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Chapter 1

Introduction

Over the last few decades, a variety of machine learning algorithms have been developed
as powerful tools for data analysis in various practical applications such as natural
language processing, computer vision, search engine design and bioinfomatics. The
Support Vector Machine (SVM) [15,31,112] is one of the most successful algorithms
in machine learning. The SVM was originally developed for the classification problem
and the underlying statistical and algorithmical framework has been extended to other
learning tasks such as regression, domain description and learning to rank.

Most of machine learning algorithms are represented as the mathematical optimiza-
tion problem which is formulated as the problem of minimizing (or maximizing) an
objective function subject to some constraints. The objective function of the SVM is
defined as a linear combination of a loss term and a regularization term. The loss term
penalizes the miss-classification of the estimated classifier and the regularization term
penalizes the complexity of the classifier. The balance of these two terms are adjusted
by a constant so-called regularization parameter.

The optimization problem is usually solved by iterative algorithms such as the interior
point method and the active set method except for the simple case that the analytical
closed form of the solutions can be derived. Since these algorithms iteratively improve
the accuracy of the solution, the computational cost can be large especially when they are
applied to large data sets. Moreover, in many situations of machine learning, one needs
to solve a sequence of optimization problems. For example, in practical applications of
the SVM, one has to solve many optimization problems for various different values of
the regularization parameter in order to select a classifier with good performance.

In this paper, we focus on the parametric programming [40] technique in optimizatiori.

It has been developed for solving a sequence of optimization problems parametrized by
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a set of problem parameters which are constant in the optimization process. Unlike the
above mentioned iterative algorithms, it provides a framework for computing the closed
analytical form of the solutions for a class of optimization problems when the problem
parameters change continuously. The remarkable features of parametric programming

approach are:

e The continuous changes of optimal solutions can be analytically investigated

e It helps to develop a computationally efficient algorithm for updating solution

It is well-known that the change of optimal solutions are represented as piece-wise linear
functions of the problem parameters for a class of optimization problems [12,92] and
then it can be efficiently traced by solving linear systems.

One of the most popular applications of parametric programming in machine learn-
ing literature is the regularization path. This algorithm allows us to trace the opti-
mal solution with respect to the change of regularization parameter which controls
the complexity of a model. The LARS algorithm [36] uses parametric programming
like approach for variable selection of the least square regression. It has been shown
that the slight modification of the LARS also leads the regularization path of L1 reg-
ularized regression (LASSO [109]). Inspired by LARS, [47] proposed regularization
path for the SVM. Due to its computational efficiency for giving a full presentation
of the solutions, the same technique has been applied to various models and situa-
tions [5,46, 53,69, 71,73,78,95,102,111,121,124].

Another important parametric programming approach in machine learning is in an
online learning scenario. In this situation, we need to update the trained model when
some new observations arrive and/or some observations become obsolete. Incremental
decremental algorithms [24,33,68,79, 80| efficiently update the SVM solutions when a
data point is added to or removed from training data set. This algorithm enables efficient
computation by exploiting the piece-wise linearity va the SVM solutions.

In machine learning literature, these parametric programming approaches are some-
times called solution path algorithm or path following algorithm. This technique has
been widely applied to various machine learning tasks other than those above [7,33,38,
42,72,107,117]. Although all of the above examples exploit the piece-wise linearity of
solutions, nonlinear path following is also studied so far [8,61,65,66,86,88,94,116,122].

However, since it is difficult to reveal the exact behavior of nonlinear solutions, most



of these algorithms trace approximated path (typical approach is taking small steps to
roughly trace the path).
In this paper, we further extend the parametric programming approach in machine

learning to the following three directions:
e Incremental decremental learning by multi-parametric approach
e Solution path for instance-weighted learning
e Nonlinear path for a quadratic los‘s and a quadratic regularizer model

The first two directions are based on multi-parametric programming technique which
changes multiple problem parameters simultaneously. This technique has not been fully
applied to machine learning algorithms. We show this approach has various advantages
for the above tasks. The third one considers nonlinear regularization path algorithm
for a class of learning machines that have a quadratic loss and a quadratic regularizer.
We develop an algorithm that can efficiently follow the piecewise nonlinear path by
exploiting a specific form of nonlinear function.

We use the SVM as the basic learning algorithm throughout the paper. We thus
briefly introduce the SVM in Chapter 2. The typical advantages of the SVM are as

follows.

e Using the kernel function, it can estimate complex nonlinear models in a linear

modeling framework.

e The optimal model is obtained by solving a convex quadratic optimization problem

in which any local optima are guaranteed to be global optima.
e The final solutions are often highly sparse. This leads to efficient computation.

Due to the above reasons, the SVM is one of the standard tools for various machine
learning tasks. Although we manly derive formulations of proposed approaches in the
classification setting, the same approaches can be easily applied to other variants of the
SVM such as regression and domain description.

In Chapter 3, we propose multiple incremental decremental algorithm which is the
novel online learning algorithm for the SVM using multi-parametric approach. When

we want to add and/or remove multiple data points, previous incremental decremental
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algorithm need to run repeatedly for each data point. Our proposed approach efficiently
updates changes of multiple data points simultaneously. Some analyses and experimental
results show that the proposed algorithm can substantially reduce the computational
cost.

In Chapter 4, we consider the instance-weighted learning which implies each train-
ing instance has their weight or importance. This instance-weighted learning plays an
important role in various machine learning tasks such as non-stationary data analysis,
heteroscedastic data modeling, covariate shift adaptation, learning to rank and trans-
ductive learning. Those instance weights often change dynamically or adaptively, and
thus the weighted SVM solution must be repeatedly computed. We introduce multi-
parametric solution path algorithm for efficient update of the instance-weighted SVM.
Moreover, through extensive experiments on various practical applications, we demon-
strate the usefulness of the proposed algorithm.

In Chapter 5, we study the solution path of the learning machines that have quadratic
loss and quadratic regularizer. Since the path of this class of learning machines is not
piece-wise linear, we cannot apply usual parametric programing technique directory. In
this case, each piece-wise segment is represented as a class of rational functions. We
develop an algorithm that efficiently follow piece-wise nonlinear path using rational ap-
proximation approach. Our approach is highly accurate but faster than naive exhaustive
search for regularization parameter.

Finally, we conclude our work, in Chapter 6.



Chapter 2

Support Vector Machines

Support Vector Machines (SVM) have attracted wide interest as the effective tools for
pattern recognition. The SVM learns a linear model in a feature space through convex
quadratic optimization. This formulation leads various computational advantages such
as the kernel trick, sparseness of solutions and the absence of local optima (except
for global optima). Although the original SVM is a binary classifier based on the large
margin principle, the idea has also been applied to the other problems such as regression,
domain description and ranking. Since throughout the paper we use the SVM as the basic
learning machine, here, we briefly review the formulation of it, especially for classification
and regression. The more comprehensive information of the SVMs can be found in

[10,16,20,32,37,59,83,97, 112].

2.1 Classification

Suppose we have a set of training data {(z;,y;)}™,, where &; € X C RP is the input
and y; € {—1,+1} is the output class label. Support Vector Machines (SVM) [15,31]

learn the following discriminant function:
flx) =w'@(x) +b,

in a feature space F, where ® : X — F is a map from the input space X to the feature
space F, w € F is a coefficient vector, b € R is a bias term, and " denotes the transpose.
The model parameter w and b can be obtained by solving an optimization problem:
: 1 n
w B §1|ng+0;& (2.1)

st yi(w d(x)+b)>1-6, &>0,i=1,--,n,
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where ||w|[? is the regularization term, || - || denotes the Euclidean norm, C' € R* is
the trade-off parameter. Introducing Lagrange multipliers «;, p; > 0, we can write the

corresponding Lagrangian as
L= Y +cis-
2 . 1

- Z Q; {yl )+ b) -1+ gz} szgz (2.2)

Setting the derivatives w.r.t. primal variables w, b and &; to zero, we can obtain

oL -
Fvie 0 & w= Zai%q’(%),

i=1

oL -
53—0 & Zaiyi:()a

oL
98

where 0 denotes the vector with all zeros. Substituting these equations into (2.2), we

=0 & ai:C’—pi,

obtain the following dual problem:

{23%3:1 ) Z Z ;0 Q5 + Z ;

11]1

(2.3)
Zyiai=0, 0<e;<C,i=1,..,n

i=1

where

Qij = yiyjK(wiamj);

and K(z;,z;) = ®(xz;)"P(x;) is a reproducing kernel [4]. The Karush-Kuhn-Tucker
(KKT) complementarity conditions [17] are

ai{yif(®) —14+&}=0, i=1..n, (2.4a)

fi(Oti—C) =0, 1= 1,...,1’1,. (24b)

The optimal discriminant function f : X — R is formulated as

= Z%‘%K(w, ;) +b. (2.5)
i=1

The bias term b can be obtained using KKT complementarity condition (2.4a).
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Figure 2.1: The partitioning of the data points in SVM. The data points which are in
the set M (enclosed by the circle) are exactly on the margin. The data points which
are in the set O (enclosed by the square) are in the outside the margin. The data points
which are in the set Z (enclosed by the triangle) are in the inside the margin.

The optimality conditions are summarized as follows:

yif(z) > 1, if a;=0, (2.6a)
yif(x) =1, if 0<a;<C, (2.6b)
vif(z) <1, if a;=C, (2.6¢)
En: yio; = 0. (2.6d)
=1

At the optimal solution, we can categorize the location of each data point using their

parameter value as follows:

O ={i|a; =0}, (2.7a)
M={i|0<a; <C}, (2.7b)
I={i|a;=C}, (2.7¢)

where O, M, and 7 stand for ‘Outside the margin’ (y;f(a;) > 1), ‘on the Margin’
(yif(x;) = 1), and ‘Inside the margin’ (y;f(x;) < 1), respectively (see Fig. 2.1).

2.2 Regression

The support vector regression (SVR) is a variant of SVM for regression problems

81,84,113].
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The primal optimization problem for the SVR is defined by

W,b,{&,E 17,
st.  yi— flx) <e+ &,

f(wl)—y1S€+§:,
61'76720) izla"'vn’

. 1 9 - .
min §|lelz+;ci(£i+§i), (2.8)

where € > 0 is an insensitive-zone thickness. The SVR ignores the small error which is
less than . This e-insensitive loss leads sparseness property. The Lagrangian primal

function of (2.8) is represented as

1 n
L = 5”“’”%"‘02(&4-&*)
im1
+ Zﬁi{yi —w ®(x;) —b—c—&}
=1

+) B{w ®(@:) +b—y —e— &)

i=1

n n
- Zpifi - ZP;S;,
i=1 i=1

where 3;, 37, pi, p; > 0 are the Lagrange multipliers. Setting the derivatives w.r.t. primal

variables w, b, §;, & to zero, we arrive at:

w0 © WD (8 — B)®(:), (2.9a)
oL - “

oL

8_&' =0 & 0i=C-p;, (2.9¢)
oL «_ s

85{‘ =0 & [/=C-p;. (2'9d)

Using these equations and (2.9), we obtain the following dual optimization problem:

1 n n :
S8 —522(@ — B))(B; — B]) K (=i, ;)
P Ji=1 i=1 j=1

—e 16— B+ D vi(Bi— 6;)
1=1 i=1

s.t. Z(ﬁ,- -6 =0,
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A
f@)+e ——/ }
-
f@) ‘
fle) -
)

Figure 2.2: Partitioning of data points in SVR.

The Karush-Kuhn-Tucker (KKT) complementarity conditions are

Bilyi — f(x:) —e =&} = 0, (2.10a)
Bi{f(z:) —vi—e—&} = 0, (2.10b)
&(C—-6) = 0, (2.10¢)
£(C - B) 0. (2.10d)

First two conditions leads 3;5; = 0. Because if 3; > 0 and 3 > 0, we can’t satisfy (2.10a)
and (2.10b) simultaneously. Using Lagrangian (2.9) and (2.9a)-(2.9d), and substituting

a; = B; — Bf, we can obtain simplified dual formulation [32]:
1 n n n n
{m}agc —§ZZaiajK(wi,a:j) —EZlOti| +Zyiai (211)
Fiti=1 i=1 j=1 i=1 i=1

st. Y a=0, -C<a;<Ci=1-,n

i=1

The regression function f : X — R is formulated as

i=1

The bias term b can be obtained from KKT complementarity condition (2.10a) and
(2.10b).

The KKT conditions can be summarized as below:

lys — f(xs)| <e, if o =0,

A~ o~

lyi — f(zs)| =€, if 0<|ai] <C,
lyi — f(x:)| > €, if |a|=C

> a;=0. (2.12d)

2.12b)

~~

2.12¢)
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Then the training instances can be partitioned into the following three index sets (see

Fig. 2.2):

0= {Z : Iyi - f(:l}l)l > g, lail = C}, (213&)
E={i:|yi— f(mi)| =¢,0 < || < C}, (2.13b)
IT=Ai:|yi— f(z;)| <e,a; =0} (2.13c)
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Chapter 3

Incremental Decremental Learning

In online learning, we need to update the trained model when some new observations
arrive and/or some observations become obsolete. If we want to add or remove single
data point in the SVM, incremental decremental algorithm [24] can be used to update
the model efficiently. However, to add and/or remove multiple data points, the computa-
tional cost of current update algorithm becomes inhibitive because we need to repeatedly
apply it for each data point. In this chapter, we develop an extension of incremental
decremental algorithm which efficiently works for simultaneous update of multiple data
points. Some analyses and experimental results show that the proposed algorithm can
substantially reduce the computational cost. Our approach is especially useful for online
SVM learning in which we need to remove old data points and add new data points in

a short amount of time. The discussion in this chapter has appeared in [54,57,58].

3.1 Introduction

For online learning, incremental decremental algorithm of the SVM was previously
proposed in [24], and the approach was adapted to other variants of kernel machines
[33,68,79,80]. When a single data point is added and/or removed, these algorithms
can efficiently update the trained model without re-training it from scratch. Although
these algorithms were developed in different context, they can be considered as instances
of parametric programming or path-following [47]. Parametric programming [2,40] is
an optimization technique for solving a series of parameterized optimization problems.
Recently, in the machine learning literature, path-following was used for various pur-
poses [7,46,47,107,117]. In the incremental and decremental algorithms, one solves a
solution path with respect to the coefficient parameter corresponding to the data point

to be added or removed. When we add and/or remove multiple data points using these
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algorithms, one must repeat the updating operation for each single data point. It often
requires too much computational cost for real-time online learning. In what follows, we
refer this conventional algorithm as single incremental decremental algorithm or single
update algorithm.

In this chapter, we develop a multiple incremental decremental algorithm of the
SVM. The proposed algorithm can update the trained model more efficiently when mul-
tiple data points are added and/or removed simultaneously. We develop the algorithm
by introducing multi-parametric programming [89] from the optimization literature. We
consider a path-following problem in the multi-dimensional space spanned by the co-
efficient parameters corresponding to the set of data points to be added or removed.
In this chapter, we call our proposed algorithm as multiple incremental decremental
algorithm or multiple update algorithm. Throughout the chapter, we discuss multiple
update algorithm for support vector classification. However, the idea is easily applicable
to other kernel machines, e.g., for regression or outlier detection tasks. Although we
do not describe the detail of other kernel machines, the derivation is much the same as
classification case.

The total computational cost of parametric programming is roughly proportional to
the number of breakpoints on the solution path. In the repeated use of single update
algorithm for each data point, one follows the coordinate-wise solution path in the
multi-dimensional coefficient parameter space. On the other hand, in multiple update
algorithm, we establish a direction in the multi-dimensional coefficient parameter space
so that the total length of the path becomes much shorter than the coordinate-wise
one. Because the number of breakpoints in the shorter path followed by our algorithm
is less than that in the longer coordinate-wise path, we can gain relative computational

efficiency. Fig. 3.3 schematically illustrates our main idea.
3.2 Single Incremental Decremental SVM

In this section, we briefly review the conventional single incremental decremental
SVM [24]. Using the SV sets (2.7b) and (2.7c), we can expand y; f(x;) as
yif (x:) = Z Qijoy + Z Qijo; + yid,
JEM JET
where Q;; = yy;K(x;, ;). When a new data point (z.,y.) is added, we increase the

corresponding new parameter o, from 0 while keeping the optimal conditions of the
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other parameters satisfied.
Let us denote the amount of the change of each variable with an operator A. To
satisfy (2.6b) and the equality constraint of the dual (2.3), we need
QicAa. + Z QijAa; +y,Ab = 0, i € M,
JEM

yeAa, + Z y;Aa; = 0.
JEM

Solving this linear system with respect to Aa;,i € M, and Ab, we obtain the update
direction of the parameters. We updﬁte the parameters in that direction with the largest
step length under the constraint that no element moves across M,Z and O. In other
words, the step length is chosen so that KKT optimality conditions are kept satisfied.
If we update the parameters as above, we encounter a point at which the three index
sets M,Z and O must be updated. For example, if there is a data point i such that
a; > 0,Aq; < 0,7 € M, the parameter «; is decreased toward 0. And, if a; becomes
0 in the update process as above, we need to move the index i from M to O. After
updating the index sets M,Z and O, we repeat the process until the new data point
satisfies the optimality condition. Decremental algorithm can be derived similarly, in

which the target parameter moves toward 0.
3.3 Multiple Incremental Decremental SVM

Suppose we add m new data points and remove ¢ data points simultaneously. Let us

denote the index set of new adding data points and removing data points as
A={n+1,n+2,--- n+m}and R C {1,--- ,n},

respectively, where |R| = £. We remove the elements of R from the sets M,Z and O
(iee. M—M\R,T—T\Rand O« O\R).

