血e m111tilinear relationship

among lmage points derived丘･oITl nOn-rigid object Ⅲ10tions viewed血･oⅢ1 ITl111tiple
caIT1-

eras with arbitrary curvilinear InOtions as shown in Figllre 5.1. We show the new Inul-

tilinear relationship is useful for generating arbitrary view ilnageS and reconstructing

3D non-rigid object Ⅱ10tions viewed丘･om
caⅡ1eraS With arbitrary cllrVilinear motions.

The Illetbod is tested in real iITlage SeqllenCeS.

In this chapter, we
derive multiple view geometry under two

different camera mod-

els. One is an afRne camera model and the other is
a
projective InOdel. In

Section 5.2,

we show multiple view geometry of afRne cameras, and in Section 5.3, we introduce

the ITl111tipleview geoⅡ1etry Of projective
caITleraS.

5.2 Multiple View Geometry for AfBne Curvilinear

Motion Cameras

Letusconsider a
slngle InOVlng point

in the 3D space. If the multiple cameras are

stationary or translational, we can colnPllte the Inultifocal tensors with the Inethods

proposed in chapter 2 and chapter 3 to figure ollt the Inultiple view geometry･ How-

ever, ifthese calneraS have independent curvilinear lnOtions, the mentioned multifocal

tensors cannot be colnPuted from the image InOtion of the point. Therefore, we in this
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Figllre 5.1: A IIIOVing point in 3D space and its projections
in seven cllrVilinear motion

cameras. The Inultifocal tensor defined under projections
from P6 to p? can describe

the relationship aI110ng these iⅢ1age projections.

section show that if the camera motions are curvilinear as shown in Figure 5.1, the

Ⅲ1111tipleview geoITletry lュnder extended projections
can be coIIlpllted froⅡ1 the image

motion of the point, and they can be used to, for exalnPle, generate image motions

viewed froln arbitrary curvilinear motion cameras.

Consider a 11S11al afRne calnera Which projects points in 3D to 2D ilnageS. The

motions of a point in the 3D space can be represented by hoⅢ10geneO11S coordinates,

X(T) - [X(T),Y(T), Z(T), 1]T,where T denotes time. The InOtions are projected
to images, and can

be
observed as a set of points, Ⅹ(T)

- [x(T),y(T),1]T.Here,
we Inake llSe Of cubic Bezier curves to describe the arbitrary 3D motions of cameras

AX - [AX,AY, AZ,AW]T in homogeneollS COOrdinates in this paper. The camera

InOtion is relative to the calnera initial position, and hence its follrth entry is equal to

0, and thus it is represented as AX - [AX,AY,AZ,0]T. The cubic Bezier curve is
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△Ⅹ= GAE

T3
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G - [Go GI G2 G3],
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3 0
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1 0 0 0
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dia9[毒,音去,1]･

de丘ned as written in (3･6):

where,

(5.1)

(5･2)

(5.3)

Go, Gl, G2, G3 denote four control points and Ta is the total tilne Of camera's InOtion.

ThllS, point lnOtions are projected
to a氏ne calnera aS follows:

Pa(X(T)
- AXi)

Pa(X(T)
- GAE

Pα[Ⅰ,-GAE]

- Pα[Ⅰ,-GAE]
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Y(T)
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X(T)

Y(T)

Z(T)
1

T3

T2

T

l

X(T)

Y(T)
Z(T)
T3

T2

(5･4)

where P｡ denotes a 3 × 4 乱氏ne caⅡ1era matrix, whose third row is [0,0,0,1],and P♭

represents a 3 × 8 matrix･ In (5･4),P denotes a 3 × 7 extended anne camァramatrix,
whose third row is [0,0,0,0,0,0,1]･The 7th col11Ⅱ1n Of P is derived by Ⅱ1erglng the 4tb

column and the 8th colulnn Of Pb･ We therefore find that, from (5.4),the projections
of point motions to mllltiple cameras with curvilinear motions can be described by the

Ⅱl111tilinearrelationship lュnder the projection丘･om 6D to 2D. In the next sections, the

geoITletry Of sllCh projections will
be glVen in Ⅲ10re detail.

5.2.1 Projection from 6D to 2D

We first consider a
projection

fro=n 6D space to 2D space･ Let X - [Xl,x2,x3,
X4,x5, x6,x7]T be the homogeneous coordinates of a 6D space point projected

to

a point in the 2D space, whose boI-10geneO11S COOrdinates are represented by x -

[xl,x2,x3]T.Then, the extended afhne projection froln X to x can be described as

follows:

Ⅹ～PX (5.5)

where (-) denotes equality up to a scale, and P denotes the following 3 x 7 matrix:

p- [Z3;琵22琵;琵:琵;絹(5･6)

From (5.5),we find that the extended a缶ne camera, P, has 14 DOF. In the next

section, we consider the multiple view geolnetry Of the extended a氏ne cameras.
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Table 5.1: Qlladilinearrelations between point and line coordinates in four views. The
final colllmn denotes the nllmber of linearly independent equations･

correspondence relation eq.

four points

three points, one line

two points, two lines

one point, three lines

follr lines
x蒜;::fLk"uQQl?3;,?k==0.u

去
xilLIL'lご′亡qjterkuQTjk

- Otu 4

lpILli'lご′EPisEqktErたuQT,･k- Ostu 8

ehvdQT,･k-Od
2

5･2･2 AfRne Multiple View Geometry丘･om 6D to 2D

From (5･5),we have the following eqllation for N extended a氏ne cameras:

P x 0 0

P/ 0 Ⅹ/ 0

P// 0 0 Ⅹ//

0

0

0

Ⅹ

A

A/

A//

0

0

0 (5.7)

where, the leftⅢ10St rllatrix, M, in (5･7)is 3〃 × (7十Ⅳ),and the (7十Ⅳ) × (7+〟)

Ⅲ1inors Q of M constitllte Ⅲ1111tilinearrelationships lュnder the extended.projection
as:

det Q - 0. We can choose any 7+N rows from M to constitllte Q, bu-t we have to take

at least 2 rows from each ca=nera for deriving meaningful N view relationships (note,
each camera has 3 rows in M). ThllS, 7 + N ≧ 2N InuSt hold for defining Inultilinear
relationships for N view geolnetry in the 6D space. Thus, we find that, the multilinear

relationship for 7 views is the maximal linear relationship in the 6D space.

We next consider the Ininilnllln number of points reqllired for colnPuting the mul-

tifocal tensors. The geometric DOF of N extended afBne cameras is 14N - 42, since

each extended a氏ne camera has 14 DOF and these N calneraS are in a slngle 6D afRne

space whose DOF is 42. Meanwhile, if we aregiven M points in the 6D space, and let

theITl be projected
to 〟 caHleraS de血ed in (5.5)･Then, we derive 2〟Ⅳ Ⅲ1eaS11reⅢ1entS

frolh images, while we have to colnpllte 14N
- 42 + 6M components for fixing all the

geo=netry in the 6D space. Thus, the followlng condition must hold for computing the

Inultifocal tensors froln images: 2MN ≧ 14N - 42 + 6M. We find that minimllIn Of 7

paints are reqllired to colnPute mllltifocal tensors in four,five, six and seven views.

5.2.2.1 Four View AfBne Geometry

We next introdllCe the multiple view geolnetry Of four extended calneraS. For four

views, the sllb square matrix Q is ll x ll. Froln detQ - 0, we have the following
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qlladrilinear relationship lュnder extended caIIlera
projections:

xix'jx′′kx′′′hehvdQty]A
- Od (5･8)

where Ehvd (orits contravariant counterpart, ehvd)
denotes a tensor, which represents a

sign based on permlltation from (h,v,d)to (1,2,3)･QT,･kis the quadrifocal tensor for

the extended cameras and has the followlng form:

QT,.k- E細E,･,sEktu det

ap

aq

br

bβ

ct

cu

dtJ

(5.9)

where
ai denotes the ith row of P, bi denbtes the ith row of P', ci denotes the ith

row of PW and di denotes the ith row of PW'respectively･ The qlladrifocal tensor

QTjたis 3 × 3 × 3 × 3 and has 81 entries･ Since all the third rows of the extended

aQ?3n3?a;3H31,e;ahH31,a;ri3C3:SQa!rle3,[B301,30,
,

Oi冒;30,,1&2n31,aB;3
1Z,e;0!3el?t;e3S,

,aSli3e2,

i
nQ

a?3T:'kb3?3S,
aQ
;r3e3Slilrti

non-zero entries and thllS We have only 14 free parameters in QT,･たeXCepta SCaleam-
biguity･ On the other hand, (5･8)provides llS 3 linear eqllations on QT,･k,but only 2 of
theln are linearly independent･ ThllS, at least 7 corresponding points年･re reqllired to

complュte QT,.Afroln images linearly･

Since corresponding points with time marks induce linear constraints, for compllting

qlladrifocal tensor, we reformulate (5･8)as follows･･

E(i)q - 0 (5.10)

where q
- [Qi33,Q233,Q圭33,Q…33,Q!13,QZ13,Q!23,Q…23,Q去31,Q害31,Q去32,窃32,Q主33,

Q…33,Q333]T,and E(i) is a 3 × 15 matrix whose elements are calculated from the

corresponding points x(i),x'(i),x"(i) and x"I(i)･Then, if we have N corresponding
points, q can be computed by solving the followlng linear equations.

Uq - O

u - [E(tl)T,･･･
,E(tN)']T

(5･11)

where 〟 ～ 7. The sollltion on q is the elgenVeCtOr COrreSpOnding to the smallest

elgenVallle Of UTu･

Since two points x′′′d and x′′′h in the forth view
can be used to represent a line lL"

which goes throughx′′′dand I"'h as: x′′′hx′′′d亡hvd
-

lご′,(5.8)becomes

xi∬'3'x′′kx′′′hx′′′dEhvd QtT,.た-
;ri∬'31･T′′klご′QT]k- 0 (5･12)
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Table 5･2: Qllintilinearrelations between point and line coordinates in丘ve views. The

丘nal colllITln denotes the nllmber of linearly independent eqllations.

relation # of eq.

x////mEktcEhudEmve7atf3r
- Ocde

xix'3'x′′kx"′hlご′′EklcEhud7a許v

T
-

ocd

･ix'jx′′kl:′lご′′eたtc7堵v
- Oc

xix''l;′il"lご′′7a穿v
- 0

xil;I;′lL"lご′′Eq3'n7a穿v
- On

lpILl;'lご′lご′′EPimEqjn7a穿v- Omn

by Inultiplying x′′'d on both sides. Then, (5.12)shows the connection of the quadrifocal
tensor with three points and one line. Furthermore, if multiplying I"u, a point in the

third view, to (5.12),we can derive:

xix,jx"たx"ulご′QTjた-
!xix,3･x"kx"ue,kuErkulL"QTjた
6

-
!xix,3･l;,lL"erkuQTjk

- Ou
6

(5･13)

where I;'isa line in the third view going throughx′′kand I"u. (5.13)is the corre-

spondence on point-point-line-line. The other correspondences ユlay be obtained in the

SaITle manner.

A complete set of the qlladrilinear eqllations involving the quadrifocal tensor are

given in Table 5.1. All of these equations are linear in the entries of the quadrifocal

tensor QTjk･
Asdescribed in Section 5.2, this multiple view geolnetry Can be applied to multiple

afRne cameras with curvilinear motions. Meanwhile, since the position of points in our

research includes the information of time, we can derive the multiple view geometry

froln fewer time instants if we observe more than one point. For exalnPle, in the case of

four views, we need 7 time instants, if we observe a slnglepoint
in the space. However,

if we observe 2 point II10tions in 3D, we only need to observe them 4 tiIIle instants to

figllre Out the Inllltiple view geometry.

5.2.2.2 Five View, Six View and Seven View AfBne Geometry

Silnilarly, the five view, six view and seven view geolnetry Can also be derived for the

extended callleraS. The qllintilinear relationship lュnder extended projection
is:

x甘.,r'jx′′k･T′′′hx′′′′m亡ktcEhudEmve7a諾v
- ocde (5･14)
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Table 5.3: Sextilinear relations between point and line coordinates in six views. The

final column denotes the number of linearly independent equations.

relation eq.

xi=′jx′′Ab′′′h=′′′′"b,′′′′′'tjrb
Eks｡ ehtdem ue

Env
I SJst

uv A)bcde/ 32

xix'3'x′′たx′′′hx′′′′mlご′"Ej,bekscEhtdEmueSlrStuV-Obcde
16

xi
x'3'x′′kx′′′hl:′′lご′′′Ej,b亡占scEhtdS[stuv

- Obcd 8

xix'3'x′′hl;′′lご′′lご′′′ej,bEkscSlrStuV
- Obc

xix131 I:'l㌢′l:′′lご′′′E,･,bS[stuv- Ob

xilニl:'l;′′l:′′lL"′′sTstuv
- 0

lmlニl:'l;"lL"′lL"′′亡miws[stuv- ow

Table 5.4: Septilinear relations between point and line coordinates in seven views. The

伝nal colllITln denotes the nllmber of linearly ･independent eqllations.

relation # of eq.

Emleenufem,gTtPqrSIw
- oabcdefg

x包'3i′′包′′′も′′′′mx′′′′′nlご′"′tip EjqbE k,c

EhsdEmleEnuf7imrstuv
- Oabcdef

x転′な′′転′′′態′′′′mlL"′乍ご′′"tip E,･qb

ek,cEhsde,nte71PqrStuV
- Oabcde

xix'jx′′も′′′竹;′"I:′′1ご′′′′
Eipa Ejqb

Ek,cEhsd7iPqrStuV
- Oabcd

x塩′な′′勺:"l㌢′′l:′′′lご′′′′EipE,･qb eた,cTtmrstuv
- Oabc

xix′3'l;'lご′lr′′lニ′′′lご′′′′eipaEjqb71PqrStuV
- Oat

鴫IL'耶′′′I:′"lご′′′′Eip7tmrstuv - Oa

lpILI;'lご′l㌢′′I:′′′lご′′′71PqrSluv- o

16

8

4

2

1

7a穿vis the quintifocal tensor whose form is described as‥

喝v - eipqEj,s det

aP

aq

br

bβ

ct

du

elJ

(5.15)
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where al, bl, cl, di and ei denote the ith row offive camera matrices･ The qllintifocal

tensor 7ai,TVhas 243 entries･ Exclllding 191 zero entries and a scale ambiguity, it has
51 free paraITleterS･ And 27 linear eqllations are given血･oⅢ1 (5.14)bllt Only 8 of tbeIIl
are linearly independent. Therefore, minimuln Of 7 corresponding points are required

to complュte 7t穿vfrom images linearly･ The qllintilinear relationships involving the
quintifocal tensor are summerized in Table 5.2.

We next introdllCe the multiple view geolnetry Of six extended calneraS. The sexti-

1inear constraint is expressed as follows:

xix'jx′′kx′′′hx′′′′mx′′′′′nEdbEAzce7dE.,w e,ufSlrStuV- obcdef (5.16 )

where S%rstuv is the sextifocal tensor (sixview tensor)whose forln is represented as

follows:

SlrStuV - tim det

aP

aq

br

cβ

dt

et▲

fv

(5･17)

where at, bt, cl, dも,ei and fi denote the ith row of six camera matrices･ The sextifocal

tensor Strstuv has 729 entries. If the extended cameras are a凪ne as shownin(5･5),
we

have only 175 free parameters in S[stuvexcept zero entries and a scale. On the other

hand, (5.16)shows one set of corresponding points provides TIS 243 1iheareqllations
on S[stuv,bllt Only 32 of them are linearly independent. Furthermore, the constraints

between multiple sets of points are not independent.Asa res111t, at least 7 corre-

sponding points are required to colnpllte SlrStuV from images linearly･ The qllintilinear

relationships are glVen in Table 5.3.

