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Abstract

Compared to shock waves in rarefied gases, shock waves in condensed matters,

namely, dense gases, liquids and solids, have not been fully understood. In order to

construct the basic theoretical framework of shock wave phenomena in condensed

matters, we propose the following strategy with two steps:

(i) We study shock wave phenomena in a hard-sphere system which is a good

reference system of materials in liquid state.

(ii) By using all the results obtained in step (i) and by using the perturba-

tion method developed in the theory of liquid-state physics, we study shock wave

phenomena in physical systems with more realistic interatomic potential with both

repulsive and attractive parts.

Shock wave phenomena are theoretically and numerically studied on the basis of

the system of Euler equations with the caloric and thermal equations of state for sev-

eral models of condensed matters. First Rankine-Hugoniot conditions are analyzed.

The quantitative classification of Hugoniot types in terms of the thermodynamic

quantities of the unperturbed state (the state before a shock wave) and the degrees

of freedom is made. Second the admissibility (stability) of shock waves is studied

by means of the results obtained by T.-P. Liu in the theory of hyperbolic systems.

Last numerical calculations have been performed in order to confirm the theoretical

results in the case of admissible shocks and to obtain the actual evolution of the

wave profiles in the case of inadmissible shocks.

The organization of this thesis is summarized as follows:

In Chap. 1, The purpose of the present study and the applications of shock wave

phenomena are summarized. It is pointed out there exist shock wave phenomena

which can not be explained even qualitatively within the well-known framework of

the ideal-gas model. The effects inducing such differences are called as the real-gas

effects on shock wave phenomena. The typical phenomena due to the real-gas ef-

fects are shock-induced phase transitions, shock splitting phenomena and rarefaction

(negative) shock waves.



In Chap. 2, Shock waves in a polytropic hard-sphere system with and without

internal degrees of freedom are investigated. The important role of the internal

degrees of freedom for shock-induced phase transition from the liquid to the solid

phase (Alder transition) is made clear. It is shown that another type of instability

of a shock wave can exist even though the perturbed state is thermodynamically

stable.

In Chap. 3, we predict and simulate a new type of compressive shock wave in a

real gas. For simplicity, we adopt a real gas modeled the van der Waals constitutive

equation which can be regarded as a simplified model of a system of hard-spheres

with attractive force. This shock produces a phase transition from the gas to the

liquid phase and, under some special circumstances, back to the gas phase. This

shock has the following quite unusual property: When the perturbed pressure (the

pressure after a shock) increases, the perturbed density decreases and tends to a

limit value from above, in contrast with the ordinary compressive shock in which

the density tends to the limit value from below.

In Chap. 4, shock waves in a system of hard-spheres with attractive force are

analyzed. By using this model, we can analyze shock wave phenomena in the three

phases, namely, gas, liquid and solid phases within a unified way. It is confirmed

that the analysis based on this model can explain both the results obtained in a

hard-sphere system and in a van der Waals fluid. Two possible scenarios of shock-

induced phase transition from the gas to the solid phase have been presented and

the condition of such phase transition is made clear.

In Chap. 5, by adopting a simplified model of a non-polytropic hard-sphere

system where heat capacity depends on the temperature, we demonstrate the im-

portance of non-polytropic effect on the shock wave phenomena. We show explicitly

that with the increase of the shock strength the perturbed temperature (the tem-

perature after a shock) increases and the vibrational modes are gradually excited,

and as a result, shock-induced phase transitions and the admissibility of shock wave

are qualitatively and quantitatively different from the phase transitions observed in

a simple polytropic model.

In Chap. 6, general summary of the present study and concluding remarks are

made.
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NOTATIONS

t: time

x: position

ρ: mass density

m: mass of a constituent particle

V : volume

V : specific volume

η: packing fraction

v: velocity

p: pressure

T : temperature

e: specific internal energy

s: specific entropy

h: specific enthalpy

c: sound velocity

Us: velocity of a shock wave

cv: specific heat capacity at constant volume

λ: characteristic velocity

D: degrees of freedom

f : internal degrees of freedom

kB: Boltzmann constant

u: density of conservative quantities

F: flux of conservative quantities

IV



Chapter 1

Introduction

1.1 Background of the present study

Shock waves, which are characterized by the steep and rapid changes of physical

quantities such as mass density, velocity, temperature, pressure at a shock front, are

typical nonlinear waves that have been studied from many aspects experimentally,

theoretically and numerically [1–3]. Concerning the theoretical studies, for example,

the rapid change of physical quantities at a shock front has been studied based on the

theories of non-equilibrium thermodynamics and statistical physics [4–6] and also

their nonlinear properties have been investigated based on the theories of nonlinear

wave propagation [7, 8].

The motivation to study shock waves comes from not only the interest in such

properties but also the fact that shock wave phenomena can be observed in wide

area. The examples of shock waves in nature and the man-made shock waves can

be summarized as follows.

Examples of shock waves in nature

The most familiar shock wave phenomenon is a thunder after the lightening. Shock

waves are also related to Earthquakes and volcanic eruptions. Shock waves are

much frequently generated in cosmic space. For example, meteoroids entering in

the atmosphere around the earth generate shock waves. The flow of ionized gas

particles emitted from the sun’s corona (so-called solar wind) can be accelerated by

the magnetic field of the earth and be developed to be a bow shock.
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CHAPTER 1. INTRODUCTION

Examples of man-made shock waves

The typical example of man-made shock waves is a detonation of explosive materials.

The other typical example is the complex shock wave structure observed around a

supersonic passenger plane. Shock waves can also be observed during the atmosphere

entry of a space shuttle. The strength of man-made shock waves have large variety

from weak shocks generated by firearms, to very strong shock generated nuclear

explosions.

1.1.1 Applications of shock wave study

There are many applications of shock wave studies in engineering, physical and

chemical fields. We here summarize typical examples of the applications of shock

wave phenomena briefly.

Supersonic airplane

As mentioned above, the complex shock structure can be observed around a super-

sonic airplane. The shock wave study becomes important when we design the shape

of the supersonic airplane because efficiency of the flight and noise due to such waves

strongly depend on the property of shock waves generated by the airplane.

Detonation

The detonation wave is a supersonic wave phenomena accompanying chemical reac-

tions with the rapid change of pressure and temperature after the shock front. The

studies have been concentrated on the technique to avoid detonation phenomena for

the safety because such kind of rapid increasing of the physical quantities may be

dangerous. Recently detonation phenomena can be used positively, for example, in

pulse detonation engines and also pulse detonation rocket.

Calculus fragmentation, Shock focusing

Shock waves are also used for the fragmentation of the calculus in the human body.

The technique, which make us to destroy the calculus without any surgeries, are well

established. In such cases the technique of focusing of a shock wave using convex

lens plays an essential role in order to avoid to injure any organs except the calculus

and therefore the detailed study of shock wave propagation becomes very important.

2



CHAPTER 1. INTRODUCTION

Space science

The basic researches of shock wave phenomena are also important for the space

engineering and space science. As we mentioned in above examples, the body of

space shuttle involves shock waves during the atmosphere entry and therefore the

detailed study of flows around the body is important to design the shape of a space

shuttle. Moreover, there exists an important problem of serious damage of the

frames of space shuttles or space satellite due to space debris, that is the garbage

or dust moving at high velocities in the cosmic space. The response to the impact

of space debris are important in order to prepare the safe frame of space shuttles.

Land-mine removal

The response to shock waves generated by the explosive materials is also important

especially in the field of engineering. The land-mine removal is quite important,

however, is dangerous due to the risk of accidents. In order to remove land mines

much more safely, the shape of the machine for the land-mine removal and the quality

of materials should be designed carefully. The studies of shock wave phenomena can

provide the basic knowledge of such kind of applications.

1.1.2 Study of Shock waves in condensed matters

As is seen from the above examples and applications, the studies of shock wave phe-

nomena in condensed matters, namely, dense gases, liquids and solids are necessary.

In recent years, shock wave phenomena in condensed matters have also attracted

much interest of researchers in various fields. See, for example, the review paper [9]

and books [10–18] and references cited therein. However, Compared to shock waves

in rarefied gases, shock waves in condensed matters have not been fully studied until

now.

Many studies of shock waves in condensed matters have been done mainly from

the experimentally and numerically. Some theoretical studies were also made by us-

ing the models with realistic interatomic potentials. However, most of the previous

works are based on more or less qualitative models. An unified framework of theo-

retical studies is highly required in order to understand shock wave phenomena in

condensed matters deeply. Such kind of theoretical framework can be essentially im-

portant for the development of shock wave study as the theoretical study played an

essential role at the early stage of the development of shock wave studies. Jouguet
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CHAPTER 1. INTRODUCTION

wrote the usefulness of the theoretical predictions of shock waves as follows [19]:

”The shock wave represents a phenomenon of rare peculiar such that it has been

uncovered by the pen of mathematicians, first by Riemann, then by Hugoniot. The

experiments followed not until afterwards. ”

In this thesis we will propose the basic theoretical framework to analyze shock

wave phenomena in condensed matters. Based on that framework, we will investigate

the shock wave phenomena which can not be explained even qualitatively within the

well-known framework of the ideal gas model.

1.2 Theory of shock wave phenomena

In this section, we will discuss the basis of the present theoretical studies. In order to

make the physical implications of our analysis clear, here we summarize the typical

theoretical studies briefly [20].

The first-order approximation of shock wave phenomena is the analysis based on

the Euler fluids in which the dissipative effects, namely, viscosity and heat conduc-

tion are neglected. The solution of a shock wave in Euler fluids can be obtained as

a weak solution which represents the jump of physical quantities before and after

a shock front without any shock structures. The relation between the propagation

speed and the jump of physical quantities before and after a shock front is the cen-

tral problem within this approximation. The compatibility conditions of the jump

of physical quantities can be derived from the conservation laws of mass, momentum

and energy. These conditions are well known as the Rankine-Hugoniot conditions.

In the higher-order approximation of shock wave phenomena, the shock structure,

that is the wave profile in terms of the time and the position, is one of the interesting

problem in the field of the non-equilibrium thermodynamics and statistical physics.

Because physical quantities change rapidly with steep gradient at a shock front,

many information about highly non-equilibrium phenomena can be obtained through

the analysis of shock structure. In order to make the validity range of several

theories clear, the studies of shock structures have been done theoretically [22–33],

experimentally [34–37] and numerically [38–42]. From these studies, it is shown that

the theoretical prediction by the well-known Navier-Stokes and Fourier theory is not

valid for strong shock waves (or large Knudsen number) and therefore the results

imply that we need other theories which have larger validity range.

The dimensionality dependence is also one of the important problems. Pla-

4



CHAPTER 1. INTRODUCTION

nar shock waves can be analyzed easily and can be generated by the shock tubes,

however, spherical or cylindrical shock waves are more frequently observed for the

applications of shock waves generated by explosive materials.

In this thesis we concentrate on one-dimensional waves (plane shock waves) trav-

eling only along the x direction in the Euler fluid for the first step. In the following,

we summarize the system of Euler equations and the compatibility condition of jump

of physical quantities before and after a shock front. Moreover, the admissibility

(stability) conditions of a shock wave are also discussed.

1.2.1 The system of Euler equations

The system of Euler equations describing the conservation of mass, momentum and

energy for a compressible fluid in the one-dimensional case can be expressed as

ut + Fx(u) = 0, (1.1)

where the subscripts (time t and position x) denote partial differentiation. Here the

density u and the flux F of conservation quantities are given by

u =

 ρ

ρv

ρe+ 1
2
ρv2

 , F =

 ρv

ρv2 + p(
ρe+ 1

2
ρv2 + p

)
v

 , (1.2)

with ρ, v, p and e being the mass density, the velocity, the pressure and the specific

internal energy, respectively. The characteristic velocities of the hyperbolic system

(1.1) and (1.2) can be summarized as follows:

λ(1) = v − c, λ(2) = v, λ(3) = v + c, (1.3)

where c =
√
(∂p/∂ρ)s represents the sound velocity and s is the specific entropy.

1.2.2 The Rankine-Hugoniot conditions

The system of Euler equations (1.1)-(1.2) admits a plane shock wave provided that

the jump of the physical quantities between the states before and after the shock

front satisfies the well-known Rankine-Hugoniot (RH) conditions:

−Us[[ρ]] + [[ρv]] = 0,

−Us[[ρv]] +

[[
ρv2 + p

]]
= 0,

−Us

[[
ρe+

1

2
ρv2
]]
+

[[(
ρe+

1

2
ρv2 + p

)
v

]]
= 0,

(1.4)

5



CHAPTER 1. INTRODUCTION

where Us is the propagation velocity of the shock front and [[ψ]] = ψ1−ψ0 represents

the jump of a generic quantity ψ across the shock front, being ψ1 the quantity in

the state after the shock (perturbed state) and ψ0 in the state before the shock

(unperturbed state).

The Mach number at the unperturbed state, M0, is defined by

M0 =
Us − v0
c0

(1.5)

where the quantities with the subscript 0 are the so-called unperturbed quantities,

i.e. the quantities evaluated in the unperturbed state (analogously, the quantities

with the subscript 1 are evaluated in the perturbed state and are called perturbed

quantities).

In the following, we shall consider only shocks propagating in the positive x

direction (M0 > 0) and, due to the Galilean invariance, we shall also assume, without

any loss of generality, v0 = 0, then we have

v̂1 ≡
v1
c0

=M0
ρ1 − ρ0
ρ1

,

p̂1 ≡
p1
p0

= 1 + c20M
2
0

ρ0 (ρ1 − ρ0)

p0ρ1
,

M0 =
1

c0

√
2ρ1

ρ0 (ρ1 − ρ0)

[
p1 −

ρ0ρ1 (e1 − e0)

ρ1 − ρ0

]
.

The specific entropy production rate can also be given by

ς = −Us[[ρs]] + [[ρsv]].

Using the RH condition (1.4)1 and the definition of the unperturbed Mach number

(1.5), this relation can be rearranged as follows:

ς = ρ0(Us − v0)[[s]]

= ρ0c0M0[[s]].
(1.6)

Since we will focus on the fastest wave traveling in the positive x-direction, we

define a dimensionless characteristic velocity λ̂ as follows:

λ̂ ≡ λ
(3)
1

c0
= v̂ + ĉ, (1.7)

where ĉ is the dimensionless sound speed defined by

ĉ =
c1
c0
.

6



CHAPTER 1. INTRODUCTION

Weak shock waves

Let us also study shock waves with the small jumps of physical quantities. Such

shock waves are called as the weak shock waves. Here we introduce the specific

enthalpy h as follows:

h ≡ e+
p

ρ
.

Using the RH conditions, we can obtain the expression of the jump of the specific

enthalpy as follows:

h1 − h0 =
1

2
(V0 − V1)(p1 − p0), (1.8)

where V is the specific volume. On the other hand, expanding the jump of the

specific enthalpy (h1 − h0) with respect to (p1 − p0) within third order and with

respect to (s1 − s0) within first order for the consistency and then we have

h1 − h0 =

(
∂h

∂s0

)
p

(s1 − s0) +

(
∂h

∂p0

)
s

(p1 − p0)

+
1

2

(
∂2h

∂p20

)
s

(p1 − p0)
2 +

1

6

(
∂3h

∂p30

)
s

(p1 − p0)
3.

Using the expression of the partial differential of the specific enthalpy(
∂h

∂s

)
p

= T,

(
∂h

∂p

)
s

= V ,

we obtain

h1 − h0 = T0(s1 − s0) + V0(p1 − p0)

+
1

2

(
∂V
∂p0

)
s

(p1 − p0)
2 +

1

6

(
∂2V
∂p20

)
s

(p1 − p0)
3.

(1.9)

Similarly the jump of specific volume (V1 − V0) can be expanded with respect to

(p1 − p0) within second order and we obtain

V1 − V0 =

(
∂V
∂p0

)
s

(p1 − p0) +
1

2

(
∂2V
∂p0

)
s

(p1 − p0)
2. (1.10)

Inserting the relations (1.8) and (1.9) into the relation (1.10), we can obtain the

jump of the specific entropy (s1 − s0) as follows:

s1 − s0 =
1

12T0

(
∂2V
∂p20

)
s

(p1 − p0)
3. (1.11)

From the basic knowledge of nonequilibrium thermodynamics, the entropy produc-

tion rate should have non-negative value in all physical processes in order to satisfy

7



CHAPTER 1. INTRODUCTION

the second law of thermodynamics. Because in this case the entropy production rate

is proportional to the entropy jump (see (1.6)), the solution is physically meaningful

only in the case the entropy jump is positive. Therefore we can conclude that only

compressive shock waves can propagate in the case that derivative (∂2V/∂p20)s is pos-
itive, however, a negative shock wave may be observed if the derivative (∂2V/∂p20)s is
negative. The derivative (∂2V/∂p20)s is sometimes called as the fundamental deriva-

tive and in many researches the dimensionless form

G =
c4

2V3

(
∂2V
∂p2

)
s

was used for the analysis.

1.2.3 Admissibility of shock waves

According to the theory of hyperbolic systems, not every solution of the Rankine-

Hugoniot conditions corresponds to a physically meaningful shock wave. Thus, we

need a criterion to select which states u1 ∈ H (u0) are the perturbed states that,

together with u0 form admissible shocks. Since admissible shocks propagate with

no change in shape when they are given as initial data, these solution are sometimes

called stable shocks.

In order to provide a selection rule to evaluate the admissibility of shocks, it is

necessary to recall that in the theory of hyperbolic systems a wave associated to a

characteristic velocity λ (eigenvalue of the characteristic system) is called genuinely

non-linear, if ∇λ · r ̸= 0 ∀u; linearly degenerate (or exceptional), if ∇λ · r ≡ 0 ∀u;
locally linearly degenerate (or locally exceptional), if ∇λ · r = 0 for some u, where

r is the corresponding eigenvector of λ.

The issue of shock admissibility when genuinely non-linear and linearly degen-

erate waves are involved has been largely investigated; the hyperbolic system of

conservation laws of mass, momentum and energy for an ideal gas, for example,

features only waves belonging to these two types and it has been deeply analyzed in

the past decades (see, among others, [20]). On the contrary, the hyperbolic system

of the van der Waals fluid, for example, features linearly degenerate and locally

linearly degenerate waves. Focusing on the fastest wave associated to λ ≡ λ(3), the

locus such that ∇λ = 0 for the present system can be obtained given by

ρ

(
∂2p

∂ρ2

)
s

+ 2

(
∂p

∂ρ

)
s

= 0.

8
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It can be proved that this locus is equivalent to the curve such that the funda-

mental derivative is zero (G = 0).

The selection rule useful to study the admissibility of shocks depends on the type

of the involved non-linear waves. Thus, it is necessary to discuss separately the cases

of genuinely non-linear, linearly degenerate and locally linearly degenerate waves.

When we deal with genuinely non-linear waves, the selection rule is given by the

Lax condition [43], according to which a shock wave is admissible if the shock speed

satisfies

λ0 < Us < λ1

where λ0 ≡ λ (u0) and λ1 ≡ λ (u1). The Lax condition turns out to be equivalent (at

least for weak shocks) to the condition of entropy growth across the shock [20]. When

we deal with a linearly degenerate wave, admissible shocks are called characteristic

shocks and they propagate with velocity s = λ0 = λ1. In this case, there is no

entropy production across the shock.

