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Secure and Efficient Negotiation

Protocols for Cube-Constraints

and Cone-Constraints

6.1 Introduction

In this chapter, we propose the Distributed Mediator Protocol (DMP) and the

Take it or Leave it (TOL) Protocol. They make agreements and conceal agent

utility values. In the Distributed Mediator Protocol, we assume many mediators

who search in utility space to find agreements. When searching in their search

space, they employ the Multi-Party Protocol with which they can simultaneously

calculate the sum the per agent utility value and conceal it. Furthermore, Dis-

tributed Mediator Protocol (DMP) improves the scalability for the complexity

of the utility space by dividing the search space toward the mediators. In the

Take it or Leave it (TOL) Protocol, the mediator searches using the hill-climbing

search algorithm. The evaluation value is decided by responses that agents either

take or leave moving from the current state to the neighbor state.

We also propose the Hybrid Secure Protocol (HSP) that combines DMP with

TOL. In Hybrid Secure Protocol (HSP), TOL is performed first to improve the

initial state in the DMP step. Next, DMP is performed to find the local optima

in the neighborhood. Hybrid Secure Protocol (HSP) can also reach an agreement

and conceal per agent utility information. Additionally, Hybrid Secure Protocol
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(HSP) can reduce the required memory for making an agreement, which is a major

issue in DMP. Moreover, we demonstrate that HSP can improve communication

cost (memory usage) more than DMP.

In general, although DMP and HSP are protocols among agents and media-

tors, they do not define the agreement search method, which means how the me-

diator searches and finds agreement points. Thus, we examine three agreement

search methods, a hill climbing(HC), a simulated annealing(SA) and a genetic

algorithm(GA) in cone-constraint and cube-constraint situations. Hill climbing

and simulated annealing have been employed in the previous works [56]. However,

genetic algorithm also performs well to find high optimal contract. Therefore, we

compare GA-based method with the other methods in this chapter.

The remainder of the chapter is organized as follows. In 6.2, we describe utility

functions based on cube-constraints and cone-constraints. In 6.3, we propose

the Distributed Mediator Protocol (DMP) and the Take it or Leave it (TOL)

Protocol. In 6.4, we propose the Hybrid Secure Protocol (HSP). In 6.5, we present

the experimental results about optimality and communication cost (memory). In

6.6, we draw conclusions.

6.2 Cube-Constraints and Cone-Constraints

Cube-constraints: An agent’s utility function is described in terms of cube-

shaped constraints [56]. It was explained in chapter 3.

Cone-constraints: An agent’s utility function can be described in terms of

cone-constraints. Figure 6.1 shows an example of a binary cone-constraint

between Issues 1 and 2. This cone-constraint has a value of 20, which is

maximum if the situation is "scentral = [2, 2]. The impact region is "w = [1, 2].

The expression for a segment of the base is (x1 − 2)2 + (x2 − 2)2/4 = 11.

Suppose there are l cone-constraints, C = {ck| 1 ≤ k ≤ l}. Cone-constraint

ck has gradient function gk("scentral, "w), which is defined by two values: cen-

tral value "scentral, which is the highest utility in ck, and impact region "w,

1The general expression is
m∑

i=1

x2
i /w2

i = 1
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Figure 6.1: Example of cone-constraints

which represents the region where ck is affected. We assume not only circle-

based but also ellipse-based cones. Thus constraint ck has value ui(ck, "s)

if and only if it is satisfied by contract "s. Impact region "w is not a value

but a vector. These formulas can represent utility spaces if they are in a

n-dimensional space.

In addition, cone-constraints can include the risk attitude for constraints by

configuring gradient function gk("scentral, "w). This risk means the possibility

to fail to make agreements. If the agent usually has a risk neutral attitude

for ck, gk is defined as (B) in Figure 6.1 (e.g., proportion). However, the

attitudes (types) of agent can change from risk-seeking to risk-averse for

making agreements. For example, if agents have a risk-seeking attitude for

constraint ck, gk is defined as (A) in Figure 6.1 (e.g., exponent). If an agent

has a risk-averse attitude for ck, gk is defined as (C) in Figure 6.1. If agents

have the most risk-averse attitude for ck, gk stays constant. Therefore, ck

is shaped like a column if the agents have the most risk-averse attitude.

An agent’s utility for contract "s is defined as ui("s) =
∑

ck∈C,!s∈x(ck) wi(ck, "s),

where x(ck) is a set of possible contracts (solutions) of ck. This expression pro-

duces a “bumpy” nonlinear utility space with high points where many constraints

are satisfied and lower regions where few or no constraints are satisfied.
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Figure 6.2: Example of utility space

Figure 6.2 shows an example of a nonlinear utility space with two issues.

This utility space is highly nonlinear with many hills and valleys. Compared

with cube-constraints, the utility function is highly complex because its highest

point is narrower. Therefore, the protocols for making agreements must search

in highly complex utility space. A simple simulated annealing method to directly

find optimal contracts is especially insufficient in a utility function based on cone-

constraints.

We assume, as is common in negotiation contexts, that agents do not share

their utility functions with each other to preserve a competitive edge. Generally,

in fact, agents do not completely know their desirable contracts in advance, be-

cause their own utility functions are simply too large. If we have 10 issues with

10 possible values per issue, for example, this produces a space of 1010 (10 billion)

possible contracts, which is too many to evaluate exhaustively. Agents must thus

operate in a highly uncertain environment.

78



6.3 Secure Negotiation Protocol

6.3 Secure Negotiation Protocol

6.3.1 Distributed Mediator Protocol (DMP)

We propose the Distributed Mediator Protocol (DMP) in this subsection. We

assume there are more than two mediators (Distributed Mediator) so that

DMP achieves distributed search and protection of the agent’s private information

by employing the Multi-Party Protocol[87, 131]. DMP is shown as follows.

We assume m mediators (M0, . . . , Mm) who can calculate the sum of all

the agent utility values if k mediators get together, and there are n agents

(Ag0, . . . , Agm). All mediators share q, which is preliminarily the prime num-

ber.

Step 1: The mediators divide the utility space (search space) and choose a me-

diator who manages it. How to divide the search space and assign tasks

is beyond the scope of this discussion. Parallel computation is possible by

dividing the search space. This means that the computational complexities

during searching can decrease.

Step 2: Each mediator searches his/her search space with a local search algo-

rithm [123]. Hill-climbing search (HC) and simulated annealing search are

examples of local search algorithms. The objective function using a local

search algorithm is used to maximize the social welfare. During the search,

the mediator declares a Multi-Party Protocol if he/she is searching in the

state for the first time. After that, the mediator selects k mediators from

all mediators and asks for generating v(shares) from all agents.

Step 3: Agent i (Ai) randomly selects k dimension formula, which fulfills fi(0) =

xi, and calculates vi,j = fi(j). (xi: agent’s i’s utility value). After that, Ai

sends vi,j to Mj.

Step 4: Mediator j (Mj) receives v1,j, . . . , vn,j from all agents. Mj calculates

vj = v1,j + · · · + vn,j mod q and reveals vj to the other mediators.
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Step 5: The mediators calculate f(j), which fulfills f(j) = vj by Lagrange’s

interpolating polynomial. Finally, s, which fulfills f(0) = s, is the sum of

all agent utility values.

Steps 2 ∼ 5 are repeated until they fulfill the at-end condition in the local

search algorithm.

Step 6: Each mediator informs the maximum value (alternative) in his space to

all mediators. After that, the mediators select the maximum value from all

alternatives.

Figure 6.3: Distributed Mediator Protocol

Figure 6.3 shows the flow in DMP. There are three agents and two mediators.

If two mediators get together, they can calculate the sum of the per agent utility

value. The gray area shows that agents perform the steps without revealing them.

As the figure indicates, the selection of multinomial (fi), generating share (v),

adding the share, and Lagrange’s interpolating polynomial can calculate the sum

of all agent utility values and conceal them.
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DMP has an advantage for privacy for an agent’s utility information and

scalability for utility space. The details are shown as follows.

Privacy DMP can calculate the sum of all agent utility values and conceal them.

The proof is identical to the Multi-Party Protocol [87]. In DMP, other

agents and the mediators can’t know the utility values without illegally

colluding.

Additionally, k, which is the number of mediators performing the Multi-

party protocol, is the tradeoff between privacy issues and computational

complexity. If k mediators exchange their shares (v) illegally, they can

expose the agent utility values. Therefore, it is good for protecting an

agent’s privacy information that k is large number that mediators can’t

collude illegally. If k is large number, mediators take a lot of trouble with

colluding illegally. However, it requires more computation time because

more mediators have to stop searching.

Scalability The computational cost can be greatly reduced because the media-

tors divide the search space. In existing protocols, they cannot find better

agreements when the search space becomes too large. However, this pro-

tocol can locate better agreements in large search spaces by dividing the

search space.

DMP has a weak point: too many shares (v) are generated. This is because

shares are generated that correspond to the search space. To generate shares

requires much more communication cost with agents than searching without gen-

erating shares. Thus, we need to generate fewer shares with high optimality.

6.3.2 Take it or Leave it (TOL) Protocol for Negotiation

We propose the Take it or Leave it (TOL) Protocol, which can also reach agree-

ments and conceal all agents’ utility information. The mediator searches with

the hill-climbing search algorithm [123], which is a simple loop that continuously

moves in the direction of increasing evaluated value. Values for each contract is

evaluated by the responses that agents take or leave to the offers to move from
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the current state to the neighbor state. The agents can conceal their utility value

using this evaluation value. This protocol consists of the following steps.

Step 1: The mediator randomly selects the initial state.

Step 2: The mediator asks the agents to move from the current to the neighbor

state.

