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Abstract

In speech-to-speech translation, the source language speech is translated into target lan-
guage speech. A speech-to-speech translation system can help to overcome the language
barrier, and is essential for providing more natural interaction. A speech-to-speech trans-
lation system consists of three components: speech recognition, machine translation and
speech synthesis. In order to improve the end-to-end performance of the speech-to-speech
translation system, it is required to improve the performance of each component. Re-
cently, statistical approaches are widely used in these fields. In this paper, statistical
models for improving the performance of speech-to-speech translation systems are pro-
posed.

First, a reordering model using a source-side parse-tree for phrase-based statistical ma-
chine translation is proposed. In the proposed method, the target-side word order is ob-
tained by rotating nodes of the source-side parse-tree. The node rotation (monotone or
swap) is modeled using word alignments based on a training parallel corpus and source-
side parse-trees. The model efficiently suppresses erroneous target word orderings, es-
pecially global orderings. In English-to-Japanese and English-to-Chinese translation ex-
periments, the proposed method resulted in a 0.49-point improvement (29.31 to 29.80)
and a 0.33-point improvement (18.60 to 18.93) in word BLEU-4 compared with IST-ITG
constraints, respectively. This indicates the validity of the proposed reordering model.

Next, Bayesian context clustering using cross validation for hidden Markov model (HMM)
based speech recognition is proposed. The Bayesian approach can select an appropriate
model structure while taking account of the amount of training data and can use prior in-
formation as prior distributions. Since prior distributions affect estimation of the posterior
distributions and selection of model structure, the determination of prior distributions is
an important problem. The proposed method can determine reliable prior distributions
without any tuning parameters and select an appropriate model structure while taking ac-
count of the amount of training data. Continuous phoneme recognition experiments show
that the proposed method achieved a higher performance than the conventional methods.

Next, a new framework of speech synthesis based on the Bayesian approach is proposed.



Since acoustic models greatly affect the quality of synthesized speech in HMM-based
speech synthesis, it is required to improve acoustic models for improving the perfor-
mance of speech synthesis. The Bayesian method is a statistical technique for estimating
reliable predictive distributions by treating model parameters as random variables. In
the proposed framework, all processes for constructing the system can be derived from
one single predictive distribution which represents the basic problem of speech synthesis
directly. Experimental results show that the proposed method outperforms the conven-
tional one in a subjective test. And also, a speech synthesis technique integrating training
and synthesis processes based on the Bayesian framework is proposed. In the Bayesian
speech synthesis, all processes are derived from one single predictive distribution which
represents the problem of speech synthesis directly. However, it typically assumes that
the posterior distribution of model parameters is independent of synthesis data, and this
separates the system into training and synthesis parts. In the proposed method, the ap-
proximation is removed and an algorithm that the posterior distributions, model structures
and synthesis data are iteratively updated is derived. Experimental results show that the
proposed method improves the quality of synthesized speech.

Finally, an analysis of the impacts of machine translation and speech synthesis on speech-
to-speech translation systems is provided. Many techniques for integration of speech
recognition and machine translation have been proposed. However, speech synthesis has
not yet been considered. If the quality of synthesized speech is bad, users will not under-
stand what the system said: the quality of synthesized speech is obviously important for
speech-to-speech translation and any integration method intended to improve the end-to-
end performance of the system should take account of the speech synthesis component. In
order to understand the degree to which each component affects performance, a subjective
evaluation to analyze the impact of machine translation and speech synthesis components
is reported. The results of these analyses show that the naturalness and intelligibility of
synthesized speech are strongly affected by the fluency of the translated sentences.

For speech-to-speech translation systems, above techniques were proposed. Experimental
results show that the proposed techniques improves the performances and the naturalness
and intelligibility of synthesized speech are strongly affected by the fluency of the trans-
lated sentences.

Keywords: Speech-to-speech translation, machine translation, reordering model, speech
recognition, speech synthesis, Baysian approach,
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Chapter 1

Introduction

In speech-to-speech translation (S2ST), the source language speech is translated into tar-
get language speech. A S2ST system can help to overcome the language barrier, and is
essential for providing more natural interaction. A S2ST system consists of three com-
ponents: speech recognition, machine translation and speech synthesis. Figure 1.1 shows
the overview of a S2ST system. In order to improve the end-to-end performance of the
S2ST system, it is required to improve the performance of each component. Recently,
statistical approaches are widely used in these fields. In this paper, statistical models for
improving the performance of S2ST systems are proposed.

Statistical machine translation has been widely applied in many state-of-the-art translation
systems. A popular statistical machine translation paradigms is the phrase-based statis-
tical machine translation [1,2]. In phrase-based statistical machine translation, errors in
word reordering, especially global reordering, are one of the most serious problems. To
resolve this problem, many word-reordering constraint techniques have been proposed.
In inversion transduction grammar (ITG) constraints [3, 4], the target-side word order is
obtained by rotating nodes of the source-side binary tree. In these node rotations, the
source binary tree instance is not considered. Imposing a source tree on ITG (IST-ITG)
constraints [5] is an extension of ITG constraints and a hybrid of the first and second
type of approach. IST-ITG constraints directly introduce a source sentence tree structure.
Therefore, IST-ITG can obtain stronger constraints for word reordering than the original
ITG constraints. Although IST-ITG constraints efficiently suppress erroneous target word
orderings, the method cannot assign the probability to the target word orderings. In this
paper, a reordering model using a source-side parse-tree for phrase-based statistical ma-
chine translation is proposed. The proposed reordering model is an extension of IST-ITG
constraints. In the proposed method, the target-side word order is obtained by rotating
nodes of a source-side parse-tree in a similar fashion to IST-ITG constraints. The rotating



Speech-to-Speech Translation

Input speech Speech Recognition —>{Machine Translation—>| Speech Synthesis Output speech
(in source language) (in target language)

Figure 1.1: Overview of a speech-to-speech translation system

positions, monotone or swap, are modeled from word alignments of a training parallel
corpus and source-side parse-trees. The proposed method can conduct a probabilistic
evaluation of target word orderings using the source-side parse-tree.

In the field of speech recognition, hidden Markov models (HMMs) have been widely
used as acoustic models. In HMM-based speech recognition systems [6], accurate acous-
tic modeling is necessary for reducing recognition error rate. The maximum likelihood
(ML) criterion is one of the standard criteria for training acoustic models in speech recog-
nition. The ML criterion guarantees to estimate the true values of the parameters as the
amount of training data infinitely increases. However, since the ML criterion produces a
point estimate of model parameters, the estimation accuracy may be degraded due to the
over-fitting problem when the amount of training data is insufficient. On the other hand,
the Bayesian approach considers the posterior distribution of all variables [7]. That is,
all the variables introduced when models are parameterized, such as model parameters
and latent variables, are regarded as random variables, and their posterior distributions
are obtained based on the Bayes theorem. Based on this posterior distribution estimation,
the Bayesian approach can generally achieve more robust model construction and clas-
sification than the ML approach [8—10]. And also, the Bayesian approach can select an
appropriate model structure [11, 12], even when there are insufficient amounts of data.
Therefore, the speech recognition framework based on the Bayesian approach is effective
for estimating appropriate acoustic models and model structures. Moreover, the Bayesian
approach can utilize prior distributions which represent the prior information of model
parameters. In the Bayesian approach, since prior distributions of model parameters af-
fect the estimation of posterior distributions and model selection, the determination of
prior distributions is an important problem for estimating appropriate acoustic models. In
this paper, a prior distribution determination technique using cross validation is proposed
and it is applied to the context clustering for the speech recognition framework based on
Bayesian approach. The cross validation method is known as a straightforward and useful
method for model structure optimization [13, 14]. The main idea behind cross validation
is to split data for estimating the risk of each model. Part of data is used for training each
model, and the remaining part is used for estimating the risk of the model. Then, the cross
validation method selects the model with the smallest estimated risk. The cross validation
method avoids the over-fitting problem because the training data is independent from the

2



validation data. The context clustering based on the ML criterion using cross validation
has been proposed, and it can select a more appropriate model structure than the con-
ventional ML criterion [15]. The proposed method can be regarded as an extension of
context clustering using cross validation to the Bayesian approach. Using prior distribu-
tions determined by the cross validation, it is expected that a higher generalization ability
is achieved and an appropriate model structure can be selected in the context clustering
without any tuning parameters.

A statistical speech synthesis system based on HMMs was recently developed. In HMM-
based speech synthesis, the spectrum, excitation and duration of speech are modeled
simultaneously with HMMs, and speech parameter sequences are generated from the
HMMs themselves [16]. In HMM-based speech synthesis, the ML criterion has been
typically used for training HMMs and generating speech parameters. The ML criterion
guarantee that the ML estimates approach the true values of the parameters. However,
since the ML criterion produces a point estimate of the HMM parameters, its estimation
accuracy may deteriorate when the amount of training data is insufficient. To overcome
this problem, a Bayesian speech synthesis framework is proposed in this paper. In this
framework, all processes for constructing the system are derived from one single predic-
tive distribution which exactly represents the problem of speech synthesis. The Bayesian
approach considers the posterior distribution of any variable [7]. That is, all the variables
introduced when the models are parameterized, such as the model parameters and latent
variables, are regarded as probabilistic variables, and their posterior distributions are ob-
tained by invoking Bayes theorem. Based on the posterior distribution estimation, the
Bayesian approach can generally construct a more robust model than the ML approach.
However, the Bayesian approach requires complex integral and expectation computations
to obtain posterior distributions when the models have latent variables. To overcome
this problem, a variational Bayes (VB) method [17] has recently been proposed in the
learning theory field. This method can obtain approximate posterior distributions through
iterative calculations similar to the expectation-maximization (EM) algorithm used in the
ML approach. The proposed method can estimate reliable predictive distributions by
marginalizing model parameters.

Furthermore, a Bayesian speech synthesis framework integrating training and synthesis
processes is also proposed. In the Bayesian speech synthesis, the estimation of the pos-
terior distributions, model selection, and speech parameter generation are consistently
performed by maximizing the log marginal likelihood. The posterior distributions of all
variables are obtained by using the VB method. Then, the obtained posterior distribution
of the model parameters depends on not only the training data, but also the synthesis data.
In a basic speech synthesis situation, the observed data for the synthesis sentences is not
given beforehand. Therefore, the posterior distributions cannot be obtained. To overcome



this problem, it typically assumes that the posterior distribution of the model parameters is
independent of the synthesis data [18,19]. As a result of this approximation, the Bayesian
speech synthesis system is separated into training and synthesis parts, as the conventional
ML-based system, and the posterior distribution of the model parameters and decision
trees can be obtained from only the training data. However, although the posterior dis-
tributions can be estimated, they don’t consider synthesis data, and the system doesn’t
represent the Bayesian speech synthesis exactly. This paper proposes a speech synthesis
technique integrating training and synthesis processes based on the Bayesian framework.
This method removes the approximation and leads to an algorithm that the posterior dis-
tributions, decision trees and synthesis data are iteratively updated.

Finally, an analysis of the impacts of machine translation and speech synthesis on speech-
to-speech translation systems is provided. In the simplest S2ST system, only the single-
best output of one component is used as input to the next component. Therefore, errors of
the previous component strongly affect the performance of the next component. Due to
errors in speech recognition, the machine translation component cannot achieve the same
level of translation performance as achieved for correct text input. To overcome this prob-
lem, many techniques for integration of speech recognition and machine translation have
been proposed, such as [20,21]. However, the speech synthesis component is not usually
considered. The output speech for translated sentences is generated by the speech synthe-
sis component. If the quality of synthesized speech is bad, users will not understand what
the system said: the quality of synthesized speech is obviously important for S2ST and
any integration method intended to improve the end-to-end performance of the system
should take account of the speech synthesis component. This paper focuses on the impact
of the machine translation and speech synthesis components on end-to-end performance
of an S2ST system. In order to understand the degree to which each component affects
performance, we investigate integration methods. First, a subjective evaluation divided
into three sections: speech synthesis, machine translation, and speech-to-speech transla-
tion, is conducted. Various translated sentences were evaluated by using /V-best translated
sentences output from the machine translation component. The individual impacts of the
machine translation and the speech synthesis components are analyzed from the results of
this subjective evaluation.

For speech-to-speech translation, above improved techniques were proposed and systems
using these techniques improved their performance. The rest of the present dissertation
is organized as follows. Chapter 2 introduces reordering model using source-side parse-
tree for statistical machine translation. Chapter 3 shows Bayesian context clustering using
cross validation for speech recognition. Chapter 4 presents Bayesian speech synthesis and
integration technique of training and synthesis processes for Bayesian speech synthesis.
An analysis of the impacts of machine translation and speech synthesis on speech-to-



speech translation systems is provided in Chapter 5. Concluding remarks and future plans
are presented in the final chapter.



Chapter 2

A Reordering Model Using a
Source-Side Parse-Tree for Statistical
Machine Translation

Statistical machine translation has been widely applied in many state-of-the-art translation
systems. A popular statistical machine translation paradigms is the phrase-based statis-
tical machine translation [1,2]. In phrase-based statistical machine translation, errors in
word reordering, especially global reordering, are one of the most serious problems. To
resolve this problem, many word-reordering constraint techniques have been proposed.
These techniques are categorized into two types. The first type is linguistically syntax-
based. In this approach, tree structures for the source [22,23], target [24,25], or both [26]
are used for model training. The second type is formal constraints on word permutations.
IBM constraints [27], the lexical word reordering model [28], and inversion transduction
grammar (ITG) constraints [3, 4] belong to this type of approach. For ITG constraints,
the target-side word order is obtained by rotating nodes of the source-side binary tree. In
these node rotations, the source binary tree instance is not considered. Imposing a source
tree on ITG (IST-ITG) constraints [5] is an extension of ITG constraints and a hybrid of
the first and second type of approach. IST-ITG constraints directly introduce a source
sentence tree structure. Therefore, IST-ITG can obtain stronger constraints for word re-
ordering than the original ITG constraints. For example, IST-ITG constraints allows only
eight word orderings for a four-word sentence, even though twenty-two word orderings
are possible with respect to the original ITG constraints. Although IST-ITG constraints
efficiently suppress erroneous target word orderings, the method cannot assign the proba-
bility to the target word orderings.

This chapter presents a reordering model using a source-side parse-tree for phrase-based



statistical machine translation. The proposed reordering model is an extension of IST-ITG
constraints. In the proposed method, the target-side word order is obtained by rotating
nodes of a source-side parse-tree in a similar fashion to IST-ITG constraints. We modeled
the rotating positions, monotone or swap, from word alignments of a training parallel cor-
pus and source-side parse-trees. The proposed method conducts a probabilistic evaluation
of target word orderings using the source-side parse-tree.

The rest of this chapter is organized as follows. Section 2.1 describes the previous ap-
proach to resolving erroneous word reordering. In Section 2.2, the reordering model us-
ing a source-side parse-tree is presented. Section 2.3 shows experimental results. Finally,
Section 2.4 presents the summary and some concluding remarks and future works.

2.1 Previous Work

First, we introduce two previous studies on related word reordering constraints, ITG and
IST-ITG constraints.

2.1.1 ITG Constraints

In one-to-one word-alignment, the source word f; is translated into the target word e;.
The source sentence [f1, f2, -, fi] is translated into the target sentence which is the
reordered target word sequence [ey, s, - - - , en]. Then, the number of reorderings is N'!.

Stochastic synchronous grammars provide a generative process to produce a sentence and
its translation simultaneously. An inversion transduction grammar (ITG) [3,4] is a well-
studied synchronous grammar formalism. To allow for movement during translation, non-
terminal productions can be either straight (monotone) or inverted. Straight productions
are output in the given order in both sentences. Inverted productions are output in the
reverse order in the foreign sentence only. ITG cannot represent all possible permutations
of concepts that many occur during translation, because some permutations will require
discontinuous constituents. When these ITG constraints are introduced, the number of
reorderings V! can be reduced in accordance with the following constraints.

e All possible source-side binary tree structures are generated from the source word
sequence.

e The target sentence is obtained by rotating any node of the generated source-side
binary trees.



When N = 4, the ITG constraints can reduce the number of reorderings from 4! = 24
to 22 by rejecting the orders [e3, e1, €4, €3] and [e, 4, €1, €3] that cannot be represented
by ITG. Such target word orders are called inside-out alignments [4]. For a four-word
sentence, the search space is reduced to 92% (22/24), but for a 10-word sentence, the
search space is only 6% (206,098/3,628,800) of the original full space.