When the system features locally linearly degenerate waves, the selection rule is

given by the Liu condition [44, 45], which asserts that a shock wave connecting an

unperturbed state u0 and a perturbed state u1 is admissible (stable) if its velocity

of propagation, s, is not decreasing as we move along H (u0), which is the locus of

the perturbed states satisfying the RH conditions, starting from the unperturbed

state, u0, towards the perturbed state u1, i.e.:

Us (u0, ũ) ≤ Us (u0,u1) ∀ũ ∈ H (u0) between u0 and u1.

If the Liu condition is not satisfied, the shock is unstable, or inadmissible. It is well

known that the Liu condition implies the Lax condition, and at least for moderate

shocks, the entropy growth, and therefore stable shocks satisfy the second law of

the thermodynamics (see, e.g. [8]). Conversely, the entropy growth is not sufficient

to imply the Liu condition, and we need an additional condition [8, 46].

1.3 Shock wave phenomena in an ideal gas

Shock wave phenomena in a rarefied gas has widely been studied by using the

well-known framework of an ideal gas model (See, for example, [20, 21]). We here

summarize the typical properties of shock waves in an ideal gas in detail.

9
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Equations of state

The basic equations are the Euler equations with the thermal and caloric equations

of state for an ideal gas. Caloric equation of state for an ideal gas is summarized as

follows:

e =
RT

δ
, (1.12)

where T is the temperature; δ = R/cv, R = kB/m, being kB the Boltzmann constant,

m the mass of a constituent molecule and cv the specific heat capacity at constant

volume related to the internal degrees of freedom. Thermal equation of state is given

by

p = RTρ. (1.13)

Using the Gibbs relation

ds =
1

T
de+

p

T
d

(
1

ρ

)
,

we can obtain the explicit expression of the sound speed as follows:

c =

√
(1 + δ)p

ρ
.

Note that there is no phase transitions in an ideal gas model.

Rankine-Hugoniot conditions

Inserting the thermal and caloric equations of state for an ideal gas (1.12) and

(1.13) into the general form of Rankine-Hugoniot conditions, we can obtain the

expression of the perturbed velocity divided by the unperturbed sound speed v̂1 and

the expression of the ratio between pressures in the perturbed and the unperturbed

state as follows:

v̂1 =M0

(
1− 1

ρ̂1

)
=

√
2ρ̂1

2 + δ(1− ρ̂1)

(
1− 1

ρ̂1

)
,

(1.14)

p̂1 = 1 + c20M
2
0

ρ0 (ρ1 − ρ0)

p0ρ1

= 1 +
2 (1 + δ) (ρ̂1 − 1)

2− δ (ρ̂1 − 1)
, (1.15)

10
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where ρ̂1 is the ratio between densities in the perturbed and unperturbed state and

expressed as follows:

ρ̂1 =
ρ1
ρ0
.

The expression of the unperturbed Mach number can be obtained as follows:

M0 =
1

c0

√
2ρ1p0 (1 + δ)

ρ0 [2ρ0 − δ (ρ1 − ρ0)]

=

√
2ρ̂1

2 + δ(1− ρ̂1)
.

(1.16)

0 10 20
0

20

40

60

ρ1̂

1

1

p1
^

δ=0.1δ=0.3δ=2/3

Figure 1.1: Dependence of the perturbed pressure on the perturbed density for several

δ(δ = 2/3, 0.3, 0.1). Vertical dotted lines are asymptotes, ρ̂1 = ρ̂∞1 .

It can be seen from Fig. 1.1 that the perturbed pressure increase monotoni-

cally as the increase of the perturbed density (strength of the shock wave). In the

strong shock limit the perturbed pressures diverge, however, the perturbed density

approach a finite critical value which depend on δ (internal degrees of freedom).

The ratio between densities in the strong shock limit and the unperturbed state is

called as ultimate compression ratio, ρ̂∞1 . From the expressions of Rankine-Hugoniot

conditions (1.14), (1.15) and (1.16), the value of ρ̂∞1 can be obtained explicitly as

follows:

ρ̂∞1 = 1 +
2

δ
. (1.17)

From Fig. 1.2 and also (1.17), ρ̂∞1 increase as the decrease of δ (which corresponds

to the increase of the internal degrees of freedom). This result can be physically

interpreted that as the increase of the internal degrees of freedom. the energy

11
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Figure 1.2: The dependence of ρ̂∞1 on δ.

flow into the internal motion becomes larger and therefore the increasing rate of

perturbed temperature and perturbed pressure, due to a shock compression, become

comparatively smaller.

Admissibility of shock waves

We have derived the Rankine-Hugoniot conditions for an ideal gas. As is pointed out

in Sec. 1.2.3, the Rankine-Hugoniot conditions are only necessary conditions for the

physically meaningful solution and therefore we need other admissibility conditions.

We discuss the admissibility of a shock wave by using the Lax condition which is

obtained in terms of the propagation speed of a shock and the characteristic speed.

The unperturbed Mach numberM0 (1.5) and the dimensionless characteristic speed

λ̂ (1.7) are the propagation speed of a shock wave Us divided by the unperturbed

sound speed and the fastest characteristic speed divided by the unperturbed sound

speed. Therefore we can conclude the admissibility from the magnitude relation

between M0 and λ̂ based on the Lax condition. From the definitions, the values

of M0 and λ̂ at the unperturbed state are always one. The derivative of M0 with

respect to the perturbed density ρ1 can be given by

dM2
0

dρ̂1
=

4 + 2δ

[2− δ(1− ρ̂1)]
2 > 0

and therefore we have

M0 =


> 1 for ρ̂1 > 1

1 for ρ̂1 = 1

< 1 for ρ̂1 < 1.

(1.18)

We can conclude that λ0 < Us when ρ̂1 > 1.

12
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The difference between M0 and λ̂ can be expressed by

λ̂−M0 = v̂ + ĉ−M0

=

√
ρ̂1(2 + δ)− δ

ρ̂1 [2− δ(ρ̂1 − 1)]
−

√
2

ρ̂1 [2− δ(ρ̂1 − 1)]
.

The magnitude relation between the unperturbed Mach number M0 and the dimen-

sionless characteristic speed λ̂ is summarized as follows:

λ̂ =


> M0 for ρ̂1 > 1

M0 for ρ̂1 = 1

< M0 for ρ̂1 < 1.

This fact can also be seen from Fig. 1.3. We can conclude that Us < λ1 when ρ̂1 > 1.

0 2 4
0

10

20

ρ1

1

M0

^1 0 5 10
0

10

20

ρ1

1

M0

^1 0 10 20
0

10

20

ρ1

1

M0

^1

Figure 1.3: The dependence of the unperturbed Mach number M0 (solid line) and the

dimensionless characteristic speed λ̂ (dashed line) on the perturbed density ρ1 for several

δ (Left: δ = 2/3, center: δ = 0.3, right: δ = 0.1).

From the Lax condition, it is shown that a shock wave is admissible only when

the perturbed density is larger than the unperturbed density. We can conclude that

all and only compressive shock waves are admissible in an ideal gas based on the

Lax condition.

Typical properties of shock waves in an ideal gas

The typical property of shock wave phenomena in an ideal gas are summarized as

follows:

• Shock-induced phase transition can not occur.

• All and only compressive shock waves are admissible.
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1.4 Typical real-gas effects on shock wave phenomena

The typical properties of wave phenomena in an ideal gas were summarized in the

previous sections. As the validity range of the ideal gas model is limited, shock

wave in condensed matters are more or less different from the ones in an ideal gas.

However, it is known that there exists shock wave phenomena which are not only

quantitatively but also even qualitatively different from shock waves an ideal gas.

In this thesis we will call the effects inducing such differences as the real-gas effects

on shock wave phenomena.

Here we list the typical examples of the real-gas effects on shock wave phenomena.

1.4.1 Shock-induced phase transition

Physical quantities can be changed rapidly at a shock front, therefore, the states

before and after a shock front can be in different phases, in the other words, shock

waves can induce phase transitions.

Several studies of the shock-induced phase transitions were made by experiments.

Experiments of liquefaction shock waves [47] freezing and crystallization of liquid

benzene [48], melting of Iron [49], melting of vanadium [50] and structural phase

transition between two solid phases in Molybdenum [51] have already been investi-

gated.

Several studies were made by computer simulations of microscopic models. Molec-

ular dynamics simulations for shock-induced freezing in a hard-sphere system [52],

melting of Argon [53], melting of Al [54], melting of Cu, Pd, Pt [55], melting of

many metals [56] and structural phase transition between two solid phases [57] have

been performed.

Some theoretical studies were also made by using the models with realistic in-

teratomic potentials [9, 58–60]. A review article [61] is also available. Material

synthesis, for example, sometimes makes use of such dynamic phase transitions [62].

1.4.2 Rarefaction (negative) shock waves

All and only compressive shock waves in an ideal gas are admissible. However, in

condensed matters, rarefaction (negative) shock waves can propagate stably. This

shock waves are shock waves of which the density in the state after the shock is

smaller than the density in the state before the shock.
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Figure 1.4: Direct observation of rarefaction shocks by the experiments in the pressure -

time plane [67]. It is clearly seen that the pressure decrease rapidly after the shock fronts.

The existence of the negative shock wave and the condition for these shock waves

were investigated [63]. More detailed discussions have also been done [64, 65]. The

negative shock waves were observed directly by the experiment [66, 67]. A review

paper [68] is also available.

1.4.3 Shock splitting phenomena

Shock splitting phenomena are the other typical phenomena due to the real-gas

effect. This phenomena are that an unstable shock wave eventually splits into several

waves composed of shock waves, rarefaction waves and constant states in the course

of its propagation.

Shock splitting phenomena in a gas [69–71] and in a solid [57] have already been

studied.
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Figure 1.5: Several experimental results of shock wave profile [69] in a vapor-liquid phase

are shown in the pressure - time plane. Shock splitting phenomena can be observed.

1.5 Theoretical studies of shock wave phenomena in two

models of condensed matters

Here we show theoretical studies which can explain typical real-gas effects on shock

wave phenomena by using the framework of models of condensed matters.

1.5.1 Shock wave phenomena in a hard-sphere system

The shock waves in a hard-sphere system without internal degrees of freedom have

widely been studied. Especially, in the recent paper [83], shock wave phenomena

and shock-induced phase transition from liquid phase to solid phase were studied in

detail.

Because we will analyze shock wave phenomena in a hard-sphere system with

internal degrees of freedom in Chap. 2 as a direct consequence of this study and we

will derive more general relations which include all relations derived in that paper,

we here summarize only the typical results briefly.

The caloric equation of state for a hard-sphere system has the same form as the

one of an ideal gas. Only the thermal equation of state is different. From Fig. 1.6,

we can see that there exists the first-order phase transition (Alder transition) which

can be regarded as the prototype of the liquid / solid phase transition.
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Figure 1.6: Liquid phase and solid phase branches of the pω/kBT − η curve for a hard-

sphere system [83] (L: stable liquid branch, ML: metastable liquid branch, S: stable solid

branch, MS: metastable solid branch, CO: liquid-solid coexistence branch). ηL and ηS are

the packing fractions at the freezing and melting points, respectively.

Shock-induced phase transition

The two possibilities of shock-induced phase transition from liquid phase to solid

phase were discussed. The case P-1 is the phase transition between a metastable

liquid state and a stable solid state, and the case P-2 is the phase transition through

coexistence states when the shock strength changes.

Figure 1.7: Typical Rankine-Hugoniot curves for several unperturbed states in the pressure

- density plane. Left: RH curves in the case P-1. Right: RH curves in the case P-2. FC

and MC represent the freezing curve and the melting curve, respectively.

The selection rule to choose more promising case was proposed. The selection

rule is expressed in terms of the maximum entropy production rate: The relevant

case, from a physical point of view, is the one that involves the largest specific entropy
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production rate at a shock front as a function of the unperturbed Mach number. It is

concluded that the possibility P-2 is more promising according to the selection rule.

The admissibility of a shock wave was also analyzed based on the Liu condi-

tion, however, rarefaction shock waves and shock splitting phenomena were not be

reported in that paper.

1.5.2 Shock wave phenomena in a van der Waals fluid

In a real gas it is possible to observe several features related to shock phenomena,

such as rarefaction (negative) shock waves, shock-splitting phenomena and shock-

induced phase transitions. Despite its simplicity, the van der Waals model is able

to explain all these phenomena. On these topics, several reviews are available; for

instance, the papers by Menikoff & Plohr [72], Dahmen et al. [73], Meier [47] (see

also the references cited therein) and the monograph by Zel’dovich and Reizer [74].

Zhao et al. [94] made a complete classification of admissible shocks (sometimes called

stable shocks, with regard to the fact that such shocks may propagate with no change

in shape) in a van der Waals fluid in terms of the unperturbed state.

Figure 1.8: The isotherms for several temperatures (T̂ = 0.85, 0.95, 1.0) in the p̂ − ρ̂

plane [94]. The Spinodal(S) and coexistence(C) curves are also shown. The dashed lines

are the isotherms by means of Maxwell construction. (G: gas phase, L: liquid phase, MG:

metastable gas phase, ML: metastable liquid phase, COE: gas/liquid coexistence phase).

1.6 Purpose and organization of this thesis

As we showed above, several real-gas effects on shock wave phenomena can be ex-

plained based on the Euler equations with thermal and caloric equations of state
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Figure 1.9: Schematic representation of the phase diagram for a simple system in which

structural phase transitions can never be observed. The validity ranges of a hard-sphere

system and of a van der Waals fluid are near the liquid / solid coexistence curve and near

the gas / liquid coexistence curve, respectively.

for a hard-sphere system or a van der Waals system. However, the validity ranges

of these analyses are limited. The validity ranges of a hard-sphere system and of a

van der Waals fluid are only near the liquid / solid coexistence curve and only near

the gas / liquid coexistence curve, respectively.

The purpose of the present study is to construct the framework of more realistic

model and to study the real-gas effects on shock wave phenomena by using this

framework. In order to construct such framework, we propose the following strategy

with two steps:

(i) We study shock wave phenomena in a hard-sphere system which is a good

reference system of materials in liquid state.

(ii) By using all the results obtained in step (i) and by using the perturba-

tion method developed in the theory of liquid-state physics, we study shock wave

phenomena in physical systems with more realistic interatomic potential with both

repulsive and attractive parts.

The organization of this thesis can be summarized as follows:

In Chap. 1, which is this chapter, we summarized the applications of shock wave

study. We pointed out that there exists shock wave phenomena which can not be
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analyzed even qualitatively within the well-known framework of ideal gas model.

We call the effects inducing such differences as the real-gas effects on shock wave

phenomena. We summarized typical real-gas effects and showed the usefulness of

the theoretical studies of shock wave phenomena in a hard-sphere system and a van

der Waals fluid.

In Chap. 2, we will analyze the shock waves in a polytropic hard-sphere system

with and without internal degrees of freedom as a direct consequence of the previous

study of a hard-sphere system. We will make clear the crucial role of internal degrees

of freedom on shock wave phenomena. The complete classification of shock wave

phenomena will be made from the viewpoint of the admissibility of a shock wave.

In Chap. 3, we will analyze the new type of compressive shock wave in a van der

Waals fluid which can be regarded as the simplified model of a system of hard-spheres

with attractive force. This shock has the following quite unusual property: when

the perturbed pressure (the pressure after a shock) increases, the perturbed density

decreases and tends to a limit value from above, in contrast with the ordinary well-

known compressive shock in which the density tends to the limit value from below.

The admissibility of a shock wave will be also analyzed based on the Liu condition

and we will show that this unusual shock wave can exist.

In Chap. 4, we will analyze the shock waves in a system of hard-spheres with

attractive force. It is well known that this system is a suitable realistic model of

condensed matters and the validity of this system has already been confirmed. By

using this model, we will analyze shock wave phenomena in the three phases, namely,

gas, liquid and solid phase, in a unified way.

In Chap. 5, we will analyze the shock waves in a non-polytropic hard-sphere

system. We assume that the internal degrees of freedom are independent of the

temperature in Chap.2, however, we will introduce the dependence of the inter-

nal degrees of freedom on the temperature in this chapter. We will see that this

temperature dependence may affect on the shock-induced phase transition and the

admissibility of a shock wave strongly.

In Chap. 6, general summary and concluding remarks of this thesis will be

shown.
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The flow chart of the present study is shown in Fig. 1.10

step (i) shock waves in a hard−sphere (HS) system

step (ii) shock waves in a system of hard spheres with attractive force

polytropic model

Chap. 2: shock waves in a HS

internal degrees of freedom

non−polytropic model

Chap. 5: shock waves in a HS

depending on the temperature

polytropic model

Chap. 3: a new type of compressive shock waves in real gases

Chap. 4: The analysis of shock waves in three phases

system with and without system with internal modes

Figure 1.10: The flow chart of the present study.
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Chapter 2

Shock waves in polytropic

hard-sphere systems with and

without internal degrees of

freedom

2.1 Introduction

As we mentioned in Chap. 1, in a paper [83], dynamic phase transition induced by a

shock wave was studied quantitatively on the basis of the system of Euler equations

with caloric and thermal equations of state for a hard-sphere system in which the

first-order phase transition (Alder transition) can be observed [75–77]. Rankine-

Hugoniot (RH) conditions were analyzed in detail and the classification of Hugoniot

types in terms of the thermodynamic quantities of the unperturbed state (the state

before a shock wave) and of the shock strength was made. The admissibility (stabil-

ity) of a shock wave was discussed from the viewpoint of the mathematical theory

of hyperbolic systems. The importance of a hard-sphere system resides in the fact

that it is a suitable reference system for studying shock wave phenomena including

the shock-induced phase transitions in more realistic condensed matters with both

attractive and repulsive parts of interatomic potential by using the perturbation

theory of liquid state physics [78–80]. In the paper [83], for simplicity, any internal

motion in the constituent hard-sphere particles was neglected.

In the present chapter, which is the sequel to the paper [83], we extend our study

by introducing internal degrees of freedom in hard-sphere particles [84]. It is well-

known that the ultimate compression ratio, i.e. the ratio of mass densities before and

22



CHAPTER 2. SHOCK WAVES IN POLYTROPIC HARD-SPHERE SYSTEMS WITH
AND WITHOUT INTERNAL DEGREES OF FREEDOM

after a shock in the strong shock limit, depends strongly on the internal degrees of

freedom. In order to show the crucial importance of the internal degrees of freedom

on shock-induced phase transitions, we may consider the possibility of shock-induced

gas-liquid phase transitions. In § 132 of the text book [20], the authors expressed

their negative opinion about this possibility by saying that “ [the compression of gas

in an ordinary shock wave] cannot lead to condensation, since the increase of pressure

in the shock wave has less effect on the degree of supersaturation than the increase of

temperature”. Shock-induced gas-liquid phase transitions, however, can be observed

in some materials if unperturbed states are suitably chosen [47, 81]. Existence of

shock-induced gas-liquid phase transitions can also be shown theoretically in a real

gas model such as van der Waals gas, if the constituent molecules have suitably

many internal degrees of freedom and if unperturbed states are suitably taken [94].

Roughly speaking, because of the energy flow into the internal motion, the increase

of temperature of such a gas due to a shock compression is comparatively small,

and then a gas-liquid phase transition may occur more easily. We naturally expect

that the internal degrees of freedom have similar effects also on liquid-solid phase

transitions, especially on Alder transition in a hard-sphere system. We will see below

that our expectation is quite relevant.

The purpose of the present chapter is to study shock wave phenomena in a hard-

sphere system with internal motion both theoretically and numerically. To be more

specific, we will study the following three points in detail: (i) the dependence of

the solution of RH conditions on the internal degrees of freedom of a hard-sphere

system; (ii) the admissibility of shock waves; (iii) the effects of the internal degrees

of freedom on shock-induced phase transitions.