Step 3: Each agent compares its current state with the neighbor state and de-

termines whether to take or leave it. If the neighbor state provides higher

utility value than the current state, the agent “takes it.” If the current

state provides higher or identical utility value than the neighbor state, the

agent “leaves it.”

Step 4: The mediator selects the next state declared by the most agents as “take

it.” However, the mediator selects the next state randomly if there are more

than two states that most agents declared as “take it.” The mediator can

prevent the local maxima from being reached by random selection.

Steps 2, 3, and 4 are repeated until all agents declare “leave it” or the mediator

determines that a plateau has been reached. A plateau is an area of the state

space landscape where the evaluation function is flat.

Figure 6.4: Take it or Leave it (TOL) Protocol
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Figure 6.4 shows the concept of the “Take it or Leave it (TOL) Protocol.”

First, the mediator informs agents about the state whose evaluation value he

wants to know. Second, agents search for their utility space and declare “take it”

or “leave it.” Then they tell the number of agents who declare “take it” (VALUE

(state)). These steps are repeated until they satisfy the at-end condition.

“Take it or Leave it (TOL) Protocol” has an advantage of lower time com-

plexity because it easily rates evaluated value. However, this protocol can’t find

high optimality solutions when a plateau is reached.

6.4 Hybrid Secure Negotiation Protocol (HSP)

We propose a new protocol that combines DMP with TOL to solve DMP’s weak

point. This new protocol is called the Hybrid Secure Protocol (HSP) for negotia-

tion. HSP generates fewer shares than DMP. The Hybrid Secure Protocol (HSP)

is shown as follows.

Step 1: The mediators divide the utility space (search space) and choose a me-

diator who manages it.

Step 2: Each mediator searches in her search space using TOL proposed in 6.3.2.

The initial state is selected randomly. By performing the TOL at first,

the mediators can find somewhat higher optimality of solutions without

generating shares (v).

Step 3: Each mediator searches in her search space using step 2 - step 5 in DMP

proposed in 6.3.1. The initial state is the solution found in previous step.

By performing DMP after TOL, mediators can find the local optima in the

neighborhood and conceal the per agent private information.

Steps 2 and 3 are repeated many times by changing the initial state.

Step 4: Each mediator communicates the maximum value (alternative) in his

space to all mediators. After that, the mediators select the maximum value

from all alternatives. Finally, the mediators propose this alternative as the

agreement point.
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HSP can find solutions with fewer shares than DMP because the initial state in

Step 3 is higher than only performing DMP. In addition, TOL doesn’t generate

shares, and DMP searches in states in which TOL hasn’t searched. Thus, HSP can

reduce the number of shares. Furthermore, TOL and DMP can protect agents’

utility value (private value). Therefore, HSP can also protect agents’ utility value.

Meanwhile, optimality in HSP is higher. TOL usually stops searching after

reaching the plateau. Additionally, the main reason for lowering the optimality in

DMP is to reach the local optima, although the initial value in Step 3 is usually

different because it is decided by TOL. Therefore, HSP can find higher agreement

in optimality.

6.5 Experimental Results

6.5.1 Setting of Experiment

We conducted several experiments to evaluate the effectiveness of our approach.

We conducted several experiments to evaluate the effectiveness of our approach.

In each experiment, we ran 100 negotiations between agents with randomly gen-

erated utility functions. The following are the parameters for our experiments.

The number of agents was six, and the number of mediators was four.

We compared the following methods: “(A) DMP (SA)” is the Distributed

Mediator Protocol and the search algorithm is simulated-annealing [123]. “(B)

DMP (HC)” is the Distributed Mediator Protocol and the search algorithm is hill-

climbing [123]. “(C) DMP (GA)” is the Distributed Mediator Protocol and the

search algorithm is the genetic algorithm [123]. “(D) HSP (SA)” is the hybrid

secure protocol, and the search algorithm in the distributed mediator step is

simulated annealing. “(E) HSP (HC)” is the hybrid secure protocol, and the

search algorithm in the distributed mediator step is the hill-climbing algorithm.

In the optimality experiments, for each run, we applied an optimizer to the

sum of all agent utility functions to find the contract with the highest possible so-

cial welfare. This value was used to assess the efficiency (i.e., how closely optimal

social welfare was approached) of the negotiation protocols. To find the optimum

contract, we used simulated annealing (SA) because exhaustive search became
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intractable as the number of issues grew too large. The SA initial temperature

was 50.0, which decreased linearly to 0 over the course of 2500 iterations. The

initial contract for each SA run was randomly selected. Optimality rate is defined

as (The maximum utility value calculated by each method) / (Optimum contract

value using SA).

The following are the parameters for our experiments:

The number of agents is six, and the number of mediators is 2(the number of issues).

In DMP, they can calculate the sum of the per agent utility values if four medi-

ators get together. In DMP, the search space is divided equally.

Utility function (Cube-constraint) The domain for the issue values is [0, 9].

Constraints include 10 unary constraints, 5 binary constraints, 5 trinary

constraints, etc. (a unary constraint relates to one issue, a binary con-

straint relates to two issues, and so on). The value for a constraint is

100 × (Number of Issues). Constraints that satisfy many issues have, on

average, larger weights, which seems reasonable for many domains. To meet

scheduling, for example, higher order constraints concern more people than

lower order constraints, so they are more important. The maximum width

for a constraint is 7. The following constraints, therefore, would all be valid:

Issue 1 = [2, 6], Issue 3 = [2, 9], and Issue 7 = [1, 3].

Utility function (Cone-constraint) The domain for the issue values, the num-

ber of constraints and maximum width for a constraint are similar to

the setting of cube-constraints. The maximum value for a constraint is

100 × (Number of Issues). The gradient function is defined as u("s) =

(Max V alue) ∗ (1 − (distance)/(width)). (u("s): utility value at "s when

"sisinthecone− constraints, (distance): distance between "s and the central

point, (width): impact region, (Max Value): value at the central point)

We set the following parameters for the search methods: HC, SA, and GA.

Hill climbing (HC): The number of iterations is 20 + (Number of issues) ×
5. The final result is the maximum value achieved.
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Simulated annealing (SA): The annealing schedule for the distributed medi-

ator protocol included a initial temperature is 50. For each iteration, the

temperature is decreased by 0.1. Thus, it decreased to 0 by 500 iterations.

20 + (Number of issues) × 5 searches are conducted while the initial start

point is being changed. The annealing schedule for the hybrid secure pro-

tocol in distributed mediator protocol step included an initial temperature

of 10 with 100 iterations. Note that the annealer must not run too long

or too ‘hot’ because then each initial state by TOL will tend to find the

global optimum instead of the peak of the optimum nearest the initial state

in DMP.

Genetic algorithm (GA): The population size in one generation is 20 + (Num-

ber of Issues) × 5. We employed a basic crossover method in which two par-

ent individuals are combined to produce two children (one-point crossover).

The fitness function is the sum of all agents’ (declared) utility. 500 itera-

tions were conducted. Mutations happened at very small probability. In a

mutation, one of the issues in a contract vector was randomly chosen and

changed. In the GA-based method, we define an individual as a contract

vector.

Our code was implemented in Java 2 (1.5) and run on a core 2-duo processor

iMac with 1.0 GB memory on a Mac OS X 10.5 operating system.

6.5.2 Experimental Results

Figure 6.5 shows the optimality rate in five protocols in “cube”-constraints situa-

tion. “(B) DMP (HC)” decreases rapidly based on the number of issues because

hill-climbing reaches local optima by increasing the search space. “(C) DMP

(GA)” does not decrease rapidly even if the number of issues increased. Ad-

ditionally, “(A) DMP (SA)” is the same as the optimal solution. Therefore,

optimality in DMP depends on the search algorithm. “(D) HSP (HC)” have high

optimality because HSP performs DMP after performing TOL. In addition, “(D)

HSP (HC)” has higher optimality than “(C) HSP (SA)” because SA in the DMP

86



6.5 Experimental Results

Figure 6.5: Optimality Rate (Cube-constraints)

step sometimes stops searching for a worse state than the initial state due to a

random nature. But HC stops searching for a better state than the initial state.

Figure 6.6 shows the optimality rate in five protocols in “cone”-constraints

situation. “(B) DMP (HC)” decreases rapidly based on the number of issues

and “(C) DMP (GA)” does not decrease rapidly even if the number of issues

increased. Therefore, optimality in DMP is similar results in cone-constraints

situation. “(D) HSP (HC)” also have high optimality and “(D) HSP (HC)” has

higher optimality than “(C) HSP (SA).” Therefore, “(D) HSP (HC)” has high

optimality if the utility function is cone-constraints. However, the difference

among per protocol in cone-constraints is larger than the one in cube-constraints

because the utility space in cone-constraints is more complex.

Figure 6.7 shows the average share (v) per agent in cube-constraints. The

number of shares shows a comparison of memory in several protocols. “(C)

DMP (GA)” increases exponentially. On the other hand, “(A) DMP (SA)” and

“(B) DMP (HC)” reduces the shares compared to “(C) DMP (GA)” because GA
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Figure 6.6: Optimality Rate (Cone-constraints)

searches for more states than SA and HC. The number of shares in DMP depends

on the features of the search protocol. Furthermore, “(C) HSP (SA)” and “(D)

HSP (HC)” reduce shares compared to “(A) DMP (SA),” “(B) DMP (HC)” and

“(C) DMP(GA) because the initial state in the DMP step in HSP has a higher

value than the initial state in DMP since TOL was performed before. Thus, HSP

can reduce the shares more than DMP.

Figure 6.7 shows the average share (v) per agent in cone-constraints. “(C)

DMP (GA)” increases exponentially if the utility function is cone-constraints.