Finally, let us have a look at the Inultiple view geometry of
seven extended cameras.

The septilinear constraint is described
as:

xixI31x//kx///hx////mx/////nx//////oeipa E3･qbe krc Ehsdemte

EnufEm971mrstuv
- Oabcdef9 (5･18)

where Tt卿StuV is the septifocal tensor (sevenview tensor)whose form is represented
as follows:

7iPqrStuV = det

aP

bq

cγ

dβ

et

fu

g"

(5.19)
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where at, bt, cl, dt, el, fi and g乞denote the ith row of seven camera lnatrices. The

septifocal tensor 7iPqrSluv has 2187 entries, inclllding 576 non-zero entries. Then we

have 575 free parameters in 7iPqrStuV except a scale. On the other hand, (5.18)provides
llS 2187 linear eqllations on 71mrstuv, but only 128 of them are linearly independent･

Exclllding the dependences between the corresponding points, 7 sets of corresponding

points are enoughto complュte
71mrsluv from images linearly. The septilinear relation-

ships are glVen in Table 5.4.

5.2.3 Applications on Multiple View Geometry or Curvilinear

Motion Cameras

5.2.3.1 ViewTransfer

The constraints between corresponding points and multifocal tensors have been de-

rived (see(5･8),(5･14),(5･16),(5･18)),and Inultifocal tensors can be colnPuted by 7

corresponding points in 4, 5, 6 and 7 views. T九lls, if we have the iⅢ1age motions in

〟 - 1 images, tbe血1age Ⅲ10tion in the reITlaining iⅡ1age Can be calc111ated丘･oⅡ1 〟 view

tensor. It realizes the view transfer from N
- 1 views to the otherview.

5.2.3.2 3D Reconstruction

From (5･5),if i=nage points and extended camera matrix aregiven, the coordinates of

points in 3D can be obtained. Tberefbre, coⅡ1p11ting the extended camera Ⅲ1atrix is

very lmpOrtant.

Assu=nlng that the first viewpoint is at the orlgln, the camera matrices may now

be written as:

Pl - [IIO]

Pn - [HlnFenl]

where IIln denotes the 3 x 3 homography froln the first view to the nth view, and

enl denotes a 3 x 4 matrix which represents the epipole, the projection of the first

viewpoint in the nth view. Since we consider the afhne lnapplng, the third row of Pn

is [0,0,1,0,0,0,0]as same as Pl. Althollghthe order of 1 in the third row is different

froln that of (5.4),Pl and Pn are stillextended afRne calnera matrices. Note, from Pl

and Pn, [X(T),Y(T), 1, Z(T), T3,T2,T]T can be recovered. The epipole of projection
froln 6D to 2D is a 3D space, and the four colulnn Vectors in

enl are four basis points

in this space 【98].
Take four

views
for instance･ In (5･12),∬ix'jx′′たQtY,･kCan be considered as a point,

p"'v. Then p"'v and lご′have the followlng relation:

p"'vlご′
- o. (5.20)

That is, p"'v is a point on the line lご′in the fourth view. If.Tt, X′j and x′′たare corre-

sponding points, then p"'v is also a corresponding pointこr"'v in the fourth view. ThllS,
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(5.12)Ⅲ1ay be rewritten as:

xix/jx//kQtr]k
- XWIv･

Then, the followlng eqllations can be derived:

xwlv - HIV4iXI

HIV4i - `x'31x′′kQ芸k

(5.21)

HIV4i denotes a homography from the first view to the follrth view. If we have two pairs

of x131 and x//A, two HIV4i Can be obtained:

HIV4i -
X'1jx'1'たQT,1k

Hiv4i
-

X'231x;'kQTjk

Thus, we have the followlng constraints:

e41 - H14e14

e41

-叫4e14

If H14 and H'14 are independent, we can obtain:

(H14一叫4)e14- 0 (5.28)

Since H14 and Hi4 have been figured out, epipole e14 Can also be derived. However,
here we only can derive one colllmn Vector in e14. Fわr obtainlng the other three col11Ⅲ1n

vectors, we need other three boⅡ10grapby pairs. Once e14 and H14 are known, e41 Can

be calc111ated丘･oITl (5･26)･ThllS, the caITlera matrix P4 Can be coⅡ1p11ted丘･oⅡ1 Ⅲ14

alld e41. P2 and P3 Can also be derived in the same manner. Then, llSlng Pl, P2, P3,

P4 and a set of corresponding points in these caIIlera iⅢ1ageS, We Can reCOnStrllCt X in

(5･5),and hence the point in 3D space and time T.

5.2.4 Experiments

We next show the reslllts of soITle eXperiⅡ1entS. We at丘rst discllSS the approxiITlate

relationship between afRne cameras and projective
calneraS. We next show that the

quadrifocal tensor for extended a缶ne cameras can be colnputed from image motions

viewed from arbitrary cllrVilinear InOtion
cameras by the results from real images, and

can be used for generating oneview from the others and for recoverlng 3D motions.

We finally evalllate the stability of extracted quadrifocal tensors for extended afhne

CaITleraS.
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Error

0.2 0.4 0.6 0.8 1
Distance Ratio

Figllre 5.2: The relationship between the distance ratio and the reprojection
errors

lュnder the projective
caITlera Ⅲ10del.

5.2.4.1 Approximate Relationship between AfBne Cameraand Projective
Camera

A氏ne camera is an ideal model whose optical center is at in氏nity. It does not exist
in the real world. Therefore, we here desire to find some clue to the approximate

relationship between 乱氏ne camera and the most general camera model, projective
Camera.

We consider a ratio between the "radius" of the 3D motion (the average distance

between the center and the bollndary of the motion) and the
distance between motion's

center and projective
camera,

which
we call distance ratio. The relationship between

distance ratio and reprojection
error (itsde丘nition is same to stability evalllation)

is shown in Figure 5.2. The image size is 640x480. As we can see, when distance

ratios 0.4, reprojection
error is less than 10.

5.2.4.2 Real lmage Experiment

We next show the result froln a real image experiment'･

In this experiⅢ1ent, We llSed follr CaITleraS (Sony DFW-VL500), one of which is static

(CaⅢ1era4) and three of which (CaITlera1, CaⅡ1era 2 and CaⅢ1era 3) are controlled by

3-axis robots (Originalmind3-Axis Robot) respectively to undergo different cllrVilinear

motions as shown in Figure 5.3. We colnPllted quadrifocal tensors among these follr

caI一leraS by llSing two ITIOVing points in the 3D space. The experimental circllmStanCe

is sbowll in Figllre 5･4･ Figllre 5･5(a),(b),(c)and (d) show iITlage Ⅲ10tions of two 3D
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Figllre 5.3: Origillallllilld 3-Axis Robot.

Figure 5.4: Experimental CirclllnStanCe.

pointsviewed from Calnera 1, 2. 3 and 4 respectively. Here, distance ratio is abollt

0.25. SllCh configuratioll COllld be considered approximating with anne ca171era models

a5 addressed.

The greell alld red cllrVeS n Figllre 515 represellt
t･WO differellt image motions. The 7

wllite poilltS 011 the two cllrVeS illeach image a･re correspolldillg pOilltS llSed for colllput-

illg the qtladrifocal
t･ensor. The curves in Figllre 5･6(b) show ilnage mOtiollS COlnpllt･ed

hlolTl tlle eXtellded qlladrifoca･l t･e11SOr i一lCalllera 2. The average error of the recovered



(c)Camera 3

(b)Camera 2

(a) Camera 4

Figllre 5･5: M111tiple point I-lotion experiment･ FigllreS (a),(b),(c)甲d (d) show four

views of the motion il一Camera 1, 2. 3 and 4. The green a.nd red curves show
two

different image motions in eachview, The 7 white poilltS On the two cllrVeSineach

image are corresponding points llSed for compllting the qlladrifocaltensor. Note that

Camera 1, Camera 2 and Camera 3 have curvilinear motion.

image motioll is 6.0 pixels. The error is caused by the following reasons according to

our analysis: (1) camera motion error. It is difRcult 6or controLlillgfollr CalJlera畠tO do

rigoroll.S Spline curve lnOtions; (2) approximate error. We llSed projective
cameras to

approxlmate afRne cameras; (3) selection of corresponding points･ The correct results
are derived from corresponding points which have 6D variety. For example, copLallar

corresponding points may arise degeneration.

As we can see, the qlladrifocal tensor defined llnder extended projection canbe
derived from m111tiple point motioIIS Viewed from three cllrVilinear motion cameras

and one static camera, alld they are practical for generating images of mllltiple point

motions viewed from cllrVilillear mOtioll Ca7nera,
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(a) Camera 2
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(b) CoI11pl】ted res111t

Figure 5.6: Comptlted result of the lnultiple point motion experiment. The cllrVeS in

(b) show image lnOtions computed by the extended quadrifocal Censor ill Camera 2.

5.2A.3 3D Reconstruct,ion

We next show the res111ts of 3D reconstnlCtion usmg the 3D configurations shown

in Figure 5,7 to verifyanother application, 3D reconstruction. For convenience, we

assllmed camera∫ Cl a Static camera in this experiment. The non-rigid 3D motion is

projected
to four cameras aS Shown in Figllre 5･81 Figllre 5.9(a)shows the real 3D

motion･ The corresponding pointswith Gaussian noise of stalldard deviation of 1 pixel

in the follr ilnageS Were used to figure out the coordinates of each point in the 3D space

by llSing the method addressed in section 5.2.3.2. The reconstnlCted res111t is showll iIユ

Figllre 519(b).We can see the shape of the 3D motion is recovered properly.

5.2.4.4 Stability EⅥ山1ation

We next show the stability of extracted quadrifocal tel-SOrS llnder extended proJeC-

tiollS･ For evalllating the extracted quadrifocal tensors, we compllted reproJeCtion

errors derived from the qlladrifocaltensors. The
reprojection

error is deBned as:
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Figure 5･7: 011e Static camera. three cllrVilinear motion calneraS alld a movlng pOillt

illt･he 3D space.
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(d)Camera 4

Figllre 5.8: Noll-rigid motion in tlle 3D spa･ce is projected
to follr Camera･S.

去∑r=1a(m.:,血i),Where d(mi.血i) dez10t･eS a･ distallCe betweell a･ t･rue point mi alld
a point血i recovered from tlle q11adl･ifocal

tellSOr. We iIICrea5ed the nlllnber of corre一
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(b) Res111t of 3D reconstnlCtion

Figllre 5.9: 3D reconstrllCtion.

5 10 15 20

number of points

Figllre 5.10: The relationship between the nllmber of corresponding points llSed for

computing quadrifocal tensors and the reprojection
errors. Camera trajectoriesand 3D

point motions are randomly generated for 1000 times by changing the control points

of the I】ez;iercllrVeS.

sponding points used for computing qlladrifocaltensors in follr Views from 7 to 20, and

evalllated the reprojection errors. Camera trajectoriesand 3D point motions are ran-
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domly generated for 1000 times by changlng the control points of the B-spline cllrVeS.

For each camera trajectory and 3D point, the images motions are generated 100 times

by adding GallSSian noise with the standard deviation of 1 pixel. Figllre 5.10 shows the

relationship between the nllmber of corresponding points and the reprojection
errors.

Aswe can see, the stability is obviously improved by llSlng a few more points than the

minim11Ⅱ1 nllmber of corresponding points.
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5.3 Multiple View Geometry for Projective Curvi-

1inear Motion Cameras

If all the cameras are
projective

cameras and the cameras are movlng followlng Cubic

Bezier curves, point motions are
projected

to
projective

calnera aS follows:

A [;('1TT,']Pa(X(T) - AXi)

Pa(X(T)
- GAE

Pα【Ⅰ,-GAE]

P｡[Ⅰ,-GAE]

X(T)
Y(T)

Z(T)
1

T3

T2

T

l

X(T)

Y(T)

Z(T)
T3

T2

T

1

(5･29)

T3

T2

T

1

X(T)
T3

r2

T

I

X(T)

Y(T)

Z(T)
1

T3
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where Pα denotes a 3 × 4
projective

caⅢ1era matrix, and P denotes a 3 × 7 extended

calnera matrix･ We therefore find that, from (5.29),the projections of point motions
to Ⅲ1111tiplecaⅢ1eraS With cllrVilinear IT10tions can be described by the Ⅱ1111tilinearrela-

tionship lュnder the projective projection froII1 6D to 2D. In the next sections, we will
discllSS the geollletry Of projectiveprojections.

5.3.1 Projective Projections from 6D to 2D

We first consider a
projection from 6D space to 2D space･ Let X

- [Xl,x2,x3,
X4, x5,x6,x7]T be the homogeneous coordinates of a 6D space point projected

to

a point in the 2D space, whose
holnOgeneOuS coordinates are represented by x

-

【∬1,∬2,∬3]丁.
Then, the extended projection丘･om

X to x can be described as follows:

Ⅹ - PX (5.30)

where (-) denotes equality up to a scale, apd P denotes the following 3 × 7 matrix:

(5.31)

From (5･30),we find that the extended camera, P, has 20 DOF except a scale. In the

next se占tion, we consider the multiple view geometry of the extended cameras.

5.3.2 Projective Multiple View Geometry丘･om 6D to 2D

From (5･30),we have the following equation for N extended projective calneraS:

P x 0 0

P/ 0 Ⅹ/ o

P// 0 0 Ⅹ//

0

0

0

Ⅹ

A

A/

入〝

0

0

0 (5･32)

where, the leftITIOSt matrix, M, in (5･32)is 3Ⅳ × (7+〟), and the (7+〟) × (7+〟)

Ⅲ1inors Q of M constitllte Ⅱ1111tilinearrelationships lュnder the extended projection
as:

det Q - 0. We can choose any 7+〟 rows froITI M to constitllte Q, bllt We have to take

at least 2 rows from each camera for deriving meaningful N view relationships (note,

each camera has 3 rows in M)･ ThllS, 7 + N ～ 2N mllSt hold for defining In111tilinear

relationships for 〟 view geometry in the 6D space. T也lls, We丘nd that, the m111tilinear

relationship for 7 views is the maxilnal linear relationship in the 6D space.

We next consider the minilnum number of points required
for
colnPllting the multi-

focal tensors. The geometric DOF of N extended projective
calneraS is 20N - 48, since
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Table 5.5: Quadilinear relations between point and line coordinates in four views. The
丘nal colllmn denotes the nllITlber of linearly independent eqllations.

relation # of eq.

elvdQtP,･k
- Od

__: :-_ニー与=t-
each extended projective

camera has 20 DOF and these 〟 caⅡ1eraS are in a single 6D

projective space whose
DOF is 48.

Meanwbile, if we are given 〟 points in the 6D space, and let them be projected
to

N cameras defined in (5･30)･Then, we derive 2MN measurements froln images, while
we have to compute 20N - 48 + 6M components forfixingall the geometry in the

6D space･ Thus, this condition must hold for colnPllting the mllltifocal tensors from

images: 2MN ～ 20N - 48 + 6M･ We find that lninimllm Of 16,13,12,12 points are

required to compllte =nultifocal tensors in four,five, six and seven views nonlinearly･

We next introduce the lnultiple view geometry of four extended projective
calneraS.

