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Chapter 1

Introduction

Over the last few decades, a variety of machine learnm9 algorithms have been developed

as powerful tools for data analysis in various practical applications such as natural

language processlng, computer Vision, search englne design and bioinfomatics. The

Support Vector Machine (SVM) [15,31, 112] is one of the most successful algorithms

in machine learning. The SVM was originally developed for the classi丘cation problem

and the underlying statistical and algorithmical丘･amework has been extended to other

learnlng tasks such as regression, domain description and learnlng tO rank.

Most of machine learnlng algorithms are represented as the mathematical optimiza-

tion problem which is formulated as the problem of minimizing (or maximizing)
an

objective
function

subject to some constraints. The objective
fuhction of the SVM is

de丘ned as a linear combination of a loss term and a regularization term. The loss term

penalizes the miss-classi丘cation of the estimated classi丘er and the regularization term

penalizes the complexity of the classi丘er. The balance of these two terms are
adjusted

by a constant so-called regularization parameter.

The optimization problem is usually solved by iterative algorithms such as the interior

point method and the active set method except for the simple case that the analytical

closed form of the solutions can be derived. Since these algorithms iteratively improve

the accuracy of the solution, the computational cost can be large especially when they are

applied to large data sets. Moreover, in many situations of machine learnlng, One needs

to solve a sequence of optimization problems. For example, 1n Practical applications of

the SVM, one has to solve mally optimization problems for various different values of

the regularization parameter in order to select a classifier with good performance.

In this paper,
we focus on the parametric programmin9 [40]technique in optimization.

It has been developed for
solving a sequence of optimization problems parametrized by
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a set of problem parameters which are constant in the optimization process･ Unlike the

above mentioned iterative algorithms, it provides a framework for computing the closed

analytical form of the solutions for a class of optimization problems when the problem

parameters change continuously･ The remarkable features
of parametric programmlng

approach are:

･ The continuotlS Changes of optimal solutions can be analytically investigated

● It helps to develop a computationally efEcient algorithm for updating solution

It is well-known that the change of optimal solutions are represented as
piece-wise

linear

functions of the problem parameters for a class of optimization problems [12,92] and

then it can be e氏ciently traced by solving linear
systems.

One of the most popular applications of parametric programming in machine learn-

1ng literature is the regularization path･ This algorithm allows us to trace the opti-

mal solution with respect to the change of regularization parameter which controls

the complexity of a model･ The LARS algorithm [36]uses parametric programming

like approach for
variable selection of the least square regression. It has been shown

that the slightmodification of the LARS also leads the regularization path of Ll reg-

ularized regression (LASSO [109])･Inspired by LARS, [47]proposed regularization

path for the SVM･ Due to its computational e氏ciency forgivlng a full presentation

of the solutions, the same technique has been applied to various models and situa-

tions [5,46,53,69,71,73,78,95,102,111,121,124].

Another important parametric programmlng approach in machine learnlng lS in an

online learnlng SCenario･ In this situation, we need to update the trained model when

some new observations arrive and/or
some observations become obsolete. Incremental

decremental algorithms [24,33, 68, 79, 80]efRciently update the SVM solutions when a

data point is added to or removed from trainlng data set･ This algorithm enables efhcient

computation by
exploiting the piece-wise linearity of the SVM solutions.

In machine learnlng literature, these parametric programmlng approaches are some-

times called solution path algorithm or path following algorithm. This technique has

been widely applied to various machine learning tasks other than those above [7,33,38,

42, 72, 107, 117]･Although all of the above examples exploit the piece-wise linearity of

solutions, nonlinear path following is also studied so far [8,61, 65, 66, 86, 88, 94, 116, 122].

However, since it is difBcult to
reveal the exact behavior of nonlinear solutions, most
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of these algorithms trace approximated path (typicalapproach is taking small steps to

roughly trace the
path)･

In this paper, we further extend the parametric programmlng approach in machine

learning tO the followlng three directions:

● Incremental decremental learnlng by multi-parametric approach

. Solution path for instance-weightedlearnlng

● Nonlinear path for a quadratiC loss and a quadratic regularizer model

The first two directions are based on multi-parameiric programming technique which

changes multiple problem parameters simultaneously. This technique has not been fully

applied to machine learning algorithms. We show this approach has various advantages

for the above tasks. The third one considers nonlinear regularization path algorithm

for a class of learnlng machines that have a quadratic loss and a quadratic regularizer.

We develop an algorithm that can efBciently follow the piecewise nonlinear path by

exploiting a specific form of nonlinear function.

We use the SVM as the basic learning algorithm throughout the paper. We thus

brie且y introduce the SVM in Chapter 2. The typical advantages of the SVM are as

follows.

. Using the kernel function, it can estimate complex nonlinear models in a linear

modeling丘･amework.

● The optimal model is obtained by solving a convex quadratic optimization problem

in which any local optima are guaranteed to be global optima.

● The丘nal solutions
are often highly sparse. This leads to e氏cient computation.

Due to the above reasons, the SVM is one of the standard tools for various machine

learnlng tasks. Althoughwe manly derive formulations of proposed approaches in the

classi丘cation setting, the same approaches can be easily applied to other variants of the

SVM such as regression and domain description.

In Chapter 3, we propose multiple incremental decremental algorithm which is the

novel online learning algorithm for the SVM using multi-parametric approach. When

we want to add and/or
remove multiple data points, previous incremental decremental
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algorithm need to run repeatedly for each data point. Our proposed approach efBciently

updates changes of multiple data points simultaneously. Some analyses and experimental

results show that the proposed algorithm can substantially reduce the computational

cost.

In Chapter 4, we consider the instance-weighted learning Which implies each train-

1ng Instance has their weight or importance. This instance-weighted learnlng plays an

important role in various machine learnlng tasks such as non-stationary data analysis,

heteroscedastic data modeling, covariate shift adaptation, 1earnlng tO rank and trans-

ductive learnlng. Those instance weights often change dynamically or adaptively, and

thus the weighted SVM solution must be repeatedly computed. We introduce multi-

parametric solution path algorithln for efBcient update of the instaIICe-Weighted SVM.

Moreover, through extensive experiments on various practical applications, we demon-

strate the usefulness of the proposed algorithm.

In Chapter 5, we study the solution path of the learning machines that have quadratic

loss and quadratic regularizer. Since the path of this class of learning machines is not

pleCe-Wise linear, we cannot apply usual parametric programlng technique directory. In

this case, each piece-wise segment is represented as a class of rational
functions. We

develop an algorithm that e氏ciently follow pleCe-Wise nolllinear path uslng rational ap-

proximation approach. Our approach is highly accurate but faster than naive exhaustive

search for regularization parameter.

Finally, we conclude our work, in Chapter 6.
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Chapter 2

Support Vector Machines

Support Vector Machines (SVM) have attracted wide interest as the effective to.1s f.r

pattern recognition･ The SVM learns a linear model in a feature space throughconvex

quadratic optimization･ This formulation leads
various computational advantages such

as the kernel trick, sparseness of solutions and the absence of local optima (except

forglobal optima)･ Althoughthe original
SVM is a binary

classifier based on the large

margln prlnCiple, the idea has also been
applied to the other problems such as regression,

domain description
and ranking･ Since throughout the paper we use the SVM as the basic

learning machine, here, we briefly review the formulation
of it, especially for

classification

and regression･ The more comprehensive information of the SVMs can be found in

[10,16,20,32,37,59,83,97,112].

2.1 Classification

Suppose we have a set of training data ((xi,yi))?=1,Where xi ∈ X ⊆ RP is the input

and yi E (-1,+1) is the output class label･ Support Vector Machines (SVM) [15,31]

learn the followlng discriminant function:

f(x) -wT◎(x)+b,

in a feature space F, where ◎ ･･ X - F is a map from the input space X to the feature

space 7, w ∈ Pis a coe氏cient vector, a ∈ A is a bias term) and
T

denotes the transpose.

The model parameter w and b can be
obtained by solving an optimization problem:

n

-,bT;?};=1訓-Fl…+C妄Ei
s･t･

yi(wT◎(諺)+b)≧1-Ei,Ei≧0, i-1,-,n,

1

(2･1)
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where訓wll2
is the regularization term, =

･

ll2denotes the Euclidean norm, C ∈ A+ is

the trade-off parameter. Introduclng Lagrange multipliers αi, Pi ≧ 0, we can write the

corresponding Lagranglan aS

n

妄HwH2'c∑Ei
1

i=1

n n

-∑αi(yi(wT◎(x)+b)-1+Ei) -∑piEi･i=1 i=1

Setting the derivatives w.r.t. primal variables w, b and Ei tO Zero, We Can Obtain

n

芸-o⇔

--∑αiyi@(xi),i=1

rZ,

些-o
⇔ ∑αiyi-0,ab

i=1

aL

--0
⇔ αi-C-pi,

aEi

(2･2)

where 0 denotes the vector with all zeros. Substituting these equations into (2.2),we

obtain the followlng dual problem:

n

{T}a;:1一芸皇皇αiαjQi,A+∑αi
i-1 i-1 i-1

n

s･t･ ∑yiCki-0,0≦αi≦C, i-1,-,n,

i=1

where

(2･3)

Qij -

yiyjK(xi,Xj),

and K(xi,Xj) - ◎(xi)T◎(xj)is a reproducing kernel [4]･The Karush-Kuhn-Tucker

(KKT) complementarity conditions [17]are

αi(yif(xi)-1+Ei)-0,
i-1,-,n,

Ei(αi-C)-0, i-1,-,n･

The optimal discriminant function f : X - R is formulated as

rL

f(x) - ∑aiyiK(x,xi)+b･

i=1

The bias term b can be obtained using KKT complementarity condition (2Aa)･

(2.5)
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回
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口 o

△ z

7

Figure 2.1: The partitionlng Of the data points in SVM. The data points which are in

the set JM (enclosedby the
circle)

Are exactly on the margin. The data points which

are in the set 0 (enclosedby the
square)

are in the outside the margin.
The data points

which are in the set I (enclosedby the triangle)are in the inside the margin.

The optimality conditions are summarized as follows:

yif(xi)≧1,
if αi-0,

yif(xi)-1,
if O<αi<C,

yif(xi)≦1,
if αi-C,

皇yiai-0.

i=1

(2.6a)

(2.6b)

(2.6c)

(2･6d)

At the optimal solution, we can categorize the location of each data point uslng their

parameter value as follows:

0-(ilαi-0),

ルイ-(ilO<αi<C),

I-(ilαi-C),

where 0,
Ju, and I stand for 'Outside the

margin'(yif(xi)
≧ 1),

ion the Margin'

(yif(xi)- 1),and `Inside the
margin'(yif(xi)≦ 1),respectively (seeFig･ 2･1)･

2.2 Regression

The support vector regression (SVR) is a variant of SVM for regression problems

[81,84,113]･
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The primal optimization problem for the SVR is defined by

rZ.

1
n11 II

W,b,(Ei,Eわ?=1

s.t.

妄IIwll…+∑ci(Ei+i;),
i=1

yi-f(xi) ≦E+Ei,

f(xi)-yi ≦E+E;,

Ei,i;≧0, i-1,･･･,n,

(2･8)

where亡> 0 is an insensitive-zone thickness. The SVR ignores the small error which is

less than E. This E-insensitive loss leads sparseness property. The Lagranglan Prlmal

function of (2･8)is represented as

n

妄IIwll…+C∑(Ei+i;)
1

i=1

n

+∑pi(yi-WT◎(xi)-b-E-Ei)
i=1

n

+∑p;(wT◎(xi)+b-yi-E-i;)
i=1

n n

-∑piEi
- ∑p;i;,

i=1 i=1

where Pi,P;,pi,〆≧
0 are the Lagrange multipliers. Setting the derivatives w･r･t･ primal

variables w, b, Ei,Eデto zero, we arrive at:

n

芸-o⇔

--∑(βi-β%,)@(xi),i=1

n

些-o
⇔ ∑(pi-β;)-0,ab

i=1

aL

∂云
aL

∂E;

-0
⇔ Pi-CIPi,

-0
⇔ 錯-C-p;･

(2･9a)

(2.9b)

Using these equations and (2.9),we obtain the follcwing dual optimization problem:

maX

(Pi,Pn?=1

s.t.

一芸皇皇(pi
-

P;)(Pj
-

P,,)K(xi,Xj)
i-1 i-1

n n

-E∑FPi-β;l+∑yi(Pi-β%!)
i=1 i=1

n

∑(pi-β;)-0,

i=1

0≦βi,P;≦C, i-1,-,n.



2.2. REGRESSION

Figure 2.2: Partitioning of data points in SVR.

The Karush-Kuhn-¶1Cker (KKT) cdmplementarity conditions are

Pi(yi-f(xi) -E-Ei)

P;(I(xi)-yi -E-E;)

Ei(C
-

Pi)

E;(C
-

β;)

0,

0,

0,

0.

9

(2.lo乱)

(2･10b)

(2.10c)

(2.10d)

First two conditions leads β捕- 0･ Because ifβi> 0 and βt!> 0, we can't satisfy (2･10a)

and (2･10b)simultaneously･ Using Lagrangian (2･9)and (2.9a)-(2.9d),and substituting

αi ≡ Pi一席,we can obtain simplified dual formulation [32]:

1
max

(αi);=1 2

n n n n

∑∑αiαjK(xi,Xj)-E∑lαil+∑yiαi (2･11)
i-1 i-1 i-1 i-1

n

s･t･ ∑αi-0,-C≦αi≦C,i-1,-,n･
i=1

The regression
function f : X - R is formulated as

n

f(x) - ∑αiK(x,xi)+b･
i=1

The bias term a can be obtained from KKT complementarity condition (2･10a)and

(2.lob)･

The KKT conditions can be summarized as below:

lyi-f(xi)f≦e, if αi-0,

lyi-f(xi)f-E, if O<lαif<C,

lyi-I(xi)l≧E, if lαil-C,

妄αi-0･

(2.12a)

(2.12b)

(2.12c)

(2.12d)
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Then the training instances can be partitioned into the following three index sets (see

Fig.2.2):

0-(i: lyi-f(xi)l≧E,Fαil-C),

f-(i:lyi-f(xi)I-E,0<lαil<C),

I-(i:lyi-f(xi)l≦e,αi-0).
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Chapter 3

Incremental Decremental I｣earning

In online
learnlng, We need to update the trained model when some new observations

arrive and/or
some observations become obsolete･ If we want to add or remove single

data point in the SVM, incremental decremental algorithm [24]can be used to update

the model efEciently. However, to add and/or
remove multiple data points, the computa-

tional cost of current update algorithm becomes inhibitive because we need to repeatedly

apply it for each data point. In this chapter, we develop an extension of incremental

decremental algorithm which e氏ciently works for simultaneous update of multiple data

points. Some analyses and experimental results show that the proposed algorithm can

substantially reduce the computational cost. Our approach is especially useful for online

SVM learning in which we need to remove old data points and add new data points in

a short amount of time. The discussion in this chapter has appeared in [54,57,58]･

3.1 Introduction

For online learning, incremental decre血ental algorithm of the SVM was previously

proposed in [24],and the approach was adapted to other variants of kernel machines

[33,68, 79, 80]･ When a single data point is added and/or removed, these algorithms

can e氏ciently update the trained model without re-trainlng it丘･om scratch. Although

these algorithms were developed in different context, they can be considered as instances

of parametric programming or path-following [47].Parametric programming [2,40] is

anoptimization technique for solving a series of parameterized optimization problems.

Recently, 1n, the machine learning literature, path-followlng Was used for various pur-

poses [7,46,47, 107, 117]･In the incremental and decremental algorithms, one solves a

solution path with respect to the coe氏cient parameter corresponding to the data point

to be added or removed･ When we add and/or
remove multiple data points using these



12 CHAPTER 3 INCREMENTAL DECREMENTAL LEARNING

algorithms, one must repeat the updating operation for each single
data point. It often

requires too much computational cost for real-time online learnlng･ In what follows, we

refer this conventional algorithm as smgle incremental decremental algorithm or single

update algorithm.

In this chapter, we develop a multiple incremental decremental algorithm of the

SVM･ The proposed algorithm can update the trained model more e凪ciently when mul-

tiple data points are added and/or removed simultaneously. We develop the algorithm

by introducing multi-parametric programming [89]from the optimization literature. We

consider a path-followlng Problem in the multi-dimensional space spanned by the co-

e缶cient parameters corresponding to the set of data points to be added or removed.

In this chapter, we call our proposed algorithm as multiple incremental decremental

algorithm or multiple update algorithm. Throughout the chapter, we discuss multiple

update algorithm for support vector classification･ However, the idea is easily applicable

to other kernel machines, e･g･, for regression or outlier detection tasks･ Although we

do not describe the detail of other kernel machines, the derivation is much the same as

classi丘cation case.

The total computational cost of parametric programmlng lS roughly proportional to

the number of breakpoints on the solution path. In the repeated use of single update

algorithm for each data point, one follows the coordinate-wise solution path in the

multi-dimensional coefRcient parameter space. On the other hand, in multiple update

algorithm, we establish a direction in the multi-dimensional coe凪cient parameter space

so that the total length of the path becomes much shorter than the coordinate-wise

one･ Because the number of breakpoints in the shorter path followed by our algorithm

is less than that in the longer coordinate-wise path, we can galn relative computational

e凪ciency･ Fig･ 3･3 schematically illustrates our main idea.

3.2 Single lncremental Decremental SVM

In this section, we briefly review the conventional single
incremental decremental

SVM [24]･Using the SV sets (2･7b)and (2･7c),we can expand yif(xi)
as

yif(xi)
- ∑ Qijaj + ∑QijCy,.+yib,

3'∈ルー j∈Z

where Qij -

yiyjK(xi,Xj)･When a new data point (xc,yc)is added, we increase the

corresponding new parameter αc丘･om 0 while keeplng the optimal conditions of the
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other parameters satis丘ed.

Let us denote the amount of the change of each variable with an operator △. Tb

satisfy (216b)and the equality constraint of the dual (2･3),we need

Qic△αc+ ∑ Qij△αj+ yi△b

3'∈Ju

yc△αc + ∑ yj△αj

j∈Ju

0, i∈Ju,

Solving this linear system with respect -to △αi,i ∈ Ju, and △b, we obtain the update

direction of the parameters. We update the parameters in that direction with the largest

step length under the constraint that no element moves across
,M,I and 0. In other

words, the step length is chosen so that KKT optimality conditions are kept satis丘ed.

If we update the parameters as above, we encounter a point at which the three index

sets Ju,Iand 0 must be updated. For example, if there is a data point i such that

αi > 0,△αi < 0,i ∈
JM,

the parameter αi is decreased toward 0. And, if αi becomes

0 in the update process as above, we need to move the index i from
Ju

tO 0. After

updating the index setsルイ,I and 0, we repeat the process until the new data point

satis丘es the optimality condition. Decremental algorithm can be derived similarly, 1n

which the target parameter moves toward 0.