The number of shares in DMP depends on the features of the search protocol in

cone-constraints situation. Furthermore, “(C) HSP (SA)” and “(D) HSP (HC)”

also reduce shares compared to “(A) DMP (SA),” “(B) DMP (HC)” and “(C)

DMP(GA) in cone-constraint situation. Thus, HSP can reduce the shares more

than DMP if the utility function is cone-constraints. The number of shares in

cone-constraints situation is overall less than the one in cube-constraints situation.

This is because that all search methods in cone-constraints have higher possibility
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Figure 6.7: The number of shares (Cube-constraints)

to reach local optima due to the utility space’s complexity.

From the above experimental results, HSP can reduce the shares with high

optimality.

6.6 Conclusion

In this chapter, we proposed a nonlinear utility function based on cone-constraints

and proposed the Distributed Mediator Protocol (DMP) that can reach agree-

ments and completely conceal agent’s utility information and achieve high scala-

bility in utility space. Moreover, we proposed the Hybrid Secure Protocol (HSP)

that combines DMP and Take it or Leave it (TOL) protocol. Experimental

results demonstrated that HSP can reduce memory with high optimality in cone-

constraints and cube-constraints situations.
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Figure 6.8: The number of shares (Cone-constraints)
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A Secure and Fair Protocol that

Addresses Weaknesses of the

Nash Bargaining Solution

7.1 Introduction

The Nash bargaining solution, which maximizes the product of the agent utilities,

is a well-known metric that provably identifies the optimal (fair and social-welfare-

maximizing) agreement for negotiations in linear domains [68, 71, 103]. In non-

linear domains, however, the Pareto frontier will often not satisfy the convexity

assumption required to make the Nash solution optimal and unique [21, 68, 103].

There can, in other words, be multiple agreements in nonlinear domains that sat-

isfy the Nash Bargaining Solution, and many or all of these will have sub-optimal

fairness and/or social welfare. We need, therefore, a new approach if we want to

produce good outcomes for nonlinear negotiations.

In this chapter, we present a secure mediated protocol (the Secure and Fair

Mediator Protocol, or SFMP) that addresses this challenge. The protocol con-

sists of two main steps. In the first step, SFMP uses a nonlinear optimizer,

integrated with a secure information sharing technique called the Secure Gath-

ering Protocol [131], to find the Pareto front without causing agents to reveal

private utility information. In the second step, an agreement is selected from the
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set of Pareto-optimal contracts using a metric, which we call approximate fair-

ness, that measures how equally the total utility is divided across the negotiating

agents ([115] etc.). We demonstrate that SFMP produces better scalability and

social welfare values than previous nonlinear negotiation protocols.

The remainder of this chapter is organized as follows. In 7.2, we show how

the Nash Bargaining Solution can lead to sub-optimal results in such contexts.

In 7.3, we describe a new protocol (SFMP) designed to address this challenge. In

7.4, we present the experimental results. In 7.5, we draw conclusions.

7.2 A Weaknesses of the Nash Bargaining Solu-

tion in Nonlinear Negotiation

Working in the nonlinear domain has a number of important impacts on the kind

of negotiation protocols that can be effective. First, consider parero-optimality.

Pareto-optimality is widely recognized as a basic requirement for a good negoti-

ation outcome. It is defined as follows: Contract "s = (s1, . . . , sM) is Pareto op-

timal if there is no "s′ such that ui("s ′) > ui("s) for all agents (ui("s) is agent i’s

utility value). Pareto-optimality thus eliminates all contracts where there are

others that are better for all the parties involved. In a linear negotiation (i.e.

where the agent utility functions are defined as the weighted sum of the values

for each issue), it is computationally trivial to find the Pareto front, and the

social welfare (sum of agent utilities) for every contract on the Pareto frontier is

the same. In fact, the Pareto-optimal frontier for a negotiation will be “sparse”

in our model, i.e. the Pareto-optimal contracts points will be few in number and

widely scattered.

Next, let us consider fairness. Fairness is critical in bargaining theory be-

cause some experimental results suggest that it deeply influences human decision-

making ([70] etc.) in such contexts as family decision making (e.g., where will

we go on our next vacation?), the less formal economy of consumer transactions

(such as ticket scalpers or flea markets), and price setting for consumer purchases.

The ultimatum game is a popular example of this effect [2, 7]. People tend to offer

“fair” (i.e., 50:50) splits, and offers less than 20% are often rejected in this game,
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Figure 7.1: The relationship of nash product, fairness and social welfare in a
linear utility function

even though it is irrational in this game to reject any deal, since the alternative

is a zero payoff. There are many other studies about the relationship between

decision making and “fairness” in the experimental economics and behavioral

economics fields [69, 148].

The Nash Bargaining Solution (i.e. the contract that maximizes the “Nash

product” = the product of the agent’s utility functions) is a widely-used approach

for identifying the most “fair” contract from those that make up the Pareto front.

As we can see in figure 7.1, the Nash Bargaining Solution divides utility equally

amongst the negotiating parties, in a linear domain. It can be proven, in fact, that

there is a unique Nash bargaining solution for negotiations with convex pareto
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fronts, which is satisfied trivially for negotiations with linear utilities [103]1.

Figure 7.2: The relationship of nash product, fairness and social welfare in a
nonlinear utility function

These properties change radically in nonlinear negotiation. As we can see in

Figure 7.2, when agents have nonlinear utility functions, the Pareto front can

be non-convex [101]. There can be multiple Nash bargaining solutions, even

with continuous issue domains, and some of the Nash bargaining solutions may

be non-optimal in terms of social welfare and fair division of utility. It is even

straightforward to find nonlinear cases where all the contracts on the Pareto front

are Nash bargaining solutions, despite the fact that many of them diverge widely

from maximal fairness and social welfare. The Nash Bargaining Solution concept,

which is widely used as a basis for negotiation protocols for linear domains, will

1In the discretized issue domains, there can be multiple Nash Bargaining Solutions, but
they will all be clustered right next to each other and thus offer similar fairness values.
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thus often fare poorly in nonlinear domains. We need, therefore, to find nego-

tiation protocols that can achieve high social welfare and fairness values with

nonlinear agent utilities.

7.3 Secure and Fair Mediator Protocol with Ap-

proximated Fairness

The Secure and Fair Mediator Protocol (SFMP) was defined to achieve these

goals while also protecting agent’s private utility information. SFMP consists of

two main steps: (1) finding the set of Pareto-optimal contracts, and (2) selecting

a fair contract from that set. These steps are defined below.

7.3.1 Finding the Pareto Front

This step is achieved using a mediated approach [36, 37]. One or more media-

tors propose contracts, initially randomly generated, and ask the agents which

ones they prefer. The mediators use this preference information to provide the

objective function for a nonlinear optimization technique such as simulated an-

nealing or a genetic algorithm. Over the course of multiple rounds, the mediators

converge on the set of pareto-optimal contracts. We assume, as is common in

negotiation contexts, that agents prefer not to share their utility functions with

others, in order to preserve a competitive edge. Accordingly, our protocol uses a

Secure Gathering Protocol based on a Multi-Party Protocol [131] to ensure that

mediators can calculate the sum of the agents’ utilities without learning, or re-

vealing. the individual agents’ utility information. A detailed explanation of the

Secure Gathering is given in Appendix.

7.3.2 Selecting the Final Agreement

SFMP selects the final agreement from the Pareto-optimal contract set by cal-

culating which one is the most fair. Several definitions of “fair” have been

identified in social choice and game theory [115]. Suppose we have a division
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X = X1 ∪ · ∪ Xn among n agents where agent i receives Xi. “Simple” fair divi-

sion results if ui(Xi) ≥ 1/n whenever 1 ≤ i ≤ n (each agent gets at least 1/n.)

Another definition, from game theory, calls a division X is fair if and only if it

is Pareto-optimal and envy-free [14]. A division is “envy-free” if no agent feels

another has a strictly larger piece of the utility [115].

We adopt simple fair division as our concept of fairness. Contract agreements,

in general, rarely fully satisfy this condition. We measure, accordingly, how close

an agreement is to simple fair division by calculating its “approximated fairness”,

i.e., the deviation of each agent’s utility from the average of the total utility. The

approximate fairness of a contract is defined, formally, as follows:

V (u1, . . . , un) =
n∑

i=1

(ui − u)2

n

(u1, . . . , un : agent′s utility value in contract, u : the average of all agent′s utility value).

An ideal contract, therefore, has an approximated fairness value of zero, and

all other contracts will have larger values. The final agreement selected by our

protocol is the contract from the Pareto-optimal set with the smallest approxi-

mated fairness value.

Note that our fairness concept is equivalent to the Nash bargaining solution in

linear contexts with continuous issue domains. Assume that u1 + u2 + · · ·+ un =

K(constant) (where ui: agent i’s utility value). The Nash product is maximized

when u1 = u2 = · · · = un = K/n (this has been proven mathematically in the field

of Isoperimetric Problems). The key difference is that our measure generalizes to

nonlinear domains. Approximated fairness does not, however, correspond to the

Kalai-Smorodinsky solution because the latter isn’t always fair [141].

7.4 Experiments

We ran a series of negotiation simulation experiments in order to demonstrate the

weaknesses of the Nash Bargaining Solution in nonlinear domains, and to com-

pare the performance of the SFMP protocol we defined against that of previous

approaches. The subsections below describe the experiment setup and results.

96



7.4 Experiments

7.4.1 Detailed Description of Secure & Fair Mediator Pro-

tocol (SFMP)

The SFMP protocol utilizes multiple mediators in order to help assure agent pri-

vacy. We assume that there are k = mn mediators Mj and n agents (Ai), where m

is an arbitrary integer. Note that this approach requires that m is relatively high

if we wish to effectively conceal the agent’s private information. If the number of

mediators is low, the chances increase that all of the mediators will collude, and

thus compromise the agent’s privacy.