When m = 1,/ = 0 or m = 0,£ = 1, our method corresponds to the conventional
single incremental decremental algorithm. We initially set o; = 0,Vi € A. If we have
yif (x;) > 1,i € A, we can append these indices to @ and remove them from A because
these points already satisfy the optimality condition (2.6a). Similarly, we can append
the indices {¢ | vif(x;) = 1,7 € A} to M and remove them from .A. In addition, we
can remove the points {i | @; = 0,7 € R} because they already have no influence on the

model.
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Let us define y = [y1, ** ,Untm) , @ = [Q1,- -+, Qnym] ', and Q € R+m)x(ntm)
where (4, j)-th entry of Q is @;;. Unlike single incremental decremental algorithm, we
need to determine the directions of Aa 4 and Aar. These directions have a critical
influence on the computational cost. For Aar, we simply trace the shortest path to 0,

ie.,
AaR = —1NoR, (31)

where 7 > 0 is a step length. For Aay, we do not know the optimal value of axy
beforehand. To determine this direction, we may be able to use some optimization
techniques (e.g. Newton method). However, such methods usually need additional

computational burden. In this paper, we simply take
AaA ZT)(CI —aA). (3.2)

This would become the shortest path if a; = C,Vi € A, at optimality.

When we move parameters «;,Vi € AU R, the optimality conditions of the other
parameters must be kept satisfied. From y; f(x;) = 1,7 € M, and the equality constraint
of dual (2.3), we need

3 Quaa; + 3 Quta; + 3 Qula; +uAb=0,ie M,  (3.3)

jEA JER JEM
ZyjAaj + ZyjAaj + Z y;Aa; = 0. (3.4)
JEA JER JEM

Using matrix notation, (3.3) and (3.4) can be written as

T T
Ya  Yr Aadl_y (3.5)
Quma Qumr Aar

Ab

M
AaM

+

where
M=| 0 Ym |
Ym QM

From the definitions of the index sets in (2.7a)-(2.7c), the following inequality constraints

must also be satisfied:
0<a+A0; <C, ieM, (3.6a)

vi{f(z:) + Af(z)} >1, €O, (3.6b)
yi{f(x:) + Af(zi)} <1, €L (3.6¢)



3.3. MULTIPLE INCREMENTAL DECREMENTAL SVM 15

Since we removed the indices {7 | f(x;) > 1} from A, we obtain
yi{f(z:) + Af(z:)} <1, i€eA (3.7)

During the process of moving «;,i € A, to C from 0, if the inequality (3.7) becomes
equality for any 7, we can append the point to M and remove it from A. On the other
hand, if (3.7) holds after a; becomes C, the point moves to Z. The region that satis-
fies (3.6) and (3.7) corresponds to critical region (CR) in the parametric programming
literature [89)]. -

We decide the update direction by solving the linear system (3.5) while monitoring

inequalities (3.6) and (3.7). Substituting (3.1) and (3.2) to (3.5), we obtain the update

direction
Ab
Ac, =no, (3.8)
where
b= —M" Y Yr C1 - ay _ (3.9)
QM,A QM,R —QaR

In this paper, we assume that the kernel matrix @ is positive definite. Then the matrix
M is invertible! . If Q is positive semi-definite, M may not be invertible. In the later
experiments, we use one practical heuristic to circumvent this problem: adding small
positive constant to the diagonal of the kernel matrix.

To determine the step length 7, we need to check inequalities (3.6) and (3.7). Using

vector notation and the Hadamard product @ (element-wise product [98]), we can write

YyOAf =11 (3.10)

where

Y=[y Q:,M ] &+ Q:,A(Cl —oy) — Q:,RaR7 (3.11)

and the subscription “” of @ denotes the index of all the elements {1,--- ,n 4+ m}.
Since (3.8) and (3.10) are linear function of 7, we can calculate the set of the largest

step length n’s for each ¢ at which the inequalities (3.6) and (3.7) becomes equality for

1Precisely speaking, we have only to assume that the submatrix Q ,, is strictly positive definite in
the subspace {z € RMljy1 2z = 0} because it is the necessary and sufficient condition of M to be
M
non-singular.
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i. The size of such n’s is M| x 2 + |O| + |Z| + | A| and we define this set as H. We

determine the step length as follows:

n=min({7} [ 7 € H, 7> 0} U{1}).

If 7 becomes 1, we terminate the algorithm because all the new data points in A and
existing points in M, O and 7 satisfy the optimality conditions and ax is 0. Once we
decide 7, we can update ax and b using (3.8), and a4 and ax using (3.1) and (3.2).
In the path-following literature, the points at which the size of linear system (3.5) is
changed are called breakpoints. If the ith data point reaches the bound of any one of
the constraints (3.6) and (3.7) we need to update M, O and Z. After updating, we

re-calculate ¢, 1 to determine the next step length.

3.3.1 Empty Margin

We need to establish the way of dealing with empty margin M 2 . In such case, we
can not obtain the bias from y; f(z;) = 1,7 € M. Then we can only obtain the interval

of the bias from

vif(x)>1, €0,
vif(z;)) <1, i€ZIUA.

To keep these inequality constraints, the bias term must be in

0. < b < min v a: .
max y;g; < b < miny,g;, (3.12)
where
gi=1- Z Ofin’j - Z%Qij - ZaiQij>
i€T icA i€R
and

L={ili€cO,yu=+1}U{i|ieTUAY = -1},
U={ili€ Oy =-1}U{i|i € TUAy = +1}.

%In some active set based SVM solvers [96,100,114], similar situation can be happened. Most of these
algorithms choose active set using heuristics for quick convergence (e.g., choosing most KKT violating
point to be active). On the other hand, in incremental decremental algorithm, a point in M must be
chosen to keep satisfying optimality conditions.
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If this empty margin happens during the path-following, we look for the new data points
which re-enter the margin. When the set M is empty, equality constraint (3.4) becomes
Z yiAay; + Z yilAa; = né(a) = 0, (3.13)
icA i€R
where
§e) =Y 9:(C— ) = D wicw,
icA i€R
We take two different strategies depending on é(ar).
First, if (o) # 0, we can not simply increase 7 from 0 while keeping (3.13) satisfied.
Then we need new margin data point m; which enables the equality constraint to be

satisfied. The index m, is either

Liow = argmaxy;g; or i, = argmaxy;g;.
€L ied

If 410w, tup € O UZ, we can update b and M as follows:
da) >0 = b=19,0.,, M={iw} (3.14a)
6(0) <0 = b= Yirow Jitow M= {ilow}- (314b)

By setting the bias terms as above, equality condition
né(e) + Ym, Aoy, =0

is satisfied. If ¢j0, € A or i, € A, we can put either of these points to margin by setting
the bias term as b = y;,,, 94, OF b= ¥Y;,,9i,,-

On the other hand, if §(a) = 0, we can increase n while keeping (3.13) satisfied.
Then, we increase 1 until the upper bound and the lower bound of the bias (3.12) take
the same value (the bias term can be uniquely determined). When we increase 7, g;

changes linearly:

Agi(n) = =) AqQy— Y Ac;Qy

JEA JER
= n{=D (C—a))Qu+ ) Qy}.
jEA JER

Since each y;(g; + Agi(n)) may intersect, we need to consider the following piece-wise
linear boundaries:
u(n) = maxy(g: + Agi(n)),
€U

in) = miny;(g; + Ag;(n)).
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7

Figure 3.1: An illustration of the bias in empty margin case. Dotted lines represent
vi(g; + Agi(n)), for each ¢. Solid lines are the upper bound and the lower bound of the
bias. The bias term is uniquely determined when u(n) and [(n) intersect.

Fig. 3.1 shows an illustration of these functions. We trace the upper bound and the

lower bound until two bounds become the same value.

3.3.2 Initialization

An initial SVM parameter can be obtained from conventional batch SVM solver. One
of the most widely used batch algorithm is Sequential Minimal Optimization (SMO) [90].
We can also use our multiple incremental algorithm to find an initial solution. As we will
see in the later experiments, incremental approach can obtain accurate solution as close
as floating-point precision. We choose two data points {(@1,v1), (@2, y2)} from training
data set that satisfy y; = +1,y, = —1. Analytical solution is obtained by

1
= 0, mi 07 “ A ),
™ max( ,mm( Q22 — yly2Q12)

Q2 = —Y1Y20.

Then, we add remaining data points as the adding data points .4 = {2,3,--- ,n}. This
basic strategy has already proposed in [79]. However, our proposed method is more
efficient than the approach in [79] because we can add n — 2 data points simultaneously

without repeatedly applying incremental operation to each data point.

3.3.3 Algorithm and Computational Complexity

Now, we describe entire procedure of our algorithm in Fig. 3.2.
At each breakpoint, we solve the linear system (3.9) with size |[M|+1 using Cholesky
factor L of Q,, (see Appendix A). The cost is O(|M|?) because we use the Cholesky
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1: arguments:
2 Optimal parameters a = [y, - -+ , )T, b
3: SV sets M, 0,7
4 Adding indices .4 and removing indices R
5: end arguments
6: function MID-SVM(a, b, M, 0,7, A, R)
7 Perform Cholesky factorization of kernel matrix:
88 Qu=L"L
9 repeat
10: if M is empty then
11: n «<— EMPTYMARGIN
12: else
13: Solve linear system (3.9) to calculate ¢
14: using Cholesky factor L
15: Calculate 9 by (3.11)
16: Calculate a set of step lengths H by checking
17: inequalities (3.6) and (3.7)
18: n—min({7 |7 €H, 7>0}U{l})
19: [l b]—[alb]l+ne
20: end if
21: as— as+1(Cl—ay)
22: QR «— R — NOR
23: Update M, O,Z, A depending on the event type
24: Update L (Cholesky factor rank-one update)
25: until n becomes 1
26: end function
27: function EMPTYMARGIN
28: if d(a)# 0 then
29: if 44, € Aor i, € A then
30: Set bias as b < vi,, i, OF b Yi,,, i,
31: else
32: Set bias term b as (3.14)
33: end if
34: n<—0
35: else
36: Trace u(n) and I(n) until the bias term can
37: be determined uniquely or 1 becomes 1
38: end if
39: return 7
40: end function

Figure 3.2: Pseudo-code of the multiple incremental decremental SVM
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decomposition rank-one update [45] (see Appendix B) except the first step in O(|]M|?)
3 . Although the size of M changes at each breakpoint, to make our analysis easy, we
assume | M| is constant in the entire process® . To update y; f(x;) we need to calculate
(3.10) which takes O((n+m) x (|M|+m+1)) cost (Note that we need to calculate v in
(3.11) which represents the change of y; f(x;). However, since the function value on the
margin points do not change, we have only to compute n + m — | M| elements of .).
Since we are interested in the situation where the number of adding or removing data
points are relatively smaller than the training sample size, i.e., m,l < n, this cost is
roughly O(n|M)|). The step length calculation takes O(n) cost. From these analyses, we
see that each iteration roughly needs O(|M|?+n|M|+n) computations. Since n > |[M]|,
this can be considered as O(n|M]).

From these considerations, we see the computational cost of multiple update algo-
rithm is approximately O(Bn|M| + n|M|?), where B is the number of breakpoints.
Since the O(n|M|?) computations are needed only once at initialization, O(Bn|M|) is
the main computational burden in practice. Thus the number of breakpoints B is an
important factor of the computational cost.

To analyze the relative computational efficiency of our multiple update algorithm to

conventional single update algorithm, let us introduce the following assumptions:
e The number of breakpoints is proportional to the total length of the path.
e The path obtained by our algorithm is the shortest one.

The first assumption means that the breakpoints are uniformly distributed on the path.
The second assumption holds for the removing parameters ar because we know that we
should move az to 0. On the other hand, for some of x4, the second assumption does
not necessarily hold because we do not know the optimal a4 beforehand. In particular,
if the point i € A which was located inside the margin before the update moved to M
during the update (i.e. the equality (3.7) holds), the path with respect to this parameter

is not really the shortest one.

3As another way, we can also update M ! directly using block matriz inversion formula [98] which
is based on the Sherman-Morrison-Woodbury formula. However this approach sometimes runs into
numerical difficulties. It is well known that the Cholesky factor approach is numerically more stable
than this approach [39,99].

4This simplification is employed to evaluate the computational cost of many path-following or (closely
related) active-set based optimization algorithms (e.g., [47]).
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O initial «x

@ final «x

> path

Q breakpoints

- — borders of CR

(a) Adding 2 data points. {(b) Adding and Removing 1 data point

Figure 3.3: The schematic illustration of the difference of path length and the number
of breakpoints. Each polygonal region enclosed by dashed lines represents the region in
which M, Z, O and A are constant (CR: critical region). The intersection of the path and
the borders are the breakpoints. The update of matrices and vectors at the breakpoints
are the main computational cost of path-following. In the case of Fig. 3.3(a), we add
2 data points. If optimal a; = ay = C, our proposed algorithm can trace shortest
path to optimal point from the origin (left plot). On the other hand, single incremental
algorithm moves one coordinate at a time (right plot). Fig. 3.3(b) shows the case that
we add and remove 1 data point, respectively. In this case, if oy = C, our algorithm
can trace shortest path to a; = 0, as = C (left plot), while single incremental algorithm
again moves one coordinate at a time (right plot).

To simplify the discussion further, let us consider only the case of |A| = m > 0 and
|R| = 0 (the same discussion holds for other cases too). In this simplified scenario, the
ratio of the number of breakpoints of multiple update algorithm to that of repeated use

of single update algorithm is

leealle : lealls,

where || ® ||2 is #; norm and || e ||; is #; norm. Fig. 3.3 illustrates the concept in the case

of m = 2. If we consider only the case of a; = C, Vi € A, the ratio is simply /m : m.

3.4 Experiments

We compared the computational cost of the proposed multiple incremental decre-
mental algorithm (MID-SVM) with (repeated use of) single incremental decremental
algorithm [24] (SID-SVM) and with the LIBSVM [25], the-state-of-the-art batch SVM
solver based on sequential minimal optimization algorithm (SMO). We wrote our own
codes for SID and MID in C++ format. For matrix computations (e.g. matrix vec-

tor multiplication), we used LAPACK [3] routines. The parameters a;,i € {1,--- ,n},
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and b were initialized to be optimal for the training set before incremental decremental
operation. We compared the CPU time for adding and/or deleting several data points.

In LIBSVM, we examined several tolerances for termination criterion: ¢ = {103,107, 107%}.
When we use LIBSVM for online-learning, alpha seeding [34, 70] sometimes works well.
The basic idea of alpha seeding is to use the parameters before the update as the initial
parameter. In alpha seeding, we need to take care of the fact that the summation con-
straint &’y = 0 may not be satisfied after removing a’s in R. In that case, we simply
re-distribute

0= Z & Yi
i€R
uniformly to the in-bound «;, ¢ € {¢ | 0 < a; < C}. If § cannot be distributed to
in-bound a’s, it is also distributed to other a’s. If we still can not distribute § by this
way, we did not use alpha-seeding,.

For kernel function, we used RBF kernel K(x;, ;) = exp(—v||x; — @;|[?). In this
paper, we assume that the kernel matrix K is positive definite. If the kernel matrix
happens to be singular, which typically arise when there are two or more identical
data points in M, our algorithm may not work. As long as we know, this degeneracy
problem is not fully solved in path-following literature. Many heuristics are proposed to
circumvent the problem. In the experiments described below, we use one of them: adding
small positive constant to the diagonal elements of kernel matrix. We set this constant
as 107®. For fair comparison we do not use any previously computed kernel information
during the following incremental decremental process in all three algorithms (SID, MID
and SMO). During incremental decremental process, we compute kernel information
whenever needed, and they are kept in cache. In the LIBSVM we can specify cache size
of kernel matrix. We set this cache size enough large to store the entire matrix. All

results presented in this section are average of 10 runs.

3.4.1 Artificial Data

First, we used simple artificial data set to see the computational cost for various
number of adding and/or removing points. We generated data points (z,y) € R? x

{+1, —1} using normal distributions:

1 1
paly=+1) = N 3P+ N, 5,

plx|y=-1) = N(u? x®),
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Figure 3.4: Artificial data set for incremental decremental learning. For graphical sim-
plicity, we plot only a part of the data’points. The cross points are generated from a
mixture of two Gaussians while the circle points come from a single Gaussian. Two
classes have equal prior probabilities.

where,
I HE S A
A HEN )

Two classes have equal prior probabilities, and Fig.3.4 shows generated data points.
The size of initial data points is n = 500. We set the regularization parameter C =
10 and kernel parameter v = 1. As discussed, adding or removing the data points
with a; = 0 at optimal can be performed with almost no cost. Thus, to make clear
comparison, we restrict the adding and/or removing points as those with a; = C at
optimal. Fig. 3.5 shows the log plot of the CPU time. We examined several scenarios:
(a) adding m € {1,---,50} data points, (b) removing ¢ € {1,--- 50} data points,
(c) adding m € {1,---,25} data points and removing ¢ € {1,---,25} data points
simultaneously. The horizontal axis is the number of adding and/or removing data
points. When m = 1 or ¢ = 1, SID-SVM and MID-SVM are identical. We see that
MID-SVM is significantly faster than SID-SVM when m or ¢ is more than 1. The relative
difference of SID-SVM and MID-SVM grows as the m and/or ¢ increase because MID-
SVM can add or remove multiple data points simultaneously while SID-SVM merely
iterates the algorithm m + £ times. In this experimental setting, the CPU time of SMO
does not change largely because m and ¢ are relatively smaller than n. Fig. 3.6 shows the

number of breakpoints of SID-SVM and MID-SVM along with the theoretical number
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Figure 3.6: The number of breakpoints (artificial data set)

of breakpoints of the MID-SVM in Section 3.3.3 (e.g., for scenario (a), the number
of breakpoints of SID-SVM multiplied by /m/m). The results are very close to the

theoretical one.

3.4.2 Real Data

We also used real data sets to evaluate efficiency of our proposed method. Table 3.1
shows data sets statistics. These data sets are obtainable from LIBSVM site [25]. We
obtained scaled version from the site and randomly extracted subset of original data set.
In this experiments, we compare the CPU time of adding 10 data points and removing

10 data points simultaneously. We investigated various settings of the regularization
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Table 3.1: Data sets for incremental decremental learning
(p is the number of features)
Data set n p
diabetes 500 8
svmguide3 1000 21

a2a 2000 123
covtype 2000 54
ijennl 4000 22

parameter C' € {107,10°,--- | 10°} and kernel parameter v € {1073,10-2,10~*, 10°}.
Since we do not need to do anything when the corresponding parameters are 0, we chose
adding or removing data points whose optimal parameters are not 0.

Figs. 3.7-3.11 show CPU time of each data set. Each figure has 4 plots corresponding
to different settings of kernel parameter . The horizontal axis of each plot is the
regularization parameter C.