3.3 Multiple lncremental Decremental SVM

Suppose we add m new data points and remove e data points simultaneously. Let us

denote the index set of new adding data points and removlng data points as

A-(n+1,n+2,-,n+m)and7a⊂(1,･･･,n),

respectively, where l7al- e･ We remove the elements of 7urom the setsルt,I and 0

(i.e.Ju-JM＼7a,I-Z＼7aandO-0＼7a).
When m - 1,e - 0 or m - 0,e - 1, our method corresponds to the conventional

single incremental decremental algorithm. We initially set αi - 0,∀i ∈ A. If we have

yif(xi)
> 1,i ∈ A, we can append these indices to 0 and remove them from A because

these points already satisfythe optimality condition (2.6a).Similarly, we can append

the indices (i Iyif(xi)
- 1,i ∈ A) to Ju and remove them from A. In addition, we

can remove the points (i Iαi - 0,i ∈ 7a) because they already have no influence on the

model.
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Let us define y
- [yl,-

,yn+m]T,
α - [α1,-

,αn+m]T,
and Q ∈ R(n+m)×(n+m),

where (i,i)-thentry of Q is Qij･ Unlike singleincremental decremental algorithm, we

need to determine the directions of △αA and △α7a. These directions have a critical

influence on the computational cost. For △α7a, We Simply trace the shortest path to 0,

i.e.,

△α7a -

-1]α7a, (3･1)

whereワ≧ 0 is a step length. For △α^, we do not know the optimal value of αA

beforehand･ To determine this direction, we may be able touse some optimization

techniques (e･g･ Newton
method).

However, such methods usually need additional

computational burden. In this paper, we simply take

△αA -

rl(Cl
-

αA)･ (3･2)

This would become the shortest path if αi - C, ∀i ∈ A, at optimality.

When we move parameters αi,∀i ∈ A u 7a, the optimality conditions of the other

parameters must be kept satisfied･ From
yif(xi)

- 1, i ∈
JM, and the equality constraint

of dual (2･3),we need

∑Qij△αj+∑Qij△αj+ ∑ Qij△αj+yi△b- 0, i ∈
Ju, (3･3)

j∈A j∈7a j∈Ju

∑y,･△αj+∑yj△αj
+ ∑ yj△αj

- 0･

j∈A j∈7a j∈Ju

Using matrix notation, (3･3)and (3.4)can be written as

-[AAabJ
I [QyML,A老兄][AAaa:]-o,

(3･4)

(3･5)

where

--[yoMBLM]1
Ron the definitions of the index sets in (2･7a)-(2･7c),the following inequality constraints

must also be satis丘ed:

0≦αi+△αi≦C, i∈.M,

yi(f(xi)十△f(xi))>1,
i∈0,

yi(f(xi)+△f(xi))<1,
i∈Z･
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Since we removed the indices (ilI(xi)≧ 1) from A, we obtain

yi(f(xi)+△f(xi))<1,
i∈A.

15

(3･7)

During the process of moving αi,i ∈ A, to C from 0, if the inequality (3･7)becomes

equality for any i, we can append the point to
Ju and remove it from A. On the other

hand, if (3･7)holds after αi becomes C, the point moves to Z･ The
region that satis-

fies (3･6)and (3･7)corresponds to critical region (CR) in the parametric programming

literature [89].

We decide the update direction by solving the linear system (3･5)while monitoring

inequalities (3･6)and (3･7).Substituting (3･1)and (3･2)to (3･5),we obtain the update

direction

Ab

△α〟
-

17¢,

･ニー--1 [
QyMi,A老兄]

[cl:anal]

where

(3･8)

(3.9)

In this paper, we assume that the kernel matrix Q is positive definite. Then the matrix

M is invertiblel. If Q is positive semi-definite, M may not be invertible. In the later

experiments, we use one practical heuristic to circumvent this problem: adding small

positive constant to the diagonal of the kernel matrix.

To determine the step length r7,We need to check inequalities (3.6)and (3.7).Using

vector notation and the Hadamard product o (element-wiseproduct [98]),we can write

yo△f-T141,

ゆ- [y Q:,,u ]¢+Q:,A(Cl-αA)-Q:,7aα7a,

where

(3.10)

(3･11)

and the subscription
":"

of (～denotes the index of all the elements (1,
-

,
㍑ +

m)･
Since (3･8)and (3･10)are linear function of rl, We Can Calculate the set of the largest

step length r7's for each i at which the inequalities (3･6)and (317)becomes equality for

1precisely speaking, we have only to assume that the submatrix QJu is strictly positive definite in

the subspace (I ∈ RIJuflyLz
-

o) because it is the necessary and sufhcient condition of M to be

non-slngular･
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i･ The size of such T7's is FJMlx 2+IOl +frl+lAl andwe define this set as 71. We

determine the step length as follows:

17-min((引巧∈71,希≧o)∪(1))･

If ll becomes 1, we terminate the algorithm because all the new data
points in A and

existing points in Ju, 0 and I satisfy the optimality conditions and α7a is 0. Once we

decide 17,We Can update αJu and b using (3･8),and αA and α7i using (3･1)and (3･2)･

In the path-following literature, the points at which the size of linear system (3･5)is

changed are called breakpoints. If the ith data point reaches the bound of any one of

the constraints (3･6)and (3･7)we need to update JM,0 and r. After updating, we

re-calculate ¢, ¢ to determine the next step length.

3.3.1 Empty Margln
●

We need to establish the way of dealing with empty margin Ju

2
. In such case, we

can not obtain the bias from
yif(xi)

- 1,i ∈
JM.

Then we can only obtain the interval

of the bias丘･om

yif(xi)>1, i∈0,

yif(xi)<1, i∈ZUA.

Tb keep these inequality constraints, the bias term must be in

TETyigi≦
b ≦ TElunyigi,

gi
- 1

1∑αiQij-∑αiQij-∑αiQij,i∈= i∈A i∈`疋

i:-(ili∈0,yi-+1)∪(ifi∈ZuA,yi-ll),

u-(ili∈0,yi-ll)∪(ili∈TuA,yi-+1).

where

and

(3･12)

2In some active set based SVM solvers [96,100, 114], similar situation can be happened. Most of these

algorithms choose active set using heuristics for quick convergence (e.g.,choosing most KKT violating

point to be
active)･

On the other hand, in incremental decremental algorithm, a point in Ju must be

chosen to keep satisfying optimality conditions.
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If this empty margin
happens during the path-following, We look for the new data points

which re-enter the margin･
When the set JM

is empty, equality constraint (3.4)becomes

∑yiAαi+∑yiAαi-り6(α)
- 0,

i∈A i∈7a

(3.13)

where

6(α)- ∑yi(C-αi)-∑yiai･i∈A i∈`疋

We take two different strategies depending on 6(α).

First, if 6(α)≠0, we can not simply increase Tl from 0 while keeping (3.13)satisfied.

Then we need new margln data point ml Which enables the equality constraint to be

satis丘ed. The index ml is either

ilow =

argmaXyigi Or iup =

argmaXyi9i･
i∈L: i∈u

lf ilow,iup ∈ 0 uZ, we can update b and JM
as follows:

6(α)>0 ⇒ b-yiupgiup,

JM-(iup),

6(α)<0 ⇒ b-yilow9ilow,.M-(ilow).

By setting the bias terms as above, equality condition

r16(α)
+yml△αml - 0

is satisfied･ Ifilow E A or iup E A, we can put either of these points to
margin

by setting

the bias term as b -

yilowgilow Or b -

yiup9iup

On the other hand, if 6(α)- 0, we can increase 17 While keeping (3.13)satisfied･

Then, we increase T7 until the upper bound and the lower bound of the bias (3.12)take

the same value (thebias term can be uniquely determined). When we increase ll, gi

changes
linearly:

△9i(〟)ニー∑△αjQij-∑△αjQij
j∈A 3-∈7t

-り〈-∑(C-a'j)Qij+∑αjQi,･)･
j∈A j∈7a

Since each yi(gi
+ △gi(r7))may intersect, we need to consider the following piece-wise

linear boundaries:

u(り)
-

TEauXyi(9i+△gi(n)),

l(り)-

TEILnyj(gj+△gj(7))･
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'T]

Figure 3.1: An illustration of the bias in empty margin case. Dotted lines represent

yi(gi
+ △9i(17)),for each i･ Solid lines are the upper bound and the lower bound of the

bias･ The bias term is uniquely determined when u(り)and l(r7)intersect.

Fig. 3.1 shows an illustration of these functions. We trace the upper bound and the

lower bound until two bounds become the same value.

3.3.2 Initialization

An initial SVM parameter can be obtained丘･om conventional batch SVM solver. One

of the most widely used batch algorithm is Sequential Minimal Optimization (SMO) [90].

We can
also use our multiple incremental algorithm to find an initial solution. As we will

see in the later experiments, 1nCremental approach can obtain accurate solution as close

as floating-point precision･ We
choose

two data points ((xl,yl),(x2,y2))
from training

data set that satisfy yl
- +1, y2

-

-1.
Analytical solution is obtained by

･1 -

max(0,min(C,
α2 =

~yly2α1.

Q22 I

yly2Q12

Then, we add remaining data points as the adding data points A - (2,3,
･ ･ ･

,n)･
This

basic strategy has already proposed in [79].However, our proposed method is more

efBcient than the approach in [79]because we ca,n add n - 2 data points simultaneously

without repeatedly applying incremental operation to each data point.

3･3･3 Algorithm and Computational Complexity

Now, we describe entire procedure of our algorithm in Fig. 3.2.

At each breakpoint, we solve the linear system (3.9)with size fJul+ 1 using Cholesky

factor L of Q,u (seeAppendix A). The cost is 0(lJul2)because we use the Cholesky
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1: arguments:

2: Optimalparameters α- [α1,-
,αn]T,b

3: SV setsル1, 0,I

4: Adding indices A and removing indices 7i

5: end arguments

6‥ function MID-SVM(α, b,JM, 0,I,A,7i)
7‥ Perfbrm Cholesky factorization of kernel matrix:

8: Q,u-LTL

9: repeat

10:

ill?

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

ir 〟 isempty then

77
- EMPTYMARGIN

else

Solve linear system (3.9)to calculate ¢

uslng Cholesky factor L

Calculate 4, by (3.ll)
Calculate a set of step lengths 71 by checking

inequalities (3.6)and (3.7)

17-min((利巧∈71,巧≧0)∪(1))
[αLlb]-[αLb]+r74･

end if

αA-αA+17(Cl-αA)
α7aーα7a

-

r7α7a

Update
Ju, 0,I, A depending on the event type

Update L (Choleskyfactor rank-one update)
25‥ until †7becomes 1

26: end function

27: function EMPTYMARGIN

28‥ if ♂(α)≠Othen

29: if iup∈Aorilow∈A then

30: Set bias as b -
yiupgiup Or b - yi,ow9ilow

31: else

32: Set bias term b as (3･14)
33: end

ir

34: Tl
- 0

35: else

36: Trace
u(r7)and i(T7)until the bias term can

37: be determined unlquely or 1) becomes 1

38: end if

39: return †7

40: end function

Figure 3･2: Pseudo-code
of the multiple incremental decremental SVM
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decomposition rank-one update [45](seeAppendix B) except the first step in 0(l.MF3)
3

･ Although the size of 〟 changes at each breakpoint, to make our analysis easy, we

assume lルイIis constant in the entire process4. To update yif(xi)
we need to calculate

(3･10)which takes 0((n+m) × (l.Ml+m+I)) cost (Notethat we need to calculate 4, in

(3･11)which represents the change of yif(xi).
However, since the function

value on the

margin points do not change, we have only to compute n + m -

lJulelements of 4,･)･

Since we are interested in the situation where the number of adding or removing data

points are relatively smaller than the trainlng Sample size, i.e., m, I (i n, this cost is

roughly 0(nlJul)･The step length calculation takes 0(n) cost. From these analyses, we

see that each iteration
roughly needs 0(レ叫2+nlJMl+n) computations. Since n > FJMl,

this can be considered as 0(nl.Mf)･

From these considerations, we see the computational cost of multiple update algo-

rithm is approximately 0(βnlJul+ nlJul2),where
β is the number of breakpoints.

Since the 0(nlJMl2)computations are needed only once at initialization, 0(βnF,Ml)is

the main computational burden in practice. Thus the number of breakpoints β is an

important factor of the computational cost.

Tb analyze the relative computational e艮ciency of our multiple update algorithm to

conventional single update algorithm, let us introduce the following assumptions:

･ The number of breakpoints is proportional to the total length of the path.

● The path obtained by our algorithm is the shortest one.

The first assumption means that the breakpoints are uniformly distributed on the path.

The second assumption holds for the removlng parameters α7a because we know that we

should move α7a tO 0. On the other hand, for some of αA, the second assumption does

not necessarily hold because we do not know the optimal αA beforehand. In particular,

if the point i ∈ A which was located inside the margin
before the update moved to

Ju

during the update (i･e･the equality (3.7)holds),the path with respect to this parameter

is not really the shortest one.

3As
another way, we can also update M-1 directly using block matrix inversion formula [98]which

is based on the Sherman-Morrison-Woodburyformula. However this approach sometimes runs into

numerical difBculties･ It is
well known that the Cholesky factor approach is numerically more stable

than this approach [39,99]･
4This

simplification is employed to evaluate the computational cost of many path-following or (closely

related)active-set
based optimization algorithms (e.g.,[47]).
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(a)Adding 2 data points･ (b)Adding and Removing 1 data point

Figure 3.3: The schematic illustration c;fthe difference of path length and the number

of breakpoints･ Each polygonal reglOn enclosed by dashed lines represents the region in

whichルイ, I, 0 and A are constant (CR: critical region)･
The intersection of the path and

the borders are the breakpoints. The update of matrices and vectors at the breakpoints

are the main computational cost of path-following･ In the case of Fig. 3.3(a),we add

2 data points. If optimal α1 - α2 - C, our proposed algorithm can trace shortest

path to optimal point from the origin (leftplot).
On the other hand, single incremental

algorithm moves one coordinate at a time (rightplot)･
Fig･ 3･3(b)shows the case that

we add and remove 1 data point, respectively.
In this case, if α2 - C, our algorithm

can trace shortest path to α1 - 0, α2 - C (leftplot),while single incremental algorithm

again moves one coordinate at a time (rightplot).

To simplify the discussion further, let us consider only the case of lAf- m > 0 and

f7al- 0 (thesame discussion holds for other cases too)･In this siTlplifiedscenario, the

ratio of the number of breakpoints of multiple update algorithm to that of repeated use

of single update algorithm is

l[αAll2: lIαAlll,

where lr･ ll2is e2 norm and ll･ Illis el nOrm･ Fig･ 3･3 illustrates the concept in the case

ofm
- 2･ If we consider only the case ofαi

- C,∀i ∈ A, the ratio is simply v局: m.

3.4 Experiments

We compared the computational cost of the proposed multiple incremental decre-

mental algorithm (MID-SVM) with (repeateduse of) single incremental decremental

algorithm [24](SIDISVM) and with the LIBSVM [25],the-state-of-the-art batch SVM

solver
based on sequential minimal optimization algorithm (SMO)･ We wrote our own

cわdes for SID and MID in C++ format･ For matrix computations (e.g.matrix vec-

tor
multiplication),

we used LAPACK [3]routines. The parameters αi,i ∈ (1,
･ ･ ･

,n),
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and b were initialized to be optimal for the trainlng Set before incremental decremental

operation･ We compared the CPU time for adding and/or
deleting several data points.

In LIBSVM, we examined several tolerances for termination criterion: E - (10-3,1016, 10-9)･

When we use LIBSVM for online-learning, alpha seeding [34,70]sometimes works well･

The basic idea of alpha seeding is to use the parameters before the update as the initial

parameter.
In alpha seeding, we need to take care of the fact that the summation con-

straint αTy
- o may not be satisfied after removlng α's in 7a･ In that case, we simply

re-distribute

6-∑αiyi
i∈′疋

uniformly to the in-bound αi, i ∈ (i l 0 < αi < C). If 6 cannot be distributed to

in-bound α's, it is also distributed to other α's. If we still can not distribute 6 by this

way, we did not use alpha-seeding.

For kernel function, we used RBF kernel K(xiフXj)-

eXp(-71lxi
-

Xjll2)･
In this

paper, we assume that the kernel matrix K is positive
definite. If the kernel matrix

happens to be slngular, which typlCally arise when there are two or more identical

data points in Ju, Our algorithm may not work. As long as we know, this degeneracy

problem is not fully solved in path-following literature. Many heuristics are proposed to

circumvent the problem. In the experiments described below, we use one of them: adding

small positive constant to the diagonal elements of kernel matrix. We set this constant

as 10-6･ For fair comparison we do not use any previously computed kernel information

during the following incremental decremental
process in all three algorithms (SID,MID

and SMO). During incremental decremental process, we compute kernel information

whenever needed, and they are kept in cache. In the LIBSVM we can specify cache size

of kernel matrix. We set this cache size enough large to store the entire matrix. All

results presented in this section are average of 10 runs.

3.4.1 Arti丘cial Data

First, we used simple artificial data set to see the computational cost
for

various

number of adding and/or removing points･ We generated data points (a,y) ∈ R2 ×

(+1, -1)
using normal distributions:

p(xly-+1)

p(Sly--1)

芸JV(pil',∑il)).去N(p皇1),∑皇1)),

〟(〟(2),∑(2)),
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Figure 3A: Artificial data set for incremental decremental learnlng. For graphical sim-

plicity, we plot only a part of the data points･ The cross points are generated from a

mixture of two Gaussians while the circle points come from a singleGaussian. Two

classes have equal prior probabilities.
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Two classes have equal prlOr probabilities, and Fig.3.4 shows generated data points.

The size of initial data
points is n - 500. We set the regularization parameter C -

10 and kernel parameter 7
- 1. As discussed, adding or removlng the data points

with αi - 0 at optimal can be performed with almost no cost. Thus, to make clear

comparison, we restrict the adding and/or removing points as those with αi - C at

optimal. Fig. 3.5 shows the log
plot of the CPU time. We examined several scenarios:

(a) adding m ∈ (1,-
,50)

data points, (b) removing e ∈ (1,-
,50)

data points,

(c)adding m ∈ (1,･-
,25)

data points and removing e ∈ (1,-
,25)

data points

simultaneously･ The horizontal axis is the number of adding and/or removing data

points.
When m - 1 or e - 1, SID-SVM and MID-SVM are identical. We see that

MID-SVM is significantly faster than SID-SVM when m or e is more than 1. The relative

difference of SIDISVM and MIDISVM grows as the m

and/or
e increase because MID-

SVM can add or remove multiple data points simultaneously while SID-SVM merely

iterates the algorithm m + A times. In this experimental setting, the CPU time of SMO

dわes not change
largely because m and e are relatively smaller than n･ Fig･ 3･6 shows the

number of breakpoints of SID-SVM and MID-SVM along with the theoretical number
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of breakpoints of the MID-SVM in Section 3･3･3 (e･g･,for scenario (a),the number

of breakpoints of SID-SVM multiplied by
v局/m).

The results are very close to the

theoretical one.

3.4.2 Real Data

We also used real data
sets to evaluate e氏ciency of our proposed method. Table 3.1

shows data sets statistics･ These data sets are obtainable丘･om LIBSVM site [25]･We

obtained scaled version丘･om the site and randomly extracted subset of orlglnal data set.