2.1.2 IST-ITG Constraints

In ITG constraints, the source-side binary tree instance is not considered. Therefore,
if a source sentence tree structure is utilized, stronger constraints than the original ITG
constraints can be created. IST-ITG constraints [5] directly introduce a source sentence
tree structure. The target sentence is obtained with the following constraints.

e A source sentence tree structure is generated from the source sentence.

e The target sentence is obtained by rotating any node of the source sentence tree
structure.

By parsing the source sentence, the source-side parse-tree is obtained. After parsing the
source sentence, a bracketed sentence is obtained by removing the node syntactic labels;
this bracketed sentence can then be converted into a tree structure. For example, the
source-side parse-tree “(S1 (S (NP (DT This)) (VP (AUX is) (NP (DT a) (NN pen)))))”
is obtained from the source sentence “This is a pen” which consists of four words. By
removing the node syntactic labels, the bracketed sentence “((This) ((is) ((a) (pen))))”
is obtained. Such a bracketed sentence can be used to produce constraints. If IST-ITG
constraints are applied, the number of target word orders in N = 4 is reduced to 8,
down from 22 with ITG constraints. For example, for the source-side bracketed tree
“((f1f2) (fsfs)), the eight target sequences [eq, ez, €3, €4], [€2, €1, €3, €4], [€1, €2, €4, €3],
[ea, €1, €4, €3], [e3, €4, €1, €3], [€3, €4, €2, €1], [€4, €3, €1, €3], and [ey4, €3, €2, €1] are accepted.
For the source-side bracketed tree “(((f1f2) f3) f1),” the eight sequences [e1, 3, €3, €4],
lea, €1, €3, eq], [e3, €1, €2, €4], [e3, €2, €1, €4], [€4, €1, €2, €3], [€4, €2, €1, €3], [e4, €3, €1, €2, and
leq, €3, €2, 1] are accepted. When the source sentence tree structure is a binary tree, the
number of word orderings is reduced to 2 ~!. However, the parsing results sometimes
do not produce binary trees. In this case, some subtrees have more than two child nodes.
For a non-binary subtree, any reordering of child nodes is allowed. If a subtree has three
child nodes, six reorderings of the nodes are accepted.

In phrase-based statistical machine translation, a source “phrase” is translated into a target
“phrase.” However, with IST-ITG constraints, “word” must be used for the constraint unit
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since the parse unit is a “word.” To absorb different units between translation models and
IST-ITG constraints, a new limitation for word reordering is applied.

e Word ordering that destroys a phrase is not allowed.

When this limitation is applied, the translated word ordering is obtained from the brack-
eted source sentence tree by reordering the nodes in the tree, which is the same as for
one-to-one word-alignment.

2.2 Reordering Model Using the Source-Side Parse-Tree

In this section, we present a new reordering model using syntactic information of a source-
side parse-tree.

2.2.1 Abstract of Proposed Method

The IST-ITG constraints method efficiently suppresses erroneous target word orderings.
However, IST-ITG constraints cannot evaluate the accuracy of the target word orderings;
i.e., IST-ITG constraints assign an equal probability to all target word orderings. This
chapter proposes a reordering model using the source-side parse-tree as an extension of
IST-ITG constraints. The proposed reordering model conducts a probabilistic evaluation
of target word orderings using syntactic information of the source-side parse-tree.

In the proposed method, the target-side word order is obtained by rotating nodes of the
source-side parse-tree in a similar fashion to IST-ITG constraints. Reordering probabil-
ities are assigned to each subtree of source-side parse-tree S by reordering the positions
into two types: monotone (straight) and swap. If the subtree has more than two child
nodes, the number of child node order is more than two. However, we assume the child
node order other than monotone to be swap.

The source-side parse-tree .S consists of subtrees {s, s2, - - , Si }, where K is the number
of subtrees included in the source-side parse-tree. The subtree sj is represented by the
parent node’s syntactic label and the order, from sentence head to sentence tail, of the
child node’s syntactic labels. For example, Figure 2.1 shows a source-side parse-tree for
a four-word source sentence consisting of three subtrees. In Figure 2.1, the subtrees s,
s9, and s3 are represented by S+NP+VP, VP+AUX+NP, and NP+DT+NN, respectively.
Each subtree has a probability P(¢ | s), where ¢ is monotone (m) or swap (s). The
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Source-side parse-tree
S = {31732733}
S

S1
NP VP

S2
AUX NP
83

o

i o f3z Jfa

Source sentence

Figure 2.1: Example of a source-side parse-tree of a four-word source sentence consisting
of three subtrees.

probability of the target word reordering is calculated as follows.

K
P.=]] Pt s (2.1)
k=1

By Equation (2.1), each target candidate is assigned the different reordering probability.
The proposed reordering probabilities of higher-level subtrees are effective for global
word reordering, and ones of lower-level subtrees are effective for local word reordering.

2.2.2 Training of the Proposed Model

We modeled monotone or swap node rotating automatically from word alignments of a
training parallel corpus and source-side parse-trees. The training algorithm for the pro-
posed reordering model is as follows.

1. The training process begins with a word-aligned corpus. We obtained the word
alignments using Koehn et al.’s method (2003), which is based on Och and Ney’s
work (2004). This involves running GIZA++ [29] on the corpus in both directions,
and applying refinement rules (the variant they designate is “final-and”) to obtain a
single many-to-many word alignment for each sentence.
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S1
1 2,34

S2
4 2,3

2rsi‘3

fi 2o fs Jfa

é1 €3 €4 €9

Figure 2.2: Example of a source-side parse-tree with word alignments using the training
algorithm of the proposed model.

2. Source-side parse-trees are created using a source language phrase structure parser,
which annotates each node with a syntactic label. A source-side parse-tree consists
of several subtrees with syntactic labels. For example, the parse-tree “(S1 (S (NP
(DT This)) (VP (AUX is) (NP (DT a) (NN pen)))))” is obtained from the source
sentence “This is a pen” which consists of four words.

3. Word alignments and source-side parse-trees are combined. Leaf nodes are as-
signed target word positions obtained from word alignments. Via the bottom-up
process, target word positions are assigned to all nodes. For example, in Figure 2.2,
the left-side (sentence head) child node of subtree s, is assigned the target word po-
sition “4,” and the right-side (sentence tail) child node is assigned the target word
positions “2” and “3,” which are assigned to the child nodes of subtree s;.

4. The monotone and swap reordering positions are checked and counted for each sub-
tree. By comparing the target word positions, which are assigned in the above step,
the reordering position is determined. If the target word position of the left-side
child node is smaller than one of the right-side child node, the reordering position
determined as monotone. For example, in Figure 2.2, the subtrees s, so and s3 are
monotone, swap, and monotone, respectively.

5. The reordering probability of the subtree can be directly estimated by counting the
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| Subtree type | Monotone probability |

S+PP+,+NP+VP+. 0.764
PP+IN+NP 0.816
NP+DT+NN+NN 0.664
VP+AUX+VP 0.864
VP+VBN+PP 0.837
NP+NP+PP 0.805
NP+DT+JJ+NN 0.653
NP+DT+JJ+VBP+NN 0.412
NP+DT+NN+CC+VB 0.357

Table 2.1: Example of proposed reordering models.

reordering positions in the training data.

ce(s)
P(t|s) = =——— (2.2)
22 ci(s)
where ¢,(s) is the count of reordering position ¢ included all training samples for
the subtree s.

The parsing results sometimes do not produce binary trees. For a non-binary subtree, any
reordering of child nodes is allowed. However, the proposed reordering model assumes
that reordering positions are only two, monotone and swap. That is, the reordering posi-
tion which the order of child nodes do not change is monotone, and the other positions
are swap. Therefore, the probability of swap P(s | sy) is derived from the probability of
monotone P(m | si) as follows.

P(s|sk) =1.0— P(m| s) (2.3)
Table 2.1 shows the example of proposed reordering models.

If a subtree is represented by a binary-tree, there are L® possible subtrees, where L is the
number of syntactic labels. However, in the possible subtrees, there are subtrees observed
only a few times in training sentences, especially when the subtree consists of more than
three child nodes. Although a large number of subtree models can capture variations in the
training samples, too many models lead to the over-fitting problem. Therefore, subtrees
where the number of training samples is less than a heuristic threshold and unseen subtrees
are clustered to deal with the data sparseness problem for robust model estimations.

After creating word alignments of a training parallel corpus, there are target word orders
which are not derived from rotating nodes of source-side parse-trees. Figure 2.3 shows a
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S1

Figure 2.3: Example of a target word order which is not derived from rotating the nodes
of source-side parse trees.

sample which is not derived from rotating nodes. Some are due to linguistic reasons, struc-
tural differences such as negation (French “ne...pas” and English “not”), adverb, modal
and so on. Others are due to non-linguistic reasons, errors of automatic word alignments,
syntactic analysis, or human translation [30]. The proposed method discards such prob-
lematic cases. In Figure 2.3, the subtree s; is then removed from training samples, and
the subtrees s, and s3 are used as training samples.

2.2.3 Decoding Using the Proposed Reordering Model

In this section, we describe a one-pass phrase-based decoding algorithm that uses the
proposed reordering model in the decoder. The translation target sentence is sequentially
generated from left (sentence head) to right (sentence tail), and all reordering is conducted
on the source side. To introduce the proposed reordering model into the decoder, the
target candidate must be checked for whether the reordering position of a subtree is either
monotone or swap whenever a new phrase is selected to extend a target candidate. The
checking algorithm is as follows.

1. For old translation candidates, the subtree s, which includes both translated and
untranslated words, and its untranslated part u are calculated.

2. When a new target phrase ¢ is generated, the source phrase f and the untranslated
part u calculated in the above step are compared. If the source phrase f does not
include the untranslated part v and is not included u, the new candidate is rejected.
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S92 S3

NN

fi ol f3a Ja

*

€1 €2 €4 €3

Figure 2.4: Example of a target candidate including a phrase.

3. In the accepted candidate, the reordering positions for all subtrees included the
source side parse-tree are checked by comparing the source phrase f with the source
phrase sequence used before.

Subtrees checked reordering positions are assigned a probability—monotone or swap-by
the proposed reordering model, and the target word order is evaluated by Equation (2.1).

Phrase-based statistical machine translation uses a “phrase” as the translation unit. How-
ever, the proposed reordering model needs a “word” order. Because “word” alignments
from the source phrase to target phrase are not clear, we cannot determine the reorder-
ing position of subtree included in a phrase. Therefore, in the decoding process using
the proposed reordering model, we define that higher probability, monotone or swap, are
assigned to subtrees included in a source phrase. For example, in Figure 2.4, the source
sentence [[f1, f2], f3, f4] is translated into the target sentence [[e1, 2], €4, €3], Where [ f1, f2]
and [eq, e;] are used as phrases. Then, the source phrase [f1, f2| includes the subtree ss.
If the monotone probabilities of subtrees s;, so, and sz are 0.8, 0.4 and 0.7, the proposed
reordering probability is 0.8 x 0.6 x 0.3 = 0.144. If a source phrase is [f1, f2, f3, f4] and
a source-side parse-tree has the same tree structure used in Figure 2.4, the subtrees s,
S9, and sg are assigned higher reordering probabilities. If the source phrase [f1, fa, f3, f4]
used in Figure 2.4, the subtrees s1, s, and s3 are assigned higher reordering probabilities.

Non-binary subtrees are often observed in the source-side parse-tree. When a source
phrase f is included in a non-binary subtree and does not include a non-binary subtree,
we cannot determine the reordering position. For example, the reordering position of
subtree s, in Figure 2.5, which includes the phrase [ f3, f4], can not be determined. In this
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Figure 2.5: Example of a non-binary subtree including a phrase.

English \ Japanese

Train Sentences 1.0M
Words 24.6M | 28.8M

Dev  Sentences 2.0K
Words 50.1K | 58.7K

Test  Sentences 2.0K
Words 49.5K | 58.0K

Table 2.2: Statistics of training, development and test corpus for E-J translation.

case, we define that such subtrees are also to be assigned a higher probability.

2.3 Experiments

To evaluate the proposed model, we conducted two experiments: English-to-Japanese and
English-to-Chinese translation.

2.3.1 English-to-Japanese Paper Abstract Translation Experiments

The first experiment was the English-to-Japanese (E-J) translation. Table 2.2 shows the
training, development and test corpus statistics. JST Japanese-English paper abstract
corpus consists of 1.0M parallel sentences were used for model training. This corpus
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was constructed from 2.0M Japanese-English paper abstract corpus belongs to JST [31]
by NICT using the method of Uchiyama and Isahara [32]. For phrase-based translation
model training, we used the GIZA++ toolkit [29], and 1.0M bilingual sentences. For lan-
guage model training, we used the SRI language model toolkit [33], and 1.0M sentences
for the translation model training. The language model type was word 5-gram smoothed
by Kneser-Ney discounting [34]. To tune the decoder parameters, we conducted mini-
mum error rate training [35] with respect to the four word BLEU score [36] using 2.0K
development sentence pairs. The test set with 2.0K sentences is used. In the evaluation
and development sets, a single reference was used. For the creation of English sentence
parse trees and segmentation of the English, we used the Charniak parser [37]. We used
Chasen [38] for segmentation of the Japanese sentences. We used CleopATRa made at
ATR for the decoding, which is compatible with Moses [39]. The performance of this
decoder was configured to be the same as Moses. Other conditions were the same as the
default conditions of the Moses decoder.

In this experiment, the following three methods were compared.

e Baseline : The IBM constraints and the lexical reordering model were used for
target word reordering.

o IST-ITG : The IST-ITG constraints, the IBM constraints, and the lexical reordering
model were used for target word reordering.

e Proposed : The proposed reordering model, the IBM constraints, and the lexical
reordering model were used for target word reordering.

During minimum error training, each method used each reordering model and reordering
constraint.

The proposed reordering model are trained from 1.0M bilingual sentences which are used
for the translation model training. The amount of available training samples represented
by subtrees was 9.8M. In the available training samples, there were 54K subtree types.
The heuristic threshold was 10, and subtrees with training samples of less than 10 were
clustered. The proposed reordering model consisted of 5,960 subtrees types and one
clustered model. The models not including the clustered model covered 99.29% of all
training samples.

The BLEU and WER are presented in Table 2.3. In comparing “Baseline” method with
“IST-ITG” method, the improvement in BLEU was a 1.44-point and improvement in
WER was 4.76%. Furthermore, in comparing “IST-ITG” method with “Proposed” method,
the improvement in BLEU was a 0.49-point and improvement in WER was 0.65%. Ta-
ble 2.4 shows the number of outputs that improved or got worse in BLEU after comparing
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Baseline | IST-ITG | Proposed
BLEU | 27.87 29.31 29.80
WER | 77.20 72.44 71.79

Table 2.3: BLEU score results for E-J translation. (1-reference)

positive
605

negative
539

equal
851

# of outputs

Table 2.4: The number of output that “Proposed” improved and got worse in BLEU score
from “IST-ITG” for E-J translation.

“Proposed” method with “IST-ITG” method. These results indicate a statistically sig-
nificant difference at 95% confidence level between “Proposed” method and “IST-ITG”
method. Both the IST-ITG constraints and the proposed reordering model fixed the phrase
position for the global reorderings. However, the proposed method can conduct a proba-
bilistic evaluation of target word reorderings which the IST-ITG constraints cannot. When
the source sentence consists a few words (i.e. less than 15 words), the proposed reorder-
ing model obtains the similar performance with the IST-ITG constraints. However, when
the source sentence consists many words and the source sentence structure is complex,
the results using the proposed reordering model is better than one using the IST-ITG con-
straints. In this experiment, when the number of source words was more than 30, 45% of
test sentences were improved by the proposed reordering model. Therefore, “Proposed”
method resulted in a better BLEU and WER. The improvement could clearly be seen from
visual inspection of the output, a few examples of which are presented in the Appendix.

