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1. Introduction

It is needless to say that study of geodesics is one of important subjects in Rie-

mannian geometry. Behaviors of geodesics are closely related with geometric and

topological properties of base Riemannian manifolds. Global study on Riemann-

ian manifolds by observing geodesics was started by Cohn-Vossen, H. Hopf, S.B.

Myers and H.E. Rauch, and developed by M. Berger, W. Klingenberg, J. Cheeger,

D. Gromoll, K. Shiohama, T. Sakai and some other geometers in 20 centuries. The

reason why geodesics play an important role in the study of Riemannian geometry is

that not only they have intuitive profile like the elementary Euclidean geometry but

also they induce dynamical systems, which are called geodesic flows on unit tangent

bundles. Particularly, for compact manifolds of negative sectional curvature their

geodesic flows are of Anosov type (hyperbolic, in another word). Their ergodicity

was studied by G.D. Birkhoff, M. Morse, E. Hopf, D.V. Anosov, A. Katok and some

others.

We slightly change our viewpoint: If we consider families of curves containing

geodesics, is it possible to get more information on base manifolds? We may say

such study has been done in submanifold theory. In order to characterize isometric

immersions, K. Sakamoto and J.S. Pak studied the behavior of geodesics through

them, and S. Maeda studied the behavior of circles through them. Such study works

because the existence of isometric immersions gives restrictions on Riemannian sub-

manifolds. This suggests us that in order to go into our problem we need some

restrictions on Riemannian manifolds. We hence consider Riemannian manifolds

with some additional geometric structures, which are Kähler manifolds, contact

manifolds and so on. Being furnished with geometric structures should give re-

strictions on base manifolds. Our problem then turns as follows: If we consider a

family of curves associated with geometric structures, is it possible to investigate
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their properties form curve theoretic points of view? Since we consider Riemannian

manifolds, this family should contain geodesics. Recalling the study of geodesics, we

hope curves of this family are obtained by calculus of variations of some functional

and induce a dynamical system.

Along such a consideration, the author’s supervisor Adachi[1] introduced the no-

tion of Kähler magnetic fields in order to study Kähler manifolds from Riemannian

geometric point of view. As a generalization of static magnetic fields on a Euclidean

3-space, we say a closed 2-form on a manifold to be a magnetic field (see [26, 44], for

example). He investigated motions of electric charged particles with unit speed un-

der Kähler magnetic fields, and gave some results corresponding to classical results

on geodesics; hyperbolicity of magnetic flows for complex hyperbolic spaces ([1]),

comparison theorems on magnetic Jacobi fields ([2, 7]), theorems of Hopf-Rinow

type and Hadamard-Cartan type ([8]), and so on.

Since Kähler manifolds are real even dimensional, we are interested in such an

investigation on real odd dimensional manifolds. As a candidate we have a real

hypersurface in a Kähler manifold. On real hypersurfaces in Kähler manifolds, we

have almost contact metric structures induced by complex structures on Kähler

manifolds. By the same way as for Kähler magnetic fields, we can define magnetic

fields on real hypersurfaces which are associated with almost contact metric struc-

tures (see §3). We call them Sasakian magnetic fields. For study on magnetic fields

on odd dimensional manifolds, Ikawa[32] chooses the class of homogeneous almost

α-Sasakian manifolds and makes a trailblazing study on magnetic fields induced by

their contact metric structures. Unfortunately, he does not make any mention on

motions of electric charged particles on model spaces except for odd dimensional

standard spheres.

Though definitions of Kähler and Sasakian magnetic fields are quite resemble

and almost contact metric structures are induced by ambient complex structures,
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Kähler and Sasakian magnetic fields have many different properties. The force of a

Kähler magnetic field is uniform, that is, it does not depend on the choice of places

and directions of velocity vectors of charged particles. On the contrary, Sasakian

magnetic fields are not uniform (see §6). This difference makes our treatment difficult

but enrich our study on Sasakian magnetic fields. Trajectories, which are motions

of electric unit charged particles of unit mass with unit speed, for Kähler magnetic

fields are always circles, but not for Sasakian magnetic fields. Since circles are

simplest curves next to geodesics in the sense of Frenet-Serre formula, we come to

consider the following problems:

• Are there trajectories for Sasakian magnetic fields which are also circles on

a real hypersurfaces?

• If exists, how many trajectories are also circles?

• Study properties of such trajectories.

In this paper, we take homogeneous Hopf hypersurfaces in nonflat complex space

forms, especially take real hypersurfaces of type (A), and investigate some properties

of motions of electric charged particles under Sasakian magnetic fields. The reason

why we consider such hypersurfaces is that Sasakian space forms are represented as

a odd dimensional standard sphere of radius 1 and real hypersurfaces of type (A1),

which are homogeneous Hopf hypersurfaces having two principal curvatures, in a

nonflat complex space forms (see [21, 11]).

We here describe the organization and contents of this paper. There are 18 sec-

tions followed by this section. We devote some sections to explain some results and

notations which will be used in the following sections. After brief summarization

on some basic results in Riemannian geometry in section 2, we give a classification

of smooth curves in the sense of Frenet-Serre in section 4, and introduce homo-

geneous Hopf hypersurfaces which have constant principal curvatures in section 5.
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Such hypersurfaces are classified by Takagi[46, 47] and by Berndt[20]. In a com-

plex projective space, they are classified into 5 classes; hypersurfaces of types (A),

(B), (C), (D) and (E). Those hypersurfaces of types (C), (D) and (E) are so-called

exceptional type. In a complex hyperbolic space, the are classified into 2 classes;

hypersurfaces of types (A) and (B). Hypersurfaces of types (A) and (B) have at most

3 distinct principal curvatures. In this sense they are quite fundamental objects in

submanifold theory.

In section 3, we define Sasakian magnetic fields by comparing the definition of

Kähler magnteic fields. In section 6, we show that structure torsions of trajectories

for Sasakian magnetic fields are important invariants. Structure torsions measure

angles between characteristic vector fields of hypersurfaces and velocity vectors of

trajectories. If a trajectory is a circle, then its structure torsion should be constant.

In sections 7, 8, 9, 11, 12, 13 and 14, we restrict ourselves to real hypersurfaces of

type (A) in nonflat complex space forms. In section 7, we give a condition that a

trajectory to be a circle by the strength of a magnetic field, its structure torsion and

its principal torsion on a real hypersurface in a complex projective space CP n.

In order to get more detail on circular trajectories on geodesic spheres, which are

typical examples of real hypersurfaces of type (A) and are called real hypersurfaces

of type (A1), we investigate their extrinsic shapes in CP n in section 8. In section

9, we take their horizontal lifts with respect to a Hopf fibration. If we regard these

horizontal lifts as curves in a complex Euclidean space, we find that on geodesic

spheres circular trajectories satisfy linear ordinary differential equations of order

3. Since it is known that circles on a complex projective space also satisfy linear

ordinary differential equations of order 3, by comparing characteristic equations for

these differential equations, we can get an algebraic information for them. As circles

on CP n are obtained as images of geodesics through a parallel isometric immersion

of a torus, we have a geometric information on circles. Though we do not have
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such a geometric construction of circular trajectories, we can transplant geometric

information on circles to circular trajectories through algebraic information on circles

and circular trajectories. Under this consideration we can conclude that a circular

trajectory is closed if and only if its invariant defined by its structure torsion and

the strength of the magnetic field is expressed by a pair of mutually prime positive

integers. As trajectories for Kähler magnetic fields on a complex projective space are

always closed, this feature of trajectories for Sasakian magnetic fields is remarkable.

For about hypersurfaces of type (A) in a complex hyperbolic space CHn, we

devote sections 11, 12, 13 and 14. We study trajectories for Sasakian magnetic fields

along the same lines as in sections 7, 8 and 9. The difference between trajectories on

hypersurfaces in CP n and those on hypersurfaces in CHn is the unbounded property

because some hypersurfaces are not compact.

In sections 16, 17 and 18, we study trajectories on homogeneous Hopf hypersur-

faces of types other than (A). On these hypersurfaces, being different from trajecto-

ries on real hypersurfaces of type (A), structure torsions of trajectories are functions

in general. We study structure torsions in detail and show that on real hypersur-

faces of type (B) in complex hyperbolic spaces there are no trajectories which are

also curves of order two. As an application of our study of circular trajectories,

we give some characterizations of real hypersurfaces of type (A) by the amount of

circular trajectories in section 19. Our characterization of hypersurfaces of type

(A1) is a refinement of a characterization of real hypersurfaces of type (A) due to

Maeda-Adachi.

The author would like to express her hearty gratitude to her supervisor Professor

Toshiaki Adachi for his academic advice and encouragement during her stay in

Japan.



2. A short summary of notations and results in Riemannian geometry

2.1. Riemannian connections. We shall begin by fixing some notations and re-

calling some standard facts about connections. Let M denote a smooth finite-

dimensional manifold. Its tangent space at a point p ∈ M is denoted by TpM and

its tangent bundle and unit tangent bundle by TM and UM , respectively. Let X (M)

be the linear space of smooth vector fields on M and C∞(M) be the ring of smooth

functions of M . A Riemannian metric is an assignment to each p ∈M of a symmet-

ric positive-definite bilinear form 〈 , 〉p on TpM such that for any V,W ∈ X (M),

the function p 7→ 〈V,W 〉p is smooth on M . Also, 〈V, V 〉1/2p is denoted by ‖V ‖p.

A smooth manifold admitting a Riemannian metric is said to be a Riemannian

manifold.

An affine connection is a bilinear map ∇ : X (M) × X (M) → X (M) which has

the following properties:

∇fVW = f∇VW,

∇V (fW ) = (V f)W + f∇VW,

for any f ∈ C∞(M) and V,W ∈ X (M).

The fundamental theorem of Riemannian geometry states that for each Riemann-

ian metric there is a unique affine connection, called the Riemannian connection,

with the following two properties:

i) X〈V,W 〉 = 〈∇XV,W 〉 + 〈V,∇XW 〉,

ii) ∇VW −∇WV − [V,W ] = 0,

for arbitrary X,V,W ∈ X (M). Here [ , ] denotes a Lie bracket, that is, [V,W ]f =

(VW −WV )f for V,W ∈ X (M) and f ∈ C∞(M). The property i) is a condition

of compatibility between an affine connection and the metric, while the property

ii) is a symmetry condition ∇ on the connection alone. In general, the quantity

Tor(V,W ) = ∇VW −∇WV − [V,W ] is called the torsion of an affine connection ∇.
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It is a tensor of type (1, 2). Hence the fundamental theorem may be paraphrased

as saying that there is a unique torsion-free connection compatible with any given

metric.

2.2. Distance function and geodesics. For a smooth curve γ on a Riemannian

manifold (M, 〈 , 〉), which is a smooth map γ : I → M of an interval I ⊂ R, we

define its length as

length(γ) =

∫
I

∥∥∥dγ
dt

(t)
∥∥∥ dt.

When M is connected, given two points p, q ∈M we set

dM(p, q) = inf

{
length(γ)

∣∣∣∣ γ : [a, b] →M is a smooth curve
with γ(a) = p, γ(b) = q

}
.

For a smooth curve γ : [a, b] →M we define γ−1 : [a, b] →M by γ−1(t) = γ(a+b−t).

If γ is a curve from p to q, then γ−1 is a curve from q to p. Since length(γ−1) =

length(γ), we have dM(p, q) = dM(q, p). For curves γ1 : [a1, b1] →M from p to q and

γ2 : [a2, b2] →M from q to r, we define a curve γ1 · γ2 : [a1, b1 + b2 − a2] →M by

γ1 · γ2(t) =

{
γ1(t), if a1 ≤ t ≤ b1,

γ2(t− b1 + a2), if b1 < t ≤ b1 + b2 − a2.

Then it is a curve from p to r passing through q. As length(γ1 · γ2) = length(γ1) +

length(γ2), we see dM(p, r) ≤ dM(p, q) + dM(q, r). As it is clear that dM(p, q) = 0 if

and only if p = q, this dM defines a distance function on M . We call this a distance

associated with the Riemannian metric.

For a smooth curve γ : [a, b] →M with γ(a) = p, γ(b) = q, we call a smooth map

α : [a, b] × (−ε, ε) →M a smooth variation of curves for γ if it satisfies

i) α(t, 0) = γ(t) for a ≤ t ≤ b,

ii) α(a, s) = p and α(b, s) = q for −ε < s < ε.

For this α we define a vector field W along γ by W (t) =
∂α

∂s
(t, 0) and call it a

variation vector field associated with α.
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We put γ′ =
dγ

dt
and denote by ∇γ′ the covariant differentiation along γ with

respect to the Riemannian connection ∇ on M .

Lemma 2.1 (First variation formula). Let α be a smooth variation of curves for a

smooth curve γ : [a, b] →M . We then have

d

ds
length

(
α(·, s)

)∣∣∣
s=0

= −
∫ b

a

〈
W (t),∇γ′

( γ′

‖γ′‖

)
(t)

〉
dt.

Proof. By direct computation we have

d

ds
length

(
α(·, s)

)∣∣∣
s=0

=
d

ds

∫ b

a

∥∥∥∂α
∂t

∥∥∥ dt∣∣∣
s=0

=

∫ b

a

d

ds

〈∂α
∂t
,
∂α

∂t

〉1/2∣∣∣
s=0

dt

=

∫ b

a

〈
∇ ∂

∂s

∂α

∂t
(t, 0),

∂α

∂t
(t, 0)

〉/∥∥∥∂α
∂t

(t, 0)
∥∥∥ dt

=

∫ b

a

〈
∇ ∂

∂t

∂α

∂s
(t, 0),

∂α

∂t
(t, 0)

/∥∥∥∂α
∂t

(t, 0)
∥∥∥〉

dt

=

∫ b

a

{ d

dt

〈
W (t),

γ′(t)

‖γ′(t)‖

〉
−

〈
W (t),

d

dt

( γ′(t)

‖γ′(t)‖

)〉}
dt

=
〈
W (b),

γ′(b)

‖γ′(b)‖

〉
−

〈
W (a),

γ′(a)

‖γ′(a)‖

〉
−

∫ b

a

〈
W (t),

d

dt

( γ′(t)

‖γ′(t)‖

)〉
dt

Since α(a, s) = p, α(b, s) = q for all s, we have W (a) = 0 and W (b) = 0, hence get

the conclusion. �

We say a smooth curve γ satisfying the differential equation ∇γ′γ
′ = 0 to be a

geodesic. As we have γ′
(
‖γ′‖2

)
= 2〈∇γ′γ

′, γ′〉 = 0 for a geodesic γ, we see it has

constant speed ‖γ′‖. Thus we see a geodesic is a stational curve for the functional

length(·), that is, a curve which satisfies d
ds

length
(
α(·, s)

)∣∣
s=0

= 0 for its arbitrary

variation α of curves.

2.3. Isometries of Riemannian manifolds. Let (M, 〈 , 〉M) and (N, 〈 , 〉N) be

two Riemannian manifolds. A homeomorphism ϕ : M → N is said to be an isometry

if it satisfies ϕ∗〈 , 〉N = 〈 , 〉M . Here ϕ∗〈 , 〉N denotes the pull back metric. That

is, it is a Riemannian metric defined on M by 〈dϕ(u), dϕ(v)〉N for every u, v ∈ TpM
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at an arbitrary point p ∈ M . Hence, an isometry ϕ is a homeomorphism satisfying

〈dϕ(u), dϕ(v)〉N = 〈u, v〉M for every u, v ∈ TpM at an arbitrary point p ∈ M . For

two isometries ϕ1, ϕ2 : M → M , it is clear that their composition ϕ2 ◦ ϕ1 and the

inverse ϕ−1
1 are also isometries of M . Therefore the set of all isometries of M forms

a group. We call this set the isometry group of M and denote it by Isom(M).

When there is an immersion ι : N → M of a differentiable manifold N to a

Riemannian manifold M , we call N a submanifold of M . On a submanifold N we

have an induced metric ι∗〈 , 〉. A submanifold admitting this induced metric is

called a Riemannian submanifold. We usually identify N with ι(N).