In many cases, our proposed algorithm is faster than the others, especially when C is
large and ~y is small. However, when 7 is relatively large, MID-SVM is sometimes slower
than the SMO (e.g., see Fig. 3.9(a)).

Unlike previous experiments, our algorithm did not take the shortest path in adding
data points. However, in all results in Fig. 3.7-3.10, MID-SVM was much faster than
SID-SVM. In Fig. 3.13, we compared the shortest path Aa 4 = n(a* — a4) with our
path Aay = 1n(C1 — a4). Here, a* denotes optimal value of a4 (of course, we usually
do not know this value beforehand). We used diabetes data set and set C = 1000,y = 1.
In this case, a becomes far away from a% = C1. Fig. 3.13(a) shows an example:
histogram of a;,i € A, when m = 50. We added m € {1,---,50} data points and
took the average of 10 runs. In Fig. 3.13(b) and 3.13(c), MID-SVM(S) means MID-
SVM with the shortest path. Although MID-SVM(S) is faster than usual MID-SVM
in Fig. 3.13(b), MID-SVM is substantially faster than SID-SVM. Fig. 3.13(c) shows the
number of breakpoints of each algorithm. We see that the number of breakpoints of
MID-SVM(S) are close to that in the (ideal) shortest path.

In MID-SVM and SID-SVM, when the size of set M is large, the computational cost
of solving associated linear systems becomes large. Fig. 3.12 shows the sizes of M, O
and Z for a2a data set. From Fig. 3.9 and Fig. 3.12(a), we see that the CPU time

of update algorithm is large when |M| is large. In our experiments, | M| sometimes
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Figure 3.8: Log plot of the CPU time (svmguide3 data set)

becomes large when both C' and ~ were large. On the other hand, it is well known that
the computational cost of the SMO algorithm becomes large when C is large [16]. We

see this in our results.

We also compared the numerical accuracy of the solutions in three algorithms by
comparing KKT optimality violation. The accuracy of SMO algorithm can be explicitly
specified by arbitrary setting the termination criterion tolerance €. The accuracy of
update algorithm (both SID-SVM and MID-SVM) depends on the accuracy of the linear
system solution. Fig. 3.14 shows the maximum violation of KKT conditions on diabetes
data set (7 = 1). We see the accuracy of the SMO does not change with C. The violation
of MID-SVM becomes large when C' is large. In our implementation, real number is
represented as double precision floating-point number (about 15 digit precision). In
many cases, the number of digits of some «; are same as or close to the number of digits
of C. Considering these facts, the accuracy of MID-SVM is close to the floating-point
accuracy limitation. However, in update algorithm, the computational errors may be
accumulated in updating Cholesky factor, especially when the matrix is close to singular

(In this paper, since we add positive constant to diagonal of kernel matrix, this problem
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did not occur). We can avoid such accumulation using refresh strategy: by re-calculating
the matrix from scratch, for example, every 100 steps (However, in this case, we need

O(|M|?) computations in every 100 steps).

3.4.3 Application to Online Time Series Learning

The SVM has been applied to many time series problems and has shown good perfor-
mance (e.g. [28,64,84,108]). We applied the proposed algorithm to an online time series

problem, in which we update the model when some new observations arrive (adding the
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new ones and removing the obsolete ones). We use the following two data sets:

e Beer data set: This set consists of monthly beer production records in Australia

from Jan 1956 to Aug 1995. The task is to predict whether the production in the

next month increases or decreases from the previous 12 months production records
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(x € R'?). The size of initial data points is n = 451 and we set m = £ = 12.

e Fisher river data set: In this data set, the task is to predict whether the mean
daily flow of the river increases or decreases using the previous 7 days temperature,
precipitation and flow (z; € R*). This data set contains the observations from
Jan 1 1988 to Dec 31 1991. The size of the initial data points is n = 1423 and we
set m = £ = 30 (about a month).

Beer data set is obtainable from Time Series Data Library [49]. Fisher river data set is
available at StatLib [82]. We normalized each dimension of  to [0,1]. We add new m
data points and remove old ¢ data points. Unlike previous two experiments, we did not
choose adding or removing data points by its parameter at optimality (the corresponding
parameters may be 0).

Fig.3.15-3.18 shows the elapsed CPU times and 10-fold cross-validation error of each
setting. Fig. 3.15 and Fig. 3.17 show that our algorithm is faster than the others, es-
pecially in large C. Cross-validation error in Fig. 3.16 and Fig. 3.18 indicate that the
relative computational cost of our proposed algorithm is especially low for the hyperpa-

rameters with good generalization performances in these application problems.

3.4.4 Application to Cross-Validation

Cross-Validation (CV) [104] is a commonly used technique to estimate the general-
ization performance of a model. The CV procedure can be naturally implemented by
decremental algorithm. Like previous works [24, 79], we initially calculate parameters
for the entire data set. Then, in the leave-¢-out CV (equivalent to n/¢-fold CV), we
remove ¢ data points from the initial parameters at each fold.

Fig.3.19 shows the CPU time of the leave-f-out CV for the diabetes data set (Ta-
ble 3.1). The horizontal axis of each plot indicates the number of leaving out data point
¢. We examined several settings with ¢ € {1,5,10,20,50}° and C € {10°,10!, 102, 103}.
All results do not include the CPU time of calculating initial solution (parameters for all
data points). RBF kernel parameter is v = 0.1 and all algorithms uses common kernel
cache during n/¢-fold learning.

In Fig.3.19, MID-SVM was faster than the other algorithms in these settings. Note,

in SID-SVM, that the entire n/¢-fold learning always requires n decremental operations

5Each of which corresponds to 500, 100, 50, 25, 10-fold CV.
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because it needs ¢ times decremental for each fold, Therefore, for any ¢, the computa-

tional cost of SID-SVM is same as that needed in leave-one-out CV (£ = 1).

3.5 Multiple Update for SVR

Here, we briefly introduce a formulation of multiple incremental decremental learning
for the SVR. The derivation is almost the same in the classification case. This is an
extension of our previous work which is for acceleration of the cross-validation procedure
of the SVR [58].

From the definition (2.13b) and the KKT conditions, the points 7 € £ must satisfy
lyi — f(x;)| = . This equation can be re-written as

ly; — ZajK(a:i, x;) — ZajK(wi, x;)—bl=¢, i €E. (3.15)
jeE jEO
Similarly, the equality constraint of (2.11) is re-written as
Zai—i-Zai = 0. (3.16)
ic€ i€O
Using vector notations: y = [y1,--- ,ya]", F = [f(z1), -, f(z,)]", s = sign(y — f),

we can rewrite (3.15) and (3.16) as the following linear system of equations:

0 17 b 1Tao
+ =0, 3.17
l:l ngl l:ag:I |:Kg,oao—yg+885 ( )

where K is a kernel matrix K, ; = K(x;, ;), and we abbreviate K¢ ¢ as K.
As in the case of classification, let us denote the index set of new adding data points

and removing data points as

A = {n+1,...,n+m}
R c {1,...,n},



32 CHAPTER 3 INCREMENTAL DECREMENTAL LEARNING

where |R| = ¢ and we remove these index sets from £,7 and O. Let Aay and Aag

denote the change of a4 and ag respectively, then we need

17 T T A
0 L XA 2, (3.18)
1 K, Kegy Keg Aar

in order to let (3.17) hold for a;,7 € £ and b. From the definitions of index sets in

Ab
Aag

(2.13c), (2.13b), and (2.13a), following inequality constraints must also be satisfied:

si(ai + Aa;) <C, 1 €€,
(CVZJrAa@) >0, i€E,
si(yi — f(z:) — Af(z:)) 2¢e, €0,
—e< Yy — f( ) — Af(x;) <e, 1€Z,

(3.19)

where s; = sign(y; — f(x;)). While we satisfy these conditions (3.18) and (3.19), param-

eters keep satisfying optimality conditions. The direction of Aa 4 and Aaxr are

Aay = n(C1l - ay),

AQR = —nag,

where 77 is a step length.
Using these formulas, multiple update of the SVR can be constructed in the same

manner as the classification case.

3.6 Conclusion

In this chapter, we have developed multiple incremental decremental algorithms for
the SVM. Unlike previous formulations [24,33,68,79,80], our approach can add and/or
remove multiple data points simultaneously. We experimentally showed the efficiency
of multiple update algorithm using artificial and several common benchmark data sets.
Moreover, we derived the ratio of the number of breakpoints on some reasonable as-
sumptions. We also verified this ratio is actually. achieved in some practical settings. As
applications of our approach, we provided accelerations of the online time series learning
and the cross validation procedure. Results showed our approach is faster than single

update algorithm and hot start of the SMO algorithm.
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Chapter 4

Multi-Parametric Solution-Path for Weighted SVMs

An instance-weighted variant of the support vector machine (SVM) has attracted con-
siderable attention recently since they are useful in various machine learning tasks such
as non-stationary data analysis, heteroscedastic data modeling, transfer learning, learn-
ing to rank, and transduction. An important challenge in these scenarios is to overcome
the computational bottleneck—instance weights often change dynamically or adaptively,
and thus the weighted SVM solutions must be repeatedly computed. In this chapter, we
develop an algorithm that can efficiently and exactly update the weighted SVM solutions
for arbitrary change of instance weights. Technically, this contribution can be regarded
as an extension of the conventional solution-path algorithm for a single regularization
parameter to multiple instance-weight parameters. However, this extension gives rise
to a significant problem that breakpoints (at which the solution path turns) have to
be identified in high-dimensional space. To facilitate this, we introduce a parametric
representation of instance weights. We also provide a geometric interpretation in weight
space using a notion of critical region: a polyhedron in which the current affine solution
remains to be optimal. Then we find breakpoints at intersections of the solution path
and boundaries of polyhedrons. Through extensive experiments on various practical
applications, we demonstrate the usefulness of the proposed algorithm. The discussion

in this chapter has appeared in [56].
4.1 Instance-weighted Learning

The most fundamental principle of machine learning would be the empirical risk

mianimization, i.e., the sum of empirical losses over training instances is minimized:

min E L;,
i
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where L; denotes the empirical loss for the i-th training instance. This empirical risk
minimization approach was proved to produce consistent estimators [112]. On the other

hand, one may also consider an instance-weighted variant of empirical risk minimization:

min Z CiLia
where C; denotes the weight for the i-th training instance. This weighted variant plays

an important role in various machine learning tasks:

e Non-stationary data analysis: When training instances are provided in a se-
quential manner under changing environment, smaller weights are often assigned

to older instances for imposing some ‘forgetting’ effect [22, 85].

e Heteroscedastic data modeling: A supervised learning setup where the noise
level in output values depends on input points is said to be heteroscedastic. In
heteroscedastic data modeling, larger weights are often assigned to instances with
smaller noise variance [63]. The traditional Gauss-Markov theorem [1] forms the

basis of this idea.

e Covariate shift adaptation, transfer learning, and multi-task learning:
A supervised learning situation where training and test inputs follow different
distributions is called covariate shift. Under covariate shift, using the importance
(the ratio of the test and training input densities) as instance weights assures
the consistency of estimators [101]. Similar importance-weighting ideas can be
applied also to transfer learning (where data in one domain is transferred to another
domain) [51] and multi-task learning (where multiple learning problems are solved

simultaneously by sharing training instances) [13].

¢ Learning to rank and ordinal regression: The goal of ranking (a.k.a. ordinal
regression) is to give an ordered list of items based on their relevance [48,77]. In
practical ranking tasks such as informatioﬁ retrieval, users are often not interested
in the entire ranking list, but only in the top few items. In order to improve
the prediction accuracy in the top of the list, larger weights are often assigned to

higher-ranked items [119].

e Transduction and semi-supervised learning: Transduction is a supervised

learning setup where the goal is not to learn the entire input-output mapping, but
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only to estimate the output values for pre-specified unlabeled input points [112].
A popular approach to transduction is to label the unlabeled samples using the
current estimator, and then modify the estimator using the ‘self-labeled’ samples
[52,91]. In this procedure, smaller weights are usually assigned to the self-labeled

samples than the originally-labeled samples due to their high uncertainty.

A common challenge in the research of instance-weighted learning has been to over-
come the computational issue. In many of these tasks, instance weights often change
dynamically or adaptively, and thus the instance-weighted solutions must be repeatedly
computed. For example, in on-line learning, every time when a new instance is observed,
all the instance weights must be updated in such a way that newer instances have larger
weights and older instances have smaller weights. Model selection in instance-weighted
learning also poses a considerable computational burden. In many of the above scenar-
ios, we only have qualitative knowledge about instance weights. For example, in the
aforementioned ranking problem, we only know that higher-ranked items should have
larger weights than lower-ranked items, but it is often difficult to know how large or
small these weights should be. The problem of selecting the optimal weighting patterns
is an instance of model selection, and many instance-weighted solutions with various
weighting patterns must be computed in the model selection phase. The goal of this
chapter is to alleviate the computational bottleneck of instance-weighted learning.

The SVM minimizes a regularized empirical risk:
min R+ C Z L;,

where R is a regularization term and C > 0 controls the trade-off between the regu-
larization effect and the empirical risk minimization. We consider an instance-weighted

variant of SVM, which we refer to as the weighted SVM (WSVM) [74,75,120]:
min R + Z CiLi.

For ordinary SVM, the solution path algorithm was proposed [47], which allows effi-
cient computation of SVM solutions for all C' by utilizing the piecewise-linear structure
of the solutions w.r.t. C. This technique is known as parametric programming in the
optimization community [2,11,12,92], and has been applied to various machine learn-

ing tasks recently [5,7, 33, 38,42, 46, 53,69, 71-73,78,95,102,107,111,117, 121, 124]; the
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incremental-decremental SVM algorithm, which efficiently follows the piecewise-linear
solution path when some training instances are added or removed from the training set,

is also based on the same parametric programming technique [24,57,68].

The solution path algorithms described above have been developed for problems with
a single hyper-parameter. Recently, attention has been paid to studying solution-path
tracking in two-dimensional hyper-parameter space. For example, [117] developed a
path-following algorithm for regularization parameter C' and an insensitive zone thick-
ness € in support vector regression [81,84,113]. [93] studied a path-following algorithm for
regularization parameter A and quantile parameter 7 in kernel quantile regression [106].
However, these works are highly specialized to specific problem structure of bivariate
path-following, and it is not straightforward to extend them to more than two hyper-
parameters. Thus, the existing approaches may not be applicable to path-following of
WSVM, which contains n-dimensional instance-weight parameters ¢ = [Cy,...,Cy]",

where n is the number of training instances.

In order to go beyond the limitation of the existing approaches, we derive a general
solution path algorithm for efficiently computing the solution path of multiple instance-
weight parameters ¢ in WSVM. This extension involves a significant problem that break-
points (at which the solution path turns) have to be identified in high-dimensional space.
To facilitate this, we introduce a parametric representation of instance weights. We also
provide a geometric interpretation in weight space using a notion of critical region from
the studies of multi-parametric programming [41,89]. A critical region is a polyhedron in
which the current affine solution remains to be optimal (see Fig. 4.1). This enables us to

find breakpoints at intersections of the solution path and the boundaries of polyhedrons.

4.2 Problem Formulation

In this section, we review the definition of the weighted support vector machine
(WSVM) and its optimality conditions. For the moment, we focus on binary classifica-
tion scenarios. Later in Section 4.5, we extend our discussion to more general scenarios

such as regression, ranking, and transduction.
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4.2.1 WSVM

Let us consider a binary classification problem. Denote n training instances as
{(zi, ;) },, where z; € X C R? is the input and y; € {—1,+1} is the output label.

SVM [15,31] is a learning algorithm of a linear decision boundary
f(x) =w ®(x)+b

in a feature space F, where & : X — F is a map from the input space X' to the feature
space F, w € F is a coefficient vector, b € R is a bias term, and " denotes the transpose.
The parameters w and b are learned as
1 n
r{lui’Ib1§I\WH§+CZ;[1 — yif (®:)]+, (4.1)
im
where |lw||3 is the regularization term, || - || denotes the Euclidean norm, C is the

trade-off parameter, and
2]+ = max{0, z}.

[1 — y;f(x;)]+ is the so-called hinge-loss for the i-th training instance.
WSVM is an extension of the ordinary SVM so that each training instance possesses
its own weight [74,75,120]:
.1 .

min o lwl; + Zl Gill = yif (i)l (4.2)
where C; is the weight for the i-th training instance. WSVM includes the ordinary SVM
as a special case when C; = C for ¢ = 1,...,n. The primal optimization problem (4.2)
is expressed as the following quadratic program:

min L fw|2+ Z Cié,

w,b,{gi ?=1 2 2 pa A

s.t. yzf(mz)z]-—gu éiZOa 7,:].,,"?,

(4.3)

The goal of this paper is to derive an algorithm that can efficiently compute the

sequence of WSVM solutions for arbitrary weighting patterns of ¢ = [Cy,...,Cy]T.

4.2.2 Optimization in WSVM

Here we review basic optimization issues of WSVM which are used in the following |

section.
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Introducing Lagrange multipliers a; > 0 and p; > 0, we can write the Lagrangian of

(4.3) as
1 n n n
L= 5““’“2 + Zci& - Zai{yif(fﬂi) —-1+&} - Zpifi- (4.4)
i=1 i=1 i=1

Setting the derivatives of the above Lagrangian w.r.t. the primal variables w, b, and &;

to zero, we obtain

oL "

3g =0 & w= ;O’iyiq)(xi):

oL =

E)— =0 & ;aiyi =0,

oL

a—&zo < aiz»ci—pi,z'Zl,...,n,

where O denotes the vector with all zeros. Substituting these equations into (4.4), we
arrive at the following dual problem:
. 1 n n n
Mmax -3 DD 00gQy + ) o
tli=1 i=1 j=1 i=1 (4.5)

n
S.t. Zyiai = O, 0 S (07] S C’ia
=1

where Q;; = v;y; K(x;, ;). The discriminant function f : X — R is represented in the

following form:
flz) = ZaiyiK<mvmi) +b.
i=1

KKT conditions are summarized as follows:

yif(z) 21, if a; =0, (4.6a)
vif(x) =1, if 0<a; <G (4.6Db)
yif(x) <1, if ;=G (4.6¢)
zn:yiai = 0. , (4.6d)
i=1

We define the following three index sets for later use:
O={i|a; =0}, (4.7a)
M={i|0<a <Ci}, (4.7b)
T={i|a=Ci}. (4.7¢)
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The geometric interpretation of these sets is also provided by Fig. 2.1.
4.3 Solution-Path Algorithm for WSVM

The path-following algorithm for the ordinary SVM [47] computes the entire solution
path for the single regularization parameter C. In this section, we develop a path-
following algorithm for the vector of weights ¢ = [C1,...,Cy]T. Our proposed algorithm

keeps track of the optimal o; and b when the weight vector ¢ is changed.