2.3.2 NIST MT08 English-to-Chinese Translation Experiments

Next, we conducted English-to-Chinese (E-C) newspaper translation experiments for dif-
ferent language pairs. The NIST MTO08 evaluation campaign English-to-Chinese transla-
tion track was used for the training and evaluation corpora. Table 2.5 shows the training,
development and test corpus statistics. For the translation model training, we used 4.6M
bilingual sentences. For the language model training, we used 4.6M sentences which
are used for the translation model training. The language model type was word 3-gram
smoothed by Kneser-Ney discounting. A development set with 1.6K sentences was used
as evaluation data in the Chinese-to-English translation track for the NIST MTO07 evalu-
ation campaign. A single reference was used in the development set. The evaluation set
with 1.9K sentences is the same as the MTO8 evaluation data, with 4 references. In this
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English |  Chinese
Train Sentences 4.6M
Words 79.6M \ 73.4M
Dev  Sentences 1.6K
Words 46.4K \ 39.0K
Test Sentences 1.9K
Words 45.7K \ 47.0K (Ave.)

Table 2.5: Statistics of training, development and test corpus for E-C translation.

Baseline | IST-ITG | Proposed
BLEU | 17.54 18.60 18.93
WER | 78.07 75.43 75.57

Table 2.6: BLEU score results for E-C translation. (4-reference)

experiment, the compared methods were the same as in the E-J experiment.

The proposed reordering model are trained from 4.6M bilingual sentences which are used
for the translation model training. The amount of available training samples represented
by subtrees was 39.6M. In the available training samples, there were 193K subtree types.
As in the E-J experiments, the heuristic threshold was 10. The proposed reordering model
consisted of 18,955 subtree types and one clustered model. The models not including the
clustered model covered 99.45% of all training samples.

The BLEU and WER are presented in Table 2.6. In comparing “Baseline” method with
“IST-ITG” method, the improvement in BLEU was a 1.06-point. Furthermore, in com-
paring “IST-ITG” method with “Proposed” method, the improvement in BLEU was a
0.33-point. As in the E-J experiments, ‘“Proposed” method performed the highest BLEU.
Consequently, we demonstrated that the proposed method is effective for multiple lan-
guage pairs. However, the improvement of BLEU and WER in E-C translation is smaller
than the improvement in E-J translation. Table 2.7 shows the number of outputs that
improved or got worse in BLEU after comparing “Proposed” method with “IST-ITG”
method. These results cannot indicate a statistically significant difference at 95% confi-
dence level between “Proposed” method and “IST-ITG” method. That is because English
and Chinese are similar sentence tree structures, such as SVO-languages (Japanese is
SOV-language). When the sentence tree structures are different, the proposed reordering
model is effective.
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positive | negative | equal
# of outputs 463 428 968

Table 2.7: The number of output that “Proposed” improved and got worse in BLEU score
from “IST-ITG” for E-C translation.

2.4 Summary

This chapter proposed a new word reordering model using a source-side parse-tree for
phrase-based statistical machine translation. The proposed model is an extension of the
IST-ITG constraints. In both IST-ITG constraints and the proposed method, the target-side
word order is obtained by rotating nodes of the source-side tree structure. Both the IST-
ITG constraints and the proposed reordering model fix the phrase position for the global
reorderings. However, the proposed method can conduct a probabilistic evaluation of
target word reorderings which the IST-ITG constraints cannot. In E-J and E-C translation
experiments, the proposed method resulted in a 0.49-point improvement (29.31 to 29.80)
and a 0.33-point improvement (18.60 to 18.93) in word BLEU-4 compared with IST-ITG
constraints, respectively. This indicates the validity of the proposed reordering model.

Future work will focus on a simultaneous training of translation and reordering models.
Moreover, we will deal with difference between source and target tree structures in multi
level like in [40].

19



Chapter 3

Bayesian Context Clustering Using
Cross Validation for Speech
Recognition

In hidden Markov model (HMM) based speech recognition systems [6], accurate acoustic
modeling is necessary for reducing recognition error rate. The maximum likelihood (ML)
criterion is one of the standard criteria for training acoustic models in speech recognition.
The ML criterion guarantees to estimate the true values of the parameters as the amount of
training data infinitely increases. However, the performance of current speech recognition
systems is still far from satisfactory. In a real environment, there are many fluctuations
originating from various factors such as the speaker, speaking style, and noise. A mis-
match between the training and testing conditions often brings a drastic degradation in
performance. However, since the ML criterion produces a point estimate of model pa-
rameters, the estimation accuracy may be degraded due to the over-fitting problem when
the amount of training data is insufficient.

On the other hand, the Bayesian approach considers the posterior distribution of all vari-
ables [7]. That is, all the variables introduced when models are parameterized, such as
model parameters and latent variables, are regarded as random variables, and their poste-
rior distributions are obtained based on the Bayes theorem. The difference between the
Bayesian and ML approaches is that the target of estimation is the distribution function
in the Bayesian approach whereas it is the parameter value in the ML approach. Based
on this posterior distribution estimation, the Bayesian approach can generally achieve
more robust model construction and classification than the ML approach [8-10]. How-
ever, the Bayesian approach requires complicated integral and expectation computations
to obtain posterior distributions when models have latent variables. Since the acoustic
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models used in speech recognition (e.g., HMMs) have the latent variables, it is difficult to
apply the Bayesian approach to speech recognition directly with no approximation. Re-
cently, the Variational Bayesian (VB) approach has been proposed in the field of learning
theory to avoid complicated computations by employing the variational approximation
technique [17]. With this VB approach, approximate posterior distributions are obtained
effectively by iterative calculations similar to the Expectation-Maximization (EM) algo-
rithm used in the ML approach. The VB approach has been applied to speech recognition
and it shows good performance [11].

The VB approach has also been applied to the context clustering [11,12]. It is well known
that contextual factors affect speech. Therefore, context-dependent acoustic models (e.g.,
triphone HMMs) are widely used in HMM-based speech recognition [41,42]. Although a
large number of context-dependent acoustic models can capture variations in speech data,
too many model parameters lead to the over-fitting problem. Consequently, maintaining a
good balance between model complexity and the amount of training data is very important
for obtaining high generalization performance. The decision tree based context cluster-
ing [43] is an efficient method for dealing with the problem of data sparseness, for both
estimating robust model parameter of context-dependent acoustic models and obtaining
predictive distributions of unseen contexts. This method constructs a model parameter
tying structure which can assign a sufficient amount of training data to each HMM state.
The tree is grown step by step, choosing questions that divide the set of contexts using a
greedy strategy to maximize an objective function.

The ML criterion is inappropriate as a model selection criterion because it increases
monotonically as the number of states increases. Some heuristic thresholding is therefore
necessary to stop splitting nodes in the context clustering. To solve this problem, the min-
imum description length (MDL) criterion has been employed to select the model struc-
ture [44]. However, the MDL criterion is based on an asymptotic assumption, therefore it
is ineffective when the amount of training data is small. On the other hand, the Bayesian
information criterion (BIC) [45] has been proposed as an approximated Bayesian crite-
rion. However, since the BIC is practically the same as the MDL criterion, The BIC is also
ineffective when the amount of training data is small. In contrast to the BIC, the model
selection based on the VB method has been proposed [11,12]. The VB method can select
an appropriate model structure, even when there are insufficient amounts of data, because
it does not use an asymptotic assumption. Therefore, the speech recognition framework
which consistently applies the VB method is effective for estimating appropriate acoustic
models and model structures.

The Bayesian approach has an advantage that it can utilize prior distributions which repre-
sent the prior information of model parameters. In the Bayesian approach, since prior dis-
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tributions of model parameters affect the estimation of posterior distributions and model
selection, the determination of prior distributions is an important problem for estimating
appropriate acoustic models. As the determination technique of prior distributions, some
techniques have been proposed in the filed of machine learning, e.g., using uninforma-
tive (uniform) prior distributions, hierarchical Bayesian methods, and empirical Bayesian
methods [46]. However, it has not been thoroughly investigated in speech recognition, and
the determination technique of prior distributions has not performed well. This chapter
proposes a prior distribution determination technique using cross validation and applies
it to the context clustering for the speech recognition framework based on Bayesian ap-
proach. The cross validation method is known as a straightforward and useful method for
model structure optimization [13, 14]. The main idea behind cross validation is to split
data for estimating the risk of each model. Part of data is used for training each model,
and the remaining part is used for estimating the risk of the model. Then, the cross val-
idation method selects the model with the smallest estimated risk. The cross validation
method avoids the over-fitting problem because the training data is independent from the
validation data. The context clustering based on the ML criterion using cross validation
has been proposed, and it can select a more appropriate model structure than the con-
ventional ML criterion [15]. The proposed method can be regarded as an extension of
context clustering using cross validation to the Bayesian approach. Using prior distribu-
tions determined by the cross validation, it is expected that a higher generalization ability
is achieved and an appropriate model structure can be selected in the context clustering
without any tuning parameters.

The rest of the chapter is organized as follows. Section 3.1 describes speech recognition
based on the variational Bayesian method. Section 3.2 derives the prior distribution deter-
mination technique using cross validation and apply it to the context clustering. Results of
the continuous phoneme recognition experiments are shown in Section 3.3. Concluding
remarks and future plans are presented in the final section.

3.1 Speech recognition based on variational Bayesian method

3.1.1 Bayesian approach

The output distribution is obtained based on a left-to-right HMM which has been widely
used to represent an acoustic model for speech recognition. Let O = (01,09, ...,07)
be a set of training data of D dimensional feature vectors, and 7' is used to denote the
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number of frames. The log output distribution is represented by

T-1 N N
log P(O,Z | A) ZZl logm + Y Y > ZjZ],,logay
t=1 i=1 j=1
+ZZZZ log (0 | pi, ;) (3.1)
t=1 i=1
where Z = (Zy,Z,,...,Zr) is a sequence of latent variables which represent HMM
states, Z; € {1,..., N} denotes a state at frame ¢, and N is the number of states in an
HMM.
, , 1 ifZ, =1
Zt = §(Z,i1) = ! (3.2)

0 otherwise

A set of model parameters A = {m;, a;;, i, Si}fyj:l consists of the initial state probability
m; of state ¢, the state transition probability a;; from state ¢ to state j, the mean vector u;
and the covariance matrix S; ' of a Gaussian distribution V(- | p;, S;1). !

In HMM-based speech recognition, the ML criterion has typically been used to train
HMMs. In the ML criterion, the optimal model parameters are estimated by maximizing
the likelihood for given training data as follows.

A, = argmixXP(O | A)

= arg mEXzZ:P(O,Z | A) (3.3)

The model parameters can be estimated using an iterative procedure such as the EM al-
gorithm [47] because it is difficult to obtain the model parameters Ay, analytically. The
ML criterion guarantees to estimate the true values of the model parameters as the amount
of training data infinitely increases. However, the ML criterion produces a point estimate
of model parameters. The use of point estimate will cause an over-fitting problem when
the amount of training data is insufficient. A overfitted model will generally have poor
predictive performance, because it captures minor fluctuations in the training data.

The Bayesian approach assumes that a set of model parameters A is random variables,
while the ML approach estimates constant model parameters. The posterior distribution
for a set of model parameters A is given by the famous Bayes theorem as follows.

PO A)P(A)
P(0)
! Although a multi-mixture Gaussian is typically used as a state output probability distribution in re-

cent HMM-based speech recognition systems, a single Gaussian is assumed as a state output probability
distribution in this chapter for simplification.

P(A|O) =

(3.4)
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where P(A) is a prior distribution for A, and P(O) is an evidence.

Once the posterior distribution P(A | O) is estimated, the predictive distribution for input
data X is represented by

P(X|0) = /P(X | A)P(A | O)dA (3.5)

The model parameters are integrated out in Eq. (3.5) so that the effect of over-fitting is
mitigated, and robust classification is achieved. However, the Bayesian approach requires
complicated integral and expectation calculations to obtain posterior distributions when
models include latent variables. To overcome this problem, maximum a posterior (MAP)
approach has been proposed [48]. In the MAP approach, the optimal model parameters
are estimated by maximizing the posterior probability. The MAP criterion can utilize the
prior distribution P(A), and can be seen as an extension of the ML criterion. However, it
also produces a point estimate of HMM parameters. Consequently, it still has the effect
of the over-fitting due to a point estimate.

On the other hand, the variational Bayesian (VB) method has been proposed as a tractable
approximation method of the Bayesian approach [17]. The VB method avoids compli-
cated computations by employing the variational approximation technique, and estimates
approximate posterior distributions effectively by iterative calculations similar to the EM
algorithm in the ML approach.

3.1.2 Variational Bayesian method
In the variational Bayesian method, an approximate posterior distribution is estimated by

maximizing a lower bound of log marginal likelihood F instead of the true likelihood. A
lower bound of log marginal likelihood is defined by using Jensen’s inequality.

log P(O) = log) / P(O,Z | A)P(A)dA

- logZ/Q(Z,A)P(O’Z | APIA) o

Q(Z,A)
> Z/Q(Z,A) log P(OéZ(Z|/X)P(A)dA
= F (3.6)

where Q(Z, A) is an arbitrary distribution. The relation between the log marginal like-
lihood and the lower bound F is represented by using the Kullback-Leibler (KL) diver-
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gence [49] between (Q(Z, A) and true posterior distribution P(Z, A | O).

log P(O)—F = KLIQ(Z,A)| P(Z,A | O)]

= XZ:/Q(Z,A) log —P(QZ<,Z1;A)O)dA (3.7

where KL[Q(Z,A) | P(Z,A | O)] denote a KL divergence. As the difference between
the true log marginal likelihood and the lower bound is reduced, Q(Z, A) approximate
the true posterior distribution P(Z, A | O). Therefore, the optimal posterior distribution

is estimated by the variational method, which results in minimizing the right hand side of
Eq. (3.7)

To obtain approximate posterior distributions (VB posterior distributions) Q(Z, A), it is
assumed that random variables are conditionally independent each other.

Q(Z,A) =Q(Z)Q(A) (3.8)

Under this assumption, the optimal VB posterior distributions which maximize the objec-
tive function F are given by the variational method as follows.

QA) = CAP(A)exp{<logP(O,Z|A)>Q(Z)} (3.9)
0Z) = Czexp{<logP(O,Z|A))Q(A)} (3.10)

where (-)¢ denotes the expectation with respect to ), Ca and C'z are the normalization
terms of Q(A) and Q(Z), respectively. Moreover, it is assumed that the model parameters
m = {m}y. ai = {ag}),, and {p;, S;}}Y, are independent each other in the prior
distribution P(A). Therefore, the prior distribution P(A) can be represented as follows.

N N

P(A) = P(m) ][] Pla) [] Plwi, S:) (3.11)

=1 i=1

By using this assumption, the posterior distribution Q)(A) and its normalization term C's
can be written as follows.

N N
QA) = Q) []Qa) ] Qi S:) (3.12)
Nz:l N =1
Cr = Co]]Ca]]Cus (3.13)
=1 =1

From Egs. (3.1), (3.2) and (3.9)—(3.13), the posterior distributions of model parameters
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are given as follows.

N
Q(r) = exp{z (Z1) logm} (3.14)

Oa) = CoPla)

N T-1
X exp {Z > (Z;7],,)log az‘j} (3.15)

j=1 t=1

Q(H’HSZ) = Cui,SiP(#’i?Si)

T
X exp {Z(Ztl) log N'(o; | pi, Sz)} (3.16)

t=1
where 7 = {m;}/\, is a set of initial state probabilities, a; = {a;;}}_; is a set of state

transition probabilities from state i, and (Z;) and (Z; Z], ) are the expectation value with
respect to (Z) as follows.

(z) = Y Q=27 (3.17)

(ZiZl.,) = Y Q2)z4,, (3.18)
V4

The posterior distribution ()(Z) can be represented by using Egs. (3.1), (3.2) and (3.10)-
(3.16) as follows.

~~
Il
—
-
Il
—_

(3.19)

The posterior distribution )(Z) is similar to the likelihood function of an HMM when the
terms exp {(1og i) Q) } exp {<log i) Qa )} and exp {<log/\/ (g | i, ;1)>Q(%Si)}
are respectively used as the initial state probability of state 7, the state transition proba-
bility from state ¢ to state j, and the output probability of state . Therefore, Egs. (3.17)
and (3.18) can be computed efficiently by the Forward-Backward algorithm.
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3.1.3 Prior distribution

In the Bayesian approach, a conjugate prior distribution is widely used as a prior distribu-
tion. Prior distributions are respectively represented as follows.