2.4. Real space forms. We define the curvature tensor R of M by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for X,Y, Z ∈ X (M). For a tangent vectors v, w ∈ TpM which span a 2-plane in

TpM , we denote by Riem(v, w) the sectional curvature of this plane. That is,

Riem(v, w) = 〈R(v, w)w, v〉/‖v ∧ w‖2.

A complete, simply connected Riemannian manifold of constant sectional curvature

is called a real space form. It is known that a real space form RMm of dimension

m is congruent to one of a standard sphere Sm, a Euclidean space Rm and a real

hyperbolic space Hm. A Euclidean space Rm with standard inner product is flat,

that is, its sectional curvatures are zero. Sectional curvatures of a sphere of raius r

Sm(1/r2) =
{
x = (x0, . . . , xm) ∈ Rm+1

∣∣ x2
0+· · ·+x2

m = r2
}

with the metric induced by the standard inner product on Rm+1 are 1/r2. We can

show this by considering the relationship of connections on Sm and Rm+1. On Rm+1,

we consider a quadratic form 〈〈 , 〉〉 which is given by

〈〈v, w〉〉 = −v0w0+v1w1+· · ·+vmwm
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for v = (v0, . . . , vm), w = (w0, . . . , wm) ∈ Rm+1. When we consider this form on

Rm+1, we usually denote the space as Rm+1
1 . We consider a subset

Hm(−1/r2) =
{
x ∈ Rm+1

∣∣ −x2
0+x

2
1+· · ·+x2

m = −r2
}
.

Its tangent space at x ∈ Hm is

TxH
m =

{
v ∈ Rm+1

∣∣ −v0x0+v1x1+· · ·+vmxm = 0
}
.

On this space, we have

〈〈v, v〉〉 = −v2
0+v2

1+· · ·+v2
m = v2

1+· · ·+v2
m − (v1x1+· · ·+vmxm)2x−2

0

≥ −(v2
1+· · ·+v2

m)(x2
1+· · ·+x2

m−x2
0)x

−2
0 = r2(v2

1+· · ·+v2
m)x−2

0 ≥ 0

Thus 〈〈 , 〉〉 defines a Riemannian metric on Hm. With this metric, sectional curva-

tures of Hm(−1/r2) are −1/r2. We note that a real hyperbolic space is sometimes

denoted by RHm to distinguish it from complex hyperbolic spaces, which will be

given in below, and from quaternionic hyperbolic spaces clearly.

2.5. Kähler manifolds. A smooth (1, 1) tensor field J : TM → TM on a manifold

M satisfying J2 = −idTM is said to be an almost complex structure on M . We call a

manifold M an almost complex manifold if it admits an almost complex structure. A

Riemannian metric 〈 , 〉 on an almost complex manifold M is said to be a Hermitian

metric if it satisfies 〈JV, JW 〉 = 〈V,W 〉 for arbitrary V,W ∈ X (M). This means

that J is an isometry with respect to this metric.

On a complex manifoldM , an almost complex structure is naturally induced in the

following manner. For a complex analytic chart (U,ϕ) we denote as ϕ = (z1, . . . , zn)

and zj = xj +
√
−1yj (j = 1, 2, ..., n), where xj and yj are real and imaginary part of

zj, respectively. At each point p ∈ U , the vectors (∂/∂x1)p, (∂/∂y1)p, . . . , (∂/∂xn)p,

(∂/∂yn)p form a basis of real linear space TpM . If we define Jp : TpM → TpM by

(∂/∂xj)p 7→ (∂/∂yj)p and (∂/∂yj)p 7→ −(∂/∂xj)p, it is well-defined and is an almost

complex structure on M . When a complex manifold M admits a Hermitian metric
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〈 , 〉 with respect to this induced almost complex structure J , we define a 2-form

Ω by Ω(X, Y ) = 〈JX, Y 〉. It is called the fundamental form or the Kähler form

associated with 〈 , 〉. If this 2-form is closed, that is its exterior derivative dΩ is

a null 3-form, the Hermitian metric is said to be a Kähler metric and the manifold

is said to be a Kähler manifold. In other words, a Hermitian metric is Kähler if

the induced almost complex structure is parallel (i.e. ∇J = 0) with respect to the

Riemannian connection.

2.6. Complex space forms. Complex space forms are typical examples of Kähler

manifolds. For a nonzero tangent vector v ∈ TpM of an almost complex manifold

M , we set HRiem(v) = Riem(v, Jv) and call it the holomorphic sectional curva-

ture of a complex line spanned by v. A complex space form CMn(c) is a complex

n-dimensional complete and simply connected Kähler manifold of constant holomor-

phic sectional curvature c. Hence, it is one of a complex projective space CP n, a

complex Euclidean space Cn and a complex hyperbolic space CHn according as c is

positive, zero and negative.

In this paper we frequently make use of Hopf fibrations to connect the geometry of

complex projective or hyperbolic spaces and that of complex Euclidean spaces. We

take a standard sphere S2n+1 of radius 1 in Cn+1 ∼= R2(n+1). We define a equivalence

relation on S2n+1 as follows: We define that z, w ∈ S2n+1 are equivalent to each

other if and only if there is e
√
−1θ (θ ∈ R) with w = e

√
−1θz. This means that the

group S1 =
{
e
√
−1θ

∣∣ θ ∈ R
}

acts freely on S2n+1. A complex projective space

CP n is the quotient space of S2n+1 with respect to this equivalence relation. We

call the quotient map $ : S2n+1 → CP n given by S2n+1 3 z 7→ [z] ∈ CP n, where

[z] denotes the equivalence class containing z, a Hopf fibration. Each point in CP n

is usually denoted as [z0, z1, . . . , zn] with a point (z0, z1, . . . , zn) ∈ Cn+1 \ {0}. This

expression is called the homogeneous coordinate of CP n. On Cn+1 we define a metric
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by 〈 , 〉 = Re(( , )) with the standard Hermitian inner product

((u, v)) = u0v̄0 + u1v̄1 + · · · + unv̄n

for u = (u0, u1, . . . , un), v = (v0, v1, . . . , vn) ∈ Cn+1. As we mentioned in §2.2, we

see S2n+1 is of constant sectional curvature 1 with the induced metric.

We here induce a metric and a complex structure on CP n. For this sake we show

the horizontal and vertical subbundles with respect to this Hopf fibration $. We

represent the tangent space TzS
2n+1 at point z ∈ S2n+1 on unit sphere S2n+1 as

TzS
2n+1 =

{
(z, u) ∈ {z} × Cn+1

∣∣ 〈z, u〉 = 0
}
.

We set

Vz =
{
(z,

√
−1az) ∈ TzS

2n+1
∣∣ a ∈ R

}
,

Hz =
{
(z, u) ∈ TzS

2n+1
∣∣ ((z, u)) = 0

}
.

Since Vz is the tangent line of the curve R 3 θ 7→ e
√
−1θ ∈ S2n+1, we see it is

the direction of the action of S1. By the definitions of Vz and Hz we find that

they form an orthogonal decomposition TzS
2n+1 = Vz ⊕ Hz of the tangent space

TzS
2n+1. Since Vz is the direction of the action of S1, the tangent space T[z]CP n

at $(z) = [z] in CP n corresponds to Hz, that is d$|Hz : Hz → T$(z)CP n is a

lineary isometric map. We call Hz and Vz in the above decomposition of TzS
2n+1

the horizontal part and the vertical part, respectively. By the S1-action we have a

correspondence (z, v) 7→ (e
√
−1θz, e

√
−1θv) between tangent spaces. We denote by J

the complex structure on Cn+1 given by Jw =
√
−1w. When ((z, u)) = 0 then we

have ((z, Ju)) = 0, hence the horizontal part Hz is invariant under the action of J . As

we have
(
e
√
−1θz, J(e

√
−1θu)

)
=

(
e
√
−1θz, e

√
−1θ(Ju)

)
, the action of J is compatible

with the S1-action. Therefore we can define a complex structure on CP n. As for a

Riemannian metric on CP n, we define

〈[z, u], [z, v]〉 =
4

c
〈u, v〉 =

4

c
Re((u, v))
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for a positive constant c. Here, we denote as [z, u] ∈ T$(z)CP n a tangent vector at

$(z) = [z] under the identification of Hz and T$(z)CP n. Since ((e
√
−1θu, e

√
−1θv)) =

((u, v)), we see it is well-defined. With this metric, we find CP n is of constant

holomorphic sectional curvature c. We denote this by CP n(c).

We next consider a Hermitian form 〈〈 , 〉〉 on Cn+1 defined by

〈〈u, v〉〉 = −u0v̄0 + u1v̄1 + · · · + unv̄n

for u = (u0, u1, . . . , un), v = (v0, v1, . . . , vn) ∈ Cn+1. In order to clarify that we

consider this form, we denote this complex Euclidean space by Cn+1
1 . We take an

anti-de Sitter space H2n+1
1 which is given by

H2n+1
1 =

{
z ∈ Cn+1

1

∣∣ 〈〈z, z〉〉 = −1
}

=
{
z = (z0, . . . , zn) ∈ Cn+1

∣∣ −|z0|2 + |z1|2 + · · · + |zn|2 = −1
}
.

We define an equivalence relation on H2n+1
1 in the following way. We define that

two points z, w ∈ H2n+1
1 are equivalent to each other if there is e

√
−1θ (θ ∈ R) with

w = e
√
−1θz. Thus, we see the group S1 acts freely on H2n+1

1 . A complex hyperbolic

space CHn is the quotient space of H2n+1
1 with respect to this equivalence relation.

We call the quatient map$ : H2n+1
1 → CHn given by S2n+1 3 z 7→ [z] ∈ CHn, where

[z] denotes the equivalence class containing z, a canonical fibration or sometimes call

a Hopf fibration. Each point in CHn is also denoted as [z0, z1, . . . , zn] with a point

(z0, z1, . . . , zn) ∈ Cn+1 \ {0}. This expression is called the homogeneous coordinate

of CHn.

We define a product 〈 , 〉 on H2n+1
1 by 〈 , 〉 = Re〈〈 , 〉〉. The tangent space TzH

2n+1
1

at point z ∈ H2n+1
1 is expressed as

TzH
2n+1
1 =

{
(z, u) ∈ {z} × Cn+1

∣∣ 〈z, u〉 = 0
}
.

We set
Vz =

{
(z,

√
−1az) ∈ TzH

2n+1
1

∣∣ a ∈ R
}
,

Hz =
{
(z, u) ∈ TzH

2n+1
1

∣∣ 〈〈z, u〉〉 = 0
}
.
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By the definitions of Vz and Hz we find that for arbitrary v ∈ Vz and u ∈ Hz they

satisfy 〈v, u〉 = 0. Since these subspaces span TzH
2n+1
1 , we write as TzH

2n+1
1 =

Hz ⊕ Vz. As Vz is the direction of the action of S1, the tangent space T[z]CHn

at $(z) = [z] in CHn corresponds to Hz, that is d$|Hz : Hz → T$(z)CHn is a

linearly isometric map. We call Hz and Vz in the above decomposition of TzH
2n+1
1

the horizontal part and the vertical part, respectively. By the S1-action we have a

correspondence (z, v) 7→ (e
√
−1θz, e

√
−1θv) between tangent spaces. For a complex

structure J on Cn+1
1 , which is given by Jw =

√
−1w, we have 〈〈z, Ju〉〉 = 0 if

〈〈z, u〉〉 = 0. We hence find that Hz is invariant under the action of J . Like the

case of complex projective spaces, the action of J and the S1-action on TH2n+1
1 are

compatible each other. Moreover, if we consider the product 〈 , 〉 on Hz, as we have

〈〈u, u〉〉 = −|u0|2 + |u1|2 + · · · + |un|2

= |u1|2 + · · · + |un|2 − |u1z̄1 + · · · + unz̄n|2|z0|−2

≥ |u1|2 + · · · + |un|2 − (|u1||z1| + · · · + |un||zn|)2|z0|−2

≥ −(|u1|2 + · · · + |un|2)(|z1|2 + · · · + |zn|2 − |z0|2)|z0|−2

= (|u1|2 + · · · + |un|2)|z0|−2 ≥ 0,

it is positive-definite. Thus for tangent vectors [z, u], [z, v] ∈ T$(z)CHn we define

〈[z, u], [z, v]〉 =
4

|c|
〈u, v〉 =

4

|c|
〈〈u, u〉〉

for a negative constant c. We find it turns to a Riemannian metric on CHn. With

this metric CHn is of constant holomorphic sectional curvature c. We denote this

by CHn(c).



3. Magnetic fields

3.1. Definition of magnetic fields. A static magnetic field on R3 is a vector-

valued function B = (B1, B2, B3) : R3 → R3 satisfying Gauss formula

div(B) =
∂B1

∂x1

+
∂B2

∂x2

+
∂B3

∂x3

= 0.

This gives the Lorentz force v×B = ΩBv on a unit charged particle when its velocity

vector is υ. Here ΩB is a skew-symmetric matrix given by 0 B3 −B2

−B3 0 B1

B2 −B1 0

 .

When the mass of this unit charged particle is m, the equation of motion for this is

hence m
dv

dt
= v × B. As we have

d

dt
‖v‖2 = 2〈v, dv

dt
〉 = 2〈v,ΩBv〉 = 0, we see every

electric charged particle has constant speed.

We define a 2-form B on R3 by B(u, v) = 〈u,ΩBv〉 with the standard inner product

〈 , 〉 on R3. Then this form is represented as

B = B1dx2 ∧ dx3 +B2dx3 ∧ dx1 +B3dx1 ∧ dx2.

We then have

dB = (
∂B1

∂x1

+
∂B2

∂x2

+
∂B3

∂x3

)dx1 ∧ dx2 ∧ dx3.

We therefore find that the Gauss formula div(B) = 0 is equivalent to the closedness

of this 2-form B.

With this consideration we introduce an object on a Riemannian manifold which

is a generalization of a static magnetic field on a Euclidean 3-space. A closed 2-form

B on a Riemannian manifold M is said to be a magnetic field. Given a magnetic

field B on M , we define a bundle map ΩB : TM → TM on the tangent bundle TM

of M by B(u, v) = 〈u,ΩB(v)〉 for every u, v ∈ TpM at an arbitrary point p ∈ M

with Riemannian metric 〈 , 〉 on M .

Lemma 3.1. (1) This bundle map ΩB is well-defined and is skew symmetric.
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(2) For two magnetic fields B1,B2 and constants λ1, λ2 ∈ R, we have

Ωλ1B1+λ2B2 = λ1ΩB1 + λ2ΩB2.

Proof. (1) We consider on TpM at an arbitrary point p ∈ M . If we take an or-

thonormal basis {e1, . . . , en} of TpM , where n denotes the dimension of M , we find

ΩB(v) is defined by

ΩB(v) = 〈e1, ΩB(v)〉e1 + · · · + 〈en, ΩB(v)〉en = B(e1, v)e1 + · · · + B(en, v)en

for each v ∈ TpM . Hence it is well-defined. As B is bilinear on TpM at an arbitrary

point p ∈M , we see

〈u,ΩB(λ1v1 + λ2v2)〉 = B(u, λ1v1 + λ2v2) = λ1B(u, v1) + λ2B(u, v2)

= λ1〈u,ΩB(v1)〉 + λ2〈u,ΩB(v2)〉 = 〈u, λ1ΩB(v1) + λ2ΩB(v2)〉,

hence ΩB is linear. Similarly, we have

〈u,ΩB(v)〉 = B(u, v) = −B(v, u) = −〈v,ΩB(u)〉 = −〈ΩB(u), v〉,

we see ΩB is skew symmetric.

(2) As we have

〈u,Ωλ1B1+λ2B2(v)〉 =
(
λ1B1 + λ2B2

)
(u, v) = λ1B1(u, v) + λ2B2(u, v)

= λ1〈u,ΩB1(v)〉 + λ2〈u,ΩB2(v)〉 =
〈
u, λ1ΩB1(v) + λ2ΩB2(v)〉,

for arbitrary u, v ∈ TpM at an arbitrary point p ∈M , we get the conclusion. �

3.2. Trajectories. A motion of a unit electric charged particle of unit mass under

this magnetic field B is a smooth curve which satisfies the equation ∇γ′γ
′ = ΩB(γ′).