4.3.1 Analytic Expression of WSVM Solutions

Let

an n Qu - Qi
a=|[:|,y=|:|, andQ=1| : :
Oy Un in e an

Then, using the index sets (4.7b) and (4.7¢c), we can expand one of the KKT conditions,
(4.6b), as

Qronm + QM,ICI +ypb=1, (4.8)

where 1 denotes the vector with all ones. Similarly, another KKT condition (4.6d) is

expressed as
Yanm +yrer = 0. (4.9)

Let

0 Yun
M = .
LIM QM:I

Then (4.8) and (4.9) can be compactly expressed as the following system of |[M| + 1

linear equations, where | M| denotes the number of elements in the set M:

b Yy |0
2]l o[l o

am
Solving (4.10) w.r.t. b and ar, we obtain

b _ ys
— _M-! I
MRS S

cr+ M H : (4.11)
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where we implicitly assumed that M is invertible! . Since b and ar are affine w.r.t. cz,
we can calculate the change of b and ap by (4.11) as long as the weight vector ¢ is
changed continuously. By the definition of Z and O, the remaining parameters az and

o are merely given by

a7 = C7, (412)
oo = 0. (413)

A change of the index sets M, O, and Z is called an event. As long as no event
occurs, the WSVM solutions for all ¢ can be computed by (4.11)—(4.13) since all the
KKT conditions (4.6a)—(4.6d) are still satisfied. However, when an event occurs, we
need to check the violation of the KKT conditions. Below, we address the issue of event

detection when ¢ is changed.

4.3.2 Event Detection

Suppose we want to change the weight vector from ¢ to c®®*) (see Fig. 4.1). This

(old) toward the direction of e(®e¥) — el0ld),

can be achieved by moving the weight vector ¢
Let us write the line segment between ¢©'9 and ") in the following parametric

form
c(8) = Y + 6 (¢ — ) | g e o,1],

where 6 is a parameter. This parametrization allows us to derive a path-following al-
gorithm between arbitrary ¢4 and ¢(®*") by considering the change of the solutions
when 6 is moved from 0 to 1. Suppose we are currently at ¢(f) on the path, and the

current solution is (b, o). Let
Ac = Af (¢ — ) A§ >0, (4.14)

where the operator A represents the amount of change of each variable from the current
value. If A is increased from 0, we may encounter a point at which some of the KKT

conditions (4.6a)—-(4.6¢c) do not hold. This can be checked by investigating the following

1The invertibility of the matrix M is assured if and only if the submatrix Q ,, is positive definite in
the subspace {z € RM! | y1 2 = 0}. We assume this technical condition here. A notable exceptional
case is that M is empty—we will discuss how to cope with this case in detail in Section 4.3.3.
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Figure 4.1: The schematic illustration of path-following in the space of ¢ € R?. In this
plot, the WSVM solution is updated from ¢ to ¢®*). Suppose we are currently at
c(6). The vector d represents the update direction ¢**)—¢®'9) | and the polygonal region
enclosed by dashed lines indicates the current critical region. Although ¢(6) + Abyaxd
seems to directly lead the solution to c¢®*"), the maximum possible update from c(6) is
Afd; otherwise the KK'T conditions are violated. To go beyond the border of the critical
region, we need to update the index sets M, Z, and O to fulfill the KKT conditions.

conditions.
yif(x:) + v Af(x) > 1, i €O,
a; + Aa; > 0, 1EM,
ai+Aai—(C’i+ACi,)<0, iEM,
yvif(x) +yAf(z;) <1, i €T.

The set of inequalities (4.15) defines a convex polyhedron, called a critical region in

(4.15)

the multi-parametric programming literature [89]. The event points lie on the border of
critical regions, as illustrated in Fig. 4.1.
We detect an event point by checking the conditions (4.15) along the solution path

as follows. Using (4.11), we can express the changes of b and apq as

Ab
= Ad 4.1
where
-
¢=—M1 Yz (C(Inew) _ c.([old)). (4.17)

Qmz

Furthermore, y; A f(x;) is expressed as
Ab
A f(x;) = [ Ui Qim ] Aay +Q;rAcr
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where
bi= % Quu |6+ Qur(ef™ — ). (4.19)
Let us denote the elements of the index set M as
M={mq,...,mum}

Substituting (4.16) and (4.18) into the inequalities (4.15), we can obtain the maximum

step-length with no event occurrence as

. —am, 1=y flx
Ab = min {—amz,c"“ O 1= g5f (mﬂ)} , (4.20)
i€{1,..IM}eTu0 | dip1 Pip1 — dum, V; +

where ¢; denotes the i-th element of ¢ and d; = C’i(new) - C’i(OId). We used min;{z;} as
a simplified notation of min;{z; | z; > 0}. Based on this largest possible Af, we can
compute a and b along the solution path by (4.16).

At the border of the critical region, we need to update the index sets M, O, and
Z. For example, if a; (i € M) reaches 0, we need to move the element ¢ from M to O.
Then the above path—following procedure is carried out again for the next critical region
specified by the updated index sets M, O, and Z, and this procedure is repeated until

¢ reaches ¢(™%)

4.3.3 Empty Margin

In the above derivation, we have implicitly assumed that the index set M is not
empty—when M is empty, we can not use (4.16) because M ~1 does not exist.

When M is empty, the KKT conditions (4.6) can be re-written as

S QuCi+ub>1, €0, (4.21a)
jeT
Z QuyCi+tuyb<1l, €1, (4.21b)
jET ’
Zini =0. (4.21c)
ieT

Although we can not determine the value of b uniquely only from the above conditions,

(4.21a) and (4.21b) specify the range of optimal b:

a4 < b < min s as 4.22
Max y;g; < b < N g;gi, (4.22)
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where
gi = 1- ZQijCja
jez
U={i|i€ Oy =-1}U{i|ie T,y =1}
Let
6= Zyidia
€T
where

dz‘ _ Ci(new) _ C~(01d).

)

When ¢ = 0, the step size A can be increased as long as the inequality (4.22) is satisfied.
Violation of (4.22) can be checked by monitoring the upper and lower bounds of the bias

b (which are piecewise-linear w.r.t. Af) when A# is increased

u(Af) = maxiey yi(g: + Agi(A)),

((Af) = minier yi(g: + Agi(AF)), (4.23)

where
Agi(86) = A0~ Qi;d;.
j€T
On the other hand, when § # 0, Af can not be increased without violating the

equality condition (4.21c). In this case, an instance with index

low = argmax y;g;
el

or

typ = Argminy;g;
iU

actually enters the index set M. If the instance (we denote its index by m) comes from

the index set O, the following equation must be satisfied for keeping (4.21c) satisfied:

AOO = — Ay Y.
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Since Af > 0 and Aq,, > 0, we have
sign(9) = sign(—ym)-
On the other hand, if the instance comes from the index set Z,
A =y (AC,, — Aayy)
must be satisfied. Since Af > 0 and AC,, — Aa,, > 0, we have
sign(9) = sign(ym).

Considering these conditions, we arrive at the following updating rules for b and M:

>0 = b= yiupgi'up, M = {ip},

4.24
0<0 = b= Yirow Fitow > M = {'élow}- ( )

Note that we also need to remove i, and iy from O and Z, respectively.

4.3.4 Computational Complexity

The entire pseudo-code of the proposed WSVM path-following algorithm is described
in Fig. 4.2.

The computational complexity at each iteration of our path-following algorithm is
the same as that for the ordinary SVM (i.e., the single-C' formulation) [47]. Thus,
our algorithm inherits a superior computational property of the original path-following
algorithm.

The linear system (4.17) can be solved using Cholesky factor L of Q , (see Appendix
A). Moreover, we can update L from the previous one at each event point can be carried
out efficiently with O(|]M|?) computational cost based on the Cholesky decomposition
rank-one update [45] (see Appendix B) or the block-matriz inversion formula [98]. Thus,
the computational cost required for identifying the next event point is O(n|M]).

It is difficult to state the number of iterations needed for complete path-following be-
cause the number of events depends on the sensitivity of the model and the data set. Sev-
eral empirical results suggest that the number of events linearly increases w.r.t. the data
set size [46,47,117]; our experimental analysis given in Section 4.4 also showed the same
tendency. This implies that path-following is computationally highly efficient—indeed,
in Section 4.4, we will experimentally demonstrate that the proposed path-following

algorithm is faster than an alternative approach in one or two orders of magnitude.
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arguments:

Optimal parameters o and b for ¢

1:

2

3: Sets M, O, 7, and Cholesky factor L of Q
4 New weight vector c(e")

5: end arguments

6: function WSVM-PATH(a, b, c®Y M, O, T, L, ™))
7 8 —0, ¢ — c9d
8: while 6#1 do
9

if M is empty then

10: Af — EMPTYMARGIN

11: else

12: Calculate ¢ by (4.17) using Cholesky factor L
13: Calculate 9 by (4.19)

14: Calculate A8 by (4.20)

15: end if

16: If0+ A6 >1,then AQ—1-0

17: Update a;, b, and ¢ by step length A6

18: 6 —0+ A0

19: Update M, O, and Z depending on the event type
20: Update L (Cholesky factor rank-one update)

21: end while

22: end function

23: function EMPTYMARGIN
24: if 0(a) #0 then

25: Set bias term b by (4.24)

26: Af 0

27: else

28: Trace u(Af) and £(Af) in (4.23) until u(Af) = £(AF)
29: end if

30: return Af
31: end function

Figure 4.2: Pseudo-code of the proposed WSVM path-following algorithm.
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4.4 Experiments

In this section, we illustrate the empirical performance of the proposed WSVM path-
following algorithm in a toy example and two real-world applications. We compared the
computational cost of the proposed path-following algorithm with the sequential minimal
optimization (SMO) algorithm [90] when the instance weights of WSVM are changed in
various ways. In particular, we investigated the CPU time of updating solutions from
some c©9) to clreW),

In the path-following algorithm, we assume that the optimal parameter a as well
as the Cholesky factor L of Qy, for ¢V has already been obtained. In the SMO
algorithm, we used the old optimal parameter « as the initial starting point (i.e., the
‘hot’ start) after making them feasible using the alpha-seeding strategy [34]. We set the
tolerance parameter in the termination criterion of SMO to 10~3. Our implementation
of the SMO algorithm is based on LIBSVM [25]. To circumvent possible numerical
instability, we added small positive constant 107 to the diagonals of the matrix Q. In

all the experiments, we used the Gaussian kernel
no_ Y "2
K(z,z') = exp —;”m —'||° ), (4.25)
where v is a hyper-parameter and p is the dimensionality of x.

4.4.1 Illustrative Example

First, we illustrate the behavior of the proposed path-following algorithm using
an artificial data set. Consider a binary classification problem with the training set
{(xi,y:)}1;, where x; € R? and y; € {—1,+1}. Let us define the sets of indices of pos-
itive and negative instances as K_; = {i|y; = —1} and K, = {i|y; = +1}, respectively.

We assume that the loss function is defined as
Y v (yif () < 0), (4.26)

where v; € {1,2} is the cost of misclassifying the instance (z;, y;), and I(-) is the indicator
function. Let D; = {i|v; = 1} and D, = {i|v; = 2}, i.e., D; is the set of instance indices
which have stronger influence on the overall test error than D;.

To be consistent with the above error metric, it would be natural to assign a smaller

weight C; for i € D; and a larger weight C; for ¢« € D, when training SVM. However,
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naively setting Cy = 2C) is not generally optimal because the hinge loss is used in
SVM training, while the 0-1 loss is used in performance evaluation (see (4.26)). In the
following experiments, we fixed the Gaussian kernel width to v = 1 and the instance
weight for Dy to Cy = 10, and we changed the instance weight C; for D; from 0 to 10.

Thus, the change of the weights is represented as

&) _[0] o [e5] _ [0
(Old) = 10 a"nd (new) = 10 :
Cp, Cp,

The two-dimensional input {;}?* ; were generated from the following distribution:

( - -
1] [1 o
N , if i € K11 NDy,
( 00.5D e

0
0] o5 o0
N , if i € Ky N Dy,
) 0]’ lo 05
0 .
N 3 1fz€IC_1ﬂ'D1,
1[0 05

(1] {05 0
N( | D fieKonD,
\

T ~ (4.27)

I} [0 05

Fig. 4.3 shows the generated instances for n = 400, in which instances in the above four
cases have the equal size n/4. Before feeding the generated instances into algorithms,
we normalized the inputs in [0, 1]2.

Fig. 4.4 shows piecewise-linear paths of some of the solutions «; for C; € [0, 10] when
n = 400. The left graph includes the solution paths of three representative parameters
a; for ¢ € Dy. All three parameters increase as C; grows from zero, and one of the
parameters (denoted by the dash-dotted line) suddenly drops down to zero at around
Cy = 7. Another parameter (denoted by the solid line) also sharply drops down at
around C; = 9, and the last one (denoted by the dashed line) remains equal to C;
until C; reaches 10. The right graph includes the solution paths of three representative
parameters q; for i € Dy, showing that their behavior is substantially different from that
for D;. One of the parameters (denoted by the dash-dotted line) fluctuates significantly,
while the other two parameters (denoted by the solid and dashed lines) are more stable
and tend to increase as C'; grows.

An important advantage of the path following algorithm is that the path of the
validation error can be traced as well (see Fig. 4.5). First, note that the path of the
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Data points in D, Data points in Ds Data points in D; U Dy

Figure 4.3: Artificial data set generated by the distribution (4.27). The crosses and
circles indicate the data points in K_; (negative class) and K, (positive class), respec-
tively. The left plot shows the data points in D; (misclassification cost is 1), the middle
plot shows the data points in D, (misclassification cost is 2), and the right plots show
their union. '

10, v 101
8 8| ;;
i
6 sr%i 5
8 B H H E
4 o ¥
2 "\ll 2 :I E:
; e
% 2 4 6 8 10 % 2 4 6 8 10
C‘ C|
a; for i € Dy a; for i € Dy

Figure 4.4: Examples of piecewise-linear paths of a; for the artificial data set. The
weights are changed from C; = 0 to 10 for i € D; (for i € D, C; = 10 is unchanged).
The left and right plots show the paths of three representative parameters «; for i € Dy,
and for ¢ € Dy, respectively.

validation error (26) has piecewise-constant form because the 0-1 loss changes only when
the sign of f(x) changes. In our path-following algorithm, the path of f(x) also has
piecewise-linear form because f(z) is linear in their parameters e and b. Exploiting
the piecewise linearity of f(x), we can exactly detect the point at which the sign of
f(x) changes. These points correspond to the breakpoints of the piecewise-constant
validation-error path. Fig. 4.5 illustrates the relationship between the piecewise-linear
path of f(x) and the piecewise-constant validation-error path. Fig. 4.6 shows an example
of piecewise-constant validation-error path when C is increased from 0 to 10, indicating

that the lowest validation error was achieved at around C; = 4.

Finally, we investigated the computation time when the solution path from C; = 0

to 10 was computed. For comparison, we also investigated the computation time of the
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yif (:)
1=1
—
<o i=2
........... B
P T-i=3

> 0

Misclassification 2 / 3 1 / 3 0 / 3 1 / 3

error

Figure 4.5: A schematic illustration of validation-error path. In this plot, the path of
misclassification error rate 3 > | I(y; f(x;)) < 0) for the 3 validation instances (z1,1),
(x2,y2), and (z3,ys) are depicted. The horizontal axis indicates the parameter § and the
vertical axis denotes y; f(;), ¢ = 1,2,3. The path of the validation error has piecewise—
constant form because the 0-1 loss changes only when f(x;) = 0. The breakpoints of
the piecewise-constant validation-error path can be exactly detected by exploiting the
piecewise linearity of f(zx;).

04
0.38
0.36f
0.34f

ot
w
N

Average validation error

1

Figure 4.6: An example of the validation-error path for 1000 validation instances of the
artificial data set. The number of training instances is 400 and the Gaussian kernel with
v =1 is used.

SMO algorithm when the solutions at every breakpoint were computed. We considered
the following four cases: the number of training instances was n = 400, 800, 1200, and
1600. For each n, we generated 10 data sets and the average and standard deviation over
10 runs are reported. Table 4.1 describes the results, showing that our path-following
algorithm is faster than the SMO algorithm in one or two orders of magnitude; the
difference between the two methods becomes more significant as the training data size
n grows.

The table also includes the number of events and the average number of elements
in the margin set M (see Eq.(4.7b)). This shows that the number of events increases

almost linearly in the sample size n, which well agrees with the empirical results reported
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Table 4.1: The experimental results of the artificial data set.
The average and the standard deviation (in brackets) over 10 runs are reported.

n CPU time (sec.) #events mean |M|
path SMO

400 | 0.03 (0.00) 0.39 (0.01) 326.70 ( 7.17) 3.07 (0.03)

800 | 0.08 (0.00) 2.84 (0.12) 635.30 (17.47) 3.27 (0.02)

1200 | 0.19 (0.00) 10.63 (0.38)  997.60 (26.85) 3.38 (0.05)

1600 | 0.35 (0.01) 28.11 (0.77) 1424.00 (31.27) 3.50 (0.02)

in [47], [46], and [117]. The average number of elements in the set M increases very

mildly as the sample size n grows.

4.4.2 Online Time-series Learhing

In online time-series learning, larger (resp. smaller) weights should be assigned to
newer (resp. older) instances. For example, in [22], the following weight function is used:

2
1+ exp(a — 2a x 1y

(4.28)

i

where Cp and a are hyper-parameters and the instances are assumed to be sorted along
the time axis (the most recent instance is ¢ = n). Fig. 4.7 shows the profile of the weight
function (4.28) when Cy = 1. In online learning, we need to update parameters when
new observations arrive, and all the weights must be updated accordingly (see Fig. 4.8).