P(w) = D{{m}Y, [ {0} y), (3.20)
P(a;) = D({ag}l, | {og}l), (3.21)
P(p;, S;) = N(w; | v, (5@'51')71) W(S; | ni, B;) (3.22)

where D(-) is a Dirichlet distribution, and N'(-)W(+) is a Gauss-Wishart distribution.
Moreover, {¢;, i, &, i,

v;, Bi}ff’jzl is a set of hyper-parameters. When these conjugate prior distributions are
N

used, the posterior distributions are represented by the same set of parameters { ¢, &, &, 7;, U, Bi | Y

3.1.4 Update of posterior distribution

The posterior distribution of model parameters ()(A) can be updated by sufficient statis-
tics of the training data as follows.

¢ = ¢+ (Z}) (3.23)
@ij = Oéij +i] (324)
& = &G+ T, (3.25)
o= n+T (3.26)
b, — Loty (3.27)
T+ &
= mA Ti& _ T
Bi = ECZ + BZ + ——<Oi — Vz')(oz' — Vi) (328)

T + &

where the sufficient statistics 7}, T},, 6; and C; are represented as follows.

B

T
T, = Y (%) (3.29)
=1
T = <ZZZt]+1> (3.30)
t=1
1 o,
0 = =Y (Z)o (3.31)
_ 1 til ,
Ci = = (Z)(o—0:)(0,—6,)" (3.32)
v =1



These optimizations can be performed effectively by iterative calculations as the EM al-
gorithm, which increases the value of objective function F at each iteration until conver-
gence.

3.1.5 Speech recognition based on Bayesian approach

In the speech recognition based on the Bayesian approach, the test data X = (x1, o, ..., T4)

are recognized by using the predictive distribution as follows.

A

H = argmgxP(H | X,0)
= argmax P(X |O,H)P(H) (3.33)
where H is a hypothesis of a phoneme sequence. The acoustic likelihood P(X | O, H)

can be approximated by the variational Bayesian method as model training described in
Section 3.1.2.

logP(X |O,H) = logZ/P(X,Z|A,H)P(A|O)dA

> Z/Q(Z,A)log P(X,Z!Qf?;i))P(A 10) A

~ F(X|0,H) (3.34)

where Z = (Zl, Ty, ZT) is a sequence of HMM states for the test data X, and
Q(Z , ) is the VB posterior distribution which approximates the true posterior distribu-
tion P(Z,A | X). In the recognition process, the VB posterior distribution of model
parameters ((A) estimated in the training part is used instead of P(A | O), and the same
assumption as Eq. (3.8) is used. Moreover, it is assumed that the amount of test data is
much smaller than the one of training data in this chapter. Then, the VB posterior dis-
tribution Q(A) is approximated by Q(A). Therefore, the lower bound F(X | O, H) is
calculated by using Q(A).

N
F(X|0.H) = logZ{Hexp{ {log o}
zZ
T-1 N

N
X H Hexp {ZZ i+1 (log azj>Q(a )}

=11i=1j

T N
T s {7 st 1570}

=1 =1

~
.

~

(3.35)
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Figure 3.1: Overview of decision tree based context clustering.

Then, F(X | O, H) is similar to the likelihood function of an HMM as Eq. (3.19).
Although the accurate F(X | O, H) is computed by considering all possible sequences
of HMM states Z as the training part, the Viterbi algorithm is applied in decoding as the
ML approach.

3.2 Bayesian context clustering using cross validation

3.2.1 Bayesian context clustering

The decision tree based context clustering is a top-down clustering method to optimize
the state tying structure for robust model parameter estimation [43]. A leaf node of the
decision tree corresponds to a set of HMM states to be tied. The decision tree growing
process begins with a root node that may have all HMM states, or all states associated
with a particular phone, etc. Then, a question which divides the set of states into two
subsets assigned respectively to two child nodes, “Yes” node and “No” node as illustrated
in Fig. 3.1, is chosen so that the corresponding new HMM has the largest value of an
objective function for training data. The decision tree is grown in a greedy fashion, suc-
cessively splitting nodes by selecting the pair of a question and node that maximizes the
gain of the objective function at each step.

In the Bayesian approach, an optimal model structure can be selected by maximizing the
objective function 7. When a node is split into two nodes by the question ¢, the gain AF,
is defined as the difference of F before and after splitting.

AF,=FY+ Fo — F? (3.36)

where 77 and F ' are the value of objective function F of split nodes by a question ¢, and
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JF7I is the value before a splitting. The question ¢ for splitting a node is chosen from the
question set as follows.

¢ = argmax AF, (3.37)
q

By splitting nodes until AF; < 0, the decision tree that maximizes the objective function
JF is obtained.

In the decision tree based context clustering, it is typically assumed that the state occupan-
cies are not changed by the split nodes. Then, the objective function F can be computed
as follows.

F = —logCh — (log Q(Z))gz)

N
= — Z log C},, s, + Const (3.38)

=1

From Eq. (3.38), the gain of the objective function AF, can be computed by the normal-
ization term of the posterior distribution C},; s,. The normalization term C,,, g, is defined
as follows.

log Cy s, = log =2 (o) % (3.39)

Cyn, = (2m)”

k3

(3.40)

|B;|
C’Wi = mD  D(D-1) :

27 Hlef(ﬂ%)

(3.41)

where I'(+) is the Gamma function. The normalization terms of posterior Gauss-Wishart
distribution are also denoted by Cly; and C)y,, and they are represented by using poste-
rior hyper-parameters &, 7;, and B; instead of prior hyper-parameters &;,7;, and B; in
Egs. (3.40) and (3.41), respectively. The posterior hyper-parameters &;, 7;, and B; can be
calculated by using equations described in Section 3.1.4. From Egs. (3.38)—(3.41), F can
be computed by using the prior and posterior hyper-parameters. Since it is assumed that
the state occupancies are not changed in the context clustering and the posterior hyper-
parameters can be represented by using sufficient statistics and the prior hyper-parameters,
the prior hyper-parameters are important parameters for the Bayesian context clustering.

If we have prior data O which is obtained from similar conditions (e.g., speaker, do-
main, recording condition) as the training data, the prior distribution can be constructed
as P(A) = P(A | O). When the prior data is given, the prior distribution is obtained by
using the same approximation techniques as the variational Bayesian method described
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in Section 3.1.2.

P(A | O)

Q

Q(A)
= CAP(A)exp {<10g P(O, Z | A)>Q(Z)}
(3.42)

where Z is a sequence of latent variables, and Q(Z ) is an approximate distribution of
P(Z | O,A). Although Eq. (3.42) still includes prior of prior distribution P(A), we
assumed that the prior of prior distribution ]5(A) is a uniform distribution before the prior
data is given. Then, prior distribution P(A | O) can be obtained as follows.

P(A|O) ~ éAeXp{<logP(O,Z|A)>Q(Z)}
= D{m}Y, [ {Toikily)

X HD({QU};\; | {i] 5\[:1)

X H {N(ni | 6:,(T:8) ™)

xW(S; | T; + D, (T,C;))} (3.43)

The distribution Q(Z ) can be estimated via the EM algorithm using prior data O. Statis-
tics T()i, Tij and ﬂ denote the occupancy probabilities of initial state ¢, state transition
from ¢ to 7, and state ¢ with respect to the prior data, respectively. Moreover, o; and C,
denote the mean vector and the covariance matrix of prior data in the i-th state, respec-
tively. Thus, the prior distribution can be determined by sufficient statistics of the prior
data. However, prior distributions are heuristically determined in many cases, because
the prior data is not usually given in HMM-based speech recognition. Hyper-parameters
affect the model selection as tuning parameters, therefore a determination technique of
prior distributions is required to automatically select an appropriate model structure. One
possible approach is to optimize the hyper-parameters so as to maximize the marginal
likelihood of training data, as like the empirical Bayesian method [46]. However, it still
needs tuning parameters which control influences of prior distributions, and often leads to
the over-fitting problem as the ML criterion. In this chapter, we propose the prior distribu-
tion determination technique using cross validation and apply it to the context clustering.

3.2.2 Bayesian approach using cross validation

The cross validation method is a popular strategy for model selection [13, 14]. The main
idea behind cross validation is to split data for estimating the risk of each model. Part
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Figure 3.2: Overview of Bayesian approach using cross validation.

of data is used for training each model, and the remaining part is used for estimating the
risk of the model. Then, the cross validation method selects the model with the smallest
estimated risk. The basic form of cross validation is K -fold cross validation. In the
K-fold cross validation method, the training data is randomly divided into K different
groups. Then, a model is trained using K — 1 groups of data, and the objective function is
computed for the group excluded in the training. This process is repeated for K times with
different combinations of K — 1 groups. The value of objective function is accumulated
and the accumulated value is used for evaluation of model structure.

In the Bayesian approach using K -fold cross validation, the training data O is divided at
random into K subsets of training data {0(1), o? .. 0% } For the k-th evaluation,
O™ = {0V | j+#k} and OW are respectively used for the determination of prior
distributions and the estimation of posterior distributions, i.e., O™ and O™ are used as
prior data and training data. The Bayesian approach using cross validation considers the
log marginal likelihood log P(O®) | O™). Using Jensen’s inequality, the lower bound
of log marginal likelihood F*) is defined as Eq. (3.6).

log P(O® | 0®) > F (3.44)

The optimal VB posterior distributions of model parameters are given by maximizing
F*) with the variational method as Eq. (3.9).

QAY) = CrwP(A® | OW)

X exp {<log PO®, z™ | A(k))>Q(Z(k))}

(3.45)
where C'y () is a normalization term of Q(A®)) and P(A®) | O™) is a prior distribution
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of the k-th cross validation which represents prior data o®). Figure 3.2 is an overview of
the Bayesian approach using cross validation.

The cross validation method can select robust model structures because the objective value
is calculated by evaluating open data. The Bayesian approach obtains robust predictive
distributions and selects robust model structures while taking account of the amount of
training data because posterior distributions of model parameters are used. Consequently,
the Bayesian approach using cross validation can select model structures while taking
account of the uncertainty of the data variables and model parameters, and the robustness
can be improved from the standard Bayesian approach.

3.2.3 Bayesian context clustering using cross validation

The objective function F(©V) is used in the Bayesian context clustering using cross vali-
dation. It is obtained by summing F*) for each fold.

K
FOV =3 F0 (3.46)
k=1

In the proposed method, an optimal model structure can be selected by maximizing the
objective function F(“V). The question § for splitting a node is chosen from the question
set as Eq. (3.37).

¢ = argmax AFY) (3.47)

where A]-"q(cv) is the gain in the value of the objective function F(“V) when a node is split
by the question ¢. The gain AJ’{;GV) is obtained by

AF{;CV) — f’q(cv)y + féCV)n _ f(cv)p (348)

q

By splitting nodes until A}"écv) < 0, the decision tree that maximizes the objective
function F(CV) is obtained.

The prior distribution of the k-th cross validation P(u®), S®) | O®) is obtained from
Eq. (3.43).
P(p®, 80 0"y = N(u® | o® (T® g1y
xW(S® | T® 4 p (TR ™)) (3.49)
where T®), 6 and C® respectively denote the occupancy probability, the mean vector

and the covariance matrix of a subset of training data O®). These parameters are effi-
ciently computed in context clustering because it is assumed that the state occupancies
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are not changed by splitting nodes. Moreover, the posterior distributions Q(u(®, S*))
can be estimated by Eqgs. (3.23)—(3.28). Here, since the assumption the state occupancies
are not changed by splitting nodes are used, the posterior distributions of all folds are
represented by the same parameters. Therefore, although the Bayesian approach using
cross validation increases the computational cost, the prior and posterior distributions are
efficiently calculated in context clustering.

3.3 Experiments

To evaluate the effectiveness of the proposed method, speaker independent continuous
phoneme recognition experiments were performed.

3.3.1 Experimental conditions

The 20,000 and 1,000 Japanese sentences uttered by male speakers from Japanese News-
paper Article Sentences (JNAS) [50] were used for model training. The 100 Japanese
sentences uttered by male speakers, which were not included in the training data, from
JNAS were used for evaluation. The average lengths of the training 20,000 utterances,
training 1,000 utterances and test 100 utterances were 6.16 seconds, 6.42 seconds, and
5.83 seconds, respectively. Speech signals were sampled at a rate of 16 kHz and widowed
at a 10 ms frame rate using a 25 ms Hamming window. The feature vectors consisted of
the Oth through 13th mel-frequency cepstral coefficients (MFCCs), their delta and delta-
delta coefficients. A three-state, left-to-right and no skip structure HMMs were used as
triphone HMMs, and 204 questions were prepared in decision tree context clustering.
In these experiments, we used a phoneme network imposing the constraints of Japanese
phoneme transitions. However, phoneme N-gram probabilities and the language model
weight were not used. The insertion penalty was adjusted for each experiment so that the
number of insertion and deletion errors become almost equal. The experimental condi-
tions are summarized in Table 3.1.

In recent HMM-based speech recognition systems, a multi-mixture Gaussian is typically
used as a state output probability distribution. Although the VB method has been applied
to multi-mixture HMMs [12], to evaluate the effect of only the proposed context clustering
algorithm, each state output probability distribution was assumed to be modeled by a sin-
gle Gaussian distribution with a diagonal covariance matrix in these experiments. Then,
since the likelihood of each dimension is computed independently, the Gauss-Wishart
distribution is equal to the Gauss-Gamma distribution.
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Table 3.1: Experimental conditions.

Training data JNAS 20,000 utterances
JNAS 1,000 utterances

Test data JNAS 100 utterances

Sampling rate 16 kHz

Feature vector 13-order MFCC + AMFCC
+ AAMFCC

Window Hamming

Frame size 25ms

Frame shift 10ms

Number of HMM states 3 (left-to-right)

Number of phoneme categories | 43

Table 3.2: K-fold cross validation (20,000 utterances).
K
5 \ 10 \ 20 \ 100 \ 200
Number of states 14,072 | 14,360 | 14,474 | 14,575 | 14,610
Phoneme accuracy (%) | 80.4 80.3 80.3 80.3 80.4

3.3.2 Number of folds in cross validation

In these experiments, the several number of folds in Bayesian context clustering us-
ing cross validation were compared. Table 3.2 and 3.3 show the number of states and
phoneme accuracies with the acoustic models trained by 20,000 and 1,000 utterances,
respectively, when the number of folds for cross validation were varied. As the number
of folds increased, the computational cost was also proportionally increased and the re-
sultant model structure became stable. Results show that the phoneme accuracy did not
improve much with acoustic models trained by 20,000 utterances when the number of K
was changed. However, in 1,000 utterances training condition, the phoneme accuracies
were not stable. So, the large number of folds are required when the training data is small.

3.3.3 Comparison of conventional approaches

In these experiments, the following three approaches were compared.

e ML-MDL : Acoustic models were trained by the ML criterion and model structures
were selected by the MDL criterion.
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Table 3.3: K -fold cross validation (1,000 utterances).
K
5 \ 10 \ 20 \ 100 \ 200
Number of states 3,919 | 4,065 | 4,101 | 4,141 | 4,156
Phoneme accuracy (%) | 78.7 | 78.7 | 794 | 78.9 | 79.0

e ML-CVML : Acoustic models were trained by the ML criterion and model struc-
tures were selected by cross validation with the ML criterion.

e Bayes-CVBayes : Acoustic models were trained by the Bayesian criterion and
model structures were selected by cross validation with the Bayesian criterion.

Figure 3.3 and 3.4 show the phoneme accuracies of acoustic models trained by 20,000
and 1,000 utterances, respectively. For ML-CVML and Bayes-CVBayes, 200-fold cross
validation was used. To evaluate the performance of model selection, the phoneme ac-
curacies with varying the size of decision trees are also shown. The decision trees were
generated by changing a threshold of the stopping criterion AF < threshold in the
context clustering. In these figures, the lines represent the phoneme accuracies for each
model structure and the points represent the phoneme accuracies of the model structure
selected automatically by each method. These figures show that the proposed method
Bayes-CVBayes selected the largest model structure, and the conventional method ML-
MDL selected the smallest model structure in both training conditions. The model struc-
ture selected by Bayes-CVBayes was closer to that performed the highest accuracy than
ML-MDL. Consequently, the proposed method Bayes-CVBayes outperforms the con-
ventional method, ML-MDL and ML-CVML. In Fig. 3.3, Bayes-CVBayes achieved a
8.08% relative error reductions over ML-MDL.