We here give some basic properties of motions of electric charged particles.

Lemma 3.2. (1) The speed of each motion of an electric charged particle under

a magnetic field B is constant.

(2) Motions of electric charged particles under the trivial magnetic field B = 0

are geodesics.
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(3) When γ is a motion of an electric charged particle under a magnetic field B,

then the curve σ given by σ(t) = γ(λt) with some nonzero constant λ is a

motion of an electric charged particle under a magnetic field λB.

Proof. (1) Computing the derivite of the speed ‖γ′‖ of a motion γ of an electric

charged particle, we have

γ′(‖γ′‖2) = γ′〈γ′, γ′〉 = 〈∇γ′γ
′, γ′〉 + 〈γ′,∇γ′γ

′〉 = 〈ΩB(γ̇), γ̇〉 + 〈γ̇, ΩB(γ̇)〉.

Since ΩB is skew symmetric, we find γ′(‖γ′‖2) = 0, hence ‖γ′‖ is constant along γ.

(2) For the trivial magnetic field, by the defnition of Ω0 , we find that it is the

zero map. As a matter of fact, we take u = Ω0 (v), then

〈Ω0 (v), Ω0 (v)〉 = 〈u,Ω0 (v)〉 = 0 (u, v) = 0.

Thus ‖Ω0 (v)‖2 = 0, which means thatΩ0 (v) = 0 for an arbitrary v ∈ TM . Therefore

from the definition of motions of electric charged particles, we have ∇γ′γ
′ = 0, hence

γ is a geodesic.

(3) Since we have σ′(t) = λγ′(λt) and ΩλB = λΩB, we obtain

∇σ′(t)σ
′(t) = λ2∇γ′γ

′ = λ2ΩB(γ′) = ΩλB(λγ′) = ΩλB(σ′).

Therefore σ is a motion of an electric charged particle under a magnetic field λB. �

We say a motion of an electric charged particle to be a trajectory if it has unit

speed. Therefore, a trajectory γ for a magnetic field B is a smooth curve which

is parameterized by its arclength and satisfies the equation ∇γ̇ γ̇ = ΩB(γ̇). Here γ̇

denotes the diferential with respect to the arclength parameter.

Lemma 3.3. On a complete Riemannian manifold M , every trajectory is defined

on R.
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Proof. By the theorem on local existence of solutions for ordinary linear differential

equations, we find that there is a trajectory γ : (−ε, ε) → M with given initial

condition γ̇(0). We take the maximal interval I where γ is defined.

Suppose I is bounded from above. We set b the superimum of I. As ‖γ̇‖ ≡ 1, we

see the distance d
(
γ(t1), γ(t2)

)
between two points γ(t1), γ(t2) is not greater than

|t1 − t2|. Therefore the set {γ(t) | 0 ≤ t < b} is bounded. Since M is complete, we

have a limit point limt↑b γ(t) ∈M . Because γ̇(t) is a unit tangent vector for each t,

we also have a limit unit tangent vector limt↑b γ̇(t) ∈ UM in the unit tangent space

at limt↑b γ(t). Thus we we find b ∈ I. Applying the theorem on local existence of

solutions at γ(b) we find γ is defined on an interval I ∪ [b, b + ε1) for some positive

ε1. As we chose I to be maximal, this is a contradiction.

If we suppose I is bounded from below, along the same lines as above we have a

contradiction. Hence we get the conclusion. �

From now on we suppose Riemannian manifolds are complete. Hence we always

consider that trajectories are defined on all part of the real line R.

3.3. Kähler magnetic fields and area magnetic fields. We here give some

examples of magnetic fields. We call a magnetic field B on M uniform if ΩB is

parallel. That is, ∇ΩB = 0 with respect to the Riemannian connection ∇. Here,

this covariant differential ∇ΩB is given by
(
∇XΩB

)
Y = ∇X

(
ΩB(Y )

)
− ΩB(∇XY )

for arbitrary vector fields X,Y on M . Thus the word “uniform” means that the

influence of this mangetic field on unit vectors does not depend on their places and

directions.

We take a Kähler manifold (M̃, J, 〈 , 〉) with complex structure J and Riemannian

metric 〈 , 〉. We denote by BJ its Kähler form which is given by BJ(u, v) = 〈u, Jv〉

for u, v ∈ TM̃ . We say a constant multiple Bκ = κBJ (κ ∈ R) of this Kähler form to

be a Kähler magnetic field. Since the complex structure is parallel, that is ∇J = 0,
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Kähler magnetic fields are parallel. A trajectory γ for a Kähler magnetic field Bκ

is a smooth curve which is parameterized by its arclength and satisfies the equation

∇γ̇ γ̇ = κJγ̇. For properties on trajectories for Kähler magnetic fields, see the works

by Adachi ([1, 3, 8]).

Next we take a Riemann surface M . Since M is 2-dimensional, a 2-form on M

is of the form fvolM with the area form volM on M and a function f ∈ C∞(M).

If f is not a constant function, this magnetic field is not uniform. When M is

orientable, it admits a canonical complex structure J , which is given by (∂/∂x)p 7→

(∂/∂y)p, (∂/∂y)p 7→ −(∂/∂x)p for each chart
(
U,ϕ = (x, y)

)
, we may regard it as

a 1-dimensional Kähler manifold. Thus a trajectory γ for fBJ is a smooth curve

which is parameterized by its arclength and satisfies ∇γ̇ γ̇ = fJγ̇.

Since Kähler manifolds and Riemann surfaces are real even dimensional, we next

consider odd dimensional manifolds.

3.4. Real hypersurfaces in Kähler manifolds. As odd dimensional manifolds,

we take real hypersurfaces in Kähler manifolds. For a Kähler manifold (M̃, J, 〈 , 〉)

of complex dimension n, a real submanifold M of real (2n−1) dimension is called

a real hypersurface of M̃ . It is well known that a real hypersurface M in a Kähler

manifolds (M̃, J, 〈 , 〉) admits an almost contact metric structure (φ, ξ, η, 〈 , 〉). We

take a unit normal vector field N on M in M̃ . The quartet (φ, ξ, η, 〈 , 〉) is consists

of the induced metric on M and a (1, 1)-tensor φ, a vector field ξ and a function η

on M defined by

ξ = −JN , η(v) = 〈v, ξ〉, φ(v) = Jv − η(v)N

for arbitrary v ∈ TM . We call φ and ξ the characteristic tensor and the characteristic

vector field on M , respectively. The characteristic tensor and the function η satisfy

the following properties:

φ2 = −I + η ⊗ ξ, η(ξ) = 1, 〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ),
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where I denotes the identity map of the tangent bundle TM of M . In particular,

we have

φ(ξ) = 0, φ2(v) = −v

for arbitrary v ∈ T 0M =
∪
x∈M

{
w ∈ TxM

∣∣ 〈w, ξ〉 = 0
}
.

We denote by ∇ and ∇̃ the Riemannian connections on M and M̃ , respectively.

For vector fields X,Y ∈ X (M) we set σM(X,Y ) = ∇̃XY −∇XY . We should note

that we have to extend X, Y to vector fields X̃, Ỹ on some neighborhood of M in

M̃ . But as one can see that ∇̃X̃ Ỹ does not depend on the choice of extensions, we

denote it as ∇̃XY . Since the Riemannian connections do not have torsions, we see

that σM is a simmetric tensor. It is called the second fundamental form of M in M̃ .

We define A = AM : TM → TM by

〈Av,w〉 = 〈σM(v, w),N〉

for arbitrary v, w ∈ TxM at an arbitrary point x ∈ M . Since σM is symmetric and

bilinear, we see that A is symmetric and linear. We call this the shape operator

of M associated with N . Eigenvalues and eigenvectors for A are called principal

curvatures and principal curvature vectors, respectively. The shape operator A is

characterized by the Gauss formula and the Weingarten formula. Both of these

formula are given as follows:

∇̃XY = ∇XY + 〈AX, Y 〉N,(3.1)

∇̃XN = −AX,(3.2)

for all X,Y ∈ X (M).

Lemma 3.4. The covariant derivatives of the characteristic vector field and the

characteristic tensor are given as follows:

∇Xξ = φAX,(3.3)

(∇Xφ)Y = η(Y )AX − 〈AX, Y 〉ξ,(3.4)
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for arbitrary vector fields X, Y ∈ X (M).

Proof. By use of Gauss and Weingarten formulas, we have

∇Xξ = −∇̃X(JN ) − 〈AX, ξ〉N = −J∇̃XN − 〈AX, ξ〉N

= JAX − 〈AX, ξ〉N = φAX.

We also have

(∇Xφ)Y = ∇X(φY ) − φ∇XY = ∇̃X(φY ) − 〈AX, φY 〉N − φ∇XY

= ∇̃X

(
JY − 〈Y, ξ〉N

)
− 〈AX, φY 〉N − φ∇XY

= J
(
∇XY + 〈AX, Y 〉N

)
−X〈Y, ξ〉N + 〈Y, ξ〉AX + 〈φAX, Y 〉N − φ∇XY

= φ∇XY + 〈∇XY, ξ〉N − 〈AX, Y 〉ξ − 〈∇XY, ξ〉N − 〈Y, φAX〉N

+ 〈Y, ξ〉AX + 〈φAX, Y 〉N − φ∇XY

= 〈Y, ξ〉AX − 〈AX, Y 〉ξ,

hence get the second equality. �

Let ι : M → M̃ be an isometric immersion. We call an isometry ϕ ofM equivariant

if there exists an isometry ϕ̃ of M̃ satisfying ϕ̃ ◦ ι = ι ◦ ϕ.

Lemma 3.5. Let M be a Riemannian submanifold of M̃ . Suppose an isometry ϕ

of M is locally equivariant. This means that there is an open neighborhood U of M

in M̃ such that ϕ is equivariant on U . Then we have the following:

(1) σM
(
dϕ(v), dϕ(w)

)
= dϕ̃

(
σM(v, w)

)
for all v, w ∈ TpM at an arbitrary point

p ∈M ;

(2) Adϕ(v) = dϕ(Av) for all v ∈ TM , in particular, if v is a principal curvature

vector associated with a principal curvature λ, then dϕ(v) is also a principal

curvature vector associated with λ.

Proof. We take an isometry ϕ̃ of U satisfying ϕ̃ ◦ ι = ι ◦ ϕ. By the definition of the

second fundamental form, if we take vector fields V,W satisfying V (p) = v, W (p) =
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w, we have the following by omitting to write dι:

σM
(
dϕ(V ), dϕ(W )

)
= ∇̃dϕ(V )dϕ(W ) −∇dϕ(V )dϕ(W )

= ∇̃dϕ̃(V )dϕ̃(W ) −∇dϕ(V )dϕ(W )

= dϕ̃
(
∇̃VW

)
− dϕ

(
∇VW

)
= dϕ̃

(
∇̃VW −∇VW

)
= dϕ̃

(
σM(V,W )

)
.

We therefore have

〈Adϕ(v), dϕ(w)〉 =
〈
σM

(
dϕ(v), dϕ(w)

)
,Nϕ(p)

〉
=

〈
dϕ̃

(
σM(v, w)

)
, dϕ̃

(
Np

)〉
=

〈
σM(v, w),Np

〉
= 〈Av,w〉 =

〈
dϕ(Av), dϕ(w)

〉
for arbitrary v, w ∈ TpM at an arbitrary point p ∈ M . As dϕ : TpM → Tϕ(p)M is

bijective, we get the conclusion. �

3.5. Sasakian magnetic fields. Let M be a real hypersurface in a Kähler manifold

(M̃, J). Associated with the almost contact metric structure (φ, ξ, η, 〈 , 〉), we have

a canonical 2-form Fφ, which is defined by Fφ(u, v) = 〈u, φv〉.

Proposition 3.1. The canonical 2-form Fφ on a real hypersurface M in a Kähler

manifold is a closed form.

Proof. By direct computation we have

(∇XFφ)(Y, Z) = X(Fφ(Y, Z)) − Fφ(∇XY, Z) − Fφ(Y,∇XZ)

= X〈Y, φZ〉 − 〈∇XY, φZ〉 − 〈Y, φ∇XZ〉

= 〈Y, (∇Xφ)Z〉

= η(Z)〈AX, Y 〉 − η(Y )〈AX,Z〉

for vector fields X,Y, Z ∈ X (M) on M . Therefore we have

(dFφ)(X, Y, Z) = (∇XFφ)(Y, Z) − (∇YFφ)(X,Z) + (∇ZFφ)(X, Y )

= η(X)〈AY,Z〉 − η(Y )〈AX,Z〉 + η(Z)〈AX, Y 〉

− η(X)〈Y,AZ〉 + η(Y )〈X,AZ〉 − η(Z)〈X,AY 〉.
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As the shape operator A is symmetric, we see (dFφ)(X, Y, Z) = 0 and get the

conclusion. �

A constant multiple Fκ = κFφ (κ ∈ R) of the above canonical closed 2-form Fφ is

said to be a Sasakian magnetic field. By (3.4) in Lemma 3.4, we find that Sasakian

magnetic fields are not necessarily uniform.

A trajectory γ for a Sasakian magnetic field Fκ is hence a smooth curve which

is parameterized by its arclength and satisfies the equation ∇γ̇ γ̇ = κφγ̇. Though

the equations of trajectories for Kähler magnetic fields and Sasakian magnetic fields

are quite resemble, as Sasakian magnetic fields are not necessarily uniform, they

have different properties. We shall discuss their properties in detail in the following

sections.

For a real hypersurface M in a Kähler manifold M̃ we say a diffeomorphism ϕ

of M to be an isometry if it preserves the almost contact metric structure. This

means that ϕ is an isometry of M as a Riemannian manifold and satisfies either

dϕ ◦ φ = φ ◦ dϕ or dϕ ◦ φ = −φ ◦ dϕ. These conditions correspond to the conditions

on holomorphic isometries and anti-holomorphic isometries on a Kähler manifold.

Lemma 3.6. Let γ be a trajectory for a Sasakian magnetic field Fκ on a real hy-

persurface M in a Kähler manifold M̃ .

(1) If ϕ is an isometry of M satisfying dϕ ◦ φ = φ ◦ dϕ, then ϕ ◦ γ is also a

trajectory for Fκ.

(2) If ϕ is an isometry of M satisfying dϕ◦φ = −φ◦dϕ, then ϕ◦γ is a trajectory

for F−κ.

Proof. As we have

∇dϕ(γ̇)dϕ(γ̇) = dϕ
(
∇γ̇ γ̇

)
= dϕ

(
κφγ̇

)
= ±κφdϕ(γ̇),
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where the signature corresponds to the signature of the equality dϕ ◦ φ = ±φ ◦ dϕ,

we get the conclusion. �

Remark 3.1. More directly, by an isometry ϕ a Sasakian magnetic field Fκ corre-

sponds to F±κ, because 〈dϕ(u), φdϕ(v)〉 = 〈dϕ(u),±dϕ(φv)〉 = ±〈u, φv〉.



4. Helices and curves of order 2

In order to progress our study on trajectories for Sasakian magnetic fields, we

devote this and next sections to introduce some terminologies and to summarize up

some results on curves and real hypersurfaces in a complex space form.

4.1. Helices. We say a smooth curve γ parameterized by its arclength on a Rie-

mannian manifold M to be a helix of proper order d if there are positive constants

κ1, κ2, . . . , κd−1 and a field of orthonormal frame {Y1 = γ̇, Y2, ..., Yd} along γ satisfy-

ing the following system of ordinary differential equations:

∇γ̇ γ̇ = k1Y2,

∇γ̇Y2 = −k1γ̇ + k2Y3,

∇γ̇Y3 = −k2Y2 + k3Y4,

...
. . . . . .