(Optional Pre-Negotiation Step) Contract space division among medi-

ators: The mediators divide the contract space between them, so each mediator

searches a different subregion. Suppose, for example, that there are two issues

whose domain is the integers from 0 to 10. In this case, mediator 1 can manage

the region of values 0 to 5 for issue 1 and values 0 to 10 for issue 2, while mediator

2 can manage the region of values 6 to 10 for issue 1 and values 0 to 10 for issue

2. This step is optional, but it has the advantage of potentially reducing the time

needed to search the contract space by allowing parallel computation.

(Step 1) Secure search to find a Pareto-optimal contract set: Each

mediator searches its assigned portion of the contract space using a local search

algorithm [123]. We employed Hill Climbing (HC), Simulated Annealing (SA),

and Genetic Algorithm (GA) in our experiments. In HC, an agent starts with a

random solution and, at each step, makes some random mutations and selects the

one that causes the greatest utility increase. When the algorithm cannot find any

more improvements, it terminates. In SA, each step of the SA algorithm replaces

the current solution by a randomly generated nearby contract, with a probability

that depends on the change in utility value and a global parameter T (the virtual

temperature) that is gradually decreased during the process. The agent moves

almost randomly when the temperature is high, but acts increasingly like a hill

climber as the temperature decreases. When T is 0, the search is terminated. The

advantage of SA is that it is able to avoid getting stuck in the local optima that

occur in nonlinear optimization problems, and often finds more optimal solutions

than hill climbing. GA is a search technique inspired by evolutionary biology,

using such techniques as inheritance, mutation, selection, and crossover. Initially
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many individual contracts are randomly generated to form an initial population.

After that, at each step, a proportion of the existing population is selected, based

on their ‘fitness’ (i.e. utility values). Crossover and mutation is then applied

to these selections to generate the next generation of contracts. This process is

repeated until a termination condition has been reached. The objective function

for all these local search algorithms is the maximization of social welfare. At each

search step, the mediators determine the social welfare values by securely gather

the utility values for the current contract(s) from their assigned agents. We call

this secure value gathering.

(Step 2) Identify agreement: All mediators share the maximum value in their

subregion of the contract space with all the other mediators. Based on that, they

identify the pareto-optimal contract set. The mediators then select the contract,

in that set, that minimizes the approximated fairness metric. This represents the

final agreement for that negotiation.

7.4.2 Nash Product Maximization Search (NPMS)

For a comparison case, we used Nash Product Maximization Search (NPMS) to

find the Nash bargaining solution for our tests [123]. Our implementation used

simulated annealing to maximize the Nash product for the negotiating agents,

gathering their utility values using the secure gathering protocol. Simulated an-

nealing has been shown to be very effective for nonlinear optimization tasks [56].

We can use the results of NPMS to assess the scale of the performance decrement

caused by using the Nash Bargaining Solution concept in nonlinear domains.

7.4.3 Settings

We conducted five experiments to evaluate the effectiveness of our approach. In

each experiment, we ran 100 negotiations between agents with randomly gener-

ated utility functions. The number of agents was six, and the number of medi-

ators was four. The mediators could calculate the sum of the agent’s utility if

four mediators got together. The search space was divided equally amongst the

mediators. The domain for the issue values was [0, 9]. The constraints included
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10 unary constraints, 5 binary constraints, 5 trinary constraints, and so on (a

unary constraint relates to one issue, a binary constraint relates to two issues,

and so on). The maximum value for a constraint was 100× (number of issues).

Constraints that satisfy many issues thus have, on average, larger utility, which

seems reasonable for many domains. In a meeting scheduling domain, for exam-

ple, higher order constraints concern more people than lower order constraints,

so they are more important. The maximum width for a constraint was 7. The

following constraints, for example, are all valid: Issue 1 = [2, 6], Issue 3 = [2, 9].

We compared the following negotiation protocols: SFMP (SA), SFMP (HC),

SFMP (GA), Nash Product Maximization Search (NPMS), Basic Bidding proto-

col, and Exhaustive Search.

(A) SFMP (SA): “SFMP (SA)” is SFMP using Simulated Annealing as the

optimization algorithm. The initial temperature was 50 degrees. The initial

temperature was 50 degree. For each iteration, the temperature decreased 0.1

degrees, resulting in 500 iterations. 20 + (Number of issues) × 5 searches were

conducted, with the initial start point changed randomly for each search.

(B) SFMP (HC): “SFMP (HC)” is SFMP using Hill Climbing as the opti-

mization algorithm. We employed the random restart hill climbing mechanism

[123]. 20 + (number of issues) × 5 searches were conducted, with the initial start

point changed randomly for each search.

(C) SFMP (GA): “SFMP (GA)” is SFMP using a Genetic Algorithm as the

optimization algorithm. The population size was 20 + (number of issues) ×
5. We employed a basic crossover method in which two parent individuals were

combined to produce two children (one-point crossover). The fitness function was

the sum of all agents’ (declared) utility. 500 iterations were conducted. Mutations

happened at very small probability. In a mutation, one of the issues in a contract

vector was randomly chosen and changed.

(D) Nash Product Maximization Search (NPMS): “Nash Product Max-

imization Search” used SA to search for the Nash bargaining solution(s), i.e. for

contracts that maximize the Nash product. The initial temperature was 50 de-

grees. For each iteration, the temperature decreased 0.1 degree, resulting in 500

iterations. 20 + (Number of issues) × 5 searches were conducted , with the ini-
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tial start point changed randomly for each search. These settings are the same

as those for SFMP (SA).

(E) Basic Bidding protocol: “Basic Bidding protocol” is the protocol pro-

posed in [56]. In this protocol, the number of samples taken during random sam-

pling is (number of issues) × 200. The threshold used to remove contract points

that have low utility is 200. The limitation on the number of bids per agent is
N
√

6, 400, 000 for N agents. This method fails to reach agreements if the number

of issues is more than eight because this method has too much computational

complexity.

(F) Exhaustive Search: “Exhaustive search” is a centralized brute force algo-

rithm that traverse the entire contract search space to find the Pareto-optimal

contract set. The final contract was then selected using our approximated fairness

measure. This approach was only computationally practical when the number of

issues was seven or fewer.

Our code was implemented in Java 2 (1.5) and run on a core 2-duo processor

iMac with 1.0 GB memory on the Mac OS X 10.5 operating system.

7.4.4 Experimental Results

Figure 7.3 compares the social welfare achieved by these six methods. The eval-

uation measure we used was the (social welfare for final agreement from method)

/ (social welfare for final agreement from SFMP (SA)). As predicted, we found

that SFMP (SA) and SFMP (GA) performed better than NPMS, confirming our

claim that the Nash Bargaining Solution produces sub-optimal outcomes when

applied to nonlinear negotiation. SFMP (SA) and SFMP (GA) had about equal

performance. Neither produced fully optimal results, reflecting the difficulty of

performing optimization in large nonlinear contract spaces. All the SFMP pro-

tocols performed better than the Basic Bidding Protocol, which was hampered

by the limit on the number of bids per agent necessitated by the combinatorics

of winner determination in this protocol. The performance of SFMP (HC) de-

creased rapidly as the number of issues grew, because hill climbing got stuck on

local optima. The performance of SFMP (SA) and SFMP (GA) did not decrease

appreciably as the number of issues increased.
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Figure 7.3: Comparison of social welfare

Figure 7.4 compares the number of Pareto-optimal contracts found by the six

methods. In this experiment, we limited the domain of each issue to [0,4], so

all Pareto-optimal contracts could found, in a reasonable amount of time, using

the exhaustive search algorithm. We found that SFMP(SA) and SFMP(GA)

were better at finding Pareto-optimal contracts than either the Nash Product

Maximization Search or the Basic Bidding Protocol. This makes sense, since

the SFMP was explicitly designed to find the entire Pareto front first, before

selecting a final agreement, while the other protocols were not. We also found that

SFMP(SA) and SFMP(GA) performed better than the Basic Bidding protocol,

because the latter often fails to find Pareto-optimal solutions due to the limit on

the number of bids allowed by each agent. As always, the performance of SFMP

(HC) decreased rapidly as the number of issues grew. SFMP (GA) showed the

highest performance on this measure, because GA is inherently more suitable for

finding Pareto-optimal contract sets. However, for all methods, when the number

of issues increased, the percentage of pareto-optimal contracts found decreased

drastically.
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Figure 7.4: Finding Pareto-optimal contracts

Figure 7.5 assessed fairness by comparing the variance of the agent’s utili-

ties for the final agreements, across the six methods. Lower variance is better,

because it means that utility is distributed more fairly across the agents. The

SFMP protocols showed better performance than the Basic Bidding Protocol on

this measure because the basic bidding protocol doesn’t consider fairness when

finding agreements. SFMP (GA) showed the lowest (best) value among the SFMP

variants. NPMS outperformed the SFMPs on this measure. This is counter to

what we predicted: in nonlinear domains, we would expect the Nash bargaining

solutions to vary widely in their fairness values, causing NPMS to produce, on

the average, sub-optimal fairness values.

We can potentially explain these results by considering the allocation of com-

putational effort in nonlinear optimization. In an even moderately large nonlinear

optimization problem, the contract space is too large to explore exhaustively. If

we have only 10 issues with 10 possible values per issue, for example, this pro-

duces a space of 1010 (10 billion) possible contracts. As a result, with limited

computational resources, we have no guarantee of finding the complete Pareto
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Figure 7.5: Comparison of variance

front. SFMP is presumably only able to find a subset of the Pareto-optimal con-

tracts, and those are scattered over the entire frontier. Because the coverage is

sparse, SFMP will often not happen to find the Pareto-optimal contract that op-

timizes the fairness metric. This will reduce the average fairness score for SFMP.