2.2 Basic equations

In this section, we summarize the basic equations of the hard sphere system model.

We consider hard spheres in a three-dimensional space, but we study shock-induced

phase transitions and shock admissibility focusing on one-dimensional waves (plane

waves) travelling only along the x-direction. Therefore, the system of equations

that we study is written in the one-dimensional case but the equations of state are

written assigning to the hard spheres three degrees of freedom connected to the

translational motion.
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2.2.1 Caloric and thermal equations of state

We adopt the following caloric equation of state:

e =
D
2m

kBT, (2.1)

where e, D, m, kB and T are the specific internal energy, the degrees of freedom

of a hard-sphere particle, the mass of a particle, the Boltzmann constant and the

absolute temperature, respectively. The degrees of freedom, D, is the sum of the

space dimensionality (3, in our analysis), corresponding to the degrees of freedom

of the translational motion of a particle and the internal degrees of freedom of a

particle, f , so:

D ≡ 3 + f. (2.2)

Note that the internal degrees of freedom, f , corresponds to the number of excited

eigenmodes of internal motion in a particle and it is assumed to be constant. In

the derivation of Eq. (2.1), we have assumed that all the excited modes satisfy

the equipartition law of energy in classical statistical mechanics. Although these

assumptions are very strong, we believe that they are appropriate as a first step in

our analysis. The results obtained below will show us a sound direction for the next

steps of this study.

As in the paper [83], the thermal equation of state is given by

pω

kBT
= ηΓ(η), Γ(η) ≡ 1 + χ(η), (2.3)

where p is the pressure, χ (η) is the deviation from the ideal gas law and η is the

packing fraction related to the mass density, ρ, by

η ≡ ρω

m

being ω the volume of a hard sphere (ω = πσ3/6, where σ is the diameter of a hard

sphere). We adopt the Padé approximation (P(3,3)) for the liquid phase [82] and

the results from the free volume theory for the solid phase [80] as follows:

χL(η) =
4η + 1.016112η2 + 1.109056η3

1− 2.245972η + 1.301008η2
,

χS(η) =
1(√

2π
6η

)1/3
− 1

,

where superscripts L and S stand for the liquid phase and solid phase, respectively.

Hereafter we also use these superscripts for the quantity Γ as follows:

ΓL(η) ≡ 1 + χL(η), ΓS(η) ≡ 1 + χS(η).
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As seen in Fig. 2.1, the curve pω/kBT − η has two branches: one is the liquid

phase branch and the other one is the solid phase branch. Both branches have

thermodynamically metastable parts (ML and MS) as well as stable parts (L and

S). The packing fractions ηL and ηS are, respectively, the values of η at the freezing

point and at the melting point. In the range between ηL and ηS, there can be

liquid-solid coexistence states (CO) with a common temperature, T ∗, and a common

pressure, p∗. According to the simulation data [77]

6√
2π

p∗ω

kBT ∗ ≈ 8.27,

and the values of ηL and ηS are given by

ηL ≈ 0.4946, ηS ≈ 0.5564.

As we have seen in this section, the only difference between the basic equations

0 0.2 0.4 0.6
0
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20

0.7405

pω
 / 

k B
T

η

liquid

solidcoexistence

ηSηL

ML

MS
(L)

(CO) (S)

Figure 2.1: Liquid phase and solid phase branches of the pω/kBT − η curve for a hard-

sphere system (L: stable liquid branch, ML: metastable liquid branch, S: stable solid

branch, MS: metastable solid branch, CO: liquid-solid coexistence branch). ηL and ηS are

the packing fractions at the freezing and melting points, respectively.

adopted here and those introduced in the paper [83] is in the expression of the

caloric equation of state (Eq. (2.1)). This seemingly small difference, however, leads

to some profound differences in shock wave phenomena as seen in the following.
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2.2.2 The system of Euler equations

The system of Euler equations describing the conservation of mass, momentum and

energy for a compressible fluid in the one-dimensional case can be expressed as

ut + Fx(u) = 0, (2.4)

where the subscripts (time t and position x) denote partial differentiation. Here the

density u and the flux F are given by

u =

 ρ

ρv

ρe+ 1
2
ρv2

 , F =

 ρv

ρv2 + p(
ρe+ 1

2
ρv2 + p

)
v

 (2.5)

with v being the velocity.

The characteristic velocities of the hyperbolic system (2.4)-(2.5) are given by

λ(1) = v − c, λ(2) = v, λ(3) = v + c,

where c =
√
(∂p/∂ρ)s represents the sound velocity and s is the specific entropy.

2.3 The Rankine-Hugoniot conditions

The system of Euler equations (2.4)-(2.5) admits a plane shock wave provided that

the jump of the physical quantities between the states before and after the shock

front satisfies the well-known Rankine-Hugoniot (RH) conditions:

−Us[[u]] + [[F(u)]] = 0, (2.6)

where Us is the propagation velocity of the shock front and [[ψ]] = ψ1−ψ0 represents

the jump of a generic quantity ψ across the shock front, being ψ1 the quantity in

the state after the shock (perturbed state) and ψ0 in the state before the shock

(unperturbed state). The conditions (2.6) are explicitly written by using the packing

fraction η instead of the mass density ρ as follows:

−Us[[η]] + [[ηv]] = 0,

−Us[[ηv]] +

[[
ηv2 +

pω

m

]]
= 0,

−Us

[[
ηe+

1

2
ηv2
]]
+

[[(
ηe+

1

2
ηv2 +

pω

m

)
v

]]
= 0.

(2.7)

The Mach number in the unperturbed state, M0, is defined by

M0 ≡
Us − v0
c0

,
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where the quantities with the subscript 0 are the so-called unperturbed quantities,

i.e. the quantities evaluated in the unperturbed state (analogously, the quantities

with the subscript 1 are evaluated in the perturbed state and are called perturbed

quantities). In the present case, we have

c0 =

√
kBT0
m

(
Γ0 +

2

D
Γ2
0 + η0Γ′

0

)
,

where Γi and Γ′
i (i = 0, 1) are defined by

Γi ≡ Γ(ηi), Γ′
i ≡

(
dΓ(η)

dη

)
ηi

.

Without loss of generality, we hereafter assume for the Galilean invariance that

v0 = 0 and we will focus on the fastest shock wave propagating in the positive

x-direction.

We summarize in the following how the RH conditions appear after introduc-

ing the equations of state, Eq. (2.1) and Eq. (2.3), into Eq. (2.7) (the details are

essentially the same as in the paper [83]) and we discuss some related subjects.

Throughout the present paper, we study only the case in which the unperturbed

states are in the region of liquid phase (i.e. η0 < ηL).

2.3.1 Liquid-liquid and liquid-solid RH conditions

Since the equations of state for both liquid and solid phases have the same form (see

Eq. (2.1) and Eq. (2.3)), although the expressions of the function χ (η) are different,

we write down the RH conditions in a unified way.

The ratios of the pressure and temperature in the perturbed and unperturbed

states, and the velocity in the perturbed state divided by the unperturbed sound

velocity, c0, are given by

p̂ ≡ p1
p0

= 1 +
M2

0 (η̂ − 1)[Γ0(D + 2Γ0) +DΓ′
0η0]

DΓ0η̂
,

T̂ ≡ T1
T0

=
p̂Γ0

η̂Γ1

,

v̂ ≡ v1
c0

=M0

(
1− 1

η̂

)
,

(2.8)

where η̂ ≡ η1
η0

and M0 is expressed as

M0 =

√
Dη̂{−DΓ0 + Γ1[Dη̂ + 2(η̂ − 1)Γ0]}

(η̂ − 1)[Γ1(1− η̂) +D](DΓ0 + 2Γ2
0 +Dη0Γ′

0)
. (2.9)
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Since we will be focusing on the fastest wave traveling in the positive x-direction,

we define a dimensionless characteristic velocity λ̂ as follows:

λ̂ ≡ λ
(3)
1

c0
= v̂ +

√
T̂ (Γ1 +

2
DΓ

2
1 + η1Γ′

1)

Γ0 +
2
DΓ

2
0 + η0Γ′

0

.

Note that, in all the above expressions,

Γ0 ≡ ΓL (η0) , Γ′
0 ≡

(
dΓL (η)

dη

)
η0

,

and

Γ1 ≡


ΓL (η1)

for η1 on the liquid branch; L and ML −
liquid-liquid RH conditions ,

ΓS (η1)
for η1 on the solid branch; S and MS −
liquid-solid RH conditions ,

Γ′
1 ≡



(
dΓL(η)

dη

)
η1

for η1 on the liquid branch; L and ML −
liquid-liquid RH conditions ,(

dΓS(η)
dη

)
η1

for η1 on the solid branch; S and MS −
liquid-solid RH conditions .

2.3.2 Liquid-coexistence Rankine-Hugoniot conditions

We summarize the RH conditions in the case in which the perturbed state is a coex-

istence state (L-CO RH conditions). The total packing fraction η(α) of a coexistence

state is given by
1

η(α)
=

1− α

ηL
+
α

ηS

with the parameter α running from 0 to 1 as the coexistence state moves from the

freezing point to the melting point on the horizontal line in Fig. 2.1. The pressure,

p∗, is common to both phases and it is related to a common temperature, T ∗, as

follows:
p∗ω

kB
= T ∗ηL

(
1 + χL(ηL)

)
= T ∗ηS

(
1 + χS(ηS)

)
.

The following relations are obtained:

p̂ = 1 +
M2

0 (η̂ (α)− 1) [Γ0(D + 2Γ0) +DΓ′
0η0]

DΓ0η̂ (α)
,

T̂ =
η0 [Γ0η̂ (α) +M2

0 (Γ0 + 2Γ2
0/D + η0Γ

′
0) (η̂ (α)− 1)]

ΓL(ηL)ηLη̂ (α)
,

v̂ =M0

(
1− 1

η̂ (α)

)
,
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M0 =

√√√√ Dη̂(α)2(ΓL(ηL)ηL−Γ0η0)
η̂(α)−1

+ 2Γ0η̂(α)ΓL(ηL)ηL

(Γ0 + 2Γ2
0/D + η0Γ′

0) [Γ
L(ηL)ηL(1− η̂(α)) +Dη0η̂(α)]

,

λ̂ = v̂ +

√
2
D T̂ (ΓL(ηL)ηL)

2

η̂2(α)η20
(
Γ0 +

2
DΓ

2
0 + η0Γ′

0

) .
2.3.3 Two possibilities of shock-induced phase transitions

In the paper [83], the Hugoniot loci for the unperturbed states u0, H (u0), i.e. the

loci of the perturbed states satisfying the RH conditions for a given unperturbed

state u0 (also known as RH curves), in the two possible cases, P-1 and P-2, of

shock-induced phase transitions were analyzed in detail. The case P-1 is the phase

transition with a jump between a metastable liquid state and a stable solid state,

and the case P-2 is the phase transition through coexistence states when the shock

strength changes. We concluded that the case P-2 is to be chosen, instead of the case

P-1, by adopting the selection rule in terms of the maximum entropy production rate:

The relevant case, from a physical point of view, is the one that involves the largest

specific entropy production rate at a shock front as a function of the unperturbed

Mach number.

Therefore, it is an interesting problem to study whether the conclusion drown in

the paper [83] is still true for a hard sphere system with internal motion. We will

study this problem in the next section and will conclude that the case P-2 is still to

be chosen for any value of the internal degrees of freedom f .

Before applying the selection rule to the cases P-1 and P-2 (Section 2.4), we

summarize the relations concerning the specific entropy production rate ς:

ς = η0c0M0[[s]],

where the jump of the specific entropy [[s]] for L-L, L-S and L-CO Hugoniot is given,

respectively, by

[[s]]L−L = kB
m

(
D
2
ln T̂ −

∫ η1
η0

ΓL(η)
η

dη
)
,

[[s]]L−S = kB
m

(
D
2
ln T̂ −

(∫ ηL
η0

ΓL(η)
η

dη +∫ η1
ηS

ΓS(η)
η

dη
)
+ χS(ηS)− χL(ηL)

)
,

[[s]]L−CO = kB
m

(
D
2
ln T̂ −

∫ ηL
η0

ΓL(η)
η

dη +

α
(
χS(ηS)− χL(ηL)

))
.
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For details of these derivation, see the paper [83].

As a typical example, the dependence of the Hugoniot loci,H (u0), on the internal

degrees of freedom, f , in the case P-2 with the unperturbed state η0 = 0.2 is shown

in Fig. 2.2 and Fig. 2.3. For the sake of brevity, the Hugoniot loci in the case P-1

are omitted. Noticeable points are summarized as follows:
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Figure 2.2: Hugoniot loci, represented in the p̂− η1 and T̂ − η1 planes, for three different

values of the internal degrees of freedom, f (f = 0, 10, 100). In the case f = 100, the

Hugoniot loci cross the coexistence region, going from the liquid phase region to the solid

phase region, as the shock strength increases (case P-2). The unperturbed packing fraction

is η0 = 0.2. Vertical dashed lines are asymptotes, η1 = η∞1 , for f = 0, 10.

(i) As the strength of a shock wave increases (that is, as η1 increases from η0),

the quantities p̂ and T̂ increase, but their increasing rates decrease with the

increase of the internal degrees of freedom, f . Moreover, the decrease of the

increasing-rate of T̂ is larger than that of p̂.

(ii) From Eq. (2.8) and Eq. (2.9), it may be seen that the RH conditions have

real solutions only when the denominator of the right hand side of Eq. (2.9)

is positive, i.e. when η0 ≤ η1 < η∞1 , being η∞1 the perturbed packing fraction

satisfying the relation

Γ (η∞1 ) (1− η∞1 /η0) +D = 0.

When η1 tends to η
∞
1 , p̂ and T̂ , along with M0, have a vertical asymptote (see

Fig. 2.2); for this reason we call η∞1 the strong shock limit. It may be proved

that η∞1 increases with the increase of the internal degrees of freedom, f .
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Figure 2.3: Hugoniot loci, represented in the p1ω/kB − T1 plane for three different values

of the internal degrees of freedom, f (f = 0, 10, 100). In the case f = 100, the Hugoniot

loci cross the coexistence line, going from the liquid phase region to the solid phase re-

gion, as the shock strength increases (case P-2). The unperturbed packing fraction and

temperature are given, respectively, by η0 = 0.2 and T0 = 300K.

(iii) From a physical point of view, we can understand that a considerable portion

of the energy supplied by a shock compression goes into the internal motions

of the system, and therefore the temperature can not rise so much. This fact

indicates that a shock-induced phase transition has a high possibility to take

place in a hard-sphere system with large degrees of internal motion. In the

figures, we can indeed observe a shock-induced phase transition when f = 100.

2.3.4 Characteristic quantities

In the paper [83], some quantities useful in the classification of shock wave phenom-

ena were introduced. Since those quantities will be useful in the following, we recall

their definitions in this section.

The quantity η01 (η02) is defined as the unperturbed packing fraction that leads

to a perturbed packing fraction equal to ηL (ηS) in the strong shock limit. In other

words, η01 (η02) is the largest unperturbed packing fraction for which the liquid-

coexistence (liquid-solid) shock-induced phase transition never occurs, no matter

how the shock is strong.
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Figure 2.4: Dependence of the characteristic packing fractions η01 and η02 on the internal

degrees of freedom, f . For each given value of f there are three distinct regions: A, B

and X.

These characteristic packing fractions, η01 and η02, may be expressed as follows:

η01 = ηL
ΓL(ηL)

D + ΓL(ηL)
, η02 = ηS

ΓS(ηS)

D + ΓS(ηS)
. (2.10)

It is easily seen from Eq. (2.10) and Eq. (2.2) that η01 and η02 are decreasing (ap-

proaching zero) as f increases. This behavior is in agreement with the above-

mentioned fact that the larger is f , the easier to obtain are the shock-induced phase

transitions. As a consequence of the given definitions of η01 and η02, we may define

three distinct regions – graphically represented in Fig. 2.4 – over which the unper-

turbed packing fraction, η0, can vary: region A= {(f, η0) : f ∈ N, 0 < η0 < η01}, re-
gionB= {(f, η0) : f ∈ N, η01 < η0 < η02} and regionX= {(f, η0) : f ∈ N, η02 < η0 < ηL}.
The dependence of η01 and η02 on the internal degrees of freedom, f , and the conse-

quent effect of changing f on the extension of these three regions, may be appreciated

in Fig. 2.4. A description of these three regions may be given as follows:

• Region A. When the unperturbed packing fraction, η0, is in this region, the

perturbed states on the Hugoniot locus never have a packing fraction equal or

larger to the packing fraction of the freezing point, ηL, even in the strong shock

limit (i.e. η∞1 < ηL). Therefore, only a thermodynamically stable liquid state

can be observed after a shock front, that is, shock-induced phase transition

never occurs.
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• Region B. When the unperturbed packing fraction, η0, is in this region, the

perturbed states on the Hugoniot locus never have a packing fraction equal or

larger than the packing fraction of the melting point, ηS, even thought it can

be larger than the packing fraction of the freezing point, ηL (in other words,

ηL < η∞1 < ηS). If the shock strength is large enough, we can observe a

coexistence state after a shock front.

• Region X.When the unperturbed packing fraction, η0, is in this region, the

perturbed states on the Hugoniot locus may have a packing fraction larger

than the packing fraction of the melting point, ηS (i.e. η∞1 > ηS). Therefore,

if the shock strength is large enough, we can observe a stable solid state after

a shock front. There can exist shock-induced liquid-solid phase transitions.

Other quantities, already introduced in the paper [83], that turn out to be useful

in the present analysis are the following.

The quantity M01 (M02) is defined as the unperturbed Mach number that leads

to a perturbed state with a packing fraction equal to ηL (ηS). In other words,

M01 (M02) is the smallest unperturbed Mach number for which a liquid-coexistence

(liquid-solid) shock-induced phase transition occurs, if ever.

The characteristic Mach numbers M01 and M02 may be expressed as follows:

M01 =

√
Dη̂L{−DΓ0 + ΓL(ηL)[Dη̂L + 2(η̂L − 1)Γ0]}

(η̂L − 1)[ΓL(ηL)(1− η̂L) +D](DΓ0 + 2Γ2
0 +Dη0Γ′

0)
,

M02 =

√
Dη̂S{−DΓ0 + ΓS(ηS)[Dη̂S + 2(η̂S − 1)Γ0]}

(η̂S − 1)[ΓS(ηS)(1− η̂S) +D](DΓ0 + 2Γ2
0 +Dη0Γ′

0)
.

The dependence of M01 and M02 on the internal degrees of freedom, f , is shown in

Fig. 2.5.

2.4 Admissibility of shock waves

From the theory of hyperbolic systems, it is well-known that some conditions (a

selection rule) have to be satisfied in order for a shock to be allowed to propagate.

Such a shock satisfying the proper selection rule will be referred to as an admissible

shock. Since an admissible shock is a shock that does not change its wave profile

during its propagation, while the wave profile of an inadmissible shock breaks into

a combination of shocks, rarefaction waves and constant states evolving in time,
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Figure 2.5: Characteristic Mach numbers M01 and M02 versus the unperturbed packing

fraction η0 for several values of the internal degrees of freedom: f = 0 (left), f = 10

(center), f = 100 (right).

an admissible shock is sometimes called a stable shock in the literature concerning

hyperbolic system.