∇γ̇Yd−1 = −kd−2Yd−2 + kd−1Yd,

∇γ̇Yd = −kd−1Yd−1.

This system of equations is called the Frenet-Serre formula of γ. In order to simplify

the expression of the above system, we usually denote it as

(4.1) ∇γ̇Yi = −ki−1Yi−1 + kiYi+1 (i = 1, 2, . . . , d),

where we set k0 = kd = 0 and Y0, Yd+1 as null vector fields. We call these constants

k1, k2, ..., kd−1 its geodesic curvatures and {Y1, ..., Yd} its Frenet frame, respectively.

In particular, a helix of proper order 1 is a geodesic, and a helix of proper order not

greater than 2 is said to be a circle. We say a helix of proper order not greater than

d to be a helix of order d.

Lemma 4.1 (Nomizu-Yano[42]). A smooth curve γ parameterized by its arclength on

a Riemannian manifold M is a circle if and only if it satisfies ∇γ̇∇γ̇ γ̇+‖∇γ̇ γ̇‖2γ̇ = 0.
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Proof. Suppose γ is a circle. As we have ∇γ̇ γ̇ = kY, ∇γ̇Y = −kγ̇ with some

nonnegative constant k and a unit vector field Y along γ, we obtain that

∇γ̇∇γ̇ γ̇ = ∇γ̇(kY ) = k∇γ̇Y = −k2γ̇.

Since we have k = ‖kY ‖ = ‖∇γ̇ γ̇‖, we find that γ satisfies ∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇ = 0.

On the contrary, we suppose γ satisfies ∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇ = 0. Since ‖γ̇‖ ≡ 1,

we see 0 =
d

dt
‖γ̇‖2 = 2〈∇γ̇ γ̇, γ̇〉. Therefore we have

d

dt
‖∇γ̇ γ̇‖2 = 2〈∇γ̇∇γ̇ γ̇,∇γ̇ γ̇〉 = −2‖∇γ̇ γ̇‖2〈γ̇,∇γ̇ γ̇〉 = 0.

Thus we see ‖∇γ̇ γ̇‖ is constant along γ. We put k = ‖∇γ̇ γ̇‖. When k = 0, we have

∇γ̇ γ̇ ≡ 0, which shows that γ is a geodesic. When k > 0, we set Y = (1/k)∇γ̇ γ̇. We

then find that γ satisfies
∇γ̇ γ̇ = kY,

∇γ̇Y =
1

k
∇γ̇∇γ̇ γ̇ = −1

k
‖∇γ̇ γ̇‖2γ̇ = −kγ̇,

hence find that it is a circle of geodesic curvature k. This completes the proof. �

We here consider helices on a Euclidean space Rm. Since the covariant differ-

entiation on Rn is the usual differential, the equation for a geodesic is γ′′ = 0,

hence is a line γ(t) = At + B with some A,B ∈ Rm. These A,B are determined

by initial condition γ(0) and γ′(0). When γ is a geodesic of unit speed, we have

A = γ′(0) and B = γ(0). The equation of a circle of positive geodesic curvature

k is γ′′′ + k2γ′ = 0. hence it is of the form γ(t) = A sin(kt) + B cos(kt) + C with

some A,B,C ∈ Rm. These A,B,C are determined by initial point γ(0) and initial

frame {γ′(0), (1/k)γ′′(0)}. By direct computation, we have A = (1/k)γ′(0), B =

−(1/k2)γ′′(0) and C = γ(0) + (1/k2)γ′′(0). Similarly, the equation for a helix of

proper order 3 with geodesic curvatures k1, k2 is as follows:

γ(4) = k1Y
′′
2 = −k2

1γ
′′ + k1k2Y

′
3 = −k2

1γ
′′ + k1k

2
2Y2 = −(k2

1 + k2
2)γ

′′.
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Thus it is of the form γ(t) = A sin(
√
k2

1+k2
2 t) + B cos(

√
k2

1+k2
2 t) + Ct + D with

some A,B,C,D ∈ Rm which are obtained by initial condition.

We now consider to classify helices on a Riemannian manifold M . We say two

smooth curves γ1, γ2 on M parameterized by its arclengths are congruent to each

other if there exist an isometry ϕ of M and a constant t0 with γ2(t) = ϕ ◦ γ1(t+ t0)

for all t. If we can take t0 = 0, we say that they are congruent to each other in

strong sense. On a real space form RMm(c) of constant sectional curvature c, which

is one of a standard sphere Sm(c), a Euclidean space Rm and a real hyperbolic space

Hm(c) according as c is positive, zero and negative, for arbitrary orthonormal frames

{v1, . . . , vm} of TpRMm(c) and {w1, . . . , wm} of TqRMm(c) there is an isometry ϕ

of RMm(c) satisfying ϕ(p) = q and dϕ(vi) = wi, i = 1, . . . ,m. For example, on

Rm we can obtain ϕ by a composition of a parallel translation from p to q and a

motion obtained by some orthogonal matrix. On Sm(c), if we represent it as a sphere

of radius 1/
√
c in Rm+1, we find that {

√
cp, v1, . . . , vm} and {

√
cq, w1, . . . , wm} are

orthonormal frames of Rm+1. Hence we have a motion ϕ̃ of Rm+1 obtained by some

orthogonal matrix which transform the former to the latter. Since ϕ̃ preserves Sm(c)

because it is obtained by some orthogonal matrix, we can take ϕ as the restriction

of ϕ̃ onto Sm. Thus, the uniqueness of the solutions for linear differential equations

guarantees the following:

Lemma 4.2. Two helices on RMm(c) are congruent to each other in strong sense

if and only if they are of the same proper order and have the same series of geodesic

curvatures.

A smooth curve γ on a Riemannian manifold M is said to be Killing if it is

generated by some Killing vector field on M . That is, γ is a Killing curve if there

is a one-parameter family {ϕt}t∈I of isometries of M and a point p ∈ M with
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γ(t) = ϕt(p). Such a curve is also said to be homogeneous. By the property of

isometries on RMm(c) mentioned above, we have

Lemma 4.3. Every helices on RMm(c) is Killing.

4.2. Complex torsions of helices. In order to classify helices on a Kähler man-

ifold (M̃, J), we need another quantity associated with the complex structure. For

a helix γ of proper order d with its Frenet frame Y1, ..., Yd, we define its complex

torsions by τij = 〈Yi, JYj〉 for 1 ≤ i < j ≤ d. We should note that complex torsions

are not necessarily constant. By the equations (4.1) we have

τ ′ij = ∇γ̇〈Yi, JYj〉 = 〈∇γ̇Yi, JYj〉 + 〈Yi, J∇γ̇Yj〉

= 〈ki−1Yi−1 + kiYi+1, JYj〉 + 〈Yi, J(kj−1Yj−1 + kjYj+1)〉,
hence obtain

(4.2) τ ′ij = −ki−1τi−1j + kiτi+1j − kj−1τij−1 + kjτij+1.

It is known that every isometry ϕ of a nonflat complex space form CMn(c) is

either holomorphic or anti-holomorphic, that is ϕ preserves the complex structure

(dϕ ◦ J = J ◦ dϕ) or reverses it (dϕ ◦ J = −J ◦ dϕ). Since a nonflat complex space

form CMn(c) is a rank one symmetric space, for arbitrary unit tangent vectors

v ∈ UpCMn(c) and w ∈ UqCMn(c) there are a holomorphic isometry ϕ+ and an

anti-holomorphic isometry ϕ− satisfying ϕ±(p) = q and dϕ±(v) = w. Therefore we

have the following:

Lemma 4.4 (Maeda-Ohnita[38]). On a nonflat complex space form, two helices

γ1, γ2 are congruent to each other if and only if they have the following properties:

i) they are of the same proper order;

ii) they have the same series of geodesic curvatures, i.e. κ
(1)
i = κ

(2)
i for all i;

iii) there exists a constant t0 such that their complex torsions τ
(k)
ij satisfy either

τ
(1)
ij (0) = τ

(2)
ij (t0) for all i, j, or τ

(1)
ij (0) = −τ (2)

ij (t0) for all i, j.
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Proof. “Only if part”. If γ1, γ2 are congruent to each other, we have an isometry ϕ

and t0 ∈ R satisfying γ2(t+ t0) = ϕ◦γ1(t). Thus conditions i) and ii) hold, and their

Frenet frames satisfy Y
(1)
j (t) = Y

(2)
j (t+ t0), j = 1, . . . , d. When ϕ is a holomorphic

isometry we find that their complex torsions satisfy

τ
(1)
ij (t) = 〈Y (1)

i (t), JY
(1)
j (t)〉 = 〈dϕ

(
Y

(1)
i (t)

)
, dϕ

(
JY

(1)
j (t)

)
〉

= 〈Y (2)
i (t+ t0), Jdϕ

(
Y

(1)
j (t)

)
〉 = τ

(2)
ij (t+ t0),

and when ϕ is an anti-holomorphic isometry we find that they satisfy

τ
(1)
ij (t) = 〈dϕ

(
Y

(1)
i (t)

)
, dϕ

(
JY

(1)
j (t)

)
〉

= 〈Y (2)
i (t+ t0),−Jdϕ

(
Y

(1)
j (t)

)
〉 = −τ (2)

ij (t+ t0).

“If part”. There are a holomorphic isometry ϕ+ and an anti-holomorphic isometry

ϕ− satisfying ϕ±
(
γ1(0)

)
= γ2(t0) and dϕ±

(
γ̇1(0)

)
= γ̇2(t0). Then ϕ+ ◦ γ1 is a helix

of proper order d1 whose geodesic curvatures are k1, . . . , kd1−1 and whose complex

torsions are ±τ (1)
ij (t−t0), 1 ≤ i < j ≤ d1. Therefore the uniquness of the solutions for

linear differential equations guarantees γ2(t+ t0) = ϕ± ◦γ1(t) for all t corresponding

to the signatures of the relations of complex torsions. �

Corollary 4.1. On a nonflat CMn(c) the following hold on Killing helices.

(1) A helix is Killing if and only if all its complex torsions are constant function.

(2) Two Killing helices γ1, γ2 are congruent to each other in strong sense if and

only if

i) they are of the same proper order;

ii) they have the same series of geodesic curvatures;

iii) their complex torsions satisfy either τ
(1)
ij = τ

(2)
ij for all (i, j) or τ

(1)
ij =

−τ (2)
ij for all (i, j).

We here make mention of the condition that all complex torsions of helices are

constant. Since we set k0 = kd = 0, we have more information on complex torsions.

By (4.2) we have the following.
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Lemma 4.5 (Maeda-Adachi[36]). Complex torsions of a Killing helices of odd proper

order d on a nonflat CMn(c) satisfy the following relations:

τi i+2k = 0, i = 1, 2, . . . , d−2k, k = 1, 2, . . . , (d−1)/2,

k1τ2 d = kd−1τ1 d−1,

k1τ2 j + kjτ1 j+1 = kj−1τ1 j−1, j = 3, 5, . . . , d−2,

ki−1τi−1 d + kd−1τi d−1 = kiτi+1 d, i = 3, 5, . . . , d−2,

ki−1τi−1 j + kj−1τi j−1 = kiτi+1 j + kjτi j+1,

i = 2, 3, . . . , d−3, j = i+2, i+4, . . . , d−1.

Lemma 4.6 (Maeda-Adachi[36]). Complex torsions of a Killing helices of even

proper order d on a nonflat CMn(c) satisfy the following relations:

τi i+2k = 0, i = 1, 2, . . . , d−2k, k = 1, 2, . . . , (d−2)/2,

k1τ2 d = kd−1τ1 d−1,

k1τ2 j + kjτ1 j+1 = kj−1τ1 j−1, j = 3, 5, . . . , d−1,

ki−1τi−1 d + kd−1τi d−1 = kiτi+1 d, i = 2, 4, . . . , d−2,

ki−1τi−1 j + kj−1τi j−1 = kiτi+1 j + kjτi j+1,

i = 2, 3, . . . , d−3, j = i+2, i+4, . . . , d−1.

Since complex torsions of Killing helices seem quite complicated, we study Killing

helices of low orders. When γ is a helix of proper order 2, if we rewrite the compu-

tation of the derivative of its complex torsion, we have

τ ′12 = 〈k1Y2, JY2〉 + 〈γ̇, J(−k1γ̇)〉 = 0,

we find that it is Killing. But the situation is not the same for helices of proper

order greater than 2. Since each vector field of the Frenet frame of a helix of proper

order d is a unit vector field, we see

i−1∑
j=1

τ 2
ij +

d∑
j=i+1

τ 2
ij ≤ 1.
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We therefore find that there are infinitely many helices of proper order greater than 2

all of whose complex torsions are not constant. This point is quite different between

helices on real space forms and those on nonflat complex space forms. If we write

down the case d = 3, we have the following.

Lemma 4.7 (Maeda-Adachi[36]). (1) Geodesic curvatures and complex torsions

of a Killing helix γ of proper order 3 on a nonflat CMn(c) satisfy

k1τ23 = k2τ12, τ13 = 0, |τ12| ≤ k1/
√
k2

1 + k2
2.

(2) On the other hand, if positive constants k1, k2 and a constant τ satisfy |τ | ≤

k1/
√
k2

1 + k2
2, then there is a Killing helix of proper order 3 whose geodesic

curvatures are k1, k2 and whose complex torsions are τ12 = τ, τ13 = 0 and

τ23 = k2τ/k1.

This Lemma suggests us that geodesic curvatures and complex torsions of Killing

helices which lie on some low dimensional totally geodesic submanifolds have strong

relationships. A helix of proper order 2`− 1 or of 2` on a nonflat CMn(c) is called

essential if it lies on some totally geodesic CM `(c). Since CM `(c) is real 2` di-

mensional, such an essential Killing helix is not contained in some totally geodesic

CM `−1(c). If a helix γ of proper order 2 is essential, then as its Frenet frame γ̇, Y2

spans a complex line in the tangent space Tγ(t)CMn(c) at each point t, the normal

Y2 should be parallel to Jγ̇, therefore it is a trajectory for some Kähler magnetic

field. For about essential Killing helices of proper order 3 and 4, we can express

their complex torsions by use of their geodesic curvatures.

Lemma 4.8 (Adachi[6]). A helix of proper order 3 on CMn is essential and Killing

if and only if its geodesic curvatures and complex torsions satisfy

τ12 = ±k1/
√
k2

1 + k2
2, τ13 = 0, τ23 = ±k2/

√
k2

1 + k2
2,

where double signs take the same signatures.
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In particular, the vector fields in the Frenet frame
{
γ̇, Y2, Y3

}
of an essential

Killing helix of proper order 3 on CMn satisfy Y3 = (k1/k2)γ̇ ∓
(√

k2
1 + k2

2

/
k2

)
JY2.

Lemma 4.9 (Adachi[6]). A helix of proper order 4 on CMn is essential and Killing if

and only if their geodesic curvatures and complex torsions satisfy one of the following;

(I) τ12 = τ34 = ± k1 + k3√
k2

2 + (k1+ k3)2
, τ23 = τ14 = ± κ2√

k2
2 + (k1+k3)2

,

τ13 = τ24 = 0,

(II) τ12 = −τ34 = ± k1 − k3√
k2

2 + (k1−k3)2
, τ23 = −τ14 = ± k2√

k2
2 + (k1−k3)2

,

τ13 = τ24 = 0.

In each of the above conditions double signs take the same signatures.

In particular, the vector fields in the Frenet frame
{
γ̇, Y2, Y3, Y4

}
of an essential

Killing helix of proper order 4 on CMn satisfy

(I)


k2Y3 = (k1+k3)γ̇ ∓

√
k2

2 + (k1+k3)2JY2,

κ2Y4 = ∓
√
k2

2 + (k1+k3)2Jγ̇ − (k1+k3)Y2,

(II)


k2Y3 = (k1−k3)γ̇ ∓

√
k2

2 + (k1−k3)2JY2,

k2Y4 = ±
√
k2

2 + (k1−k3)2Jγ̇ + (k1−k3)Y2,

corresponding to these cases.