NPMS, by contrast, devotes it’s entire computational effort to finding a single

Nash-product-maximizing contract. Even though it is an inferior optimization

objective, it has the benefit of a more concentrated application of computing

resources.

This interpretation is supported by figure 7.6, which shows the utility values

for SFMP and NPMS for a case with two agents and five issues, with randomly

generated nonlinear utility functions. The diamond-shaped points show the con-

tracts considered by NPMS, while the box-shaped points show the contracts con-

sidered by SFMP. Since SFMP aims to find the entire Pareto front, it searches

throughout the Pareto frontier. NPMS, by contrast, aims to find the contract

that directly maximizes the Nash product, so it focuses it’s search toward the

middle of the Pareto frontier. As figure 7.6 shows, SFMP in this case got closer
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Figure 7.6: Comparison between SFMP and Nash Product Maximization Search

to the Pareto frontier than NPMS.

Figure 7.7 compares the failure rates across the six methods, to assess their

scalability of our methods. For all the methods, if the computing time method

exceeded 100 seconds, the negotiation was aborted and it was treated as a failure.

The failure rate for the Basic Bidding and exhaustive search protocols increased

exponentially with the number of issues. This is because that the computational

complexity of finding agreements in these protocols is quite large. All the other

protocols had negligible failure rates.

The key experimental results can be summarized as follows:

• SFMP, as predicted, maximizes social welfare more effectively than NPMS.

It also out-performs the Basic Bidding protocol.

• SFMP finds fairer contracts than the Basic Bidding Protocol, but is less
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Figure 7.7: Comparison of Failure Rate

fair than NPMS.

• SFMP has a lower failure rate (and thus greater scalability) than the Basic

Bidding Protocol.

We also found that the negotiation methods were sensitive to the complexity

of negotiation setting, due to the combinatorics of the local search algorithms

they employed. The larger the number of issues, the lower the optimality of the

outcomes.

7.5 Conclusion

We showed that the Nash Bargaining Solution, although provably optimal for ne-

gotiations with linear utilities, can lead to sub-optimal outcomes when applied to
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nonlinear negotiations. We also presented the Secure and Fair Mediator Protocol

(SFMP), a novel negotiation protocol that utilizes a combination of nonlinear op-

timization, secure information sharing, and an approximated fairness metric, and

demonstrated that it achieves higher social welfare values than a protocol based

on searching for the Nash bargaining solution. Finally, we demonstrated that

SFMP out-performs our own previous efforts to enable multi-lateral negotiations

in complex domains.

Appendix: Secure value gathering

Figure 7.8: The example of Secure value gathering

Appendix 1 below includes an explanation of secure value gathering. Figure
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7.8 shows an example with three agents and two mediators (k = 2). This is just

for illustrative purposes: in practical situations, k should be larger to reduce the

likelihood of mediator collusion. In the following, ui is agent i’s utility value.

1. The mediators ask the agents to generate “shares” v. Each agent Ai will

send one share vi,j to each mediator Mj.

2. Each agent i (Ai) randomly selects a k dimensional polynomial formula

which fulfills fi(0) = ui, In figure 7.8, for example, agent 1 selected f1(x) =

a1x + u1, agent 2 selected f2(x) = a2x + u2 and agent 3 selected f3(x) =

a3x + u3.

3. Each agent (Ai) calculates a share vi,j = fi(j) for each mediator (Mj) and

sends it to that mediator. For example, agent A1’s share for mediator M2

would be v1,2 = f1(2) = 2a1 + u1.

4. Every mediator j (Mj) sums the shares v1,j, . . . , vn,j it receives from the

agents in order to calculate vj = v1,j + · · ·+vn,j. In Figure 7.8, for example,

mediator 1 received the shares v1,1, v2,1, and v3,1 and calculated v1 = v1,1 +

v2,1 + v3,1.

5. The j mediators add their share sums vj together to calculate F (x) for x

from 1 to j. Using Lagrange’s interpolating polynomial, it is then straight-

forward to calculate F (0), which corresponds to the sum of all the agent’s

utility values for a contract. The net result is that the social welfare is

calculated without any one mediator knowing the utility of any contract for

any individual agent.
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8

An Approach to Scalable

Multi-issue Negotiation:

Decomposing the Contract Space

based on Issue Interdependencies

8.1 Introduction

In this chapter, we propose a new protocol in which a mediator tries to reorganize

a highly complex utility space into several tractable utility subspaces, in order

to reduce the computational cost. Issue groupings are generated by a mediator

based on an examination of the issue interdependencies. First, we have to define

a measure for the degree of interdependency between issues. We define four

such measures. Second, we generate a weighted non-directed interdependency

graph based on this information. By analyzing the interdependency graph, a

mediator can identify issue subgroups. Note that while others have discussed

issue interdependencies in utility theory [140], this previous work doesn’t identify

optimal issue groups. Finally, we demonstrate that our protocol, based on issue-

groups, has higher scalability than previous efforts, and discuss the impact on

the optimality of the negotiation outcomes.

The remainder of this chapter is organized as follows. In 8.2, we describe

several measures for assessing the degree of issue interdependency. In 8.3, we
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ID Issue1 Issue2 Issue3 Issue4 Utility

1 [2, 4] ∅ [4,6] ∅ 20

2 ∅ 5 [3,7] [1,6] 40

3 [3,8] ∅ ∅ ∅ 25

4 4 [2,7] 9 [4,5] 50

Table 8.1: Utility function for an agent

present a technique for finding issue sub-groups, and propose a protocol that uses

this information to enable more scalable negotiations. In 8.4, we present the

experimental results. Finally, we draw conclusions.

8.2 Interdependency Rate and Interdependency

Graph

A issue interdependency for multi-issue negotiations is defined as follows: If there

is a constraint between iX and iY , then we assume iX and iY are interdependent.

If, for example, an agent has a binary constraint between issue 1 and issue 3,

issue 1 and issue 3 are interdependent for that agent - see Table 8.1.

The strength of issue interdependency is measured by interdependency rate.

We define four measures for the interdependency between issue ij and issue ijj

for agent a:

(A) Number of constraints only: D(A)
a (ij, ijj) = %{ck|δa(ck, ij) += ∅ ∧ δa(ck, ijj) +=

∅}. This measures the number of constraints that inter-relate the two issues.

(B) Number of terms of constraints: D(B)
a (ij, ijj) =

∑
ck∈C εa(ck) if ck is

δa(ck, ij) += ∅ ∧ δa(ck, ijj) += ∅. This sums the order of the constraints relating two

issues, based on the intuition that higher-order constraints are more important

than lower-order (e.g. binary) constraints.

(C) Utility value of constraints: D(C)
a (ij, ijj) =

∑
ck∈C va(ck) if ck is δa(ck, ij) +=

∅ ∧ δa(ck, ijj) += ∅. This sums the weights of the constraints that inter-relate the

two issues.
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Figure 8.1: Interdependency Graph

(D) Number of terms and utility of constraints: D(D)
a (ij, ijj) = D(B)

a (ij, ijj)∗
D(C)

a (ij, ijj). This is the product of measures B and C. In addition, we assume

that D(B)
a (ij, ijj) and D(C)

a (ij, ijj) are normalized.

The agents capture issue interdependency information as an interdependency

graph. An interdependency graph is represented as a weighted non-directed

graph, in which a node represents an issue, an edge represents the interdepen-

dency between issues, and the weight of an edge represents the interdependency

rate between the issues. An interdependency graph is thus formally defined as:

G(P,E, w) : P = {1, 2, . . . , |I|}(finite set),

E ⊂ {{x, y}|x, y ∈ P}, w : E → R.

Figure 8.1 shows the interdependency graph for the constraints listed in Table

8.1.

8.3 Negotiation Protocol based on issue inter-

dependency

Our proposed negotiation protocol works as follows. A mediator gathers private

issue interdependency graphs from each agent, generates a social interdependency

graph, identifies issue sub-groups, and then uses that information to guide the

search for a final agreement. In fact, we apply the concept of issue-grouping to

the Basic Bidding in our negotiation protocol. In Basic Bidding Protocol, agents

can make agreement without submitting all agents’ privacy information, however,
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the scalability is not so high. By applying the concept of grouping-issues to the

Basic Bidding Protocol, we can propose high scalable protocol considering the

agents’ privacy. We describe the details below:

[Step 1: Analyzing issue interdependency] Each agent analyzes issue inter-

dependency in its own utility space, using Algorithm 1, and generates an interde-

pendency graph. Each agent sends its’ interdependency graph to the mediator.

Algorithm 5 get Interdependency(C)

C: a set of constraints

1: for c ∈ C do
2: for i := 0 to Number of issues do
3: for j := i + 1 to Number of issues do
4: if Issue i and Issue j are interdependent in c then
5: Calculate interdependencyGraph[i][j]
6: end if
7: end for
8: end for

9: end for

[Step 2: Grouping issues] In this step, the mediator identifies the issue-groups.

First, the mediator generates a social interdependency graph from the private in-

terdependency graphs submitted by the agents. A social interdependency graph

is almost same as a private interdependency graph. The only difference is that

the weight of an edge represents the social interdependency rate. The social in-

terdependency rate between issue ij and issue ijj is defined as:
∑

a∈N Da(ij, ijj).

(Da(ij, ijj): Interdependency rate between issue ij and issue ijj by agent a).

Next, the mediator identifies the issue-groups based on the social interdepen-

dency graph. In this protocol, the mediator tries to find optimal issue-grouping

using simulated annealing (SA) [123]. The evaluation function for the simulated

annealing is the sum of the weights of the edges that do not span separate issue-

groups. The goal is to maximize this value. Figure 8.2 shows an example of

evaluation values for two issue-groups. In Figure 8.2 (A), the evaluation value

is 8 because there are non-spanning edges between issue 1 and issue 2, issue 3

and issue 4, issue 3 and issue 5, and issue 4 and issue 5. In Figure 8.2 (B), the

evaluation value is 9 because there are non-spanning edges among issue 1, issue
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Figure 8.2: Evaluation value in identifying issue-groups

2, issue 3, and issue 5. The number of issue-groups is decided before the protocol

begins.