In this experiments, we compare the CPU time of adding 10 data points and removlng

10 data points simultaneously. We investigated Ⅶrious settings of the regularization
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Table 3･1: Data sets for incremental decremental learning

(p is the number of features)
Data set n p

diabetes 500 8

svmguide3 1000 21

a2a 2000 123

covtype 2000 54

1JCnn1 4000 22

25

parameter C ∈ (loll,100,-
,105)

and kernel parameter 7 ∈ (10~3,10-2,10-1, 100).

Since we do not need to do anything when the corresponding parameters are 0, we chose

adding or removlng data points whose optimal parameters are not 0.

Figs･ 3･7-3･11 show CPU time ofeacb data set. Eacb丘gure has 4 plots corresponding

to different settings of kernel parameter 7. The horizontal axis of each plot is the

regularization parameter C.

In many cases, our proposed algorithm is faster than the others, especially when C is

large and 7 1S Small. However, when 7 1S relatively large, MID-SVM is sometimes slower

than the SMO (e･g･,see Fig. 3.9(a)).

Unlike previous experiments, our algorithm did not take the shortest path in adding

data points. However, in all results in Fig. 3.7-3.10, MID-SVM ☆as much faster than

SID-SVM･ In Fig･ 3･13, we compared the shortest path △αA -

Tl(αユーαA)with
our

path △αA -

17(Cl
-

αA)･
Here,

αユdenotes optimal value of αA (ofcourse, we usually

do not know this value beforehand).We used diabetes data set and set C - 1000, 7
- 1.

In this case, αユbecomes
far away from

αユニCl･
Fig･ 3･13(a)shows an example:

histogram ofαi,i ∈ A, when m - 50･ We added m ∈ (1,･･･
,50)

data points and

took the average of 10 runs･ In Fig･ 3･13(b)and 3･13(c),MID-SVM(S) means MID-

SVM with the shortest path･ Although MID-SVM(S) is faster than usual MID-SVM

in Fig･ 3･13(b),MIDISVM is substantially faster than SID-SVM. Fig. 3.13(c)shows the

number of breakpoints of each algorithm. We see that the number of breakpoints of

MID-SVM(S) are close to that in the (ideal)shortest path.

In MID-SVM and SID-SVM, when the size of set JM
is large, the computational cost

of solving associated linear systems becomes large. Fig. 3.12 shows the sizes of Ju,
0

add I for a2a data set･ From Fig･ 3･9 and Fig･ 3･12(a),we see that the CPU time

of update algorithm is large
when lルイIis large. In our experiments, lJulsometimes
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becomes large when both C and 7 Were large. On the other hand, it is well known that

the computational cost of the SMO algorithm becomes large when C is large [16]･We

see this in our results.

We also compared the numerical accuracy of the solutions in three algorithms by

comparing KKT optimality violation. The accuracy of SMO algorithm can be explicitly

specified by arbitrary setting the termination criterion tolerance E. The accuracy of

update algorithm (bothSID-SVM and MID-SVM) depends on the accuracy of the linear

system solution. Fig. 3.14 shows the maximum violation of KKT conditions on diabetes

data set (7- 1)･We see the accuracy of the SMO does not change with C. The violation

of MID-SVM becomes large when C is large. In our implementation, real number is

represented as double precision floating-point number (about 15 digit precision)･
In

many cases, the number of digitsof some αi are Same aS Or Close to the number of digits

of C･ Considering these facts, the accuracy of MID-SVM is close to the且oating-point

accuracy limitation. However, in update algorithm, the computational errors may be

accumulated in updating Cholesky factor, especially when the matrix is close to singular

(Inthis paper, since we add positive constant to diagonal of kernel matrix, this problem
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did not occur).
We can avoid such accumulation using refreshstrategy:

by re-calculating

the matrix from scratch, for example, every 100 steps (However,in this case, we need

0(lJul3)computations in every 100
steps).

3.4.3 Application to Online Time Series Learning

The SVM has been applied to many time series problems and has shown good perfor-

mance (e.g.[28,64,84,108])･We applied the proposed algorithm to an online time series

problem, in which we update the model when some new observations arrive (addingthe
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new ones and removing the obsolete ones)･
We use the following two data sets:

● Beer data
set: This set consists of monthly beer production records in Australia

from lan 1956 to Aug 1995. The task is to predict whether the production in the

next month increases or decreases丘･om the previous 12 months production records
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(x ∈ R12).The size ofinitial data points is n - 451 and we set m
-e

- 12.

● Fisher river data set: In this data set, the task is to predict whether the mean

dailyflow of the river increases or decreases uslng the previous 7 days temperature,

precipitation and
flow (xi ∈ R21). This data set contains the observations from

Jan 1 1988 to Dec 31 1991. The size of the initial data points is n - 1423 and we

set m
-e-

30 (abouta
month).

Beer data set is obtainable from Time S'eries Data Library [49].Fisher river data set is

available at StatLib [82]･We normalized each dimension of x to [0,1].We add new m

data points and remove old e data points. Unlike previous two experiments, we did not

choose adding or removing data points by its parameter at optimality (thecorresponding

parameters may be 0)･

Fig.3.15-3.18 shows the elapsed CPU times and 10-fold cross-validation error of each

setting.
Fig. 3.15 and Fig. 3.17 show that our algorithm is faster than the others, es-

pecially in large C. Cross-validation error in Fig. 3.16 and Fig. 3.18 indicate that the

relative computational cost of our proposed algorithm is especially low for the hyperpa-

rameters with good generalization performances in these application problems.

BAA Application to CrossIValidation

Cross-Validation (CV) [104]is a commonly used technique to estimate the general-

ization performance of a model. The CV procedure can be naturally implemented by

decremental algorithm. Like previous works [24,79],we initially calculate parameters

for the entire data set･ Then, in the leave-Clout CV (equivalentto n/e-foldCV),
we

remove e data points from the initial parameters at each fold.

Fig.3.19 shows the CPU time of the leave-P-out CV for the diabetes data set (Ta-

ble 3･1)･The horizontal axis of each plot indicates the number of leaving out data point

e. we examined several settings with A ∈ (1,5,10,20,50)5 and C ∈ (100,101, 102, 103).

All results do not include the CPU time of calculating initial solution (parametersfor all

data
points).

RBF kernel parameter is 7
- 0.1 and all algorithms uses common kernel

cache during
n/e-fold

learning.

In Fig･3･19, MID-SVM was faster than the other algorithms in these settings. Note,

in SID-SVM, that the entire n/e-fold
learning always requires n decremental operations

5Each
of which corresponds to 500, 100, 50, 25, 10-fold CV.
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because it needs e times decremental for each fold, Therefore, for any e, the computa-

tional cost of SID-SVM is same as that needed in leave-one-out CV (e- 1)･

3.5 Multiple Update for SVR

Here, we briefly introduce a formulation of multiple incremental decremental learning

for the SVR. The derivation is almost the same in the classification case. This is an

extension of our previous work which is for acceleration of the crossIValidation procedure

of the SVR [58].

托om the definition (2･13b)and the KKT conditions, the points i ∈ f must satisfy

lyi- f(xi)l- E･ This equation can be re-written as

lyi-∑αjK(xi,Xj)-∑αjK(xiフXj)-bl-E, i∈f･

j∈E j∈O

Similarly, the equality constraint of (2.ll)is re-written as

∑αi+∑αi-0･
i∈C i∈0

(3.15)

(3.16)

Using vector notations: y
- [yl,-

,yn]T,
I - [f(xl),-

,I(xn)]T,
s -

sign(y
-

I),

we can rewrite (3･15)and (3.16)as the following linear system of equations:

o lT

1 KE

a?E]･[
Kf,0α0

- yE +ESE;T-ayoE+ESE]-0,
(3･17)

where K is a kernel matrix Ki,i - K(xi, Xj),and
we abbreviate Kf,f aS KE･

As in the case of classi丘cation, let us denote the index set of new adding data points

and removlng
data points as

A - (n+1,...,n+m)

7a ⊂ (1,･･･,n),
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where l7tF- e and we remove these index sets from f,I and 0. Let △αA and △α7a

denote the change of αA and α7a respectively, then we need

[:kTf][AAabc].[KIcTA
KIET花

△αA

△α7a
-0, (3.18)

in order to let (3･17)hold for αi,i ∈ f and b. Ron the definitions of index sets in

(2.13c),(2･13b),and (2･13a),following inequality constraints must also be satisfied:

si(αi十△αi) ≦ C, i ∈ f,

si(αi+△αi) ≧0, i ∈f,

si(yi-f(xi)-△f(xi)) ≧E, i∈ 0,

-E≦ yi-f(xi)-△f(xi) ≦E, i∈Z,

(3･19)

where si -

Sign(yi- f(xi))･While we satisfy these conditions (3･18)and (3･19),param-

eters keep satisfying optimality conditions. The direction
of

△αA and △α7a are

△αA -

17(Cl-αA),

△α7a -

-77α7a,

where †71S a Step length.

Using these fわrmulas,
multiple update of the SVR can be constructed in the same

manner as the classi丘cation case.

3.6 Conclusion

In this chapter, we have developed multiple incremental decremental algorithms for

the SVM･ Unlike previous formulations [24,33, 68, 79, 80],our approach can add and/or
relnOVe

multiple data points simultaneously. We experimelltally showed the efBciency

of multiple update algorithm uslng arti丘cial and several common benchmark data sets.

Moreover, we derived the ratio of the number of breakpoints on some reasonable as-

sumptions. We also verified this ratio is actually, achieved in some practical settings. As

applications of our approach, we provided accelerations of the online time series learnlng

and the cross validation procedure. Results showed our approach is faster than single

update algorithm and hot start of the SMO algorithm.
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Chapter 4

Multi-Parametric Solution-Path for Weighted SVMs

An instance-weighted variant of the support vector machine (SVM) has attracted con-

siderable attention recently since they are useful in various machine learning tasks such

as non-stationary data analysis, heteroscedastic data modeling, transfer learning, learn-

1ng tO rank, and transduction. An important challenge in these scenarios is to overcome

the computational bottleneck-instance weights often change dynamically or adaptively,

and thus the weighted SVM solutions must be repeatedly computed. In this chapter, we

develop an algorithm that can e凪ciently and exactly update the
weighted

SVM solutions

for arbitrary change of instance
weights.

Technically, this contribution can be regarded

as an extension of the conventional solution-path algorithm for a singleregularization

parameter to multiple instance-weight parameters. However, this extension glVeS rise

to a significant problem that breakpoints (atwhich the solution path turns)have to

be identified in high-dimensional space. To facilitate this, we introduce a parametric

representation of instance weights. We also provide a geometric interpretation in weight

space uslng a notion of critical region: a polyhedron in which the current afRne solution

remains
to be optimal. Then

we丘nd breakpoints at intersections of the solution path

and boundaries of polyhedrons. Through extensive experiments on various practical

applications, we demonstrate the usefulness of the proposed algorithm. The discussion

in this chapter has appeared in [56]･

4.1 Instance-weighted Learning

The most fundamental principle of machine learnlng would be the empirical risk

minimization,
i･e･, the sum of emplrlCal losses over training instances is minimized:

min;Li,
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where Li denotes the empirical loss for the i-th training instance. This emplrlCal risk

minimization approach was proved to produce consistent estimators [112]･On the other

hand, one may also consider an instance-weighted variant of emplrlCal risk minimization:

min∑
ciLi,

u

where Ci denotes the
weight

for the i-th trainlng instance.
This

weighted variant plays

an important role in various machine learnlng tasks:

● Non-stationary data analysis: When trainlng instances are provided in a se-

quential manner under changlng environment, smaller weights are often asslgned

to older instances for imposing some 'forgetting'effect [22,85]･

● Heteroscedastic data modeling: A supervised learning setup where the noise

level in output values depends on Input points is said to be heteroscedastic. In

heteroscedastic data modeling, larger weights are often assigned to instances with

smaller noise variance [63].The traditional GaussIMarkov theorem [1]forms the

basis of this idea.

･ Covariate shift adaptation, transfer learnlng, and multi-task learning:
●

A supervised learnlng Situation where trainlng and test inputs follow different

distributions is called covariate shift. Under covariate shift, using the importance

(the ratio of the test and training input densities)as instance weights assures

tbe consistency of estimators [1叫･ Similar importance-weighting ideas can be

applied also to transfer learning (wheredata in one domain is transferred to another

domain) [51]and multi-task learning (wheremultiple learning problems are solved

simultaneously by sharing training instances)[13]･

･ Learning to rank and ordinal regression: The goal of ranking (a･k･a･ordinal

regression)
is to give an ordered list of items based on their relevance [48,77]･In

practical ranking tasks such as information retrieval,users are often not interested

in the entire ranking list, but only ln the top few items. In order to improve

the prediction accuracy in the top of the list, larger
weights are often asslgned to

higher-ranked items [119].

.Transduction and semi-supervised learnlng:Transduction is a supervised
●

1earnlng Setup Where the goal is not to learn the entire lnput-Output mapplng,
but
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only to estimate the output values for pre-specified unlabeled input points [112].

A
popular approach to transduction is to label the unlabeled samples uslng the

current estimator, and then modifythe estimator using the 'self-1abeled'samples

[52,91].In this procedure, smaller weights are usually assigned to the self-labeled

samples than the orlglnally-labeled samples due to their high uncertainty･

A common challenge in the research of instance-weighted learnlng has been to over-

come the computational issue･ In many of these tasks, instance weights o洗en change

dynamically or adaptively, and thus the instance-weighted solutions must be
repeatedly

computed･
R)r example, in on-line learnlng, every time when a new instance is observed,

all the instance weights must be updated in such a way that newer instances have larger

weights and older instances have smaller weights･ Model selection in instance-weighted

learnlng also poses a considerable computational burden. In many of the above scenaト

ios, we only have qualitative knowledge about instance
weights.

For example, in the

aforementioned ranking problem, we only know that higher-ranked items should have

larger weights than lower-ranked items, but it is often di氏cult to know how large or

small these weights should be･ The problem of selecting the optimal weighting patterns

is an instance of model selection, and many instance-weighted solutions with various

weighting patterns must be computed in the model selection ph秩se. The goal of this

chapter is to alleviate the computational bottleneck of instance-weighted learnlng.

The SVM minimizes a regularized empirical risk:

minR+C∑Li,
i

where R is a regularization term and C ≧ 0 controls the trade-off between the regu1

1arization effect and the empirical risk minimization. We consider an instance-weighted

variant of SVM, which we refer to as the weighted SUM (WSVM) [74,75, 120]:

minR+ =ciLi･
t

For ordinary SVM, the solution path algorithm was proposed [47],which allows e氏-

cient computation of SVM solutions for all C by utilizing the piecewisellinear structure

of the solutions w･r･t･ C･ This technique is known as parametric pro9rammmg ln the

optimization community [2,ll, 12, 92],and has been applied to various machine learn-

ing tasks recently [5,7,33,38,42,46,53,69, 71-73, 78,95, 102, 107, 111, 117, 121, 124];the
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incremental-decremental SUM algorithm, which efBciently follows the piecewise-linear

solution path when some trainlng lnStanCeS are added or removed丘･om the trainlng Set,

is also based on the same parametric programming technique [24,57, 68].

The solution path algorithms described above have been developed for problems with

a sm9le hyper-parameter. Recently, attention has been paid to studying solution-path

tracking in two-dimensional hyper-parameter space. For example, [117]developed a

path-followlng algorithm for
regularization parameter

C and an insensitive zone thick-

ness E in suppor七vector regression [81,84,113]･ [93]studied a path-following algorithm for

regularization parameter A and quantile parameter T in kernel quantile regression [106]･

However, these works are highly specialized to specific problem structure of bivariate

path-followlng, and it is not straightforwardto extend them to more than two hyper-

parameters. Thus, the existing approaches may not be applicable to path-followlng Of

WSVM, which contains n-dimensional instance-weight parameters c - [Cl,..., Cn]T,

where n is the number of training instances.

In order to go beyond the limitation of the existing approaches, we derive a general

solution path algorithm for e艮ciently computing the solution path of multiple instance-

weight parameters c in WSVM. This exteIISion involves a significant problem that break-

points (atwhich the solution path turns)have to be identified in high-dimensional space･

Tb facilitate this, we introduce a parametric representation of instance weights. We also

provide a geometric interpretation in weight space uslng a notion of critical regwn from

the studies of multi-parametric programmin9 [41,89].A critical region
is a polyhedron in

which the current aBine solution remains to be optimal (seeFig･ 4･1)･This enables us to

氏nd breakpoints at intersections of the solution path and the boundaries of polyhedrons.

4.2 Problem fわrmulation

In this section, we review the definition of the weighted support vector machine

(WSVM) and its
optilnalityconditions･

For the momellt, We focus on billary Classifica-

tion scenarios･ Later in Section 4.5, we extend our discussion to more general scenarios

such as regression, ranking, and transduction.
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4.2.1 WSVM

Let us consider a binary classification problem. Denote n trainlng instances as

((xi,yi))?=1,Where xi ∈ X ⊆温P is the input and yi ∈ (-1,+1) is the output label.

SVM [15,31]is a learning algorithm of a linear decision boundary

f(x) -wT◎(x)+b

in a feature space I, where @ : X - I is a map from the input space X to the feature

space 7, w ∈ Tis a coe氏cient vector, b ∈ A is a bias term, and
T

denotes the transpose･

The parameters w and a are learned as

1
mln -

w,b 2

n

llwIF…+C∑[1-yif(xi)].,
i=1

(4･1)

where訓wll∃
is the regularization term, ll H denotes the Euclidean norm, C is the

trade-off parameter, and

[z]+-

max(0,I).

[1-

yif(xi)]+
is the so-called hinge-loss for the i-th training instance.

WSVM is an extension of the ordinary SVM so that each training instance possesses

its own weight [74,75, 120]:

n

mwi,T妄IIwll…+∑ci[1-yif(?i)]., (4･2)
i=1

where Ci is the weight for the i-th training instance. WSVM includes the ordinary SVM

as a special case when Ci - C for i - 1,
･

･
I

,n･
The primal optimization problem (4.2)

is expressed as the followlng quadratic program:

n

1

1

w怒?=1妄II-llZ'妄ciEi,
(4.3)

s･t･ yif(xi)≧1-Ei, Ei≧0, i-1,...,n.

Tbe goal of this paper is to derive an algorithm that can e氏ciently compute the

sequence of WSVM solutions for arbitrary weighting patterns of c - [Cl,..., Cn]T.