In view of Lemma 4.9, we find that complex torsions of essential Killing helices

of proper order 4 take extremum values if their geodesic curvatures and complex

torsions satisfy k1 = k3 and the condition (II) in Lemma 4.9. They are called

moderate Killing helices of proper order 4 (see [5]).

4.3. Curves of order 2. We here extend the notion of helices. A smooth curve γ

on a Riemannian manifold M which is parameterized by its arc-length is said to be

a Frenet curve of proper order d if it satisfies the system of differential equations

∇γ̇Yi(t) = −ki−1(t)Yi−1(t) + ki(t)Yi+1(t) (i = 1, 2, . . . , d)
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with some positive functions k1(t), . . . , kd−1(t) and a frame of orthonormal vector

fields {Y1 = γ̇, Y2, . . . , Yd}. Here, we take k0(t), kd(t) to be null functions (i.e. k0(t) =

kd(t) ≡ 0) and Y0, Yd+1 to be null vector fields. Like helices, we call those functions

k1(t), . . . , kd−1(t) its geodesic curvature functions. Helices are hence Frenet curves

having constant geodesic curvature functions. We say a smooth curve a Frenet curve

of order d if it is a Frenet curve of proper order not greater than d.

We call a smooth curve γ on a Riemannian manifold M which is parameterized

by its arc-length a curve of order 2 if it satisfies the differential equation

(4.3) ‖∇γ̇ γ̇‖2
(
∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇

)
= 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉∇γ̇ γ̇.

We here consider the difference between the notion of curves of order two and that

of Frenet frame of order 2.

Lemma 4.10 (Suizu-Maeda-Adachi[45]). (1) A Frenet curve of order 2 is a

curve of order 2.

(2) If a curve γ of order 2 has non-vanishing ∇γ̇ γ̇, then it is a Frenet curve of

order 2.

Proof. (1) Suppose γ is a Frenet curve of order 2 and satisfies ∇γ̇ γ̇(t) = k(t)Y (t)

and ∇γ̇Y (t) = −k(t)γ̇. We then have

∇γ̇∇γ̇ γ̇(t) = ∇γ̇

(
k(t)Y (t)

)
= k′(t)Y (t) − k2(t)γ̇(t).

As {γ̇, Y } is orthonormal, hence we have ‖Y (t)‖ = 1 and 〈γ̇,∇γ̇ γ̇〉 = 0, we see

k2(t) = ‖∇γ̇ γ̇‖2 and 〈∇γ̇∇γ̇ γ̇(t),∇γ̇ γ̇(t)〉 = k′(t)k(t). By multiplying k2(t) to the

both sides of the equality ∇γ̇∇γ̇ γ̇(t) = k′(t)Y (t) − k2(t)γ̇(t), we obtain

‖∇γ̇ γ̇(t)‖2 ∇γ̇∇γ̇ γ̇(t) = κ′(t)k(t) · k(t)Y (t) − k4(t)γ̇(t)

= 〈∇γ̇∇γ̇ γ̇(t),∇γ̇ γ̇(t)〉∇γ̇ γ̇(t) − ‖∇γ̇ γ̇(t)‖4γ̇(t),

and get the first assertion.
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(2) Since ∇γ̇ γ̇ 6= 0, we put Y = ∇γ̇ γ̇/‖∇γ̇ γ̇‖, which is a unit vector field along

γ. As γ is parameterized by its arclength, differentiate the both side of equality

‖γ̇‖2 = 1, we have 2〈γ̇,∇γ̇ γ̇〉 = 0, hence we find {γ̇, Y } is an orthonormal frame.

As ‖Y (t)‖ = 1, we similarly have 〈Y (t),∇γ̇Y (t)〉 = 0. By putting k(t) = ‖∇γ̇ γ̇‖, we

see

∇γ̇ γ̇(t) = k(t)Y (t),

∇γ̇Y (t) =
1

k(t)

{
∇γ̇

(
k(t)Y (t)

)
− k′(t)Y (t)

}
=

1

k(t)

{
∇γ̇∇γ̇ γ̇ − k′(t)Y (t)

}
=

1

k(t)

{
〈Y (t),∇γ̇

(
k(t)Y (t)

)
〉Y (t) − k(t)2γ̇(t) − k′(t)Y (t)

}
= 〈Y (t),∇γ̇Y (t)〉Y (t) − k(t)γ̇(t) = −k(t)γ̇(t)

Thus we find it is a Frenet curve of order 2. �

In order to study curves of order 2, we here introduce a related definition. A

smooth curve γ is said to be a plane curve if it lies on some totally geodesic Riemann

surface S of M.

Lemma 4.11. Under a reparameterization, a plane curve γ on a Riemannian man-

ifold M is a Frenet curve of proper order 2 if it satisfies γ′(s) 6= 0 for all s.

Proof. By the definition of plane curves, we have a totally geodesic 2-dimensional

submanifold S of M which contains γ. Since S is totally geodesic, we have

γ′(s) ∈ TγS ↪→ TγM,
(
∇γ′γ

′)(s) ∈ TγS ↪→ TγM

for all s. We take a unit vector field Y along γ which is orthogonal to γ′. Since

{Y (s), γ′(s)} is an orthonormal basis of Tγ(s)S, we find that ∇γ′γ
′(s) and ∇γ′Y (s)

are expressed by linear combinations of Y (s) and γ′(s) at each point s. We repa-

rameterized this curve by its arclength parameter t, and denote it as γ(t). It is clear

that

γ̇(t)//γ′(s(t)), ∇γ̇ γ̇(t)//Y (s(t)) hence γ̇(t) ⊥ Y (s(t)),
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because from the property 〈γ̇, γ̇〉 = 1 we have 〈∇γ̇ γ̇, γ̇〉 = (1/2)γ̇〈γ̇, γ̇〉 = 0, which

shows ∇γ̇ γ̇(t)//Y (s(t)). We can therefore write ∇γ̇ γ̇(t) = k(t)Y (s(t)) with some

function k(t). Similarly, from the property 〈Y, Y 〉 = 1, we see 〈∇γ̇Y, Y 〉 = 0, hence

find that ∇γ̇Y (t) ⊥ Y (t). We can therefore write ∇γ̇Y (t) = α(t)γ̇(t) with some

function α(t).

On the other hand, as we have 〈Y, γ̇〉 = 0, by taking its covariant differentiation

along γ, we find that it turns to

0 = 〈∇γ̇Y (t), γ̇(t)〉 + 〈Y (t),∇γ̇ γ̇(t)〉 = α(t) + κ(t).

This means that α(t) = −κ(t). Thus, γ is the Frenet curve of proper order 2. �

In order to show that the notion of curves of order 2 is different from the notion

of Frenet curves of order 2, we here give an example.

Example 4.1. Let γ be a smooth curve in a Euclidean space R3 defined by

γ(s) =


(s, e−1/s2 , 0) if s < 0,

(0, 0, 0), if s = 0,

(s, 0, e−1/s2), if s > 0.

It is a curve of order 2, but not a Frenet curve of order 2.

Proof. The curve γ : (−∞, 0) → R3 lies on the xy-plane R2, and the curve γ :

(0,∞) → R2 lies on the xz-plane R2. They are hence plane curves. We see

(4.4)
dγ

ds
(s) =


(
1, 2s−3e−1/s2 , 0

)
, if s < 0,

(1, 0, 0), if s = 0,(
1, 0, 2s−3e−1/s2

)
, if s > 0,

in particular, find γ′(s) 6= 0. By Lemma 4.11, we know that they are Frenet curves

of proper order 2 under reparameterizations. We reparameterize the curve γ(s) by

the arclength parameter t satisfying that γ(0) is the origin. Since γ(t) is a curve of

order 2 for t 6= 0, it satisfies (4.3) for t 6= 0. When t = 0, by taking the limits of

both sides of (4.3) as t ↓ 0 and t ↑ 0, we see that γ also satisfies (4.3) at t = 0. Thus

γ(t) is a curve of order 2.
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We next show that γ(t) is not a Frenet curve of order 2. Since γ(t) is a Frenet

curve of order 2 for t 6= 0, we see the normal vector field Y along γ is of the form

Y (s(t)) =


±1√

1 + 3s−6e−2/s2

(
2s−3e−1/s2 ,−1, 0

)
, if t < 0,

±1√
1 + 3s−6e−2/s2

(
2s−3e−1/s2 , 0,−1

)
, if t > 0,

by (4.4), because Y (s(t)) is orthogonal to γ′(s). We therefore have

lim
t↑0

Y (s(t)) = (0,±1, 0), lim
t↓0

Y (s(t)) = (0, 0,±1).

They are different directions. This means that we can not take a smooth normal

vector field Y which consists of a Frenet frame {γ̇, Y } of γ. We then find that it is

not a Frenet curve of order 2. �

x

z

y



5. Real hypersurfaces in nonflat complex space forms

In this section we summarize some results on real hypersurfaces in nonflat complex

space forms.

5.1. Hopf hypersurfaces. A real hypersurface M in a Kähler manifold (M̃, J)

is said to be a Hopf hypersurface if its characteristic vector field ξ is a principal

curvature vector at each point. In another word, a real hypersurface is Hopf if and

only if its shape operator makes the holomorphic distribution T 0M =
{
v ∈ TM

∣∣
v ⊥ ξ

}
invariant. In this paper, we denote by ν : M → R the function of the

principal curvature of the characteristic vector field on a Hopf hypersurface M . We

here consider integral curves of the vector field ξ. We say a smooth curve σ is an

integral curve of ξ if it satisfies σ′(t) = ξσ(t) for every t.

Lemma 5.1. On a Hopf hypersurface, every integral curve σ for ξ is a geodesic of

unit speed.

Proof. As σ′(t) = ξσ(t), we have by (3.3) in Lemma 3.4 that

∇σ′σ′ = φAξ = φ(νξ) = 0.

As we have ‖σ′‖ = ‖ξσ‖ = 1, we get the conclusion. �

On the other hand, this property on integral curves characterize Hopf hypersur-

faces.

Lemma 5.2. A real hypersurface M is Hopf if and only if all its integral curves of

the charateristic vector field are geodesics.

Proof. By Lemma 5.1, we only need to show the “if” part. As we have 0 = ∇σ′σ′ =

φAξ, we see Aξ is parallel to ξ. In fact, if we decompose a vector v ∈ TM as

v = w+aξ ∈ T 0M⊕Rξ, we have φv = φw (= Jw). Thus, φv = 0 means that v ∈ Rξ.

We therefore obtain that ξ is principal and that M is a Hopf hypersurface. �
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For principal curvatures of Hopf hypersurfaces in nonflat complex space forms the

following properties are known (see [41], for example).

Lemma 5.3. Let M be a Hopf hypersurface in a nonflat complex space form CMn(c).

(1) The function of principal curvature ν : M → R associated with the charac-

teristic vector field ξ is locally constant.

(2) If v ∈ TM is a principal curvature vector which is orthogonal to ξ and satisfies

Av = λv, then (2λ−ν)Aφv = {λν+(c/2)}φv holds. In particular, when c >

0, the vector φv is principal with principal curvature {λν + (c/2)}/(2λ− ν).

5.2. Standard hypersurfaces in a complex projective space. We here give

standard real hypersurfaces in a nonflat complex space form which are Hopf and ho-

mogeneous. Here, a homogeneous space is a smooth manifold admitting a transitive

action of a Lie group.

In his paper [46], R. Takagi classified homogenous real hypersurfaces in a complex

projective space. We note that in a complex projective space it is known that all

homogeneous real hypersurfaces are Hopf hypersurfaces. In his paper [34], Kimura

studied Hopf real hypersurfaces in a complex projective space all of whose principal

curvatures are constant.

Proposition 5.1 (Kimura[34], Takagi[46]). In a complex projective space CP n(c),

a Hopf hypersurface all of whose principal curvatures are constant function is con-

gruent to one of the following homogeneous hypersurfaces:

(A1) a geodesic sphere G(r) of radius r and a tube T (r) around totally geodesic

CP n−1 with 0 < r < π/
√
c,

(A2) a tube T`(r) around totally geodesic CP `(1 ≤ ` ≤ n− 2) with 0 < r < π/
√
c,
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(B) a tube R(r) of radius r around a totally real totally geodesic RP n(c/4) with

0 < r < π/
(
2
√
c
)
, which is a tube of radius π/

(
2
√
c) − r around complex

hyperquadric CQn−1 in another expression;

(C) a tube of radius r around the Segre embedding of CP 1(c) × CP (n−1)/2(c),

where 0 < r < π/(2
√
c) and n (= 5) is odd,

(D) a tube of radius r around the Plücker embedding of a complex Grassmann

CG2,5, which is the set of all 2-dimensional complex subspaces in C5, where

0 < r < π/(2
√
c) and n = 9,

(E) a tube of radius r around a canonical embedding of a Hermitian symmetric

space SO(10)/U(5), where 0 < r < π/(2
√
c) and n = 15.

Here, a Segre embedding CP k × CP ` → CP (k+1)(`+1)−1 is given by(
[z0, . . . , zk], [w0, . . . , w`]

)
7→ [z0w0, z0w1, . . . , ziwj, . . . , zkw`]

with homogeneous coordinates, and a Plücker embedding CG2,5 → CP 9 is given by

α = Span(v, w) 7→ [v ∧ w]. These real hypersurfaces are said to be of types (A1),

(A2), (B), (C), (D), (E), respectively. Gathering real hypersurfaces of types (A1) and

(A2) together, we call them hypersurfaces of type (A). Their principal curvatures

are as in Table 1.

(A1) (A2) (B) (C, D, E)

λ1

√
c

2
cot(

√
c

2
r
) √

c
2

cot(
√
c

2
r
)

—
√
c

2
cot(

√
c

2
r
)

λ2 — −
√
c

2
tan(

√
c

2
r
)

— −
√
c

2
tan(

√
c

2
r
)

λ3 — — −
√
c

2
cot

√
c

2
r

√
c

2
cot

(√
c

2
r − π

4

)
λ4 — —

√
c

2
tan

√
c

2
r

√
c

2
cot

(√
c

2
r + π

4

)
ν

√
c cot(

√
c r)

√
c cot(

√
c r)

√
c tan(

√
c r)

√
c cot(

√
c r)

Table 1. Principal curvatures of homogeneous Hopf hypersurfaces in CP n
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We note that if we represent a real hypersurface of type (B) as a tube of radius r

around complex quadric CQn−1, we see that

λ3 =

√
c

2
cot

(√c
2
r − π

4

)
, λ4 =

√
c

2
cot

(√c
2
r +

π

4

)
, ν =

√
c cot(

√
c r).

We also note that a geodesic sphere G(r) and a tube T
(
π√
c
− r

)
in CP n(c) are

congruent to each other.

For a principal curvature λi, we set Vλi
=

{
v ∈ T 0M

∣∣ Av = λiv
}
. This is a

subbundle of principal curvature vectors which are orthogonal to ξ and are associated

with λi. We then have by Lemma 5.3 that

φ(Vλ1) = Vλ1 , φ(Vλ2) = Vλ2 , φ(Vλ3) = Vλ4 , φ(Vλ4) = Vλ3 .

Here, when a real hypersurface does not have the principal curvature corresponding

to λi in the table, we do not consider Vλi
in the above relations. If we list the

multiplicities of principal curvatures, they are as the following Table 2. We denote by

m(λi) and m(ν) the multiplicities of the principal curvatures λi and ν, respectively.