Agents are at risk for making an agreement that is not optimal for themselves

by dividing the interdependent issues. In other words, there is the possibility

of making a low utility agreement by ignoring the interdependency of some is-

sues. However, agents can make a better agreement in this protocol because the

mediator identifies the issue-groups based on the rate of interdependency.

[Step 3: Generating bids] First, each agent generates bids for the entire set

Figure 8.3: Division for the bid by agents
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of issues using the bidding-based protocol [56]. Concretely speaking, each agent

samples its entire utility space in order to find high-utility contract regions. After

that, each agent uses a nonlinear optimizer based on simulated annealing [123] to

try to find the local optimum in its neighborhood. For each contract "s found by

adjusted sampling, an agent evaluates its utility by summation of values of satis-

fied constraints. If that utility is larger than the reservation value δ(threshold),

then the agent defines a bid that covers all the contracts in the region that have

that utility value.

Next, agents divide these bids into sub-bids for each issue-group, and deter-

mine their valuations for each sub-bid. Agents set their valuation for a bid to

be the utility of the highest-value contract in the bid region. In Figure 8.3, for

example, an agent selects the global bid Ball = [1, 2, 3] for all issues, and divides

Ball into sub-bids B1 = [1, X, X] for issue group 1 and B2 = [X, 2, 3] for issue

group 2 (X: any value). In this case, the agent’s evaluations for both sub-bids are

9.

[Step 4: Finding the Solutions] The mediator identifies the final contract

by finding all the combinations of bids, one from each agent, that are mutually

consistent, i.e., that specify overlapping contract regions1. If there is more than

one such overlap, the mediator selects the one with the highest social welfare (i.e.

the highest summed bid value). The mediator employs breadth-first search with

branch cutting to find the social-welfare-maximizing bid overlaps. After that, the

mediator finds the final contract by consolidating the winning sub-contracts from

each issue-group.

In terms of an agent’s strategic behavior, we assume agents are truthful. In

addition, theoretically, our protocol can be made incentive-compatible (i.e. where

agents are given incentive to provide the truthful bid values that are necessary to

ensure [near-]optimal social welfare) if we employ the Groves mechanism [47] with

some theoretical assumptions on unlimited budgets and unlimited computational

resources. Also, we must assume that the cost (payment) does not depend on the

1A bid can specify not just a specific contract but an entire region. For example, if a bid
covers the region [0,2] for issue 1 and [3,5] for issue 2, the bid is satisfied by the contract where
issue 1 has value 1 and issue 2 has value 4. For a combination of bids to be consistent, the bids
must all overlap.
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Figure 8.4: Box-plots of the optimality rate

other issues. Then, we can define agent i’s utility function as follows: ui = vi−ci,

where vi is value of agreement when some multiple issues are satisfied and ci is the

payment computed by one of the Grove’s mechanisms. We describe the details

in the appendix.

8.4 Experimental Results

8.4.1 Setting

We conducted several experiments to evaluate our approach. In each experiment,

we ran 100 negotiations. The following parameters were used. The domain for

the issue values was [0, 9]. The number of constraints was 10 unary constraints, 5

binary constraints, 5 trinary constraints, and so on. (a unary constraint relates to

one issue, a binary constraint relates to two issues, etc). The maximum value for

a constraint was 100 × (Number of Issues). Constraints that satisfy many issues

have, on average, larger utility, which seems reasonable for many domains. In the

meeting scheduling domain, for example, higher order constraints concern more
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people than lower order constraints, so they are more important. The maximum

width for a constraint was 7. The following constraints would all be valid: Issue

1 = [2, 6], Issue 3 = [2, 9].

We compare the following six methods: “(a) Issue-groups (Number of con-

straints),” “(b) Issue-groups (Number of terms),” “(c) Issue-groups (utility),”

“(d) Issue-groups (terms & utility),” “(e) Basic Bidding,” and “(f) Q-Factor.”

(a)-(d) are variants of the issue-group protocol proposed in this chapter, using

the four different interdependency rate measures D(A)
n ∼ D(D)

n we described above.

This allows us to compare the efficacy of the different interdependency rate mea-

sures. “(e) Basic Bidding” is the bidding-based protocol proposed in [56], which

does not employ issue-grouping. In this protocol, agents generate bids by finding

the highest utility regions in their utility functions, and the mediator finds the

optimum combination of bids submitted from agents. “(f) Q-Factor” is the Max-

imum Weight Interdependent Set (MWIS) protocol proposed in [97, 98]. MWIS

is a variant of bidding protocol where agents use the Q-factor, a combination

of region and utility, to decide which bids to submit. This reduces the failure

rate because agents are less likely to submit low-volume bids that do not overlap

across agents.

The parameters for generating bids in (a)-(f) are as follows [56]. The number of

samples taken during random sampling is (Number of Issues) × 200. The starting

temperature for the simulated annealing algorithm used to find high points near

the samples is 30 degrees . For each iteration, the temperature decreases 1 degree,

so the annealer runs for 30 iterations. Note that it is important that the annealer

does not run too long or too hot because then each search will tend to find the

global optimum instead of the peak of the optimum nearest the sampling point.

The threshold used to cut out contract points that have low utility is 100. The

limitation on the number of bids per agent is N
√

6, 400, 000 for N agents, because it

was only practical to run the deal identification algorithm if it explored no more

than about 6,400,000 bid combinations. The parameters for identifying issue

sub-groups, in (a)-(d), are as follows. The initial temperature for the simulated

annealing algorithm is 30 degrees. For each iteration, the temperature decreased 3

degrees, producing a total of 10 iterations. The number of issue-groups generated
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is three. In “(f) Q-Factor,” Q (Q-Factor) is defined as Q = uα ∗ vβ(u: utility

value, v: volume of the bid or constraint), α = 0.5, β = 0.5.

We used simulated annealing (SA) [123] to approximate the optimum social

welfare for each negotiation test run. Exhaustive search was not a viable option

because it becomes computationally intractable as the number of issues grows.

The SA initial temperature is 50.0 and decreases linearly to 0 over the course

of 2,500 iterations. The initial contract for each SA run is randomly selected.

The optimality value for a negotiation run, in our experiments, is defined as (The

social welfare achieved by each protocol) / (The social welfare calculated by SA).

Our code is implemented in Java 2 (1.5) and run on a core 2-duo CPU with

1.0 GB memory on a Mac OS X (10.6).

8.4.2 Experimental Results

Figure 8.4 compares the optimality rate of the different protocols. The lines

represent the min and max values, the boxes represent +/- 1 standard deviation,

and the ‘-’ represents the average. The optimality rate of our method ((a)-(d))

is higher than “(f) Q-Factor” when the number of issues is large. In addition,

“(d) Issue-Groups (terms & utility)” produces a higher optimality rate than (a).

In t-test, there is a significant difference between (a) and (d) in case 5 (t(198) =

0.003, P < 0.05, one-sided testing). Therefore, the interdependency rate measure

based on constraint utility and number of constraint terms works best of those we

tried. “(e) Basic Bidding” produces the highest optimality scores in case 1 and

case 2 where it does not fail. However, (e) succeeded for none of the negotiations

in case 3, so it’s scalability is limited.

Figure 8.5 compares the failure rates. The failure rate of our method ((a)-(d))

is lower than “(e) Basic Bidding”, especially as the number of issues increases.

Also, our method ((a)-(d)) has essentially the same (very low) failure rate as “(f)

Q-Factor.” Our proposed method and Q-Factor thus achieve the same reduction

in failure rate by different means: one by negotiating by issue-groups, the other

by Basic Bidding Protocol on the quality factor. It should be noted, however, that

the Q-factor approach is probably not incentive-compatible. While using the Q-

factor to pick bids does reduce the failure rate, there is an incentive for agents to

117



8. AN APPROACH TO SCALABLE MULTI-ISSUE
NEGOTIATION: DECOMPOSING THE CONTRACT SPACE
BASED ON ISSUE INTERDEPENDENCIES

Figure 8.5: Failure rate

cheat and submit bids based only on their utility. This increases the likely utility

of the final deal, for them, and may not substantially increase the probability of

a failed negotiation if the other agents do not cheat as well. This thus creates an

prisoner’s dilemma game, such that all agents are individually incented to take

actions that make things worse for everybody. Our issue-clumping protocol, by

contrast, does not require that agents selflessly prefer higher volume bids, and

thus avoids this incentive compatibility problem.

Figure 8.6 shows the optimality rate and failure rate as a function of the

number of issue subgroups in our protocol, for experiments with four agents. The

optimality rate decreases as the number of issue subgroups increases. This is be-

cause the possibility that important interdependencies cut across issue subgroups

(and are thus ignored) increases when there are more subgroups. On the other

hand, the failure rate for making agreements decreases as the number of issue

subgroups increases. This is because the number of issues in each issue subgroup

decreases, and the computational cost for finding agreements becomes smaller,

thereby reducing the likelihood of missing an agreement and therefore having a
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Figure 8.6: Effect of the number of issue-groups

failed negotiation. Thus, there is a trade-off between the optimality rate and the

failure rate in selecting the number of issue groups in our protocol.

8.5 Conclusion

In this chapter, we proposed a new negotiation protocol, based on grouping is-

sues, which can find high-quality agreements in interdependent issue negotiation.