4.2.2 0ptimization in WSVM

Here we review basic optimization issues of WSVM which are used in the following

section.
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Introduclng Lagrange multipliers αi ≧ 0 and pi ≧ 0, we can write the Lagrang乞an Of

(4･3)as

1
L=-

2

n n n

FIwll2+∑ciEi
- ∑αi(yif(xi)- 1 +Ei)

- ∑piEi･ (4･4)
i=1 i=1 i=1

Setting the derivatives of the above Lagrangian w.r.t. the primal variables w, b, and Ei

to zero, we obtain

aL

-=0
⇔

aw

aL

-=0
⇔

ab

aL

-=0
⇔

∂Ei

n

w - ∑αiyi◎(xi),
i=1

妄αiyi-0,

αi-Ci-Pi, i-1,‥.,n,

where 0 denotes the vector with all zeros. Substituting these equations into (4.4),we

arrive at the followlng dual problem:

n

{T}a=!1一芸皇皇αiαjQij･∑αi
i-1 i-1 i-1

n

s･t･ ∑yiai-0,0≦αi≦Ci,

i=1

(4.5)

where Qij -

yiyjK(xi,X3･)･
The discriminant function f : X - R is represented in the

followlng form:

n

f(x) - ∑aiyiK(x,xi)+b･

i=1

KKT conditions are summarized as follows:

yif(xi)≧1,
if αi-0,

yif(xi)-1,
if O<αi<Ci,

yif(xi)≦1,
if αi-Ci,

皇yiai-0.

i=1

We define the followlng three index sets for later use:

0-(ilαi-0),

ルイ-(ilO<αi<Ci),

Z-(ilαi-Ci).

(4.6a)

(4･6b)

(4･6c)

(4･6d)
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The geometric interpretation of these sets is also provided by Fig. 2.1.

4.3 Solution-Path Algorithm for WSVM

The path-following algorithm for the ordinary SVM [47]computes the entire solution

path for the slngle regularization parameter C. In this section, we develop a path-

following algorithm for the vector of weights c - [Cl,..., Cn]T. our proposed algorithm

keeps track of the optimal αi and b when the weight vector c is changed.

4.3.1 Analytic Expression of WSVM Solutions

Let

yl

yn

, and(～-

Qll

Qnl

Qln

Qnn

Then, using the index sets (4･7b)and (4.7c),we can expand one of the KKT conditions,

(4･6b),as

QJuα,M + Q,u,=cr + yJub
- 1, (4.8)

where 1 denotes the vector with all ones･ Similarly, another KKT condition (4･6d)is

expressed as

yLαJu
+ yITcI

- 0.

Let

(4.9)

Then (4･8)and (4･9)can be compactly expressed as the following system of lルイl+ 1

linear equations, where FJMldenotes the number of elements in the set JM:

- [abJI [QyMIT,I]cI- [:]･

Solving (4･10)w･r･t･ b and αJu, We Obtain

[abJ-

---1 [QyiI]cI･--1 [:],

(4.10)

(4･11)
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where we implicitly assumed that M is invertiblel. since b and α,u are aBine w.r.t. cI,

we can calculate the change of b and α,u by (4･11)as long as the weight vector c is

changed continuously. By the definition of I and 0, the remainlng parameters α= and

αo are merely glVen by

αr= CT,

αo-0.

A change of the index sets Ju, 0, and I is called an event.
As long as no event

occurs, the WSVM solutions for all c can be computed by (4･11)-(4･13)since all the

KKT conditions (4･6a)-(4･6d)are still satis丘ed･ However, when an event occursフWe

need to check the violation of the KKT conditions. Below, we address the issue of event

detection when c is changed.

4.3.2 Event Detection:

Suppose we want to change the weight vector from c(old) to c(new) (seeFig. 4･1)･This

can be achieved by movlng the weight vector c(old) toward the direction of c(new)
-

c(old)

Let us write the line segment between c(old) and c(new) in the following Parametric

form

c(♂)
-

c(old) +♂ (c(new)
-

c(old)),
♂∈ [o,1],

where 0 is a parameter. This parametrization allows us to derive a path-followlng al-

gorithm between arbitrary c(old) and c(new) by considering the change of the solutions

when ♂ is moved丘･om 0 to l･ Suppose we are currently at c(♂)
on the path, and the

current solution is (b,α).
Let

△c- △o (c(new)-

c(old),)
,
△o ≧ o, (4･14)

where the operator △ represents the amount of change of each variable丘･om the current

value.
If △β is increased丘･om 0, we may encounter a point at which some of the KKT

conditions (4･6a)-(4･6c)do not hold. This can be checked by investigating the following

1The invertibility of the matrix M is assured if and only ifthe submatrix Q,u is positive definite in

the subspace (I ∈ Rl･uF lyLz
-

o). we assume this technical condition here. A notable exceptional

case is that Ju is empty-we will discuss how to cope with this case in detail in Section 4.3.3.
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Figure 4･1: The schematic illustration of path-followlng in the space of c ∈ R2. In this

plot, the WSVM solution is updated丘･om c(old) to c(new)･ suppose we are currently at

c(a).
The vector a represents the update direction c(new) -c(old) , and the polygonal region

enclosed by dashed lines indicates the current critical region･ Although
c(♂)十△βmaxd

seems to directly lead the solution to c(new), the maximum possible update丘･om c(♂)
is

△βd; otherwise the KKT conditions are violated. Tb go beyond the border of the critical

region, we need to update the index sets JM,
I, and 0 to fulfill the KKT conditions.

conditions.

!αi十三三;午,':ci7a?･Affc?Ei≡喜享…≡IM?≡(4･15)

The set of inequalities (4･15)defines a convex polyhedron, calleq
a critical region in

the multi-parametric programming literature [89]･ The event points lie on the border of

critical reglOnS, aS illustrated in Fig. 4.1.

we detect an event point by checking the conditions I(4.15)along the solution path

as follows. Using (4･11),we can express the changes of b and α,u as

[
AAabJ

--,

¢ニーM-1
yzT

Q,u
,z

(cfew)一接Id)).

(4･16)

(4･17)

where

Furthermore,
yi△f(xi)

is expressed as

yi△f(xi)- [yiQi,,u ]
- △04)i,

Ab

△α〟
+ Qi,=AcT

(4･18)
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where

¢i - [yi Qi,〟]¢+Qi,I(inew'-ぜ1d))･

Let us denote the elements of the index setルイas

(4･19)

JM
- (ml,-,mI,uI)･

Substituting (4･16)and (4･18)into the inequalities (4･15),we can obtain the maximum

step-length with no event occurrence as

△β= n11 Il

i∈(1,-,lJuI),j∈rUO

αmi Cmi-αmi 1-yjf(xj)
4,i+1フ4,i+1- dmi

'

4,i 〉+, (4･20)

where 4,idenotes the i-th element of 4,and di - Ci(new) -

cfold).we used mini(zi).
as

a simplified notation of mini(zil
zi ≧ 0). Based on this largest

possible
△0, we can

compute α and b along the solution path by (4･16)･

At the border of the critical region,
we need to update the index sets Ju, 0, and

Z･ For example, if αi (i∈

JM)
reaches 0, we need

to move the element i fromルイto O･

Then the above path-followlng Procedure is carried out again for the next critical reglOn

specified by the updated index sets JM,
0, and I, and this procedure is repeated until

c reaches c(new)

●

4.3.3 Empty Margln

ln the above derivation, we have implicitly assumed that the index set JM
is not

empty-when ,M
is empty, we can not use (4.16)because M-1 does not exist.

When
JM

is empty, the KKT conditions (4･6)can be re-written as

∑QijCj+yib≧1,i∈0,

j∈=

∑QijCj+yib≦1:i∈Z,

j∈Z

∑yiCi-0･
i∈Z

Althoughwe can not determine the value of a uniquely only from the above conditions,

(4･21a)and (4･21b)specify the range of optimal b:

TEaLyyigi≦
b ≦ TElunyi9i, (4･22)
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where

Let

9i
-

1-∑QijCj,
j∈=

i:-(iJi∈0,yi-1)∪(ili∈Z,yi--1),

u-(ili∈0,yi-ll)∪(iri∈Z,yi-1).

6= =yidi,
･i∈Z

43

where

di - Ci(new) - ci(Old)

When 6 - 0, the step size AO can be increased as long as the inequality (4･22)is satisfied.

Violation of (4.22)can be checked by monitoring the upper and lower bounds of the bias

b (whichare piecewisellinear w･r･t･ AO) when AO is increased

u(△0)
- maxi∈u

yi(9i十△gi(△0)),
e(△0)- mini∈L: yi(9i+ △9i(△0)),

(4.23)

where

A9i(AO) -

-AO=Qijdj･j∈=

On the other hand, when ♂ ≠ 0, △β can not be iIICreaSed without violating the

equality condition (4･21c)･In this case, an instance with index

ilow =

argmaX yi9i
i∈L:

Or

iup =

argmlnyi9i
i∈u

actually enters the index set 〟･ If the instance (we denote its index by
m) comes丘･om

the index set
0, the following equation must be satisfied for keeping (4.21c)satisfied:

△06 -

-△αmym.
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Since △β > 0 and △αm > 0, we have

sign(6)
-

sign(-ym)･

On the other hand, if the instance comes from the index set I,

△06 -

ym(△Cm
-

△αm)

InuSt be satisfied. SiIICe △0 > 0 and △Cm - △αm > 0, we have

sign(6)
-

sign(ym)･

Considering these conditions, we arrive at the following updating rules for b and Ju:

6>0 ⇒ b-yiu｡giu｡,
Ju-(iu｡),

6<0 ⇒ b-yil.wgil.w,
Ju-(il｡w)I

Note that we also need to remove %up and ilow from 0 and I, respectively･

(4･24)

4.3.4 Computational Complexity

The entire pseudo-code of the proposed WSVM path-followlng algorithm is described

inFig.4.2.

The computational complexity at each iteration of our path-following algorithm is

the same as that for the ordinary SVM (i.e.,the single-C formulation)[47].
Thus,

our algorithm inherits a superior computational property of the orlglnal path-following

algorithm.

The linear system (4･17)can be solved using Cholesky factor L of Q,u (seeAppendix

A)･ Moreover, we can update L from the previous one at each event point can be carried

out efBciently with 0(f.Ml2)computational cost based on the Cholesky decomposition

rank-one update [45](seeAppendix B) or the block-matrix inversion formula [98].Thus,

the computational cost required for identifyingthe next event point is 0(nlJMf)･

It is difEcult to
state the number of iterations needed

for
complete path-followlng

be-

cause the number of events depends on the sensitivity of the model and the data set. Sev-

eral emplrlCal results suggest that the number of events linearly increases w.r.t. the data

set size [46,47,117];our experimental analysis given in Section 4.4 also showed the same

tendency. This implies that path-following lS COmputationally highly efBcient-indeed,

in Section 4.4, we will experimentally demonstrate that the proposed path-following

algorithm is faster than an alternative approach in one or two orders of magnitude.
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1: arguments:

2: Optimal parameters α and b for c(old)

3: Setsルイ, 0, I, and Cholesky factor L of QJu

4: Newweight vector c(new)

5: end arguments

6: function WSVM-PATH(α, b, c(old), JM,
0,I, L,

c(new))
7‥ βー0,c-c(old)

8: while β≠1 do

9:

10:

iF!岳

12:

13:

14:

15:

16:

17:

18:

19:

20:

if
Ju

is empty then

△βーEMPTYMARGIN

else

Calculate めby (4.17)using Cholesky factor L

Calculate 4, by (4119)
Calculate △β by (4.20)

end if

lfβ+△β>1,then△β-1-♂

Update α, b, and c by step length △0

βーβ+△β

Update
Ju,

0, and I depending on the event type

Update L (Choleskyfactor rank-one update)
21: end while

22: end
function

23: function EMPTYMARGIN

24‥ if ♂(α)≠Othen

25: Set bias term b by (4･24)
26: △βー0

27: else

28: Trace
u(△0)and e(△0)in (4･23)until u(△0)

- e(△0)
29: end if

30: return △β

31: end function

Figure 4･2: PseudoICOde of the proposed WSVM path-following algorithm.
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4.4 Experiments

ln this section, we illustrate the empirical performance of the proposed WSVM path-

followlng algorithm in a toy example and two real-world applications. We compared the

computational cost of the proposed path-following algorithm with the sequential minimal

optimization (SMO) algorithm [90]when the instance weights of WSVM are changed in

various ways. In particular, we investigated the CPU time of updating solutions
from

some c(old) to c(new)

In the path-followlng algorithm, we assume that the optimal parameter α as well

as the Cholesky factor L of Q,h for c(old) has already been obtained. In the SMO

algorithm, we used the old optimal parameter α as the initial starting point (i･e･,the

'hot7
start)after making them feasibleusing the alpha-seeding strategy [34]･We set the

tolerance parameter in the termination criterion of SMO to lO~3. our implementation

of the SMO algorithm is based on LIBSVM [25]･To circumvent possible numerical

instability, we added small positive constant lO16 to the diagonals of the matrix Q. In

all the experiments, we used the Gaussian kernel

_III'-三
K(x,x′)-expトIllx-x'‖2X~ll~J)) (4･25)

where l′1S a hyper-parameter and p is the dimensionality of x.

4.4.1 Illustrative Example

First, we illustrate the behavior of the proposed path-followlng algorithm using

an artificial data set. Consider a binary classification problem with the training set

((xi,yi))?=1,Where xi ∈ R2 and yi ∈ (-1,+1). Let us define the sets of indices of pos-

itive and negative instances as K-1 - (ilyi-
-1)

and K:+1 - (ilyi- +1), respectively･

We assume that the loss function is defined as

∑viI(yif(xi)≦ 0),
i

(4･26)

where vi ∈ (1,2) is the cost ofmisclassifying the instance (xi,yi),and I(･)is the indicator

function･ Let Dl - (ilvi- 1) and D2 - (ilvi- 2),i.e., D2 is the set of instance indices

which have stronger influence on the overall test error than Dl.

Tb be consistent with the above error metric, it would be natural to asslgn a Smaller

weight Cl for i ∈ Dl and a larger
weight C2 for i ∈ D2 When training SVM. However,
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naively setting C2 - 2Cl is not generally optimal because the hinge loss is used in

SVM training, while the Oll loss is used in performance evaluation (see(4.26)).In the

following experiments, wefiⅩed the Gaussian kernel width to 7
- 1 and the instance

weight
for D2 tO C2 - 10, and we changed the instance

weight Cl for Dl from 0 to 10.

Thus, the change of the weights is represented as

The two-dimensional input (xi)?=1Were generated from the following distribution:

o:.?5])

ifi ∈K:+1nDl,

ifi ∈ K:+1nD2,

ifi ∈ K:_1nDl,

ifi ∈ K:_1nD2.

(4.27)

Fig. 4.3 shows the generated instances for n - 400, in which instances in the above four

cases have the equal size n/4･
Before feeding the generated instahces into algorithms,

we normalized the inputs in [0,1]2･

Fig･ 4･4 shows piecewise-linear paths of some of the solutions αi for Cl ∈ [0,10]when

n - 4001 The left graph includes the solution paths of three representative parameters

αi for i ∈ Dl. All three parameters increase as Cl grows
from zero, and one of the

parameters (denotedby the dash-dotted line)suddenly drops down to zero at around

Cl - 7･ Another parameter (denoted by the solid l中e)also sharply drops down at

around Cl - 9, and the last one (denotedby the dashed line)remains equal to Cl

until Cl reaches lO･ The right graph includes the solution paths of three representative

parameters αi for i ∈ D2, Showlng that their behavior is substantially different from that

for Dl･ One of the parameters (denotedby the dash-dotted line)fluctuatessignificantly,

while the other two parameters (denotedby the solid and dashed lines)are more stable

and tend to increase as Cl grows.

An important advantage of the path following algorithm is that the path of the

Ⅶ1idation error can be traced as well (seeFig. 4.5).First, note that the path of the
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-2
0 2
Xl

Data points in Dl

2 4

Data points in D2

ー2
0 2
Xl

Data points in DI UD2

Figure 4･3: Arti丘cial data set generated by the distribution (4.27).The crosses and

circles indicate the data points in K:_1 (negativeclass)and
A:+1 (positiveclass),respec-

tively･ The left plot shows the data points in Dl (Inisclassificationcost is 1),the middle

plot shows the data points in D2 (misclassificationcost is 2),and the right plots show

their union.

2 4

αifori∈Dl

8

6

a,

4

2

αifori∈D2

Figure 4.4: Examples of piecewise-linear paths of αi for the artificial data set. The

weights are changed from Ci - 0 to 10 for i ∈ Dl (fori ∈ D2, Ci - 10 is
unchanged)･

The left and rightplots show the paths of three representative parameters αi for i ∈ Dl,

and for i ∈ D2, respectively.

validation error (26)has piecewise-constant form because the Oll loss changes only when

the sign of f(x) changes･ In our path-following algorithm, the path of I(x) also has

piecewise-linear form because f(x) is linear in their parameters α and b･ Exploiting

the piecewise linearity of f(x), we can exactly detect the point at which the sign of

f(x) changes. These points correspond to the, breakpoints of the piecewise-constant

Ⅶ1idation-error path. Fig. 4.5 illustrates the relationship between the pleCeWise-linear

path of f(x) and the piecewise-constant validation-error path. Fig. 4.6 shows an example

of piecewise-constant validation-error path when Cl is increased丘･om 0 to 10, indicating

that the lowest validation error was achieved at around Cl - 4.

Finally, we investigated the computation time when the solution path丘･om Cl - 0

to 10 was computed. For comparison, we also investigated the computation time of the
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Figure 4.5: A schematic illustration of validation-error path. In this plot, the path of

misclassification error

rate喜∑T=1I(yif(xi))
≦ 0) for the 3 validation instances (xl,yl),

(x2,y2),and (x3,y3)
are depicted. The horizontal axis indicates the parameter 0 and the

vertical axis denotes
yif(xi),

i - 1, 2, 3･ The path of the validation error has piecewise-

constant form because the 0-1 loss changes only when f(xi) - 0. The breakpoints of

the pleCeWise-constant validation-error path can be exactly detected by exploiting the

piecewise linearity of f(xi).
一._

O
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Figure 4.6: An example of the validation-error path for 1000 validation instances of the

arti丘cial data set. The number of trainlng instances is 400 and the Gaussian kernel with

7-1 isused.

SMO algorithm when the solutions at every breakpoint were computed. We considered

the followlng four cases: the number of trainlng instan.ces was n - 400, 800, 1200, and

1600. For each n, we generated 10 data sets and the average and standard deviation over

10 runs are reported･ Table 4.1 describes the results, showing that our path-following

algorithm is faster than the SMO algorithm in one or two orders of magnitude; the

di鮎rence between the two methods becomes more slgni丘cant as the trainlng data size

n grOWS･

The table also includes the number of events and the average number of elements

in the margin set Ju (seeEq.(4.7b)).This shows that the number of events increases

almost linearly in the sample size n, which well agrees with the emplrlCal results reported
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Table 4.1: The experimental results of the arti丘cial data set.

The average and the standard deviation (inbrackets)over 10 runs are reported.

rZ, CPUtime(sec.)#eVentsmeanlJuf

patbSMO

400 0.03(0.00)0.39(0.01)326.70(7.17)3.07(0.03)
800 0.08(0.00)2.84(0.12)635.30(17.47)3.27(0.02)
1200 0.19(0.00)10.63(0.38)997.60(26.85)3.38(0.05)
1600 0.35(0.01)28.ll(0.77)1424.00(31.27)3.50(0.02)

in [47],[46],and [117].The average number of elements in the setルイincreases very

mildly as the sample size n grows.