(A1) (A2) (B) (C) (D) (E)

m(λ1) 2n−2 2n−2`−2 — 2 4 6

m(λ2) — 2` — 2 4 6

m(λ3) — — n−1 n−3 4 8

m(λ4) — — n−1 n−3 4 8

m(ν) 1 1 1 1 1 1

Table 2. Multiplicities of principal curvatures of homogeneous Hopf
hypersurfaces in CP n

For the sake of later use, we here give the inverse images of real hypersurfaces

of types (A) and (B) in CP n(4) with respect to a Hopf fibration $ : S2n+1(1)(⊂
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Cn+1) → CP n(4). For a geodesic sphere G(r) of radius r in CP n(4), it is expressed

as

$−1
(
G(r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣ |z0| = cos r, |z1|2 + ...+ |zn|2 = sin2 r
}

≡ S1(1/ cos2 r) × S2n−1(1/ sin2 r) ⊂ C × Cn

under some isometry of S2n+1. This means that $−1
(
G(r)

)
is isometric to the above

set in the right-hand side. For a tube T`(r) around totally geodesic CP `(4) with

1 ≤ ` ≤ n−2 in CP n(4), it is expressed as

$−1
(
T`(r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣∣∣ |z0|2 + ...+ |z`|2 = cos2 r,
|z`+1|2 + ...+ |zn|2 = sin2 r

}
≡ S2`+1(1/ cos2 r) × S2n−2`−1(1/ sin2 r) ⊂ C`+1 × Cn−`

under some isometry of S2n+1. Thus we see that we may express a geodesic sphere

G(r) by T0(r) and that a tube T (r) = Tn−1(r) around totally geodesic CP n−1(4) is

congrunet to G((π/2) − r).

For a tube R(r) (0 < r < π/4) around totally geodesic RP n(1) in CP n(4), which

is a real hypersurface of type (B), it is expressed as

$−1
(
R(r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣∣∣ |z0|2 + · · · + |zn|2 = 1,
|z2

0 + · · · + z2
n| = cos 2r

}
under some isometry of S2n+1.

5.3. Standard hypersurfaces in a complex hyperbolic space. For about ho-

mogeneous real hypersurfaces in a complex hyperbolic space, Berndt[20] gave a

corresponding result as of M. Kimura.

Proposition 5.2 (Montiel[39], Berndt[20]). In a complex hyperbolic space CHn(c),

every Hopf real hypersurface all of whose principal curvatures are constant is con-

gruent to one of the following homogeneous hypersurfaces:

(A0) a horosphere in CHn,

(A1,0) a geodesic sphere G(r) of radius r

(A1,1) a tube T (r) of radius r around totally geodesic CHn−1,
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(A2) a tube T`(r) of radius r around totally geodesic CH`(1 ≤ ` ≤ n− 2) in CHn,

(B) a tube R(r) of radius r around a totally real totally geodesic RHn(−c/4) with

0 < r < π/(2
√
|c|).

These real hypersurfaces are said to be of types (A0), (A1), (A1), (A2), (B),

respectively. We should note that both geodesic spheres and tubes around totally

geodesic CHn−1 are called hypersurfaces of type (A1). Gathering real hypersurface

of types (A0), (A1) and (A2) together, we call them hypersurfaces of type (A). Their

principal curvatures are as in the following Table 3.

(A0) (A1,0) (A1,1) (A2) (B)

λ1

√
|c|

2

√
|c|
2 coth(

√
|c|
2 r

) √
|c|
2 tanh(

√
|c|
2 r

) √
|c|
2 coth(

√
|c|
2 r

) √
|c|
2 coth(

√
|c|
2 r

)
λ2 — — —

√
|c|
2 tanh(

√
|c|
2 r

) √
|c|
2 tanh(

√
|c|
2 r

)
ν

√
|c|

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| coth(

√
|c| r)

√
|c| tanh(

√
|c| r)

Table 3. Principal curvatures of homogeneous Hopf hypersurfaces in CHn

By Lemma 5.3 we have the following. If M is a hypersurface of type (A), then

subbundles of principal curvature vectors are invariant under the action of φ, that is,

φ
(
Vλ1

)
= Vλ1 and φ

(
Vλ2

)
= Vλ2 . If M is a hypersurface of type (B), then they satisfy

φ
(
Vλ1

)
= Vλ2 and φ

(
Vλ2

)
= Vλ1 . We list the multiplicities of principal curvatures.

(A0) (A1,0) (A1,1) (A2) (B)

m(λ1) 2n−2 2n−2 2n−2 2n−2`−2 n−1

m(λ2) — — — 2` n−1

m(ν) 1 1 1 1 1

Table 4. Multiplicities of principal curvatures of homogeneous Hopf
hypersurfaces in CHn
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We here give the inverse images of real hypersurfaces of types (A) and (B) with

respect to a canonical fibration $ : H2n+1
1

(
⊂ Cn+1

1

)
→ CHn(−4). For a geodesic

sphere G(r) of radius r in CHn(−4), it is expressed as

$−1
(
G(r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣ |z0| = cosh r, |z1|2 + ...+ |zn|2 = sinh2 r
}

≡ S1(1/ cosh2 r) × S2n−1(1/ sinh2 r) ⊂ C × Cn

under some isometry of H2n+1
1 . For a tube T (r) around totally geodesic CHn−1(−4)

in CHn(−4), it is expressed as

$−1
(
T (r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣∣∣ −|z0|2 + |z1|2 + ...+ |zn−1|2 = − cosh2 r,
|zn| = sinh r

}
≡ H2n−1

1 (1/ cosh2 r) × S1(1/ sinh2 r) ⊂ Cn × C

under some isometry of H2n+1
1 . For a tube T`(r) around totally geodesic CH`(−4)

with 1 ≤ ` ≤ n−2 in CHn(−4), it is expressed as

$−1
(
T`(r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣∣∣ −|z0|2 + |z1|2 + ...+ |z`|2 = − cosh2 r,
|z`+1|2 + ...+ |zn|2 = sinh2 r

}
≡ H2`+1

1 (1/ cosh2 r) × S2n−2`−1(1/ sinh2 r) ⊂ C`+1 × Cn−`

under some isometry of H2n+1
1 . For a horosphere HS in CHn(−4), it is a bit different

from these tubes and is expressed as

$−1
(
HS

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣∣∣ −|z0|2 + |z1|2 + ...+ |zn|2 = −1,
|z0 − z1| = 1

}
under some isometry of H2n+1

1 . For a tube R(r) around totally geodesic RHn(1) in

CHn(−4), it is expressed as

$−1
(
R(r)

)
=

{
(z0, ..., zn) ∈ Cn+1

∣∣∣∣ −|z0|2 + |z1|2 + · · · + |zn|2 = −1,
| −z2

0 + z2
1 + · · · + z2

n| = cosh 2r

}
under some isometry of H2n+1

1 .

We should note that there are non-Hopf homogeneous real hypersurfaces in

CHn(c). Following Berndt-Tamaru [22], a homogeneous real hypersurface in CHn(c)

is congruent to one of a Hopf real hypersurface of types (A) and (B) or hypersurfaces

of the following:
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(S) the minimal ruled real hypersurface W obtained by a horocyclic totally real

circle (c.f. Adachi-Bao-Maeda [9]),

(W) a tube around the minimal ruled submanifold W 2n−`
ψ for some ψ (0 < ψ ≤

π/2) and ` (2 ≤ ` ≤ n−1)

(see [23] for more detail).

5.4. Characterizations of hypersurfaces of type (A). Since real hypersurfaces

of type (A) are quite standard real hypersurfaces in nonflat complex space forms,

many geometers studied their properties. We here summarize some of their char-

acterizations which will be used in the following sections. We first give a char-

acterization by the condition that shape operators and characteristic tensors are

commutative (see [41], for example).

Lemma 5.4. A real hypersurface M is of type (A) if and only if its shape operator

A and its characteristic tensor field φ are simultaneously diagonalizable, that is,

Aφ = φA.

Proof. Suppose that M is a real hypersurface of type (A). Since the subbundles of

principal curvature vectors orthogonal to ξ are invariant under the action of φ, if we

take a principal curvature vector v ∈ Vλ, we then have Aφv = λφv = φλv = φAv,

This mean that Aφ = φA.

For about “if” part of this lemma, we only give an outline of proof. If Aφ = φA

holds, we have φAξ = Aφξ = 0. Hence ξ is principal, which means that M is a Hopf

hypersurface. We then have (2λ − ν)λ = λν + (c/2) by Lemma 5.3. Thus, when

c > 0, we have λ = 1
2
(ν +

√
ν2+c). As ν is locally constant, we find λ is also locally

constant. Thus, Takagi’s list shows that M is of type (A). When c < 0, we need to

study the case that ν2 = −c at some point. �
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On the other hand, it is know that real hypersurfaces of type (A) are characterized

by a property on differentials of their shape operators (see [41], for example).

Lemma 5.5. For a real hypersurface M in a nonflat complex space form CMn(c),

the following statements are mutually equivalent.

(1) The real hypersurface M is of type (A).

(2) The equality

〈(∇XA)Y, Z〉 =
c

4
{−η(Y )〈φX,Z〉 − η(Z)〈φX, Y 〉}

holds for arbitrary vector fields X,Y, Z on the real hypersurface M .

(3) The shape operator A is cyclic parallel, that is for arbitrary vector fields

X, Y, Z on the real hypersurface M the equality

〈(∇XA)Y, Z〉 + 〈(∇YA)Z,X〉 + 〈(∇ZA)X, Y 〉 = 0

holds.

5.5. Sasakian space forms. We here make mention of Sasakian space forms, which

correspond to complex space forms. An odd dimensional smooth manifold admitting

almost contact metric structure (φ, ξ, η, 〈 , 〉) is said to be Sasakian if its character-

istic tensor φ satisfies

(∇Xφ)Y = 〈X, Y 〉ξ − η(Y )X

for all tangent vectors X,Y ∈ TM . We here note that we loosely use the terminology

“Sasakian magnetic fields”. Even on a real hypersurface which is not Sasakian we

have Sasakian magnetic fields. For a Sasakian manifold M we consider its φ-section,

a 2-plane of the tangent space TpM at some point p which is spanned by tangent

vectors v, φv ∈ T 0
pM . We say the sectional curvature Riem(v, φv) to be its φ-

sectional curvature. When M is complete simply connected Sasakian manifold of

constant φ-sectional curvatures, we call it a Sasakian space form.
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In his book [24], Blair give Sasakian space forms from the viewpoint of contact

geometry. If we review them from the viewpoint of submanifold theory, they are

obtained as real hypersurfaces in complex space forms. Sasakian space form of

constant φ sectional curvature c+1 is isometric as manifolds with almost contact

metric structures to the following (see Adachi-Kameda-Maeda [11]):

1) When c > 0, it is isometric to a geodesic sphere G
(
(2/

√
c) tan−1(

√
c/2)

)
in

CP n(c);

2) When c = 0, it is isometric to a standard sphere S2n−1(1) in Cn;

3) When −3 < c < 0, it is isometric to a geodesic sphere

G
(
(2/

√
|c|) tan−1(

√
|c|/2

)
in CHn(c);

4) When c = −4, it is isometric to a horosphere HS in CHn(−4);

5) When c < −4, it is isometric to a tube T
(
(2/

√
|c|) tan−1(

√
|c|/2

)
around

totally geodesic CHn−1 in CHn(c).

Thus, our study on trajectories on real hypersurfaces of type (A) which will be

given in the following sections also shows their behaviors on model spaces in contact

geometry.



6. Trajectories for Sasakian magnetic fields

We shall now start our study on trajectories for Sasakian magnetic fields. Let M

be a real hypersurface in a Kähler manifold (M̃, J, 〈 , 〉). As we see in §3, the induced

almost contact metric structure (φ, ξ, η, 〈 , 〉) defines a canonical closed form Fφ.

For a Sasakian magnetic field Fκ = κFφ (κ ∈ R), a smooth curve γ parameterized

by its arclength is a trajectory if it satisfies ∇γ̇ γ̇ = κφγ̇. Being different from Kähler

magnetic fields, as Sasakian magnetic fields are not uniform in general, trajectories

for Sasakian magnetic fields are not so simple as curves.

6.1. Structure torsions of trajectories. As the subbundle T 0M =
{
v ∈ TM

∣∣
〈v, ξ〉 = 0

}
is invariant under the action of J if we regard it as a subbundle of TM̃

∣∣
M

,

we may say that the direction of the characteristic vector ξ is a special direction.

For a trajectory γ for a Sasakian magnetic field Fκ on M , we define its structure

torsion ργ by ργ = 〈γ̇, ξ〉. Generally, it is a function along γ. It is very important for

investigating properties of trajectories for Sasakian magnetic fields. For example, as

we have ∇γ̇ γ̇ = κφγ̇, we see its first geodesic curvature k1 = ‖∇γ̇ γ̇‖ is given as

k1 = |κ| ‖φγ̇‖ = |κ|
√

1 − η
(
γ̇
)2

= |κ|
√

1 − ρ2
γ.

Lemma 6.1. If the structure torsion of a trajectory γ for a Sasakian magnetic field

Fκ on a Hopf real hypersurface M is equal to ±1 at some point γ(t0), then it is a

geodesic of unit speed.

Proof. We take an integral curve σ of a vector field ξ with σ(0) = γ(t0), which is

a geodesic of unit speed by Lemma 5.1 because M is Hopf. Clearly this satisfies

the equation ∇σ̇σ̇ = κφσ̇ (= 0) and initial condition σ̇(0) = ξγ(t0). When ργ(t0) =

1, the curve γ satisfies ∇γ̇ γ̇ = κφγ̇ and γ̇(t0) = ξγ(t0). By the theorem on the

uniqueness of solutions for ordinary linear differential equations, we find σ(t) =

γ(t+ t0). When ργ(t0) = −1, we consider a smooth curve σ1 given by σ1(t) = σ(−t).
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It is parameterized by its arclength. Since σ̇1(t) = −σ̇(−t), this curve satisfies

∇σ̇1σ̇1(t) = ∇σ̇σ̇(−t) = 0 = κφσ̇1(t) and σ̇1(t0) = −ξσ̇1(t0), we find γ(t) = σ1(t+ t0).

We hence get the conclusion. �

This lemma shows that if the structure torsion ργ of a trajectory γ on a Hopf real

hypersurface takes a value ±1 at some point then it is a constant function: ργ ≡ ±1.

We next consider the constancy of structure torsion.

Lemma 6.2. Let γ be a trajectory for a Sasakian magnetic field Fκ on a real hy-

persurface M in a Kähler manifold M̃ . The derivative of its structure torsion is

ρ′γ = (1/2)
〈
(φA− Aφ)γ̇, γ̇

〉
.

Proof. By direct computation using (3.3) in Lemma 3.4, we have

ρ′γ = γ̇〈ξ, γ̇〉 = 〈∇γ̇ γ̇, ξ〉 + 〈γ̇,∇γ̇ξ〉 = 〈κφγ̇, ξ〉 + 〈γ̇, φAγ̇〉 = 〈γ̇, φAγ̇〉.

Since A is symmetric and φ is skew symmetric, we have 〈γ̇, φAγ̇〉 = −〈Aφγ̇, γ̇〉,

hence we see ρ′γ = 1
2

〈
(φA− Aφ)γ̇, γ̇

〉
. �

Corollary 6.1. The structure torsion ργ of a trajectory for a Sasakian magnetic

field is constant along γ if and only if (Aφ−φA)γ̇(t) is perpendicular to γ̇(t) at each

point γ(t). In particular, ργ is constant along γ if Aφγ̇(t) = φAγ̇(t) holds for all t.

6.2. Circular trajectories. Since circles are simple next to geodesics from the

viewpoint of Frenet-Serre formula, we here consider conditions for trajectories for

Sasakian magnetic fields to be circles.

Lemma 6.3. Let γ be a trajectory for a non-trivial Sasakian magnetic field Fκ (κ 6=

0) on a real hypersurface M of a Kähler manifold M̃ .

(1) It is a geodesic if and only if ργ ≡ ±1.

(2) It is a circle of positive geodesic curvature if and only if it satisfies both of

the following conditions:
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i) ρ′γ = 0 and ργ 6= ±1,

ii) −κρ2
γ γ̇ + ργAγ̇ +

(
κργ − 〈Aγ̇, γ̇〉

)
ξ = 0.

In this case, its geodesic curvature is |κ|
√

1 − ρ2
γ.

Proof. As we mentioned above, the first geodesic curvature of γ is k1 = |κ|‖φγ̇‖ =

|κ|
√

1 − ρ2
γ. Thus we see that γ is a geodesic if and only if ργ ≡ ±1.