For four views, the sub square matrix Q is ll x ll. Froln detQ - 0, we have the

followlng quadrilinear relationship llnder extended camera
projections:

xix′31x′′k･T"′lEIvdQTjた-Od (5･33)

where EIvd denotes a tensor, which represents a sign based on permutation from (I,v,d)
to (1,2,3)･QTjk is the quadrifocal tensor for the extended cameras

and has the following

forln:

QT,･k- EipqEj,sEktu det

aP

aq

br

bβ

ct

ctl

dl'

(5･34)

where
ai denotes the ith row of P, bi denotes the ith row of P', ci denotes the ith

row of P′′and di denotes the ith row of P′′respectively･ The quadrifocal tensor QTjk
is 3 × 3 × 3 × 3 and has 81 entries･ Iftbe extended caⅢ1eraS are

prOjective
as shown in

(5･30),we have only 80 free parameters in QtY,･kexcept a scale ambig11ity･ On the other
hand, (5･33)provides llS 3 linear equations on QT,･k,bllt Only 2 of theln are linearly

independent･ ThllS, at least 40 corresponding points are required to colnpllte QTjkfroln

iITlageS linearly.
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A colnPlete set of the quadrilinear eqllations involving the quadrifocal tensor are

given in Table 5･5･ All of these equations are linear in the entries of the qlladrifocal

tensor QTjk･
As described in Section 5･3) this m111tiple view geometry can be applied to m111tiple

projective
cameras

with cllrVilinear motions･ Meanwhile, since the position of points in

our research includes the information of time, we can derive the lnultiple view geometry

from less time intervals if we observe mQre than one point･ For example, in the case

of follr Views, we need 40 tiITle intervals, if we observe a
slngle point in the space･

However, if we observe 4 point ITIOtions in 3D, we only need to observe them 10 tiIIle

illterVals to丘g11re Ollt the IT1111tipleview geometry.

5.3.3 Experiments

We next show the results of solne experiments. We first show the reslllts from real

image experiment, in which the qlladrifocal tensor for extended cameras is compllted

from image motions viewed froln arbitrary curvilinear motion cameras, and is used to

generate a view froln the other three views of movlng Cameras. We next evaluate the

stability of extracted qlladrifocal tensors for extended cameras.

5.3.3.1 Real lmage Experiment

In this. experiment, we used four cameras, three of which
have
curvilinear motions

and one of which is static. The experimental setup is same as Section 5.2.4.2. We

co=npllted quadrifocal tensors alnOng these 4 cameras by uslng two InOVlng points in

the 3D space･ Figllre 5･11(a),(b),(c)and (d)show iIIlage motions of two points viewed
from three cllrVilinear motion calneraS and one static camera. The green curves and

red cllrVeS represent two different ilnage motions. The 20 white points on each curve

are corresponding points used for colnPuting the quadrifocal tensor. The extracted

tensor is lleXt llSed to generate the image InOtion of camera 2 froln the image motions

of camera 1, 3 and 4･ The green and red cllrVe in Figllre 5･12(b)shows iITlage Ⅲ10tions
co=nputed froln the extended quadrifocal tensor in camera 2･ The 40 points in (e)show
points llSed for computing the quadrifocal tensor･ Co=nparing Figure 5･12(a)and (b),
we find that the computed InOtions are reasonably accurate. Thus, we can see that

the qlladrifocal tensor defined under extended projection
can be derived from arbitrary

Ⅱ1111tiplepoint IT10tions viewed丘･oⅠI1 4 caITleraS, even ifthree of tbeIIl llndergo arbitrary

cllrVilinear motion, and it is practical for generating Images Of mllltiple point motions

viewed from cllrVilinear motion camera.

5.3.3.2 Stability Evaluation

We next show the stability of extracted quadrifocal tensors under extended projections.
Figure 5･13 shows a 3D configuration of 4 cllrVilinear InOtion cameras and a lnOVlng

point used in this experilnent. The black points show the viewpoints of four cameras,
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(a) Camera I

(c)Camera 3

(b) Camera 2

(d) Camera 4

Figllre 5.ll: Multiple point motion experiment･ FigllreS (a),(b).
,(c)
and (d) show

image motions of two poilltS Viewed
from three cl-,ilinear motion cameras (Camera

1, Camera 2 and Camera 3) and one sta･tic camera (Calnera4)･ The green cllrVeS and

red curves represent two different image lnOtions･ The 20 points
on each curve are

corresponding points used for complュting the quadri6ocal
tensor･

C-, C2, C3 and C4, before motions, and the white points show those after the
Bezier

curve motiollS. The motions of these
follr Cameras are differellt a.nd unknown. The

black curve shows a locus of a freely movlng point, which is projected to follr C11rvi1illear

motion cameras as shown in Figllre 5.14. For evaluatillg the extracted q11adri払cal

tensors, we computed reprojection
errors derived from the qlladrifocaltensorsI The

reprojection
error is defined

a5二志∑.r=1d(mi,血i)2,where d(mi,血i)
denotes a distance

between a true point mi and a point &i recovered
from the qlladrifocaltensor. We

increased the number of corresponding points llSed
for compllting qtladrifocaltensors

in follr Viewsfro171 40 to 60, and evalllated the reprojection
errors. The Gaussian

noise with tlle Standa･rd
deviatioll Of 1 pixel is added to every point

oll the loc11S･

Figllre 5115 shows the relatiollShip
between the number of corresponding points and

tlle reprOjection errors.Aswe
can see, the stability is draJStical1y lmprOVed

by llSing a

few lnOre points than theminimum nulnber of corresponding points.
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Figllre 5.12.･ Computed res111t of the mllltiple point motion experime工It. The green and

red cllrVe in (b) shows image motions compllted from the extended quadrifocaltensor
in Camera 2.

5.4 Summary

ln this chapter, we used a艮ne camera InOdel and projective
camera model to describe

the multilinear relationship lュnder the projection
from 6D to 2D respectively, which

call represent the geometric relationship of m111tiple cllrvilinear motion cameras whose

motio工1S are represented by cllbic Bezier cllrVeS. The mllltifocaltellSOrS defined lmder

6D to 2D multili】1ear relationships can be computed from non-rigid object motions
viewed from multiple cameraswith arbitrary curvilinear motions. We also sllOWed that

the multilillear reLationshipsare very useful for generating Images Of non-rigidmotions
viewed from cameraswith arbitrary cllrVilinear motions. The method wall implemented

and tested b.y uslng realimage seqllenCeS, The stability of extracted quadrifocaltensors

wa.s also evalllated.
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Figllre 5･13: 3D configuration of four curvilinear lnOtion cameras and one InOVlng point.

100 200 ユ00 40(〕

(a)Camera 1
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1OO 200 300 400

(c)CaⅡ1era 3

500 石00

義
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(b) Camera 2

500 (;00
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(d) CaIIlera 4

500 600

Figure 5.14: Non-rigid lnOtion in the 3D space is projected
to four curvilinear motion

CaITleraS.
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Figllre 5.15: The relationship between the nlllnber of corresponding points used for

compllting quadrifocal tensors and the reprojectJion
errors.



Chapter 6

Dynamic Multiple View Geometry

with B-Spline Curve Motion

Cameras

6.1 CameraTrajectory Modeled by Degree-n B-

Spline Curve

ln chapter 3, 4 and 5, we introdllCed the dynaITlic m111tiple view geoⅢ1etry, in which

the camera trajectoriesare modeled by Degree-n Bezier curves. However, when n is

large, the Ⅱ1111tipleview geoⅢ1etry Will becoⅡ1e Very COmplex, 11nCOⅡ1p11table. Moreover,

the Inain probleln With Bezier curves is their lack of local control. 1To
overcome the

problems, we consider degree-n B-Spline curve, a piecewise curve, to represent the

caITlera trajectories･T也lls, We Can llSe low degree I】-spline cllrVe tO describe a coITlplex
CllrVe.

6.2 B-Spline Curve

Given m knots ti With

tl≦t2≦･･･≦tm (6･1)

A B-spline of degree-n is a parametric cllrVe COInpOSed of a linear combination of basis

B-splines bi,n Of degree-nJ

m-n-1

s- ∑ pibi,n(i),t∈【tn,tm-n]
i=O

The basis B-splines of degree-n is defined as follows:

bj,0(i)-
1,tj ≦t<tj+1

0, else
J-0,･･･,m-1

(6.2)

(6･3)
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bj,n(i)- bj,n-1(i)+
i-t31

L /l＼.
t3･+n+1-i

t3･+n-t31
J''yー､ ′

'tj+n+1-tj+1
b3･+1,n-1(i),i-0,･･･,m-n-1 (6A)

If theknots are equidistant the B-spline cllrVe is called to be uniform, otherwise

non_uniform.

6.3 Non-Rigid Object M･otions viewed from BISpline

Curve Motion Cameras

6.3.1 Cubic B-Spline Curve

Cubic (degree-3)B-spline curve with llniformknot-vector is the most comlnOnly llSed

form of B-spline curve･ In this section, we will Inake
llSe Of uniforln Cubic B-spline

cllrVe tO represent the trajectory of the camera.

The ith seglnent Of a cllbic B-spline cur†eis
defined llSing follr COntrOl points, Qi,

Qi+1, Qi+2, Qi+3, a basis Inatrix B and a parameter i as follows:

Si - [Qi,Qi+1,Qi+2,Qi+3]B

t3

t2

i

1

(6.5)

tE[0,1], i-0,1,･･･,n-1

where, the follrth entries of Qi, Qi+1,Qi+2, Qi+3 are equal to 0, and B denotes the
following 4 x 4 matrix:

-1
3
-3
1

3
-6
0 4

-3
3 3 1

1 0 0 0

/6

6.3.2 Non-Rigid Object Motions viewed丘･om Cubic B-Spline

Curve Motion Cameras

Consider an anne calnera Which projects points in 3D
to 2D images. The motions

of a point in the 3D space can be represented by holnOgeneOllS COOrdinates, X(T) -

[x(T),Y(T), Z(T), 1]T,where T denotes time. The InOtions are projected to images,

and can be observed as a set of points, Ⅹ(T)
- [x(T),y(T),1]T.

The camera InOtion is relative to the calnera Orlglnal position, and hence its fourth

entry is equal to 0, and thus represented as Si - [AX,AY, AZ,0]T.
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Assume each motion segment Si SPends time Ta. Then i
- T/Ta

- i. Thus, the

paraⅢ1eter Vector Can be written as:

t3

t2

i

1

T3

T2

T

1

T3

T2

T

1

Let Gi - [Qi,Qi+1, Qi+2, Qi+3].Then, Si Can be rewritten as follows:

Si - GiBC(i)

T3

T2

T

1

ThllS, point lnOtions are projected
to a氏ne camera as follows:

- P(X(T)-Si)

- P(X(T)-GiBC(i)

- P[I,-GiBC(i)]

X(T)
Y(T)

Z(T)
T3

T3

T2

T

1

(6.6)

(6･7)

(6.8)

where P denotes
a 3 × 4 afhne camera matrix, and P; denotes a 3 × 7 extended

calnera matrix for ith camera motion segment･ We therefore find that, froln (6.8),the

projections of point ITIOtions
to ITl111tiple caITleraS With cllbic B-spline cllrVe Ⅱ10tions

can be described by the Ⅱ1111tilinearrelationship lュnder the projection
froⅡ1 6D to 2D.
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6･4 Multiple View Geometry with Cubic B-Spline

Curve Motion Cameras

We first consider a
projection

from 6D space to 2D space･ Let X - [Xl,x2,x3,
X4, x5,x6,x7]T be the homogeneous coordinates of a 6D space point projected to
a point in the 2D space, whose boII10geneO11S COOrdinates are represented by x

-

[∬1,∬2, ∬3]T.
Then, the extended projection丘･oⅢ1X to x can be described as follows‥

Ⅹ - PX (6･9)

where (-) denotes equality up to a scale, and P denotes the following 3 x 7 matrix:

p - [r:.::
m12 rn13 rn14 m15 rn16 rn17

m22 m23 m24 m25 m26 rn･27

0 0 0 0 0 1 ] (6･10)

From (6.9),we find that the extended camera, P, has 14 DOF. Next, we consider the

m111tiple view geometry of the extended caⅢ1eraS.

From (6･9),we have the following eqllation for N extended projective cameras:

P x 0 0

P/ 0 Ⅹ/ 0

P// 0 0 Ⅹ//

0

0

0

Ⅹ

A

A/

A//

0

0

0 (6･11)

where, the leftlnOSt Inatrix, M, in (6･11)is 3N x (7+N), and the (7+N) x (7+N)

Ⅱ1inors Q of M constitllte m111tilinear relationships lュnder the extended projection as:

deb Q - 0. We can choose any 7+N rows from M to constitute Q, bllt We have to take

at least 2 rows from each ca=nera for deriving =neaningful N view relationships (note,

each camera has 3 rows in M)･ ThllS, 7 + N ～ 2N mllSt hold for defining multilinear
relationships for 〟 view geometry in the 6D space. T九lls, We丘nd that, the m111tilinear

relationship for 7 views is the maximal
linear relationship in the 6D space.

We next consider the minilnum nllmber of points required for computing the mul-

tifocal tensors. The geometric DOF of N extended afRne cameras is 14N - 42, since

each extended afRne calnera has 14 DOF and these N cameras are in a single 6D a氏ne

space whose DOF is 42. Meanwhile, if we are glVen M points in the 6D space, and let

tbeITl be projected
to 〟 cameras de血ed in (6･9)･Then, we derive 2〟Ⅳ Ⅱ1eaS11reITlentS

from ilnageS, While we
have to compute 14N - 42 + 6M components for fixing all the

geometry in the 6D space. ThllS, the followlng condition InuSt hold for colnPuting the

m111tifocal tensors froln images: 2MN ≧ 14N
- 42 + 6M. We find that IninimllIn Of 7

points are required to compllte multifocal tensors in four,five, six and seven views.

We next introdllCe the Inllltiple view geometry of four extended calneraS. For four

views, the sub square matrix Q is ll x ll. Froln detQ
- 0, we have the following
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qlladrilinear relationship lュnder extended caIllera
projections:

xi･T′3-x′′kx′′′hEhvdQtY,.k
- Od (6･12)

where Ehvd (orits contravariant collnterPart, ehvd)
denotes a tensor, which represents a

sign based on permlltation from (h,v,d)to (1,2,3)･QtYjkis the quadrifocal tensor for

the extended calneraS and has the followlng forln:

Ql?,･k- EipqE3･,SEktu det

aP

aq

br

bβ

ct

cu

dv

(6･13)

where ai denotes the ith row of P, bi den･otes the ith row of P/, ci denotes the ith

row of PW and di denotes the ith row of PWl respectively･ The quadrifocal tensor

QT,･kis 3 × 3 × 3 × 3 and has 81 entries･ Since all the third rows of the extended

aQ:n3?a;3H31,e;a;3n31,a&i3C3:SQa!rle3,[B301,30,
,

Oi冒;30,,1Q:2n31,aB;3
1Z,e;O!3el?t2!e3S2

,aBli3e2,

inQ

a?3T:'kb;?3S,
aQ

:r3e:
1ilrti

non-zero entries and thus we have only 14 free parameters in QTjたeXCept a SCaleam-
big11ity･'on the other hand, (6･12)provides us 3 linear eqllations on QTjk, but only 2

of them are linearly independent. ThllS, at least 7 corresponding points are reqllired

to complュte QTjk from ilnageS linearly･

6.4.1 Experiment

6A.1.1 ViewTransfer

We next show two view transfer experiments by llSlng Synthetic images.

Figllre 6.1 shows a 3D configuration of 4 InOVlng CalneraS and a InOVlng point. The

black points show the viewpoints of four
cameras, Cl, C2, C3 and C4, With B-spline

InOtions which consist of two B-spline segments. The curvilinear motions of these four

cameras are different and unknown. The black cllrVe Shows a locus of a moving point

S. Figllre 6.2 (a),(b),(c)and (d) show illlage Ⅲ10tions of S viewed from Cl, C2, C3

and C4 respectively. Note, the original locllS Of S is closed in the 3D space as shown

in Figllre 6.1, bllt its loci in images are not closed as shown in Figllre 6.2 becallSe Of

the calnera InOtions. We added Gaussian image noises with the standard deviation of

1 pixel to all the points on the loci in images. The 7 black points on the black loci

and the 7 white points on the white loci in Figllre 6･2 (a),(b),(c)and (d) are llSed to

colnPllte the two quadrifocal tensors on these follr moving CarneraS With two B-spline

motions. The quadrifocal tensors are used to recover the image InOtion in Cl from

iITlage I110tions in C2,
C3
and
C4･ Figllre 6･3 (b)shows the recovered res111t･ The black
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Figllre 6.1: Four cllrVilinear motion cameras and a InOVlng point in the 3D space. Each

camera II10tion consists of two B-spline segments.

cllrVe Shows the real trajectory,and the white curve shows the colnPllted InOtion. The

average error of the recovered image motion is 6.03 pixels.