In the case of a genuinely nonlinear field, i.e. if the following condition is satisfied:

∇λ · r ̸= 0 ∀u,

where λ is an eigenvalue of the hyperbolic systems, ∇ is the gradient made with

respect to u and r is the corresponding eigenvector, the selection rule is given by

the well-known Lax conditions [43], stating that a shock is admissible if its velocity

of propagation, Us, is such that

λ0 < Us < λ1

being λ0 and λ1, respectively, the eigenvalues evaluated in the unperturbed and

perturbed states.

In the case of a locally genuinely nonlinear field, i.e. when the genuine nonlin-

earity fails for some values of the field:

∇λ · r = 0 for some u,

the Lax conditions have to be replaced by the more general Liu conditions [44–46]

asserting that a shock is admissible if and only if its velocity of propagation is not

decreasing as we move on the Hugoniot locus starting from the unperturbed state,

u0, towards the given perturbed state, u1:

Us (u0, ũ) ≤ Us (u0,u1) ∀ũ ∈ H (u0) between u0 and u1.
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First of all, let us consider two typical cases. In the first case (Fig. 2.6 and

Fig. 2.7) the unperturbed packing fraction, η0, is in the region B (see Fig. 2.4); in

the second case (Fig. 2.8 and Fig. 2.9) the unperturbed packing fraction, η0, lies in

the region X.
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Figure 2.6: Dependence of the unperturbed Mach number, M0, (solid curve) and of the

dimensionless characteristic speed, λ̂, (dashed curve) on the perturbed packing fraction η1

for three different values of the internal degrees of freedom, f , (f = 0, 10, 100) according

to the possibilities P-1 (above) and P-2 (below). The unperturbed packing fraction η0 is

in the region B.

From Fig. 2.6 and Fig. 2.8, we see that in both the two cases, both the possi-

bilities P-1 and P-2 guarantee that the Liu conditions are satisfied. From Fig. 2.7

and Fig. 2.9, we can see that both the possibilities P-1 and P-2 satisfy also the

thermodynamical requirement of the positivity of the entropy production rate, ς, in

both the two cases. Therefore shock waves of both P-1 and P-2 are stable.

The problem to be solved now consist in understanding which of the two possi-

bilities is the physically relevant one. It can be proved that the entropy production

rate, ς, of P-2 is larger than that of P-1 for any value of the internal degrees of free-

dom, f , although the difference between P-1 and P-2 decreases with the increase of

f . Here, for the sake of brevity, we omit the proof. Therefore, if we use the selection

rule in terms of the maximum entropy production rate mentioned in the last sec-
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Figure 2.7: Dependence of the dimensionless entropy production rate, ς ′ (= ς
η0c0

m
kB

) on

the unperturbed Mach number, M0, for three different values of the internal degrees of

freedom, f , (f = 0, 10, 100) according to the possibilities P-1 (dotted curve) and P-2 (solid

curve). The unperturbed packing fraction η0 is in the region B.

tion, we may adopt the coexistence-Hugoniot (the possibility P-2) as the physically

relevant solution for a hard-sphere system with internal motion. According to this,

hereafter, we will confine our analysis to the study of only the possibility P-2.

2.5 Classification of shock-induced liquid/solid phase tran-

sitions

In section 2.3.4, we stated that, for any given f , a shock-induced liquid-solid phase

transition may occur only when the unperturbed packing fraction lies in the region

X (see Fig. 2.4). In this section, we study the fine structure of this region: we

divide it into three subregions and we motivate this subdivision pointing out the

different features of these three subregions in terms of shock admissibility. Let us

pay attention to the following three cases, covering all the possible relations between

the unperturbed Mach number, M0, and the perturbed packing fraction, η1, in the

region X:

(i) The unperturbed Mach number, M0, is a monotonically increasing function of

the perturbed packing fraction, η1. Therefore, the characteristic Mach numbers

M01 and M02 satisfy the inequality M01 < M02 (cf. case (α) in Fig. 2.10).

(ii) The unperturbed Mach number, M0, is not a monotonically increasing func-

tion of the perturbed packing fraction, η1, and there is a packing fraction ηc

(ηL < ηc < ηS) such that M0 = M01 when η1 = ηc. The inequality M01 < M02

still holds in this case (cf. case (β) in Fig. 2.10).
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Figure 2.8: Dependence of the unperturbed Mach number, M0, (solid curve) and of the

dimensionless characteristic speed, λ̂, (dashed curve) on the perturbed packing fraction η1

for three different values of the internal degrees of freedom, f , (f = 0, 10, 100) according

to the possibilities P-1 (above) and P-2 (below). The unperturbed packing fraction η0 is

in the region X.

(iii) The unperturbed Mach number,M0, is not a monotonically increasing function

of the perturbed packing fraction, η1, as in the case (ii), but the packing fraction

ηc satisfies, in this case, the inequality ηc > ηS. The inequality M01 > M02

holds in this case (cf. cases (γ) and (δ) in Fig. 2.10).

We can prove that the boundary between the cases (i) and (ii) is characterized

by the condition that the characteristic unperturbed Mach number M01 is equal to

the characteristic speed estimated by using the L-CO Hugoniot conditions, λ̂CO, at

the freezing point ηL:

M01 = λ̂CO
∣∣∣
ηL
. (2.11)

The boundary between the cases (ii) and (iii) is given by the condition:

M01 =M02. (2.12)

By using the conditions (2.11) and (2.12) we realize that the region X may be di-

vided into three distinct subregions C, D and Y, which correspond to the cases
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Figure 2.9: Dependence of the dimensionless entropy production rate, ς ′ (= ς
η0c0

m
kB

) on

the unperturbed Mach number, M0, for three different values of the internal degrees of

freedom, f , (f = 0, 10, 100) according to the possibilities P-1 (dotted curve) and P-2 (solid

curve). The unperturbed packing fraction η0 is in the region X.
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Figure 2.10: Schematic representations of typical cases of the relationship between the

unperturbed Mach number M0 and the perturbed packing fraction η1 in the region X
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Figure 2.11: The region X may be divided into the three subregions C, D and Y.

(i), (ii) and (iii), respectively, as shown in Fig. 2.11. In fact, for any f > 0,

there exists an unperturbed packing fraction, η03, for which the condition (2.11)

is satisfied and, analogously, there exists an unperturbed packing fraction, η04, for

which the condition (2.12) is satisfied; all the unperturbed packing fraction such

that η02 < η0 < η03 belong to the case (i), all the ones such that η03 < η0 < η04

belong to the case (ii) and all those such that η04 < η0 < ηL belong to the

case (iii). When f = 0, it turns out that the condition (2.12) is never satis-

fied; in this case any unperturbed packing fraction such that η03 < η0 < ηL

belong to the case (ii). So, region C= {(f, η0) : f ∈ N, η02 < η0 < η03}, region

D= {(f, η0) : f ∈ N+, η03 < η0 < η04} ∪ {(f, η0) : f = 0, η03 < η0 < ηL} and region

Y= {(f, η0) : f ∈ N+, η04 < η0 < ηL}.
We summarize the characteristic features of the regions C, D and Y in detail

by studying the case f = 10, pointing out that the results are qualitatively valid for

any f > 0.

• Region C. The dependence of the unperturbed Mach number, M0, and of the

dimensionless characteristic speed, λ̂, on the perturbed packing fraction, η1, in

a typical case (η0 = 0.28) is shown in Fig. 2.12. We notice that, from the Liu

conditions, any compressive shock wave (η1 > η0) is admissible. In other words,

by using a single compressive shock, we can obtain any stable perturbed state
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Figure 2.12: Typical dependence of the Mach number M0 (solid curve) and the dimen-

sionless characteristic speed λ̂ (broken curve) on the perturbed packing fraction, η1. Any

shock wave with a perturbed state (η1 > η0) is stable.

in any phase (liquid phase, coexistence and solid phase). The same property

of the admissibility for a single shock was already found in the case of f = 0

presented in the paper [83].

• Region D. The dependence of the unperturbed Mach number, M0, and of

the dimensionless characteristic speed, λ̂, on the perturbed packing fraction,

η1, in the case with η0 = 0.35 is shown in Fig. 2.13. The intersection point

between M0 and λ̂ in the coexistence region is the local minimum point of

M0. A noticeable point is that, from the Liu conditions, a shock wave with a

perturbed packing fraction such that η0 < η1 < ηL and η1 > ηc is admissible,

while a shock wave with a perturbed packing fraction such that ηL < η1 < ηc is

not admissible. That is to say, it is impossible to reach a perturbed state with

the packing fraction in the part of the coexistence region ηL < η1 < ηc through

a stable shock. In the next section we will study the stability of a shock wave

numerically and will confirm the above results.

If an initial shock is in the above-mentioned inadmissible region, such a shock

eventually splits into several waves composed of shock waves, rarefaction waves
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Figure 2.13: Typical dependence of the Mach number M0 (solid curve) and the dimension-

less characteristic speed λ̂ (broken curve) on the perturbed packing fraction, η1. A shock

wave with the perturbed packing fraction, η1, in the region, η0 < η1 < ηL and η1 > ηc,

is stable (boldfaced part of the curve M0), while a shock wave with a perturbed packing

fraction such that ηL < η1 < ηc is unstable (lightfaced part of the curve M0).

and constant states in the course of its propagation. Some typical numerical

examples of the shock splitting and composite waves occurred thereby will be

shown also in the next section. Shock splitting phenomena in a gas [69–71]

and in a solid [57] have already been studied.

• Region Y. Let us discuss the region Y that is characteristic of a hard sphere

system with internal degrees of freedom f ≥ 1. Typical dependence of the

Mach number, M0, and the dimensionless characteristic speed, λ̂, on the pack-

ing fraction η1 is shown in Fig. 2.14 and Fig. 2.15 (see cases (γ) and (δ) in

Fig. 2.10). The unperturbed Mach number, M0, has a local minimum point

in the coexistence region (see Fig. 2.14) or it is monotonically decreasing, as

η1 increases, all over the coexistence region (see Fig. 2.15). As far as a stable

single shock is concerned, we can study both cases simultaneously.

From the Liu conditions, a shock wave with a perturbed state in the region

η0 < η1 < ηL and η1 > ηc is admissible, while a shock wave with a perturbed
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Figure 2.14: Typical dependence of the Mach number, M0, (solid curve) and the dimen-

sionless characteristic speed λ̂ (broken curve) on the perturbed packing fraction, η1. A

shock wave with the perturbed packing fraction η1 in the region, η0 < η1 < ηL and η1 > ηc,

is stable (boldfaced part of the curve M0), while a shock wave with a perturbed packing

fraction, η1, such that ηL < η1 < ηc is unstable (lightfaced part of the curve M0). The

unstable region includes the melting point ηS .

state in the region ηL < η1 < ηc is not admissible. As in the Region D, it is

impossible to reach a perturbed state with the packing fraction in the region

ηL < η1 < ηc through a single stable shock. However, it should be noticed that

the unstable region in this case includes the melting point ηS and therefore

includes a part of the Hugoniot locus in thermodynamically stable solid phase.

Therefore a shock wave may be unstable even though the perturbed state is in

thermodynamically stable solid phase. This is one of remarkable features of the

dynamic phase transitions found in the present analysis. In material syntheses,

for example, this new fact may become important because we have now noticed

that there are thermodynamic stable states which cannot be reached by a single

shock.

In the next section we will study numerically the stability of a shock wave and

the shock splitting.
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Figure 2.15: Typical dependence of the Mach number, M0, (solid curve) and the dimen-

sionless characteristic speed λ̂ (broken curve) on the perturbed packing fraction, η1. A

shock wave with the perturbed packing fraction η1 in the region, η0 < η1 < ηL and

η1 > ηc, is stable (boldfaced part of the curve M0), while a shock wave with η1 in the

region ηL < η1 < ηc is unstable (lightfaced part of the curve M0). The unstable region

includes the melting point ηS .

2.6 Numerical analysis

In the previous sections, we have used the Liu conditions in our analysis. Rigorously

speaking, the Liu conditions require the constitutive equations to be smooth, so they

are not applicable when the Hugoniot loci cross neighborhoods of perturbed states

with packing fractions equal to ηL or ηS, because the equations of state are not

smooth when η = ηL and η = ηS. In these cases, the numerical approach plays a

major role showing that the results concerning the shock admissibility are the same

as if the Liu conditions were applicable.

Numerical solutions of the equations for the hard-sphere system described in

Section 2.2 have been calculated in order to check the theoretical results stated in

Section 2.5 and to analyze the admissibility of a shock wave when its unperturbed

state lies in one of the regions labeled as A, B, C, D and Y.

The tool used for the computations is a MATLAB/C++ general-purpose code

useful for the numerical solution of hyperbolic systems of balance and/or conserva-
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tion laws which has been recently developed by some of the authors [85,86]. The tool

allows the user to choose the suitable algorithm among a wide variety of available

algorithms. For the case being, the selected algorithm is based on a fourth-order

Central Runge-Kutta (CRK) scheme recently proposed by Pareschi et al. [87], which

turned out to be stable and sound for a wide range of hyperbolic systems of conser-

vation laws, including the case of locally linearly degenerate fields.

When the unperturbed state, u0, belongs to either of the regions A, B and C,

the Liu conditions give the same results as the Lax conditions and it turns out

that all the states u1 lying on the admissible branch of the Hugoniot locus passing

through the given state u0 are connected to u0 by an admissible shock wave, i.e.,

all the compressive shocks are admissible. This well-known theoretical result has

been checked by means of numerical calculations and some representative results are

shown in Fig. 2.16 for the cases of u0 belonging to the regions A, B and C. For each

of these three cases, given an unperturbed state u0 ≡ (η0, v0, p0ω/m), we show the

profile of η, as a function of x at t = 0.2 which comes from a Cauchy initial data of

Riemann type in which the discontinuity between the unperturbed state u0 and the

perturbed state u1 is located at x = 0. The value of the internal degrees of freedom

is set to f = 10.

For the case A, the packing fraction of the considered unperturbed state is η0 =

0.2; for the case B, the packing fraction is η0 = 0.255 and, finally, for the case

C we set η0 = 0.28. All the calculations have been performed with v0 = 0 and

p0ω/m = 0.3. In all these cases the packing fractions of the perturbed states, η1,

for which numerical results are presented are graphically shown in Fig. 2.16(a,c,e)

by means of black circles.

From the corresponding η profiles, obtained numerically and given in Fig. 2.16(b,d,f),

we may claim that the shock wave appears to be acceptable for any of the perturbed

state that we have examined.

The numerical analysis of the admissibility of a shock waves whose unperturbed

state lies in the region D is presented in Fig. 2.17 for η0 = 0.35. In this case, the

Lax conditions are not applicable and the Liu conditions become necessary in order

to analyze the admissibility of shocks. The range of the η1 values for which the

Liu conditions allow to claim that the shock is not admissible corresponds to the

region under the horizontal thin line in Fig. 2.17(b), that is ηL < η1 < ηc, while the

values of η1 outside this interval (η0 ≤ η1 ≤ ηL and η1 ≥ ηc) give admissible shocks.
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Figure 2.16: Left figures: M0 and λ̂ as functions of η1 for unperturbed states defined

by: v0=0, p0ω/m=0.3 and (a) η0=0.2 (Region A); (c) η0=0.255 (Region B); (e) η0=0.28

(Region C). Right figures: η profiles obtained numerically as solutions of the Riemann

problem with unperturbed states defined above and perturbed states indicated by the

black circles in the left figures: (b) η1 = 0.3, 0.35, 0.4, 0.45; (d) η1 = 0.35, 0.45, ηL ≃
0.4946, 0.55; (f) η1 = 0.4, ηL ≃ 0.4946, 0.53, ηS ≃ 0.5564, 0.573.

The numerical solutions, presented here for a set of perturbed states whose packing

fraction spans all the regions of interest, confirm the theoretical results, as may be

appreciated from the profiles of the packing fraction, η, shown in Fig. 2.17(c–f).

Numerical results concerning the case in which the unperturbed state u0 lies in

the region Y are presented in Fig. 2.18. In this case, as pointed out in Section 2.5,

a shock wave with a perturbed packing fraction, η1, in the solid branch (η1 > ηS)
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Figure 2.17: RegionD: (a)M0 and λ̂ as functions of η1 for an unperturbed state defined by:

η0=0.35, v0=0, p0ω/m=0.3; (b) Blow-up of the boxed region in part (a) of the figure; (c–

f): η profiles obtained numerically as solutions of the Riemann problem with unperturbed

states defined above and perturbed states indicated by the black circles in part (b) of the

figure: η1 = 0.49, 0.5, 0.515, 0.56.

may be not acceptable, as well as all the shock waves with packing fractions in the

coexistence region (ηL < η1 < ηS). In fact, from the Liu conditions, we obtain that

a shock is admissible if η0 ≤ η1 ≤ ηL or η1 ≥ ηc > ηS. This means that all the

perturbed states lying on the Hugoniot locus through u0 such that ηS < η1 < ηc

(ηS ≃ 0.5564, ηc ≃ 0.5576) are not acceptable. These results are confirmed by the

numerical solutions, as may be appreciated from Fig. 2.18(c–f).

It is worth noting that, in the presented cases of non-admissible shocks (i.e. the

cases in Fig. 2.17(d,e) and in Fig. 2.18(d,e)), the η profiles show the so-called shock

splitting phenomenon, i.e. the wave profile is made up with a combination of shock

waves, rarefaction waves and constant states, depending on the particular values of

46



CHAPTER 2. SHOCK WAVES IN POLYTROPIC HARD-SPHERE SYSTEMS WITH
AND WITHOUT INTERNAL DEGREES OF FREEDOM

0.36 0.42 0.48 0.54 0.6
1

1.5

2

2.5

3

3.5

4

η
1

M
0
,
λ̂

(a) region Y

0.48 0.5 0.52 0.54 0.56
1.85

1.9

1.95

2

2.05

η
1

M
0
,
λ̂

(b) region Y (details)

0.66 0.68 0.7 0.72 0.74
0.3

0.4

0.5

0.6

(c) η
1
 = 0.49

x

η

0.66 0.68 0.7 0.72 0.74
0.3

0.4

0.5

0.6

(d) η
1
 = 0.549

x

η

0.66 0.68 0.7 0.72 0.74
0.3

0.4

0.5

0.6

(e) η
1
 = 0.557

x

η

0.66 0.68 0.7 0.72 0.74
0.3

0.4

0.5

0.6

(f) η
1
 = 0.56

x

η

Figure 2.18: Region Y: (a) M0 and λ̂ as functions of η1 for an unperturbed state defined

by: η0=0.365, v0=0, p0ω/m=0.3; (b) Blow-up of the boxed region in part (a) of the

figure; (c–f): η profiles obtained numerically as solutions of the Riemann problem with

unperturbed state defined above and perturbed states indicated by the black circles in

part (b) of the figure: η1 = 0.49, 0.549, 0.557, 0.56.

the unperturbed and perturbed states.

2.7 Summary and concluding remarks

From the analysis of the RH conditions, we have found the distinct regions A, B,

C, D and Y in the plane of the unperturbed packing fraction η0 and the internal

degrees of freedom f (Fig. 2.11). It is interesting to note that region Y can be

observed only if f ≥ 1, that is, if there is an internal motion.

The characteristic features of the regions A to C have already been discussed

through studying the cases of no internal motion (i.e. f = 0) in the paper [83]. The
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regions D and Y are essentially new findings in the present paper. By applying

the Liu conditions to the cases in the regions D and Y we have made clear the

admissible condition for a stable single shock wave. Even if a perturbed state is

thermodynamically stable, it is not always stable dynamically, that is, it may be

unstable with respect to a dynamical perturbation. In such an unstable case we can

observe the so-called shock splitting phenomena as shown in the numerical analysis

in section VI.