We investigated the computational cost of updating parameters when several new
observations arrive. The experimental data are obtained from the NASDAQ composite
indez between January 2, 2001 and December 31, 2009. As [22] and [29], we transformed
the original closing prices using the Relative Difference in Percentage (RDP) of the price
and the exponential moving average (EMA).

Extracted features are listed in Table 4.2 (see [22] for more details). Our task is to
predict the sign of RDP+5 using EMA15 and four lagged-RDP values (RDP-5, RDP-10,
RDP-15, and RDP-20). RDP values which exceed +2 standard deviations are replaced
with the closest marginal values. We have an initial set of training instances with size
n = 2515. The inputs were normalized in [0, 1]?, where p is the dimensionality of the
input . We used the Gaussian kernel (4.25) with v € {10,1,0.1}, and the weight
parameter a in (4.28) was set to 3. We first trained WSVM using the initial set of

instances. Then we added 5 instances to the previously trained WSVM and removed
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Figure 4.7: The weight functions for financial time-series forecasting. The horizontal
axis is the index of training instances which is sorted according to time (the most recent
instance is i = n). If we set a = 0, all the instances are weighted equally. This weighting
strategy is proposed in [22].

1] f
|_|ﬂ : ¢ i-l-il

Figure 4.8: A schematic illustration of the change of weights in time-series learning. The
left plot shows the fact that larger weights are assigned to more recent instances. The
right plot describes a situation where we receive a new instance (i = n + 1). In this
situation, the oldest instance (i = 1) is deleted by setting its weight to zero, the weight
of the new instance is set to be the largest, and the weights of the rest of the instances

A

are decreased accordingly.

the oldest 5 instances by decreasing their weights to 0. This does not change the size
of the training data set, but the entire weights need to be updated as illustrated in
Fig. 4.8. We iterated this process 5 times and compared the total computational costs
of the path-following algorithm and the SMO algorithm. For fair comparison, we cleared

the cache of kernel values at each update before running the algorithms.

Fig. 4.9 shows the average CPU time over 10 runs for Cy € {1, 10,102, 103, 10*}, show-
ing that the path-following algorithm is much faster than the SMO algorithm especially
for large Cy.
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Table 4.2: Features for financial forecasting
(p(i) is the closing price of the ith day and EMAg(7) is the k-day exponential moving
average of the ith day.

Feature | Formula
EMA15 | p(i) — EMA;5(d)
RDP-5 | (p(z) — p(i —5))/p(i — 5) * 100
RDP-10 | (p(¢) — p(i — 10))/p(i — 10) * 100
RDP-15 | (p(i) — p(i — 15))/p(i — 15) = 100
RDP-20 | (p(é) — p(i —20))/p(i — 20) = 100
RDP+5 | (p(i + 5) — p(4))/p(i) * 100
p(i) = EMA3(i)
10’ «==SMO 10f ===SMO «=+SMO
—Path ~=Path —Path
o ~ 4 10°9
g 3 g
£ . g . g |
z 10" ".. g ..‘,- g 10" ;
| I - | e — 10“%\_‘" """" :
10 1 10 QO 1000 10000 10 1 10 1((;)0 1000 10000 1 10 1(90 1000 10000
(a) v = 10 (b)y=1 () y=01

Figure 4.9: CPU time comparison for online time-series learning using NASDAQ com-

posite index.

4.4.3 Model Selection in Covariate Shift Adaptation

Covariate shift is a situation in supervised learning where the input distributions
change between the training and test phases but the conditional distribution of outputs
given inputs remains unchanged [101]. Under covariate shift, standard SVM and SVR
are biased, and the bias caused by covariate shift can be asymptotically canceled by
weighting the loss function according to the importance (i.e., the ratio of training and
test input densities).

Here, we apply importance-weighted SVMs to brain-computer interfaces (BCls) [35].
A BCI is a system which allows for a direct communication from man to machine via
brain signals. Strong non-stationarity effects have been often observed in brain signals
between training and test sessions, which could be modeled as covariate shift [105]. We

used the BCI datasets provided by the Berlin BCI group [19], containing 24 binary clas-
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sification tasks. The input features are 4-dimensional preprocessed electroencephalogram
(EEG) signals, and the output labels correspond to the ‘left’ and ‘right’ commands. The
size of training datasets is around 500 to 1000, and the size of test datasets is around
200 to 300.

Although the importance-weighted SVM tends to have lower bias, it in turns has
larger estimation variance than the ordinary SVM [101]. Thus, in practice, it is desirable
to slightly ‘flatten’ the instance weights so that the trade-off between bias and variance
is optimally controlled. Here, we changed the instance weights from the uniform values
to the importance values using the proposed path-following algorithm, i.e., the instance

weights were changed from
c=c, i=1,...,n,

to

Ci(new) _ CO ptest(mi) i=1

ptrain(:vi) 7 ’ ’

Ptest (wz)
Ptrain (wz)

directly estimates the density ratio without going through density estimation of pses ()

The importance values were estimated by the method proposed in [53], which

and prein ().

For comparison, we ran the SMO algorithm at (i) each breakpoint of the solution
path, and (ii) 100 weight vectors taken uniformly in [C{*'? C™™]. We used the Gaussian
kernel and the inputs were normalized in [0, 1], where p is the dimensionality of z.

Fig. 4.10 shows the average CPU time and its standard deviation. We examined
several settings of hyper-parameters v € {10’,1’ ...,107?} and Cy € {1,10,10?,...,10%}.
~ The horizontal axis of each plot represents Cy. The graphs show that our path-following
algorithm is faster than the SMO algorithm in all cases. While the SMO algorithm
tended to take longer time for large Cy, the CPU time of the path-following algorithm

did not increase with respect to Cp.

4.5 Beyond Classification

So far, we focused on classification scenarios. Here we show that the proposed path-
following algorithm can be extended to various scenarios including regression, ranking,

and transduction.
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Figure 4.10: CPU time comparison for covariate shift adaptation using BCI data.

4.5.1 Regression

The support vector regression (SVR) is a variant of SVM for regression problems
[81,84,113].

Formulation

The primal optimization problem for the weighted SVR (WSVR) is defined by

1, oy —
min —||w|}5 + Ci(&+ &),
wo 5 w3 ; (& +&)
s.t. Y; —f(ﬂ?z) <e+&,
flx:) —yi <e+E&,

£, >0,i=1,...,n,

where € > 0 is an insensitive-zone thickness. Note that, as in the classification case,
WSVR is reduced to the original SVR when C; = C for ¢ = 1,...,n. Thus, WSVR

includes SVR as a special case.

The corresponding dual problem is given by
1 n n n n
oo I YD K (@i z) —e ) lail + ) wia
=t i=1 j=1 i=1 i=1

s.t. ZO&L’:O, —Ciﬁa@-SC,-,izl,...,n.

i=1

The final solution, i.e., the regression function f : X — R, is in the following form:

fx) = ZaiK(m,mi) +b.
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The KKT conditions for the above dual problem are given as

lyi — f(z:)| <&, if a;=0, (4.29a)
lvi — f(@s) =¢, if 0<|ai| <C, (4.29b)
lyi — f(zi)| =2 e, if |au| =G, (4.29¢)

Then the training instances can be partitioned into the following three index sets (see

Fig. 2.2):
0= {Z : ’yl - f(ml)l 2 €, |ai| = CZ})
E={:lyi— f(@:)| = £,0 < |au| < Ci},
T={i:lyi— f®)| <& =0},

Let
sign(y: — f(x1))

0 17
K¢ = and s =
l:l KJ

sign(yn — £(@2))

Then, from (4.29), we obtain

MERCEa P

oo — diag(s@)co,

co + (K&)™ [ 0 } ,

Ye — &8¢

ao=0.

where diag(se) indicates the diagonal matrix with its diagonal part sp. These functions
are affine w.r.t. ¢, so we can easily detect an event point by monitoring the inequalities in
(4.29). We can follow the solution path of SVR by using essentially the same technique
as SVM classification (and thus the details are omitted).

Experiments on Regression

As an application of WSVR, we consider a heteroscedastic regression problem, where
output noise variance depends on input points. In heteroscedastic data modeling, larger
(resp. smaller) weights are usually assigned to instances with smaller (resp. larger) vari-

ances. Since the point-wise variances are often unknown in practice, they should also be
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estimated from data. A standard approach is to alternately estimate the weight vector
c based on the current WSVR solution and update the WSVR solutions based on the
new weight vector ¢ [63].

We set the weights as

-~

C, = coé, (4.30)

where e, = y; — f(wz) is the residual of the instance (x;,vy;) from the current fit f(:z:l),
and 0 is an estimate of the common standard deviation of the noise computed as
o= 1/%2;;1 eZ. 'We employed the following procedure for the heteroscedastic data

modeling:
Stepl: Training WSVR with uniform weights (i.e., C; = Cp,i = 1,...,n.).

Step2: Update weights by (4.30) and update the solution of WSVR accordingly. Repeat
this step until + 5" (e — ¢;) /el | < 1073 holds, where €9 is the previous

=1 i %

training error.

We investigated the computational cost of Step2. We applied the above procedure
to the well-known Boston housing data set. The sample size is 506 and the number
of features is p = 13. The inputs were normalized in [—1,1]?. We randomly sampled
n = 404 instances from the original data set, and the experiments were repeated 10
times. We used the Gaussian kernel (4.25) with v € {10,1,0.1}. The insensitive zone
thickness in WSVR was fixed to € = 0.05.

Each plot of Fig. 4.11 shows the CPU time comparison for Cy € {1,10,...,10%},
and Fig. 4.12 shows the number of iterations performed in Step2. Our path-following
approach is faster than the SMO algorithm especially for large Cj.

4.5.2 Ranking

Recently, the problem of learning to rank has attracted wide interest as a challenging
topic in machine learning and information retrieval [77]. Here, we focus on a method

called the ranking SVM (RSVM) [48].
Formulation

Assume that we have a set of n triplets {(;, yi,¢;)}/~,; where x; € RP is a feature

vector of an item and y; € {ry,...,7,} is a relevance of x; to a query ¢;. The relevance
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Figure 4.12: The number of weight updates for Boston housing data.

has an order of the preference ry > r4_; > --- > ry, where ry > r,_; means that r, is

preferred to r,_;. The goal is to learn a ranking function f(x) which returns a larger

value for a preferred item. More precisely, for items x; and x; such that ¢, = g;, we

want the ranking function f(x) to satisfy

Let us define the following set of pairs:

yi -y e flx) > flz)).

P=A{0G7)v>vya=q}

RSVM solves the following optimization problem:

min

W&}, 5)er

s.t.

1
ﬂwﬁ+(7§:§w

flx:) — f(

(1,5)eP

x;) > 1-&;, (i,j) € P.
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In practical ranking tasks such as information retrieval, a pair of items with highly
different preference levels should have a larger weight than those with similar preference
levels. Based on this prior knowledge, [23] and [119] proposed to assign different weights
C;; to different relevance pairs (2, j) € P. This is a cost-sensitive variant of RSVM whose
primal problem is given as

_ 1
Inin 5”“’”% Z Cij&ij

W,{fij}(i,j)ep ’L] EP
st flz) — f(z;) >1-&;, (4,7) €P.

Since this formulation is interpreted as a WSVM for pairs of items (i,j) € P, we

can easily apply our multi-parametric path approach. This leads to the following dual

problem:
1 m m . m
max = a;05Q + )
{ei} 2, 2 ; JZ Jij ;
st. 0< o <C, ...,m,
where

Qij = Ky, kj — Kiyoy — Koy, + Koo
Then, the ranking function f is given as
Zaz (x,xy,) — K(x,xy,)).
The index partitioning of the optimal solution is given as follows:

O ={i| f(zx,) — f(ze) = 1,0 = 0},
M= {i| f(zr,) — f(@e,) =1,0 < a; < Ci},
I={i| f(zx,) — fze,) < 1 s = Ci}.
Using these sets, we can compute the solution path for changing weight vector c. Note
that the solution path algorithm for the cost-sensitive RSVM is regarded as an extension
of the previous work by [5], in which the solution path for the standard RSVM was
studied.

In this paper, we consider a model selection problem for the weighting pattern

{Ci;} i, j)ep. We assume that the weighting pattern is represented as

__ (old) (new) (old) .o
Ci = C 4 g(C™ — ), (i,5) € P, 6 € [0, 1], (4.32)



4.5. BEYOND CLASSIFICATION 99

where

cl = ¢, (4,5) € P, (4.33)
Cr™ = (2% —2¥)Cy, (i,5) € P, (4.34)

and Cj is the common regularization parameter? . We follow the multi-parametric so-
lution path from {C’z(]o N j)ep to {Cz-(;ew)}(i,j)ep and the best 6 is selected based on the
validation performance.

The performance of ranking algoritﬂms is usually evaluated by some information-
retrieval measures such as the normalized discounted cumulative gain (NDCG) [50]. Con-
sider a query q and define q(j) as the index of the j-th largest item among { f(x;) }ie i/gi=q} -
The NDCG at position & for a query q is defined as

Ko ovaw —1, j=1,
NDCG@k =2 { gy o

=1 log(y)

(4.35)

where Z is a constant to normalize the NDCG in [0,1]. Note that the NDCG value in
(4.35) is defined using only the top k items and the rest are ignored. The NDCG for
multiple queries are defined as the average of (4.35).

The goal of our model selection problem is to choose 8 with the largest NDCG value.
As explained below, we can identify 6 that attains the exact maximum NDCG value
for validation samples by exploiting the piecewise linearity of the solution path. The
NDCG value changes only when there is a change in the top k ranking, and the rank
of two items x; and x; changes only when f(x;) and f(x;) cross. Then change points
of the NDCG can be exactly identified because f(x) changes in piecewise-linear form.
Fig. 4.13 schematically illustrates piecewise-linear paths and the corresponding NDCG
path for validation samples. The validation NDCG changes in piecewise-constant form,

and change points are found when there is a crossing between two piecewise-linear paths.

Experiments on ranking

We used the OHSUMED data set from the LETOR package (version 3.0) provided
by Microsoft Research Asia [76]. We used the query-level normalized version of the data

set containing 106 queries. The total number of query-document pairs is 16140, and

%In [26], ranking of each item is also incorporated to define the weighting pattern. However, these
weights depend on the current ranking, and it might change during training. We thus, for simplicity,
introduce the weighting pattern (4.34) that depends only on the difference of the preference levels.
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Figure 4.13: The schematic illustration of the NDCG path. The upper plot shows
outputs for 3 items which have different levels of preferences y. The bottom plot shows
the changes of the NDCG. Since the NDCG depends on the sorted order of items, it
changes only when two lines of the upper plot intersect.

the number of features is p = 45. The data set provided is originally partitioned into 5
subsets, each of which has training, validation, and test sets for 5-fold cross validation.
Here, we only used the training and the validation sets.

We compared the CPU time of our path algorithm and the SMO algorithm to change
{Cij}ijep from flat ones (4.33) to relevance weighted ones (4.34). We need to modify
the SMO algorithm to train the model without the explicit bias term b. The usual SMO
algorithm updates selected two parameters per iteration to ensure that the solution
satisfies the equality constraint derived from the optimality condition of b. Since RSVM
has no bias term, the algorithm is adapted to update one parameter per iteration [115].
We employed the update rule of [115] to adapt the SMO algorithm to RSVM and we
chose the maximum violating point as an update parameter. This strategy is analogous
to the maximum violating-pair working set selection of [62] in ordinary SVM. Since it

took relatively large computational time, we ran the SMO algorithm only at 10 points
C(old)

ij
{107%,...,107'} and Gaussian width v € {10,1,0.1}. The results, given in Fig. 4.14,
show that the path algorithm is faster than the SMO in all of the settings.

uniformly taken in | ,Ci(;l ew)]. We considered every pair of initial weight Cy €

The CPU time of the path algorithm in Fig. 4.14(a) increases as Cy increases because
the number of breakpoints and the size of the set M also increase. Since our path
algorithm solves a linear system with size | M| using O(|M|?) update in each iteration,
practical computational time depends on | M| especially in large data sets. In the case of

RSVM, the maximum value of | M| is the number of pairs of training documents m = |P|.
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Figure 4.14: CPU time comparison for RSVM.
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Figure 4.15: The number of instances on the margin | M| in ranking experiment.

For each fold of the OHSUMED data set, m = 367663, 422716, 378087, 295814, and
283484. If |M| = m, a large computational cost may be needed for updating the linear
system. However, as Fig. 4.15 shows, the size | M| is at most about one hundred in this
setup.

Fig. 4.16 shows the example of the path of validation NDCG@10. Since the NDCG
depends on the sorted order of documents, direct optimization is rather difficult [77].
Using our path algorithm, however, we can detect the exact behavior of the NDCG by
monitoring the change of scores f(x) in the validation data set. Then we can find the

best weighting pattern by choosing # with the maximum NDCG for the validation set.

4.5.3 Transduction

In transductive inference [112], we are given unlabeled instances along with labeled
instances. The goal of transductive inference is not to estimate the true decision function,
but to classify the given unlabeled instances correctly. The transductive SVM (TSVM)
[52] is one of the most popular approaches to transductive binary classification. The

objective of the TSVM is to maximize the classification margin for both labeled and
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Figure 4.16: The change of NDCG@10 for v = 0.1 and C = 0.01. The parameter 6 in
the horizontal axis is used as c®'9 4 §(cme™) — ¢lld),

unlabeled instances.

Formulation

Suppose we have k unlabeled instances {x}}* , in addition to n labeled instances

{(x;,v:)}*,. The optimization problem of TSVM is formulated as

n k
1
min “Nwl|i+CY &+C*y & (4.36)
(v &Y, Wb G}, 2“ ? ; z ; ’

yi(w ®(z)+b)>1-¢&, i=1,...,n,

s.t. y;(wT‘@(a:])-l-b)Zl—g;, J=1...k,
&ZO/ 1= A D
& >0, j=1,...,k

where C' and C* are the regularization parameters for labeled and unlabeled data, respec-
tively, and y; € {—1,+1},j = 1,..., k, are the labels of the unlabeled instances {z; kL
Note that (4.36) is a combinatorial optimization problem with respect to {y;}je{l,”_,k}.
The optimal solution of (4.36) can be found if we solve binary SVMs for all possible
combinations of {y5};e(1,. x}, but this is computationally intractable even for moderate
k. To cope with this problem, [52] proposed an algorithm which approximately opti-
mizes (4.36) by solving a series of WSVMs. The subproblem is formulated by assigning

temporarily estimated labels g’j}* to unlabeled instances:

{s*}*_l,lg,r;,{si}."_l %kug +CZ§" +z Z Shlo Z & (4.37)
o - =1 jelilu;=-1} jedslmy =1}

yi(w ®(x)+b)>1-¢&, i=1,...,

T(wT®(x)+b)>1-¢, j=1,.