Another
view transfer experiment is also

done. Figure 6A shows the 3D configllra-

tion of 4 moving caITleraS and a movlng point. The black points show the viewpoints of

four cameras, Cl, C2, C3 and C4. Each camera undergoes two-segment B-spline cllrVe

motion. The cllrVilinear motions of these follr Cameras are different and unknown.

The black cllrVe Shows the trajectoryof a Ⅱ10Ving point. Figllre 6･5 (a),(b),(c)and (d)

show image motions viewed from Cl, C2, C3 and C4 respectively. We added Gaussian

image noises with the standard deviation of 1 pixel to all the image motions. The 7

black points on the black loci and the 7 white points on the white loci in Figllre 6.5 (a),
(b),(c)and (d) are used to compute the two quadrifocal tensors on these four moving
caⅢ1eraS With two B-spline II10tions. The qlladribcal tensors

are llSed to recover the

iⅢ1age Ⅲ10tion in Cl丘･oⅡ1 image ITIOtions in C2, C3 and C4･ Figllre 6･6 (b) shows the

recovered res111t. The
black cllrVe Shows the real trajectory,and the white cllrVe Shows

the coⅡ1p11ted Ⅲ10tion. The average error of the recovered iIIlage ITIOtion is 4.51 pixels.

6.4.1.2 Stability Evaluation

We next show the stability of extracted quadrifocal tensors llnder extended projec-

tions. For evaluating the extracted quadrifocal tensors, we colnPuted reprojection
errors derived froln the quadrifocal tensors. The reprojection

error is defined as:

志∑1r=1d(mi,血i),Where d(mi,thi) denotes a distance between a true point mi and
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first c-1rVilinear motions･ The white curves correspond to the second camera motions.
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Figure 6･3; View transfer experiment l･ Figure (a) sl"w the view of the motion ill
camera 1. Tlle black cllrVeS represent the image motions wheュl the cameras undergo the

Brst
cllrVilinear motions. The white curves correspond to the secolld camera lnOtiollS.

The white cllrVe in (b) shows image motions complュted by the extended quadri6ocal
tellSOrS in the image plalle Of camera 1. The black curve is the true vallle.
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Figure 6A: Follr CurVilinear motion cameras and a moving point in the 3D space. Each

caITlera motion consists of two B-spline segⅡ1entS.

a point.&i recovered from the quadrifocal tensor. We increased the number of corre-

sponding points used for computing quadrifocal tensors in four views froln 7 to 20, and

evalllated the reprojection
errors. CaITlera trajectoriesand 3D point Ⅲ10tions are ran-

domly generated for 1000 times by changing the control points of the
B-spline curves.

For each camera trajectory and 3D point, the ilnageS InOtions are generated 100 times

by adding GallSSian noise with the standard deviation of 1 pixel. Figllre 6.7 shows the

relationship between the nllmber of corresponding points and the reprojection errors.

Aswe can see, the stability is obviously improved by uslng a few more points than the

Ⅱ1inim11ITl nllmber of corresponding points.

6.5 Summary

ln this chapter, we introdllCed B-Spline cllrVe for representing caⅡ1era IT10tions and

derived the multiple view geometry for multiple cameras, whose motion trajectories
are described by B-Spline cllrVeS.

Aswe know, in the mathelnaticalfield of nllmerical analysis, B-spline curves are

very useful for representing arbitrary 3D shapes with small nulnber of control points.

And it can overcoITle the ITlain problem with Bezier cllrVeS, that is their lack of local

control, and, when the degree of Bezier curve is large, the Inultiple view geometry will

becoITle Very COITlplex, 11nCOIllp11table. Hence, in this chapter we Ⅱlake llSe Of cllbic

B-spline cllrVeS tO describe the arbitrary 3D motions of cameras.
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Figllre 6･7: The relationship between the number of corresponding points llSed for

computillg quadrifocal tensors and the reprojectionerrors. Camera trajectoriesand 3D

point motions are randolnly generated for 1000 tilneS by changing the control points

of tbe巧-spline cllrVeS.

We provided the de丘nition of the B-spline cllrVe. Especially, we took cllbic B-spline

cllrVe aS an instance to represent the trajectory of the caIIleraS. B-spline cllrVe is a

kind of piecewise cllrVe. Althollgb the Ⅱ1111tipleview geoITletry COrreSpOnding to each

segment of cubic B-spline curve motions is same as the case of Bezier curve described in

chapter 5, the camera InOtions could be InOre COInPlex and less control points reqllired

if the calnera InOtions are represented by BISPline curves. For exalnPle, a 2-seglnent

cubic B-spline curve is smooth, second-order differentiable and is defined
by 5 control

points, while two cllbic successive Bezier curves are not second-order differentiable and

deterⅢ1ined by 7 control points.

We showed the result from the synthetic experilnent. We can see that even ifall the

cameras undergo colnPlex curvilinear motions, the view transfer still can be realized

by uslng the dynamic lnultiple view geolnetry.



Chapter 7

Computing Dynamic Multiple View

Geometry ln 4D space from Mutual
●

●

Projections of Multiple Cameras

7.1 Mutual Projections of Multiple Cameras

So-called ITl11t11alprojections of ITl111tiple
caⅢ1eraS describe the case where

some cameras

are
projected to other caⅢ1eraS. Under sllCh con丘g11ration, we can directly llSe the actllal

projection of
cameras as the approximation of epipoles and derive the multiple view

geoⅢ1etry ITIOre Stably with less corresponding points [75]･
However, the known Ⅲ111t11alprojection Ⅲ1ethod

is applied to the traditional Ⅱ1111tiple

view geoI一1etry, 1n Wbicb all the cameras are assllmed to be static･ That ⅢleanS all the

projections of caⅢ1eraS, the eplpOles,
are slngle points.

Whereas the dynamic m111tiple view geoIIletry in 4D space proposed in chapter 3

describes the relationship between ilnageS Viewed froln Inultiple translational cameras･

In this case, a set of eplpOles derived丘･oⅡ1 a tranSlational caIIlera is no longer a slngle

point but a line. ThllS, the probleln becomes much more colnPlex than the
case of

traditional Inlltual projectionsof multiple
cameras. Then, how about the case of mlltual

projections in 4D space? In this chapter, we show the
answer to this q11eStion･

7.2 Computing Dynamic Multiple View Geometry

in 4D Space from Mutual Projections
●

Let us consider the mutual projections of three movlng
CalneraS in sequential images･

Then, we can derive at most 3 pairs of epipoles: (e21,e31),(e12,e32) and (e13,.e23)at
an instance･ Here, (e21,e31),

for example, denote epipoles which can be approxIInately

rega,rded as the projections of
camera 1 to caITlera 2 and 3.

At time i, the epipole e21(i)
is a point in view 2, which corresponds to any point
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in view l･
Also, the epipole e31(i)at time

i is a point in view 3, which corresponds to

any point in view l･ This means, by
substitllting e21(i)and e31(i)

into x'and x" in

(4･12),we have the following trilinear relationship which rnllSt be hold for any point m

in viewl.

mie皇1(i)e3kl(i)Eた,vT,T
- Ov

∀m
(7･1)

Since (7･1)mllSt hold for any m, the remaining part, e皇1(i)e3kl(i)Ek,vT,T,mllSt be zero

tensor･ The similar discu.ssions hold for the pairs of epipoles (e12,e32) and (e13,e23)･
Thus, we have the followlng relationships between epIPOles and trifocal tensors:

e重1(i)e3kl(i)Ek,vT,T

ei2(i)e3k2(i)ek,vT,r

ei3(i)e?23(i)T,r

- Oiv

- 03･v

= Or

Although(7･2) provides us 9 linear equations on trifocal tensor, only 6 of them are

linearly independent･ And if we use (e21;e31)at N different time, the number of
independent eqllations derived from (7･2)is not always 6N･ The sa.me thing happens
to other two pairs of epIPOles. FurtherlnOre, if we colnbine solne PalrS Of epipoles and

llSe N of them respectively to compllte trifocal tensor, the results are very different.

In the fbllowlng Sllbsections, let TIS COnSider the nllITlber of independent eqllations and

the minilnllm number of corresponding points required for compllting trifocal tensors

llnder m-utllal projection of
calneraS in 4D space by uslng One, two and all three epIPOle

pairs respectively.

7.2.1 Using One Epipole Pair

7･2･1･1 Using Epipole Pair (e21,e31)or (e12,e32)

Wやfirstconsider why (7･2)has only 6 independent equations･ In general, a tensor
mlEijたrepreSentS three lines which go throllgha point m･ Thus e3kl(i)Ek,v

in (7･2)

represents three epipolar lines in v.iew 3, which go throllghan e.pipole e31(i)･
So, (7･2)

describes relationships between epIPOle e21(i)
in view 2 and epIPOlar lines I"(i)which

go throughe31(i) in view 3 as follows:

e重1(i)I;(i)瑠-
oi (7･5)

Since (7･5)mllSt hold for any point
m in
†iew
1, (7･5)is considered as a point-point-line

incidence on any point m ln View 1, epIPOle e21(i)and any epipolar
line I"(i)which

goes throughe31(i) as follows:

mie'21 (i)I;(i)7;,F- o (7･6)

Forfinding the number of independent equations in (7･2)in sequential images, we

need to collnt the nllITlber of independent incidence relations described by (7.6)when
we use N pairs of (e21(i),e31(i)),(i-tl,･･･

,tN)･
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Figure 7･1: The basis points, basis lines and epipole lines for representing incidence

relations in three views･ (ml,m2,m3) show three basis points in vi?w
l･ I;shows

epipole line which goes throughe21 in view 2･ I;'showsepipole line golng throughe31
in view 3. (lil,l'2',l13')show three basis lines in view 3.

We note that any point m in view 1 can be described by a linear coⅢ1bination of

three basis points ml, m2 and m3･ And any epipolar line I"(i)which goes through

e31(f)
in view 3 can be described by a linear coITlbination of two.basis lines. Since

e31(i)
are collinear, one of these two basis lines can be a line which goes throughall

the epipoles e31(i)(i
- tl,･･･

,tN)
as shown in Figllre 7.1. We call the line epipole

line and denote it by 1;'･SllppOSe lil,1'2'and l'31go thro11ghe31(fl),e31(t2)and e31(t3)
respectively as shown in Figure 7･1･ Then, if we have one pair ofepipoles (e21(i),e31(i))
at tl, any incidence relation represented by (7.5)at time tl Can be described by a linear

colnbination of the followlng 6 basis incidence relations:

m呈e'21(tl)I;'k瑠-
o
mie皇1(tl)l'1'k瑠-

o

m%;e321(tl)lb'k瑠-
o
m2;e'21(tl)l'1'k瑠-

o

mSe'21(tl)I;'kT吾-
o
γ鵡e'21(tl)l'1'k7;,F

- o

(7･7)

Therefore, we have only 6 1inearly independent eqllations in (7.2).
For simplification of (7.7),we define a new notation for describing all the 6 equations

as follows:

〈:m…〉{e21(tl,}〈:肇) (7.8)
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The n11ⅠIlberof eqllations is the prodllCt Of the nllmber of rows of each colllmn. So, the

nllmber ofeqllations in (7.8)is 3 × 1 × 2 - 6･

Tlms, if we have a pair of epipoles (e21(i),e31(i))at two different time, tl and t2,

then we can derive the followlng eqllations:

〈≡…〉{e21(tl,}〈i学),〈m:…〉{e21(i2)}〈.I,5)(7･9)

Then, the n11ITlberofeq11ations in (7･9)is3 × l x2+3 × 1 × 2 - 12･ It meanstbat by

llSing a pair of epipoles (e21(i),e31(i))at two different time, there exist 12 independent

eqllations.

How about the case of 3 different time, tl, t2 and t3? At time t3, We have:

〈:m…〉{e21(f3,}(:窒) (7･10)

Since
e21(tl),e21(t2)and e21(t3)

are collinear, e21(t3)
can be written by the linear

co=nbination of e21(tl)and e21(t2)
as:

e21(t3)
-

Cle21(tl)
+
c2e21(t2)

Then (7･10)can be described as follows:

〈
m:…
i{(cle21(tl)･c2e21(t2),}〈‡宴〉

Now, since

〈≡…〉((cle21(tl)+ c2e21(t2)))(I;I)

can be described by a linear corllbination of

〈≡…〉(e21(tl))(I;I)and i
it is linearly dependent with (7･9)･Therefore, only

((cle21(tl)+ c2e21(t2)))(l'3')

(7･11)

(7･12)

(7･13)

(7･14)
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is linearly independent, and then we have only 3 independent eqllations in (7.10).ThllS,
we find that froln a Pair of (e21(i),e31(i))at

3 different time, 15 independent equations

can be derived.

At tilne t4, it seelnS that we have another independent equation as follows:

〈≡…〉(e写1(t4))(lil) (7.15)

However, this is not the case. Since any line on the plane can be described by a set of

three basis lines, I;'canbe described by I;I,l'1'and l'2'asfollows:

l;I-dll;I+d2l'1'+ d3l'2'

Then, at t3, (7･14)can be represented as:

(
I:;)
(cle21(tl)+ c2e21(t2))(dll;I+

d2l'1'+ d3l'2')

Simplifying (7･16),we have:

〈≡g)(e21(t2,.i,･慧e21(tl,I,2,)
Similarly, at t4, (7･15)can also be described as:

〈≡…〉(c3e21(tl)+ c4e21(t2))(d41;I+
d5l'1'+ d6l'2')

and their silnPlified forms are:

〈≡…)(e21(t2,.i,･慧e21(tl,1,2,)

(7･16)

(7.17)

(7･18)

(7.19)

We find that (7･17)and (7･19)are very similar, only the coefhcient慧and慧are
different, but in fact they are equal and relate to the initial position of camera 1, camera

motions, calnera lnatrices, tl and f2, all of which are constants.Asa result, there is no

independent eqllation at t4. The same thing happens at time t5, t6,
･ ･ ･

. Thus when

we use 3 or lnOre Pairs of (e21(i),e31(i)),
the number of independent equations we can

derive is 15.
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Table 7･1: The nllInber of independent equations derived by using (e21(i),e31(i))or

(e12(i),e32(i))for N tilne (i - tl, -

,tN),
and the nllmber of corresponding points

reqllired fわrcoITlpllting tribcal tensors in each case of m11t11al projections of cameras.

3★ denotes 3 or greater than 3.

Nx(e21(i),e31(i)) #ofindependent #ofcorresponding

or(e12(i),e32(i)) eqlla.tions pointsreqllired

1 6 10

2 12 7

3★ 15 6

Since 〟 sets of corresponding points provide
llS 2Ⅳ 1inearly independent eqllations,

the followlng inequality must hold for computing 26 free parameters of the trifocal

tensor符if
we have a pair of epipoles at tilne tl‥

2Ⅳ+6≧26

Thus we need 10 corresponding points. Similarly, if we have a pair of (e21(i),e31(i))
at tilne tl and t2, the nllInber of corresponding points reqllired for

cornputing瑠is
(26-12)/2 - 7, and if we have apair of (e21(i),e31(i))at time tl, t2 and t3, We reqllire
6 corresponding points.