It can be considered that the improvement of the proposed method caused by two factors,
marginalization of model parameters and model selection. To discuss the impact of these
two factors, an additional experiment was performed by swapping the model structures
of ML-MDL and Bayes-CVBayes. The following two approaches were compared to
ML-MDL and Bayes-CVBayes.

e Bayes-MDL : Acoustic models were trained by the Bayesian criterion and model
structures selected by ML-MDL were used.

e ML-CVBayes : Acoustic models were trained by ML criterion and model struc-
tures selected by Bayes-CVBayes were used.
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Figure 3.3: Phoneme accuracies of ML-MDL, ML-CVML and Bayes-CVBayes trained
by 20,000 utterances versus the number of states.
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Figure 3.4: Phoneme accuracies of ML-MDL, ML-CVML and Bayes-CVBayes trained
by 1,000 utterances versus the number of states.

Figure 3.5 and 3.6 show the phoneme accuracies of acoustic models trained by 20,000
and 1,000 utterances, respectively. Although the difference between Bayes-MDL and
ML-MDL was the marginalization by the Bayesian approach, the phoneme accuracies of
Bayes-MDL were improved from ML-MDL on both training conditions. Furthermore,
the phoneme accuracies of ML-CVBayes were also improved when compared with ML-
MDL on both training conditions, due to the model selection based on the Bayesian cri-
terion with cross validations. Therefore, these results clearly showed that the Bayesian
approach was effective for both the model training and the model selection. However,
Bayes-MDL and ML-CVBayes were worse than Bayes-CVBayes. This means that train-
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Figure 3.5: Phoneme accuracies when the acoustic models were trained by 20,000 utter-
ances with the swapped decision tree.
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Figure 3.6: Phoneme accuracies when the acoustic models were trained by 1,000 utter-
ances with the swapped decision tree.

ing criterion and model selection were strongly related, and these should be consistently
performed based on the Bayesian criterion.

3.3.4 Marginal likelihood of the training and test data

Figure 3.7 and 3.8 show the relation among the lower bound F(“V) for the training data,
JF for the test data with the correct phoneme sequences, and the phoneme accuracies. In
these figures, a similar tendency between F(CV) and F was observed, and the model struc-
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Figure 3.8: Log marginal likelihoods on both training and test data versus the number of
states when the acoustic models were trained by 1,000 utterances.

ture which gave the highest F(°V) also achieved the highest 7. However, the phoneme
accuracy was not proportional to F, and the proposed method could not select the model
structure which achieved the highest phoneme accuracy. This means that although the
proposed method could select the model structure which can accurately predict acoustic
features for each HMM state, it is not identical to the performance in the classification
problem. This is because the likelihood of incorrect phoneme sequences including inser-
tion and deletion errors were not considered in the proposed method. This result suggests
that a Bayesian criterion which can represent the classification performance directly is
required.
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3.4 Summary

This chapter proposed the Bayesian context clustering using cross validation for speech
recognition based on the variational Bayesian framework. In the proposed method, the
prior distributions are determined by using cross validation, and the determined prior dis-
tribution is applied to the context clustering. The results on continuous phoneme recogni-
tion experiments demonstrated that the proposed method outperformed the context clus-
tering based on the MDL criterion and cross validation with ML estimates. The proposed
method could determine prior distributions without any tuning parameters, and select the
model structure which can accurately predict acoustic features for each HMM state. As
future work, we will apply a Bayesian criterion using cross validation for selecting the
number of mixtures, and apply a Bayesian criterion which represents the classification
performance directly to the context clustering.
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Chapter 4

Bayesian Speech Synthesis

A statistical speech synthesis system based on hidden Markov models (HMMs) was re-
cently developed. In HMM-based speech synthesis, the spectrum, excitation and duration
of speech are modeled simultaneously with HMMs, and speech parameter sequences are
generated from the HMMs themselves [16].

In HMM-based speech synthesis, the maximum likelihood (ML) criterion has been typi-
cally used for training HMMs and generating speech parameters. The ML criterion guar-
antee that the ML estimates approach the true values of the parameters. Therefore, acous-
tic modeling based on HMMs has been developed greatly by using the ML approach.
However, since the ML criterion produces a point estimate of the HMM parameters, its
estimation accuracy may deteriorate when the amount of training data is insufficient.

The Bayesian approach considers the posterior distribution of any variable, as well as the
prior distribution [7]. That is, all the variables introduced when the models are parame-
terized, such as the model parameters and latent variables, are regarded as probabilistic
variables, and their posterior distributions are obtained by invoking Bayes theorem. More-
over, the Bayesian approach can utilize prior information. The prior information of the
model parameters is represented by prior distributions, as well as posterior distributions.
The difference between the Bayesian and ML approaches is that the target of estimation
is the distribution function in the Bayesian approach whereas it is the parameter value
in the ML approach. Based on the posterior distribution estimation, the Bayesian ap-
proach can generally construct a more robust model than the ML approach. However,
the Bayesian approach requires complex integral and expectation computations to obtain
posterior distributions when the models have latent variables. To overcome this problem,
the maximum a posterior (MAP) criterion has been proposed [48]. The MAP criterion
can utilize prior information, but cannot obtain the posterior distributions. Therefore, the
MAP criterion leads th the lack of robustness. Recently, a Variational Bayes method [17]
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has been proposed in the learning theory field. This method can obtain approximate pos-
terior distributions through iterative calculations similar to the expectation-maximization
(EM) algorithm used in the ML approach. The variational Bayes method has been applied
to speech recognition and it shows good performance [8—11].

In a real speech, there are a number of contextual factors that affect spectrum, excitation
and duration of speech (e.g., phone identity, accent, stress). By considering the con-
text, more accurate acoustic models are estimated. Therefore, context-dependent models
are typically used to capture these factors in HMM-based speech synthesis [42]. Al-
though a large number of context-dependent models can capture variations in speech
data, too many model parameters lead to the over-fitting problem. Consequently, main-
taining a proper balance between model complexity and the amount of training data is re-
quired. The decision tree based context clustering [43] is a successful method for context-
dependent HMM estimation to deal with the problem of training data insufficiency, not
only for the robust parameter estimation but also for predicting probability distributions
for unseen contexts. This method constructs a parameter tying structure which can as-
sign a sufficient amount of training data to each HMM state. A binary tree is grown
step by step, by choosing a question which divides the context using a greedy strategy
to maximize some objective function. The ML criterion is inappropriate as a model se-
lection criterion since the it increases monotonically as the number of states increases.
Some heuristic thresholding is therefore necessary to stop splitting nodes in context clus-
tering. To solve this problem, the minimum description length (MDL) criterion has been
employed to select the model structure in the speech synthesis field [44]. The MDL cri-
terion is performed as the ML criterion with the penalty term, and the penalty term can
be derived automatically. However, since the MDL criterion is based on an asymptotic
assumption, it is ineffective when the amount of training data is small.

On the other hand, since the Bayesian approach does not use an asymptotic assump-
tion, unlike the MDL criterion, it is available even in the case of insufficient amounts of
training data. In the Bayesian approach, an appropriate model structure can be selected
by maximizing the marginal likelihood. Bayesian information criterion (BIC) [45] have
been proposed as an approximated Bayesian criterion, but BIC and MDL are practically
the same. Consequently, BIC is ineffective when the amount of training data is small.
The VB method is an attractive alternative to BIC for model selection problem. The VB
method can select appropriate model structure, even when there are insufficient amounts
of data, because it does not use an asymptotic assumption, unlike the BIC or MDL In the
VB method, an appropriate model structure can be selected by maximizing the marginal
likelihood [11,12].

This chapter proposes a new framework of speech synthesis based on the Bayesian ap-
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proach. In this framework, all processes for constructing the system are derived from one
single predictive distribution which exactly represents the problem of speech synthesis.
The Bayesian approach assumes that model parameters are random variables and reliable
predictive distributions are estimated by marginalizing model parameters. In this chap-
ter, the VB method is consistently employed to estimate posterior distributions of latent
variables and select model structures.

The rest of this chapter is organized as follows. Section 4.1 describes the Bayesian ap-
proach to speech synthesis. Section 4.2 describes HSMM based Bayesian speech syn-
thesis. In Section 4.3, subjective listening test results are presented. Furthermore, the
Bayesian speech synthesis framework integrating the training and synthesis processes is
proposed in Section 4.4. Section 4.5 shows subjective listening test results of the integra-
tion method. Concluding remarks and future work are presented in final section.

4.1 Bayesian Speech synthesis

4.1.1 Bayesian approach

In HMM-based speech synthesis, the ML criterion has been typically used to train HMMs
and generate speech parameters. The optimal model parameters can be obtained by max-
imizing the likelihood for a given training data as follows:

Ay = arg max P(O|S,A), 4.1)

where S is a label sequence of training data. Since it is difficult to analytically obtain
the model parameter A, the model parameter can be obtained using an iterative pro-
cedure such as the expectation-maximization (EM) algorithm. In the synthesis part, the
speech parameter generation algorithm generates sequences of speech parameter vectors
that maximize their output probabilities by using the model parameters A ;.

oy =argmax P(o | s,Ayr), 4.2)

o
here 0 = o], 0] i h ¢ d sis a label t
where o = |0, ,0,,...,07| isaspeech parameter sequence and s is a label sequence to

be synthesized. However, since the ML estimator produces a point estimate of the HMM
parameters, the estimation accuracy may deteriorate when the amount of training data is
insufficient.

The Bayesian approach assumes that a set of model parameters A is a random variable,
while the ML approach estimates constant model parameters. In the Bayesian approach,
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the speech parameter is generated from a predictive distribution as follows.

OBayes = argmaxP(o|s,O,5)
o

= argmax P(0,0 | s, 95) 4.3)

It can be seen that Eq. (4.3) directly represents the problem of speech synthesis; that is,
the speech feature sequence o is generated from given training feature sequences O with
labels .S and labels to be synthesized s. The marginal likelihood of o and O is defined by

P(0,0 | s,5) :ZZ/P(o,z,O,Z,A|s,S)dA
z Z
= ZZ/P(o,z | s,A)P(O,Z | S,A)P(A)dA  (4.4)
z Z

where z is a sequence of HMM states for a speech parameter sequence o, P(A) is the
prior distribution for model parameter A, P(o,z | s,A) is the likelihood of synthesis
data o, and P(O, Z | S, A) is the likelihood of training data O. The model parameters
are integrated out in Eq. (4.4) so that the effect of over-fitting is mitigated. However, it is
difficult to solve the integral and expectation calculations. The calculations become more
complicated when a model includes latent variables. The variational Bayes method has
been proposed as a tractable approximation method to overcome this problem, and it has
good generalization performance in many applications [17].

4.1.2 Variational Bayes method for speech synthesis

The variational Bayes method maximizes the lower bound of the log marginal likelihood
F instead of the true marginal likelihood. The lower bound F is defined by using Jensen’s
inequality.

log P(0,0 | 5,8) =log » >~ / P(0,z,0,Z,A|s,S)dA
z VA

P Z, A
zlogZZ/Q(z,z,A) (020,2 A5 5)
z Z

Q(z,Z,A)

P(o,z,0,Z,A | s,S)
> ;;/Q(z,Z,A)log 0z Z.A) dA

_ <lOgP(Oaz7oaz7A | SaS)>
Q(z,Z,A) Q(z,2Z,A)

=F 4.5)
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where (-)¢ denotes a calculation of the expectation with respect to ), and Q(z, Z, A) is
an approximate distribution of the true posterior distribution P(z, Z, A | 0,0, s, S). The
variational Bayes method uses the assumption that probabilistic variables associated with
z, Z, A are statistically independent of the other variables.

Q(z,Z,A) = Q(2) Q(Z) Q(A) (4.6)

The variational Bayes method uses the posterior distributions Q(z), Q(Z) and Q(A) to
approximate the true posterior distributions. The optimal posterior distributions can be
obtained by maximizing the objective function F with the variational method as follows.

Q(z) = Crexp(log P(o,z | 5,A))ga) 4.7)
Q(Z) = Czexp(log P(O,Z | 5, A>>Q(A) (4.8)
Q(A) = CaP(A)exp(log P(o, z | s,A)) g

x exp (log P(O, Z | S,A)) gz 4.9)

where C,, C'z and C are the normalization terms of Q(z), Q(Z) and Q(A), respec-
tively. However, in the above algorithm, the optimal posterior distributions depend on
synthesized speech parameter o, i.e., the posterior distributions given a label sequence of
synthesis speech are estimated. In a basic speech synthesis situation, the observed data
for the synthesis sentences is not given beforehand. Therefore, the posterior distributions
cannot be obtained. To avoid this problem, this chapter assumes that Q)(A) is independent
of speech parameter o. Then, ()(A) is given by

Q(A) = CzP(A)exp (log P(O, Z | S, A)) gz - (4.10)

By the above approximation, the posterior distribution ()(A) can be estimated by only
training data.

It is assumed that the model parameters 7 = {m;},Y.|, a; = {a;;}}_,, and {p;, S;} X, are
independent each other in the prior distribution P(A). Therefore, the prior distribution

P(A) can be represented as follows.

N N

P(A) = P(m) [ ] Plai) [ ] P(mi. S (4.11)

=1

By using this assumption, the posterior distribution )(A) and its normalization term C
can be written as follows.

N N
Q(A) = Q(m) H Q(a;) H Q(pi, S;) (4.12)
N@:l N =1
Ca=Cr [[Ca ][] Cus. (4.13)
i=1 i=1



From Egs. (3.1), (3.2) and (4.9)-(4.13), the posterior distributions of model parameters
are given as follows.

i=1

Q(m) = CrP(m) exp {Z(Z{) log m} (4.14)

=1 t=1

Q(Hza Sz) y.l S; P l'l'za z)

X exp {Z(ZD log N'(o; | pi, Sz)} (4.16)

t=1

N T-1
Qa;) = Co,P(a exp{ZZ Z{Z].) logaw} (4.15)

where (Z!) and (Z!Z]., ) are the expectation value with respect to Q(Z) as follows.
(zi) = > Q27 (4.17)
z

(ZiZl.,) = Y Q2)z4,, (4.18)
VA

The posterior distribution Q)(Z) are represented as follows.

Q(Z) = CzHexp{ (log T3} o)}

T-1
X

::]2

exp {ZZZZ;l (log az‘j>@(ai>}

~

=1

i

=11

s
Il
R

::]2

exp { Z{ (1og N'(00 | 111 S7)) 5 | (4.19)

~

1

where (Q(Z) is same with the likelihood function of HMM, and Eq. (4.19) can be com-
puted efficiently by the forward-backward algorithm. These optimizations can be effec-
tively performed by iterative calculations as the EM algorithm, which increases the value
of objective function F at each iteration until convergence.

4.1.3 Speech parameter generation

In HMM-based speech synthesis, rhythm and tempo are controlled by state duration prob-
ability distributions. One of major limitation of HMMs is that they do not provide an
adequate representation of the temporal structure of speech. This is because the proba-
bility of state occupancy decreases exponentially with time. To overcome this limitation,
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in HMM-based speech synthesis system, each state duration probability distribution is
explicitly modeled by a single Gaussian distribution. They are estimated from statistics
obtained in the last iteration of the forward-backward algorithm, and then clustered by
the decision tree-based context clustering [42,43]. In the synthesis part, we construct a
sentence HMM corresponding to an arbitrarily given text and determine state durations
which maximize their probabilities. Then, a speech parameter sequence is generated for
the given state sequence by the speech parameter generation algorithm [51].

In the synthesis part, first an arbitrarily given text to be synthesized is converted to a
context-dependent label sequence and a sentence HMM is constructed by concatenating
context-dependent HMMs according to the label sequence. Secondly, state durations d of
the sentence HMM A are determined as follows.

dppor = arg mgx(log P(d| A))o) (4.20)

Thirdly, a speech parameter sequence is generated for a given state sequence. We assume
that a speech parameter vector o; consists of a static feature vector ¢; and its first and
second order dynamic feature vectors, that is

o = We
= [(We),(We),....We)f]' 421)
(We), = [C:, ACJ—, AQCHT (4.22)

where W is a window matrix to calculate dynamic features from static features [51]. In
the synthesis part, a static feature vector sequence c is generated. By the variational Bayes
method, the lower bound F approximates the log marginal likelihood log P(We, O |
s,.5). Therefore, the optimal speech parameter sequence ¢ is generated by maximizing
the lower bound F:

OF 0
S = g Mg P(We |z M)P(z] 5, A)guom
c Q(A)

Under the condition in Eq. (4.21), the optimal static feature sequence ¢ can be determined
by solving the following set of linear equations:

W'(SYWé=W'(Su), (4.24)

where (S) and (Spu) represent the expectation value of S and Sp with respect to Q(A),
respectively. In the speech generation based on the ML criterion, the optimal static feature
sequence can be determined by solving the following equation:

W SWé=W'Su, (4.25)
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Eq. (4.25) can be solved efficiently using the Cholesky or QR decomposition [51]. By the
same token, Eq. (4.24) can be solved and the computational cost is almost the same as the
ML criterion.