4.4.2 0nline Time-series Learning

ln online time-series learning, larger (resp･smaller)weights should be assigned to

newer (resp･older)
instances. For example, in [22], the following

weight
function is used:

Ci-Co

1+exp(α-2α×孟)'
(4･28)

where Co and a are hyper-parameters and the instances are assumed to be sorted along

the time axis (themost recent instance is i -

n).
Fig. 4.7 shows the profile of the weight

function (4･28)when Co - 1. In online learning, we need to update parameters when

new observations arrive, and all the weights must be updated accordingly (seeFig･ 4･8)･

We investigated the computational cost of updating parameters when several new

observations arrive. The experimental data are obtained from the NASDAQ composite

index between January 2, 2001 and December 31, 2009･ As [22]and [29],we transformed

the original closing prices using the Relative Difference in Percentage (RDP) of the price

and the exponential moving average (EMA).

Extracted features are listed in Table 4.2 (see[22]for more details).Our task is to

predict the sign of RDP+5 using EMA15 and four lagged-RDP values (RDP-5, RDP110,

RDP-15, and RDP-20)･ RDP values which exceed士2 standard deviations are replaced

with the closest marglnal values･ We have an initial set of training instances with size

n - 2515･ The inputs were normalized in [0,1]P,where p is the dimensionality of the

input x･ We used the Gaussian kernel (4･25)with 7 ∈ (10,1,0.1),and the weight

parameter a in (4･28)was set to 3. We first trained WSVM using the initial set of

instances. Then we added 5 instances to the previously trained WSVM and removed
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Figure 4･7: The weight
functions for financial time-series forecasting. The horizontal

axis is the index of training instances which is sorted according to time (themost recent

instance is i -

n)･
If we set a - 0, all the instances are weighted equally. This

weighting
strategy is proposed in [22].
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Figure 4.8: A schematic illustration of the change of weights in time-series learning. The

left plot shows the fact that larger weights are asslgned to more recent instances. The

right plot describes a situation where we receive a new instance (i- n + 1). In this

situation, the oldest instance (i- 1)is deleted by setting its
weight to zero, the weight

of the new instance is set to be the largest, and the weights of the rest of the instances

are decreased accordingly.

the oldest 5 instances by decreaslng their weights to 0. This does not change the size

of the trainlng data set, but the entire weights need to be updated as illustrated in

Fig. 4.8. We iterated this process 5 times and compared the total computational costs

of the path-following algorithm and the SMO algorithm. For fair comparison, we cleared

the cache of kernel values at each update before runnlng the algorithms･

Fig･ 4･9 shows the average CPU time over 10 runs for Co E (I,10, 102, 103, 104),show-

ing that the path-following algorithm is much faster than the SMO algorithm especially

for large Col
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Table 4.2: Features forfinancial forecasting

(p(i)is the closing price of the ith day and EMAk(i) is the k-day
exponential moving

average of the ith day.

Feature fわrmula

EMA15
p(i)-EMA15(i)

RDP-5 (p(i)-p(i-5))/p(i-5).100
RDP-10 (p(i)-p(i-10))/p(i-10)*100
RDP-15 (p(i)-p(i-15))/p(i-15)*100
RDP-20 (p(i)-p(i-20))/p(i-20)*100
RDP+5 (p(i+5)-p(i))/p(i)*lOO

p,(i)-EMA3(i)
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Figure 4.9: CPU time comparison for online time-series learning using NASDAQ com-

posite index.

4.4.3 Model Selection in Covariate Shi氏Adaptation

Covariate shift is a situation in supervised
learning

where the input distributions

change between the trainlng and test phases but the conditional distribution of outputs

given inputs remains unchanged [101]･Under covariate shift, standard SVM and SVR

are biased, and the bias caused by covariate shift can be asymptotically canceled by

weighting the loss function
according to the importance (i･e･,the ratio of training and

test input densities).

Here, we apply importance-weighted SVMs to brain-computer interfaces(BCIs) [35]･

A BCI is a system which allows for a direct communication from man to machine via

brain
slgnals.

Strollg
nOn-Stationarity effects have beell Often observed in brain signals

between training and test sessions, which could be modeled as covariate shift [105].We

used the BCI datasets provided by the Berlin BCI group [19],containing 24 binary clas-



4.5. BEYOND CLASSIFICATION 53

sification tasks･ The input features are 4-dimensional preprocessed electroencephalogram

(EEC) signals, and the output labels correspond to the `1eft'and `right'commands. The

size of trainlng datasets is around 500 to 1000, and the size of test datasets is around

200to300.

Although the importance-weighted SVM tends to have lower bias, it in turns has

larger estimation Ⅶriance than the ordinary SVM [101].Thus, in practice, it is desirable

to slightly 'flatten'the instance weights so that the trade-off between bias and variance

is optimally contro11ed･ Here, we changed the instance
weights

from the uniform values

to the importance values using the proposed path-followlng algorithm, 1.e., the instance

weights were changed血･om

ci(old)-co, i-1,･･･,n,

to

c%(new)- co
ptest (xi)

pt,ain (xi),i-1,...,n.

The importance

values盟were
estimated by the method proposed in [53],which

directly estimates the density ratio without going throughdensity estimation of ptest(a)

and pt,ain(x)･
For comparison, we ran the SMO algorithm at (i)each breakpoint of the solution

path, and (ii)100 weight vectors taken uniformly in [Ci(old), c%(new)].we used the Gaussian

kernel and the inputs were normalized in [0,1]P,where p is the dimensionality
of x.

Fig. 4.10 shows the average CPU time and its standard deviation. We examined

several settings ofhyper-parameters 7 ∈ (10,,1,- , 10-2)and Co ∈ (1,10, 102, ･ ･ ･

, 104)･

The horizontal axis of each plot represents Co. The gfaphs show that our path-following

algorithm is faster than the SMO algorithm in all cases. While the SMO algorithm

tended to take longer time for large Co, the CPU time of the path-following algorithm

did not increase with respect to Co.

4.5 Beyond Classi丘cation

So far, we focused on classification scenarios･ Here we show that the proposed path-

followlng algorithm can be extended to various scenarios including regression, ranking,

and transduction.
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Figure 4.10: CPU time comparison for covariate shift adaptation using BCI data.

4.5.1 Regression

The support vector regression (SVR) is a variant of SVM for regression problems

[81,84,113].

Formulation

The primal optimization problem for the weighted SVR (WSVR) is defined by

n

1
mln

W,b,(Ei,i;)?=1

s.t..

妄IIwIF…+∑ci(Ei+E;),
i=1

yi-f(xi) ≦E+Ei,

f(xi)-yi ≦E+i;,

Ei,i;≧0,i-1,-,n,

where亡> 0 is an insensitive-zone thickness. Note that, as in the classi丘cation case,

WSVR is reduced to the original SVR when Ci - C for i - 1,...,n. Thus, WSVR

includes SVR as a special case.

The corresponding dual problem is glVen by

1
max

(αi)i?=1 2

n n n n

∑∑αiαjK(xi,諾j)-E∑lαil+∑yiai
i-1 i-1 i-1 i-1

n

s･t･ ∑αi-0,-Ci≦αi≦Ci,i-1,-,n･
i=1

Thefinal solution, i.e., the regression
function f : X - R, is in the following form:

n

f(x)
-∑αiK(x,xi)+b･i=1
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The KKT conditions for the above dual problem are given aS

Iyi-f(xi)l≦e, if αi-0,

lyi-f(xi)I-E, if O<lαil<Ci,

lyi-f(xi)l≧E, if lαil-Ci,

妄αi-0･

55

(4･29a)

(4･29b)

(4･29c)

(4.29d)

Then the training instances can be partitioned into the following three index sets (see

Fig･2･2):

0-(i: Fyi-f(xi)l≧E,lαil-Ci),

f-(i:lyi-f(xi)l-E,0<lαil<Ci),

r-(i:Fyi-f(xi)l≦e,αi-0)･

Let

KC-[:kTE]
and s-

sign(yl
-

f(xl))

sign(yn
-

f(xn))

Then, from (4.29),we obtain

[abc]-

-(KC,-1 [KIEuCo ･ (KC,-1 [yc
-OESc]

,

αo - diag(so)co,

αo-0.

where diag(so)indicates the diagonal matrix･ with its diagonal part so. These functions

are aBine w･r･t･ c, so we can easily detect an event point by monitoring the inequalities in

(4.29)･We can follow the solution path of SVR by using essentially the same technique

as SVM classi丘cation (and thus the details are

omitted).

Experiments on Regression

As an application of WSVR, we consider a heteroscedastic regression problem, where

output noise variance depends on lnput pOints･ In heteroscedastic data modeling, larger

(resp･smaller)weights
are usually assigned to instances with smaller (resp.larger)vari-

ances. Since the point-wise variances are often unknown in practice, they should also be
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estimated from data. A standard approach is to alternately estimate the weight vector

c based on the current WSVR solution and update the WSVR solutions based on the

new weight vector c [63]･

We set the weights as

Ei:ヨ

ci

-Cob,
(4.30)

亡;i:■
Gヨ

where
ei - yi

-

I(xi) is the residual of the instance (xi,yi)from the current fit f(xi),

and 3 is an estimate of the common standard deviation of the noise computed as

■:i:ヨ

魚l ■･- i =?=1 e%?･ We employed the following procedure for the heteroscedastic data

modeling:

Step1:Training WSVR with uniform weights (i.e.,Ci - Co,i - 1,...

,n･)･

Step2: Update weights by (4･30)and update the solution of WSVR accordingly･ Repeat

this step until孟∑?=1I(et(old)-

ei)/e%(Old)l≦ 10-3 holds, where e(old) is the previous

trainlng error.

We investigated the computational cost of Step2. We applied the above procedure

to the well-known Boston housing data set. The sample size is 506 and the number

of features is p
- 13･ The inputs were normalized in [-1,1]P･We randomly sampled

n - 404 instances from the orlglnal data set, and the experiments were repeated 10

times･ We used the Gaussian kernel (4･25)with 7 ∈ (10,1,0･1)･The insensitive zone

thickness in WSVR was fixed to E = 0.05.

Each plot of Fig. 4.ll shows the CPU time comparison for Co E (1,10,...,104),

and Fig. 4.12 shows the number of iterations performed in Step2. Our path-following

approach is faster than the SMO algorithm especially for large Co.

4.5.2 Ranking

Recently, the problem of learnmg to rank has'attracted wide interest as a challenglng

topic in machine learning and information retrieval [77].Here, we focus on a method

called the ranking SVM (RSVM) [48].

Formulation

Assume that we have a set of n triplets ((xi,yi,qi))?=1Where xi ∈ RP is a feature

vector of an item and yi ∈ (rl,･ ･ ･

,rq)
is a relevance of xi tO a query qi･ The relevance
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Figure 4･11: CPU time comparison for heteroscedastic modeling using Boston housing

data.
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Figure 4･12: The number of weight updates for Boston houslng data.

has an order of the preference rq > rq-1 > ･･･ > rl, Where rq > rq-1 means that rq lS

preferred to rq-1･ The goal is to learn a ranking function f(x) which returns a larger

value for a preferred item･ More precisely, for items xi and xj Such that qi
-

qj, We

want the ranking function f(x) to satisfy

yi>yj ⇔ f(xi)>f(xj)･

Let us define the following Set Of pairs:

P-((i,i) lyi>yj,qi-qj)･

RSVM solves the followlng optimization problem:

-,{ET}i:,,･,∈ア芸=-r'z･c(iSpEij
s･t･ f(xi)-f(xj)≧1-Eij, (i,i)∈ア･
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In practical ranking tasks such as information retrieval, a palr Of items with highly

different preference levels should have a larger
weight than those with similar preference

levels. Based on this prior knowledge, [23]and [119]proposed to assign di丘-erent weights

Cid tO different relevance pairs (i,i) ∈ 7)･ This is a cost-sensitive variant of RSVM whose

prlmal problem is glVen aS

-,.ET,1:,メ,｡ア去1.-liz
I

(i昆cijEijs.t･ f(xi)-f(xj)≧1-Eij, (i,i)∈ア･

Since this formulation is interpreted as a WSVM for pairs of items (i,i)E P, we

can easily apply our multi-parametric path approach. This leads to the followlng dual

problem:

{T,aEl一芸萎萎αiαj6ij･妄αi

m

s.t. 0≦αi≦Ci, i-1,...,m,

where

Qij - Kki,k,. - Kki,A,I - Kei,kj + Kei,ej･

Then, the ranking function f isgiven as

rZ,

f(x) - ∑αi(K(x,Ski)-

K(a,xei))･
i=1

The index partitioning Of the optimal solution is given aS follows:

0-(ilf(Ski)-f(lei)≧1,αi-0),

.M-(ilf(xki)-f(xei)-1,0<αi<Ci),

Z-(i II(xki)-f(xei) ≦ 1,αi-Ci)･

Using these sets, we can compute the solution path for changlng Weight vector c. Note

that the solution path algorithm for the cost-sensitive RSVM is regarded as an extension

of the previous work by [5],in which the solution path for the standard RSVM was

studied.

In this paper, we consider a model selection problem for the weighting pattern

(Cij)(i,i)EP･We assume that the weighting pattern is represented as

cid - Ct(,?1d)+ a(ci(,Pew)
-

ci(,?ld)),(i,i)∈ P, 0 ∈ [0,1], (4･32)
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where

ci(,?1d) - co, (i,i)∈P,

ci(,Pew) - (2yi
12yj)Co, (i,i)∈7',
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and Co is the common regularization parameter2 ･ we follow the multi-parametric sol

1ution path from (Ci(,?1d))(i,i)∈アtO(Ci(,Pew))(i,i)∈Pand the best 0 is selected based on the

validation performance.

The performance of ranking algorithms is usually evaluated by some information-

retrieval measures such as the normalized discounted cumulative gain (NDCG) [50].Con-

sider a query q and define
q(i)

as the index of the i-th largest item among (f(xi))i｡(ilqi=q)I

The NDCG at position k for a query q is defined as

k

NDCG◎k -

Z∑
j-1

2yq(3-)-1, J-1,

篇土, ],1,
(4.35)

where Z is a constant to normalize the NDCG in [0,1].Note that the NDCG value in

(4･35)is defined
using only the top k items and the rest are ignored. The NDCG for

multiple queries are de丘ned as the average of (4.35).

The goal of our model selection problem is to choose ♂with the largest NDCG value.

As explained below, we can identifyO that attains the exact ma文imum NDCG value

for validation samples by exploiting the pleCeWise linearity of the solution path. The

NDCG value changes only when there is a change in the top k ranking, and the rank

of two items xi and xj Changes only when f(xi) and f(xj) cross･ Then change points

of the NDCG can be exactly identified because f(x) changes in piecewise-linear form.

Fig･ 4･13 schematically illustrates piecewise-linear paths and the corresponding NDCG

path for validation samples. The validation NDCG changes in piecewise-constant form,

and change points are found when there is a crossing between two pleCeWise-linear paths.

Experiments on ranking

We used the OHSUMED data set from the LETOR package (version3.0)provided

by Microsoft Research Asia [76]･We used the query-level normalized version of the data

set containlng 106 queries･ The total number of query-document palrS is 16140, and

2In [26],ranking of each item is also incorporated to de丘ne the weighting pattern. Ⅲowever, these

weights
depend on the current ranking, and it might change during trainlng. We thus,for simplicity,

introduce the weighting pattern (4･34)that depends only on the difference of the preference levels.
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NDCG

l

Figure 4.13: The schematic illustration of the NDCG path. The upper plot shows

outputs for 3 items which have different levels of preferences y. The bottom plot shows

the changes of the NDCG. Since the NDCG depends on the sorted order of items, it

changes only when two lines of the upper plot intersect.

the number of features is p
- 45. The data set provided is orlglnally partitioned into 5

subsets, each of which has trainlng, Validation, and test sets for 5-fold cross validation.

Here, we only used the trainlng and the validation sets.

We compared the CPU time of our path algorithm and the SMO algorithm to change

(Cid)(i,i)∈アfromflatones (4･33)to relevance weighted ones (4･34)･We need to modify

the SMO algorithm to train the model without the explicit bias term b. The usual SMO

algorithm updates selected two parameters per iteration to ensure that the solution

satisfies the equality constraint derived from the optimality condition of a. Since RSVM

has no bias term, the algorithm is adapted to update one parameter per iteration [115].

We employed the update rule of [115]to adapt the SMO algorithm to RSVM and we

chose the maximum violating point as an update parameter. This strategy lS analogous

to the maximum violating-pair working set selection of [62]in ordinary SVM･ Since it

took relatively large computational time, we ran the SMO algorithm only at 10 points

uniformly taken in [Ci(,?ld),c%(,pew)]･we considered every pair of initial
weight Co ∈

(10-5,‥･,10-1)and Gaussian width 7 ∈ (10,1,0.1).The results, given in Fig. 4.14,

show that the path algorithm is faster than the SMO in all of the settings.

The CPU time of the path algorithm in Fig. 4.14(a)increases as Co increases because

the number of breakpoints and the size of the setルイalso increase. Since our path

algorithm solves a linear system with size l.Mlusing0(I.Ml2)update in each iteration,

practical computational time depends on lルイIespecially in large data sets. In the case of

RSVM, the maximum value of lJMIis the number of pairs of training documents m - JPl･
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For each fold of the OHSUMED data set, m - 367663, 422716, 378087, 295814, and

283484. If l.Ml;y m, a large computational cost may be needed for updating the linear

system･ However, as Fig･ 4･15 shows, the size lJulis at most about one hundred in this

setup.

Fig. 4.16 shows the example of the path of validation NDCG@10. Since the NDCG

depends on the sorted order of documents, direct
optimization is rather difEcult [77]･

Using our path algorithm, however, we can detect the exact behavior of the NDCG by

monitoring the change of scores f(x) in the validation data set. Then we can find the

best
weighting pattern by choosing 0 with the maximum NDCG for the validation set.

4.5.3 Transduction

ln transductive inference [112],we aregiven unlabeled instances along with labeled

instances･ The goal of transductive inference is not to estimate the true decision function,

but to classify thegiven unlabeled instances correctly･ The transductive SVM (TSVM)

[52]is one of the most popular approaches to transductive binary classification. The

objective of the TSVM is to maximize the classi丘cation margin fわr both labeled and
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0.2 0.4 0.6 0.8
0

Figure 4.16: The change of NDCG@10 for
7

- 0.1 and C - 0.01. The parameter
0 in

the horizontal axis is used as c(old) + ♂(c(new)
-

c(old)).

unlabeled instances.

Formulation

Suppose we have k unlabeled instances (xn%F=1in addition to n labeled instances

((xi,yi))?=1･
The optimization problem of TSVM is formulated as

n k

mln

(y;
,Elf

)tF=1
,W ,b,(Ei)?=1

s.t.