The case of epipole pair (e12,e32)is almost same as (e21,e31)IWe
,summarize

the

nlllnber of corresponding points required for compllting trifocal tens?rs in each case of

mlltual projectionsof
cameras in Table 7.1.

7･2･1･2 Using Epipole Pair (e13,e23)

The case of epipole pair (e13,e23)is mllCb silllpler than other two epipole pairs and
the analysis Process Can refer to the previollS Section. The number of independent

eqllations by llSing 〟 pairs of (e13,e23),and the n11Ⅲ1ber of corresponding points

required for compllting trifocal tensors in each case of Inutllal projections of
cameras

are sulnlnarized in Table 7.2.

7.2.2 Using Two Epipole Pairs

7･2･2･1 Using Epipole Pair (e21,e31)and (e12,e32)

(1) 1 × (e21(i),e31(i))+ 1 × (e12(i),e32(i))
SllPPOSe at tilne tl and t2 We have one pair of (e21(i),e31(i))and (e12(i),e32(i))

respectively:

e皇1(tl)e3kl(tl)Ek,v7;,T

ei2(t2)e3k2(t2)ek,v7;,r
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Table 7･2: The nulnber of independent eqllations derived by using (e13(i),e23(i))
for N

time (i - tl, ･ ･ ･

, tN),and the nulnber of corresponding points reqllired for computing
trifocal tensors in each case of mutual projections of

calneraS. 3'denotes 3 or greater

than3.

NX(e13(i),e23(i)) #ofindependenteq. #ofpointsreqllired
1 3 12

2 6 10

3★ 9 9

We have known that (7･20)can be written as:

mie皇1(tl)I:(tl)瑠-
o (7･22)

where m denotes any point
in view 1, and I′′(tl)denotes any epipolar line which goes

throllghe31(tl)in vleW 3･ Since (7･21)is qllite similar to (7.20),(7.21)can also be

described as follows:

ei2(t2)m'jlk'(t2)瑠-
o (7･23)

where m′ denotes a?ypoint
in view 2, and I′′(t2)denotes any epipolar line which goes

thro11ghe32(t2)in vleW 3･Asshown in Figllre 7･2, 1i'andl'2'go thro11ghe31(tl).1'2'and

1;'gothroughe32(t2)･The three lines do not coincide. Then (7.22)can･be written as:

〈:m…〉{e21(tl)}〈:妄) (7･24,

which denotes 6 independent eq11ations･ SiITlilarly, (7.23)can also be written as:

･e12(t2,}〈≡;)(i:i) (7･25,

However, (7･25)provides llS less than 6 independent eqllations becallSe Of (7.24).Let
llS explain it in detail.

(7.25)can be described as two parts:

(e12(t2))

(e12(t2))

(:;){l;,}
(:;){l,2,}

(7･26)

(7･27)



84

C2

Figure 7.2: The basis points and lines for representing incidence relations in three

views･ (ml.,m2, m3) show three basis points in view l･ (mi,
m12,

m'3) show three
basis

points in vleW 2･ (l'1',l'2',l'3')show three basis lines in view 3.

Since (7:26)is independent relative to (7･24),(7･26)brings llS 3 independent eq11ations･
Bllt (7･27)is d11bio11S･

If we consider one of the basis points m;
as
e21(tl),(7.27)

becomes to:

･e12(t2,}〈
e晃)
i{1,2,}

where

(e12(t2))(:,J(I,2,)
are independent with (7.24).However, the third eqllation

(e12(t2))(e21(tl))(I/2')

(7･28)

(7.29)

(7.30)

is dependent, since e12(t2)
can be represented by the basis points (ml, m2, m3) in view

1. Then (7.30)can be written as:

(clml + c2m2 + c3m3) (e21(tl))(1'2') (7.31)

wbicb is jllStthe linea･r coⅢ1bination of three eqllations in (7･24)･Then, (7.25)provides
us 3 + 2 - 5 independent equations･ Thus, 1 pair of (e21(i),e31(i))and 1 pair of
(e12(i),e32(i))provide

llS 6 + 5 - ll independent equations･
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(2) 1 × (e21(i),e31(i))+2 × (e12(i),e32(i))
If we have a pair of (e21(i),e31(i))at time tl, and a pair of (e12(i),e32(i))at time

t2andt3:

e';1(tl)e3kl(tl)Ek,v7;,T

ei2(t2)
e3k2 (t2)ek,v7;,r

ei2(t3)e3k2(t3)Ek,v7;,T

- 0,I,

- 03･v

- 03･v

their simplified forlnS We Can Obtain are as follows:

〈≡…〉
(e12(t2))

(e12(t3))

(e21(tl))

ほ〉〈
(:,i)(

三菱)

(7.35)

(7.36)

(7.37)

where
l'2'and I;'gothroughe31(tl),l'1'and l12'go throllghe32(t2),and, l'1'and I;'go

throughe32(t3)as shown in Figllre 7･3･

The former discllSSions also hold here, so we can see that (7.35)pr.ovides us 6 in-

dependent eqllations, (7･36)and (7･37)bringsus5 independent equations respectively･

Thus, a pair of (e21(i),e31(i))at 1 ti=ne and a pair of (e12(i),e32(i))at 2 different

time provide llS 6 + 5十5
- 16 independent eqllations.

(3) 1 × (e21(i),e31(i))+3★ × (e12(i),e32(i))
Here, 3* denotes 3 or greater than 3･ We first consider the case of 1 x (e21(i),e31(i))

+3× (e12(i),e32(i)),Which is the case of lx (e21(i),e31(i))+2×(e12(i),e32(i)),(7･35),

(7.36)and (7137),plus the following equations:

･e12(t4,,(:"(:u (7･38,

where li'goesthro11ghe31(tl)and e32(t4)
as shown in Figllre 7.4.

1 x (e21(i),e31(i))+2 x (e12(i),e32(i))provide us 16 independent equations･ Then
how Ⅲ1any independent eqllations does (7.38)inclllde?
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C2

Figure 7･3: The basis points, basis lines and eplpOle line for representing lnCidence

relations in three views･ (ml,.m2, m3) show three
basis points in vi.ew l･ (mi, m'2, m;)

show three basis points in vleW 2. (l'2',I;I)show two basis lines ln View 3. l'1'shows

epipole line which goes throllgh e32.

Figure 7A: The basis points, basis lines and epIPOle lines for representing Incidence

relations in three views･ (m!, m2, m3) show three
basis points in view l･ (m'1,m'2, m;)

show three
basis
points in vleW 2. (1'2',1;I,lil)show three basis lines in view 3･ ll Shows

epipole line which goes throughe12･ l'1'shows epIPOle line which goes throllghe32･
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(7･38)can be written into two parts:

(e12(t4))

(e12(t4))

(
m:"
{l,1,,

(
A:m;
){1i,}

(7･39)

(7･40)

Since
e12(t2),e12(t3)and e12(t4)

are collinear, e12(t4)can be described by e12(t2)and

e12(i3).
Then, (7.39)can be changed to:

(cle12(t2)+ c2e12(t3))(
m:;
){l,1,, (7Al,

which can
be represented by the co=nbination of solne equations froln (7.36)and (7.37).

So (7･39)does not bring llS any independent eq11ation･ Then how abollt (7.40)?If we

consider one of the basis points m;
as
e21(tl),(7.40)

can be written as:

(e12(t4))〈
m/1

mI2

e21 (tl) i{11,} (7･42)

The丘rst two eqllations are independent to others, bllt the third eqllatidn is not. Since

e12(t4)and ll'can
be described by (ml,m2,m3) and (1'2',l'3')resp6ctively, the third

equation
can be represented as follows:

(alml + a2m2 +
a3m3) (e21(tl))(dll'2'十d21;I) (7･43)

which is the colnbination of 6 eqllations in (7･35)･ Therefore, (7AO) involves 2 in-
dependent eq11ations･ Thus, llSing one lnOre pair of (e12(i),e32(i)),We Can derive

2 more independent eqllations than 1
x (e21(i),e31(i))+ 2 × (e12(i),e32(i)),that is,

I x (e21(i),e31(i))+3x(e12(i),e32(i))can bring us 16+2 - 18 independent eqllations.

On the other hand, (7･40)can also be written into:

(cle12(t2)+ c2e12(t3))〈
Simplifying it, we have:

〈慧e12(t3,I,2,I

e12(t2,1,3,)(:m;)

(7.44)

(7･45)
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At time tn,n > 4, we can derive similar equations in which only the coefRcient慧is
different, bllt it can be proved that this coe凪cient is a constant. That means lnOre pairs

of (e12(i),e32(i))do not bring new independent equations･ Thus, 1 x (e21(i),e31(i))+
3* x (e12(i),e32(i))still provideus18 independent eqllations.

(4)2 × (e21(i),e31(i))+2 × (e12(i),e32(i))
In this case, we have the following simplified eqllations:

〈≡…

m:
:i

i
〉

(e12(t3))

(e12(t4))

(e21(tl))

(e21(t2))

aREal巳

(:,u

(7･46)

(7.47)

(7･48)

(7･49)

where l'1/and l'2'go thro11ghe31(tl),1i'and1;'gothro11ghe31(t2),li'andl'2'go throllgh

e32(t3),and ll'and1;'gothro11ghe32(t4)
as shown in Figllre 7･5･ (7･46)qnd (7･47)first

provides us 6 independent eqllations respectively･ Next, let llS COnSiqer (7･48)･It can

be separated into:

(e12(t3))

(e12(f3))

(
m:;(
m:;

〉{1i,}

i(l'2()
(7･50)

(7.51)

Since (7.50)is independent with (7･46)and (7･47),(7･50)brings llS 3 independent

eqllations. Moreover, it can be written as:

((clml + c2m2十c3m3)) (7.52)

Then (7･51)can also be rewritten into:

(e12(t3)) (m'1) (l'2') (7.53)

(clml +c2m2 +c3m3) (e21(tl))(l'2') (7.54)

(clml +c2m2 +c3m3) (e21(t2))(dll'1'+d21;I+d311') (7.55)
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Figure 7.5: The basis points, basis lines and epipole lines for representing Incidence

relations in three views･ (ml,.m2, m3) show three
basis points in vi.ew l･ (mi, m'2, m;)

show three basis points
in vleW 2･ (l'2',I;I)show two basis lines ln View 3･ Ill/shows

epipole line which goes throughe31. ll'showseplpOle line which goes thro11ghe32.

(7.53)is independent to (7.46),(7.47)and (7･50),bllt (7･54)can be described by

(7A6), in addition, (7･55)can be represented by (7･47)and (7･52)IT･herefore, (7.51)

contribllteS Only 1 independent equation. Thus, (7.48)provides llS 3 + 1 - 4 inde-

pendent equation･ For the same reason, (7A9) also brings us 4 independent equations.
Then, 2× (e21(i),e31(i))+2×(.e12(i),e32(i))provides

llS 6+6+4+4 - 20 independent

eqllation.

(5)2 x (e21(i),e31(i))+Six (e12(i),e32(i))
We have derived 20 independent equations froln the case 2

x (e21(i),e31(i))+ 2 x

(e12(i),e32(i)).What will happen when we use one =nore pair of (e12(i),e32(i))?We

can add the following equations to (7A6)-(7A9) to consider tllis case:

･e12(t5,}(:;)(iu (7･56)

where li'isa eplPOle line which goes thro11ghe32, and l'5/denotes a line going throllgh
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Figllre 7.6: The basis points, basis lines and epipole lines f♭rrepresenting incidence

relations in three views･ (mチ,m2, m3) show three
basis points in view l･ (mi, m'2, m;)

show three basis points in vleW 2･ (l'2',I;I,l'5')show three basis lines in view 3. ll Shows
epipole line which goes thro11ghe12･ li'showsepipole line which goes thro11ghe31. 1笠
sbows甲ipole line which goes tbrollgb e32･

Table 7･3: The nu=nber of independent eqllations derived by using (e21(i),e31(i))for
Nl tilne (i - tl,-

,tNl),
and (e12(i),e32(i))for N2 ti=ne (i - tl,.-

,tN2),
and the

nulnber of corresponding points reqllired for compllting trifocal tensors in each case of

Inutual projections of
calneraS. 3'denotes 3 or greater than 3.

Nix(e21(i),e31(i))
+

N2X(e12(i),e32(i))

#ofindependenteq. #ofpointsreqllired

1+1 田 8

1+2 16 5

1十3★ 18 4

2+2 20 3

2'+3' 21 3

3★十3★ 22 2

e32(t5)
as shown in Figure 7･6･ Then (7.56)can be rewritten into:

(ale12(t3)+ a2e12(t4))

(clml + c2m2 + c3m3)

(7･57)

(7･58)
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Figllre 7･7: The basis points, basis lines and epipole lines for representing Incidence

relations in three views･ (m!, m2, m3) show three
basis points in view l･ (m'1,m'2, m;)

show three basis points in vleW 2･ (l'2',l'3',l'5')show three basis lines in view 3. ll Shows
epipole line which goes throughe12. IllShows epIPOle line which goes throughe21. l'1'

shows 9pipole line which goes throughe31･ ll'showsepipole line which goes throllgh
e32･

(7･57)can be described by (7･48)and (7･49),so it does not provide apy
independent

equation･ In addition, l'5'goes throllghe32(t5)･Then it can be a line going throughnot

only e31(tl)and e32(t5),
but
e31(t2)and e32(t5)

as shown in Figllre 7.6. Thus, (7.58)
can be writ,ten

as:

(clml+c2m2+c3m3) (mi) (1'5') (7.59)

(clml + c2m2 + c3m3) (e21(tl)) (dll'1'+d2l'2') (7.60)

(clml + c2m2 + c3m3) (e21(t2)) (d31'1'+d41;I) (7.61)

(7.59)is independent to other eqllations, bllt (7･60)and (7･61)can be represented by

(7.46)and (7･47).respectively･Then (7･56)provides llS 1 independent eq11ation･ T九lls,

in the case of2 x (e21(i),e31(i))+3x (e12(i),e32(i)),We have 20+1 - 21 independent

eqllations.

On the other hand, (7･56)can also be described by:

(ale12(t3)+ a2e12(t4)) (bll'2'+b21;I+b311') (7･62)



92

ほe12(t4,I,2,I

e12(t3,I;,)(:m茎〉

Modifying it, we have:

(7.63)

Since慧isa constant, even if we use more (e12(i),e32(i)),the number of independent

equations co111d not increase for the sa血e reason lnentioned before. Therefore, 2 ×

(e21(i),e31(i))+ 3'x (e12(i),e32(i))provides
llS 21 independent equations.

(6)3★ × (e21(i),e31(i))+3★ × (e12(i),e32(i))
Tbe discllSSion on the nllITlber of independent eqllations in this case is very similar

to the previollS Case, 2 × (e21(i),e31(i))+ 3★ × (e12(i),e32(i)),SO We do notgive the

explainer here, only the con丘g11ration (seeFigllre 7･7)･
Up to now, we have considered all the cases of using epipole pair (e21(i),e31(i))

and (e12(i),e32(i))･
They are s11mmarized､in Table 7･3･

7.2.2･2 Using Epipole Pair (e21,e31)and (e13,e23),Or (e12,e32)and (e13,e23)

In sllCh coITlbinations, the n11Ⅲ1ber of independent eqllations and corresponding points

required in all the cases are sllmlnarized in Table 7.4. Most of theln Can be obtained

by Table 7.1 and Table 7.2 directly. Only the following two cases need to be explained:

No.