& =0, i=1,...

& >0, j=1,..

s.t.

i

n
n
Lk,
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where C* and C7 are the weights for unlabeled instances for {j | 5 = —1} and {j |

y; = +1}, respectively. The entire algorithm is given as follows (see [52] for details):

Stepl: Set the parameters C, C*, and k*, where k™ is defined as

k= k x Hily;=+1,5=1,...,n}
n

k™ is defined so that the balance of positive and negative instances in the labeled

set is equal to that in the unlabeled set.

Step2: Optimize the decision function using only the labeled instances and compute
the decision function values {f(x7) ;?:1. Assign positive label y7 = 1 to the top
k™ unlabeled instances in decreasing order of f(z}), and negative label y¥ = —1 to

the remaining instances. Set C* and C} to some small values (see [52] for details).

Step3: Train SVM using all the instances (i.e., solve (4.37)). Switch the labels of a

pair of positive and negative unlabeled instances if the objective value (4.36) is

ssss

for details). Iterate this step until no data pair decreases the objective value.

Step4: Set CZ = min(2C%,C*) and CI = min(2C;,C*). If C2 > C* and C; > C*,

terminate the algorithm. Otherwise return to Step3.

Our path-following algorithm can be applied to Step3 and Step4 for improving com-

putational efficiency. Step3 can be carried out via path-following as follows:
Step3(a) Choose a pair of positive instance «}, and negative instance .

Step3(b) After removing the positive instance &}, by decreasing its weight parameter
Cm from C7 to 0, add the instance z?, as a negative one by increasing C,, from 0

to C*.

Step3(c) After removing the negative instance z, by decreasing its weight parameter
Cry from C? to 0, add the instance x, as a positive one by increasing C,, from

0to C7.

Note that the steps 3(b) and 3(c) for switching the labels may be merged into a single

step. Step4 also can be carried out by our path-following algorithm.
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Figure 4.17: CPU time comparison for the transductive SVM.

Experiments on Transduction

We compare the computation time of the proposed path-following algorithm and the
SMO algorithm for Step3 and Step4 of TSVM. We used the spam data set obtained from
the UCI machine learning repository [6]. The sample size is 4601, and the number of
features is p = 57. We randomly selected 10% of data set as labeled instances, and the
remaining 90% were used as unlabeled instances. The inputs were normalized in [0, 1]7.

Fig. 4.17 shows the average CPU time and its standard deviation over 10 runs for
the Gaussian width v € {10,1,0.1} and C € {1,10,10?%,...,10*}. The figure shows that

our algorithm is consistently faster than the SMO algorithm in all of these settings.

4.6 Discussion

Another important advantage of the proposed approach beyond computational effi-
ciency is that the exact solution path is represented in piecewise linear form. In SVM
(and its variants), the decision function f(x) also has a piecewise linear form because
f(x) is linear in the parameters @ and b. It enables us to compute the entire path of
the validation errors and to select the model with the minimum validation error. Let
V be the validation set and the validation loss is defined as )., £(y;, f(@;)). Suppose
that the current weight is expressed as ¢ + 6d in a critical region R using a parameter
6 € R, and the output has the form f(x;) = a;6 + b; for some scalar constants a; and b;.
Then the minimum validation error in the current critical region R can be identified by

solving the following optimization problem:

rgﬂﬂg ly;,a;0 +b;) st.c+60deR. (4.38)
[S3
i€V
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After following the entire solution-path, the best model can be selected among the

candidates in the finite number of critical regions. In the case of 0-1 loss, i.e.,

Uy, f(x:)) = Hyisgn(f () = -1},

the problem (4.38) can be solved by monitoring all the points at which f(z;) = 0 (see

Fig. 4.5). Furthermore, if the validation error is measured by squared loss

£(yi, f(fci)) = (yi - f(mi))27

the problem (4.38) can be analytically solved in each critical region. As another inter-
esting example, we described how to find the maximum validation NDCG in ranking
problem (see Section 4.5.2). In the case of NDCG, the problem (4.38) can be solved by
monitoring all the intersections of f(x;) and f(x;) such that y; # y; (see Fig. 4.13)3 .

Incremental-decremental SVM (24, 57,68, 79, 80] exploits the piecewise linearity of
the solutions. It updates SVM solutions efficiently when instances are added or removed
from the training set. The incremental and decremental operations can be implemented
using our instance-weight path approach. If we want to add an instance (x;,y;), we
increase C; from 0 to some specified value. Conversely, if we want to remove an instance
(x;,y;), we decrease C; to 0. The paths generated by these two approaches are different
in general. The instance-weight path keeps the optimality of all the instances including
currently adding and/or removing ones. On the other hand, the incremental-decremental
algorithm does not satisfy the optimality of adding and/or removing ones until the
algorithm terminates. When we need to guarantee the optimality at intermediate points
on the path, instance-weight path is more useful.

In the parametric programming approach, numerical instabilities sometimes cause
computational difficulty. In practical implementation, we usually update several quan-
tities such as a, b, yf(x;), and L from the previous values without calculating them
from scratch. However, the rounding error may be accumulated at every breakpoints.
We can avoid such accumulation using the refresh strategy: re-calculating variables from
scratch, for example, every 100 steps (note that, in this case, we need O(n|M|?) com-
putations in every 100 steps). Fortunately, such numerical instabilities rarely occurred
in our experiments, and the accuracy of the KKT conditions of the solutions were kept

high enough.

3In NDCG case, the “min” is replaced with “max” in the optimization problem (4.38).
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Another (but related) numerical difficulty arises when the matrix M is close to
singular. [117] pointed out that if the matrix is singular, the update is no longer unique.
To the best of our knowledge, this degeneracy problem is not fully solved in path-
following literature. Many heuristics are proposed to circumvent the problem, and we
used one of them in the experiments: adding small positive constant to the diagonal
elements of kernel matrix. Other strategies are also discussed in [43,87,118].

Scalability of our algorithm depends on the size of M because a linear system with
| M| unknowns must be solved at each breakpoint. Although we can update the Cholesky
factor by O(]M|?) cost from the previous one, iterative methods such as conjugate-
gradients may be more efficient than the direct matrix update when | M| is fairly large.
When | M| is small the parametric programming approach can be applied to relatively

large data sets such as more than tens of thousands of instances.

4.7 Conclusion

In this chapter, we developed solution-path algorithm for the instance-weighted
SVMs. Our formulation can be considered as a generalization of the regularization path
algorithm [47] for the changes of instance-weights. We have shown that this extension
enables to apply solution-path algorithm to various machine learning tasks. Inheriting
computational efficiency of the original regularization path algorithm, our approach ef-
ficiently updates the solutions. In the experiments, we demonstrated efficiency of our

approach in several practical applications.
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Chapter 5

Nonlinear Regularization Path for L2 Loss SVM

Regularization path algorithms have been proposed to deal with model selection problem
in several machine learning approaches. These algorithms allow to compute the entire
path of solutions for every value of regularization parameter using the fact that their
solution paths have piecewise linear form. In this chapter, we extend the applicability
of regularization path algorithm to a class of learning machines that have quadratic
loss and quadratic penalty term. This class contains several important learning ma-
chines such as squared hinge loss SVM and modified Huber loss SVM. We first show
that the solution paths of this class of learning machines have piecewise nonlinear form,
and piecewise segments between two breakpoints are characterized by a class of ratio-
nal functions. Then we develop an algorithm that can efficiently follow the piecewise
nonlinear path by solving these rational equations. To solve these rational equations,
we use rational approximation technique with quadratic convergence rate, and thus, our
algorithm can follow the nonlinear path much more precisely than existing approaches
such as predictor-corrector type nonlinear-path approximation. We show the algorithm
performance on some artificial and real data sets. The preliminary version of this chapter

has appeared in [55].

5.1 Regularization path and loss functions

In this chapter we study binary classification problem with training data points
{(2;,vi)} 7y, where x; € X C RP is the input and y; € {1, —1} is the output class label.

We consider a linear discriminant function:
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where ® maps the data into some feature space F. A large class of learning machines
are formulated as minimization of the following regularized risk function:
n

min ;em, fla) + A (w), (5.1)
where / is a loss function, J is a penalty function, and A > 0 is a regularization parameter.
In order to obtain a discriminant function with good generalization property, we need
to select a good A that appropriately controls the model complexity (model selection).
A typical model selection approach is to specify a list of candidate values of A and then
apply cross validation to select the best one. However, this procedure is time-consuming
since we need to solve many optimization problems in various settings.

Regularization path algorithm [47] provides an efficient approach to model selection
problem. It allows to compute the entire solution path for a range of regularization
parameters A. The regularization path algorithm is built on an optimization technique
called parametric programming also a.k.a. path-following [2,40]. Recently, in the machine
learning literature, path-following was used for various purposes (e.g. [7,24,46,57,68,79,
80,107,117]). Most regularization path algorithms in the literature were developed by
exploiting the fact that the solution paths in a class of learning machines have piecewise
linear form. For example, the support vector machine (SVM) [112] characterized by the

following hinge loss:
(ys, f(x:)) = max(0,1 — y; f(:)) (5.2)

and ¢y-norm penalty term: J(w) = 1||wl||} is shown to have piecewise linear regulariza-
tion path [47]. Recently, [95] showed that the regularization path has piecewise linear
form if the loss function ¢ is a piecewise quadratic function and the penalty term J(w)
is a piecewise linear function. The LASSO [109] is a typical example of this class of
learning machine. In optimization literature, [92] has derived more general sufficient
conditions for piecewise linearity in quadratic and linear programming problems.

In other class of learning machines, the solution path may have nonlinear form. Pre-
dictor corrector approach [2] is usually adopted for general nonlinear path-following. In
predictor corrector approach, the predictor step and the corrector step are iterated: the
predictor step approximates the nonlinear (curved) solution path (in many cases, using
Taylor expansion), while the corrector step projects the predicted solution to the solution

space so that it satisfies the optimality conditions. This approach have been applied to
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some learning problems [8,66,88]. Some other approaches are also proposed in machine
learning literature. For example, [94] proposed second-order approximation algorithm
for nonlinear regularization path, in which small step is taken and the approximation is
updated at each iteration. As another example, [116] derived an updating formula to
obtain the path of solutions along the change of the kernel parameter (such as standard
deviation in Gaussian kernel). In these methods, we can only obtain roughly approx-
imated nonlinear path of solutions. If we want these nonlinear approximated solution
path to be accurate, the algorithm would be computationally demanding because we
need to take very small steps.

In this study we consider a class of learning machines that have quadratic loss and
quadratic penalty. This class contains several important learning machines such as
squared hinge loss SVM and modified Huber loss SVM. These loss functions are formu-

lated as

e Squared hinge loss:
Uy, f(z)) = max(0,1 - yf(z))*. (5.3)

e Modified Huber loss [123]:

0, yf(z) > 1,
Uy, f(x) =< (1—yf(x)? yf(x)e|-11], (5.4)
—4yf(z), yf(x) < —1.

Another formulation of Huber-type loss function proposed in [27]:

0, yf(x) > 1+e¢,

Uy, f(z)) = WEW@E 11 _yf(z)| <, (5.5)

]-_yf(m)a yf(m)<1—£,
where € > 0 is a parameter. If ¢ — 0, this loss function approaches to the hinge

loss.

Fig. 5.1 shows these loss functions along with the 0-1 loss. These quadratic loss functions
are sometimes preferred to the hinge loss. For example, it is known that this type of
loss functions are suited to estimate conditional probability P(Y =1 | X = x) (see
e.g., [9,123]). Another advantage of these loss functions is their differentiability. Some
primal SVM solvers [14,27,60] require differentiable objective function.
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Figure 5.1: Loss functions for classification

Unfortunately, the regularization paths of this class of learning machines (quadratic
loss + quadratic penalty) do not exhibit piecewise linear form anymore. To extend
the applicability of regularization path algorithm, we develop a nonlinear regularization
path algorithm for this class of learning machines. We first show that the solution path
of this class of learning machine is represented as piecewise nonlinear form, and the
piecewise segment of solutions between two breakpoints are characterized by a class of
rational function. The breakpoint itself can be identified solving the rational equations.
Then we develop an efficient algorithm that can efficiently follow the piecewise nonlinear
path by solving these rational equations. To solve these rational equations, we introduce
a rational approximation technique with quadratic convergence rate used in rank-one-
update of eigenvalue decompositions [18]. Note that our algorithm is NOT a predictor-
corrector type approach. While predictor corrector approach can only follow nonlinear
path with rather rough approximation, our algorithm can compute quite accurate path
of solutions because we use an efficient iterative procedure with quadratic convergence

rate.
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5.2 SVM with Huber Type loss

In this paper, we set the penalty term as J(w) = |lw/||* and the loss function as the
following general quadratic loss function:
0, yf(z) > p,
Uy, f(®) = (p—yf(x))? yf(x) € [p—h,p, (5.6)
2h(p—yf(x)) — h*, yf(z)<p—h,
where p > 0 and A > 0. The loss function (5.6) can represent the previous three
quadratic loss functions (5.3)-(5.5) by specifying (p, h). If we set (p, h) = (1, 00), (1,2)
and (1 + ¢, 2¢), the loss function (5.6) is reduced to (5.3),(5.4) and (5.5), respectively® .
The optimization problem (5.1) is now written as
B, 4mm Zﬁ@
s.t. pzﬁ@JS&
E>20,i=1,--- n,

where

] &, ¢ €[0,h],
Ma_{m@—m,g>h

We derive the dual problem using the same approach in [30]. Introducing Lagrange

multipliers a;, 7, > 0,42 =1,--- ,n, we can write the corresponding Lagrangian as

A 1w
L=Zlwl3+5 ) é&)+
=1

i ai{p — yw B(x;) — &} — 2": n:&;. (5.7)
=1 i=1
Setting the derivatives w.r.t. primal variables w and §; to zero, we obtain
g—i —0 o w= ;; it ® (), (5.8)
%:0 < %Q%(éi)zaﬁ‘ﬂi,
- {s oy o

'To represent (5.5) by (5.6), we further need to multiply (5.6) by 1/(4¢). This difference can be
absorbed by the scale of regularization parameter.
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Substituting (5.8) into (5.7), we obtain

L = —% ZZaianij +p2ai
i=1

i=1 j=1
1
+Z{§¢(§z‘) — (i +m)&i},

where Q;; = y;y,K(x;, ;). Using (5.9), we can eliminate & from Lagréngian. If¢ e
[0, h], we have

1 1
§¢(§i) — (i +m)& = 5522 — (0 +m)&
1
= —5(011' + ).
On the other hand, if & > h,

1
S96) ~ (s +m)& = hE— sh* = he

1
= —5le + )%,

Then, the dual problem is represented as

max W(a,m) =

an
- '21—>\ Z Z @i Qi
i=1 j=1

n
1
+p) o= 5D (ot m)?,
=1 i=1
s.t. Oéi,’thO,’i:].,"-,n,

ai+n’i§h‘, Z.Z]-a"' ) 10,

where @ = [a1, -+ ,a,)" and n = [g, -+ ,m.]". Since ay,m; > 0, an inequality

W(a,n) < W(a,0) holds for every feasible @ and 7. Therefore, we can delete 1

and the dual problem is finally written as

max W(a)=

o
1 n n
o Z @;05Qi;

i=1 j=1

Y a-1ya (5.10)
i=1 i=1

s.t. 0§ai§h,i=1,-~-,n.
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The discriminant function f : X — R is formulated as
(@) = +(3 ok (i)
)= QY 8Ty, .

ANS ! :

5.3 Nonlinear Regularization Path

In this section we derive nonlinear regularization path algorithm for quadratic loss

SVM.

5.3.1 Optimal Solution and Regularization Parameter

At the optimal, a;, i = 1,--- | n, satisfies the following first-order optimality condi-

tions (KKT conditions):

oW 1 <
%0 ZQijaj tp— o
i =1
> O, a; = h,
=—yf(x;))+p—a;{ =0, a; € (0,h), (5.11)
S 0, a; = 0.

Using these relationships, we define the following index sets:

L = {ilyf(x:) <p—h, a;=h},
= {i|yif(®:)) =p— i, a; € (0,h)}, (5.12)
R = {i|yf(z:)) > p, a; =0}

The regularization path algorithm keeps track of these sets while the regularization
parameter ) is perturbed. |

In what follows, the subscription by an index set, such as v¢ for a vector v € R",
indicates a subvector of v whose elements are indexed by C. Similarly, the subscription
by two index sets, such as M ; for a matrix M € R™*", denotes a submatrix whose
rows are indexed by C and the columns are indexed by £. Principal submatrix such as
Qcc is abbreviated as Q..