1

妄[lwll…+C∑Ei'C*∑ぢ
i-1 j-1

yi(wT申(xi)+b)≧1-Ei,
i-1,...,n,

y,!(wT申(xj)+b)≧1-i,T, i-1,-,k,

Ei≧0, i-1,...,n,

ぢ≧0, }-1,-,k,

(4･36)

where C and C+ are the regularization parameters for labeled and unlabeled data, respec-

tively, and y,T ∈ (ll, +1),i
- 1, -

,
k, are the labels of the unlabeled instances (I;)e=1･

Note that (4･36)is a combinatorial optimization problem with respect to (y,T)j∈(1,-,k)･

The optimal solution of (4･36)can be found if we solve binary SVMs for all possible

combinations of (妨)j｡(1,...,k),
but this is computationally intractable even for moderate

k･ To cope with this problem, [52]proposed an algorithm which approximately opti-

mizes (4･36)by solving a series of WSVMs. The subproblem is formulated by assigning

temporarily estimated labels

y7
to unlabeled instances:

n

mln

(EHt*=1
,W,b,(Ei

);=1

s.t.

1

妄flwll≡+C∑Ei'Cニ∑ ぢ+Cl ∑ ぢ(4･37)
i=1

31∈(jIぢニー1) 3'∈(jl昭-1)

yi(wT申(xi)+b)≧1-Ei,
i-1,…,n,

y7(wT申(xj)+b)≧トぢ,
i-1,-,kフ

Ei≧0, i-1,‥.,n,

ぢ≧0, 3-1,-,k,
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where C三and Cl are the
weights

for unlabeled instances for (i iy7
-

-1) and (i i

y7
-

+1), respectively･
The entire algorithm is given as follows (see[52]for details):

Stepl: Set the parameters C, C*, and k+,
where k+ is defined as

k+=kx
l(jfyj-+1,i-1,･･･,n)I

n

k+ is defined so that the balance of positive and negative instances in the labeled

set is equal to that in the unlabeled set.

Step2: Optimize the decision function using only the labeled instances and compute

the decision function values (f(x言)),F=1･Assign positive label y,!
- 1 to the top

k+
unlabeled instances in decreasing order of I(x言),and negative label y,T

-

-1
to

the remaining instances･ Set C三and Ci to some small values (see[52]for details)･

Steps: main SVM using all the instances (i･e.,solve (4.37)).Switch the labels of a

pair of positive and negative unlabeled instances if the objective value (4.36)is

reduced, where the pair of instances are selected based on (i,?)j｡(1,…,k)(see[52]

for details).Iterate this step until no data pair decreases the objective value.

Step4: Set C三-
min(2Cニ,C*) and CL -

min(2Cl,C*)･ IfC工学C* and Cエ≧ C*,

terminate the algorithm. Otherwise return to Step3.

Our path-following algorithm can be applied to Steps and Step4 for improving com-

putational efBciency･ Step3 can be carried out via path-following as follows:

Steps(a) Choose a pair of positive instance
x㌫ and negative instance

x㌫′.

Step3(b) After
removing the positive instance

x㌫
by decreasing its weight parameter

Cm from Ci to 0, add the instance
x㌫

as a negative one by increaslng Cm from 0

to C*.

Steps(c) After removing the negative instance x㌫′
by decreasing its

weight parameter

Cm, from C三to 0, add the instance
x㌫′as a positive one by increasing Cm′ from

OtoCl･

Note that the steps 3(b) and 3(c)for switching the labels may be merged into a single

step. Step4 also can be carried out by our path-followlng algorithm.
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Figure 4.17: CPU time comparison for the transductive SVM.

Experiments onTransduction

We compare the computation time of the proposed path-followlng algorithm and the

SMO algorithm for Steps and Step4 of TSVM. We used the spam data set obtained from

the UCI machine learning repository [6]･The sample size is 4601, and the number of

features is p - 57. We randomly selected lO% of data set as labeled instances, and the

remaining 90% wereヮsed as unlabeled instances･ The inputs were normalized in [0,1]P･

Fig. 4.17 shows the average CPU time and its standard deviation over 10 runs for

the Gaussian width 7 ∈ (10,1,0.1)and C ∈ (1,10,102,…, 104).The figure shows that

our algorithm is consistently faster than the SMO algorithm in all of these settings.

4.6 Discussion

Another important advantage of the proposed approach beyond computational e氏I

ciency is that the exact solution path is represented in piecewise linear form. In SVM

(and its
variants),

the decision function f(x) also has a piecewise linear form because

f(x) is linear in the parameters α and b. It enables us to compute the entire path of

the validation errors and to select the model with the minimum validation error. Let

V be the validation set and the validation loss is defined as ∑i∈Ve(yi,I(xi))･Suppose

that the current weight
is expressed as c + Od in a critical reglOn 7a uslng a parameter

0 ∈ R, and the output has the form f(xi)-

aiO+bi for some scalar constants ai and bi･

Then the minimum validation error in the current critical reglOn 7t can be identified by

solving the followlng optimization problem:

TEiRn∑e(yi,aiO+bi)s･t･ C'Od∈兄･

i∈V

(4･38)
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After following the entire solution-path) the best model can be selected among the

candidates in the丘nite number of critical reglOnS. In the case of 0-1 loss, i.e.,

e(yi,f(xi))- I(yiSgn(I(xi))- -1),

the problem (4･38)can be solved by monitoring all the points at which I(xi)- 0 (see

Fig. 4.5).Furthermore, ifthe validation error is measured by squared loss

P(yi,f(xi))- (yi-

f(xi))2,

the problem (4･38)can be analytically solved in each critical region. As another inter-

esting example, we described how to丘nd the maximum validation NDCG in ranking

problem (seeSection 4･5･2)･In the case of NDCG, the problem (4.38)can be solved by

monitoring all the intersections of f(xi)and f(xj) such that yi ≠yj (seeFig･ 4･13)3･

Incremental-decremental SUM [24,57, 68, 79, 80]exploits the piecewise linearity of

the solutions･ It updates SVM solutions e氏ciently when instances are
added or removed

from the training Set･ The incremental and decremental operations can be implemented

using our instance-weight path approach･ If we want to add an instance (xi,yi),We

increase Ci from 0 to some specified value. Conversely, if we want to remove an instance

(xj,yj),
We decrease Cj tO O･ The paths generated by these two

approaches are different

in general･ The instance-weight path keeps the optimality of all the instances including

currently adding and/or removing ones. On the other hand, the incrementaトdecremental

algorithm does not satisfy the optimality of adding and/or removing ones until the

algorithm terminates･ When we need to guarantee the optimality at intermediate points

on the path, instance-weightpath is more useful.

In the parametric programmlng approach, numerical instabilities sometimes cause

computational difRculty･ In practical implementation, we usually update several quan-

tities such as α, b,
yf(xi),and

L from the previous values without calculating them

from scratch･ However, the rounding error may be accumulated at every breakpoints.

We can avoid such accumulation using the refreshstrategy: re-Calculating variables from

scratch, for example, every 100 steps (notethat, in this case, we need 0(nlJul2)com-

putations in every 100
steps).

Fortunately, such numerical instabilities rarely occurred

in our experiments, and the accuracy of the KKT conditions of the solutions were kept

high enough.

3In NDCG case, the "min" is replaced with
"max" in the optimization problem (4.38).
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Another (but related)numerical
di氏culty arises when the matrix M is close to

singular. [117]pointed out that if the matrix is singular, the update is no longer unique.

Tb the best of our knowledge, this degeneracy problem is not hllly solved in path-

followlng literature. Many h占uristics are proposed to circumvent the problem, and we

used one of them in the experiments: adding small positive constant to the diagonal

elements of kernel matrix･ Other strategies are also discussed in [43,87, 118]･

Scalability of our algorithm depends on the size of Ju
because a linear system with

lJuIunknowns must be solved at each breakpoint. Although we can update the Cholesky

factor by 0(FJul2)cost from the previous one, iterative methods such as conjugate-

gradients may be more e氏cient than the direct matrix update when FJulis fairly large･

when l.Mlis small the parametric prograIムming approach can be applied to relatively

large data sets such as more than tens of thousands of instances.

4.7 Conclusion

In this chapter, we developed solution-path algorithm for the instance-weighted

SVMs. Our formulatilon can be considered as a generalization of the regularization path

algorithm [47]for the changes of instance-weights.We have shown that this extension

enables to apply solution-path algorithm to various machine learnlng tasks. Inberiting

computational efBciency of the orlglnal regularization path algorithm, our approach ef-

ficiently updates the solutions. In the experiments, we demonstrated
efRciency of our

approach in several practical applications.
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Chapter 5

Nonlinear Regularization Path for L2 Loss SVM

Regularization path algorithms have been proposed to deal with model selection problem

in several machine learnlng approaches. These algorithms allow to compute the entire

path of solutions for every value of regularization parameter using the fact that their

solution paths have piecewise linear form･ In this chapter, we extend the applicability

of regularization path algorithm to a class of learnlng machines that have
quadratic

loss and quadratic penalty term･ This class contains several important learnlng ma-

chines such as squared hinge loss SVM and modified Huber loss SVM. We first show

that the solution paths of this class of learnlng machines have pleCeWise nonlinear form,

and piecewise segments between two breakpoints are characterized by a class of ratio-

nal functions･ Then we develop an algorithm that can efBciently follow the pleCeWise

nonlinear path by solving these rational equations. Tb solve these rational equations,

we use rational approximation technique with quadratic convergence rate, and thus, our

algorithm can follow the nonlinear path much more precisely than existing approaches

such as predictoトCOrreCtOr type nOnlinear-path approximation. We show the algorithm

performance on so=ne artificial and real data sets. The prelimillary Version of this chapter

has appeared in [55]･

5.1 Regularization path and loss functions

In this chapter we study binary classi丘cation problem with trailllllg data poilltS

((xi,yi))?=1,Where xi ∈ X ⊆ RP is the input and yi ∈ (1,
-1)

is the output class label.

We consider a linear discriminant function:

f(x) -

wT◎(x),
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where @ maps the data into some feature space 7. A large class of learning machines

are formulated as minimization of the followlng regularized risk function:

n

m# ∑e(yi,f(xi))+入J(w),
i=1

(5･1)

where e is a loss function, J is a penalty function, and入> 0 is a regularization parameter.

In order to obtain a discriminant function with good generalization property, we need

to select a good入that appropriately controls the model complexity (model selection)･
A typical model selection approach is to specify a list of candidate values of A and then

apply cross validation to select the best one. However, this procedure is time-consumlng

since we need to solve many optimization problems in various settings.

Regularization path algorithm [47]provides an e氏cient approach to model selection

problem. It allows to compute the entire solution path for a range of regularization

parameters A. The regularization path algorithm is built on an optimization technique

called parametric pro9rammin9 also a･k.a･ path-following[2,40]
I Recently, in the machine

learning literature,
path-following was used for various purposes (e･g.[7,24,46, 57,68, 79,

80, 107, 117]).Most regularization path algorithms in the literature were developed by

exploiting the fact that the solution paths in a class of learning machines have piecewise

linear form･ For example, the support vector machine (SVM) [112]characterized by the

followlng hinge loss:

e(yi,f(xi))-

max(0,
1 -

yif(xi)) (5･2)

and e2-norm penalty term: J(w) - !llwll…is shown to have piecewise linear regulariza-

tion path [47]･Recently, [95]showed that the regularization path has piecewise linear

form if the loss function e is a piecewise quadratic function and the penalty term J(w)

is a piecewise linear function. The LASSO [109]is a typical example of this class of

learning machine. In optimization literature, [92]has derived more general sufEcient

conditions for pleCeWise linearity in quadratic and linear programmlng Problems.

In other class of learning machines, the solution path may have nonlinear form. Pre-

dictor corrector approach [2]is usually adopted for general nonlinear path-following･
In

predictor corrector approach! the predictor step and the corrector step are iterated: the

predictor step approximates the nonlinear (curved)solution path (inmany cases, using

Taylor
expansion), while

the corrector step projectsthe predicted solution to the solution

space so that it satis丘es the optimality conditions. This approach have been applied to
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some learning problems [8,66, 88].Some other approaches are also proposed in machine

learning literature. For example, [94]proposed second10rder approximation algorithm

for nonlinear regularization path, in which small step is taken and the approximation is

updated at each iteration･ As another example, [116]derived an updating formula to

obtain the path of solutions along the change of the kernel parameter (suchas standard

deviation in Gaussian kernel)･In these methods, we can only obtain roughly approx-

imated nonlinear path of solutions. If we want these nonlinear approximated solution

path to be accurate, the algorithm would be computationally demanding because we

need to take very small steps.

In this study we consider a class of learnlng machines that have
quadratic loss and

quadratic penalty･ This class contains several important learnlng machines such as

squared hinge loss SUM and modified
Huber loss SVM. These loss functions are formu-

lated as

● Squared hinge loss:

e(y,I(x))-

max(0,
1
- yf(x))2.

･ Modi丘ed Huber loss [123]:

e(y,I(x))- IOLi4;fy(fx(,?))2,…雛],
Another formulation of Huber-type loss function proposed in [27]:

e(y,f(a))- I
0,

yf(a)
> 1+E,

什托~㌘抑,ll-yf(x)l ≦E,

1-yf(a), yf(a)<1-E,

(5.3)

(5･4)

(5･5)

where E > 0 is a parameter･ If E - 0, this loss function approaches to the hinge

loss.

Fig. 5.1 shows these loss functions along with the 0-1 loss. These quadratic loss functions

are sometimes preferred to the hinge loss･ For example, it is known that this type of

loss functions are suited to estimate conditional probability P(Y - 1 l X -

x) (see

e.g., [9,123])･Another advantage of these loss functions is their differentiability. Some

primal SVM solvers [14,27, 60]require differentiable objective function.
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Figure 5.1: Loss functions for classification

Unfortunately, the regularization paths of this class of learning machines (quadratic

loss + quadratic penalty)
do not exhibit piecewise linear form anymore. To extend

the applicability of regularization path algorithm, we develop a nonlinear regularization

path algorithm for this class of learning machines. We first show that the solution path

of this class of learning machine is represented as piecewise nonlinear form, and the

piecewise segment of solutions between two breakpoints are characterized by a class of

rational function･ The breakpoint itself can be identi丘ed solving the rational equations.

Then we develop an e缶cient algorithm that can efBciently follow the pleCeWise nonlinear

path by solving these rational equations. Tb solve these rational equations, we introduce

a rational approximation technique with quadratic convergence rate used in rank-one-

update of eigenvalue decompositions [18].Note that our algorithm is NOT a predictor-

corrector type approach･ While predictor corrector approach can only follow nonlinear

path with rather roughapproximation, our algorithm can compute quite accurate path

of solutions because we use an efBcient iterative procedure with quadratic convergence

rate.
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5.2 SVM with Huber Type loss

In this paper, we set the penalty term as J(w) - illwrl2and the loss function as the

followlng general quadratic loss function:

e(y,f(x,)- (Zp;py_fLxf,(t2j)_ h2,

y;≡(E…三…
Ep'(p-yf(x))2, yf(x)

∈ [p-h,p],

2h(p-yf(x))-h2, yf(x) <p-h,

(5･6)

where p > 0 and h > 0･ The loss function (5･6)can represent the previous three

quadratic loss functions (5･3)-(5･5)by specifying (p,h)･If we set (p,h)- (1,∞),(1,2)

and (1+E, 2E),the loss function (5･6)is reduced to (5･3),(5･4)and (5･5),respectivelyl.

The optimization problem (5･1)is now written as

n■11n

W,(Ei )i?=1

s.t.

¢(∈)
- 〈

芸‖-Fl….去云鵬),
i=1

p-yif(xi) ≦ Ei,

Ei≧0,i-1,-･,n,

E?, E ∈ [0,h],

2hEi-h2, E>h.

where

We derive the dual problem using the same approach in [30].Introducing Lagrange

multipliers αi,17i≧ 0, i - 1, -

,n,
we can write the corresponding Lagranglan aS

L-芸‖-l12･去皇HEi)Ii=1

n n

∑αi(p-yiWT◎(xi)-Ei)
- ∑7iEi･

i=1 i=1

Setting the derivatives w.r.t. primal variables w and Ei tO Zero, We Obtain

芸-o⇔

--三皇αiyiO(xi),i=1

aL

-=0
⇔

∂Ei

i t!(''(f,)

2 ∂Ei
-αi+7i,

- 〈E;≡:;:芸;三…:…[hO.,h]

(5.7)

(5･8)

(5.9)

1To represent (5･5)by (5･6),we further need to multiply (5.6)by 1/(4e). This difference can be

absorbed by the scale of regularization parameter.
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Substituting (5･8)into (5･7),we obtain

n

-去皇皇αia,･Qij･p∑αi
i-1 i-1 i-1

･皇(芸鵬)
-

(αi･ni)Ei),
i=1

where Qij -

yiyjK(xi,Xj)･
Using (5･9),we can eliminate Ei from Lagrangian･ If Ei ∈

[0,h],we have

芸b(Ei)-(αi･ni)Ei
-芸E%'-(αi･ni)Ei
一芸(αi

･りi)2･

On the other hand, ifEi > h,

去鵬)-(αi･ni)Ei- hEi-!h2-hEi
2

一芸(αi
･りi)2･

Then, the dual problem is represented as

max

α,77
W(α,77)-

n n

∑∑αiα,.Qij
i-1 i-1

n _ n

1

云+p∑αi ∑(αi+りi)2,
i=1 i=1

s.t. αi,rli≧0,i-1,･･･,n,

αi+1]i≦h, i-1,･･･,n,

where α - [α1,-
,αn]T

and 77
- [T71,･･･

,r7n]T.
since αi,T7i

W(α,77)≦ W(α,0) holds for every feasible α and 77･

and the dual problem is丘nally written as

max
α

〟(α)-

1

元

n n

∑∑αiαjQij
i-1 i-1

≧ 0, an inequality

Therefore, we can delete ll

n

･p∑αi一芸皇αヲ,i=1 i=1

s.t. 0≦αi≦h,i-1,-･,n.

(5.10)
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The discriminant function f : X - A is formulated as

f(x)

-去(tαiyiK(xi,X))･i=1

5.3 Nonlinear Regularization Path

73

In this section we derive nonlinear regularization path algorithm for
quadratic loss

SVM.

5.3.1 0ptimal Solution and Regularization Parameter

At the optimal, αi, i - 1, -

,
n,

satisfies the followingfirst10rder optimality condi-

tions (KKT conditions):

∂ll' 1

∂αi 入
ijαj+p-αi

ニーyif(xi)+p-αi

≧0, αi-h,

-0, αi∈(0,h),
≦0, αi-0.

Using these relationships, we define the following index sets:

i: - (ifyif(xi)≦p-h, αi-h),

C - (ilyif(xi)-P-αi, αi∈(0,h)),

7a - (ifyif(xi)≧p, αi-0).

(5･11)

(5･12)

The regularization path algorithm keeps track of these sets while the regularization

parameter A is perturbed.