In this protocol, agents generate their private issue interdependency graphs, the

mediator identifies the issue-groups based on these graphs, and multiple indepen-

dent negotiations proceed for each issue sub-group. We demonstrated that our

proposed protocol has greater scalability than previous work, and analyzed the

effectiveness of different measures of the interdependency rate. For future work,

we will investigate how to improve optimality while maintaining the failure rate

advantages of our protocol. One possible track, for example, is to select the num-

ber of issue groups adaptively based on the issue dependency topology. Another

is to conduct additional negotiation, after the concurrent sub-contract negotia-

tions, to try to increase the satisfaction of constraints that crossed sub-contract

boundaries.
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Appendix: Incentive Compatibility

Our negotiation protocol can be made incentive compatible by defining pay-

ments for agents and employing Groves mechanism[47]. We assume unlimited

agent budgets, which is a standard assumption for these kinds of incentive anal-

yses [5]. We also assume each agent knows its own utility space completely

and can find the optimal points without any cost. We call the new mecha-

nism (protocol) M. We define agent is type θi to be a set of constraints Ci

and its value wi: θi = (Ci, wi), where wi =
∑

c∈Ci
w(c). θi can be viewed as

a bid from agent i. In this mechanism, agent i submits type θ̂(a bid), which

may not be true (i.e. may not represent the true weight for those constraints).

Based on the reported types θ = (θ1, . . . , θN), our mechanism computes: s∗(θ̂) =

args∈S,s is consistentmax
∑

i zi(s, θ̂i), where S is a set of contracts, zi(s, θ̂i) is agent

i’s valuation function on the consistent contract s when i reports θ̂i. s does not

violate any constraints in θ̂. zi(s, θ̂i)) is a nonlinear function in our case. For

the purpose of this analysis, we will assume an ideal case in which each agent

has complete knowledge on his/her own utility space. We define agent is pay-

ments as follows a direct adaptation of Groves mechanism: ti(θ̂) = hi(θ̂−i) −∑
j %=i zj(s∗(θ̂), θ̂j) − (1) The first term, hi(θ̂−i), in the right hand in the equation

(2) is an arbitrary function on the reported types of every agent except i. Agent

i’s utility for making a bid (i.e. reporting a type) θ̂i can be defined as follows:

uM
i (θ̂i) = zi(s∗(θ̂), θi) − ti(θ̂) − (2)

Proposition 1 (Incentive compatibility). M is incentive compatible (i.e. truth

telling is a dominant strategy).

Proof. The proof is almost the same as that for Grove’s mechanism. Based on the

utility function (2), uM
i (θ̂i) = zi(s∗(θ̂), θi)−ti(θ̂) = zi(s∗(θ̂i), θi)+

∑
j %=i(s

∗(θ̂), θ̂j)−
hi(θ̂−i). Agent i can not control hi(θ̂−i). Therefore he wants to maximize zi(s∗(θ̂i), θi)+∑

j %=i(s
∗(θ̂), θ̂j)(∗). On the other hand, mechanism M computes the following

because to maximize social welfare efficiency: argmaxs∈Szi(s, θ̂i). This can be

written as follows: argmaxs∈S[zi(s, θ̂i)+
∑

j %=i zj(s, θ̂j)]. For agent i, to maximize

the equation (*), he must report θ̂i = θi, i.e. his truthful type.
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9

Common Testbed Generating

Tool based on XML for Multiple

Interdependent Issues

Negotiations

9.1 Introduction

Most negotiation protocols are evaluated based on one’s own testbed. For ex-

ample, [56] and [90] are only evaluated on randomly generated utility spaces.

However, the effectiveness of the negotiation protocols is evaluated based on the

same testbed. Thus, we propose a tool that generates testbeds for evaluating

multi-issue negotiation protocols by focusing on the utility function based on

cube-based constraints[56] and cone-constraints. Cone-constraints capture the

intuition that agent utilities for a contract usually decrease gradually (rather

than step-wise) by the distance from their ideal contract, which is described in

chapter 6.

We propose a common testbed generating tool based on XML. The input is the

configuration files that define the number of issues, the number of agents, etc. The

testbed generating tool produces XML files that define the agent’s utility spaces

in XML format as output. This tool has four types of utility spaces: Random, A
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Single Hill, Two-Hills, and Several Hills. These types of utility spaces are based

on actual negotiation settings.

In this chapter, we define XML formats, which represent utility spaces, that

consist of cone-based and cube-based constraints. By utilizing an XML format,

users can easily understand, modify, and update the meaning of the data and ex-

change the data among research communities. In addition, our XML format does

not depend on a certain environment. In this chapter, we show cube-based and

cone-based constraint formats that define the building blocks of utility function

spaces.

We also demonstrate some examples that use our testbed. We show a JAVA

program that searches for agreement contracts in agent utility spaces using Sim-

ulated Annealing (SA). In this program, the XML structure is analyzed using

Document Object Model (DOM)[144], and then agreement points are searched

for.

The remainder of the chapter is organized as follows. In 9.2, we describe a

model of nonlinear multi-issue negotiation and propose a testbed generating tool

based on XML for multi interdependent issues. In 9.3, we demonstrate examples

using our testbed. Finally, we draw a conclusion.

9.2 Common Testbed based on XML for Nego-

tiation Protocols

9.2.1 Testbed Generating Tool

We have been implementing a common testbed generating tool for multi-issue

negotiation protocols based on XML. The input of a testbed generating tool is a

configuration file that includes the number of issues and the number of agents.

The output is an XML file that defines the agents’ utility spaces.

Figure 9.1 shows the program flow of our testbed generating tool. First, the

utility space is defined based on the configuration file. Second, constraints are

generated based on the specified type of utility spaces. Finally, an XML file is

outputted. The details of the testbed generating tool are shown as follows:
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Figure 9.1: Flow of testbed generating tool

(1) Defining utility space: The testbed generating tool defines the utility

space information based on the configuration file. The configuration file

includes the number of issues, agents, and constraints as well as the value

domain per issue. Constraints are classified by the number of related con-

straints. For example, a unary constraint is related to one issue, a binary

constraint is related to two issues, etc. In the configuration file, we write

the number of constraints for each related constraint like “unary constraints

include 10, binary constraints include 5, etc.”

(2) Generating utility spaces: In the current implementation, the testbed

generating tool generates utility spaces based on four different types of util-

ity spaces: Random, A Single Hill, Two Hills, and Several Hills. Statements

about the details of each type are shown as follows:

Random: In this type, constraints are generated randomly. Such gener-

ation is used in the experiments in several works [56]. Figure 9.2 shows

an example of utility space plotted by all statements as agent constraints.

This utility space plotted is highly nonlinear, as Figure 9.2(A) shows.

A Single Hill: An example of this type is a collaborative negotiation

among the same type of agents. The utility space plotted by all agents has
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Figure 9.2: Generation type

one higher point, as Figure 9.2(B) shows. In such utility spaces, reaching

an agreement is usually easy.

Two Hills: An example of this type is a bilateral negotiation between two

types of agents. In particular, such negotiation between buyers and sellers

is popular. The utility space plotted by all agents has two higher points,

as Figure 9.2(C) shows. In such utility spaces, making agreements is hard

because the agents are likely in a hostile relation.

Several Hills: An example of this type is collaborative negotiation among

more than three other types of agents. Collaborative design for a car among

designers, engineers, and business managers is a concrete example. The
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utility space plotted by all agents’ constraints has more than three higher

points, as Figure 9.2(C) shows. In such utility spaces, finding agreement

points is hard because there are too many hills. Thus search algorithms

usually try to find the highest points.

(3) Output XML file: The testbed generating tool outputs the XML file on

the testbed for negotiation. By outputting these files, users can easily

understand the information. Additionally, users can modify, change, and

update the data, and XML data are not dependent on a certain environ-

ment. Users like research communities can also easily exchange data with

each other. The details of the XML formats are described in the next

subsection.

9.2.2 XML format for testbeds

We propose the XML format for expressing the agent’s utility function. In XML,

this information is defined by tags. The specification of XML formats in cube-

constraints and cone-constraints is described as follows:

Figure 9.3: Example XML for cube-constraints
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Figure 9.4: Tree-structured XML chart for cube-constraints

XML format for cube-constraints: Figure 9.3 shows an example of the XML

format for cube-constraints. Figure 9.4 shows a tree-structured chart for

cube-constraints. The tree-structured chart enables us to understand the

parent-child relation between elements. A detailed description of the ele-

ments is described as follows:

<UtilitySpace>: Utility Space element shows the specification informa-

tion about the entire utility space. This element has the subelements of

“Dimension”, “ValueNumber”, and “Agent”.

<Dimension>: This element specifies the number of issues. In Figure 9.3,

the number of issues is four.

<Domain>: This element specifies the value domain for each issue. In

Figure 9.3, the domain of all issues is 0,. . . 9.

<Agent>: This element, which specifies the agents, has attributes of

agent’s id and name. In Figure 9.3, the agent’s id is 0 and its name is Al-

ice. There could be multiple agent elements in UtilitySpace element. This

element has the subelements of ReservationValue and many Constraint el-

ements.
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<ReservationValue>: This element specifies the reservation utility value

for determining whether to “agree” or “disagree” with the contract alter-

natives in a negotiation. In Figure 9.3, the reservation value is 21.

<Constraint>: This element, which defines the constraints, has the id of

the constraint as an attribute. This element has the subelements of Issue,

Utility, and Cardinality. In Figure 9.3, the id of the constraints is 0.

<Minimum>: This element defines the possible minimum values for each

issue. In Figure 9.3, the possible minimum value of Issue 2 is 4. This means

that the value for the issue should have more than 4.

<Maximum>: This element defines the possible maximum values for each

issue. In Figure 9.3, the possible maximum value of Issue 2 is 8. This means

that the value for the issue should have less than 8.