The KKT conditions (5.11) for ¢ € C can be written as

3 Qi+ ra;=pA—hY Qy icC.

jec JEL
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Using matrix notation, it is written as

(Qc + /\I>ac = pA1 — hQc .1, (5.13)

where (¢, j)-th entry of Q is @;; and I is an identity matrix with appropriate size. Let
the eigenvalue decomposition (EVD) of Q. be

Q. =UXU",

where 3 € RI€IXI€l is a diagonal matrix whose i-th diagonal entry o; is the i-th eigenvalue
of Q. and U € RI°IXI¢ is an orthogonal matrix whose i-th column is the i-th eigenvector

of Q.. It is easy to show that the EVD of Q. + AI is explicitly obtained as
Q. +MN=UE+\U", (5.14)
Using (5.13) and (5.14), we can compute o as follows:
ac=U(E + AI)~1UT{pA1 - th£1}. (5.15)
Let us denote the index of the set C as
C = {Ch . 7020}:

where £ = |C|. Then, we can write (5.15) by element-wise notation:

U‘lkujk{p)‘ hqc } .
E E y t = 17"' a€07
O+ A

j=1 k=1

where wu;; is a (4, j)-th entry of U and ¢ =} jer Qi- This equation can be reduced to

the following form:

_ (zk .
=p— Z o + N aECa (516)

where

Lo
Gk = ik »_ u(pok + hal).

i=1

Using (5.16), v; f(x;) can be written as

tc ‘
yif (x;) = % (di - Z %) ) (5.17)

k=1
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Table 5.1: Event categorization
Event | The change of index | The change of inequality
type 1 | i € C migratesto R | a; >0toa; =0
type 2 | ¢ € C migratesto L | a; <htoa;=h
type 3 | ¢ € R migrates to C | y;f(x;) > p to vif(x;) =p
type 4 | i € £ migrates to C | y;f(x;) < p—htoyif(x;)=p—h

where

di = pY Qi+ hef,

jeC
Lo

Wik =Y Qiceler.
=1

The above derivation indicates that, if we have complete information on the index sets
L, C, and R, the set of model parameters {a;}? ; can be represented as a function of
the regularization parameter A. In particular, for a data point ¢ € C, the corresponding

parameter «; is formulated by a rational function (5.16).

5.3.2 Event Detection

Equation (5.16) holds only when the indices in the sets C, £ and R are not changed.
The change of these indices is called an event, and a A is called an event point if there is
an event at A. Events in our path-following algorithm are categorized into four types in
Table 5.1. Each type of events is relevant to the inequality constraints in the definitions
of the sets C, £ and R in (5.12). In the case of piecewise linear path, event points
are easily detected by solving linear equations. In our nonlinear path, however, we
need to solve nonlinear equations to detect the event points. To this end, we introduce
rational approximation approach. Rational approximation has been used in the context
of rank-one-update of EVD [18].

Here, we consider how to detect an event point when we decrease A from the current
value Ag (the same discussion holds when we increase ). For the type 1 in Table 5.1,
we need to find \* such that o > 0,¢; € C, becomes a,, = 0. Let us define t = —A.

Then, we increase t from to = —\¢ until we find t* such that

Lo
= Gk _ 0, t* € (to,0). (5.18)
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%o L

Figure 5.2: Rational approximation for the type 1in Table 5.1. Note that p+1¢(t) > @(t),t € (to, t*).
The approximated solution #; can be computed via a quadratic equation. Iterating this,
we can obtain a sequence of approximated solution with quadratic convergence.

If this equation has multiple solutions, we choose the minimum one as t*. We note the
fact that (5.18) is similar to the secular equation which often arises in rank-one-update
problem of the EVD [18,44,45]. In this paper we introduce rational approzimation
approach [18] for solving (5.18). Let us define

w= Y oam= Y S

ke{k|¢:ix<0} Tk ke{k|¢iu>0}

Using these functions, (5.18) is represented as

p+¢§(t*) = @C(t*)v t* e (tO’O)‘

Since the kernel matrix @ is positive semi-definite, o > 0, k = 1,--- ,£c. Therefore,
we see that both p + ¢(t) and () are increasing convex functions of t € (t9,0). We
approximate ¢ and ¢, by their lower and upper bounds (see Fig. 5.2):

S

Yet) > 2= pe(t) < T+ ——, t € (to,0), (5.19)
qg—t o—t

where 0 = min{oy | (;x > 0}. These upper and lower bound functions are the 1st order

local approximations to 1, and ¢, at t, respectively. The four parameters p, g, 7 and

s are defined to satisfy these requirements, i.e., they are defined as

{1 (t0)}?

= WO = pe(te) — A (to),
P ) T A 520
1=t iy * T )

where ¢ (t) = 0v¢(t)/0t, @, (t) = dp((t)/0t, and A = § — to. Then, inequalities (5.19)

hold as in [18]. Using the approximation by these simple rational functions in (5.19), we



5.3. NONLINEAR REGULARIZATION PATH 7

compute an approximate solution ¢; by solving

-t = t1
This equation can be reduced to a quadratic equation, and we choose the minimum one
in (to,0) as t;. In case we have no solution in (¢, 0), the point ¢ € C is disregarded for
the moment because it has no chance to define the next event point. Given t;, we iterate
the same procedure to obtain new approximate solution ¢, € (¢1,0). As a consequence,
we can produce a sequence {t;} that approaches t* from the left.
For the type 2 in Table 5.1, we need to find A* such that a,, < h,c¢; € C, becomes

a., = h. We increase t from ¢, until we find ¢* such that

=h, t' e (to,O).

This can be written as
p+U(t) = oc(t7) + h, 17 € (t0,0),
We use the following bounds:

S p
¢ 2 .
wg()<r+5_t, we(t) > s t € (to,0),

where ¢ = min{oy | (& < 0}. Since p+ () < pc(t) +h, t € (to,t*), we need to set the
upper bound to . and the lower bound to .. Note that p, ¢, and s are computed by
alternating . and ¢, in (5.20):

_ %}_ r = e (to) — AU (to),
et Gy om )

For the type 3 of Table 5.1, we have to detect A* such that y;f(x;) > p, i € R,
becomes y; f(x;) = p. Using (5.17), we obtain the following equation:

w.
di =Y —F— = —pt*, t* € (1,0). (5.21)
As in the previous two types of cases, we define the following functions:

—Wik _ Wik
Z o _1 t’ pul(t) = Z o 1_ t
ke {klw<0} ~ F ke{klwye>0}  F

<
S
~~
o~
~—
If
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Then, (5.21) can be written as
d; + ¥, (") + pt™ = pu,(t7), t* € (to,0). (5.22)

Both sides of equation are increasing convex functions of t € (¢, 0). Since d;+,,(t)+pt >

©wu(t), t € (to,t*), we replace 1), by its lower bound and ¢,, by its upper bound:

P S
d; t, = , 5.23
+q_t1+p1 T+6—t1 (5.23)

where § = min{oy | wy > 0}. p,q,7 and s are computed by (5.20) with i, replaced
by ¥, and ¢ replaced by ¢,. We can easily solve (5.23) because it is reduced to a
cubic equation. To detect the event, we only need the minimum solution of that cubic
equation in (tp,0). Once we obtain ¢;, we can iterate rational approximation in the same
way as the type 1 and 2.

For the last type 4 of Table 5.1, we solve

Lo
Wik
d; — = —(p— h)t*, t* € (t,0),
D 2 = o= b £ € (100

to find A\* where v, f(x;) < p— h, ¢ € L, reaches a boundary y; f(x;) = p — h. This can

be written as
di + U, (t*) + (p — h)t" = pu(t*), t* € (to,0). (5.24)

When h < 1, both sides of the equation are increasing convex functions of ¢t € (to,0).
Even if h > 1, we can make the increasing convex functions by moving the term (p—h)t*
to the right hand side. In this case, we approximate v, by its upper bound and ¢, by
its lower bound using the rational approximation.

By checking all the four types in Table 5.1, we obtain A*’s for each inequality con-

straint. The event point is determined as the maximum A* among those candidates.

5.3.3 Advantages of The Rational Approximation and Cutoff
Strategy

Rational approximation generates approximate solution sequence {tx} for a nonlinear
equation expressed by two monotonic convex functions. The sequence {t;} can reach t; €
[t* — €, t*] by the finite number of iterations for arbitrary small € > 0. This convergence

is guaranteed for any starting point ¢ty < 0 (note, in contrast, that Newton method may
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be trapped in periodic cycle). Furthermore, if we assume that the gradient of nonlinear
equation is not 0 at t*, we can prove quadratic convergence of the approximation (we
provide the proof in Appendix C).

Since {tx} is a monotonically increasing sequence, it approaches t* from the left.
Exploiting this property, we can sometimes terminate iteration for approximation before
convergence without affecting the accuracy of the event detection. Suppose we have
obtained A, = —t5. which is the maximum A* among some of the inequalities in
Table 5.1. When we investigate the next inequality, we can terminate the approximation
at the i-th iteration if ¢; becomes larger than t¥, . This is because we only need the
minimum ¢* to detect the event. We refer to this early termination strategy as cutoff

(Note that this strategy has no effects on the accuracy of solutions).

5.3.4 Empty Set C and Initialization

When we have no data points in C, «; is either a; = 0,71 € R,ora; = 1,7 € L.
Then, y; f(x;) can be written as
yif(x:) = g(z Qij)-
jeL
Using this, we can easily check the type 3 and 4 in Table 5.1. .

We can use the optimal solution a for any A > 0 as a starting point of the regu-
larization path. Although optimal o at initial A can be obtained by directly solving
the optimization problem (5.10) using, for instance, active set method there is a more
appealing approach for initialization. We can find a trivial solution for sufficiently large
A, and we may easily obtain the initial solution by following the path with decreasing
A. We explain how to obtain those trivial solutions in the following three cases: (i)
0<p—nh,(ii))0>p—h > —o0, (iii) h = oo (squared hinge loss).

When A = oo, optimal w is obviously 0, and then y;f(x;) = 0 fori =1,--- ,n.
Thus, in the first case (i) 0 < p — h, all the data points are in £ (see Fig. 5.3(a)). We
search the first event point A; so that i € £ moves to C using the same approach to
empty C. '

In the second case (ii), all the data points are in C as A — oo (see Fig. 5.3(b)). Then

y; f(x;) must be in the following range:
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Uy f(=)) Uy f(=)

0

7 7=k

p—h 0
yf(=) yf(x)

(a) case (i): 0<p—h (b) case (ii): 0 > p —
h>—o00

Figure 5.3: The loss function and p — h
On the other hand, from «a; € [0, h], we know vy, f(x;) has the following bounds:
1 n h n ) n
yif (@) = 5 Y Qya; € X[Z min(0, Qy;), ) max(0, Qy;)]
=1 j=1 =1

If the inequalities

IN

he— . .
p—h X;mln(O,Qﬁ), 1=1,---,n,

A n
p Z X;maX(OaQZJ)) i:]-v"'vna

are hold, optimal solution of such \ satisfies (5.25). We can easily calculate A which
satisfies the above inequalities.

In the third case (iii), as in the previous case, all the data points are in C as A — oc.
However since a; has no upper bound, we can not apply the same strategy as the previous

case. We use the following lower bound:
Lo
_ Z Gik
Qo = P = Ok + A

>0

ke (kG >0} 7

where oy, = min{oy | k=1,--- ,£c}. Since this lower bound monotonically approaches

to pas A — oo, all a,,’s are positive at some large A. We can find such A by the following;:
.0} Gik
max{ ZkE{kK’PO} 1=1,-- lcp.

P
If we set p = h, then y;f(x;) = 0 is a boundary between £ and C. In this case,

min

detecting the first event is more difficult than the previous three cases. However, even if
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we can not find trivial initial solution, we can start our path algorithm from any A and

its optimal solution.

5.3.5 Computational Complexity

The major computational cost of each iteration of the regularization path involves
e The eigenvalue decomposition of ¢ x £¢ matrix Q, with O(£2,).
o Computing (ix,i=1,--+ ,¢c,k=1,--- ,€c. This needs O(¢%) computations.

e Computing wi,? € RUL,k=1,---,£c. Since we need to compute Zﬁil Qic,Ceox
for each wy, it takes O(¢%(¢r + £1)), where £ = |R| and ¢}, = |L|.

e Solving nonlinear equations to detect the event. We solve 2¢c + £ + 1, = O(n)
equations using the rational approximation. In each iteration of the rational ap-
proximation, we have O(¢¢) computation (mainly for re-calculating a; or y; f(x;)).
If we assume that the rational approximation terminates at the I,,-th iteration,

the total cost is roughly O(Zl,.¢cn).

Thus, the approximate complexity for one iteration of the regularization path is O(¢Zn+
I..¢cn). Note that £ changes each iteration. If we assume I,, is small enough, it can be
considered as O(¢%4n). As we will see in later experiments, the rational approximation
converges very quickly. O(¢%4n) is similar to the cost of a single SVM training. Therefore,
an event detection in our algorithm is as costly as re-training the SVM at each event
point. However, empirical results in the next section suggests that our algorithm is an
order of magnitude faster than the same number of the SVM re-training as the number

of breakpoints (using SMO algorithm [90,115]).

5.4 Experiments

To demonstrate our algorithm, we show some numerical results on artificial and real
data sets. Using our algorithm, we traced the sequence of event points \; > Ay > --- >
Ar where A; is the first event point computed by the initialization in Subsection 5.3.4
and )\, is the first event point which becomes smaller than 107°. The Gaussian RBF
kernel K(z;, ;) = exp(—v||z; — x;||?) is used. We set kernel parameter as v = 1/d,

where d is the number of features (This is a default setting in LIBSVM [25]). In the
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event detection, we iterate rational approximation until approximation error becomes
less than 107!2. We investigated the performances of our algorithm for modified Huber
loss function and squared hinge loss. For the former loss function (p, k) = (1.1,0.2) and
for the latter loss function (p, h) = (1, c0).

We compared the CPU time of our algorithm with the SMO (Sequential Minimal
Optimization) algorithm [90]. Since we did not use the explicit bias term for simplicity,
the dual problem (5.10) has no equality constraints. Then, the SMO algorithm is adapted
to optimize only one parameter «; per iteration [115]. We select updating index ¢ by

7: _ Zup, lf giup > ~gidown’
idowny lf _gidown > giup7

where g; = OW/0q; and
e e Y

The SMO algorithm stops when |g;| < 107% are satisfied. We confirmed that the so-
lutions which is obtained by our A-path algorithm satisfied this condition at all of
the breakpoints. We ran the SMO algorithm at L regularization parameters \~! =
{1072, ... /10°L} where L is the number of the events in regularization path. We set
p1 = log;y A\;* and uniformly took L values from [p;,4]. We used the alpha seeding ap-
proaches in the SMOQ, i.e., solution at the previous C' is used to produce initial estimates
of a;’s. We examined direct alpha reuse and scaling all alphas strategies (see [34] for
detail).

Our regularization path algorithm were mostly implemented in C++. For efficient
matrix computations (e.g. matrix vector multiplication or the eigenvalue decomposi-
tion), we used LAPACK [3] routine. On the other hand, the SMO algorithm was written
solely by C++ on the basis of the-state-of-the-art SVM solver LIBSVM [25]. In both

algorithms, we computed and cached the entire kernel matrix at the beginning.

5.4.1 Artificial Data

First, we used simple artificial data set. We generated data points (z,y) € R? x

{+1, —1} using the 2-dimensional Normal distributions:

1 1
plx|y=+1) = §N(u1+, )+ §N(u§, 7)),
plxly=-1) = N(p ,%7),
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Figure 5.4: An example of artificial data set

where,
e[ e[ 5 ]
o [t] e[
SRR

We generated n € {100, 200,400} training data points and the sizes of each class is set
to be n/2. We normalized each dimension of x to [0,1]. Fig.5.4 shows an example of
data set when n = 400. For each size n, we generated 10 data sets to alleviate random
sampling effect and computed results as average of 10 runs.

Table 5.2 and 5.3 show the results of the modified Huber SVM. Table 5.2 compares
the CPU times on modified Huber SVM, where figures in the table are the average (and
the standard deviations in the round bracket) of 10 runs. We refer to our regularization
path algorithm as A-path in Table 5.2. We see that A-path is much faster than the SMO
algorithm (we observed, as is well known, the SMO took relatively longer time when
C = A1 was large [16] (data not shown)). When we did not use cutoff strategy, A-path
becomes much slower.

Table 5.3 shows the number of the events L and the mean number of iterations in
a rational approximation per one nonlinear equation. Some authors suggested that the
number of the events appears to be roughly proportional to the number of training
points [46,47,117]. Although this is only from empirical observations, we also see that
the number of the events increased linearly with n in this simple artificial data sets.
Even if we did not use cutoff strategy, iterations of rational approximation were only

about 10-15 iterations. With the use of cutoff strategy, the average number of iterations
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Table 5.2: Computational cost of the modified Huber SVM (p = 1.1,h = 0.2) for
artificial data (sec.)

n A-path A-path SMO SMO SMO
no cutoff from scratch direct alpha reuse scaling all alphas
100 | 0.28 (0.03) 2.80 (0.33) 68.44 (20.41) 49.40 (16.08) - 37.73 (12.27)

200 | 1.10 (0.07) 13.43 (1.08) 548.36 (105.30)  358.15 (80.13)  271.89 (59.33)
400 | 4.72 (0.33) 57.06 (2.87) 4021.58 (535.73) 2285.46 (261.51)  1635.52 (224.54)

Table 5.3: The number of the events and the mean number of iterations of a rational
approximation of the modified Huber SVM (p = 1.1, h = 0.2) for artificial data.
(The figures in the table are the average (and the standard deviation) of 10 runs)

n #events L iteration iteration (no cutoff)
100 | 150.00 (14.79) 1.20 (0.04) 11.99 (0.51)
200 | 286.80 (15.45) 1.12 (0.01) 14.72 (0.46)
400 | 532.80 (33.02) 1.07 (0.01) 16.28 (0.44)

became close to 1.

Fig. 5.5 shows how the sizes of index sets C, R and £ change in the A-path. Each
plot is one of the 10 runs of n = 100 and 400. The two plots for n = 100 and n = 400
look similar except their scale.

Table 5.4 and 5.5 show the results of the squared hinge SVM. We see similar results
to the modified Huber SVM case. Our A-path algorithm is faster than the SMO. Since
the squared hinge SVM does not have the set £, the number of event L reduced from
the modified Huber SVM case.