Lastly let us summarize the concluding remarks as follows:

(i) In the present analysis, our study is mainly limited within analyzing stable

shock waves. If we want to study the time-evolution of an unstable single shock in

detail, we should divide the region Y into more subregions in order to classify such

time-evolutions properly (see, for example, the cases (γ) and (δ) in Fig. 2.10 both

of which belong to the same region Y). The subject is left for a future work.

(ii) This remark is concerned with an experiment that seems to be possible to

check the present theory. That is, an experiment on shock wave phenomena in

a system of fullerenes C60. We can expect to observe shock-induced liquid-solid

phase transitions in this system. Their experimental data can be compared with

the present results of a suitable non-zero value of f . However, the success of such

an experiment is not so much sure at present because the liquid phase of the system

has not been observed clearly until now [88–90].

48



Chapter 3

A new type of shock in real gases:

a compressive upper shock

3.1 Introduction

The compressive shocks, inducing phase transitions, may be called compressive lower

shocks, since they have the feature, common to all the compressive shocks described

in the literature, that the density of the perturbed state is larger than the density

of the unperturbed state and, as the shock strength increases (for instance, the

perturbed pressure, i.e., the pressure of the perturbed state), the perturbed density

increases as well, approaching from below the value corresponding to the minimal

allowed specific volume (i.e., they are compressive lower shocks).

In this chapter, we prove that there exists a very thin region in the ρp plane,

characterized by low values of density and pressure, near the gas/liquid coexistence

curve, which we call C̃, in which an admissible compressive shock has the unusual

property that as the strength of the shock increases, the perturbed density ap-

proaches the limit value from above and, as a consequence, as the strength of shock

increases, the perturbed density decreases [93]. In the following, we shall discuss

this new kind of shocks, which may be called compressive upper shocks, and we

identify completely the region C̃ which depends on the internal degrees of freedom

of a constituent molecule. Hopefully, these new findings may provide some useful

indications for experimentalists.

For simplicity we adopt a real gas modeled by the van der Waals equation which

can be regarded as the simplified model of the system of hard-spheres with attractive

force. It was pointed out that there exists a region in the space of the states such

that when the unperturbed state, u0, belongs to this region, the Hugoniot locus
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for u0, which we denote as H (u0), crosses the coexistence curve, Ccoe, and phase

transitions may be allowed.

3.2 The van der Waals model and the Rankine-Hugoniot

conditions

The van der Waals caloric and thermal equations of state are given by:

e = RT/δ − aρ,

p = RT ρ/ (1− bρ)− aρ2,
(3.1)

where e, p, ρ and T are, respectively, the specific internal energy, pressure, density

and temperature; δ = R/cv, R = kB/m, being kB the Boltzmann constant, m the

mass of a constituent molecule and cv the specific heat capacity at constant volume

related to the internal degrees of freedom. The material-dependent constants a and

b represent, respectively, a measure of the attraction between molecules and the

effective volume of a molecule.

We consider a shock wave propagating in a perfect fluid described by the one-

dimensional hyperbolic system of the Euler equations with the constitutive equations

given in (3.1). The shock, propagating with velocity Us, divides the space into two

subspaces: the unperturbed state (or upstream state), u0, and the perturbed state

(or downstream state), u1 which are, respectively, the states before and after the

shock. The field u1 ∈ H (u0), i.e., it is the solution of the Rankine-Hugoniot (RH)

conditions. For later convenience, it is useful to introduce the dimensionless variables

ρ̂ = ρ/ρcr, p̂ = p/pcr, T̂ = T/Tcr,

ê = (ρcr/pcr) e, v̂ =
√
ρcr/pcr v, ĉ =

√
ρcr/pcr c,

where v is the velocity of the fluid and c =
√
(∂p/∂ρ)S is the sound velocity (being

S the specific entropy). In the above expressions, ρcr = 1/ (3b), pcr = a/ (27b2)

and Tcr = 8a/ (27Rb) are respectively, the values of the mass density, pressure and

temperature at the critical point.

Focusing on non-characteristic shocks (i.e., discarding the so called contact dis-

continuities) in the present case, it is well known that a shock satisfying the Rankine-
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Hugoniot conditions of the Euler system reads

v̂1 = ĉ0M0
ρ̂1 − ρ̂0
ρ̂1

,

p̂1 = p̂0 + ĉ20M
2
0

ρ̂0 (ρ̂1 − ρ̂0)

ρ̂1
,

M0 =
1

ĉ0

√
2ρ̂1

ρ̂0 (ρ̂1 − ρ̂0)

(
p̂1 −

ρ̂0ρ̂1 (ê1 − ê0)

ρ̂1 − ρ̂0

)
,

(3.2)

where M0 = (Us − v0)/c0 is the unperturbed Mach number. In the following, we

shall consider only shocks propagating in the positive x direction (M0 > 0) and, due

to Galilean invariance, we shall also assume, without any loss of generality, v0 = 0.

We restrict ourselves to considering the unperturbed state in the gas region, the

dimensionless internal energy and sound velocity in the unperturbed state, respec-

tively, ê0 and ĉ0, are given by:

ê0 =
(
p̂0 + 3ρ̂20

)
(3− ρ̂0) / (3δρ̂0)− 3ρ̂0,

ĉ0 =
√
3 (1 + δ) (p̂0 + 3ρ̂20) / (3ρ̂0 − ρ̂20)− 6ρ̂0.

(3.3)

The internal energy in the perturbed state, ê1, depends on the phase in which the

perturbed state is: if it belongs to the gas or liquid phase, we have

ê1 =
(
p̂1 + 3ρ̂21

)
(3− ρ̂1) / (3δρ̂1)− 3ρ̂1 (3.4)

which, inserted into Eq. (3.2)3, yields

M0 = (
√
6ρ̂1/ĉ0)

√
N/D,

N = p̂0(1 + δ) + ρ̂0ρ̂1(ρ̂1 + ρ̂0 + 3δ − 3),

D = ρ̂0(2ρ̂0(3− ρ̂1) + 3δ(ρ̂0 − ρ̂1)).

(3.5)

When the perturbed state goes into the gas/liquid coexistence region which is

bounded by the coexistence curve, Ccoe, the relation (5.6)1 is still to be used in the

unperturbed state, but the expression of ê1 given in (3.4) for the perturbed state,

must be replaced by [94]:

ê1 =
(p̂1 + 3ρ̂2G)(3− ρ̂G)

3δρ̂G
− 3

(
ρ̂G + ρ̂L − ρ̂Gρ̂L

ρ̂1

)
, (3.6)

where ρ̂G and ρ̂L are, respectively, the densities of the gas and liquid phases at

pressure p̂1. Taking into account that the chemical potential and the pressure are

the same in the two phases, ρ̂G and ρ̂L are implicitly obtained by the following
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conditions:

3 (ρ̂G − ρ̂L) (6− ρ̂G − ρ̂L) + (3− ρ̂G) (3− ρ̂L)

(ρ̂G + ρ̂L) ln

(
ρ̂L(3− ρ̂G)

ρ̂G(3− ρ̂L)

)
= 0,

p̂1 = ρ̂Gρ̂L (3− ρ̂G − ρ̂L) .

(3.7)

Moreover, (4.21) has to be replaced by (3.2), (3.6) and (3.7), which, with the thermal

equation of state on the coexistence curve, set up a system that can be solved by

means of a suitable numerical method.

3.3 Compressive upper/lower shocks

In order to discuss the compressive upper shock, it is necessary to introduce the

limit density at the strong shock limit, i.e. the limiting value of the density when

the perturbed pressure, or Mach number, tends to infinity, ρ̂∞1 ≡ ρ̂∞1 (ρ̂0). Taking

into account (4.21) this value of the density is the solution of the following equation:

D(ρ̂0, ρ̂1) = 0. (3.8)

After introducing

Ñ(ρ̂0, p̂0) = N(ρ̂0, p̂0, ρ̂
∞
1 (ρ̂0)), (3.9)

we define the region C̃ as the region in the ρ̂p̂ plane delimited by the coexistence

curve Ccoe and by the curve C̃b given by the following equation:

C̃b ≡ {(ρ̂0, p̂0) : Ñ (ρ̂0, p̂0) = 0}. (3.10)

It is easily seen that, for unperturbed states belonging to the region C̃, we have

Ñ(ρ̂0, p̂0) < 0, while for unperturbed states outside of C̃, it is certainly Ñ(ρ̂0, p̂0) > 0.

Moreover, D(ρ̂0, ρ̂1) > 0 for ρ̂0 < ρ̂1 < ρ̂∞1 and D(ρ̂0, ρ̂1) < 0 for ρ̂1 > ρ̂∞1 . Therefore,

if the initial unperturbed state is chosen in C̃, we have

lim
ρ̂1→(ρ̂∞1 )−

N/D = −∞, lim
ρ̂1→(ρ̂∞1 )+

N/D = +∞,

and the opposite situation is met when the unperturbed state is chosen outside of

C̃. Let C be the region in the ρ̂p̂ plane such that when the unperturbed sate belongs

to this region, its Hugoniot locus crosses the coexistence curve. Therefore, we have

the situation sketched in Fig.3.1: Given two unperturbed states, A0 and B0, with

the same ρ̂0, such that A0 ∈ C̃ and B0 ∈ C \ C̃, the corresponding Hugoniot loci
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Figure 3.1: Schematic representation of Hugoniot loci, H (u0), without phase transition

(a) and with phase transitions (b). The Hugoniot loci without and with phase transition

are obtained inserting in Eqs. (3.2), respectively, Eq. (3.4) and Eq. (3.6).

obtained ignoring the phase transition, i.e., calculated by means of Eqs. (3.2), (5.6)

and (3.4), are represented in Fig. 3.1(a) by, respectively, the curves α and β (the

states with a negative pressure are physically meaningless and they correspond to

complex values of Mach numbers). On the other hand, since both the Hugoniot

loci meet the coexistence curve, the shock induces a phase transition and the curves

α and β sketched in Fig. 3.1(a) must be replaced by those shown in Fig. 3.1(b),

calculated by Eqs. (3.2), (5.6), (3.6) and (3.7). We observe that the shock with the

unperturbed state B0 is a usual compressive lower shock and the one associated to

the unperturbed state A0 is a compressive upper shock.

As is clearly seen from the above discussion, we can conclude that the gas →
liquid phase transition is necessary for observing the compressive upper shock.

It is worth observing that, when we come to the study of compressive upper

shocks, the perturbed pressure is not a single valued function of the perturbed

density (this can be easily seen in Fig.3.1), so the perturbed pressure p̂1 is a more

suitable parameter as the strength of the shock than the perturbed density ρ̂1.
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3.4 Admissibility of shock waves

According to the theory of hyperbolic systems, not every solution of the Rankine-

Hugoniot conditions corresponds to a physically meaningful shock wave. Thus,

we need a criterion to select which states u1 ∈ H (u0) are the perturbed states

that, together with u0 form admissible shocks. Since admissible shocks propagate

with no change in shape when they are given as initial data, these solution are

sometimes called stable shocks. It is well-known that not all the shock waves that

correspond to the solutions of the RH conditions are admissible and that the Liu

condition [44–46] should be satisfied in order that an initial shock can be stable and

then can propagate.

The Liu condition asserts that a shock wave is admissible if and only if its

velocity of propagation is not decreasing as we move on the RH curve starting from

the unperturbed state, u0, towards a given perturbed state, u1:

s (u0, ũ) ≤ s (u0,u1) ∀ũ ∈ RH curve through u0.

If the Liu conditions are not satisfied, the shock will become unstable, or inadmissi-

ble. It is well known that the Liu condition implies the Lax condition, and at least

for moderate shocks, the entropy growth, and therefore stable shocks satisfy the

second law of the thermodynamics (see, e.g. [8]). Conversely, the entropy growth is

not sufficient to imply the Liu condition, and we need an additional condition [8,46].

In view of checking the admissibility of the compressive upper shock, we need

to plot Us (or, equivalently, in this case, M0) as a function of the strength of the

shock, i.e. p̂1. From Fig. 3.2, obtained for a typical unperturbed state in the region

C̃, it may be appreciated that compressive shocks are always admissible, except

for an interval of values of the shock strength which corresponds to the part of

H (u0) spanning the coexistence region and part of the liquid region (gas → liquid

shock-induced phase transitions are thus allowed, but gas → coexistence state phase

transitions are not permitted).

3.5 Numerical analysis

The numerical analysis carried out by means of a numerical code elsewhere pre-

sented [85,86], based on a modification of a central Runge-Kutta (CRK) scheme [87],

confirms the theoretical predictions. Choosing the same values of the unperturbed

54



CHAPTER 3. A NEW TYPE OF SHOCK IN REAL GASES: A COMPRESSIVE
UPPER SHOCK

0.13 0.15 0.17 0.19 0.21
1.64

1.68

1.72

1.76

ˆ

M
0

p
1

Figure 3.2: Mach number, M0, as a function of the perturbed pressure, p̂1 (p̂0 = 0.05, ρ̂0 =

0.03, δ = 0.01). The dots represent the perturbed states for which numerical calculations

are shown in Fig. 3.3. The thick part of the curve represents admissible shocks, and the

part under the horizontal line represents inadmissible ones.

state as in Fig. 3.2, shock profiles for several perturbed states are given in Fig. 3.3.

These wave profiles are obtained by solving a Riemann problem for each pair of

perturbed/unperturbed states connected to the Euler equations with the equations

of state (3.1). Since the computational domain must be finite, as usual some arti-

ficial boundaries are introduced: absorbing boundary conditions are here imposed

in order to avoid spurious (unphysical) reflections of the outgoing waves. The in-

stant time at which the wave profiles are shown is arbitrarily chosen as t̂=0.3. Since

in a Riemann problem the shock instability appears immediately after the initial

time (i.e., at t=0+), any choice of the instant time would be acceptable, taken into

account that the larger the time, the more appreciable is the (possible) shock insta-

bility (the numerical computations were actually performed for much longer times

and the above-mentioned value of t̂ was selected as a compromise solution between

the requirement of having reasonably appreciable shock instabilities and the require-

ment of plotting clear wave profiles). From Fig. 3.3(b,c) it is possible to observe that

when a single shock wave is unstable, the ρ̂ profiles show the so-called shock splitting

phenomenon, i.e., the wave profile is made up with a combination of shock waves,

rarefaction waves and constant states, depending on the particular values of the

unperturbed and the perturbed states.
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Figure 3.3: Normalized density profiles, ρ̂N = (ρ̂− ρ̂0) / (ρ̂1 − ρ̂0) versus dimensionless

space, x̂ = x/L (L is a characteristic length), for the perturbed states represented by the

dots in Fig. 3.2: (a) p̂1 = 0.14; (b) p̂1 = 0.16; (c) p̂1 = 0.18; (d) p̂1 = 0.193 (p̂0 = 0.05

and ρ̂0 = 0.03). The profiles are obtained for t̂ = 0.3, where t̂ is a dimensionless time

(t̂ = t/L
√

ρcr/pcr).
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Figure 3.4: The Hugoniot locus for δ = 0.01, ρ̂0 = 0.00440616, p̂0 = 0.0067. Dependence

of the perturbed pressure on the perturbed density.

We finally note that some Hugoniot loci for unperturbed states in region C,

have the possibility to cross twice the liquid branch of the coexistence curve. As

seen in Fig. 3.4, with the increase of the shock parameter, the perturbed state on the

Hugoniot locus moves in gas → liquid → gas phase, which is an extremely unusual

behavior never reported before as far as we know. The study of this double gas →
liquid → gas phase change, including the study of the shock admissibility, will be

the subject of a forthcoming paper.

In order to study the features of the region C̃, it is useful to write down the

expression of C̃b, obtained from the expression of the density at the strong shock

limit (see Eqs. (4.21) and (3.8)),

ρ̂∞1 = 3ρ̂0(2 + δ)/ (2ρ̂0 + 3δ) ,

and making use of Eqs. (3.9), (3.10) and (4.21). In the ρ̂p̂ plane, the curve C̃b is

described by:

p̂0 =
3ρ̂20(2 + δ) (3δ (3− 4ρ̂0)− 9δ2 − 2ρ̂20)

(1 + δ) (3δ + 2ρ̂0)
2 .

In Fig. 3.5, the region C̃ is shown, together with the coexistence curve Ccoe. It turns
out to be interesting to study the dependence of the region C̃ on δ. This study

leads to the understanding that if δ is larger than the critical value δ ≃ 0.103, the

region C̃ is empty, therefore, δ ≲ 0.103 is the necessary condition for observing a

compressive upper shock. It is also possible to prove that the area of the region
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Figure 3.5: Gas region, coexistence region and C̃ region (bounded by C̃b and Ccoe curves)

for δ = 0.01. The black dot represents the unperturbed state, A0, used for the numerical

calculations showed in Fig. 3.2 and in Fig. 3.3.

C̃ is maximum when δ ≃ 0.042; this means that compressive upper shocks may be

observed even for a gas whose molecules have several constituent atoms. In a review

paper [47], several real gases with δ satisfying above conditions are studied.

3.6 Summary and concluding remarks

We found the new type of shock wave, which has unusual property that, when the

perturbed pressure increases, the perturbed density decreases, in a van der Waals

fluid by theoretical and numerical analysis.

We emphasize that this new type of shock is not restricted to the van der Waals

fluid. Since we have verified that the same type of shock exists in a hard-sphere

system with attractive forces (details will be shown in the next chapter [97]), we are

allowed to assert that this new shock is typical of real gases.
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Chapter 4

Shock waves in a polytropic

hard-sphere system with

attractive force

4.1 Introduction

In the present chapter, as the subsequence of the studies discussed in the previous

chapters, we will analyze shock wave phenomena in systems of hard spheres with

attractive forces [97]. The present model based on the perturbation method devel-

oped in the theory of liquid-state physics [78–80] was firstly proposed in [95] as a

suitable model to predict the physical quantities at the triple point. The validity

and the usefulness have been confirmed through the theoretical prediction of the

physical values at the critical point [96] and also many examples.

As the essential feature of the present model, this model can explain three phases,

namely, gas, liquid and solid phases within a unified way. As it is expected, we will

see that this model can explain the results obtained in a van der Waals model and

also in a hard-sphere system. Furthermore, we will make clear the conditions for the

shock-induced phase transitions and the admissibility of shock waves. Especially we

will concentrate on shock-induced phase transition from gas phase to solid phase.

The purpose of the present chapter is to study shock waves and shock-induced

phase transition in a system of hard-spheres with attractive force. To be more

specific, we will study the following three points in detail: (i) the dependence of

the solution of RH conditions on the attractive force, (ii) the admissibility of shock

waves, and (iii) possibility of shock-induced phase transitions.
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4.2 The system of hard spheres with attractive force

In this section, we summarize the equations of state for a system of hard-spheres

with attractive force and the static properties of the present model.

4.2.1 Caloric and thermal equation of state

By using mean field theory, we can introduce the effect of attractive force as a

perturbation from a hard-sphere system [95, 96]. The effect of the attractive force

for specific internal energy, ∆e, can be specified as follows:

∆e = − a

m2
ρ, (4.1)

where a is positive constant which represents the strength of attractive force (a ≥ 0).

Therefore, specific internal energy e is given by the sum of the specific internal energy

for the hard-sphere system eHS (2.1) and the correction due to the attractive force

∆e as follows:

e = eHS +∆e

=
D
2m

kBT − aη

mω
.