4.2 HSMM based Bayesian speech synthesis

In the HMM-based speech synthesis system, each state duration probability distribution
is explicitly modeled by a single Gaussian distribution. They are estimated from statistics
obtained in the last iteration of the forward-backward algorithm, and then clustered by
the decision tree-based context clustering [42,43]. However, there is an inconsistency
between training and synthesis: although speech is synthesized from HMMs with explicit
state duration probability distributions, HMMs are trained without them. To overcome
this inconsistency, hidden semi-Markov model (HSMM) based speech synthesis has been
proposed [52]. This framework introduces an HSMM, which is an HMM with explicit
state duration probability distributions, into not only for synthesis but also training in the
HMM-based speech synthesis system.

4.2.1 Likelihood computation of the HMM

The model likelihood of an HMM A for an observation vector sequence O = (Oy, ..., Or)
can be computed efficiently by the forward-backward algorithm. First, we define partial
forward likelihood oy (+) as follows.

N
= aa(i)aih;(0), (4.26)

where a;; is a state transition probability from i-th state to j-th state, b;(O;) is an output
probability of observation vector O, from j-th state, N is a total number of HMM states.
To begin the recursion Eq. (4.26), we set oy (j) = 7;0;(01),1 < j < N, where 7; is an
initial state probability of j-th state. Secondly, partial backward likelihood f3;(-) is defined
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as follows.
Bi(i) =P(O¢41,...,0r | Zi1 =1, A)
N
= aisbi(0p1) B (i), @.27)
=1
](1§t§T,1§z‘§N)

To begin the recursion Eq. (4.27), we set O7(i) = 1,1 < ¢ < N. From Egs. (4.26) and
(4.27), the model likelihood P(O | A) is computed as

PO |A) = Zat SB(i). 1<t<T (4.28)

Generally, computational complexity of the above recursions is on the order of O(N?T).
However, if a simple left-to-right structure is assumed, it reduces to O(NT).

4.2.2 Likelihood computation of the HSMM

The model likelihood of an HSMM A’ for an observation vector sequence O can be com-
puted efficiently by the generalized forward-backward algorithm. We can compute partial
forward likelihood o} (+) and partial backward likelihood (3;(-) recursively as follows.

%0) = Wj’ (4.29)
Oé;(.]) = Z Z Oét d ijj d)
d=1 i=1,j#j
t
x H Vi(0s), 1<t<T (4.30)
s=t—d—+1
@) = 1 4.31)
T—t N/
(1) = Z a;;p(d)
d=1 j=1,j7#i
t+d
x 1 ¥(09)8a0), 1<t<T (4.32)
s=t+1

where a;;, V(O;), N'p);(d), and 7’ are a state transition probability from i-th state to j-th
state, an output probability of observation vector O; from j-th state, a total number of

HSMM states, a state duration probability of j-th state, and an initial state probability of
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j-th state, respectively. From above equations, the model likelihood P(O | A’) is given
by

O|A, Z Z Zat all Up] d)

i=1 j=1,i#j d=1

x [ ¥(0.)80). (4.33)

s=t—d+1

The drawback of the HSMMs is that the above recursions require on the order of O(N"*T?)
calculations, as compared with O(N’ °T ) of the HMM. If a simple left-to-right structure
is assumed, it reduces to O(N'T?). Furthermore, by limiting the maximum duration to
D, it further reduces to O(N'DT). Although the use of HSMMs increases computa-
tional cost, it is still possible to perform the above recursions using the currently available
computational resources.

4.2.3 Optimization of posterior distributions

In HSMM-based Bayesian speech synthesis, the optimizations using Eqs. (4.7), (4.8), and
(4.9) can be effectively performed by iterative calculations as the expectation maximiza-
tion (EM) algorithm, which increases the value of objective function F at each iteration
until convergence. The normalization term C'z of an HSMM can be computed efficiently
by the generalized forward-backward algorithm for the variational Bayes method.

Cél — Zexp <10gP(O,Z|57A)>Q(A)

~+

x ]I exp(logh;(0.)m)bi). (4.34)

s=t—d+1
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We can compute partial forward likelihood é;(-) and partial backward likelihood Bt()
recursively as follows:

G(j) = D D dald) expllogai)om)

X H exp(log b;(Os))o(a)» (4.35)

t+d

x [ expllog;(0,))qua)Birali)- (4.36)

s=t+1
Because the Bayesian approach assumes that a set of model parameters A is a random
variable, model parameters are represented by the expectation values. The normalization
term C'z can be computed as like Eq. (4.34). Although the computational cost is increased

by using HSMMs, the Bayesian approach requires almost the same computational cost
with the ML criterion.

In the Bayesian approach, a conjugate prior distribution is widely used as a prior distri-
bution P(A). When the state duration probability distribution is a Gaussian distribution,
the conjugate prior distribution becomes a Gauss-Gamma distribution:

Pl ) =N (6276 (12,5 @37

where {{,n, v, B} is a hyper-parameter set. Using a conjugate prior distribution, a set
of parameters of posterior distribution is also represented by the same parameter set

{¢&.n.v,B}.
4.3 Experiments

4.3.1 Experimental conditions

The experiments used the ATR Japanese speech database [53] B-set, which consists of
503 phonetically balanced sentences. The first 450 of the 503 sentences, uttered by one
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male speaker (MHT), were used for training. The remaining 53 sentences were used for
the evaluations. Speech signals were sampled at a rate of 16 kHz and windowed at a 5-ms
frame rate using a 25-ms Blackman window. Feature vectors consisted of spectrum and
Fy parameter vectors. The spectrum parameter vectors consisted of 24 mel-cepstral coef-
ficients, and their delta and delta-delta coefficients. The F{, parameter vectors consisted
of log F{, and its delta and delta-delta. A five-state, left-to-right MSD-HMM [54] and
MSD-HSMM without skip transitions was used. Each state output PDF was composed
of spectrum and F{ streams. The spectrum stream was modeled by single multi-variate
Gaussian distributions with diagonal covariance matrices. The Fj stream was modeled
by a multi-space probability distribution consisting of a Gaussian distribution for voiced
frames and a discrete distribution for unvoiced frames. Each state duration PDF was
modeled by a one-dimensional Gaussian distribution. The decision tree-based context
clustering technique was separately applied to distributions of spectrum, Fj, and state
duration.

A subjective listening test was conducted to evaluate the quality of the synthesized speech.
The test assessed the naturalness of the synthesized speech by the mean opinion score
(MOS) test method. The subjects were 10 Japanese students belonging to our research
group. Twenty sentences were chosen at random from the evaluation sentences. Samples
were presented in random order for each test sentence. In the MOS test, after listening
to each test sample, the subjects were asked to assign the sample a five-point naturalness
score (5: natural — 1: poor).

4.3.2 Experimental results

Comparison of HSMM with HMM

This experiment compared the following four models.
e ML-HMM : The HMMs were trained by the ML criterion. Model structures were
selected by the MDL criterion.

e ML-HSMM : The HSMMs were trained by the ML criterion. Model structures
were selected by the MDL criterion.

e Bayes-HMM : The HMMs were trained by the Bayesian method. Model structures
were selected by the Bayesian criterion with cross validation.

e Bayes-HSMM : The HSMMs were trained by the Bayesian method. Model struc-
tures were selected by the Bayesian criterion with cross validation.
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Table 4.1: Number of states of selected model structure by the conventional and proposed
methods.

mel-cepstram Ey duration
ML-HMM 1,115 2,267 275
ML-HSMM 1,128 2,272 283
Bayes-HMM 9,532 16,044 | 3,005
Bayes-HSMM 9,485 16,130 | 3,490

39 —— 95% confidence intervals
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Figure 4.1: Mean opinion scores of speech synthesized by the conventional and proposed
methods. Error bars show 95% confidence intervals.

Table 4.1 represents the details of the number of states.

Figure 4.1 plots the experimental results. It can be seen from the figure that the pro-
posed model Bayes-HSMM achieved a better subjective score than the conventional
model Bayes-HMM, and the subjective score of ML-HSMM was better than ML-HMM.
Consequently, the speech quality is improved by using HSMMs as the acoustic mod-
els. Moreover, the proposed model Bayes-HSMM outperformed the model ML-HSMM.
These results clearly show the effectiveness of the proposed model. The number of states
of Bayes-HMM and Bayes-HSMM was considerable larger than ML-HMM and ML-
HSMM. Although the large model structure alleviated the over-smoothing problem, the
ML training leads to the over-fitting problem. However, the Bayesian approach avoided
the over-fitting problem because the posterior distributions of the model parameters were
used. Therefore, the Bayesian approach overcame the over-fitting and over-smoothing
problems simultaneously. Consequently, most of the subjects observed that the proposed
model improved the naturalness in spectrum and excitation.
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Figure 4.2: Mean opinion scores of speech synthesized by the conventional, proposed and
swapped models. Error bars show 95% confidence intervals.

Comparison of Model Structures

In this experiment, the model structures of ML-HSMM and Bayes-HSMM were swapped
in order to compare the effect of model structures. Therefore, the following four models
were compared.

e ML-MDL : The HSMMs were trained by the ML criterion and model structures
were selected by the MDL criterion. This is the same model as ML-HSMM.

e Bayes-Bayes : The HSMMs were trained by the Bayesian criterion and model
structures were selected by the Bayesian criterion with cross validation. This is the
same model as Bayes-HSMM.

e Bayes-MDL : The HSMMs were trained by the Bayesian criterion and the model
structures of ML-HSMM were used.

e ML-Bayes : The HSMMs were trained by the ML criterion and the model struc-
tures of Bayes-HSMM were used.

Figure 4.2 shows the results of the subjective listening test. It can be seen from the figure
that the proposed method Bayes-Bayes achieved a better subjective score than the con-
ventional method ML-MDL. Moreover, although Bayes-MDL is trained by the Bayesian
criterion, the subjective score of Bayes-MDL was worse than Bayes-Bayes, and although
ML-Bayes has the similar number of states as Bayes-Bayes, the subjective score of ML-
Bayes was worse than Bayes-Bayes. Because the model structure of ML-Bayes is too

54



big for the ML training, ML-Bayes leads to the over-fitting problem. Thus, the error
bar of ML-Bayes in Figure 4.2 are larger than others. These results clearly show the
effectiveness of the proposed method in both the model training and model structure se-
lection. Most of the subjects observed that the proposed method improved the naturalness
in spectrum and excitation.
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4.4 Bayesian speech synthesis integrating training and
synthesis processes

In Bayesian speech synthesis, the estimation of the posterior distributions, model selec-
tion, and speech parameter generation are consistently performed by maximizing the log
marginal likelihood. The posterior distributions of all variables are obtained by using the
VB method. Then, the obtained posterior distribution of the model parameters depends on
not only the training data, but also the synthesis data. In a basic speech synthesis situation,
the observed data for the synthesis sentences is not given beforehand. Therefore, the pos-
terior distributions cannot be obtained. To overcome this problem, it typically assumes
that the posterior distribution of the model parameters is independent of the synthesis
data [18,19]. As a result of this approximation, the Bayesian speech synthesis system is
separated into training and synthesis parts, as the conventional ML-based system, and the
posterior distribution of the model parameters and decision trees can be obtained from
only the training data. However, although the posterior distributions can be estimated,
they don’t consider synthesis data, and the system doesn’t represent the Bayesian speech
synthesis exactly. This section proposes a speech synthesis technique integrating training
and synthesis processes based on the Bayesian framework. This method removes the ap-
proximation and leads to an algorithm that the posterior distributions, decision trees and
synthesis data are iteratively updated.

4.4.1 Speech parameter generation

In the synthesis part of HMM-based speech synthesis, first, an arbitrarily given text to be
synthesized is converted into a context-dependent label sequence and a sentence HMM is
constructed by concatenating context-dependent HMMs according to the label sequence.
Second, the optimal state sequence of the sentence HMM is determined. Third, a speech
parameter sequence is generated for a given state sequence. From Eq. (4.3), the optimal
speech parameter sequence for Bayesian speech synthesis can be generated by maximiz-
ing the marginal likelihood. Thus, the optimal speech parameter sequence o can be gen-
erated by maximizing the lower bound F in Eq. (4.5) because the VB method guarantees
that the log marginal likelihood is approximately the lower bound F.

OBayes = argmaxlog P(0,0 |s,S)
o

~ argmaxJF (4.38)
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We assume that a speech parameter vector o, consists of a static feature vector ¢; and its
first and second order dynamic feature vectors.

o = We
= [(We)],We),...,(We)J]' (4.39)
(We), = [ef,Acl.0%]] (4.40)

where W is a window matrix to calculate dynamic features from static features [51]. The
dynamic feature vectors are automatically determined from the window matrix W and the
static feature sequence. Consequently, only a static feature vector sequence c is estimated
in the synthesis part. From Eq. (4.38), the optimal static feature sequence ¢ is generated
by maximizing the lower bound F. Moreover, under the condition of Eq. (4.39), the
optimal static feature sequence ¢ can be determined by solving the following equation:

oF 0 <10g P(We,z,0,Z, A | S,S)>
dc dc Q(z)Q(Z2)Q(A) Q(2)Q(2)Q(A)
= 0 (4.41)

In the Bayesian speech synthesis framework, the estimation of the posterior distributions,
model selection, and speech parameter generation consistently maximize the lower bound

F.

4.4.2 Approximation for estimating posterior distributions

The obtained posterior distribution of model parameters QQ(A) in Eq. (4.9) depend on not
only the training data O , but also the synthesis data o . However, in a basic speech synthe-
sis situation, the observed data of synthesis sentences is not given previously. Therefore,
the posterior distributions represented in Eq. (4.9) cannot be estimated. To overcome this
problem, one typically assumes that the posterior distribution of the model parameters is
independent of the synthesis data [18,19]. The lower bound of the log marginal likelihood
with respect to only the training data O can be represented as follows.

log P(O|S) = logZ/P(O,Z,A|S)dA
VA

<1 PO.Z.A | s>>
QZ)QA) / aman
= F (4.42)

The posterior distributions Q(Z) and Q(A) can be estimated by maximizing the lower
bound F. The posterior distribution of the model parameters Q(A) is represented as
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follows.
Q(A) = CAP(A)exp (log P(O, Z | S, A)>Q(z) (4.43)

Equation (4.43) indicates that the posterior distribution Q(A) is independent of the syn-
thesis data and that it can be estimated by using only the training data. Since the same
approximation is used in the Bayesian model selection, the optimal decision trees are
selected by maximizing the lower bound F instead of F.

m = arg max F (4.44)

Consequently, the decision trees are selected independently of the synthesis data. Addi-
tionally, Eq. (4.41) can be represented by the estimated posterior distribution Q(A) and
the determined state sequence as follows.

0

<8_ log P(We | z, A)> =0 (4.45)
¢ QA)

Equation (4.45) can be solved efficiently by using the Cholesky or QR decomposition

[51]. Therefore, the computational cost is almost the same as the ML criterion.

The approximation that the posterior distribution of the model parameters is independent
of the synthesis data o enables the Bayesian speech synthesis system to be separated into
training and synthesis parts as the conventional ML-based system and to obtain the poste-
rior distribution of model parameters and decision trees from only the training data. How-
ever, although the posterior distributions can be estimated, they don’t take into account
synthesis data, and the system doesn’t represent the Bayesian speech synthesis exactly.
To overcome this problem, this chapter proposes a speech synthesis technique integrating
training and synthesis processes based on the Bayesian framework.