We next consider the case ργ 6= ±1. As k1 is constant if and only if ργ is constant

along γ, we calculate the derivative of the second vector field Y2 in the Frenet frame

of γ. In this case, we have Y2 = sgn(κ) (φγ̇)
/√

1 − ρ2
γ, where sgn(κ) denotes the

signature of κ. By (3.4) in Lemma 3.4, we get

∇γ̇(φγ̇) = (∇γ̇φ)γ̇ + φ(∇γ̇ γ̇)

= 〈γ̇, ξ〉Aγ̇ − 〈Aγ̇, γ̇〉ξ + κφ2γ̇

= ργAγ̇ − 〈Aγ̇, γ̇〉ξ − κ(γ̇ − ργξ).

Therefore we obtain that ∇γ̇Y2 = −|κ|
√

1 − ρ2
γ γ̇ if and only if the condition 2-ii)

holds. �

We should note that we do not suppose M is Hopf in Lemma 6.3. Therefore, we

can not weaken the condition on structure torsion for geodesic trajectories into a

condition at one point. We also note that we do not guarantee the “existence” of

trajectories which are also geodesics or circles by this lemma. For example, if there

is a trajectory γ for a non-trivial Sasakian magnetic field which is a geodesic, then

ξγ(t) is principal at each t. When a trajectory for a Sasakian magnetic field is also

a circle of positive geodesic curvature, we shall say that it is a circular trajectory.

By these lemmas we find that trajectories under Sasakian magnetic fields are not

necessarily circles. But we here make mention that in the following sections we

show on some real hypersurfaces in a complex space form there exist trajectories for

Sasakian magnetic fields which are also circles of positive geodesic curvature.
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Real hypersurfaces of type (A) in a complex projective space CP n(c) of constant

holomorphic sectional curvature c (c > 0), which are geodesic spheres and tubes

around totally geodesic CP `, are typical examples which have been studied in sub-

manifold theory. In this section, we study trajectories for Sasakian magnetic fields

on these real hypersurfaces. These hypersurfaces have quite a nice property in our

study. By Lemma 5.4 these hypersurfaces are characterized as hypersurfaces whose

shape operators and characteristic tensors are simultaneously diagonalizable. We

therefore have the following by Corollary 6.1.

Corollary 7.1. On a real hypersurface M of type (A) in a nonflat complex space

form, the structure torsion ργ of an arbitrary trajectory γ for an arbitrary Sasakian

magnetic field Fκ is constant along γ.

7.1. Circular trajectories on geodesic spheres. We first consider trajectories

on real hypersurfaces of type (A1), that is geodesic spheres in CP n(c). As we

mentioned in §5, a geodesic sphere G(r) of radius r in CP n(c) has two principal

curvatures λ = (
√
c/2) cot

(√
c r/2

)
, ν =

√
c cot

(√
c r

)
. The characteristic vector

field ξ satisfies Aξ = νξ and every tangent vector v orthogonal to ξ satisfies Av = λv.

We can hence rewrite the condition (2)-ii) in Lemma 6.3 by use of these principal

curvatures. We here consider more generally and study the feature of all trajectories.

Proposition 7.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field Fκ

on a geodesic sphere G(r) in a complex projective space CP n(c).

(1) It is a geodesic if and only if ργ = ±1,

(2) It is a circle of positive geodesic curvature if and only if

κργ = (
√
c/2) cot(

√
cr/2).

In this case, its geodesic curvature is
√

4κ2 − c cot2(
√
c r/2)

/
2.
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(3) Otherwise, it is a helix of proper order 3 whose geodesic curvatures are k1 =

|κ|
√

1 − ρ2
γ and k2 = |κργ − (

√
c/2) cot(

√
cr/2)|.

Proof. We compute the Frenet-Serre formula of γ. Since we have ∇γ̇ γ̇ = κφγ̇, as we

see in the proof of Lemma 6.3, we find γ is a geodesic if and only if ργ = ±1.

We next consider the case ργ 6= ±1. We set Y2 = sgn(κ)φγ̇/
√

1 − ρ2
γ. On G(r),

as it has only two principal curvatures, we have

Aγ̇ = A
(
ργξ + (γ̇ − ργξ)

)
= νργξ + λ(γ̇ − ργξ).

Therefore the second condition in Lemma 6.3 (2) turns to

0 = −κρ2
γ γ̇ + ργAγ̇ +

(
κργ − 〈Aγ̇, γ̇〉

)
ξ

= −κρ2
γ γ̇ + νρ2

γξ + λργ(γ̇ − ργξ) + κργξ −
(
νρ2

γ + λ(1 − ρ2
γ)

)
ξ

= (κργ − λ)(ξ − ργ γ̇)

Since ργ 6= ±1, we have ξ 6= ργ γ̇. We hence find that γ is a circle of positive geodesic

curvature if and only if κργ = λ. In this case we can write the system of differential

equation for circular trajectories as follows:
∇γ̇ γ̇ = κ

√
1 − ρ2

γ

1√
1 − ρ2

γ

φγ̇,

∇γ̇

( 1√
1 − ρ2

γ

φγ̇
)

= −κ
√

1 − ρ2
γ γ̇

Thus, the geodesic curvature of circular trajectory is |κ|
√

1 − ρ2
γ. Since we have

λ = (
√
c/2) cot(

√
cr/2), We get the second assertion.

We now consider the case ργ 6= ±1 and κργ 6= λ. Our calculation in the proof of

Lemma 6.3 and above calculation show that
∇γ̇ γ̇ = κφγ̇,

∇γ̇

( 1√
1 − ρ2

γ

φγ̇
)

= −κ
√

1 − ρ2
γ γ̇ +

κργ − λ√
1 − ρ2

γ

(ξ − ργ γ̇).

As we have ∇Xξ = φAX by Lemma 3.4, we get

∇γ̇(ξ − ργ γ̇) = φAγ̇ − ργκφγ̇ = (λ− κργ)φγ̇.
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Therefore, we obtain

∇γ̇ γ̇ = κφγ̇,

∇γ̇

( 1√
1 − ρ2

γ

φγ̇
)

= −κ
√

1 − ρ2
γ γ̇ +

κργ − λ√
1 − ρ2

γ

(ξ − ργ γ̇),

∇γ̇

( 1√
1 − ρ2

γ

(ξ − ργ γ̇)
)

= − κργ − λ√
1 − ρ2

γ

φγ̇,

and find that γ is a helix of proper order 3 in this case. Since ‖ξ− ργ γ̇‖ =
√

1 − ρ2
γ,

we have Y3 = sgn
(
κ(κργ −λ)

)
(ξ− ργ γ̇)/

√
1 − ρ2

γ and k2 = |κργ −λ|. This complete

the proof. �

This proposition guarantees that there exist circular trajectories and “helical” tra-

jectories for Sasakian magnetic fields on geodesic spheres in CP n(c). Since structure

torsion ργ of a trajectory γ satisfies |ργ| ≤ 1, we particularly have the following on

circular trajectories.

Theorem 7.1. Let Fκ be a non-trivial Sasakian magnetic field on a geodesic sphere

G(r) of radius r (0 < r < π/
√
c) in CP n(c).

(1) When 0 < |κ| ≤ (
√
c/2) cot(

√
c r/2), there are no circular trajectories for

Fκ.

(2) When |κ| > (
√
c/2) cot(

√
c r/2), a trajectory for Fκ is circular if and only if

its structure torsion is ργ = (
√
c/2κ) cot(

√
c r/2). In this case its geodesic

curvature is
√
κ2 − (c/4) cot2(

√
c r/2) .

In order to study the amount of circular trajectories on geodesic spheres, we here

study their congruency.

Proposition 7.2 (Adachi[3]). Trajectories γ1 for a Sasakian magnetic field Fκ1 and

γ2 for Fκ2 on a geodesic sphere G(r) in CP n(c) are congruent to each other in strong

sense if and only if one of the following conditions holds:

i) |ργ1 | = |ργ2 | = 1,
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ii) ργ1 = ργ2 = 0 and |κ1| = |κ2|,

iii) 0 < |ργ1 | = |ργ2 | < 1 and κ1ργ1 = κ2ργ2.

In order to show this we here study isometries of geodesic spheres in CP n. Through

an isometric immersion ι : G(r) → CP n(c) we may consider that TG(r) is a subset

of TCP n.

Lemma 7.1. Let x, x′ ∈ G(r) be arbitrary points on a geodesic sphere G(r) in

CP n(c). Given unit tangent vectors u ∈ 〈ξx〉⊥ ⊂ TxG(r) and u′ ∈ 〈ξx′〉⊥ ⊂ Tx′G(r)

which are orthogonal to ξ at x and x′, there exist isometries ϕ̃+, ϕ̃− of CP n(c)

satisfying the following conditions:

i) ϕ̃+
(
G(r)

)
= ϕ̃−(

G(r)
)

= G(r),

(i.e. G(r) is invariant under the actions of ϕ̃+ and ϕ̃−);

ii) ϕ̃+(x) = ϕ̃−(x) = x′;

iii) dϕ̃+(u) = dϕ̃−(u) = u′;

iv) dϕ̃+ ◦ J = J ◦ dϕ̃+ and dϕ̃− ◦ J = −J ◦ dϕ̃−,

in particular, dϕ̃+(ξx) = ξx′ and dϕ̃−(ξx) = −ξx′.

Proof. For the sake of simplicity we only consider the case n = 2 and c = 4. As we

mentioned in §5.2, we may consider that

$−1
(
G(r)

)
=

{
ẑ = (z0, z1, z2) ∈ C3

∣∣ |z0| = cos r, |z1|2 + |z2|2 = sin2 r
}

= S1 × S3 ⊂ C × C2.

We take an arbitrary point ẑ = e
√
−1δ(cos r, αe

√
−1θ, βe

√
−1ψ) ∈ $−1

(
G(r)

)
, where

α, β, δ ∈ R satisfy α2 + β2 = sin2 r. The tangent space of M̂ = $−1
(
G(r)

)
at this

point ẑ is represented by

TẑM̂ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ Re(z0v̄0) = Re(z1v̄1 + z2v̄2) = 0
}

=
{(
z, e

√
−1δ

(√
−1a,

√
−1bαe

√
−1θ − βζe−

√
−1ψ,

√
−1bβe

√
−1ψ + αζe−

√
−1θ

))∣∣∣ a, b ∈ R, ζ ∈ C
}
.
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We denote by N̂ẑ ∈ TẑS
5 the horizontal lift of the unit normal vector N$(ẑ) of G(r)

in CP 2(4). Since N̂ẑ is orthogonal to TẑM̂ , we find that it is represented as

N̂ẑ =
(
ẑ, e

√
−1δ

(
− sin r, α cot r e

√
−1θ, β cot r e

√
−1ψ

))
.

More clearly, if ẑ = (z0, z1, z2) then we have N̂ẑ =
(
ẑ, (− tan r z0, cot r z1, cot r z2)

)
.

We set ξ̂ẑ = −JN̂ẑ with the complex structure J on C3. We hence have

ξ̂ẑ =
(
ẑ,−

√
−1e

√
−1δ

(
− sin r, α cot r e

√
−1θ, β cot r e

√
−1ψ

))
.

We denote by 〈ξ̂ẑ〉 the real linear subspace of TzS
5 spanned by ξ̂ẑ, and by 〈ξ̂ẑ〉⊥ its

orthogonal complement in TẑS
5. The horizontal part 〈ξ̂ẑ〉⊥∩Hẑ of 〈ξ̂ẑ〉⊥ corresponds

to 〈ξ$(ẑ)〉⊥, and is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ v0 = 0, z1v1 + z2v2 = 0
}

=
{(
ẑ, e

√
−1δ

(
0,−βζe−

√
−1ψ, αζe−

√
−1θ

)) ∣∣∣ ζ ∈ C
}
.

In order to show the assertion, for arbitrary ẑ, ẑ′ ∈ M̂ and unit tangent vectors

û ∈ 〈ξ̂ẑ〉⊥ ∩ Hẑ, û
′ ∈ 〈ξ̂ẑ′〉⊥ ∩ Hẑ′ , we construct isometries ϕ̂+, ϕ̂− of S5 satisfying

the following conditions:

i) ϕ̂+
(
M̂

)
= ϕ̂−(

M̂
)

= M̂ ,

ii) ϕ̂+ and ϕ̂− are compatible with the S1-action on S5 given by p̂ 7→ e
√
−1θp̂,

that is, for arbitrary p̂ ∈ M̂ and θ ∈ [0, 2π) there is θ′± ∈ [0, 2π) satisfying

e
√
−1θ′±ϕ̂±(p̂) = ϕ̂±(

e
√
−1θp̂

)
,

iii) ϕ̂+(ẑ) = ϕ̂−(ẑ) = ẑ′ and dϕ̂+(û) = dϕ̂−(û) = û′,

iv) dϕ̂+ ◦ φ̂ = φ̂ ◦ dϕ̂+, dϕ̂− ◦ φ̂ = −φ̂ ◦ dϕ̂−, where φ̂ denotes the characteristic

tensor on S5 in C3,

v) dϕ̂±(ξ̂ẑ) = ±ξ̂ẑ′ .

If we can construct them, then by the second condition we obtain isometries ϕ̃± of

CP n(4) satisfying ϕ̃± ◦ $ = $ ◦ ϕ̂±. It is clear that these isometries satisfy the

desired conditions.
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We here take a point ẑ∗ = (cos r, sin r, 0) ∈ M̂ and a unit tangent vector û∗ =(
ẑ∗, (0, 0, 1)

)
∈ 〈ξ̂ẑ∗〉⊥ ∩ Hẑ∗ . If we can construct isometries ϕ̂+

(ẑ,û) and ϕ̂−
(ẑ,û) of

S5 satisfying the above four conditions on (ẑ∗, û∗) and (ẑ, û), then the isometries

ϕ̂+
(ẑ′,û′) ◦ (ϕ̂+

(ẑ,û))
−1 and ϕ̂−

(ẑ′,û′) ◦ (ϕ̂+
(ẑ,û))

−1 satisfy the above 4 conditions on (ẑ, û) and

(ẑ′, û′). We therefore need to construct isometries for (ẑ∗, û∗) and (ẑ, û) given by

ẑ = e
√
−1δ

(
cos r, αe

√
−1θ, βe

√
−1ψ

)
, û =

(
ẑ, e

√
−1δ

(
0,−βζe−

√
−1ψ, αζe−

√
−1θ

))
with |ζ| = 1. Since the isometry group of M̂ = S1 × S3 ⊂ C × C2 is O(2) ⊕ O(4),

we take a unitary matrix

U+ = e
√
−1δ

1 0 0

0 (α/ sin r)e
√
−1θ (−βζ/ sin r)e−

√
−1ψ

0 (β/ sin r)e
√
−1ψ (α/ sin r)e−

√
−1θ

 ∈ U(1) ⊕ U(2) ⊂ U(3).

We then find this matrix U+ induces an isometry ϕ̂+
(ẑ,û) of S5 which preserves M̂

and satisfies ϕ̂+
(ẑ,û)

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

(ẑ,û)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ .

As U+J = JU+ with the matrix J =
√
−1E, where E is the identity, it satisfies

dϕ̂+
(ẑ,û) ◦ J = J ◦ dϕ̂+

(ẑ,û). We also find that it satisfies ϕ̂+
(ẑ,û)(ẑ∗) = ẑ, dϕ̂+

(ẑ,û)(û∗) = û

and dϕ̂+
(ẑ,û)(ξ̂ẑ∗) = ξ̂ẑ.

In order to define ϕ̂−
(ẑ,û) we consider a matrix

Ψ =

 ε O O
O ε O
O O ε

 ∈ O(6) with ε =

(
1 0
0 −1

)
∈ O(2).