<Utility>: This element defines the utility value in this constraint. The

constraints have this utility value if the value for each issue is in the range

defined by Issue elements. In Figure 9.3, constraint 0 has a value of 69, and

it holds if the value for Issue 1 is 0, the value for issue 2 is 8, the value for

Issue 3 is in the range [4, 8], and the value for Issue 4 is 4.

<Cardinality>: This element shows the number of issues related to this

constraint. In Figure 9.3, the cardinality is one. This is because this con-

straint is related to issue 2. In the other words, this constraint is constrained

by a issues. In our definition, the contract has a value if only the issues

related to the constraints satisfy the possible values. In other words, all

values are permitted in other issues not related to the constraint.

XML formats for cone-constraints: Figure 9.5 shows an example of an XML

for cone-constraints. Figure 9.6 shows a tree-structured chart for cone-

constraints. The XML elements in the “UtilitySpace” and “Agents” ele-

ments are almost the same as the XML elements for cube-constraints. A

detailed description of the elements in the cone-based constraints is de-

scribed as follows:
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Figure 9.5: Cone-constraints XML

<MaxUtility>: This element shows the central value, which is the highest

utility in the constraint. In Figure 9.5, the central value is 122, which is

the maximum utility in the constraint.

<RiskAttitude>: This element shows a gradient function that represents

the risk attitude for making agreements. In our testbed generating tool, we

defined a gradient function for each number. For example, one is defined

that a gradient function constant is constant. In Figure 9.5, the risk attitude

for making agreements is one. Future work includes an extension that

enables users to simply define the gradient function.

<Width>: This element shows the impact region, which represents the

region affected by the constraint. The impact region is defined in each

Issue element. In Figure 9.5, the impact region in Issue 4 is two.

<CenterPoint>: This element shows the central point, where the utility

is maximum. In the CenterPoint element, the central point is defined by

Issue elements. In Figure 9.5, the central point is 0 in Issue 4 and all values

are permitted in other issues (Issues 0 - 3).

128



9.3 Java program using the testbed

Figure 9.6: Tree-structured chart for cone-constraints XML

9.3 Java program using the testbed

In this subsection, we describe the Java program using the testbeds proposed in

the previous section. Our code was implemented in Java 2 (1.5).

Figure 9.7 shows the flow of the JAVA program using testbeds. This program

inputs XML files generated by the tool. The following are the details of this

program behavior:

Analyzing XML files: In this program, an XML file is analyzed by a Document

Object Model (DOM) [144], which is a platform and a language-independent

standard object model for representing HTML or XML documents as well

as an Application Programming Interface (API) for querying, traversing,

and manipulating such documents. The information of the structure of the

utility space and the agent’s utility function are read from XML files.

Defining the utility function for each agent The structure of the utility space

and the agent’s utility function are defined based on the XML analyzed in

the previous step.
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Figure 9.7: Program flow using testbeds

Searching agreements using SA In this program, we provide a simple agree-

ment algorithm that gathers and aggregates all individual agent’s utility

spaces into one central place and then finds the most optimal contract us-

ing simulated annealing (SA) [123]. In simulated annealing, the mediator

moves randomly if the temperature is high, but he/she moves to the high-

est neighbor if the temperature is low. A simulated-annealing method of

making agreements was employed in previous works [56] because this search

method is superior to other search methods, such as hill climbing search in

multi interdependent issue negotiation.

In future work, we will generate this program using other programming lan-

guages such as C++, Ruby, Python, and Perl so that this testbed can be used

by many users.
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10.1 Conclusion

The work described in this thesis makes a number of important contributions to

the state of the art in the area of automated negotiation. The contributions of

this work can be summarized as follows:

Chapter 3: We described a model of nonlinear multi-issue negotiation, and a

bidding-based negotiation protocol (Basic Bidding) designed for multiple-

issue negotiation protocol suited for agents with highly nonlinear utility

functions. Constraint-based utility function produces a “bumpy” and highly

nonlinear utility function. In Basic Bidding protocol, agents generate bids

by sampling their own utility functions to find local optima, and then us-

ing constraint based bids to compactly describe regions that have large

utility values for that agent. These techniques make bid generation com-

putationally tractable even in large utility spaces. A mediator then finds a

combination of bids that maximizes social welfare.

Chapter 4: We proposed a threshold adjusting mechanism in very complex ne-

gotiations among software agents. We assumed the negotiation with in-

terdependent issues, in which agent utility functions are nonlinear. Many

real-world negotiation problems are complex ones involving interdependent

multiple issues. We proposed the reveled area which represent the amounts
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of agent’s revealed utility information. Moreover, threshold adjusting mech-

anism reduces agent’s revealed private information. Additionally, this mech-

anism can reduce the computational cost for finding the deal with high opti-

mality. The experimental results demonstrated that the threshold adjusting

mechanism can reduce the computational cost and has enough optimality.

Chapter 5: We proposed a multi-round representative based protocol in very

complex negotiations among software agents. The representative based pro-

tocol always reached agreements if the number of agents was large. It is

important for agents to make agreements without revealing their private

information during the negotiations. This proposed protocol reached an

agreement while revealing as little agents’ utility space as possible. The

experimental results demonstrated that the representative based protocol

reduced the amount of private information required for an agreement among

agents, and its failure rate was almost 0.

Chapter 6: We proposed a nonlinear utility function based on cone-constraints

and proposed the Distributed Mediator Protocol (DMP) that can reach

agreements and completely conceal agent’s utility information and achieve

high scalability in utility space. Moreover, we proposed the Hybrid Secure

Protocol (HSP) that combines DMP and Take it or Leave it (TOL) protocol.

Experimental results demonstrated that HSP can reduce memory with high

optimality in cone-constraints and cube-constraints situations.

Chapter 7: We showed that the Nash Bargaining Solution, although provably

optimal for negotiations with linear utilities, can lead to sub-optimal out-

comes when applied to nonlinear negotiations. We also presented the Se-

cure and Fair Mediator Protocol (SFMP), a novel negotiation protocol that

utilizes a combination of nonlinear optimization, secure information shar-

ing, and an approximated fairness metric, and demonstrate that it achieves

higher social welfare values than a protocol based on searching for the Nash

bargaining solution. Finally, we demonstrated that SFMP out-performs

our own previous efforts to enable multi-lateral negotiations in complex

domains.
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Chapter 8: We proposed a new negotiation protocol, based on grouping issues,

which can find high-quality agreements in interdependent issue negotiation.

In this protocol, agents generate their private issue interdependency graphs,

the mediator identifies the issue-groups based on these graphs, and multi-

ple independent negotiations proceed for each issue sub-group. We demon-

strated that our proposed protocol has greater scalability than previous

work, and analyzed the effectiveness of different measures of the interde-

pendency rate.

Chapter 9: We proposed a testbed generating tool based on XML for multi-

issue negotiation. Our tool provides a common testbed to evaluate the

effectiveness of multi-issue negotiation protocols. Moreover, users can easily

understand the meaning of data because it is based on a simple XML format.

In this testbed, four types of utility spaces were provided that corresponded

to real negotiation cases. Finally, we demonstrated examples of experiments

using our testbed in which we analyzed the differences among types of utility

spaces.

10.2 Future Works

Whole Future work includes building protocols that can find Pareto-optimal

contracts more quickly, making them more scalable, and increasing the

fairness performance. One potential approach to this problem is to focus

the search efforts of the mediators more closely on the fair portion of the

Pareto frontier.

Whole: We plan to investigate incentive-compatibility issues in more detail, to

ensure that the protocol can not be “gamed” by agents seeking to gain

disproportionate influence or to sabotage the outcomes. What we need

is an enhancement of our negotiation protocol that incentivizes truthful

bidding, preserving equity and maximizing social welfare. In the bilateral

case, we found this can be done using a kind of Clarke tax [128], wherein

each agent has a limited budget from which it has to pay other agents

before the mediator will accept a contract that favors that agent but reduces
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utility for the others. This approach gives agents the incentive to avoid

exaggeration, because exaggerating will cause them to spend their limited

budget on contracts that do not strongly impact their true utility values.

We will investigate whether and how this approach can be applied to the

multilateral case.

Whole: We will analyze the effectiveness of our automated negotiation protocol

in the ordinal and cardinal utilities. In this thesis, we introduced the cardi-

nal utilities to constraint based utility functions, however, there are other

utility functions based on the cardinal utilities [113].

Chapter 4 & Chapter 5: In a real parliamentary system, the representatives

(in theory) have done their best to model the utility functions of the people

they represent, so the solutions that satisfy the representatives are likely

to be good for (the majority of) the people they represent. The utility

functions of the representatives are purely idiosyncratic to them, so the so-

lutions preferred by the representatives may be different from the solutions

that are best for the other agents. Therefore, our approach has difficulty

finding the best solution in one-shot negotiation. Changing representatives

in multi-round negotiation helps support this because the possibility of se-

lecting the best representatives in multi-round negotiation is higher than

in one-shot negotiation. However, the changing mechanism proposed here

is simple. Thus investigating changing mechanisms is possible future work.

The effect of changing mechanisms on selecting representatives is an espe-

cially important analytic point.

Chapter6 & Chapter 7: We plan to explore the consequences of the fact that

nonlinear problems, unlike linear ones, can produce situations where you

have to decide if social welfare or fairness is more important. We will explore

protocols that can deal with this situation somehow, for example for giv-

ing negotiators the Pareto front and letting them bargain using traditional

iterative concession techniques.

Chapter 8: For future work, we will investigate how to improve optimality while

maintaining the failure rate advantages of our protocol. One possible track,
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for example, is to select the number of issue groups adaptively based on the

issue dependency topology. Another is to conduct additional negotiation,

after the concurrent sub-contract negotiations, to try to increase the sat-

isfaction of constraints that crossed issue group boundaries and were thus

ignored in our issue grouping approach.
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