4.4.3 Integration of training and synthesis processes

The proposed method removes the approximation and derives an algorithm that the pos-
terior distributions, decision trees, and synthesis data are iteratively updated. In the pro-
posed framework, the generated speech parameters of the synthesis sentences are used
instead of the observed data. That is, the posterior distributions and decision trees are
estimated from the training data and the generated speech parameters, and the speech
parameters are generated from the estimated posterior distributions. Since the posterior
distributions, decision trees, and generated speech parameters depend on each other, they
are iteratively updated as the EM algorithm. Initial synthesis data are generated by using

58



the framework described in the preceding section 4.4.2. Once the generated speech pa-
rameters are obtained, they can be used for estimating the posterior distribution. The new
lower bound with the generated speech parameters is defined as follows.

log P(6,0 | 5,5) = logZZ/P(é,i,O,Z,A]s,S)dA
z VA

< P(a,é,o,z,A|s,S>>

> (log ——— =
Q(2)Q(Z)Q(A) O(2)0(2)G(A)

_ (4.46)

where o0 is the generated speech parameter sequence. By maximizing the lower bound F,
the posterior distribution can be estimated in the same fashion as Eq. (4.9).

Q(A) = CaP(A)exp(log P(6,2 | 5, M)z
x exp (log P(O, Z | S, A)) gz (4.47)

The posterior distributions are estimated from the training data and the generated speech
parameters instead of the observed speech parameters. Additionally, the decision trees
are selected by maximizing the lower bound F.

m = arg max F (4.43)

Equation (4.41) can be represented by the estimated posterior distribution Q(A) and the
determined state sequence.

<2 logP(We| z, A)> =0 (4.49)
Q(A)

dc
In the proposed framework, the estimation of posterior distributions, model selection and
speech parameter generation consistently maximize the lower bound F. The posterior
distributions, decision trees, and synthesis data are iteratively updated. The iterative pro-
cess is as follows.

1. Initial speech parameters of synthesis sentences are generated with in the repre-
sented framework (Eq. (4.45)).

2. The posterior distributions Q(2)Q(Z)Q(A) and decision trees are re-estimated by
maximizing the lower bound F (Egs. (4.47) and (4.48)).

3. Speech parameters of synthesis sentences are re-generated by using the estimated
posterior distribution (Eq. (4.49)).
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4. Steps 2 and 3 are iterated until the value of F converge.

Although the iterative process increase the computational cost, the final posterior distri-
butions is more appropriate than one used in the previous method for synthesis sentences.

The key question is how many synthesis sentences should be used for estimating the pos-
terior distributions? Here, we discuss two approaches about the number of synthesis
sentences.

e Sentence: The generated speech parameters of one synthesis sentence are used as

O.

e Batch: The generated speech parameters of all synthesis sentences are used as o.

Sentence estimates different posterior distributions and model structures for each syn-
thesis sentence. On the other hand, Batch estimates the same posterior distributions and
model structures for all synthesis sentences. Therefore, Sentence needs the larger com-
putational cost than Batch.

4.5 Experiments

4.5.1 Experimental conditions

The experiments used the ATR Japanese speech database [53] B-set, which consists of
503 phonetically balanced sentences. The first 450 of the 503 sentences, uttered by one
male speaker (MHT), were used for training. The remaining 53 sentences were used for
the evaluations. Speech signals were sampled at a rate of 16 kHz and windowed at a 5-ms
frame rate using a 25-ms Blackman window. Feature vectors consisted of spectrum and
F{ parameter vectors. The spectrum parameter vectors consisted of 24 mel-cepstral coef-
ficients, and their delta and delta-delta coefficients. The F{ parameter vectors consisted
of log F{ and its delta and delta-delta. A five-state, left-to-right MSD-HSMM [52, 54]
without skip transitions was used. Each state output PDF was composed of spectrum and
[y streams. The spectrum stream was modeled by single multi-variate Gaussian distri-
butions with diagonal covariance matrices. The F{, stream was modeled by a multi-space
probability distribution consisting of a Gaussian distribution for voiced frames and a dis-
crete distribution for unvoiced frames. Each state duration PDF was modeled by a one-
dimensional Gaussian distribution. The decision tree-based context clustering technique
was separately applied to distributions of spectrum, Fj, and state duration.
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Figure 4.3: Mean opinion scores of speech synthesized by the baseline and proposed
methods. Error bars show 95% confidence intervals.

A subjective listening test was conducted to evaluate the quality of the synthesized speech.
The test assessed the naturalness of the converted speech by the mean opinion score
(MOS) test method. The subjects were 10 Japanese students belonging to our research
group. Twenty sentences were chosen at random from the evaluation sentences. Sam-
ples were presented in random order for each synthesis sentence. In the MOS test, after
listening to each test sample, the subjects were asked to assign the sample a five-point
naturalness score (5: natural — 1: poor).

4.5.2 Comparing the number of updates

This experiment evaluated the effectiveness of the proposed iterative updates by compar-
ing the following four systems.

Iteration0 : The posterior distributions were trained from only the training data.

e Iterationl : The posterior distributions were trained from the training data and the
speech parameters generated by Iteration().

e Iteration2 : The posterior distributions were trained from the training data and the
speech parameters generated by Iterationl.

e Iteration3 : The posterior distributions were trained from the training data and the
speech parameters generated by Iteration2.
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Figure 4.4: Mean opinion scores of speech synthesized by the baseline and proposed
methods. Error bars show 95% confidence intervals.

Iteration() was the baseline Bayesian speech synthesis system described in Section 4.4.2.
Iterationl, Iteration2, and Iteration3 were the proposed system integrating training and
synthesis processes described in Section 4.4.3, and they were based on sentence-form in-
tegration. In each iteration, the posterior distributions were updated five times. Therefore,
in this experiment, the number of updates was different for each system.

Figure 4.3 plots the experimental results. Although there were not confidence intervals, it
is clear that the subjective score increased as the number of training iterations increased.
These results clearly show the effectiveness of the training and synthesis iterations. The
decision trees constructed in the context clustering varied between the four systems. This
shows that the posterior distributions were optimized as a result of integrating the training
and synthesis processes.

4.5.3 Comparing systems
This experiment compared the following four systems.

e ML : The conventional ML-based speech synthesis system. The HMMs were
trained by using the ML criterion. The decision trees were selected by the MDL
criterion [44].

e Baseline : The baseline Bayesian speech synthesis system described in Section 4.4.2.

e Batch : The proposed Bayesian speech synthesis system based on the batch-form
integration described in Section 4.4.3.
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e Sentence : The proposed Bayesian speech synthesis system based on the sentence-
form integration described in Section 4.4.3. This system was the same as Iteration3
of the previous experiment.

The computational costs of ML, Baseline, and Batch were almost same because the num-
ber of updates was same in this experiment. However, since Sentence estimated different
posterior distributions and model structures for each synthesis sentence, the computa-
tional cost was 53 times as large as Batch.

Figure 4.4 shows the results of the subjective listening test. Baseline was better than ML,
although the gain was not significant. In addition, Batch and Sentence outperformed
Baseline. These performance gains illustrate the effectiveness of the proposed Bayesian
speech synthesis framework integrating training and synthesis processes. The figure also
shows that Sentence performed better than Batch. Although Batch used all generated
synthesis data to estimate the posterior distributions, the posterior distributions and model
structures of Batch were common for all synthesis sentences. In contrast, Sentence esti-
mated different posterior distributions and model structures for each synthesis sentence.
The experimental results illustrate that the quality of the synthesized speech improved
when the posterior distributions were optimized for each synthesis sentence.

4.6 Summary

This chapter proposed the new framework of speech synthesis based on the Bayesian
approach. In the proposed framework, all processes for constructing the system could be
derived from one single predictive distribution which represents the problem of speech
synthesis directly. The results on the MOS test demonstrated that the proposed method
outperform the conventional one.

Furthermore, this chapter also proposed a speech synthesis technique integrating training
and synthesis processes based on the Bayesian framework. The proposed method removes
the approximation that the posterior distribution of the model parameters is independent
of the synthesis data and derives an algorithm that the posterior distributions, decision
trees and synthesis data are iteratively updated. Both sentence-form and batch-form inte-
grations were tested. The sentence-form integration estimates different posterior distribu-
tions and decision trees for each synthesis sentence, whereas the batch-form integration
estimates the same ones for all synthesis sentences. The results of MOS synthesis demon-
strated that the proposed method outperforms the baseline method and the sentence-form
integration performed better than the batch-form integration.
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Our future work will include investigation of the relation between the amount of training
data and the quality of speech synthesized by the proposed method.
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Chapter 5

An analysis of machine translation and
speech synthesis in speech-to-speech
translation system

In speech-to-speech translation (S2ST), the source language speech is translated into tar-
get language speech. A S2ST system can help to overcome the language barrier, and is
essential for providing more natural interaction. A S2ST system consists of three com-
ponents: speech recognition, machine translation and speech synthesis. In the simplest
S2ST system, only the single-best output of one component is used as input to the next
component. Therefore, errors of the previous component strongly affect the performance
of the next component. Due to errors in speech recognition, the machine translation com-
ponent cannot achieve the same level of translation performance as achieved for correct
text input. To overcome this problem, many techniques for integration of speech recog-
nition and machine translation have been proposed, such as [20,21]. In these, the impact
of speech recognition errors on machine translation is alleviated by using N-best list or
word lattice output from the speech recognition component as input to the machine trans-
lation component. Consequently, these approaches can improve the performance of S2ST
significantly. However, the speech synthesis component is not usually considered. The
output speech for translated sentences is generated by the speech synthesis component.
If the quality of synthesized speech is bad, users will not understand what the system
said: the quality of synthesized speech is obviously important for S2ST and any integra-
tion method intended to improve the end-to-end performance of the system should take
account of the speech synthesis component.

The EMIME project [55] is developing personalized S2ST, such that the a user’s speech
input in one language is used to produce speech output in another language. Speech char-
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acteristics of the output speech are adapted to the input speech characteristics using cross-
lingual speaker adaptation techniques [56]. While personalization is an important area of
research, this chapter focuses on the impact of the machine translation and speech synthe-
sis components on end-to-end performance of an S2ST system. In order to understand the
degree to which each component affects performance, we investigate integration methods.
We first conducted a subjective evaluation divided into three sections: speech synthe-
sis, machine translation, and speech-to-speech translation. Various translated sentences
were evaluated by using N-best translated sentences output from the machine translation
component. The individual impacts of the machine translation and the speech synthesis
components are analyzed from the results of this subjective evaluation.

5.1 Related work

In the field of spoken dialog systems, the quality of synthesized speech is one of the most
important features because users cannot understand what the system said if the quality
of synthesized speech is low. Therefore, integration of natural language generation and
speech synthesis has been proposed [57-59].

In [57], a method was proposed for integration of natural language generation and unit
selection based speech synthesis which allows the choice of wording and prosody to
be jointly determined by the language generation and speech synthesis components. A
template-based language generation component passes a word network expressing the
same content to the speech synthesis component, rather than a single word string. To per-
form the unit selection search on this word network input efficiently, weighted finite-state
transducers (WFSTs) are employed. The weights of the WFST are determined by join
costs, prosodic prediction costs, and so on. In an experiment, this system achieved higher
quality speech output. However, this method cannot be used with most existing speech
synthesis systems, because they do not accept word networks as input.

An alternative to the word network approach is to re-rank sentences from the /N-best out-
put of the natural language generation component [58]. /NV-best output can be used in con-
junction with any speech synthesis system although the natural language generation com-
ponent must be able to construct N-best sentences. In this method, a re-ranking model
selects the sentences that are predicted to sound most natural when synthesized with the
unit selection based speech synthesis component. The re-ranking model is trained from
the subjective scores of the synthesized speech quality assigned in a preliminary evalua-
tion and features from the natural language generation and speech synthesis components
such as word N-gram model scores, join cost, and prosodic prediction costs. Experimen-
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tal results demonstrated higher quality speech output. Similarly, a re-ranking model for
N-best output was also been proposed in [59]. In contrast to [58], this model used a much
smaller data set for training and a larger set of features, but reached the same performance
as reported in [58].

These are integration methods for natural language generation and speech synthesis for
spoken dialog systems. In contrast to these methods, our focus is on the integration of
machine translation and speech synthesis for S2ST. To this end, we first conducted a
subjective evaluation — using Amazon Mechanical Turk [60] — then analyzed the impact
of machine translation and speech synthesis on S2ST.

5.2 Subjective evaluation

5.2.1 Systems

In the subjective evaluation, a Finnish-to-English S2ST system was used. To focus on the
impacts of machine translation and speech synthesis, the correct sentences were used as
the input of the machine translation component instead of the speech recognition results.

The system developed in [61] was used as the machine translation component of our
S2ST system. This system is HiFST: a hierarchical phrase-based system implemented
with weighted finite-state transducers [62]. 865,732 parallel sentences from the EuroParl
corpus [63] were used as training data, and 3,000 parallel sentences from the same corpus
was used as development data. When the system was evaluated on 3,000 sentences in [61],
it obtained 28.9 on the BLEU-4 measure.

As the speech synthesis component, an HMM-based speech synthesis system (HTS) [64]
was used. 8,129 sentences uttered by one male speaker were used for training acous-
tic models. Speech signals were sampled at a rate of 16 kHz and windowed by an Fj-
adaptive Gaussian window with a 5 ms shift. Feature vectors comprised 138-dimensions:
39-dimension STRAIGHT [65] mel-cepstral coefficients (plus the zero-th coefficient),
log Fy, 5 band-filtered aperiodicity measures, and their dynamic and acceleration co-
efficients. We used 5-state left-to-right context-dependent multi-stream MSD-HSMMs
[52,54]. Each state had a single Gaussian. Festival [66] was used for deriving full-context
labels from the text; the labels include phoneme, part of speech (POS), intonational phrase
boundaries, pitch accent, and boundary tones.

The test data comprised 100 sentences from EuroParl corpus not included in the machine
translation training data. The machine translation component output the 20-best transla-
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Table 5.1: Example of N-best MT output texts
’ N \ Output text ‘

’ Reference \ We can support what you said. ‘

1 We support what you have said.

2 We support what you said.

3 We are in favour of what you have said.

4 We support what you said about.

5 We are in favour of what you said.

6 We support what you have said about.

7 We will support what you have said.

8 We support what you have just said.

9 We support what you say.

10 We support that what you have said.

11 We will support what you said.

12 Support what you have said.

13 We support it, what you have said.

14 We are in favour of what you have just said.
15 We are in favour of what you said about.
16 We will support what you said about.

17 We will support what you have said about.
18 Support what you said about.

19 We will support what you have just said.
20 We will support what you say.

tions for each input sentence, resulting in 2,000 translated sentences. To these, we added
reference translations to give a total of 2,100 sentences to use in the evaluation. Table 5.1
shows an example of top 20-best translated sentences.

5.2.2 Evaluation procedure

The evaluation comprised 3 sections: In section 1, speech synthesis was evaluated. Evalu-
ators listened to synthesized speech and assigned scores for naturalness (T'TS). We asked
evaluators to assign a score without considering the correctness of grammar or content. In
section 2, speech-to-speech translation was evaluated. Evaluators listened to synthesized
speech, then typed in the sentence; we measured their word error rate (WER). After this,
evaluators assigned scores for “Adequacy” and “Fluency” of the typed-in sentence (S2ST-
Adequacy and S2ST-Fluency). Here, “Adequacy” indicates how much of the informa-
tion from the reference translation sentence was expressed in the sentence and “Fluency”
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Table 5.2: Correlation coefficients between TTS or WER and MT scores
MT-Adequacy | MT-Fluency

TTS 0.12 0.24
WER -0.17 -0.25

indicates that how fluent the sentence was [67]. These definitions were provided to the
evaluators. “Adequacy” and “Fluency” measures do not need bilingual evaluators; they
can be evaluated by monolingual target language listeners. These measures are widely
used in machine translation evaluations, e.g., conducted by NIST and IWSLT. In sec-
tion 3, machine translation was evaluated. Evaluators didn’t listen to synthesized speech.
They read translated sentences and assigned scores of “Adequacy” and “Fluency” for each
sentence (MT-Adequacy and MT-Fluency).

TTS, S2ST-Adequacy, S2ST-Fluency, MT-Adequacy, and MT-Adequacy were evalu-
ated on five-point mean opinion score (MOS) scales. Evaluators assigned scores to 42 test
sentences in each section. 150 people participated in the evaluation.