(4.2)

Similarly, the effect of the attractive force for the pressure, ∆p, can be given by

∆p = − a

m2
ρ2 (4.3)

and therefore the pressure p is given by the sum of the pressure for hard-sphere

system pHS (2.3) and the correction ∆p as follows:

p = pHS +∆p

=
η

ω
kBTΓ(η)−

aη2

ω2
.

(4.4)

Note that the corrections due to the attractive force (4.1) and (4.3) have the

same form of the correction adopted in a van der Waals system [see the equations

of state for a van der Waals fluid (3.1)]. Since the repulsive effect for a hard-sphere

system are more precise than the repulsive effect for a van der Waals system, the

present system can also be regarded as the modified model not only for a hard-sphere

system and also for a van der Waals model.

4.2.2 Critical point and the law of corresponding states

Due to the attractive force, there exist not only liquid and solid phases but also gas

phase in the present model and therefore the present model has the critical point
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and the triple point. The conditions for the critical point are given by(
∂p

∂η

)
T

= 0,

(
∂2p

∂η2

)
T

= 0.

Inserting the thermal equation of state (4.4) to the critical condition, we obtain the

critical packing fraction ηc, the critical temperature Tc and critical pressure pc as

follows:

ηc ∼ 0.1301, Tc = AT
a

kBω
, pc = Ap

a

ω2
, (4.5)

where AT and Ap are proportional constants (AT ∼ 0.09421, Ap ∼ 0.004401). For

the later convenience, we introduce the dimensionless quantities as follows:

T̃ =
T

Tc
, p̃ =

p

pc
. (4.6)

Inserting these dimensionless quantities to the thermal equation of state (4.4), we

can obtain the dimensionless equation which is independent of the constant of the

strength of attractive force a as follows:

App̃

AT T̃
= ηΓ(η)− η2

AT T̃
.

We will call this relation as the law of corresponding state for the present system.

4.2.3 Coexistence conditions and phase diagram

Let us discuss the coexistence conditions for the present system. We will consider

the coexistence state consisting of the two state which have the different phases and

will refer the two states as the state C1 and state the C2, respectively. For example,

when we consider gas and liquid coexistence state, the phase of the state C1 and the

phase of the state C2 are gas and liquid phases, respectively. Hereafter, the subscript

C1 and C2 means quantities in the the state C1 and state C2, respectively.

In general, the coexistence condition between the state C1 and the state C2

can be given by two conditions with common temperature. First condition is the

equality of the specific Gibbs free energies expressed as follows:

g(ηC1, T ) = g(ηC2, T ), (4.7)

where g is the specific Gibbs free energy defined by g ≡ e− Ts + p/ρ with s being

the specific entropy. Second condition is the equality of the pressures represented

by

p(ηC1, T ) = p(ηC2, T ). (4.8)
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These general coexistence conditions will be written explicitly by using the thermal

and caloric equations of state which depend on the phases of the state C1 and the

state C2.

Now we discuss the gas/liquid coexistence condition. Note that both of gas and

liquid phase can be obtained from the equation of state with the ΓL branch because

the packing fractions of both of gas and liquid at the gas/liquid coexistence state

are less than η0L, where η0L and η0S represent the packing fraction at the freezing

and melting points of a hard-sphere system without attractive force, respectively.

Inserting the caloric and thermal equations of state (4.2), (4.4) to the Gibbs

relation,

ds =
1

T
de+

p

T
d

(
1

ρ

)
, (4.9)

we can obtain the specific entropy as follows:

ds =
kB
m

(
D
2

dT

T
− Γ(η)

η
dη

)
.

Integrating this equation, we obtain

s− sa =
kB
m

(
D
2

T

Ta
− ln

η

ηa
−
∫ η

ηa

χL(η)

η
dη

)
,

where subscript a means the reference state. Adopting the state in a rarefied limit

(ηa → 0) for the reference state, the specific entropy s can be given by

s =
kB
m

(
D
2
T − ln η −

∫ η

0

χL(η)

η
dη

)
. (4.10)

Inserting (4.10) with the caloric and thermal equations of state (4.2) and (4.4) to

the general coexistence conditions (4.7) and (4.8), we can obtain the coexistence

condition of gas / liquid coexistence state as follows:
2(ηL − ηG)− AT T̃

(∫ ηL

ηG

ΓL(η)

η
dη + ΓL(ηL)− ΓL(ηG)

)
= 0,

AT

Ap

T̃ ηLΓ
L(ηL)−

η2L
Ap

=
AT

Ap

T̃ ηGΓ
L(ηG)−

η2G
Ap

.

(4.11)

In order to discuss liquid / solid or gas / solid coexistence condition, we have

to pay attention to the fact that the thermal equation of state consists of three

branch. Depending on the packing fraction, the reference specific entropy should be

specified. The specific entropy at η0L is given by

s0L =
kB
m

(
D
2
lnT − ln η0L −

∫ η0L

0

χL

η
dη + C

)
.
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Using the relation ΓCO(η) = η0LΓ
L(η0L)/η in the case that the packing fraction is

between η0L and η0S, the specific entropy at η0S can be obtained as follows:

s0S = s0L −
kB
m
η0LΓ

L(η0L)

(
1

η0L
− 1

η0S

)
.

Adopting s0S as the reference specific entropy, the specific entropy of the solid branch

can be calculated as follows:

sS = s0S −
kB
m

∫ ηS

η0S

ΓS(η)

η
dη. (4.12)

Inserting (4.12) with the caloric and thermal equations of state (4.2), (4.4) to the

general coexistence conditions (4.7), the coexistence condition of gas / solid or liquid

/ solid coexistence state can be summarized as follows:

2(ηS − ηG,L)− AT T̃

[ ∫ η0L

ηG,L

ΓL(η)

η
dη − η0LΓ

L(η0L)

(
1

η0S
− 1

η0L

)
+ ΓS(ηS)− ΓL(ηG,L)

∫ ηS

η0S

ΓS(η)

η
dη

]
= 0,

AT

Ap

T̃ ηG,LΓ
L(ηG,L)−

η2G,L

Ap

=
AT

Ap

T̃ ηSΓ
S(ηS)−

η2S
Ap

,

(4.13)

where ηG,L means ηG or ηL. Note that the both of gas / solid and liquid / solid

coexistence conditions are given by the conditions (4.13). When the temperature

is higher than the triple point temperature (the value will be determined in the

following), these conditions represent the liquid / solid coexistence conditions. When

the temperature is lower than the triple point temperature these conditions represent

the gas / solid coexistence conditions.

The coexistence curves can be obtained using the gas / liquid coexistence con-

ditions (4.11), the liquid / solid and gas / solid coexistence conditions (4.13), re-

spectively. Figure 4.1 shows that the phase diagram in the dimensionless pressure -

packing fraction plane.
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Figure 4.1: Left: The phase diagram in the p̃ - η plane. G, L, S, G / L, L / S and G / S

mean the gas, liquid, solid, gas / liauid coexistence, liquid / solid coexistence, gas / solid

coexistence phases, respectively. Right: blowup of the low pressure region in the left side.

For the completeness, the phase diagram in the p̃―T̃ plane are also shown in

Fig. 4.2.
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Figure 4.2: Left: The phase diagram in the p̃ - T̃ plane. G, L and S represent gas, liquid

and solid phases, respectively. Right: blowup of the low pressure region in the left side.

The triple point can be obtained as the cross point between the gas / liquid

coexistence curve and the liquid / solid coexistence curve because the both coexis-

tence conditions (4.11) and (4.13) should be satisfied at the triple point. From these

conditions, the temperature T̃t and the pressure p̃t at the triple point are given by

T̃t ≃ 0.4763, p̃t ≃ 0.003824.
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The packing fractions at the triple point are summarized as follows:

ηGtri ≃ 0.0003776, ηLtri ≃ 0.4677, ηStri ≃ 0.5821,

where ηGtri, ηLtri and ηStri are the coexistence packing fraction of the gas part, liquid

part and solid part at the pressure of the the triple point, respectively (See. Fig.

4.1).

4.3 The system of Euler equations and the Rankine-Hugoniot

conditions

Hereafter we study shock-induced phase transitions and shock admissibility focusing

on one-dimensional waves (plane waves) traveling only along the x direction.

4.3.1 The system of Euler equations

The system of Euler equations, which descrive the conservation of mass, momentum

and energy for a compressible fluid in the one-dimensional case, can be expressed as

follows:

ut + Fx(u) = 0, (4.14)

where the subscripts (time t and position x) denote partial differentiation. The

density u and the flux F are defined by

u =

 ρ

ρv

ρe+ 1
2
ρv2

 , F =

 ρv

ρv2 + p(
ρe+ 1

2
ρv2 + p

)
v

 (4.15)

with v being the velocity.

4.3.2 Local exceptionality condition

The characteristic velocities of the system of Euler equations (4.14) and (4.15) are

given by

λ(1) = v − c, λ(2) = v, λ(3) = v + c. (4.16)

Focusing on the wave associated to λ ≡ λ(3), the locus of the states such that∇λ = 0

can be obtained as follows:

ρ

(
∂2p

∂ρ2

)
s

+ 2

(
∂p

∂ρ

)
s

= 0. (4.17)

65



CHAPTER 4. SHOCK WAVES IN A POLYTROPIC HARD-SPHERE SYSTEM
WITH ATTRACTIVE FORCE

Hereafter we will call the curve obtained by (4.17) as the Local Exceptionality (LE)

curve.

Figure 4.3 shows the LE curves obtained from the condition (4.17) for several f .
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Figure 4.3: Local exceptionality curve and the coexistence curve for f = 0 (left), f = 50

(center), f = 100 (right).

It can be seen from Fig. 4.3 that LE curves appears only in the gas phase only

when the internal degrees of freedom are enough large. This results are same as the

ones in a the van der Waals system and also in a hard-sphere system.

4.4 The Rankine-Hugoniot conditions

Let us discuss the Rankine-Hugoniot relations fot a system of the hard-spheres with

attractive force. The system of Euler equations (4.14) and (4.15) admits a plane

shock wave provided that the jump of the physical quantities between the states

before and after the shock front satisfies the Rankine-Hugoniot (RH) conditions,

−Us[[u]] + [[F(u)]] = 0, (4.18)

where Us is the propagation velociy of the shock front and [[ψ]] = ψ1 −ψ0 represents

the jump of a generic quantity ψ across the shock front, being ψ1 the quantity

in the state after the shock (perturbed state) and ψ0 in the state before the shock

(unperturbed state). The conditions (4.18) are explicitly written by using the packing
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fraction η instead of the mass density ρ as follows:

−Us[[η]] + [[ηv]] = 0,

−Us[[ηv]] +

[[
ηv2 +

pω

m

]]
= 0,

−Us

[[
ηe+

1

2
ηv2
]]
+

[[(
ηe+

1

2
ηv2 +

pω

m

)
v

]]
= 0.

(4.19)

The unperturbed Mach number M0 is defined by

M0 ≡
Us − v0
c0

,

where the quantities with the subscript 0 are the so-called unperturbed quantities,

i.e. the quantities evaluated in the unperturbed state (analogously, the quantities

with the subscript 1 are evaluated in the perturbed state and are called perturbed

quantities) and c is the sound velocity given by

c =

√(
∂p

∂ρ

∣∣∣∣
s

)
(4.20)

with s being the specific entropy.

Using the Gibbs relation (4.9), we can obtain the explicit expression of the un-

perturbed sound speed as follows:

c0 =

√
−2aDη0 + kBT0[2Γ2

0 +D(Γ0 + Γ′
0η0)]ω

Dmω
,

where Γ0 and Γ′
0 is defined by

Γ0 ≡ Γ(η0), Γ′
0 ≡

dΓ(η)

dη

∣∣∣∣
η=η0

.

Hereafter, we will focus on the case that the unperturbed state lies in gas or

liquid phases, therefore, Γ0 is always ΓL.

4.4.1 Rankine-Hugoniot conditions in the case that both unperturbed

and perturbed state are not coexistence state

Now we discuss the case that the both the unperturbed and the perturbed state are

not coexistence state. Since the equations of state for gas, liquid, and solid phases

have the same form[see (4.2) and (4.4)], althogh the expressions of the function Γ(η)

are different, we write down the RH conditions in the unified way. Depending on

the perturbed packing fraction, suitable Γ should be chosen.
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Inserting the equations of state to the general form of the RH conditions (4.19),

we can obtain the expressions of RH conditions for the present system as follows:

v̂ ≡ v

c0

=M0

(
1− 1

η̂

)
,

p̂ ≡ p

p0

= 1 +
M2

0 (η̂ − 1){2Dη0 − AT T̃0[2Γ
2
0 +D(Γ0 + Γ′

0η0)]}
Dη̂(η0 − AT T̃0Γ0)

M0 =

√
Dη̂{η0(η̂ − 1)[2Γ(η̂ − 1)−D(η̂ + 1)] + AT T̃0[2ΓΓ0(η̂ − 1)−D(Γ0 − Γη̂)]}

(η̂ − 1)[Γ(η̂ − 1)−D]{2Dη0 − AT T̃0[2Γ2
0 +D(Γ0 + Γ′

0η0)]}

(4.21)

T̂ ≡ T

T0

=
η2 + p̂(AT T̃0η0Γ0 − η20)

AT T̃0ηΓ

4.4.2 Rankine-Hugoniot conditions in the case that only perturbed state

are coexistence state

Let us discuss the RH conditions in the case that only the perturbed state is coex-

istence state. We assume that coexistence states consist of two different phases as

we discussed in 4.2.3.

We introduce a parameter α that specify a coexistence tate by the definition that

α is the ratio of the state C2 in the coexistence state. Because of the additivity of

the specific volume, the total packing fraction in the coexistence state is given by

1

η(α)
≡ 1− α

ηC1

+
α

ηC2

.

Similarly, the total specific internal energy is given by

e(α) = (1− α)eC1 + αeC2

with eC1 and eC2 being

eC1 =
D
2m

kBT − aηC1

mω
,

eC2 =
D
2m

kBT − aηC2

mω
.
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The pressures are common between two states as follows:

p =
ηC1

ω
kBTΓC1(ηC1)−

aη2C1

ω2(
=
ηC2

ω
kBTΓC2(ηC2)−

aη2C2

ω2

)
.

Inserting these relations to the RH conditions (4.18), we obtain following expressions:

v̂ =M0

(
1− 1

η(α)

)
,

T̂ =
1

ATDT̃0ΓC1ηC1η(α)

{
D
[
2M2

0 η
2
0(η0 − η(α)) + η(α)(η2C1 − η20)

]
+ AT T̃0η0

[
2M2

0Γ
2
0(η(α)− η0)

+D(Γ0η(α)−M2
0 (Γ0 + Γ′

0η0)(η0 − η(α)))

]}
,

M0 =

[
1

(η(α)− η0)[ΓC1ηC1(η0 − η(α)) +Dη0η(α)]

× Dη(α)
{2Dη0 − AT T̃0[2Γ2

0 +D(Γ0 + Γ′
0η0)]}

×
(
{D(η2C1 − η20)η(α)− 2ΓC1ηC1[η

2
0 − 2η0η(α) + η(α)(ηC1 − αηC1 + αηC2)]

− AT T̃0{DΓC1ηC1η(α)− Γ0[2ΓC1ηC1(η0 − η(α)) +Dη0η(α)]}
)] 1

2

.

Combining these RH conditions with the coexistence conditions (4.11) and (4.13)

we can obtain the Hugoniot curves even in the case that the perturbed state is

coexistence state. This system should be solved by means of the suitable numerical

scheme.

4.5 Shock-induced phase transitions

4.5.1 Gas → Liquid phase transition

We discuss the shock-induced phase transition from the gas phase to the liquid phase

(gas → liquid phase transition). Now we assume that the unperturbed state is in the

gas phase, however, not near from the triple points. If not, the shock-induced phase

transition from the gas phase to the solid phase (gas → solid phase transition) may

occur. We will make clear the condition to observe these kinds of phase transitions

later.
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Figure 4.4: (a) The C∗ curve for f = 100. The gas / liquid coexistence curves Ccoe are

also shown. (b) The RH curves in the p̃− η plane for the unperturbed state (η0 = 0.013,

p̃0 = 0.2 ) shown by the mark in the figure (a).

In order to analyze the shock-induced gas → liquid phase transition, the curve

C∗ introduced in the paper [94] is useful. The curve C∗ consists of the unperturbed

states whose Hugoniot curves are tangent to the coexistence curve. The unperturbed

state u0 ∈ C∗ can be expressed by
p̃C(η1) = p̃H(η1, ũ0),

∂p̃C
∂η

(η1) =
∂p̃H
∂η

(η1, ũ0)
(4.22)

with p̃C and p̃H being the gas/liquid coexistence curve given by (4.11) and the gas →
gas RH curve, respectively. If the unperturbed state lies in the region delimited by

the curve C∗ and the gas/liquid coexistence curve, the Rankine-Hugoniot curve can

across the coexistence curve, therefore, gas → liquid phase transition may occur.

Fig. 4.4 shows the RH curves for f = 100, η0 = 0.013, P̃0 = 0.2 in the p̃−η plane

as a typical example of the shock-induced gas → liquid phase transition. With the

increase of the strength of the shock, the phase of the perturbed state becomes from

gas phase to gas / liquid coexistence phase and to liquid phase. Therefore, gas →
liquid phase transition may be observed.

It is also easily seen from Fig. 4.4 that there is the limit packing fraction η∞1

to which the perturbed packing fraction approaches when the strength of the shock

wave tends to infinite (the perturbed pressure or the Mach number tends to infinite).
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This value of the packing fraction can easily be obtained from Eq. (4.21) as follows:

Γ(η̂∞ − 1)−D = 0, (4.23)

where η̂∞ ≡ η∞1 /η0. In the present case, the unperturbed state and the perturbed

state are in gas or liquid phase and therefore, the packing fraction at the strong

shock limit can be given by

ΓL(η̂∞ − 1)−D = 0. (4.24)

In the present system, the compressive upper shocks, which were discovered in

a van del Waals system in Chap. 3 [93], can also be observed. This shock has an

unusual property that when the perturbed pressure increases, the perturbed packing

fraction may decreases and tends to the limit packing fraction η∞1 . Compressive up-

per shocks exist in the case that the unperturbed state lies in the region C̃ delimited

by the coexistence curve and by the curve C̃b, which consists of the unperturbed

state satisfying the condition that the numerator of Mach number is zero at the

limit packing fraction. The unperturbed state u0 ∈ C̃b can be given by

η0(η̂−1)[2ΓL(η̂−1)−D(η̂+1)]+AT T̃0[2Γ
LΓL

0 (η̂−1)−D(ΓL
0−ΓLη̂)]

∣∣∣∣
η1=η∞1

= 0. (4.25)

Figure 4.5 shows that the dependence of the perturbed pressure on the perturbed

density for f = 100, η0 = 0.0033, p̃0 = 0.05 as a typical Rankine-Hugoniot curve of

compressive upper shock and the region C̃.

We can see from Fig. 4.5 that the unperturbed state is inside both the curve C̃

and the curve C∗ and that the unperturbed state used in Fig. 4.4 is outside the curve

C̃. As is predicted, the phase of the unperturbed state becomes from gas phase to

gas / liquid coexistence phase and to liquid phase and after the phase transition the

perturbed density decreases as the perturbed pressure increases.