In what follows, the subscription by an index set, such as vc for a
vector v ∈ Rn,

indicates a subvector of v whose elements are indexed by C. Similarly, the subscription

by two index sets, such as Mc,i: for a matrix M ∈ Rnxn, denotes a submatrix whose

rows are indexed by C and the columns are indexed by ∫. Princlpal submatrix such as

Qc,c is abbreviated as Qc･

The KKT conditions (5.ll)for i ∈ C can be written as

∑Qijαj+入αj-P入-h∑Qij,i∈C･

j∈C j∈L:
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Using matrix notation, it is written as

(Qc.入I)αc-

p入1
- hQc,Ll, (5･13)

where (i,i)-thentry of Q is Qij and I is an identity matrix with appropriate size･ Let

the eigenvalue decomposition (EVD) of (～cbe

Qc - U∑UT,

where = ∈ RICIxICl is a diagonal matrix whose i-th diagonal entry Ji is the i-th eigenvalue

of Qc and U ∈ RICFxICI is an orthogonal matrix whose i-th column is the i-th eigenvector

of Qc･ It is easy to show that the EVD of Qc + lZ is explicitly obtained as

Qc+入Z-U(∑+入Z)UT,

Using (5･13)and (5･14),we can compute αc as follows:

･c - u(E
･^I)-1uT〈p入1

-

hQc,Ll)･
Let us denote the index of the set C as

C-(cl,･･･
,eec),

where ec - lCl･Then, we can write (5.15)by element-wise notation:

αci

ec ec

-∑∑j-1 k-1

uikujk(p入-
hqcL,･)

Jk+A
,i-1,-･,ec,

(5･14)

(5･15)

where uij is a (i,i)-thentry of U and qf
- ∑]∈LQij･This equation can be reduced to

the followlng form:

ec

･ci-P一芸志,
i-1,-･,ec,

where

ec

(ik -

uik∑ujk(pJk+hqcLj)･
j-1

Using (5･16),yif(xi)
can be written as

ec

(5･16)

(5･17)
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Table 5.1: Event categorization

EVent ThechangeofindeX Thechangeofinequality

type1 i∈Cmigratesto7a αi>Otoαi-0

type2 i∈CmlgrateStOL: αi<htoαi-h

type3 i∈7amlgrateStOC
yif(xi)>PtOyif(xi)-P

type4 iEL:mlgrateStOC
yif(xi)<P-htoyif(xi)-P-h

LJi
k

p∑Qij+hqf,
j∈C

ec

∑ Qice(ek･
e=1

～しノ

p-∑二阜言-0,
t･E(i.,0).

where

75

The above derivation indicates that, if we have complete information on the index sets

I:, C, and 7e, the set of model parameters (αi)?=1Can be represented as a function
of

the regularization parameter l･ In particular, for a data point i E C, the corresponding

parameter αi is formulated by a rational function (5.16).

5.3.2 Event Detection

Equation (5･16)holds only when the indices in the sets C, i: and 7e are not changed.

The change of these indices is called an event, and a A is called an event point if there is

an event at A. Events in our path-followlng algorithm are categorized into four types in

Table 5.1. Each type of events is relevant to the inequality constraints in the de丘nitions

of the sets C, i: and兄in (5.12).In the case of piecewise
linear

path, event points

are easily detected by solving linear equations. In our nonlinear path, however, we

need to solve nonlinear equations to detect the event points. Tb this end, we introduce

rational approximation approach. Rational approximation has been used in the context

of rank-one-update of EVD [18]･

Here, we consider how to detect an event point when we decrease A from the current

value ^o (thes.ame discussion holds when we increase A)･ For the type 1 in Table 5･1,

we needtofind入* suchthat αci > 0,ci ∈ C, becomes αci - 0. Let us definet
-一入･

Then, we increase i from to -

-^o until we find t* such that

ec
..

(5･18)
Jk-t*

k=1
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to ll t*

Figure 5･2: Rational approximation for the type 1 in Table 5･1･ Note that
p+4,((i)

>
p((i),

i ∈ (to,t*)･
The approximated solution tl Can be computed via a quadratic equation. Iterating this,

we can obtain a sequence of approximated solution with quadratic convergence.

If this equation has multiple solutions, we choose the minimum one as t*. We note the

fact that (5.18)is similar to the secular equation which often arises in rank10ne-update

problem of the EVD [18,44, 45]･ In this paper we introduce rational approximation

approach [18]for solving (5.18).Let us define

4,((i)… ∑
k∈(kl(ik<0)

- (ik

Jk-i? p((i)
-

kE.k;,.}
Jk'tf

i

Using these functions, (5･18)is represented as

p+4,((t*)-pく(t*),
t* ∈ (to,0)･

Since the kernel matrix Q is positive semi-definite, Jk ≧ 0, k - 1, ･ ･ ･

,ec.
Therefore,

we see that both p + 4,((i)and p((i)
are increasing convex functions of i ∈ (to,0)I We

approximate 4,(and p( by their lower and upper bounds (seeFig･ 5･2):

S

*E(i),盲f7,Pく(i)<r･盲｢, iE (to,0), (5･19)

where
6 -

min(Jk I(ik > 0). These upper and lower bound functions are the lst order

local approximations to 4,( and p( at to, respectively･ The four parameters p, q, r and

s are defined to satisfy these requlrementS, i.e., 'they are defined as

P=

4,;(to)_
'

r -

p((to)
-

△d((to),

q-to･欝s-△2d<(lo,,
(5･20)

where ¢;(i)
- ∂4,((i)/ai,d<(i)- ∂p((i)/∂t,and

△ - 6 - lo･ Then, inequalities (5･19)

hold as in [18]･Using the approximation by these simple rational functions in (5･19),we
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compute an approximate solution tl by solving

p+-i-r+盲T
S

q-tl

This equation can be reduced to a quadratic equation, and we choose the minimum one

in (to,0)as tl･ In case we have no solution in (to,0),the point i ∈ C is disregarded for

the moment because it has no chance to define the next event point. Given tl, We iterate

the same procedure to obtain new approximate solution t2 ∈ (il,0)･As a consequence,

we can produce a sequence (tk)that ap'proaches t* from the left.

For the type 2 in Table 5･1, we need tofind入* such that αci < h,ci ∈ C, becomes

αci - h･ We increase i from to until we find t* such that

ec

p-∑兵-h,
tee(t｡,0).

k=1

This can be written as

p+4,((i*)-4,((t*)
+h, t* ∈ (to,0),

We use the following bounds:

4,((i)< r+
6-t'Tい)/′

q-t'
p<(i)>丁㌔,ま∈(i.,0),

where6-min(c,k i(ik < 0). Sincep+4,((i)<
p((i)+h,

i ∈ (to,t*),weneedtoset the

upper bound to 4,( and the lower bound to p(･ Note that p, q,r and s are computed by

alternating 4,( and p亡in (5･20):

P=
(p((Lo))2

pと(to)
q-to+

,

r-4,((to)-△4,;(to),

竺≦if9j
pと(to)

,

s-△24,;(io)･

For the type 3 of Table 5･1, we have to detect入* such that
yif(xi)

> p, i ∈ 7a,

becomes
yif(xi)

-

P･ Using (5･17),we obtain the following equation:

ec

di一言語ニーplU*
E (to,0)･

As in the previous two types of cases, we define the followlng functions:

4,u(i)≡ ∑
k∈(kILJik<0)

-LJik

cTk -i?
pw(i)≡ ∑

k∈(kILL)ik>0)

LJik

cTl･
- I

(5.21)
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Then, (5.21)can be written as

di +4,LJ(t*)+pt*
-

PLJ(t*),
t* ∈ (to,0)･ (5･22)

Both sides of equation are increasing convex functions off ∈ (to,0)･Since di+也(i)+pt >

plo(i),
i ∈ (to,t*),We replace 4,LJby its lower bound and plo by its upper bound:

di

･盲37;
･ptl -

r･言古
(5･23)

where 6 -

min(Jk lLJik > 0)･ p,q,r and s are computed by (5･20)with 4,( replaced

byれand p( replaced by
pLJ･

We can easily solve (5･23)because it is reduced to a

cubic equation. Tb detect the event, we only need the minimum solution of that cubic

equation in (to,0)･Once we obtain tl, We Can iterate rational approximation in the same

way as the type 1 and 2.

For the last type 4 of Table 5.1, we solve

ec

di一芸器ニー(p-h)t*,吋to,0),
tofind入* where yif(xi)

< p- h, i ∈ i:, reaches a boundary
yif(xi)

-

P- h･ This can

be written as

di+4,LJ(i*)+(p-h)t* -

PLJ(t*),
t* ∈ (to,0). (5.24)

When h ≦ 1, both sides of the equation are increasing convex functions
of i ∈ (to,0)･

Even if h > 1, we can make the increasing convex functions by moving the term (p- h)t*

to the right
hand side. In this case, we approximate 4,LJby its upper bound and plo by

its lower bound uslng the rational approximation.

By checking all the four types in Table 5.1, we obtain ^*'s for
each inequality con-

straint･ The event point is determined as the maximum ^* among those candidates.

5.3.3 Advantages of The Rational Approximation and Cutoff

Strategy

Rational approximation generates approximate solution sequence (tk)for a nonlinear

equation expressed by two monotonic convex functions･ The sequence (tk)can reach tk ∈

[t*- E, i*]by the finite number of iterations for arbitrary small E > 0. This convergence

is guaranteed for any starting point to < 0 (note,in contrast, that Newton method may
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be trapped in periodic cycle)I
nユrthermore, if we assume that the gradient of nonlinear

equation is not 0 at t*, we can prove quadratic convergence of the approximation (we

provide the proof in Appendix C).

Since (ik) is a monotonically increasing sequence, it approaches t* from the left.

Exploiting this property, we can sometimes terminate iteration for approximation before

convergence without affecting the accuracy of the event detection. Suppose we have

obtained入㌫ax
-

-t㌫inWhich
is the maximum入* among some of the inequalities in

Table 5･1･ When we investigate the next inequality, we can terminate the approximation

at the i-th iteration if ti becomes larger than t㌫in･This is because we only need the

minimum t* to detect the event･ We refer to this early termination strategy as cutoH

(Note that this strategy has no effects on the accuracy of solutions).

5.3A Empty Set C and Initialization

WhenwehavenodatapointsinC, αi iseither αi - 0, i ∈ 7t, or αi - 1, i ∈ i:.

Then,
yif(xi)

can be written as

yif(xi)
-芸(∑Qij)･jEL:

Using this, we can easily check the type 3 and 4 in Table 5.1.

We can use the optimal solution α for
any入> 0 as a starting point of the regu-

larization path･ Althoughoptimal α at initial入can be obtained by directly solving

the optimization problem (5･10)using,for instance, active set method there is a more

appealing approach for initialization･ We can find a trivial solution for sufBciently large

A, and we may easily obtain the initial solution by followlng the path with decreasing

^･ We explain how to obtain those trivial'solutions in the following three cases: (i)

0<p-h, (ii)0>p-h> -∞, (iii)h- 舵 (squaredhingeloss).

When入- ∞, optimal w is obviously 0, and then
yif(xi)

- 0 for i - 1,-
,n.

Thus, in the first case (i)0 <
p-

h, all the data points are in i: (seeFig. 5.3(a)).We

search the first event point入1 SO that i ∈ i: moves to C using the same approach to

emptyC.

In the second case (ii),all the data points are in C as入- ∞ (seeFig. 5.3(b)).Then

yif(xi)must
be in the following

range:

yif(xi)∈[p-h,p],
i-1,-,n. (5･25)
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(二 T;

0 /】一h p

yf(3:)

C 7L

p-A 0 p

yI(=)

(a)case (i):0<p-h (b)case (ii):0>p-

h>-∝)

Figure 5.3: The loss function and p
- h

On the other hand, from αi ∈ [0,h],we know
yif(xi)

has the following bounds:

n

yif(xi)
-三皇Qija,･∈姫-in(0,Qij),∑-aX(0,Qij)]j-1 j-1 j-1

If the inequalities

p-h

≦芸皇-in(0,Qij),
i-1,･･･,n,

j-1

p

≧芸皇-ax(o,Qij),
i-1,･-,n,

j-1

are hold, optimal solution of such A satisfies (5.25).We can easily calculate A which

satis丘es the above inequalities.

In the third case (iii),as in the previous case, all the data points are in C as入- ∞･

However since αi has no upper bound, we can not apply the same strategy as the previous

case. Weuse the following lower bound:

ec

･ci -

P-∑
k=1

～/ノー ∑
k∈(kI(ik>0)

(ik
Jmin +入'

where
Jmin -

min(Jk lk - 1, ･ ･ I

, ec)･ Since this lower bound monotonically approaches

to p as入- ∞, all αci's are positive at some large入･ We can find such入by the followlng:

max
∑he(kF<ik,0)(ik

~ Jmin i-1,-,ec

If we set p
- h, then

yif(xi)
- 0 is a boundary between i: and C･ In this case,

detecting the first event is more difBcult than the previous three cases. However, even if
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we can not find trivial initial solution, we can start our path algorithm from
any A and

its optimal solution.

5.3.5 Computational Complexity

The
major computational cost of each iteration of the regularization path involves

･ The eigenvalue decomposition of ec x ec matrix Qc with 0(e3c).

･ Computing (ik,i - 1,-
,ec,k

- 1,-
,ec･

This needs 0(eを)computations.

･ computing LJik,i ∈花uL:,k - 1,-
,ec･

Since we need to compute ∑芸≡1Qice(ek
for each LJik, it takes 0(eを(eR+eL)), Where eR - l7qand eL - lL:l.

･ Solving nonlinear equations to detect the event･ We solve 2ec + eR + eL - 0(n)

equations uslng the rational approximation. In each iteration of the rational ap-

proximation, we have 0(ec) computation (mainlyfor re-calculating αi Or
yif(xi)).

If we assume that the rational approximation terminates at the I,a-th iteration,

the total cost is
roughly 0(I,aecn).

Thus, the approximate complexity for one iteration of the regularization path is 0(eをn+

I,aecn).Note that ec changes each iteration. If we assume I,a is small enough, it can be

considered as 0(eをn).As we will see in later
experiments, the rational approximation

converges very quickly･ 0(eをn)is similar to the cost of a single SVM training. Therefore,

an event detection in our algorithm is as costly as re-trainlng the SVM at each event

point･ However, emplrlCal results in the next section suggests that our algorithm is an

order of magnitude faster than the same number of the SVM re-trainlng aS the number

of breakpoints (usingSMO algorithm [90,115]).

5.4 Experiments

To demonstrate our algorithm, we show some numerical results on artificial and real

data sets. Using our algorithm, we traced the sequence of event points ll > l2 >
･

･
･

>

^L Where ^1 is the first event point computed by the initialization in Subsection 5.3A

and ^L is the first event point which becomes slnaller than 10-5. The Gaussian RBF

kernel K(xi,Xj) -

eXp(-7rlxi
-

XjH2)
is used･ We set kernel parameter as 7

- 1/d,

where d is the number of features (Thisis a default setting in LIBSVM [25]).In the
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event detection, we iterate rational approximation until approximation error becomes

less than 10-12･ we investigated the performances of our algorithm for modified Huber

loss function and squared hinge loss. For the former loss function (p,h) - (1･1,0･2)and

for the latter loss function (p,h) - (1,∞)･
We compared the CPU time of our algorithm with the SMO (SequentialMinimal

Optimization)algorithm [90].Since we did not use the explicit bias term'for simplicity,

the dual problem (5･10)has no equality constraints･ Then, the SMO algorithm is adapted

to optimize only one parameter αi per iteration [115]･We select updating index i by

i - (i三.u;ニ,

if giu, >
-gidown,

if
-9idown

> 9iu,,

where 9i - ∂W/∂αiand

iup =

argmaX gj' idown =

argmaX -gj･
j∈(jlαj<1) j∈(jlαj>0)

The SMO algorithm stops when l9il< 10-6 are satisfied. We confirmed that the so-

lutions which is obtained by our A-path algorithm satisfied this condition at all of

the breakpoints･ We ran the SMO algorithm at L regularization parameters All -

(10Pl,･ ･ ･

, 10PL) where L is the number of the events in regularization path･ We set

pl
- loglO入;1 and uniformly took L values from k'1,4].We used the alpha seeding ap-

proaches in the SMO, i.e., solution at the previous C is used to produce initial estimates

of αi's. We examined direct alpha reuse and scaling all alphas strategies(see[34]for

detail).

Our regularization path algorithm were mostly implemented in C++. For efBcient

matrix computations (e･g･matrix vector multiplication or the eigenvalue
decomposi-

tion),we used LAPACK [3]routine･ On the other hand, the SMO algorithm was written

solely by C++ on the basis of the-state10f-the-art SVM solver LIBSVM [25]･In both

algorithms, we computed and cached the entire kernel matrix at the beginnlng.

5.4.1 Arti丘cial Data

First, we used simple artificial data set. We generated data points (x,y) ∈ R2 ×

(+1,
-1)

using the 2-dimensional Normal distributions:

p(Sly-･1)
-芸N(pT,∑T)+芸N(p‡,∑2･),

p(xly--1)
- N(p~,∑~),
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Figure 5.4: An example of arti丘cial data set
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We generated n ∈ (100,200, 400)Itraining data points and the sizes of each class is set

to be
n/2･

We normalized each dimension of x to [0,1].Fig.5.4 shows an example of

data set when n - 400. For each size n, we generated 10 data sets to alleviate random

sampling effect and computed results as average of 10 runs.

Table 5･2 and 5･3 show the results of the modi丘ed Huber SVM. Table 5.2 compares

the CPU times on modified Huber SVM, where figures in the table are the average (and

the standard deviations in the round bracket)of 10 runs. We refer to our regularization

path algorithm as A-path in Table 5.2. We see that A-path is much faster than the SMO

algorithm (we observed, as is well
known, the SMO took relatively longer time when

C -入~1
was large [16](datanot shown)).

When we did not use cutoffstrategy,A-path

becomes much slower.

Table 5.3 shows t,he number of the events L and the mean number of iterations in

a rational approximation per one nonlinear equation. Some authors suggested that the

number of the･ events appears to be roughly proportional to the number of trainlng

points [46,47,117].Although this is only丘･om empirical observations, we also see that

the number of the events increased linearly with n ill this simple artificial data sets.

Even if we did not use
cutoffstrategy, iterations of rational approximation were only

about 10-15 iterations･ With the use of cutoffstrategy, the average number of iterations
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Table 5･2: Computational cost of the modified Huber SVM (p - 1･1,h - 0･2)for

arti丘cial data (sec･)

n A-path^-pathSMOSMOSMO

nocutofffromscratchdirectalphareusescalingallalphas

100 0.28(0.03)2.80(0.33)68.44(20.41)49.40(16.08)37.73(12.27)
200 1.10(0.07)13.43(1.08)548.36(105.30)358.15(80.13)271.89(59.33)
400 4.72(0.33)57.06(2.87)4021.58(535.73)2285.46(261.51)1635.52(224.54)

Table 5.3: The number of the events and the mean number of iterations of a rational

approximation of the modified Huber SVM (p - 1･1, h - 0･2)for artificial data･

(The丘gures in the table are the average (and the standard deviation)of 10
runs)

n #eventsLiterationiteration(nocutoff)
100 150.00(14.79)1.20(0.04)ll.99(0.51)
200 286.80(15.45)1.12(0.01)14.72(0.46)
400 532.80(33.02)1.07(0.01)16.28(0.44)

became close to 1.

Fig. 5.5 shows how the sizes of index sets C,7a and i: change in the九-path. Each

plot is one of the 10 runs ofn
- 100 and 400. The two plots for n - 100 and n - 400

look similar except their scale.