5.2.3 Impact of MT and WER on S2ST

First, we analyzed the impact of the translated sentences and the intelligibility of synthe-
sized speech on S2ST. WER averaged across all test samples was 6.49%. The correlation
coefficients between MT-Adequacy and S2ST-Adequacy and between M T-Fluency and
S2ST-Fluency were strong (0.61 and 0.68, respectively).

The correlation coefficient between WER and S2ST-Adequacy was —0.21, and the cor-
relation coefficient between WER and S2ST-Fluency was —0.20. These are only weak
correlations. The impact of the translated sentences on S2ST is larger than the impact of
the intelligibility of the synthesized speech, although this does affect the performance of
S2ST.

5.2.4 Impact of MT on TTS and WER

Next, we analyzed the impact of the translated sentences on the naturalness and intelli-
gibility of synthesized speech. Table 5.2 shows the correlation coefficients between TTS
and MT scores, and the correlation coefficients between WER and MT scores. MT-
Fluency has a stronger correlation with both TTS and WER than MT-Adequacy. That
is, the naturalness and intelligibility of synthesized speech were more affected by the
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Figure 5.2: Boxplots of WER divided into four groups by MT-Fluency

fluency of the translated sentences than by the content of them. Therefore, next we fo-
cused on the relationship between the fluency of the translation output and the synthesized

speech.

Figure 5.1 shows boxplots of TTS divided into four groups by MT-Fluency. In this fig-
ure, the median and average scores are also shown. This figure illustrates that the median
and average scores of TTS are slightly improved by increasing MT-Fluency. This is
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Table 5.3: Table of correlation coefficients between MT-Fluency and word N-gram score
I-gram | 2-gram | 3-gram | 4-gram | 5-gram
0.28 0.39 0.42 0.43 0.44

presumed to be because the speech synthesis text processor (Festival, in our case) often
produced incorrect full-context labels due to the errors in syntactic analysis of disflu-
ent and ungrammatical translated sentences. In addition, the psychological effect called
“Llewelyn reaction” appears to affect the results. The “Llewelyn reaction” is that evalua-
tors perceive lower speech quality when the sentences are less fluent or the content of the
sentences is less natural, even if the actual quality of synthesized speech is same. There-
fore, we conclude that the speech synthesis component will tend to generate more natural
speech as the translated sentences become more fluent. Figure 5.2 shows the boxplots
of WER divided into four groups by MT-Fluency. From this figure, it can be seen that
the median and average scores of WER improve and the variance of boxplots shrinks,
with increasing MT-Fluency. This is presumed to be because evaluators can predict the
next word when the translated sentence does not include unusual words or phrases, in
addition to the naturalness of synthesized speech being better when the sentences were
more fluent, as previously described. Therefore, the intelligibility of synthesized speech
is improved as the translated sentences become more fluent, even though all sentences are
synthesized by the same system.

5.2.5 Correlation between MT Fluency and N-gram scores

We have shown that the naturalness and intelligibility of the synthesized speech are
strongly affected by the fluency of sentences. It is well known in the field of machine
translation that the fluency of translated sentences can be improved by using long-span
word-level N-grams. Therefore, we computed the correlation coefficient between MT-
Fluency and word N-gram score. The word /NV-gram models we used were created using
the SRILM toolkit [33], from the same English sentences used for training the machine
translation component. Kneser-Ney smoothing was employed.

Table 5.3 shows the correlation coefficient between MT-Fluency and word /V-gram score.
The word 5-gram gave the strongest correlation coefficient of 0.44. Although there were
weak correlations between M T-Fluency and word N-gram score on raw data, it was dif-
ficult to find strong correlation coefficients. Therefore, MT-Fluency scores were divided
into 200 bins according to the word 5-gram score and subsequently average M T-Fluency
scores for each bin were computed. In Figure 5.3, the averaged MT-Fluency scores and
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Figure 5.3: Correlation between MT-Fluency and word 5-gram score

word 5-gram scores are shown, and the regression line is illustrated by the line. Now,
the correlation coefficient is 0.87. This result indicates that the word 5-gram score is an
appropriate feature for measuring the average perceived fluency of translated sentences.

5.2.6 Correlation between TTS and /V-gram scores

P.563 is an objective measure for predicting the quality of natural speech in telecommuni-
cation applications [68]. However, we found no correlation between TTS and P.563. So,
we looked for correlations with other objective measures. It is well known that speech
synthesis systems generally produce better quality speech when the input sentence is in-
domain (i.e., similar to sentences found in the training data). Therefore, we computed the
correlation coefficient between TTS and phoneme /N-gram score of the sentence being
synthesized; the N-gram score is a measure of the coverage provided by the training data
for that particular sentence. The phoneme /NV-gram model was estimated from the English
sentences used for training the speech synthesizer. Table 5.4 shows the correlation coef-
ficients of TTS and phoneme N-gram scores; the 4-gram model gave the strongest cor-
relation coefficient of 0.20. Figure 5.4 shows the bin-averaged TTS scores and phoneme
4-gram scores. Now, the correlation coefficient is 0.81. Although the correlation between
TTS and phoneme /N-gram score was weak on the raw data, there is a strong correla-
tion between bin-averaged TTS and phoneme N-gram score. This result suggests that
the phoneme 4-gram score is a good predictor of the expected naturalness of synthesized
speech.
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Table 5.4: Table of correlation coefficients between TTS and phoneme /N-gram score
I-gram | 2-gram | 3-gram | 4-gram | 5-gram
0.05 0.15 0.19 0.20 0.18

‘I L L L L L L L L L J
-34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14
Monophone 4—gram

Figure 5.4: Correlation between TTS and phoneme 4-gram score

The ability to predict synthetic speech naturalness before generating the speech could
be used in other applications, such as sentence selection (as in this work, or in natural
language generation with speech output), voice selection before generating speech. We
hope to investigate this further in the future.

5.3 Summary

This chapter has provided an analysis of the impacts of machine translation and speech
synthesis on speech-to-speech translation. It has been shown that the naturalness and in-
telligibility of the synthesized speech are strongly affected by the fluency of the translated
sentences. The intelligibility of synthesized speech is improved as the translated sen-
tence become more fluent. In addition, it was found that long-span word /N-gram scores
correlate well with the perceived fluency of sentences and that phoneme N-gram scores
correlate well with the perceived naturalness of synthesized speech. Our future work will
include investigations into the integration of machine translation and speech synthesis
using word /N-gram and phoneme /N-gram scores.
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Chapter 6

Conclusions

The present paper described improved statistical models for speech-to-speech transla-
tion. In Chapter 2, a reordering model using a source-side parse-tree for phrase-based
statistical machine translation was proposed. The proposed model is an extension of the
IST-ITG constraints. Both the IST-ITG constraints and the proposed reordering model fix
the phrase position for the global reorderings. However, the proposed method can conduct
a probabilistic evaluation of target word reorderings which the IST-ITG constraints can-
not. In E-J and E-C translation experiments, the proposed method resulted in a 0.49-point
improvement (29.31 to 29.80) and a 0.33-point improvement (18.60 to 18.93) in word
BLEU-4 compared with IST-ITG constraints, respectively. This indicates the validity
of the proposed reordering model. Future work will focus on a simultaneous training of
translation and reordering models. Moreover, we will deal with difference between source
and target tree structures in multi level like in [40]. In Chapter 3, the Bayesian context
clustering using cross validation for speech recognition was proposed. In the proposed
method, the prior distributions are determined by using cross validation, and the deter-
mined prior distribution is applied to the context clustering. The results on continuous
phoneme recognition experiments demonstrated that the proposed method outperformed
the context clustering based on the MDL criterion and cross validation with ML estimates.
The proposed method could determine prior distributions without any tuning parameters,
and select the model structure which can accurately predict acoustic features for each
HMM state. As future work, we will apply a Bayesian criterion using cross validation
for selecting the number of mixtures, and apply a Bayesian criterion which represents the
classification performance directly to the context clustering. In Chapter 4, the new frame-
work of speech synthesis based on the Bayesian approach was proposed. In the proposed
framework, all processes for constructing the system could be derived from one single
predictive distribution which represents the problem of speech synthesis directly. The
results on the MOS test demonstrated that the proposed method outperform the conven-
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tional one. Our future work will include investigation of the relation between the speech
quality and the size of model structure. And also, a speech synthesis technique integrating
training and synthesis processes based on the Bayesian framework was proposed in Chap-
ter 4. The proposed method removed the approximation that the posterior distribution of
the model parameters is independent of the synthesis data and derived an algorithm that
the posterior distributions, decision trees and synthesis data are iteratively updated. Both
sentence-form and batch-form integrations were tested. The sentence-form integration
estimates different posterior distributions and decision trees for each synthesis sentence,
whereas the batch-form integration estimates the same ones for all synthesis sentences.
The results of MOS synthesis demonstrated that the proposed method outperforms the
baseline method and the sentence-form integration performed better than the batch-form
integration. Future work will include investigation of the relation between the amount of
training data and the quality of speech synthesized by the proposed method. Chapter 5
has provided an analysis of the impacts of machine translation and speech synthesis on
speech-to-speech translation. It has been shown that the naturalness and intelligibility of
the synthesized speech are strongly affected by the fluency of the translated sentences.
The intelligibility of synthesized speech is improved as the translated sentence become
more fluent. In addition, it was found that long-span word N-gram scores correlate well
with the perceived fluency of sentences and that phoneme /N-gram scores correlate well
with the perceived naturalness of synthesized speech. Future work will include investiga-
tions into the integration of machine translation and speech synthesis using word /N-gram
and phoneme /N-gram scores.
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Appendix A

Samples from the English to Japanese
Translation

Sample 1

Source: The free-running period (T ) in constant darkness (DD) at 20 [J became shorter
than that at 25 [J , suggesting that the phase advance of locomotor activity in LD cycles at
20 [ was caused by the decrease in T .

Baseline: 0000000000 O0O0ODOODOO0ODOOODO0ODOODOODODOODOO
oooooobooobooboobobor oboobobobobobooboobOoo
ooooobooobo

Reference: U0 00D DO0O0O0O0OOOODO0ODOO0OOOODODOO0OTrOOODOOO
obobobooooboobobobobobooboooboooboobOorboobOoo
OooobOoobon
Isrrrg:ooooogoooobooooobbooooobbr oo obo
odbooboobooboboboboboobooobooobooboobOoT boo
ooooooon

Proposed: 000000000 O0ODOO0ODOODOODOODOOOOOTrOODOOOOO
obobooobooobooboobobooboobobobobooobooT oo
oooooooobo

Sample 2
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Source: From result of the consideration, it was pointed that radiation from the loop
elements was weak.

Baseline: 0 00000000000 DOODDOODOODOOODOOODOOOO
Reference: 100000000000 DOOODOO0ODOOODOOODOODO

ISTIITG: 0000000000000 00DOO00DOO00oDOOo0oobOOoOoDOooDg
Proposed: 00000000000 O0ODOO0ODOOODOODOODOODO

Sample 3

Source: The value of TF, on the other hand, was higher in the reverse order, indicating
that high oxidation rate causes severe defects on the surface of Ni crystallites.
Baseline: 0000 0ODO0O0O0O0O0OODOOOOOODODOOOOODODODOO
oooooooboobobooooogoogoo

Reference: 100D 0O0O0O0O0O0O0OOOODOOOOODODODOODOOOOOOO
ooooooboobooooogn

ISTITG: 000 oooboooboobobbobooboobooboobon
ooooooboboboooooogo

Proposed: 000000000 0O0ODOOODODOOOOOOOODOOODOOODODOO
ooooboobobooooooooboooo

Sample 4

Source: Still, as well as the preceding fiscal year, local area explanatory meetings of
the construction, noise reductions, and so on, were opened on suitable occasions, for
neighbourhood inhabitant of Shinjuku ward and Shibuya ward.

Baseline: 000000000000 O0O0ODODOODOODOODOODOODOOOO
0000000000000 ooooDoDoooooooon

Reference: 0 0 00D D000D0OODOOODDO0ODOOODOOODOOODDOO
OO00000DO000o0ooooooooooooo

ISTIITG: 0000000000000 DLO0DO0ODOOo0obOOo0obODOoOobOOo0oDOon
00000000 00oo0ooooooooooooog

Proposed: 00 0000000000000 0ODOODODOODOODOOODOODOOOOO
O00DO0DoDO00ooooooooooooooodg
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Sample 5

Source: Aggravation was obvious from the latter half of March to the end of April, and
he contracted the disease in February to the beginning of May.

Baseline: 000000000000 0OODOOODOOOOOODOOODOODOODO
Reference: 10 000000000 O0ODOOODOOOOOODOOODOODO
ISTIITG: 00 0000000000000 O0O00bO0O00OO0o0DOOoO0DbOo0DbOOD
Proposed: 00 000000000000 0ODOODODOOOOODOODOOODOOODOO

Sample 6

Source: After diagnosing the pleural effusion and ascites, vein catheter was left in place
under the echo guide, and after removing the pleural effusion and ascites, OK-432 was
administered locally.

Baseline: 0O 00DO0O0O0O0O0O0OOODOODOOOOODOOODOODOOOOOO
OoooboboooooogoD- boboooogoog

Reference: 100D ODO0OO0OOOOOOOOOOOOOODODODODOODOO
oooobooooooboob- bobooooooooo

ISTIITG: 000D 0obooobooooboboboobobooooboboooon
OooobobooooogoD- boboooooooooo

Proposed: OO0 D O0DO0O0OO0O0OOOODOODOOOOODOOOOODOODOOOO
ooooboboobooooooob- bobooooooobobo
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Appendix B

Software

L] HMM-based Speech Synthesis System (HTS) - Home

[ Front page ] [ Edit | Freeze | Diff | Backup | Upload | Reload ] [ New | List of pages | Search | Recent changes | Help ]

Blizzard Challenge
ISCA SynSIG

Contents Welcome! '
» Home
» History The HMM-based Speech Synthesis System (HTS) has been being developed by the HTS working group and
. E’OW”‘Wd others (see Who we are and Acknowledgments). The training part of HTS has been implemented as a modified
. A';:“\’ijedgmnts version of HTK and released as a form of patch code to HTK. The patch code is released under a free software
s Who we are license. However, it should be noted that once you apply the patch to HTK, you must obey the license of HTK.
. ggﬁiaﬂtmis Related publications about the techniques and algorithms used in HTS can be found here.
. lall\ighr%giltts HTS version 2.1 includes hidden semi-Markov model (HSMM) training/adaptation/synthesis, speech parameter
» Extensions generation algorithm considering global variance (GV), SMAPLR/CSMAPLR adaptation, and other minor new
» Contact features. Many bugs in HTS version 2.0.1 were also fixed. The API for runtime synthesis module, hts_engine

N i API, version 1.0 was also released. Because hts_engine can run without the HTK library, users can develop their

Links own open or proprietary softwares based on hts_engine. HTS and hts_engine API does not include any text
. HTK analyzers but the Festival Speech Synthesis System, DFKI MARY Text-to-Speech System, or other text analyzers
» SPTK can be used with HTS. This distribution includes demo scripts for training speaker-dependent and speaker-
» hts_engine AP adaptive systems using CMU ARCTIC database (English). Six HTS voices for Festival 1.96 are also released.
. :it‘\‘/gﬁ( They use the hts_engine module included in Festival. Each of HTS voices can be used without any other HTS
» DFKI MARY tools.
» STRAIGHT
» Galatea For training Japanese voices, a demo script using the Nitech database is also prepared. Japanese voices trained
. Julius by the demo script can be used on GalateaTalk, which is a speech synthesis module of an open-source toolkit

for anthropomorphic spoken dialogue agents developed in Galatea project. An HTS voice for Galatea trained by
the demo script is also released.
recent(10)

2010-01-12

» Download News! *

2010-01-06

» Extensions

2010-01-04 + December 25, 2009

» Acknowledgments

» History HTS version 2.1.1 beta was released to the hts-users ML members.

+ Home

2009-10-01 .

+ Who we are August 27, 2009

2009-09-15

» The first HTS
meeting

2009-09-14 « May 22, 2009

» Tutorial

2009-03-14 HTS-Demo for Brazilian Portuguese is released.

» Publications

2009-01-01 + March 16, 2009

» Mailing List

The first HTS meeting in Interspeech 2009.

Total: 31151 Prof. Keiichi Tokuda & Dr. Heiga Zen have a tutorial about HMM-based speech synthesis at Interspeech
e 200

Figure B.1: HTS: http://hts.sp.nitech.ac.jp/
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