Nix(e21(i),e31(i))Or(e12(i),e32(i)) #of ■#of
+ independent~ points

N2X(e13(i),e23(i)) eq. reqllired

1 2+3★ 20 3

2 3★+3★ 22 2

We first consider 2
x (e21(i),e31(i))+3 x (e13(i),e23(i))in No･1･
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Table 7A: The nulnber of independent equations derived by using of (e21(i),e31(i))
or (e12(i),e32(i))for Nl ti=ne (i - tl,-

,tNl),
and (e13(i),e23(i))for N2 time (i -

tl, ･ I ･

, tN,),and the nllmber of corresponding pointL"eqllired for compllting trifocal

tensors in each case of IIl11t11alprojections of
caITleraS. 3★denotes 3 or greater than 3.

Nix(e21(i),e31(i))Or(e12(i),e32(i))
#ofindependenteq.

#of
十 points

N2X(e13(i),e23(i)) reqllired

1+1 9 9

1十2 12 7

1+3★ 15 6

2十1 15 6

3★+1 18 4

2+2 18 4

2+3★ 20 3

3★+2 21 3

3★+3★ 22 2

Figure 7.8: The basis points, basis lines and epIPOle lines for representing Incidence

relations in three.vieTs･(ml, m2, m3) show
three basis points in view l･ (1'2',1;I)show

three basis lines ln VleW 3･ ll Shows epipole line which goes thro11ghe13･ 1ishows
eplpOle line which goes tbrollgh e23. 1;shows eplpOle line which goes tbrollgh e31･
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In this case, we have 5 sets of siITlpli丘ed eqllations:

〈≡…〉
〈≡…〉

(e21(tl))

(e21(t2))

(e13(t3))(e23(t3))

(e13(t4))(e23(t4))

(e13(t5))(e23(t5))

〈

〈
〈
〈

:I::,:

:I

:;'…g;I)

I:"

(7.64)

(7.65)

(7･66)

(7･67)

(7･68)

where l'1'and l'2'go thro11ghe31(tl),and, 1'1'and 1;'gothro11ghe31(t2)as shown in
Figllre 7.8. (7.64)-(7.67)represent the case of 2 × (e21(i),e31(i))+2 × (e13(i),e23(i)),
which provides

TIS 18 independent eqllations. Then based on it, how many independent

eqllations can we derive丘･oITl (7･68)7
Since
e13(t4)and e23(14)

can be described by (ml,m2,m3) and (e21(tl),e21(t2),

e23(t3))respectively, the
first eqllation in (7･67)has the following calculations:

(e13(t4))(e23(t4))(lil) (7･69)
- (clml + c2m2 + c3m3) (dle21(tl)+ d2e21(t2)+ d3e23(t3))(1'1') (7.70)
- (clml + c2m2 + c3m3) (e23(t3))(lil)
- (e13(t4))(e23(t3))(l'1')

For the salne reason, the first equation in (7･68)can also be rewritten as:

(e13(t5))(e23(t3))(l'1')

and since it can be described by:

(c4e13(t3)+ c5e13(t4))(e23(t3))(lil)

(7.73)

(7.74)

which
can be represented by (7･66)and (7･72),tbe丘rst eqllation in (7･68)is not in-

dependent. Whereas the other 2 eqllations in (7･68)are independent to all the others.

Therefore, (7.68)brings us only 2 independent equations･ Even if one InOre Pair of

(e13(i),e23(i))isgiven,
it will not provide us InOre independent constrains･

Next, let llS discllSS the case of 3 × (e21(i),e31(i))+ 3 × (e13(i),e23(i))in No･2･
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Figure 7.9: The basis points, basis lines and epipole lines for representing Incidence

relations in three vieTs･(ml,m2,m3) show
three basis points in view l･ (1'2',1;I,lil)

show three basis lines ln View 3. ll Shows epipole line which goes throughe13･ l'1Shows

epipole line which goes throllghe21. l'2Shows epipole line which goes throughe23. l'1'

shows?pipole
line wbicb goes tbrollgb e31･

All the eqllations with silnPlified forms are as follows:

〈
i
i

ml

m2

m3

(e21(t2))

(e21(t3))

(e13(t4))(e23(t4))

(e13(t5))(e23(t5))

(e13(t6))(e23(t6))

i

i
i
〈

:u

…g;I)
…董〉

1i,;;
)

(7･75)

(7.76)

(7･77)

(7･78)

(7･79)

(7･80)
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The configuration of theln is shown in Figure 7･9･ If we only focllS On (7･75)-(7.79),
we know that they describe the case of 3 × (e21(i),e3i(i))+ 2 × (e13(i),e23(i))which
brings llS 21 independent eq11ations･ How abollt (7.80)?
Since (7･79)can be represented by:

(clml + c2m2 + c3m3) (dle21(tl)+ d2e21(t2)
+ d3e23(t4))

Expanding and silnPlifying them, we obtain:

(e13(t5))(e23(t4))(lil)

(e13(t5))(d2e21(t2)+ d3e23(t4))(l'2')

(e13(t5))(dle21(tl)+ d3e23(t4))(1;I)

For the salne reason, (7.80)also equals to:

(e13(t6))(e23(t4))(lil)

(e13(t6))(d'2e21(t2)+ d;e23(t4))(l'2')

(e13(t6))(d'1e21(tl)+ d;e23(i4))(1;I)

〈:lg;I)(7･81,

(7･85)can be described by (7.78)and (7.82),so in (7.80),only 2 independent eqllation

candidates exit.
On the other band,

Bwg
in (7.77)can be rewritten into:

(::i3:1
So we have these 2 eqllations:

a2bl

(1.1I)2

a2bl

alb2

(e21(t3))(lil)

(ale21(tl)十a2e21(t2))(bll'2'+b21;I)

(e13(t5))(e21(t2))(l'2')+ (e13(t5))(e21(tl))(l'3')

(e13(t6))(e21(t2))(1'21)+ (e13(t6))(e21(tl))(I;I)

(7.88)

(7･89)

CoIIlbilling (7･87)and (7･91)we have:

一望砦(e13(t6))(e21(t2))(112,).(d;e13(t6))(e23(t4))(.;,)
(7･92)
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Then, by s11bstit11ting (7･86)into (7･92),we obtain:

一宏(e13(t6))
(e23(t4))(1,2,)+ (e13(t6))(e23(t4))(1;,)

Silnilarly, the followlng equation can also be derived:

-≡窓(e13(t5))
(e23(t4))(1,2,)+ (e13(i5))(e23(t4))(.;,)

Since

a2bl dl a2bldi
-- 1

こ･

..
1
:

. -
alb2d2 alb2d'2?

(7.93)

(7･94)

(7.95)

we denote them as A･ For
e13(t6)

-

C4e13(t4)+ c5e13(t5),(7.93)
can be written as

follows:

Ac4 (e13(t4))(e23(t4))(l'2')+ c4 (e13(t4))(e23(t4))(I;I)

+c5(A (e13(t5))(e23(f4))(1'2')+ (e13(t5))(e23(t4))(1;I))

which is the pllre COmbination of (7･78)and (7･94)･Therefore, (7･87)can be described
by other equations･ ThllS, (7･80)only provides us 1 independent equation. Then, from

the case of3
x (e21(i),e31(i))+3x (e13(i),e23(i)),We derive 21 + 1 - 22 independent

eqllations･ Increasing the nllmber of (e21(i),e31(i))or (e13(i),e23(i))will not bring
more in.dependent constrains. So, in case No.2, we stillhave 22 independent equations.

And if we change the epipole pair (e21,e31)to (e12,e32),the saⅡ1e reS111ts will be
derived.

7.2.3 Using All Three Epipole Pairs

Froln Table 7.1-Table 7A, we can deduce the nulnber of independent equations and

corresponding points reqllired by llSlng all three eplpOle pairs. The res111ts are s11Ⅱト

Ⅲ1arized in Table 7.5. The Ⅱ10St interesting thing lS When we have 2 or Ⅲ10re SaⅢ1ples

of each epipole palr, We do not need any corresponding point to derive trifocal tensors

anyⅢ10re･

7.3 Experiments

We next show the results of experiments and discuss the e氏ciency of making llSe Of

mutllal projections of
cameras in the computation of trifocal tensors in 4D space.

Wefirst show the results from real ilnageS that the trifocal tensor in 4D space

can be computed from three epIPOle palrS at different time viewed from arbitrary

translational caITleraS With
no
corresponding points, and can be llSed for generating

the third view froln the
first view and the second view of movlng Cameras. We next

evaluate the stability of extracted trifocal tensors in this brand new case and compare

it with traditional Ⅲ1ethod.
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Table 7･5: The nllmber of independent equations derived by using (e21(i),e31(i))
for Nl

tilne (i - tl,-
,tNl),
(e12(i),e32(i))for N2 time (i- tl,-

,tN,)
and (e13(i),e23(i))

for N3 time (i - tl, ･ ･ ･

,tN｡),
and the nllInber of corresponding points reqllired for

complュting trifocal tensors in each case of lnutual projections of
cameras. x★ denotes

I or greater than x.

Nix(e21(i),e31(i))
+

N2×(e12(i),e32(i))
+

N3×(e13(i),e23(i))

#ofindependenteq. #ofpointsreqllired

1十1+1 14 6

1+1十2 17 5

1+2+1 19 4

1+1+3★ 2P 3

1+3★+1 21 3

1+2+2 22 2

2十2+1 23 2

1+2+3★ 24 1

1+3★十2 24 1

2+3★+1 24 1

1+3★+3★ 25 1

3★+3★+1 25 1

2★十2★+2★ 26 0.

7.3.1 Real lmage Experiment

In this section, we show the results froln the followlng Case:

2 × (e21(i),e31(i))+2 × (e12(i),e32(i))+ 2 × (e13(i),e23(i))･

That is, we use each epIPOle pair at two different time respectively to compllte trifocal

tensor, bllt do not llSe any COrreSpOnding point.

In the first e耳periment, we llSed 2 omnidirectional cameras and 1 general caln-

era. These 3 cameras are translating with different constant speed and
different di-

rection. We computed the trifocal tensor between these three calneraS by using 3

epIPOle palrS. We can compute the extended trifocal tensor and can generate arbitrary

image motions in one of three views from the other
two views. In this experilnent

we generated image Ⅱ10tions in caⅡ1era 3 by llSlng lⅢ1age ITIOtions in caITlera 1 and

camera 2. Figllre 7･10 (a),(b) and (c)show血Iage motions of a single Ⅱ10Ving point

and 6 eplpOle lines in translational camera 1, caⅢ1era 2 and caITlera 3 respectively.

The trifocal tensor is cornpllted froln 3 epipole pairs, each of which is salnPled at two
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(a)image of calnera 1

(c)image of camera 3

(b) iIllage Or Calllera 2

コ†=

材

-.I

:

(d)recovery res111t

lJ.LIT.

戟

･
l

JiJJ･

Fig-Ire 7･10= Real image
eチperimellt

l･ (a),(b)and (c)show epipole lines and image

motiollS Of a slngle point･ vleWed frolll Camera 1, 2 alld 3. The black points on eplPOle

lines iIモeachimage a･r?llSed
for colnputillg tlle trifocal tensor･ The white curve in (d)

shows Image motions ln Camera 3 generatedfroln the ext.ended trifocal tensor, and the

black cllrVe Shows tlle real image lnOtiollS.

diHerent til-1e. (e12(tl),e32(tl)),(elユ(t2).e32(t2)).(e13(t3),e23(13)).(e13(t4),e23(t4)),
(e21(t5),e31(t5)),(e21(t6),e31(t6)).which

are showll by black pointsin(a･), (b) and (c).
The extracted trifocaltensor is used for gel一erating linage mOtionsincamera 3 from

ilnage lnOtiollS illCalilera 1 alld 2. The white cllrVe in Figllre 7.10 (d) shows ilnage

ll10tions in ca.mera 3 gellerated from the extended trifoca.1 tellSOr. and the black cllrVe

shows the realimage motiollS Viewed froln Carnera 3･ As shown in Figllre 7.10 (d),the

gellerat･ed iIIlage lllOtioIIS a･11110Strecovered the orlglna･l illla･gel110tioIIS eVell if tlleSe 3

cameras have tlnkncIWll trallSlationalmotions.

The other experiment isalsogivell･ Figllre 7･11, (a).(b)alld (c)show three views

of the eplpOle lines and image mot･ions. The 2 bla･ck points oll each eplpOle lille are

used for complュting the trifocal tensor. Note that tlleSe 3 ca･mel･aS a･re traIISlatillg Witll
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(a)image of calTlel,a･ 1

(c)image of camera 3

(b) iIIlage Of calnera 2
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■:

Ll

･

Fig-1re 7･11‥ Real image
eチperimellt･

2･ (a),(b) alld (c)show epipole lines and ilnage

l110tions of
a slngle point vleWed from camera 1, 2 a･nd 3･ The black points oll eplpOle

lines il!each ilnalge ar?used
for colnPuting the trifocaltensor･ The white ctlrVe in (a)

shows Image mOtioIIS III Calnera 3 gellerated from the extellded trifocal
tensor,

alld t･he

black cllrVe Shows the real image motiollS.

differellt Speed alld different direct･ioll. The white
cllrVe il一(d) shows image motiollS

recovered frolllthe ext.elided trifocal tellSOrincalllera 3. alld the black cllrVe Shows real

image lnOtiollS Observed iII Camera･ 3,Aswe can see. t･11etrifocalt･ellSOr defilled l111der

4D to '2D proJeCtiollS Can be derived o111y from 2 samples of the proJeCtior1 0f each
camera with arbitrary tra11Slatiollal1nOtio11, alld it is practical for gellerating llnageS

of a.rbitrary ll10tiollS Viewed frolrl trallSlatiolla･1 cameras.

7.3.2 Stability Evaluation

We lleXt Show the stability of extracted trifocal
tensors 1111der 4D to 2D project.ions

witll 13 poillt lllet･hod a･lld llllltlla･1projection llletl10d.
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10 y

Figllre 7.12: Three translating cameras and a movlng point in the 3D space. The

black points show the viewpoints of three cameras before translational motions, and

the white points show those after the translational IT10tions･

Fig11re 7.12 shows a 3D con丘g11ration of 3 Ⅲ10Ving cameras and a ITIOVlng point. The

black points show the position of three
cameras, Cl, C2 and C3, before translational

motions, and the white points show those a氏er the translational motions. The
trans-

1ational motions of these three cameras are di鮎rent and llnknown. The black cllrVe

shows a locus of a freely moving point. For evaluating the extracted trifocal tensors,

we computed reprojection
errors derived froln the trifocal tensors. The reprojection

error is defined as follows:

妄皇d(-i,&i)2 (7･96)
β-.il

where d(mi, thi)denotes a distance between a trlle point mi and a point血i recovered

from the trifocal tensor.

The case of mutual projections is still2 x (e21(i),e31(i))+2 x (e12(i),e32(i))+2
x

(e13(i),e23(i))･
We increased the nlllnber of corresponding points used for compllting

trifocal tensors in three views from 0 to 25, and evaluated the reprojection
errors.

In the saITle Way, We also evalllated the 13 point Ⅱ1etbod with sallle COrreSpOnding

points丘･oⅢ1 13 to 25. GallSSian noise of standard deviation of 1 pixel is added to each
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Figure 7.13: The relationship between the nulnber of corresponding points llSed for

colnPuting trifocal tensors and the reprojection
errors. The black points show the

reslllt from mutual projection Inethod, and the white points show that from 13 point

Ⅱ1ethod.

ilnage. Figure 7･13 shows the relationship between the number of corresponding points

and the reprojection
errors. The black points show the res111t丘･oⅠIIITltltllalprojection

Inethod, and the white points show that froln 13 point method. As we can see, the

stability is obviollSly illlprOVed by llSlng a few ITIOre points than the ITlin血111ITln11ⅠIlber

of corresponding points. Moreover, with less or even no corresponding points, the

Inutual projection method
can derive more stable trifocal tensors than the 13 point

Ⅲ1etbod.