Table 5.4 and 5.5 show the results of the squared hinge SVM. We see similar results

to the modified Huber SVM case. Our A-path algorithm is faster than the SMO. Since

the squared hinge SVM does not have the set i:, the number of event L reduced from

the modi丘ed Ⅲuber SVM case.

(a)n-100

Figure 5.5: The sizes of index sets i:,C and 7i in the regularization path for
artificial

data.
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Table 5･4: Computational cost of the squared hinge SVM (p - 1, h -

∞)
for

artificial

data(sec･)

n, A-path^-pathSMOSMOSMO

nocutofffromscratchdirectalphareusescalingallalphas

100 0.18(0.03)0.70(0.22)185.59(28.89)178.05(28.66)130.13(22.48)
200 1.48(0.20)4.25(1.35)1302.44(201.31)1207.30(186.03)852.27(93.04)
400 16.27(1.37)28.43(3.55)8763,.64(966.75)7669.12(824.68)4962.62(509.71)

Table 5.5: The number of the events and the mean number of iterations of a rational

approximation of the squared hinge SVM (p- 1, h -

∞)
for artificial data.

(The丘gures in the table are the average (and the standard deviation)of 10
runs)

n #eVentgLiterationiteration(nocutoff)
100 42.10(8.80)1.82(0.21)14.28(1.39)
200 83.40(16.59)1.40(0ー15)14.15(1.74)
400 145.10(18.58)1.37(0.12)12.92(1.01)

5.4.2 Real Data

We also apply our algorithm to 6 real world data sets in Table 5.6. These data sets

are available
from LIBSVM site [25]･In all data sets, each dimensi.on of a is normalized

to [11,1]･We randomly sampled n data points from original data set 10 times (we set

n be approximately 80% of the original number of data
points).

Table 5.7 and 5.8 show the results of the modi丘ed Ⅲuber SVM. Table 5.7 shows the

CPU time of each algorithm･ Our algorithm is much faster than the SMO algorithm in

all the dat,a sets. Table 5.8 shows the number of the events L and the mean number of

Table 5･6: Real data sets (The figures in the parentheses are the size of original
data

set)
nd

SOnar 166(208)60
heart 216(270)13

australian 552(690)14
diabetes 614(768)8
fourclass 689(862)2

german 800(1000)24
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Table 5.7: Computational cost of the modified Huber SVM (p - 1.1,h - 0.2)for real

data(sec･)

A-pathSMOSMOSMO

fromscratchdirectalphareusescalingallalphas

SOnar 1.23(0.08)9.24(0.78)5.25(0.35)6.21(0.57)
heal.t 2.62(0.14)28.97(6.69)16.92(4.55)20.38(4.98)

australian 82.81(7.13)4294.12(638.70)2371.00(340.46)2519.12(366.ll)
diabetes 54.01(3.03)26987.53(2189.93)15310.13(1320.48)14316.77(1274.24)
fourclass 50.22(1.18)5019.78(458.86)3607.ll(302.86)2319.08(210.31)

german 313.91(15.62)4118.85(264.45)2159.13(146.79)2409.60(164.76)

Table 5.8: The number of the events and t,he mean number of iterations of the rational

approximation of the modified Huber SVM (p - 1･1, h - 0･2)for real data sets･

#eventsLiteration

SOnar 279.40(9.55)1.14(0.01)
heart 424.20(7.05)1.09(0.01)

australian 1274.90(30.90)1.05(0.00)
diabetes 1298.80(27.32)1.08(0.00)
fourclass 1634.00(14.21)1.04(0.00)

german 1821.80(25.07)1.04(0.01)

iterations in a rational approximation. We see that the number of the events is about

2-3 times n and the iteration of rational approximation is very small.

Fig. 5.6 shows the size of index sets of fourclass and german data sets. Althoughthe

size n of these 2 data sets are not much different, the changlng Patterns Of the set sizes

are very different. These differences affect to the computational cost of the regularization

path (seeSection IV).

Table 5.9 and 5.10 are the results of the squared hinge SVM. Here again, we obtain

similar results to the modified Huber SVM case. The results demonstrate efBciency of

our algorithm.

5.5 Conclusion

In this chapter, we derive nonlinear regularization path algorithm
for the quadratic

loss SVMs. Our algorithm e艮ciently detects the event points using rational approxima-

tion. As the advantages of rational approximation, we have shown quadratic convergence
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Figure 5･6: The size of index sets i:,C and花in the regularization path for real data

sets.

rate and cutoff strategy･ The experimental results have demonstrated
efRciency of our

approach compared to naive grid search. Unlike predictor corrector and hot start ap-

proaches, our algorithm reveals substantially exact behavior of solutions.
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Table 5.9: Computational cost of the squared hinge SVM (p- 1, h -

∞)
for real data

(sec･)

A-pathSMOSMOSMO

fromscratchdirectalphareusescalingallalphas

SOnar 1.ll(0.03)3.49(0.48)2.69(0.26)2.67(0.29)
heart 2.83(0.08)13.75(2.64)9.88(1.78)10.50(1.98)

australian 84.61(2.47)3498.90(697.69)2825.95(563.69)2275.22(395.63)
diabetes 120.69(4.41)30884.68(1550.91)28118.80(1344.21)21276.58(1041.52)
fourclass 185.34(6.57)34-03.16(179.35)3801.39(146.05)1800.37(132.66)

german 339.70(9.00)1383.52(162.89)993.90(138.92)928.53(121.83)

Table 5.10: The number of the events and the mean number of iterations of the rational

approximation of the squared hinge SVM (p- 1, h -

∞)
for real data sets･

#eventsLiteration

SOnar 93.30(4.52)1.52(0.09)
heart 146.60(6.67)1.41(0.05)

australian 468.70(22ー32)1.18(0.05)
diabetes 353.70(20.84)1.22(0.04)
fourclass 690.00(12.90)1.07(0.01)
german 504.40(19.52)1.23(0.05)
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Chapter 6

Conclusions

In this paper, we have studied parametric optimization approaches for various machine

learning tasks. Our approach enables efBcient calculation of the exact solution when we

have to solve a sequence of parametrized optimization problems.

In Chapter 3, we proposed multiple incremental decremental algorithm for the SVM.

This approach is much faster than conventional (single)incremental decremental algo-

rithm when multiple data points are added to
and/or removed丘･om training data set.

The reason is that our approach can update the changes of multiple data points simul-

taneously by multi-parametric approach. We have also provided analytical evidences

for efhciency of our algorithm on some reasonable assumptions. Experimental
results

showed that our approach was actually efEcient in several practical settings such as

online learnlng and cross-validation.

In Chapter 4, we developed an e氏cient algorithm for updating solutions of instance-

weighted SVMs･ Our algorithm was built upon multi-parametric programming tech-

nlqueS, and it is an extension of existing slngle-ParameterPath-following algorithms to

multiple parameters. We experimentally demonstrated the computational advantage of

the proposed algorithm on a wide range of applications including on-line time-series

analysis, heteroscedastic data modeling, covariate shi氏adaptation, ranking, and trans-

duction.

In Chapter 5, we proposed nonlinear regularization path algorithm for a class of
learn-

1ng machines that have quadratic loss and quadratic regularizer which we call quadratic

loss SVM. We developed an accurate and e氏cient nonlinear path followlng algorithm

using rational approximation technique. A unique point of our approach is that it reveals

behavior of nonlinear solution path exactly. Experiments showed that our algorithm can

efnciently trace the exact regularization path of the quadratic loss SVMs compared to
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naive exhaustive search.

Although we focused only on quadratic programming (QP) machines in this paper,

similar algorithms can be developed for linear programming (LP) machines･ It is well-

known in the parametric programming literature that the solution of LP and QP have

piecewise linear form if a linear function of hyper-parameters appears in the constant

term of the constraints and/or
the linear part of the objective

function (se'e[12,40,89,92]

for more details).Indeed, the parametric LP technique [40]has already been applied to

several machine learning problems [73,121, 124]･One of our future works is to apply the

multi-parametric approach to these LP machines.

In Chapter 4, we studied the changes of instance-weights of various types of SVMs.

There are many other situations in which a path of multiple hyper-parameters can be

exploited. For instance, the application of the multi-parametric path approach to the

following Problems would be interesting future works:

･ Different (functional)margin SVM:

1=
..∩

n

w,bT!?,T=1妄IIwll…
+C∑Ei,

i=1

s･t･ yif(xi)≧bi-Ei, Ei≧0, i-1,-,n,

where 6i ∈ R is a
margin rescaling parameter. [26]indicated that this type of

parametrization can be used to give different costs to each pair of items in ranking

SVM.

. SVR with different insensitive-zone thickness. Although usual SVR has the com-

mon insensitive-zone thickness E for all instances, different thickness Ei for every

instance can be asslgned:

rZ.

1
mln

W,b,(Eiぷ)T=1

s.t..

妄IIwll…+C∑(Ei'E;),
i=1

yi-f(xi) ≦Ei+Ei,

I(xi)-yi ≦Ei+E;,

Ei,i;≧0, i-1,･･･,n･

In the case of common thickness, the optimal E is known to be asymptotically

proportional to the noise Ⅶriance [67,103トIn the case of heteroscedastic noise,

it would be reasonable to set different Ei, each of which is proportional to the

variance of each (iterativelyestimated)yi.
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･ The
weighted lasso. The lasso solves the following quadratic programmlng problem

[110]:

P P

-3nlly-∑xjPjll…+入∑fPjl,j-1 j-1

where入is the regularization parameter. A weighted version of the lasso has been

considered in [125]:

P P

m3nlly
- ∑xjPjlr…+入∑wjlPjl,

j-1 j-1

where wj is an individual
weight parameters for each Pj･ The

weights
are adaptively

ノ＼

determined by wj - lPjl-7,where P,.is an initial estimation of Pj and 7 > 0 is

a parameter･ A similar weighted parameter-minimization problem has also been

considered in [21]in the context of signal reconstruction. They considered the

followlng Weighted
el-minimization probleml :

x-EIRnn妄wiFxi.s.t. y-d?x.

where y ∈ Rm,申∈ Rmxn,
and m < n. The goal of this problem is to reconstruct

a sparse signal x from the measurement vector y and senslng matrix申. The

constraint linear equations have in丘nitely many solutions and the simplest expla-

nation of y is desirable. To estimate better sparse representation, they proposed

an iteratively re-weighting strategy
for

estimating wi.

In order to apply the multi-parametric approach to these problems, we need to determine

the search direction of the path in the multi-dimensional hyper-parameter space. In

many situations search directions can be estimated丘･om data.

Parametric optimization derives analytical expression of solutions. As we have seen

throughout the paper, it brings the followlng
advantages:

● EfEciency

The calculation of analytical solutions are often faster than the iterative application

of optimization algorithm. We have shown that several machine learnlng tasks can

be accelerated by this property in Chapter 3, 4 and 5.

1Note that x and y in the above equation have different meanlngS from other parts of this paper･
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● Accuracy

Since we calculate solutions from analytical expression, calculated solutions are

bighly accurate. In pleCeWise linear case, it depends on the accuracy of linear sys-

tem solver. Many linear algebra packages (e.g･,LAPACK [3])provide routines to

calculate accurate solution of linear system efEciently. In Chapter 3, we confirmed

accuracy of our approach is close to Boating-point precision.

● Continuity

From the function form of the analytical solution, we can know continuous changes

of solutions. Using this property, behavior of performance measures for models are

also easily monitored. We have shown several examples of prediction performance

monitoring in Chapter 4.

As mentioned in this chapter, there seems to be further research directions which we can

exploit these advantages. In the future
work, we plan to consider applying our approach

to those other machine learnlng tasks.
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Appendix

A Solving KKT Linear System

Here, we consider solving the followlng form of linear system:

[ZyQT][:]
- [;12],

where y ∈ Rn, a ∈ RnXn, b ∈ R, α ∈ Rn, rl ∈ A. r2 ∈ Rn and Q is strictly positive definite.

We can decompose above linear system as follows:

yTα
- rl)

yb+Qα
- r2.

From (A.2)we obtain

α-a-1(r21yb).

Substituting this equation into (A･1),we丘nd

yTQ-1(r2-yb)
- rl

yTQ-1r2
-

rl

yTQ-1y

consider the Cholesky factorization Q - LLT where L ∈ RnXn is a lower triangular ma-

trix with positive diagonal entries･ Let pl - L-1y and p2 - L-1r2･ Then the solution
is

represented as follows:

β丁β2
- γ1

pTpl
'

α - L~T(p2-Plb).

B Rank-one Cholesky Update

Since the size of JM
increases or decreases by one in each iteration, we use rank-one up-

date of Cholesky factor L of QJu. This requires 0(1Jul2)computations instead of 0(lJul3)



C. CONVERGENCE OF RATIONAL APPROXIMATION

computations in
usual Cholesky factorization [45]･If Q,u is expanded as

[QqF
Qqccc],Cholesky factor of expanded matrix becomes

L

q[L-T Qcc - qcTL-TL-1qc
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When we delete k-th row and k-th column of a,u, we delete corresponding row of L. However,

then since the entries of (i,i+ 1) for i ≧ k have non zero elements, L is no longer lower

triangular matrix. We can eliminate these non zeros using Givens rotations with:

.)'
J'-1

J

i+1

1

0

0 0 0

c -s 0

0 -･ β c 0

0 ･- 0 0 1

where

Multiplying this sparse orthogonal matrix (with0(lJuF))from rightside of L, (i+ 1)× (i+ 1)

leading prlnCiple submatrix of L becomes lower triangular. We iterate this operation until

entire matrix becomes lower triangular.

C Convergence of Rational Approximation

We provide convergence proof of the rational approximation･ We can prove it in almost

same way as [18]･Althoughwe will consider the case ofsolving (5･22)(i･e･,type 3 in Table 5.1),

other types can also be proved
in

similar way. Here, we employ simple notations such as

d - di, 4,k- 4,LJ(lk),4,*- 4,LJ(l*),4,′- ∂4,LJ(i)/∂t･In the proof, we assume that the following

condition holds:

Assumption l〆+〟-〆≠ o. since〆+〟-〆≦ o, Assumption 1 just means that

〆+β一〆<'o.
The followlng two theorems provide the convergence property of our

algorithm･

Theorem 2 Under Assumption 1, the sequence of the rational approximation (tk)k=1,2,-

converges tO t* as k - ∞. Even if the Assumption 1 does not hold, (tk) can reach tk ∈

[t*-

E,t*)
by the j言nitenumber of

iterations for arbitrwy small E > 0.
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Figure C.1: The schematic illustration of the rational approximation. e is a tangent

line of d + 4,(i)+ pt･ From the convexity, e becomes lower bound of d + 4,(i)+ pt and

d+慕+pt･

Theorem 3 Under Assumption 1, ifthe sequence (Lk) converges to i*, the rational approxi-

mation has the quadratic rate of convergence for suBiciently
large k.

Proof of Theorem 2

Proof･ Let P E (0,1) be a constant which is independent of the iteration k. We prove the

following condition holds for any tl ∈ (to,t*):

t*-t2≦(1-β)(t*-tl),

where t2 is obtained by one iteration of the rational approximation from tl. Let T Satisfy

d+¢1+ptl+(4,'1+p)(T-tl)-r+
S

∂一丁

The lefthand side represents the tangent line A of d+4,(i) + pt at tl (seeFig. C.1). Let us

define α as the angle between the line e and the horizontal line. Then we see

tanα-4,i+p-
r+言≒-(d+4,1+ptl)

T-tl

From (5･20),we set r - pl - (6-tl)p'1 and s - (6- tl)2dl.Substituting r and s into above

equation, we obtain

T-tl--
d+4)1+ptl-Pl

p/1 +p

Arranglng this equation, we have

T-ll-

where 7- (6-tl)/(6-T) and

-gl

･浩方言壬(T-tl)･

7P'1 -4,'1- P

gl=-

(t*-tl)

d+4)1+ptl -Pl

t*-tl

(C.1)
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Figure C.2: The illustration of飢
The slope of the dashed line is 91.

gl Can be interpreted as the slope of a line Which passes through(il,d+ 4,1+ ptl
-

Pl) and

(t*,0) (seeFig･ C･2)･Ron the Assumption 1, gl has an upper bound which is smaller than 0,

i.e.,

gl ≦9max <0.

IftheAssumption 1 does not hold, we can maintain this inequality when tl is in (to,i+- E]
for

arbitrary small E > 0･ Substituting this into (C.1),we obtain the following inequalities:

T-El≧

β-

-gmax / ,*

(t*-tl) ≧β(t*-tl),
7P'1 -4,i -p

-

gmax

maxtE(l｡,l*)(7〆(i)
-

4,′(i)-

p)

where

Since t2 ～ 7-, We have

t2-il ≧ β(i*-il)

-t*+t2 ≧
-(t*-tl)+β(t*-tl)

t*-i2 ≦ (11β)(t*-tl).

Finally, we need to prove β ∈ (0,1).First, we consider β < 1. It can be derived丘･om the

followlng Inequalities:

t昂.T.)(7d(i)-d(i)-p)
't宗器)(p'(i)-d(i)-p)
≧ -gmax･

The first inequality comes from 7 > 1 and 4,′(i)≧ 0･ Ftom the mean-value theorem, there

exists at least one 0 ∈ (to,t*)such that 4,′(0)+ p
-

p'(0)
- gmax･ Then the second inequality

holds. Next, we consider the lower bound of β･From the monotonicity of 4,′and d, we obtain

tlETtSt.)
(7P,1-¢i -p) <芸詔〆-¢ムーp･

Thenwe see βisin (0,1). [コ
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Proof of Theorem 3

Proof. Let FC be a constant which
is independent on the iteration. We show Ilk+1-

t*l≦

rcltk- t*12for sufhciently large k, when tk - l*. Subtracting

d+4,*+pt* -p*,

from

d+ i +pt2-r+

q-L2

S

6-t2'

P

q-t2 -4,*+p(i2-t*) -r+

S

6-t2
-p*･

we obtain

Substituting p, q, r and a, this equation can be･ reduced to

4,1-4,*G(il)+p(i2 -i*)G(tl)
-

〈pl-P･･Adl(富ま)〉G(tl), (C.2)

where G(tl) - 1+ A(Ll-t2) and △ - 6-Ll･ The left hand sideof (C･2)can be written as

*1
-

4,*G(tl)+p(t2 -i*)a(tl)
-

去(*12-nl -miEl) ･誓E2･pE2G(tl),
where El - tl - t* and E2 - t2 - t*. Using the Taylor expansion of4,1 and 4,iaround t*, we

obtain

･12-vゆ1
1niEl

- ((㌔)2一芸-′′〉かo(En･
Finally the le氏hand side of (C.2)becomes

讐E2･pE2G(ll) + 0(E;)･

Expanding pl and p'1 in the righthand side of (C･2),we obtain

〆E2(諾)a(il)･0(En･
Using (C･3)and (C･4),(C.2)is

reduced to

〈誓･pG(tl)-P,1 (諾)′G(tl))E2-

0(En･

Since G(tl)-1 astl -i*,

tlll!B.(響+pG(tl)-

P,1 (書ま)a(tl)〉
-

〆+β一〆≠o

Then we can see E2 -

0(E至).

(C.3)

(C.4)

⊂]