=3

@

o
$
—

Size of SV sets
3 D
o o
Size of SV sets

n
Q

20 40 60 80 100 100 200 300 400
lteration Iteration

(a) n =100 {b) n =400

Figure 5.5: The sizes of index sets £,C and R in the regularization path for artificial
data.
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Table 5.4: Computational cost of the squared hinge SVM (p = 1, h = o0) for artificial
data (sec.)

n A-path A-path SMO SMO SMO
no cutoff from scratch direct alpha reuse scaling all alphas

100 | 0.18 (0.03) 0.70 (0.22)  185.59 (28.89)  178.05 (28.66)  130.13 (22.48)
200 | 1.48 (0.20) 4.25 (1.35) 1302.44 (201.31) 1207.30 (186.03)  852.27 (93.04)
400 | 16.27 (1.37) 28.43 (3.55) 8763.64 (966.75) 7669.12 (824.68)  4962.62 (509.71)

Table 5.5: The number of the events and the mean number of iterations of a rational
approximation of the squared hinge SVM (p = 1, h = 00) for artificial data.
(The figures in the table are the average (and the standard deviation) of 10 runs)

n #events L iteration iteration (no cutoff)
100 | 42.10 (8.80) 1.82(0.21) 14.28 (1.39)
200 | 83.40 (16.59) 1.40 (0.15) 14.15 (1.74)
400 | 145.10 (18.58) 1.37 (0.12) 12.92 (1.01)

5.4.2 Real Data

We also apply our algorithm to 6 real world data sets in Table 5.6. These data sets
are available from LIBSVM site [25]. In all data sets, each dimension of z is normalized
to [—1,1]. We randomly sampled n data points from original data set 10 times (we set
n be approximately 80% of the original number of data points).

Table 5.7 and 5.8 show the results of the modified Huber SVM. Table 5.7 shows the
CPU time of each algorithm. Our algorithm is much faster than the SMO algorithm in

all the data sets. Table 5.8 shows the number of the events L and the mean number of

Table 5.6: Real data sets (The figures in the parentheses are the size of original data
set)

n d
sonar 166 (208) 60
heart 216 (270) 13

diabetes | 614 (768) 8
fourclass | 689 (862) 2
german 800 (1000) 24

)

)
australian | 552 (690) 14

)

)
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Table 5.7: Computational cost of the modified Huber SVM (p = 1.1, h = 0.2) for real
data (sec.)

A-path SMO SMO SMO
from scratch direct alpha reuse  scaling all alphas
sonar 1.23 (0.08) 9.24 (0.78) 5.25 (0.35) -~ 6.21 (0.57)
heart 2.62 (0.14) 28.97 (6.69) 16.92 (4.55) 20.38 (4.98)

australian | 82.81 (7.13)  4294.12 (638.70)  2371.00 (340.46)  2519.12 (366.11)
diabetes | 54.01 (3.03)  26987.53 (2189.93) 15310.13 (1320.48) 14316.77 (1274.24)
fourclass | 50.22 (1.18)  5019.78 (458.86)  3607.11 (302.86)  2319.08 (210.31)
german | 313.91 (15.62) 4118.85 (264.45)  2159.13 (146.79)  2409.60 (164.76)

Table 5.8: The number of the events and the mean number of iterations of the rational
approximation of the modified Huber SVM (p = 1.1, h = 0.2) for real data sets.

#events L iteration

sonar 279.40 (9.55) 1.14 (0.01)
heart 424.20 (7.05)  1.09 (0.01)
australian | 1274.90 (30.90) 1.05 (0.00)
diabetes | 1298.80 (27.32) 1.08 (0.00)

" fourclass | 1634.00 (14.21) 1.04 (0.00)
german 1821.80 (25.07) 1.04 (0.01)

iterations in a rational approximation. We see that the number of the events is about
2-3 times n and the iteration of rational approximation is very small.

Fig. 5.6 shows the size of index sets of fourclass and german data sets. Although the
size n of these 2 data sets are not much different, the changing patterns of the set sizes
are very different. These differences affect to the computational cost of the regularization
path (see Section IV).

Table 5.9 and 5.10 are the results of the squared hinge SVM. Here again, we obtain
similar results to the modified Huber SVM case. The results demonstrate efficiency of

our algorithm.

5.5 Conclusion

In this chapter, we derive nonlinear regularization path algorithm for the quadratic
loss SVMs. Our algorithm efficiently detects the event points using rational approxima-

tion. As the advantages of rational approximation, we have shown quadratic convergence
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Figure 5.6: The size of index sets £,C and R in the regularization path for real data

sets.

rate and cutoff strategy. The experimental results have demonstrated efficiency of our

approach compared to naive grid search. Unlike predictor corrector and hot start ap-

proaches, our algorithm reveals substantially exact behavior of solutions.
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Table 5.9: Computational cost of the squared hinge SVM (p = 1, h = 00) for real data

(sec.)
A-path SMO SMO SMO
from scratch direct alpha reuse  scaling all alphas

sonar 1.11 (0.03) 3.49 (0.48) 2.69 (0.26) 2.67 (0.29)
heart 2.83 (0.08) 13.75 (2.64) 9.88 (1.78) 10.50 (1.98)
australian | 84.61 (2.47)  3498.90 (697.69) 2825.95 (563.69) 2275.22 (395.63)
diabetes | 120.69 (4.41) 30884.68 (1550.91) 28118.80 (1344.21) 21276.58 (1041.52)
fourclass | 185.34 (6.57)  3403.16 (179.35) 3801.39 (146.05) 1800.37 (132.66)
german 339.70 (9.00)  1383.52 (162.89) 993.90 (138.92) 928.53 (121.83)

Table 5.10: The number of the events and the mean number of iterations of the rational
approximation of the squared hinge SVM (p = 1, h = o0) for real data sets.

#events L iteration
sonar 93.30 (4.52)  1.52 (0.09)
heart 146.60 (6.67)  1.41 (0.05)
australian | 468.70 (22.32) 1.18 (0.05)
diabetes | 353.70 (20.84) 1.22 (0.04)
fourclass | 690.00 (12.90) 1.07 (0.01)
german 504.40 (19.52) 1.23 (0.05)
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Chapter 6

Conclusions

In this paper, we have studied parametric optimization approaches for various machine
learning tasks. Our approach enables efficient calculation of the exact solution when we
have to solve a sequence of parametrized optimization problems.

In Chapter 3, we proposed multiple incremental decremental algorithm for the SVM.
This approach is much faster than conventional (single) incremental decremental algo-
rithm when multiple data points are added to and/or removed from training data set.
The reason is that our approach can update the changes of multiple data points simul-
taneously by multi-parametric approach. We have also provided analytical evidences
for efficiency of our algorithm on some reasonable assumptions. Experimental results
showed that our approach was actually efficient in several practical settings such as
online learning and cross-validation.

In Chapter 4, we developed an efficient algorithm for updating solutions of instance-
weighted SVMs. Our algorithm was built upon multi-parametric programming tech-
niques, and it is an extension of existing single-parameter path-following algorithms to
multiple parameters. We experimentally demonstrated the computational advantage of
the proposed algorithm on a wide range of applications including on-line time-series
analysis, heteroscedastic data modeling, covariate shift adaptation, ranking, and trans-
duction.

In Chapter 5, we proposed nonlinear regularization path algorithm for a class of learn-
ing machines that have quadratic loss and quadratic regularizer which we call quadratic
loss SVM. We developed an accurate and efficient nonlinear path following algorithm
using rational approximation technique. A unique point of our approach is that it reveals
behavior of nonlinear solution path exactly. Experiments showed that our algorithm can

efficiently trace the exact regularization path of the quadratic loss SVMs compared to
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naive exhaustive search.

Although we focused only on quadratic programming (QP) machines in this paper,
similar algorithms can be developed for linear programming (LP) machines. It is well-
known in the parametric programming literature that the solution of LP and QP have
piecewise linear form if a linear function of hyper-parameters appears in the constant
term of the constraints and/or the linear part of the objective function (see [12,40,89,92]
for more details). Indeed, the parametric LP technique [40] has already been applied to
several machine learning problems [73,121,124]. One of our future works is to apply the
multi-parametric approach to these LP machines.

In Chapter 4, we studied the changes of instance-weights of various types of SVMs.
There are many other situations in which a path of multiple hyper-parameters can be
exploited. For instance, the application of the multi-parametric path approach to the

following problems would be interesting future works:

e Different (functional) margin SVM:
1, "
min —||lwl|5 + C i
Wi, gl O3
s.t. y,f(a:,) > 51' - €i7 & > 0, 1= 1, .., n,
where 4; € R is a margin rescaling parameter. [26] indicated that this type of

parametrization can be used to give different costs to each pair of items in ranking

SVM.

e SVR with different insensitive-zone thickness. Although usual SVR has the com-
mon insensitive-zone thickness ¢ for all instances, different thickness ¢; for every

instance can be assigned:

Wb &€ ey
st yi— flx:) <&+ &,
flz) —vi <& +¢&,
61’6: 207 7/: 17--.,”.

. 1 - .
min 5”“’”%‘*‘02(&4-51),
i=1

In the case of common thickness, the optimal € is known to be asymptotically
proportional to the noise variance [67,103]. In the case of heteroscedastic noise,
it would be reasonable to set different ¢;, each of which is proportional to the

variance of each (iteratively estimated) y;.
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e The weighted lasso. The lasso solves the following quadratic programming problem

[110]:

p p
min [ly — > ;83 + A 161,
B j=1 j=1

where ) is the regularization parameter. A weighted version of the lasso has been

considered in [125]:

p p
min ly — Y @55+ 2> w8,
B =1 =1

where wj; is an individual weight parameters for each ;. The weights are adaptively
determined by w; = |3, where §; is an initial estimation of 8, and v > 0 is
a parameter. A similar weighted parameter-minimization problem has also been
considered in [21] in the context of signal reconstruction. They considered the

following weighted ¢;-minimization problem!® :

p
min E w2
TeR™
i=1

s.t. y=®x.

where y € R™, & € R™*" and m < n. The goal of this problem is to reconstruct
a sparse signal x from the measurement vector y and seﬁsing matrix ®. The
constraint linear equations have infinitely many solutions and the simplest expla-
nation of y is desirable. To estimate better sparse representation, they proposed

an iteratively re-weighting strategy for estimating w;.

In order to apply the multi-parametric approach to these problems, we need to determine
the search direction of the path in the multi-dimensional hyper-parameter space. In
many situations search directions can be estimated from data.

Parametric optimization derives analytical expression of solutions. As we have seen

throughout the paper, it brings the following advantages:

e Efficiency
The calculation of analytical solutions are often faster than the iterative application
of optimization algorithm. We have shown that several machine learning tasks can

be accelerated by this property in Chapter 3, 4 and 5.

!Note that = and y in the above equation have different meanings from other parts of this paper.
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e Accuracy
Since we calculate solutions from analytical expression, calculated solutions are
highly accurate. In piecewise linear case, it depends on the accuracy of linear sys-
tem solver. Many linear algebra packages (e.g., LAPACK [3]) provide routines to
calculate accurate solution of linear system efficiently. In Chapter 3, we confirmed

accuracy of our approach is close to floating-point precision.

e Continuity
From the function form of the analytical solution, we can know continuous changes
of solutions. Using this property, behavior of performance measures for models are
also easily monitored. We have shown several examples of prediction performance

monitoring in Chapter 4.

As mentioned in this chapter, there seems to be further research directions which we can
exploit these advantages. In the future work, we plan to consider applying our approach

to those other machine learning tasks.
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Appendix

A Solving KKT Linear System

Here, we consider solving the following form of linear system:

v o)l =[]
y Q) |la il
where y e R™", Q e R, be R, a € R*, r; € R. 7o € R" and Q is strictly positive definite.

We can decompose above linear system as follows:

ya = r, (A.1)

yb+Qa = 7. (A.2)
From (A.2) we obtain
a=Q (ry— yb).
Substituting this equation into (A.1), we find

¥y’ Q l(ra—yb) = n
b ¥’ Q 'ry—rl
¥y Q 'y
Consider the Cholesky factorization Q@ = LL" where L € R™ " is a lower triangular ma-
trix with positive diagonal entries. Let p; = L'y and py = L™ lr;. Then the solution is
represented as follows:
pipy—11
P1TP1

a = LT (p,— pib).

B Rank-one Cholesky Update

Since the size of M increases or decreases by one in each iteration, we use rank-one up-

date of Cholesky factor L of Q. This requires O(|]M|?) computations instead of O(|M|3)
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computations in usual Cholesky factorization [45]. If Q,, is expanded as

|:QM qc :|
20 Qe |’

Cholesky factor of expanded matrix becomes

L 0
Tr-T Tr—-Tr-1 .
aL7" /Qu-qlL L,
When we delete k-th row and k-th column of @Q 4, we delete corresponding row of L. However,

then since the entries of (j,j + 1) for j > k have non zero elements, L is no longer lower

triangular matrix. We can eliminate these non zeros using Givens rotations with:

J Jj+1
/1 - 0 0 e 0
7 0 c —s 0
]+1 O ... S c 0
0 0 0 1
where
c= JJ s = Jitl

2 2 2 2
Vit Lij VL5 + Lijn
Multiplying this sparse orthogonal matrix (with O(|M|)) from right side of L, (j+1) x (j +1)

leading principle submatrix of L becomes lower triangular. We iterate this operation until

entire matrix becomes lower triangular.

C Convergence of Rational Approximation

We provide convergence proof of the rational approximation. We can prove it in almost
same way as [18]. Although we will consider the case of solving (5.22) (i.e., type 3 in Table 5.1),
other types can also be proved in similar way. Here, we employ simple notations such as
d = di, Y = Y, (tk), ¥* = Yo, (t*), ¢’ = 04, (t)/0t. In the proof, we assume that the following
condition holds:

Assumption 1 ¢v* + p—¢* #0. Since * + p — p* < 0, Assumption 1 just means that
¥ +p— ¥ <0,

The following two theorems provide the convergence property of our algorithm.
Theorem 2 Under Assumption 1, the sequence of the rational approzimation {tx}r=12..
converges to t* as k — oco. Ewven if the Assumption 1 does not hold, {t}} can reach t* €

[t* — &,t*) by the finite number of iterations for arbitrary small € > 0.
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Figure C.1: The schematic illustration of the rational approximation. ¢ is a tangent
line of d + ¢(t) + pt. From the convexity, £ becomes lower bound of d + ¢(t) + pt and
d+ 2+ pt.

Theorem 3 Under Assumption 1, if the sequence {tx} converges to t*, the rational approxi-

mation has the quadratic rate of convergence for sufficiently large k.

Proof of Theorem 2

Proof. Let § € (0,1) be a constant which is independent of the iteration k. We prove the
following condition holds for any ¢; € (¢, t*):

"=ty < (1-p)(t" - 1),

where t, is obtained by one iteration of the rational approximation from ¢;. Let 7 satisfy
s
d+ 9+ ptr+ (P +p) (T — 1) =7+ 5
The left hand side represents the tangent line £ of d + (t) + pt at t; (see Fig. C.1). Let us

define o as the angle between the line £ and the horizontal line. Then we see

P+ s = (d+ ¥+ pt
tana =) +p = 0T T(—t1¢1 p1)_

From (5.20), we set 7 = @1 — (6 — t1)¢} and s = (6 — t1)%¢}. Substituting 7 and s into above
equation, we obtain

_d+Pit+ph— g1 N )
o +p Yi+pd—T

T—11 = (’T—tl).

Arranging this equation, we have

—9
T—th = ——"F7——(t"—1t C.1
. w’l—w’l—p( 1 (C1)
where v = (§ — ¢;)/(6 — 7) and

_d+Yitpi— o
t* — 1 ’

g1 =
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d+(t) + pt — o(t)

i 1

Figure C.2: The illustration of ¢;
The slope of the dashed line is g;.

g1 can be interpreted as the slope of a line which passes through (¢1,d + ¥1 + pt1 — ¢1) and
(t*,0) (see Fig. C.2). From the Assumption 1, g; has an upper bound which is smaller than 0,

ie.,

91 < gmax < 0.

If the Assumption 1 does not hold, we can maintain this inequality when ¢; is in (to,t* — €] for
arbitrary small € > 0. Substituting this into (C.1), we obtain the following inequalities:
—Y9max * *
Tt > ———r—— (" —t1) > B(t —t1),
YL =Y —p )2 A
where

8= —9max
maxte(to,t*)(’)’@’(t) —Y(t)—p)

Since ty > 7, we have

ta — 1 B(t" —t1)
—(t" —t1) + B(t" — t1)

t*—ty < (1-08)(t —t).

(AVARAVS

—t* +ty

Finally, we need to prove 8 € (0,1). First, we consider 3 < 1. It can be derived from the
following inequalities:

max (y¢'(t) —¢'(t) —p) > max (¢(t) —¢'(t) — p)

te(to,t*) tE(to,t*)
2 —Ymax-

The first inequality comes from v > 1 and ¢/(t) > 0. From the mean-value theorem, there
exists at least one @ € (tg, t*) such that ¥/(6) + p — ©'(6) = gmax- Then the second inequality

holds. Next, we consider the lower bound of 3. From the monotonicity of ¥’ and ¢/, we obtain

0 —to /
VY < 0" =y — p.
B (v —v1—p) < 5

Then we see 3 is in (0, 1). a
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Proof of Theorem 3

Proof. Let k be a constant which is independent on the iteration. We show |tx11 — t*] <
K|ty — t*|? for sufficiently large k, when t;, — t*. Subtracting

d+ "+ pt™ = o7,
from

P S
d+ —— 4 pty =7+ ——,
+q—t2 pr 6 —to

we obtain

S
— o+ pltg — t¥) = — o~
6 Y otz — 1) Ttson ¥

Substituting p, ¢, r and s, this equation can be reduced to
Y1 — P G(t) + p(t2 — t)G(t1) =

{or- o+ a6t (5212) f oo (©2)

where G(t1) =1+ %(tl —t3) and A = § — t1. The left hand side of (C.2) can be written as

Y1 =Y G(t) + (b2 — t7)G(t1) =

*, 1./

%(q’b% — P P — P Yrer) + ] ez + peaG(t1),
1 (1

where g1 = t; — t* and 5 = t — t*. Using the Taylor expansion of ¥); and ¢ around t*, we

obtain
*I 1 * *//
UE— Yt — Y = {(w fiogue }E? +0(}).
Finally the left hand side of (C.2) becomes

¢*¢I1r+ G(t1) + O(? C.3)
“Eley + peaG(t) + O(eD) (c.
Expanding o7 and ¢} in the right hand side of (C.2), we obtain
« A—¢
o'er (G2 ) 6t + 0D, (©4)

Using (C.3) and (C.4), (C.2) is reduced to

* 1,/ A — .
{% +pG(t) — &1 (5_—2) G(tl)} e2 = O(}).

Since G(t1) — 1 as t; — t*,

.y A —
lim {wdj/h +pG(t1) — ¢ (ﬁ) G(tl)} =

t1—t* 1

Then we can see g3 = O(e?). o