7.4 Summary

In this chapter, we analyzed the colnPutation of dynamic Inultiple view geometry in 4D

space丘･olll ITl11t11alprojectionsof Ⅲ1111tiple
caITleraS. Taking three translational caⅢ1eraS

for exalnPle, we discussedus1ng One, two and all three epIPOle pairs at different tilne

bow ITlany independent eqllations we can derive and then how ITlany corresponding

points are required to colnPllte the trifocal tensor.Asa result, with one epipole pair

at 3 different tilne We need 6 corresponding points, with two epIPOle palrS We at least
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require 2 corresponding points, and when weuse three epipole palrS at 2 different time

respectively, we do not need any corresponding point to figure out the trifocal tensor.

That means arbitrary Image InOtions tracked by moving CalneraS Can be recovered even

if they are coplanar or collinear, as long as we have the projections of caHleraS. The

Inethod was imple=nented and tested by llSlng real image sequences. The stability of

extracted trifocal tensors was also evalllated.



Chapter 8

Conclusion

In this thesis, we presented the dynamic IIl111tipleview geoIIletry Wbicb incllldes the

the traditional Inultiple view geometry and the high-dimension lnultiple view geometry.
We modeled the camera trajectory by Degree-n Bezier cllrVeS and Inade points in 3D

undergo non-rigid InOtions.
We found that the projective projections of non-rigid 3D

motion to Degree-n Bezier cllrVe Can be represented by a projection
from (n + 3)D

to 2D. If 3D point InOtions are tracked by Inultiple arbitrary lnOtion cameras, the

Inultilinear relationship under the projection froln (n + 3)D to 2D can be derived･
Then, we analyzed the projective projections

froln (n + 3)D to 2D and deduced the
degree.of freedo=n of the extended projective

camera. (n + 3)-Dimension multiple

view geometry Involving several sllCh extended cameras and a dynamic scene was also

addressed･ Multilinear relationships and the maxilnal linear relationship in the (n+3)D
space were derive froln the multifocal point relations. Finally, counting argulnentS Were

executed. Froln the geometric degree of freedom of extended projective
calneraS and

the degree offreedoln Of the points in (n+3)D and all the images, the Ininimum nllmber

of points required for computing the multifocal tensors were derived.

We next analyzed the dynamic multiple view geometry under projectiveprojections
from 4D space to 2D space, and showed that it can represent multiple view geometry

under space-time projections, in which the multilinear relationship
for 5 views is the

Ⅱ1aXiIIlal linear relationship in the 4D space llnlike the traditional ITl111tipleview ge-

ometry. The new trilinear, quadrilinear and quintilinear relationships were analyzed.

We showed that the newly defined Inllltiple view geometry can be used for describing

the relationship
between iHlageS taken froⅢ1 nOn-rigid ITIOtions viewed丘･om II1111tiple

translational caⅢ1eraS and is very 11Sef111br generating lIllageS Of non-rigid object
Ⅲ10-

tions viewed froln arbitrary translational cameras. Here, the Inultifocal tensors are

computed froln corresponding points. For instance, the trifocal tensor can be derived

by llSlng 13 corresponding points, which are not collinear and coplanar. The IIletbod

was implemented and tested byuslng real ilnage SeqllenCeS. The stability of extracted

trifocal tensors was also evaluated.

We also extended the theory of Ⅱ1111tipleview geoIIletry ln Space-tiⅡ1e, and intro-

dllCed a Ⅱ1111tipleview geoⅡ1etry Of IIl111tiplecaIIleraS With arbitrary cllrVilinear motions.
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We llSed afRne camera model and projective
calnera model to describe the m111tilin-

ear relationship under the projection
from 6D to 2D respectively, which can represent

the geolnetric relationship of multiple cllrVilinear motion
cameras whose motions are

represented by cubic Bezier curves. The multifocal tensors
defined under 6D to 2D

m111tilinear relationships can be comp11ted丘･om non-rigid object motions viewed丘･oⅢ1

Ⅲ1111tiplecameras with arbitrary cllrVilinear motions. We also showed that the m111tilin-

ear relationships are very llSeful for generating arbitrary view images and reconstructing

3D
non-rigid object motions viewed

froln Cameras With arbitrary curvilinear lnOtions.

The IIlethod was tested by real iIIlageS. We also evalllated the stability of extracted

qlladrifocal tensors.

We have introdllCed the dynaⅢ1ic ITl111tipleview geometry, in which the
caⅡlera

trajectoriesare InOdeled by Degree-r7J Bezier curves. However, when n is large, the

m111tiple view geometry will becoⅢ1e Very COHlplex and 11nCOⅡ1p11table. On the other

hand, the main problem with Bezier curves is their lack of local control. To overcome

the problelnS, We consider degree-n B-Spline cllrVe, a Piecewise curve, to represent the

caⅢ1era trajectories.In the ITlatbeⅢ1atical丘eld of nllmerical analysis, B-spline cllrVeS are

very useful for representing arbitrary 3D shapes with small nulnber of control points.

ThllS, We Can llSe low degree B-spline cllrVe tO describe a coIIlplex cllrVe. We gave the

de丘nition of the B-spline cllrVe and especially took cllbic B-spline cllrVe aS an instance

of to represent the trajectory of the caⅢ1eraS. Althollgb the ll1111tipleview geoITletry

corresponding to each segment of B-spline cllrVe lnOtions is same as the case of Bezier

curve, the camera motions could be InOre COmPlex and less control points described

if the camera motions are represented by B-spline cllrVeS. For exalnPle, a 21Segment

cubic B-spline curve is smooth, differentiable and depends on 5 control points, while two

sllCCeSSive Bezier curves are not differentiable and determined by 7 control points. The

synthetic experilnent Showed that even if all the cameras undergo colnPlex curvilinear

InOtions, the view transfer still can be realized by llSing the dynalnic multiple view

geoⅡ1etry･

We also proposed the colnPutation of multiple view geometry
ln space-tilne under

the case where
caITleraS are

projected each other and epipoles
are glVen aS the projec-

tions of calneraS in ilnageS. Since all the cameras are dynamic, an epIPOle at different

tilne has different vallle. Making use of those values, we worked out many interest-

1ng results, SllCh as, in colnPuting the trifocal tensor, if we use one epIPOle palr at 3

different tilne, We require at least 6 corresponding points; uslng two ePIPOle pairs at

3 tiⅢ1e respectively, we need only 2 corresponding points; if we have all the epipole

palrS at 2 tirlle respectively, the corresponding points are no longer reqllired. In the

last two cases, colnPuting the trifocal tensor is not restricted by the relative positions

of the corresponding points any IT10re and arbitrary lⅢ1age ITIOtions can be recovered.

nlrthermore, tlle ITl11t11alprojection ITletbod enables
llS tO Obtain the m111tiple view

geoITletry IIlllCh I110re Stably.

The dynalnic Inultiple view geolnetry Proposed in this thesis describes the relation-

ship aII10ng a dynaⅡ1ic scene and Ⅲ1111tiplelllOVlng CaⅢ1eraS, Which is a ITIOre general

configuration than the traditional Inultiple view geometry. By uslng it, we can recover
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not only the non-rigid object motions in
one of the camera views, bllt also their orlglnal

shapes in the 3D space･ Moreover, it can also be used for =neasurlng and modeling the

real objects, recognlZlng
human actions, navigating robots, etc. In the future, we will

try to apply the new theory to solnefields and further extend it. On the other hand,

the proposed theory also has its lilnitations. For exalnPle, the cameras are asslllned

to have no rotations and the lllOtions of the caITleraS are COnStrained by paraⅡ1etric

equations, such as Bezier curve or B-spline curve. These problems will be solved in our

future works.



Publication List

. Journal

1. C. Wan and J. Sato, ColnPuting Spatio-telnPOral Multiple View Geometry from

Mutllal Projections of Multiple Cameras, IEICETransactions on Information and Sys-

telnS, Vol･E931D, No･9, pp･2602-2613, Sep･ 2010･[93]

2. C. Wan and I. Sato, Multiple View Geolnetry llnder Projective Projection in Space-

Tilne, IEICETransactions on Inforlnation and Systems, vol.91-D, No.9, pp.235312359,

2008･[92]

3. K. Kpzllkn, C. Wan and J. Sato, Rectification of 3D Data
Obtained from Moving

Range Sensor by Using Extended Projective M111tiple View GeoⅢ1etry, International

Journal of AlltOInation & Computing, vol.5, No3, pages 268-275, Springer, 2008･[48]

. International Conference

4. C. Wan and J. Sato, Computing Multiple View Geometry for Non-Rigid Motions

Viewed froln CllrVilinear Motion Projective Carneras, Proc.20th International Confer-

ence on Pattern Recognition, pp.181-184, 2010･【94]

5. C. Wan and I. Sato, ColnPllting multiple view geometry in space-time from mu-

tual projections of Inultiple
calneraS, Proc.19th International Conference on Pattern

Recognition, pp･1-4, 2008･[91]

6. C. Wan, K. K6z11ka, and ∫. Sato. M111tiple view geolnetry for non-rigid InOtions

viewed
from translational cameras. Proc. 8th Asian Conference on ColnPuter Vision,

4844 of LNCS, pages 342-352. Springer, 2007.[89]

7. K. Kozukn, C. Wan and J. Sato. Rectification of 3D data obtained from InOVing

range sensor by llSlng Ⅱ1111tipleview geoIlletry lュnder projective projections in space-

tilne. ACCV'07 Workshop on Mlllti-DilnenSional and Multi-View Image Processing,

2007.[47]



108

. Domestic Conference

8･ C･ Wan and J･ Sato･ Multiple view geometry under projective projections in space-

tiITle･ In Proc･ loth Meeting on Image Recognition and Understanding, pages 205-211,

2007･[90](SpecialSession Award)



Acknowledgments

The work described in this dissertation has been carried ollt at the Departlllent Of

ColnPuter Science and Engineering of Nagoya Institllte Of Technology under the sllPer-

vision of Professor Jun Sato. I would like to express my sincere thanks to my supervisor

Professor JumSato for his gllidance, expertise, inspiration and patience. I appreciate

his vast knowledge and skill in Hlany areas,.and his assistance in writing works.

I would also like to thank Professor Hidekata Hontani and Dr Fumihiko Saknlle for

fruitful discussion and comments on my research. I wish to thank the other members

of ollr Sato-Hontani Laboratory for their variousassistance and friendliness. Althollgh
solne Of them were graduated, I will never forget the scene when I

calne tO Japan, to

this laboratory. They gave ITle a good iITlpreSSion of Japan and this laboratory.

Finally, I aln indebted to my falnily for the sllPpOrt they provided me throllghIny

entire lifeand in particular, I mllSt acknowledge my husband and best friend, Lin,

withollt Whose love, encollragement and technical assistance, I wo111d not have丘nished

this dissertation.



110

References

[1]D･G･ ALIAGA, T･ FuNKHOUSER, D･ YANOVSKY, AND I･ CARLBO.M･ Sea of

images: A dense salnPling approach for rendering large indoor envlrOnmentS.

IEEE Computer Graphics and Applications, 23(6):22130,November 2003.

[2]SHAI AvID?N AND AMNON SHASHUA･Trajectory triangulation･'3d reconstruc-

tion of InOVlng points from a monoclllar image seqllenCe. IEEE 7Tansactions on

Pattern Analysis and Machine Intelligence, 22:200-0, 2000.

[3]E･P･ BALTSAVIAS･ Multiphoto geolnetrically constrained matching. In Ph.D.

ThesiS, Page Zurich, 1991.

【4]R･ BASRI, A･J･ GROVE, AND D･W. JACOBS. E氏cient deterlnination of

shape from mllltiple images containlng Partial inforlnation. Pattern Recognition,

31(ll):1691-1703,November 1998･

[5]P･A･ BEAR.DSLEY, J･M･ BRADY, A山D D･W･ MuRRAY･ Prediction of stereo

disparity uslng Optica1月ow. In BMVC90, 1990.

[6] M･ BERTHOD, H･ SHEKARFOROUSH, M･ WERMAN,?ND J･B･ ZERUBIA･ Re-

construction of highresolution 3d visllal information llSlng Sllb-pixel calnera dis-

placements. In CVPIW4, pages 654-657, 1994.

【7]G･ BRADSKI AND T･E･ BouLT･ GlleSt editorial: Stereo and Ⅱ1111ti-baseline

vision･ International Journal of
Computer Vision, 47(1-3):5-5,April 2002.

[8]S.S. BRANDY. Conditional solutions for the a氏ne reconstru'ction of n-views.

Image and Vision Computing, 23(7):619-630,July 2005.

[9]Y･Q･ CHENG, X･G･ WANG, R･T･ CoLLINS, E･M･ RISEMAN, AND A･R･ HAN-

soN. Three-dimensional reconstrllCtion of points and lines with llnknown corre-

spondence across images･ International Journal of
Computer Vision, 45(2):1291

156, November 2001.

[10]C･Ⅰ･ CoNNOLLY AND J･R･ STENSTROM. ConstrllCtion of polybedral Ⅲ10dels

froln In111tiple range views. In ICPIW6, pages 85-87, 1986.

[11]C･I･ CoNNOLLY AND J･R･ STENSTROM･ 3-d scene reconstruction from mllltiple

intensity ilnageS. In 3DWS89, pages 1241130, 1989.

[12]CARL DE BooR･ A Practical Guide to Splines. Springer-Verlag, 1978.

[13]M･A･ DROUIN, M･ TRUDEAU, AND S･ Roy･ GeoICOnSistency for wide multi-

camera stereo. In CVPIW5, pages I: 351-358, 2005.

[14]M･A･ DROUIN, M･ TRUDEAU, AND S･ Roy･ Non-llniforln hierarchical geoI

consistency for multi-baseline stereo. In CRVO7, pages 208-215, 2007.



ili]E!

[15]M･A･ DROUIN, M･ TRU?EAU, AND S･ Roy･ Improving border localization

of mlllti-baseline stereo llSlng border-cut. International Journal
of
Computer

Vision, 83(3):233-247,July 2009･

[16]0.D. FAUGERAS AND Q･T･ LuoNG. The Geometry
of
Multiple Ima9eS･ MIT

Press, 2001.

[17]0･D･ FAUGERAS AND B･ MouRR?IN･ On the geometry and algebra of the point
and line correspondences beterrn n Images. In Proc･ 5th International Conference
on Computer Vision, pages 951-956, 1995.

[18]0･D･ FAUGERAS AND T･ PAPAD?POULO･A nonlinear method for estimating
the projectivegeolnetry Of three

vleWS. In ICCV98, pages 477-484, 1998.

[19]G･ FLOROU AND R･ MoHR･ What accuracy for 3d measurelnentS With cameras?

In ICPIW6, pages I: 354-358, 1996.

[20]M.L. GoNG AND Y･H･ YANG･ Gehetic-based stereo algorithm and disparity

map evaluation. International Journal of
Computer Vision, 47(1-3):63-77,April

2002.

[21]R･Ⅰ･ HARTLEY･ M111tilinear relationship between coordinates of corresponding

image points and lines. Proc･ International Workshop on Computer Vision and

Applied Geometry, 1995.

[22]R･I･ HARTLEY･ In defence of the 8-point algorithm･ IEEE TrlanSI Pauern Anal-

ysis and Machine Intelligence, 19(6):580-593,1997.

[23]氏.Ⅰ･ HARTLEY･ Minimizing algebraic error in geoⅢ1etric estimation probleIIIS･

In Proc. 6th International Conference on Computer Vision, I, pages 469-476,

1998.

[24]R･I･ HARTLEY AND F･ ScHAFFALITZKY･ Reconstruction froln
Projectionsusing

grassman tensors. In Proc･ 8th European Conference on Computer Vision, 1,

pages 363-375, 2004.

【25]R･I･ HARTLEY AND A･ ZISSERMAN･ Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.