It is worth noting that the results obtained in the present model can explain all

the results obtained in a van der Waals fluid. There exist not only shock-induced

phase transitions but also the other real-gas effects can be discussed. For example,

negative shock waves can be observed if the unperturbed state lies in the region

delimited by the coexistence curve and the locally exceptional curve which is shown

in the Fig. 4.3. Furthermore, from the Liu condition, it can be easily shown that

a shock wave may be inadmissible. However, the detailed discussions are omitted

here for simplicity. We just emphasize that these facts mean that the present model

can be a suitable modified model of the van der Waals model.
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Figure 4.5: (a) The C∗ curve and C̃b curve for f = 100. The gas / liquid coexistence

curve Ccoe is also shown. (b) The RH curves in the p̃− η plane for the unperturbed state

(η0 = 0.0033, p̃0 = 0.05 ) shown by the mark in the figure (a).

4.5.2 Liquid → solid phase transition

Now we discuss the case that the unperturbed state lies in liquid phase. For the

analysis of the shock-induced phase transition from liquid phase to solid phase (liquid

→ solid phase transition), the critical packing fraction η02 introduced in the papers

[83, 84] is useful. η02 is the unperturbed packing fraction whose perturbed packing

fraction approaches to η0S at the strong shock limit. From the Eq. (4.23), the limit

packing fraction is given by

ΓS(η̂∞ − 1)−D = 0 (4.26)

and therefore, η02 can be expressed as follows:

η02 = η0S
ΓS(η0S)

D + ΓS(η0S)
.

If the unperturbed packing fraction is greater than η02, the RH curve can reach

the solid phase, therefore, liquid → solid phase transition can be observed. The

condition to observe compressive upper shocks is that the unperturbed state lies in

the region C̃2 delimited by the coexistence curve and the curve C̃b2, which consists of

the unperturbed state satisfying the condition that the numerator of Mach number

is zero at the limit packing fraction, given by

η0(η̂−1)[2ΓS(η̂−1)−D(η̂+1)]+AT T̃0[2Γ
SΓL

0 (η̂−1)−D(ΓL
0−ΓSη̂)]

∣∣∣∣
η1=η∞1

= 0. (4.27)
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Figure 4.6: (a) The η02 curve for f = 100. The coexistence curves Ccoe is also shown. (b)

The RH curves in the p̃− η plane for the unperturbed state (η0 = 0.2, p̃0 = 0.45 ) shown

by the mark in the figure (a).

Note that the difference between the condition of C̃b (4.25) and the condition of C̃b2

(4.27) is the Γ at the perturbed state. It can be easily shown that the region C̃2

lies only in the rare region in the gas state. Compressive upper shocks can never be

observed when the unperturbed state is in liquid state.

Fig. 4.6 shows the RH curves for f = 100, η0 = 0.45, P̃0 = 0.2, as a typical

example of the shock-induced liquid → solid phase transition. From Fig. 4.6, we

can easily confirm that the unperturbed packing fraction η0 is larger than η02 and

that liquid→ solid phase transition can be observed with the increase of the strength

of the shock.

As is expected, the results obtained in the present model can explain all the

results obtained in a hard-sphere model. Therefore, we can conclude that the present

model is a suitable modified model of the hard-sphere system. It can be seen from

the Fig. 4.3 that negative shocks can never be observed when the unperturbed state

is in liquid phase. It can also be seen that a single shock wave can be unstable from

the Liu condition.

4.5.3 Gas → solid phase transition

Now we discuss the shock-induced phase transition from gas phase to solid phase

(gas→ solid phase transition). This is essentially new phenomenon which can not be
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analyzed by both a van der Waals fluid and a hard-sphere model. In order to analyze

the gas → solid phase transition, we introduce the curve consists of the unperturbed

states whose Hugoniot cross the coexistence curve at the triple point. Hereafter we

call this curve as C∗
2 and the unperturbed state u0 ∈ C∗

2 can be expressed as follows:{
p̃C(η1) = p̃H(η1, ũ0),

η1 = ηGtri

(4.28)

with p̃C and p̃H being the gas/solid coexistence curve given by (4.13) and the gas

→ gas RH curve, respectively.

If the unperturbed state is in the region delimited by the curve C∗
2 and the

gas/solid coexistence curve, the Hugoniot curve will cross the coexistence curve,

therefore, gas → solid phase transition may occur. Figure 4.7 shows that the typical

Hugoniot curve accompanying gas → solid phase transition. From Fig. 4.7, we can

see that the unperturbed state is inside the curve C∗
2 , the curve C̃b and C̃b2. With

the increase of the strength of the shock (the perturbed pressure), the perturbed

packing fraction also increase and the phase of the unperturbed state will firstly

become from gas phase to gas / solid coexistence phase and to the solid phase. After

that, the perturbed density decrease and the phase of the perturbed state becomes

from the solid phase to the solid / liquid coexistence and to the liquid phase as

the the perturbed pressure increases. From the Liu condition, a shock wave with

the perturbed pressure such that p0 < p1 < pG and p1 > pc(S) is stable while a

shock wave with the perturbed pressure such that pG < p1 < pc(S) is unstable. We

discovered that there exists a compressive upper shock accompanying gas → solid

phase transition.

Figure 4.8 shows the other typical Hugoniot curve of compressive lower shock

accompanying gas → solid phase transition. From Fig. 4.8, we can see that the un-

perturbed state is inside the curve C∗
2 curve, however, is outside the curve C̃b2. With

the increase of the strength of the shock (the perturbed pressure), the perturbed

packing fraction also increase and the phase of the unperturbed state will become

from gas phase to gas / solid coexistence phase and to solid phase. From the Liu

condition, a shock wave with the perturbed packing fraction such that η0 < η1 < ηG

and η1 > ηc(S) is stable while a shock wave with the perturbed packing fraction such

that ηG < η1 < ηc(S) is unstable. We can conclude that gas → solid phase transition

can also be induced by a compressive lower shock wave.

74



CHAPTER 4. SHOCK WAVES IN A POLYTROPIC HARD-SPHERE SYSTEM
WITH ATTRACTIVE FORCE

0 0.001 0.002 0.003
0

0.01

0.02

0.03

η

p

G G/S

~

ptri
~

Cb
~

C2
*

Ccoe

(a)

η02

0 0.00025 0.0005
0

0.0025

0.005

η

p

G G/S

~

ptri
~

Cb
~

Cb2
~

C2
*

Ccoe

(b)

0 0.25 0.5
0

1

2

η1

p1

L

S

~

G

η1

(c)

0 0.25 0.5
0

0.025

0.05

0.075

η1

p1

L
S

~ (d)

0 0.05 0.1
0

2

4

6

8

p1

M0

~

(e)

0 0.01
0

1

2

p1

M0

~

(f)

p0
~ pG

~ pc(S)
~

Figure 4.7: (a) The C∗
2 curve and C̃b curve for f = 2000. The gas / solid and gas / liquid

coexistence curves Ccoe are also shown. (b) blowup of the low pressure region in part

(a) of the figure. C̃b2 curve is also shown. (c) The RH curves in the p̃ − η plane for the

unperturbed state (η0 = 0.0002, p̃0 = 0.00198 ) shown by the mark in the figures (a) and

(b). (d) blowup of the low pressure region in part (c) of the figure. (e) The RH curves in

the M0 − p̃ plane for the same unperturbed state. (f) blowup of the low pressure region

in part (e) of the figure.
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Figure 4.8: (a) The C∗
2 curve and C̃b curve for f = 50000. The gas / solid and gas /

liquid coexistence curves Ccoe are also shown. (b) blowup of the low pressure region in

part (a) of the figure. C̃b curve is also shown. (c) The RH curves in the p̃−η plane for the

unperturbed state (η0 = 0.0002, p̃0 = 0.00198 ) shown by the mark in the figures (a) and

(b). (d) blowup of the low pressure region in part (c) of the figure. (e) The RH curves in

the M0 − η plane for the same unperturbed state. (f) blowup of the low pressure region

in part (e) of the figure.
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4.5.4 Gas → liquid → solid phase transition

Now we discuss the case that both gas → liquid and liquid → solid phase transitions

can be observed as increase of the shock strength. This is also essentially new

phenomena which can not be analyzed by both a van der Waals fluid and a hard-

sphere system. For observing this kind of shock, both conditions of gas → liquid

and liquid → solid phase transitions must be satisfied. These conditions are that

the unperturbed state lies in the region delimited by the C∗ curve and by the gas /

liquid coexistence curve and the unperturbed packing fraction is greater than η02

Fig. 4.9 shows the RH curves for f = 1000, η0 = 0.06, P̃0 = 0.8, as a typical

example of the shock-induced gas → liquid → solid phase transition. From Fig.

4.9, we can see that the unperturbed state satisfy the above-mentioned condition

for Gas → liquid → solid phase transition. With the increase of the strength of the

shock (the perturbed pressure), the perturbed packing fraction also increase and

the phase of the perturbed state will become from the gas phase to the gas / liquid

coexistence phase → liquid phase → liquid / solid coexistence phase → solid phase.

From the Liu condition, a shock wave with the perturbed packing fraction such that

η0 < η1 < ηG, ηc(L) < η1 < ηL(S) and η1 > ηc(S) is stable while a shock wave with

the perturbed packing fraction such that ηG < η1 < ηc(L) and ηL(S) < η1 < ηc(S) is

unstable. We can conclude that gas → solid phase transition can also be observed

in this case.

4.6 Summary and concluding remarks

From the analysis of the Rankine-Hugoniot conditions based on the system of hard-

spheres with attractive force, we have made clear the conditions for the shock-

induced phase transitions.

We confirmed that the Rankine-Hugoniot (RH) curves, which are the loci of the

unperturbed states satisfying the RH conditions, are qualitatively same as the RH

curves obtained in a van der Waals system in the case that shock-induced gas →
liquid phase transition occurs. Similarly it was also shown that the RH curves for

the present system can explain the RH curves obtained in the hard-sphere system

when shock-induced liquid → solid phase transition appears. These facts support

the validity of the present analysis based on the present model as a extended version

of both of a van der Waals model and a hard-sphere model.
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Figure 4.9: (a) The C∗ curve and η02 curve for f = 1000. The gas / solid and gas /

liquid coexistence curves Ccoe are also shown. (b) blowup of the low pressure region in

part(a) of the figure. C̃b curve is also shown. (c) The RH curves in the p̃− η plane for the

unperturbed state (η0 = 0.06, p̃0 = 0.8 ) shown by the mark in the figures (a) and (b).

(d) blowup of the low pressure region in part (c) of the figure. (e) The RH curves in the

M0 − η1 plane for the same unperturbed state.
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In addition to the above-mentioned shock-induced phase transitions, the condi-

tion for the gas → solid phase transition has been discussed. In the present model,

there exist three phases, namely, gas, liquid and solid phases, therefore, we can also

analyze this kind of phase transition. Two possible scenarios of the gas → solid

phase transition has been presented. First one is that gas → gas / solid coexistence

→ solid phase transition are induced as the shock strength increase. Second one is

that gas → gas / liquid coexistence → liquid → liquid / solid coexistence → solid

phase transition are induced with the increase of the shock strength.

The admissibility of a shock wave was also studied by using the mathematical

stability condition, namely, the Liu condition. It is shown that the shock waves may

admissible even if gas→ solid phase transition is induced by shock waves. Therefore,

we can conclude that a shock wave can induce the gas → solid phase transition in

the present model and the both scenarios are acceptable.

Lastly let us summarize the concluding remarks as follows:

(I) Concerning the observation of gas → solid phase transition, the required

number of internal degrees of freedom are different between the first scenerio and the

second scenerio. The first scenario needs aroud 2,000 internal degrees of freedom,

however, the second scenario needs only around 20 internal degrees of freedom.

Within the analysis based on the present model, we can conclude that the second

scenerio is more hopeful for observation by experiments.

(II) Heretofore we adopted the polytropic models where the specific heat with

constant volume is constant. For the next step, we can construct more realistic model

by introducing the non-polytropic effect to the present model. The shock waves in

a non-polytropic hard-sphere system will be analyzed in the next chapter [91].
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Chapter 5

Shock waves in a non-polytropic

hard-sphere system

5.1 Introduction

Shock-induced phase transitions in a hard-sphere system were studied in detail [83,

84] by adopting a special caloric equation of state (P-model below). The P-model

is characterized by the caloric equation of state (the thermal equation of state is

shown in the next section):

e =
kBT

2m
(3 + f), (5.1)

where e is the specific internal energy, kB is the Boltzmann constant, T is the

absolute temperature, m is the mass of a particle and the constant f corresponds to

the internal degrees of freedom of a particle. In the derivation of Eq. (5.1), we have

assumed that all the excited internal modes satisfy the equipartition law of energy

in classical statistical mechanics. As a consequence the specific heat at fixed volume

cV is constant and the system is polytropic.

Zhao et al. [83] studied shock-induced phase transitions in a hard-sphere system

with the caloric equation of state (5.1) with no internal degree of freedom, that is,

f = 0. The Rankine-Hugoniot (RH) conditions and the admissibility (stability) of

a shock wave are analyzed and classified explicitly.

In Chap. 2, we made a similar analysis of a system of hard spheres with internal

degrees of freedom [84]: f > 0. The important role of the internal motions in the

shock-induced phase transitions is quantitatively made clear. It is also shown that,

due to the effect of non-zero f , a new type of instability of shock waves can exist.

Although many interesting facts are newly found, the validity range of these

analyses basing on the P-model is limited due to the assumption of the equipartition
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law of energy, which is satisfied for a system in a high temperature. The order

of magnitude of the characteristic temperature for internal rotational modes of a

molecule is 102K while that for internal vibrational modes is 103K. If we want to

study the shock wave phenomena in a wider temperature range, for example, from a

room temperature to the temperature above 103K, a more realistic model that can

describe the excitation process of the internal modes depending on the temperature

is mandatory.

To this end, we adopt the NonP-model with the caloric equation of state [80]:

e =
kBT

m

(
3 + Ir

2
+

Iv∑
i=1

Ti/T

exp(Ti/T )− 1

)
, (5.2)

where Ir is the degrees of freedom for the internal rotational modes of a molecule, Iv

is that for the internal vibrational modes, and Ti is the characteristic temperature

of the i-th vibrational mode. Here the contribution to e from the vibrational modes

is temperature-dependent, while that from the rotational modes is assumed to be

temperature-independent for simplicity. The specific heat cV is now temperature-

dependent and the system is non-polytropic. In the high-temperature limit, the

NonP-model approaches the P-model with f = Ir + 2Iv.

Shock wave phenomena in non-polytropic gases, such as in a van der Waals gas,

have been extensively studied, see for example [92]. However, few studies have been

made for shock-induced phase transitions in a non-polytropic system.

The purpose of the present chapter is, through analyzing a simple model, to

demonstrate explicitly the importance of the non-polytropic effect on the shock-

induced phase transitions, especially on the RH conditions and on the admissibility

of a shock wave [91] .

5.2 Non-polytropic hard-sphere system and Rankine-Hugoniot

conditions

In order to grasp the essential feature of the non-polytropic effect, we adopt a

simplified NonP-model by assuming that all vibrational modes possess a common

characteristic temperature T ∗: T1 = T2 = · · · = TIv = T ∗.

The caloric and thermal equations of state are, respectively, expressed by

e =
kBT

m

(
3 + Ir

2
+ Iv

T ∗/T

exp(T ∗/T )− 1

)
,

pω0

kBT
= ηΓ(η),

(5.3)
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where p is the pressure and η (= ρω0/m) is the packing fraction with ρ being the

mass density and ω0 the volume of a hard sphere. For definiteness, we adopt Ir = 2

hereafter. The function Γ(η) for liquid phase and solid phase is given by [80,82]:

ΓL(η) = 1 +
4η + 1.016112η2 + 1.109056η3

1− 2.245972η + 1.301008η2
,

ΓS(η) = 1 +
1

(
√
2π/(6η))1/3 − 1

,
(5.4)

where superscripts L and S stand for the liquid phase and solid phase, respectively.

It is worth noting that we can easily show that the caloric equation of state

(5.3)1 is thermodynamically compatible to the thermal equation of state (5.3)2 that

is valid for both P-model and NonP-model by checking the integrability condition.

Let us analyze a one-dimensional problem of a shock wave with the propagation

speed s, which divides the space into two subspaces. The state before the shock

(unperturbed state) is denoted by u0 and the state after the shock (perturbed state)

by u1, where u ≡ (ρ, ϱv, ϱe + ϱv2/2) with v being the flow velocity. Hereafter the

same meaning of the suffixes 0 and 1 as above will be assumed. It is convenient to

introduce the dimensionless quantities:

η̂ =
η

η0
, p̂ =

p

p0
, T̂ =

T

T0
, v̂ =

v

c0
,

ê =
e

kBT0/m
, ĉ =

c√
kBT0/m

, ĉV =
cV

kB/m
,

where c =
√
(∂p/∂ρ)S is the sound speed with S being the specific entropy.

As is well-known, besides the usual contact shock, the RH conditions, which are

derived from the Euler equations and the constitutive Eq. (5.3), admit the following

solution:

v̂1 =M0(1−
1

η̂1
),

p̂1 = 1 + ĉ20M
2
0

η̂1 − 1

Γ(η0)η̂1
,

M0 =
η̂1

ĉ0(η̂1 − 1)

√
2

(
ê1 − ê0 − Γ(η0)

η̂1 − 1

η̂1

)
,

(5.5)

where M0 = (s− v0)/c0) is the unperturbed Mach number. Here shock waves are

restricted to those with M0 > 0 such that it propagates, say, along the positive

x-direction. We have assumed in the above solution that v0 = 0 without any loss of

generality due to the Galilean invariance.

In order to study shock-induced phase transitions, it is necessary to adopt an
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unperturbed state in the liquid phase [83,84]. Therefore Γ(η0) = ΓL(η0) and

ê0 =
3 + Ir

2
+ Iv

T̂ ∗

exp[T̂ ∗]− 1
,

ĉ0 =

√
Γ(η0)2

ĉV 0

+ Γ(η0) + η0

(
∂Γ(η)

∂η

)
η=η0

,

(5.6)

where

ĉV 0 =
3 + Ir

2
+ Iv

T̂ ∗2exp[T̂ ∗]

(exp[T̂ ∗]− 1)2
.

On the other hand, the perturbed state may be any one of liquid state, solid

state, or liquid/solid-coexistence (L/S) state. The dimensionless specific internal

energy of a perturbed state can be expressed, irrespective of its phase, by

ê1 =
3 + Ir

2
T̂1 + Iv

T̂ ∗

exp[T̂ ∗/T̂1]− 1
. (5.7)

The relationship between T̂1 and p̂1 is as follows: If the perturbed state is a liquid

or solid state,

T̂1 =
p̂1Γ

L(η0)

η̂1Γ(η1)|η1=η̂1η0

(5.8)

with Γ(η1) = ΓL(η1) (see Eq. (5.4)1) for a liquid state and Γ(η1) = ΓS(η1) (see Eq.

(5.4)2) for a solid state. While if the perturbed state is a L/S state,

T̂1 =
p̂1Γ

L(η0)

η̂LΓL(ηL)
=
p̂1Γ

L(η0)

η̂SΓS(ηS)
, (5.9)

where ηL(≈ 0.4946) and ηS(≈ 0.5564) are, respectively, the packing fractions at the

freezing point and at the melting point [83].

Inserting Eq. (5.6), (5.7) and (5.8) (or (5.9)) into Eq. (5.5), we obtain a one-

parameter family of solutions for v̂1, p̂1, T̂1 and M0 in terms of η̂1 for given unper-

turbed state and T̂ ∗.