[26]RICEARD I･ HARTLEY AND FREDERIK ScEAFFALITZKY･ ReconstrllCtion froIIl

projections using grasslnann
tenSOrS･ Int･ J･ Comput･ Vision, 83(3):274-293,

2009.

[27]K. HAYAKAWA AND J･ SATO･ Multiple view geometry in the space-ti=ne･ In

Prvc. 7th Asian Conference on Computer Vision, pages 437-446, 2006.



112

[28]A. HEYDEN･ A comlnOn framework for multiple view tensors. In Proc. 5th

European Conference on Computer Vision, 1, pages 3-19, 1998.

[29]A･ HEYDEN. Tensorial properties of multiple view constraints. Mathematical

Methods in the Applied Sciences, 23:169-202, 2000.

[30]X･Y･ Hu AND P･ MoRDOHAI. Evaluation of stereo confidence indoors and

o11tdoors. In CVPluO, pages 1466-1･473, 2010.

[31]K･ HuANG, R.M･ FossuM, AND Y. MA. Generalized rank conditions in mul-

tiple view geo=netry with applications to dynalnical scenes. In ECCVO2, page II:

201ff., 2002.

[32]M･ IRANI, P･ ANANDAN, AND M･ CoEEN･ Direct. recovery of planar-parallax

from multiple fralneS. IEEE Trans. Pattern Analysw and Machine Intelligence,

24(ll):1528-1534,NoveⅢ1ber 2002.

[33]H. IsHIGURO, T. SoGO, AND M. BARTH. Baseline detection and localization

for invisible olnnidirectional cameras. International Journal
of
Computer Vision,

58(3):209-226,J111y 2004.

[34]T･S･ HuA.NG J･ WENG AND N･ AHUJA･ Motion and structllre from two per-

spective vleWS: AlgorithlnS, error
analysis and error estilnation. IEEE Trans.

Pattern Analysis and Machine Intelligence, ll(5),1989.

[35]D･W･ JACOBS, A･J･ GROVE., AND R･ BASRI･ ELRcient determination of shape

from lnultiple images containlng Partial inforlnation. In ICPR96, pages I: 2681

274,1996.

[36]F. KAHL, A. HEYDEN, AND L. QuAN. Minimalprojective reconstruction in-

cl11ding lnissing data. IEEE升ans. Pattern Analysis and Machine Intelligence,

23(4):418-424,April 2001.

[37]T･ KANADE AND M. OKUTOMI. A
Inultiple-baseline stereo. In

CVPIWl, pages

63-69, 1991.

[38]S･B･ KANG, R.S. SzELISKI, AND J.X. CHAI. Handling occlusions in dense

ln111ti-view stereo. In
CVPROl, pages I:103-110, 2001.

[39]J.H. KANNALA A&D
S.S. BRANDY. QllaSi-dense wide baseline matching llSing

match propagation. In CVPRO7, pages 1-8, 2007.

[40]J.H. KANNALA, E. RAHTU, S.S. BRANDT, AND J. HEIKKILA. Object recog-

nition and seglnentation by non-rigid quasi-dense lnatChing. In
CVPRO8, pages

ト8,2008.



113

[41]A･K･ KATSAGGELOS AND CJ･ TsAI･ Seqllential construction of 3-d based scene

description. In ICIP99, pages II:510-514, 1999.

[42]V. KoLMOGOROV AND C･ RoTHER. Comparison of energy minimization algo-

rithms for highly connected graphs. In ECCVO6, pages II:ト15, 2006.

[43]V･ KoLM.OGOROV AND R･ ZABIH･ Computing visllal correspondence with oc-

clllSions vla graph cuts. In ICCVOl,･pages II: 5081515, 2001.

[44]V･ KoLMOGOROV AND R･ ZABIH･ M111ti-caⅢ1era scene reCOnStrllCtion via graph

cuts. In ECCVO2, page III: 82ff., 2002.

[45]V. KoLMOGOROV AND R･ ZABIH･ What energy functions can be minimized via

graph clltS? IEEE TTTanS･ Pattern Analysis and Machine Intelligence, 26(2):147-
159, February 2004.

[46]P･ KosKENKORVA., J･H･ KANNALA? AND S･S･ BRANDT･ Quasi-dense wide
baseline matching for three views. In ICPluO, pages 806-809, 2010.

[47]K･ KozuKA, C･ WAN,
ATD
J･ SATO･ Rectification

of 3d
data obtained from

movlng range Sensor by llSlng Ⅲ1111tipleview geoITletry lュnder projective projec-
tions in space-tilne. ACCV'07 Workshop on Multi-Dimensional and Multi- View

lma9e Processm9, 2007.

【48]K･ KozuKA, C･ WAN,
ATD
J･ SATO･ Rectification of 3d data obtained from

lnOVlng range Sensor by llSlng extended projective Inultiple view ･geometry.
In-

ternational Journal of
Automation and Computing, 5(3):268-275,2008.

[49]S･ LAZEBNIK, Y･ FuRUKAWA, AND J･ PoNCE･ Projective visual hulls. Inter-

national Journal of
Computer Vision, 74(2):137-165,AugllSt 2007.

[50]B･ LIU, M･ Yu, D･ MAIER, AND R･ MANNER･ An efRcient and accllrate

method for 3d-point reconstruction froln m111tiple views. International Journal

of
Computer Vision, 65(3):175-188,Decelnber 2005.

[51]Q･T･ LuoNG AND O･D･ FAUGERAS･ The fundamental matrix: Theory, al-

gorithm and stability analysis. International Journal of
Computer Vision,

17(1):43-76,.1996･

[52]Y･ MA･ A differential geometric approach to multiple view ge?metry
in spaces

of constant c11rVat11re･ International Journal of
Computer Viswn, 58(1):37-53,

J11ne2004.

[53]S･ MANN AND R･W･ PICARD･ Virtllal bellows: ConstrllCtillg high qllality stills

from
video.

In ICIP94, pages I: 363-367, 1994.



114

[54]S･ MANN AND R･W･ PICARD･ Video orbits of the projective grollP:
A simple

approach to featllreless estilnation of paralneterS. IEEE 7Tans. Image Processm9,

6(9):128ト1295,SepteITlber 1997･

[55]S.J. MAYBANK. Theory
of
Reconstr-lion Pom Image Motion. Springer-Verlag,

1993.

[56]J･E･W. MAYHEW, J･ PoRRILL, AND S･B･ PoLLARD･ Recovering partial 3d

wire fralne descriptions froln Stereo data. In BMVC90, 1990.

[57]J.E.W. MAYEEW AND N･A･ TEACKER･ OptiITlal coIIlbination of stereo caⅡ1era

calibration froln arbitrary stereo images. In BMVC90, 1990.

[58]R･ MoⅢR, B･S･ BouFAMA, AND P･ BRAND. Understanding positioning froⅢ1

multiple ilnageS. ArtiPcial Intelligence, 78(1-2):213-238,October 1995.

[59]P･ MoRDOHAI･ The self-aware matching
measllre for stereo･ In ICCVO9, pages

1841-1848, 2009.

[60]P･ MoRDOHAI AND G･ MEDIONI･ Perceptllal grouping for Inultiple view stereo

using tensor voting. In ICPRO2, pages III: 639-644, 2002.

[61]P･ MoRDOEAI AND G･ MEDIONI･ Stereo llSing Ⅱ10?OC111ar
clleS Within the ten-

sor voting framework. IEEE升ans. Pauern Analysis and Machine Intelligence,

28(6):968-982,Jllne 2006･

【62]D･W･ MuRRAY AND P.A･ BEARDSLEY･ Range recovery llSing virtllal Ⅲ1111ti-

calnera Stereo. In BMVC92, pages 29138, 1992.

[63]K･C･ NG, M･ TRIVPDI,AND H･ IsHIGURO･ Generalized multiple baseline stereo
and direct virtual view Synthesis uslng range-space Search, InatCh, and render.

International Journal
of
Computer Vision, 47(1-3):131-147,April 2002.

[64]M･ OKUTOγI AND T･ KANADE･ A m111tiple-baseline stereo･ IEEE Trans･ Pat-

tern Analysw and Machine Intelligence, 15(4):353-363,April 1993.

[65]F･ PEDERSINI, P･ PIGAZZINI, A･ SARTI, AND S･ TuBARO･ Multicamera =notion

estimation for high-accuracy 3d reconstr11Ction･ Signal Prvcessin9, 80(1):1-21,
Jan11ary 2000.

[66]F･ PEDERSINI, A･ SARTI, AND S･ TuBARO･ 3d ll10tion estiIIlation ofatrinoc111ar

system for a full-3d object reconstruction.
In ICIP96, pages II: 867-870, 1996.

【67]F･ PEDERSINI, A･ SARTI, AND S･ TuBARO･ Egomotion estiⅢ1ation of a Ⅱ1111-

ticalnera SySteln throllghline correspondences. In ICIP97, pages II: 175-178,

1997.



115

[68]F･ PEDERSINI, A･ SARTI, AND S･ TuBARO･ Accl.Irate feature detection and

matching for the tracking of calibration paralneterS ln Inulti-camera acquisition

systems. In ICIP98, pages II: 598-602, 1998.

[69]F･ PEDERSINI, A. SARTI, AND S. TuBARO. M111tトcaⅢ1era paraITleter tracking.

IEE Proceedings- Vision Image and Signal Processing, 148(1):70-77,Febrllary

2001.

[70]L･ QuAN, A. HEYDEN, AND F. KAEL. MiniIIlal
projectivereconstrllCtion with

misslng data. In CVPIW9, pages II: 210-216, 1999.

[71]S. Roy. Stereo without epipolar lines: A maxilnum-flow formulation. Interna-

tional Journal
of
Computer Vision, 34(2-3):1471161,A11g11St 1999.

[72]S. Roy AND I.I. Cox･ A InaXimum-flow formulation of the n-camera stereo

correspondence probleln. In ICCV98, pages 492-499, 1998.

[73]S･ Roy, M･ TRUDEAU., AND M.A･ bROUIN･ ⅠⅢ1prOVing border localization of
m111ti-baseline stereo uslng border-cllt. In CVPIW6, pages I: 511-518, 2006.

[74]J. SATO. Computer Vision-Visual Geometry. Corona Ltd, 1999.

【75]J･ SATO･ Recovering m111tiple view geometry froT mlltual projections of multiple
cameras･ International Journal

of
Computer Viswn, 66(2):123-140,2006･

[76]D. ScHARSTEIN AND CJ. PAL. Learning conditional randolnfields for stereo.

In CVPRO7, pages 1-8, 2007.

[77]M. ScERAMECK, 氏. VoyLES, T. MyERS, 氏. BoDOR, AND 0. MASOUD.

A11tOITlatic ellClidean reconstrllCtion for tllrn-table seqllenCeS by indirect epipolar

search between pairs of views･ Image and Vision Computing, 24(7):693-708,J111y

2006.

[78]A. SHASHUA.Trilinearity in visual recognition by alignment. In Proc. 4th Eu-

ropean Confermce on Computer Vision, 1, pages 479-484, 1994.

[79]A･ SHASHUA AN.D L･WoLF･ Homog?phy tensors: On algebraic entities that

represent three views Of static or InOVlng Planar points. In Proc･ 6th European

Conference oh
computer vision, 1, pages 507-521, 2000.

[80]A. SHASHUA AND M･ WERMAN.Trilinearity of three perspective views and its

associated tensor. In Prvc. 4th European Conference on Computer Vision, 1,

pages 920-925, 1995.

【81]J.氏. STENSTROM AND C.Ⅰ. CoNNOLLY. ConstrllCting
object ITIOdels丘･oll=1111ト

tiple images･ International Journal of
Computer Vision, 9(3):185-212,1992･



116

[82]P･ STURM･ Multi-view geolnetry for general calnera models. In Proc･ Conference
on Computer Vision and Pattern Recognition, pages 206-212, 2005.

[83]A･ SuGIMOTO･ Object recognition by combining paraperspective images･ Inter-

national Journal of
Computer Vision, 19(2):181-201,AllguSt 1996.

[84]R.S. SzELISKI, a. ZABIH, D･ ScHARSTEIN, 0･ VEKSLER, V. KoLMOGOROV,

A. AGARWALA, M. TAPPEN, AND C. RoTHER. A colnParative stlldy of energy

lninimization Inethods for markov random fields with slnOOthness-based priors.

IEEE升ans･ Pattern Analysis and Machine Intelligence, 30(6):1068-1080,June

2008.

[85]CARLO ToMASI･ Shape and motion from i=nage streams under orthography:

a factorization method. International Journal of
Computer Vision, 9:137-154,

1992.

[86]P･ ToRR･ Motion segmentation and outlier detection･ PhD thesis, University of
Oxford, 1995.

[87]Y･ TsIN, S･B･ KANG, AND R･S･ SzELISKI･ Stereo matching with reflections

and translucency. In
CVPRO3, pages I: 702-709, 2003.

[88]Y･ TsIN, S･B･ KANG, AND R･S･ SzELISKI･ Ster?o｡､atcbing with linear s11-

p6rposition of layers. IEEE
Trans. Pattern Analysis and Machine Intelligence,

28(2):290-301,February 2006･

[89]C･ WAN, K･ KozuKA, AND J･ SATO･ Multiple view geolnetry for non-rigid
motions viewed froln tranSlational

calneraS. In Proc. 8th Asian Conference on

Computer Vision, 4844 of LNCS, pages 342-352. Springer, 2007.

[90]C･ WAN AND J･ SATO･ Mllltiple view geometry under projective projections
in space-tilne. In Proc. loth Meeting 0n Image Recognition and Understanding,

pages 205-211, 2007.

[91]C･ WAN AND J･ SATO･ Co=nputing multiple view geolnetry in space-time from

muttlal projections of m111tiple
calneraS. In Proc･ 19th International Conference

on Pattern Recognition, pages 1-4, 2008.

[92]C･ WAN AN'D J･ SATO･ Multiple view geometry under projective projection
in

space-time･ IEICE
Transactions on Information and Systems, 91-D(9):2353-

2359, 2008.

[93]C･ WAN AND J･ SATO･ Computing spatio-temporal =nultiple view geometry from

m11tual projections of In111tiple
calneraS. IEICE 7hnsactions on Information and

Systems, E93-D(9):2602-2613, September 2010.



117

[94]CHENG WAN AND JuN SATO. Multiple view geo=netry for non-rigid motions

viewed from cllrVilinear motion projective
cameras. In Proc･ 20th International

Confermce on Pattern Recognition, pages 181-184, 2010.

[95]X.G. WANG, Y.Q. CHENG, R.T. CoLLINS, AND A.R. HANSON. Determining

correspondences and rigidInOtion of
3d point sets with missing data. In CVPR96,

pages 252-257, 1996.

【96]J.J. WEINMAN, L･ TRAN, AND C･J･ PAL･ E氏ciently learning randolnfields for

stereo vision with sparse message passing.
In ECCVO8, pages I: 617-630, 2008.

[97]Y･ WEXLER AND A･ SHASHUA･ On the synthesis of dynalnic scenes from refer-

ence
views. In

Proc. Conference on Computer Vision and Pattern Recognition,

pages 576-581, 2000.

[98]L. WoLF AND A. SHASHUA. Onprojection matricespk -p2, k
- 3, ･-, 6, and

their applications in computer vision.. In Proc･ 8th International Conference on

Computer Vision, 1, pages 412-419, 2001.

[99]G･ Xu, S･ TsuJI., AND M･ AsADA･ Coarse to fine?ntrolstrategy for matching
lnOtion stereo palrS. IEEE Trans. Pattern

Analysw and Machine Intelligence,

9(2):332-336,March 1987･

[100]Z･'ZHANG･ Determining the epipolar geolnetry and its uncertainty: A review･

International Journal
of
Computer Vision, 27(2):161-195,1987･