5.3 Shock-induced phase transitions

From the solution of the RH conditions in the preceding section, we obtain RH

curves in M0 − η1 plane as shown in Figs. 5.1, 5.2 and 5.3. If the perturbed state

is a liquid state, the shock wave is called liquid-liquid shock wave (L → L). In a

similar way, for the other two possibilities, we call liquid-liquid/solid coexistence

shock wave (L→ L/S) and liquid-solid shock wave (L→ S).
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5.3.1 Crossover effect on the shock-induced phase transitions

Typical RH curves are shown in Fig. 5.1 where NonP is the RH curve based on the

NonP-model in the last section, the RH curves Pα and Pβ are based on the P-model

with f = Ir and f = Ir + 2Iv, respectively. Here we assume Iv = 20, T̂ ∗ = 30 and

η0 = 0.2.

Because of the condition T ∗ >> T0 in the case of Fig. 5.1, we can observe the

following crossover of the RH curve NonP from Pα to Pβ: For weak shocks, the

role of vibrational modes in both unperturbed and perturbed states is negligible,

thereforeNonP is nearly the same asPα. With the increase of the shock strength η1,

the perturbed temperature increases and the vibrational modes in a perturbed state

are gradually excited. The RH curve NonP, therefore, starts to deviate from Pα.

Lastly, in the strong shock limit, the perturbed temperature becomes high enough

for all vibrational modes to be fully excited satisfying the classical equipartition law

of energy. Therefore, NonP approaches Pβ asymptotically.

Such a crossover may have a dramatic effect on the shock-induced phase tran-

sitions. For example, from Fig. 5.1, we notice that, although Pα has only the

possibility L → L with no phase transition, NonP has the L → L/S and L → S

regions of the RH curve in addition to the region L→ L, which, of course, indicates

the appearance of a shock-induced phase transition.

Therefore we obtain the new fact that the non-polytropic effect on the existence

of the shock-induced phase transitions becomes to be essential in some cases.
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Figure 5.1: Three typical Rankine-Hugoniot curves in M0− η1 plane: NonP (solid curve)

is based on the NonP-model with Iv = 20 and T̂ ∗ = 30. Pα and Pβ (dashed curve) are

based on the P-model with f = Ir and f = Ir+2Iv, respectively. The unperturbed packing

fraction η0 = 0.2 for all RH curves. ηL(≈ 0.4946) and ηS(≈ 0.5564) are, respectively, the

packing fractions at the freezing and melting points.

5.3.2 Mach number at the shock-induced phase transition

The typical dependence of the RH curve NonP on the dimensionless temperature

T̂ ∗ is shown in Fig. 5.2. We can see clearly that the Mach number at the beginning

of the shock-induced phase transition changes prominently with the change of the

temperature T̂ ∗.

Therefore we have just obtained another new fact that the non-polytropic effect

on the Mach number at the beginning of the shock-induced phase transition becomes

to be important in some cases like the case in Fig. 5.2. In fact, the threshold of Mach

number for inducing phase transition increases monotonously with the increase of

dimensionless vibrational characteristic temperature T̂ ∗.

85



CHAPTER 5. SHOCK WAVES IN A NON-POLYTROPIC HARD-SPHERE SYSTEM

0.2 0.3 0.4 0.5 0.6 0.7

5

10

15

20

25

30

η
1

M
0

3

10

30

η
S

η
L

T̂
∗

= 100

Pβ

NonPPα
60

Figure 5.2: Typical dependence of the Rankine-Hugoniot curve NonP (solid curve) on

the dimensionless temperature T̂ ∗. Pα and Pβ (dashed curve) are the RH curves based

on the P-model with f = Ir and f = Ir + 2Iv, respectively. Iv = 20. η0 = 0.2 for all RH

curves.

5.4 Admissibility of shock waves

Let us study the non-polytropic effect on the admissibility (stability) of shock waves.

It is well-known that not all the shock waves that correspond to the solutions of the

RH conditions are admissible and that the Liu condition [44–46] should be satisfied

in order that an initial shock can be stable and then can propagate.

The Liu condition asserts that a shock wave is admissible if and only if its

velocity of propagation is not decreasing as we move on the RH curve starting from

the unperturbed state, u0, towards a given perturbed state, u1:

s (u0, ũ) ≤ s (u0,u1) ∀ũ ∈ RH curve through u0.

If the Liu conditions are not satisfied, the shock will become unstable.

The non-polytropic effect on the admissibility can be demonstrated by a typical

example shown in Fig. 5.3 where we plot instead of s equivalently, M0 as function

of the strength of the shock parameter η1. Three NonP curves with three different

values of the characteristic temperature T̂ ∗ = 10, 25, 60 and the corresponding Pβ

curve are shown. Here we assume that Iv = 50, and η0 = 0.4 for all RH curves.

86



CHAPTER 5. SHOCK WAVES IN A NON-POLYTROPIC HARD-SPHERE SYSTEM

The admissible regions of these RH curves are drawn by solid curves, while the

inadmissible regions by dashed curves.

Remarkable points in Fig. 5.3 are summarized as follows:

(i) With the increase of the shock parameter η1 along Pβ starting from the

unperturbed state with η0, the state of an admissible shock moves in the region

L → L, and then jumps to the state in the region L → S. Afterward it moves in

the region L→ S until the strong shock limit. All part of the region L→ L/S and

a part of L→ S near the melting point ηS are in admissible.

(ii) The feature of NonP with T̂ ∗ = 10 is qualitatively the same as that of Pβ.

(iii) The feature of NonP with T̂ ∗ = 25 is qualitatively the same as that of Pβ

except that the part of the region L→ L/S near the freezing point ηL now becomes

to be admissible.

(iv) Whole part of the RH curve NonP with T̂ ∗ = 60 is admissible. We can

show that this is true if T ∗ is big enough.

To sum up the non-polytropic effect on the admissibility of a shock wave plays

again an important role in some cases like the case in Fig. 5.3.
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Figure 5.3: The admissible (solid line) and inadmissible (dashed line) regions for a shock

wave in three RH curves of NonP with three different values of the characteristic tem-

perature T̂ ∗ = 10, 25, 60 and the corresponding RH curve Pβ. Iv = 50. η0 = 0.4 for all

RH curves.
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5.5 Conclusions

In this chapter, we analyzed the shock-induced phase transitions, especially the RH

conditions and the admissibility condition in a non-polytropic hard-sphere system

by adopting the simplified caloric equation of state. We have succeeded to grasp

the essential feature of the non-plytropic effect on the phase transitions. The effect

becomes to be more evident with the increase of T̂ ∗, that is, the ratio between

the characteristic temperature T ∗of the vibrational modes and the unperturbed

temperature T0.

The present analysis can easily be extended to the analyses of the models with

more realistic spectra of the internal vibrational modes which are useful for experi-

mentalists. Result of such analyses will be reported soon.
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Chapter 6

Summary and concluding remarks

In this thesis we constructed the framework of realistic model of condensed matters

and by using that model, we studied real-gas effects on shock wave phenomena.

In order to construct such framework, we propose the following strategy with two

steps:

(i) We study shock wave phenomena in a hard-sphere system which is a good

reference system of materials in liquid state.

(ii) By using all the results obtained in step (i) and by using the perturba-

tion method developed in the theory of liquid-state physics, we study shock wave

phenomena in physical systems with more realistic interatomic potential with both

repulsive and attractive parts.

In Chap. 1, the applications of shock wave phenomena are summarized. It

was pointed out there exist shock wave phenomena which can not be explained

even qualitatively within the well-known framework of the ideal-gas model. The

effects inducing such differences are called as the real-gas effects on shock wave

phenomena. The typical phenomena due to the real-gas effects are shock-induced

phase transitions, shock splitting phenomena and rarefaction (negative) shock waves.

In Chap. 2, we analyzed the shock waves in a polytropic hard-sphere system

with and without internal degrees of freedom as a direct consequence of the previous

study for a hard-sphere system. We made clear the crucial role of internal degrees

of freedom on the shock-induced phase tranition from liquid phase to solid phase

transition and on the admissibility of a shock wave. The complete classification

of shock wave phenomena were made from the point of view of the admissibility

of a shock wave. It was shown that another type of instability of a shock wave

can exist even though the perturbed state is thermodynamically stable. Numerical
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calculations have been performed in order to confirm the theoretical results in the

case of admissible shocks and to obtain the actual evolution of the wave profiles in

the case of inadmissible shocks (shock splitting phenomena).

In Chap. 3, we analyzed the new type of compressive shock wave in a van der

Waals fluid which can be regarded as the simplified model of a system of hard-

spheres with attractive force. This shock has a quite unusual property that when

the perturbed pressure (the pressure after a shock) increases, the perturbed density

decreases and tends to a limit value from above, in contrast with the ordinary well-

known compressive shock in which the density tends to the limit value from below.

The admissibility of a shock wave was also analyzed based on the Liu condition and

we showed that this unusual shock wave can exist. The condition for this new kind

of shock wave phenomena was made clear in terms of the unperturbed pressure, the

unperturbed density and the internal degrees of freedom. We also pointed out the

suitable parameter for the experimentalist.

In Chap. 4, we analyzed the shock waves in a system of hard-spheres with

attractive force. By using this model, we can analyze shock wave phenomena in the

three phases, namely, gas, liquid and solid phase, in the unified way. We confirmed

that the analysis of shock wave phenomena in this model can explain the phenomena

obtained in a van der Waals model and can also explain the phenomena predicted

by a hard-sphere system. We analyzed the possibility of the shock-induced phase

transitions. Especially it is clearly shown that the phase transition from gas phase

to solid phase can be induced by a shock wave and two scenarios of such phase

transitions were presented.

In Chap. 5, we analyzed the shock waves in a non-polytropic hard-sphere system

where heat capacity depends on the temperature. We showed that this temperature

dependence may affect on the admissibility of a shock wave strongly. The effect

becomes to be more evident with the increase of the ratio between the characteristic

temperature of the vibrational modes and the unperturbed temperature.

In Chap. 6, which is the present chapter, we present the summary and concluding

remarks.

Lastly let us summarize the concluding remarks as follows:

(I) The usefulness of the series of the present studies is shown clearly. We have

constructed the theoretical framework of the studies of shock wave phenomena in

condensed matters and therefore we can also construct more realistic models by
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introducing more detailed interatomic potential as the sequel to the present studies

in order to make our theoretical predictions more precise.

(II) Only shock-induced phase transition from liquid phase to solid phase can be

observed in the present model. Inverse transition can never be observed. It should

be emphasized that this does not mean that there are no phase transitions in a solid

under shock compression [9, 49–51, 53–60, 62]. We expect that these shock-induced

phase transitions may be explained within the framework of more realistic models

by using our strategy.

(III) We have concentrated on the conditions for typical real-gas effects on shock

wave phenomena. The detailed analysis and the classification are still remained as

the future subjects. For example, when shock splitting phenomena can be observed,

the classification of the wave profiles remains for future subject.

(IV) We have discovered the new type of shock wave phenomena, that is, the

compressive upper shock wave, in a van der Waals fluid in Chap. 3. This shock

wave can also be observed in more realistic system consisted of hard-spheres with

attractive force. Therefore we can conclude that the compressive upper shock wave

is not restricted in the particular model and that this shock wave is another typical

real-gas effect on shock wave phenomena.

(V) The theoretical studies of the shock structures in real gases also remained as

the future subject. It is known that the theoretical prediction by the Navier-Stokes

and Fourier theory is not valid for strong shock waves and new theories which have

larger validity ranges are needed. The extended thermodynamics (ET) is the one of

such theories. Until now the validity of ET has been confirmed only in rarefied gases.

We expect that the shock structures in real gases can provide us useful information

for the development of ET.

(VI) In this thesis the effects of chemical reactions were neglected and only planar

shock waves were analyzed for simplicity. The detonation shock waves and the

dimensionality dependence of shock wave phenomena also remain as future subjects.
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[56] S. N. Luo, T. J. Ahrens, T. Çağin, A. Strachan, W. A. Goddard III and D. C.

Swift, Phys. Rev. B 68, 134206 (2003).

[57] K. Kadau, T. C. Germann, P. S. Lomdahl, B. L. Holian, Science 296, 1681

(2002).

[58] S. N. Luo, T. J. Ahrens, Phys. Earth and Planetary Interiors 143-144, 369

(2004).

[59] L. V. Al’tshuler, Zh. Prikl. Mekh. Tekh. Fiz. 4, 93 (1978).

[60] M. Ross, Phys. Rev. A 8, 1466 (1973).

[61] P. A. Thompson, ”Liquid-vapor adiabatic phase changes and related phenom-

ena”, in Nonlinear Waves in Real Fluids, edited by A. Kluwick (Springer,

1991) Chap. 6, pp. 147 - 213.

[62] D. G. Morris, J. Appl. Phys. 51, 2059 (1980).

[63] P. A. Thompson and K. C. Lambrakis, J. Fluid Mech. 60 187 (1973).

[64] C. Zamfirescu, A. Guardone, and P. Colonna, ”Admissibility region for rar-

efaction shock waves in dense gases”, J. Fluid Mech. 599, 363 (2008).

96



REFERENCES

[65] A. Guardone, C. Zamfirescu, and P. Colonna, ”Maximum intensity of rarefac-

tion shock waves for dense gases”, J. Fluid Mech. 642, 127 (2010).

[66] A. A. Borisov, AL. A. Borisov, S. S. Kutateladze, and V. E. Nakoryakov, J.

Fluid Mech. 126, 59 (1983).

[67] S. S. Kutateladze, V. E. Nakoryakov, and A. A. Borisov, ”Rarefaction waves

in liquid and gas-liquid media”, Annual Review of Fluid Mechanics 19, 577

(1987).

[68] A. Kluwick, ”Rarefaction shocks”, in Handbook of Shock Waves, Vol. 1. The-

oretical, Experimental, and Numerical Techniques, edited by G. Ben-Dor, O.

Igra, and T. Elperin (Academic Press, 2001), Chap. 3 & 4, pp. 339 - 411.

[69] P. A. Thompson and Y. Kim, Phys. Fluids 26, 3211 (1983).

[70] P. A. Thompson, H. Chaves, G. E. A. Maier, Y. Kim and H. Speckmann, J.

Fluid Mech. 185, 385 (1987).

[71] M. S. Cramer, J. Fluid Mech. 199, 281 (1989).

[72] R. Menikoff and B. J. Plohr, Rev. Mod. Phys. 61, 75 (1989).

[73] W. Dahmen, S. Müller and A. Voss, In Analysis and Numerics for Conserva-

tion Laws, (Ed. G. Warnecke). Springer Verlag, 137 (2005).

[74] Ya. B. Zel’dovich and Yu. P. Reizer, Physics of Shock Waves and High-

Temperature Hydrodynamic Phenomena. (Dover 2002).

[75] J. B. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957).

[76] J. B. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962).

[77] W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).

[78] J. A. Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976).

[79] J. P. Hansen and J. R. McDonald, Theory of simple liquids, Academic Press,

London, (1986).

[80] A. Münster, Statistical Thermo-dynamics, Springer-Verlag Berlin Heidelberg

New York, Vol. 2 (1974).

97



REFERENCES

[81] P. A. Thompson, G. A. Carofano and Y. Kim, J. Fluid Mech. 166, 57 (1986).

[82] L. V. Woodcock, J. Chem. Soc., Faraday Transactions 72, 731 (1975).

[83] N. Zhao, M. Sugiyama and T. Ruggeri, J. Chem. Phys. 129, 054506 (2008).

[84] S. Taniguchi, A. Mentrelli, N. Zhao, T. Ruggeri and M. Sugiyama, Phys. Rev.

E 81, 066307 (2010).

[85] A. Mentrelli and T. Ruggeri, Suppl. Rend. Circ. Mat. Palermo II/78, 201

(2006).

[86] A. Mentrelli, T. Ruggeri, M. Sugiyama and N. Zhao, Wave Motion 45, 498

(2008).

[87] L. Pareschi, G. Puppo and G. Russo, SIAM J. Sci. Comput. 26, 979 (2005).

[88] A. Cheng, M. L. Klein and C. Caccamo, Phys. Rev. Lett. 71, 1200 (1993).

[89] M. H. J. Hagen, E. J. Meijer, G. C. A. M. Mooij, D. Frenkel and H. N. W.

Lekkerkerker, Nature 365, 425 (1993).

[90] L. Mederos and G. Navascués, Phys. Rev. B 50, 1301 (1994).

[91] Y. Zheng, N. Zhao, T. Ruggeri, M. Sugiyama, S. Taniguchi, Phys. Lett. A

374, 3315 (2010).

[92] L. Quartapelle, L. Castelletti, A. Guardone and G. Quaranta, J. Comput.

Phys. 190, 118 (2003).

[93] S. Taniguchi, A. Mentrelli, T. Ruggeri, M. Sugiyama and N. Zhao, Phys. Rev.

E 82, 036324 (2010).

[94] N. Zhao, A. Mentrelli, T. Ruggeri and M. Sugiyama (submitted).

[95] H. C. Longuet-Higgins: Mol. Phys. 8 (1964) 549.

[96] D. A. Young and B. J. Alder: Phys. Rev. A 3 (1971) 364.

[97] S. Taniguchi, N. Zhao and M.Sugiyama, ”Shock-induced phase transition in

systems of hard spheres with attractive force” (in preparation). The contents

were partially reported at the ISWI (International Shock Wave Institute) Con-

ference 2010 (UK).

98



List of Papers

Chapter 2

S. Taniguchi, A. Mentrelli, N. Zhao, T Ruggeri and M. Sugiyama:

”Shock-Induced Phase Transition in Systems of Hard Spheres with Internal Degrees

of Freedom”

Phys. Rev. E Vol. 81 (2010) 066307 (13 pages).

Chapter 3

S. Taniguchi, A. Mentrelli, T. Ruggeri, M. Sugiyama and N. Zhao:

”Prediction and simulation of compressive shocks with lower perturbed density for

increasing shock strength in real gases”

Phys. Rev. E Vol. 82 (2010) 036324 (5 pages).

Chapter 5

Y. Zheng, N. Zhao, T. Ruggeri, M. Sugiyama and S. Taniguchi:

”Non-polytropic effect on shock-induced phase transitions in a hard-sphere system”

Phys. Lett. A Vol. 374 (2010) pp. 3315-3318.

99



Other Publications

C. Curro, G. Valenti, M. Sugiyama, S. Taniguchi:

”Propagation of an acceleration wave in layers of isotropic solids at finite tempera-

tures” Wave Motion. Vol. 46(2) (2009) pp. 108-121.

S. Taniguchi, A. Iwasaki and M. Sugiyama:

”Relationship between Maxwell Boundary Condition and Two Kinds of Stochastic

Thermal Wall”

J. Phys. Soc. Jpn. Vol. 77 (2008) 124004 (5 pages).

S. Taniguchi, M. Nakamura, M. Sugiyama, M. Isobe and N. Zhao:

”Analysis of Heat Conduction Phenomena in a One-Dimensional Hard-Point Gas

by Extended Thermodynamics”

Proceedings of XIV International Conference on Waves and Stability in Continuous

Media (World Scientific Pub.) (2008) pp.560－ 569.

S. Taniguchi, M. Nakamura, M. Sugiyama, M. Isobe, and N. Zhao:

”Phenomenological Approach to Heat Conduction in a One-Dimensional Hard-Point

Gas beyond Local Equilibrium”

J. Phys. Soc. Jpn. Vol.77 (2008) 014004 (10 pages).

S. Taniguchi, M. Nakamura, M. Isobe, N. Zhao and M. Sugiyama:

”Heat conduction problem in a one-dimensional hard-point gas: Molecular dynam-

ics and extended thermodynamics”

Comp. Phys. Commun. Vol. 177 (2007) pp.164-165.

100