This matrix induces a map C3 3 (w0, w1, w2) 7→ (w̄0, w̄1, w̄2) ∈ C3. If we take a

matrix U− = U+Ψ , as ΨJ = −JΨ , it induces an isometry ϕ̂−
(ẑ,û) of M̂ . It is clear that

it preserves M̂ , satisfies ϕ̂+
(ẑ,û)

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂+

(ẑ,û)(p̂) for arbitrary θ ∈ [0, 2π) and

p̂ ∈ M̂ , and satisfies dϕ̂+
(ẑ,û) ◦ J = −J ◦ dϕ̂+

(ẑ,û) and ϕ̂+
(ẑ,û)(ẑ∗) = ẑ, dϕ̂+

(ẑ,û)(û∗) = û,

dϕ̂+
(ẑ,û)(ξ̂ẑ∗) = −ξ̂ẑ. We hence get the conclusion for the case n = 2.

We now make mention of the case n ≥ 3 breifly. As we may consider that

$−1
(
G(r)

)
=

{
ẑ = (z0, z1, . . . , zn) ∈ Cn+1

∣∣ |z0| = cos r, |z1|2+· · ·+|zn|2 = sin2 r
}

= S1 × S2n−1 ⊂ C × Cn ⊂ Cn+1,
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at a point ẑ ∈ M̂ = $−1
(
G(r)

)
its tangent space is represented by

TẑM̂ =
{
(ẑ, v̂) ∈ {ẑ} × Cn+1

∣∣ Re(z0v̄0) = Re(z1v̄1 + · · · + znv̄n) = 0
}
.

We can therefore find that the horizontal lift N̂ẑ of the unit normal vector N$(ẑ) of

G(r) in CP n(4), which is a unit normal vector of M̂ in S2n+1, is given as

N̂ẑ =
(
ẑ, (tan rz0,− cot rz1, . . . ,− cot rzn)

)
.

If we put ξ̂ẑ = −JN̂ẑ with the complex structure J on Cn+1, which is a horizontal

lift of ξ$(ẑ), it is given as

ξ̂ẑ =
(
ẑ,

(
−
√
−1 tan rz0,

√
−1 cot rz1, . . . ,

√
−1 cot rzn

))
.

We hence obtain that

〈ξ̂ẑ〉⊥ ∩Hẑ =
{
(ẑ, v̂) ∈ {ẑ} × Cn+1

∣∣ v0 = 0, z1v1 + · · · + znvn = 0
}
.

We take a point ẑ∗ = (cos r, sin r, 0, . . . , 0) ∈ M̂ and a unit tangent vector û∗ =(
ẑ∗, (0, 0, 1, 0, . . . , 0)

)
∈ 〈ξ̂ẑ∗〉⊥∩Hẑ∗ . For an arbitrary point ẑ ∈ M̂ and an arbitrary

unit tangent vector û ∈ 〈ξ̂ẑ〉⊥ ∩ Hẑ, we choose unit tangent vectors û(2), . . . , û(n) ∈

〈ξ̂ẑ〉⊥∩Hẑ so that {û, û(2), . . . , û(n)} forms a unitary orthonormal basis of 〈ξ̂ẑ〉⊥∩Hẑ,

that is, a basis satisfying ((û(i), û(j))) = 0 if i 6= j with û(1) = û. We define a unitary

matrix U+ by

U+ =


z0/ cos r 0 0 0 · · · 0

0 z1/ sin r u1 u
(2)
1 · · · u

(n)
1

...
...

...
...

...

0 zn/ sin r un u
(2)
n · · · u

(n)
n

 ∈ U(1) ⊕ U(n) ⊂ U(n+ 1).

As we have ξ̂ẑ∗ =
(
ẑ∗, (sin r,− cos r, 0, . . . , 0)

)
, it induces an isometry ϕ̂+

(ẑ,û) of S2n+1

which satisfies the following conditions:

i) ϕ̂+
(ẑ,û)

(
M̂

)
= M̂ ,

ii) ϕ̂+
(ẑ,û)

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

(ẑ,û)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ ,

iii) dϕ̂+
(ẑ,û)J = Jdϕ̂+

(ẑ,û), if we consider TS2n+1 ⊂ TCn+1,
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iv) ϕ̂+
(ẑ,û)(ẑ∗) = ẑ,

v) dϕ̂+
(ẑ,û)(û∗) = û, dϕ̂+

(ẑ,û)(ξ̂ẑ∗) = ξ̂ẑ.

Along the same lines as for the case n = 2 we can get the conclusion. �

Cn+1 ⊃ S2n+1 ⊃ M̂
ϕ̂−→ M̂ ⊂ S2n+1

$

−→ $

−→ �
$

−→ −→

CP n ⊃ G(r)
ϕ−→ G(r) ⊂ CP n

Remark 7.1. Every isometry ϕ of G(r) in CP n(c) is equivariant. That is, if we denote

by ι : G(r) → CP n(c) an isometric immersion, there is an isometry ϕ̃ of CP n(c)

satisfying ϕ̃ ◦ ι = ι ◦ ϕ.

Proof. An isometry ϕ induces an isometry ϕ̌ of $−1
(
G(r)

)
satisfying ϕ◦$ = $ ◦ ϕ̌.

Since $−1
(
G(r)

) ∼= S1 × S2n−1, whose isometry group is O(2) × O(2n), we find ϕ̌

extends to an isometry of Cn+1. Since we have dϕ ◦ φ = ±φ ◦ dϕ, we can see that it

belongs to U(1) × U(n) ⊂ U(n+ 1). In particular, we have an isometry ϕ̂ of S2n+1

which satisfies ϕ̂|
$−1

(
G(r)

) = ϕ̌ and is compatible with the S1-action of S2n+1. Thus

we obtain an isometry ϕ̃ of CP n satisfying ϕ̃|G(r) = ϕ. �

Proof of Proposition 7.2. “Only if” part. Suppose γ1, γ2 are congruent to each other.

There is an isometry ϕ of G(r) satisfying γ2 = ϕ◦γ1. When ϕ satisfies dϕ◦φ = φ◦dϕ,

that is, ϕ is a restriction of a holomorphic isometry of CP n, then we have

κ2φγ̇2 = ∇γ̇2 γ̇2 = ∇dϕ(γ̇1)dϕ(γ̇1) = dϕ
(
∇γ̇1 γ̇1

)
= dϕ

(
κ1φγ̇1

)
= κ1φγ̇1,

hence κ1 = κ2. We also have

ργ2 = 〈ξγ2 , γ̇2〉 = 〈ξϕ◦γ1 , dϕ ◦ γ̇1〉 = 〈dϕ(ξγ1), dϕ(γ̇1)〉 = 〈ξγ1 , γ̇1〉 = ργ1 .
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When ϕ satisfies dϕ ◦ φ = −φ ◦ dϕ, that is, ϕ is a restriction of an anti-holomorphic

isometry of CP n, then we have

κ2φγ̇2 = ∇γ̇2 γ̇2 = ∇dϕ(γ̇1)dϕ(γ̇1) = dϕ
(
∇γ̇1 γ̇1

)
= dϕ

(
κ1φγ̇1

)
= −κ1φγ̇1,

hence κ1 = −κ2. We also have

ργ2 = 〈ξγ2 , γ̇2〉 = 〈ξϕ◦γ1 , dϕ ◦ γ̇1〉 = 〈−dϕ(ξγ1), dϕ(γ̇1)〉 = −ργ1 .

Thus we find that one of three conditions holds.

“If” part. On the other hand, we suppose one of the three conditions holds.

1) If ργ1 = ργ2 = ±1, Lemma 7.1 shows that we have an isometry ϕ+ of G(r)

satisfying ϕ+
(
γ1(0)

)
= γ2(0) and dϕ+

(
γ̇1(0)

)
= γ̇2(0). If ργ1 = −ργ2 = ±1, we have

an isometry ϕ− of G(r) satisfying ϕ−(
γ1(0)

)
= γ2(0) and dϕ−(

γ̇1(0)
)

= −γ̇2(0).

Since γ1 and γ2 are geodesics, we find that they are congruent to each other by the

uniqueness of solutions of linear differential equations.

2),3) If ργ1 = ργ2 and κ1 = κ2, by Lemma 7.1, we can take an isometry ϕ+ of G(r)

which satisfies φ ◦ dϕ+ = dϕ+ ◦ φ and

ϕ+
(
γ1(0)

)
= γ2(0), dϕ+

(
ξγ1(0)

)
= ξγ2(0), dϕ

+
(
γ̇1(0) − ργ1ξγ1(0)

)
= γ̇2(0) − ργ2ξγ2(0).

We hence have

dϕ+
(
γ̇1(0)

)
= dϕ+

(
ργ1ξγ1(0) + γ̇1(0) − ργ1ξγ1(0)

)
= ργ1ξγ2(0) + γ̇2(0) − ργ2ξγ2(0) = γ̇2(0).

If ργ1 = −ργ2 and κ1 = −κ2, by Lemma 7.1, we can take an isometry ϕ+ of G(r)

which satisfies φ ◦ dϕ+ = −dϕ+ ◦ φ and

ϕ+
(
γ1(0)

)
= γ2(0), dϕ+

(
ξγ1(0)

)
= −ξγ2(0), dϕ

+
(
γ̇1(0)− ργ1ξγ1(0)

)
= γ̇2(0)− ργ2ξγ2(0).

We hence have

dϕ+
(
γ̇1(0)

)
= dϕ+

(
ργ1ξγ1(0) + γ̇1(0) − ργ1ξγ1(0)

)
= −ργ1ξγ2(0) + γ̇2(0) − ργ2ξγ2(0) = γ̇2(0).
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With the aid of Lemma 3.6 we find they are congruent to each other in strong sense

by the uniqueness of solutions of linear differential equations. �

Corollary 7.2. Every trajectory for an arbitrary Sasakian magnetic field on a geo-

desic sphere in CP n(c) is Killing.

Proof. We take a trajectory γ. By Proposition 7.2, for each t there is an isometry

ϕt satisfying ϕt
(
γ(0)

)
= γ(t), dϕt

(
γ̇(0)

)
= γ̇(t) and dϕt ◦ φ = φ ◦ dϕt. We find that

γ is Killing. �

Corollary 7.3. Circular trajectories for a given Sasakian magnetic field Fκ on a

geodesic sphere in CP n(c) are congruent to each other in strong sense.

Corollary 7.4. Geodesic trajectories for non-trival Sasakian magnetic fields on a

geodesic sphere in CP n(c) are congruent to each other in strong sense.

7.2. Circular trajectories on tubes around CP `. Next we study trajectories

for Sasakian magnetic fields on hypersurfaces of type (A2) in CP n(c). A real hyper-

surface M of type (A2) in CP n(c) is a tube around totally geodesic CP `(c) (1 ≤ ` ≤

n−2) and has three distinct principal curvatures. If its radius is r, that isM = T`(r),

they are λ = (
√
c/2) cot

(√
c r/2

)
, µ = −(

√
c/2) tan

(√
c r/2

)
, ν =

√
c cot

(√
c r

)
.

The characteristic vector field ξ satisfies Aξ = νξ and the principal curvatures λ, µ

are those for vectors orthogonal to ξ (see §5).

We denote by Vλ, Vµ the two subbundles of the holomorphic distribution T 0M

consisted by principal curvature vectors associated with λ, µ, respectively. The

tangent space of a real hypersurface M = T`(r) of type (A2) hence splits as TM =

T 0M ⊕ Rξ = Vλ ⊕ Vµ ⊕ Rξ. In order to classify trajectories on T`(r), we need

another invariant for them. We denote the projections of the tangent bundle onto

Vλ and Vµ by ProjVλ
: TT`(r) → Vλ and ProjVµ

: TT`(r) → Vµ, respectively. We set
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τγ = ‖ProjVλ

(
γ̇
)
‖ and call it the principal torsion of γ. Since we have

‖ProjVλ

(
γ̇(t)

)
‖2 + ‖ProjVµ

(
γ̇(t)

)
‖2 = 1 − ρ2

γ(t),

it satisfies 0 5 τγ 5
√

1 − ρ2
γ.

Lemma 7.2. The principal torsion τγ for a trajectory γ for a Sasakian magnetic

field Fκ on a real hypersurface T`(r) (1 ≤ ` ≤ n − 2) of type (A2) in CP n(c) is

constant along γ.

Proof. By Lemma 5.5 we have

∇γ̇〈Aγ̇, γ̇〉 =
〈(
∇γ̇A

)
γ̇, γ̇

〉
+ 〈κAφγ̇, γ̇〉 + 〈Aγ̇, κφγ̇〉

= − c
4

{
〈φγ̇, γ̇〉〈ξ, γ̇〉 + 〈γ̇, ξ〉〈φγ̇, γ̇〉

}
+ κ〈Aφγ̇, γ̇〉 − κ〈φAγ̇, γ̇〉

= − c
2
ργ〈φγ̇, γ̇〉 + κ〈(Aφ− φA)γ̇, γ̇〉

= 0,

hence 〈Aγ̇, γ̇〉 is constant along γ. As we have Aγ̇ = λProjVλ

(
γ̇
)
+µProjVµ

(
γ̇
)
+ργνξ,

we find

〈Aγ̇, γ̇〉 = νρ2
γ + λτ 2

γ + µ(1 − ρ2
γ − τ 2

γ ) = (ν − µ)ρ2
γ − µρ2

γ + (λ− µ)τ 2
γ .

Since ργ is constant along γ by Corollary 7.1, this shows that (λ − µ)τ 2
γ is also

constant along γ. As λ 6= µ, we find that the principal torsion τγ is constant along

γ. �

Structure torsions and principal torsions of trajectories determine the congruence

classes of trajectories on hypersurfaces of type (A2). Corresponding to Proposition

7.2, we have the following.

Proposition 7.3. We consider a hypersurface T`(r) of type (A2) in a complex pro-

jective space CP n(c). Trajectories γ1 for a Sasakian magnetic field Fκ1 and γ2 for

Fκ2 on T`(r) are congruent to each other in strong sense if and only if one of the

following conditions holds:



§7. Circular trajectories on real hypersurfaces of type (A) in CP n 61

i) |ργ1 | = |ργ2 | = 1,

ii) ργ1 = ργ2 = 0, τγ1 = τγ2 and |κ1| = |κ2|,

iii) 0 < |ργ1 | = |ργ2 | < 1, τγ1 = τγ2 and κ1ργ1 = κ2ργ2.

We decompose the tangent space TxT`(r) of a real hypersurface T`(r) of type (A2)

at x as TxT`(r) = Vλ,x⊕Vµ,x⊕Rξx, where Vλ,x and Vµ,x are the subspaces of principal

curvature vectors orthogonal to ξx which correspond to principal curvatures λ and

µ, respectively. Through an isometric immersion ι : T`(r) → CP n(c) we consider

TT`(r) as a subset of TCP n(c).

Lemma 7.3. Let x, x′ ∈ T`(r) be arbitrary points on a hypersurface T`(r) of type

(A2) in CP n(c). Given unit tangent vectors u ∈ Vλ,x, w ∈ Vµ,x and u′ ∈ Vλ,x′ , w
′ ∈

Vµ,x′, there exist isometries ϕ̃+, ϕ̃− of CP n(c) satisfying the following conditions:

i) ϕ̃+
(
T`(r)

)
= ϕ̃−(

T`(r)
)

= T`(r),

(i.e. T`(r) is invariant under the actions of ϕ̃+ and ϕ̃−);

ii) ϕ̃+(x) = ϕ̃−(x) = x′;

iii) dϕ̃+(u) = dϕ̃−(u) = u′ and dϕ̃+(w) = dϕ̃−(w) = w′

iv) dϕ̃+ ◦ J = J ◦ dϕ̃+ and dϕ̃− ◦ J = −J ◦ dϕ̃−,

in particular, dϕ̃+(ξx) = ξx′ and dϕ̃−(ξx) = −ξx′.

Proof. For the sake of simplicity, we are enough to consider the case n = 3, ` = 1

and c = 4. As we see in §5.2 we may consider that

$−1
(
T1(r)

)
=

{
ẑ = (z0, z1, z2, z3) ∈ C4

∣∣ |z0|2 + |z1|2 = cos2 r, |z2|2 + |z3|2 = sin2 r
}

= S3 × S3 ⊂ C2 × C2.

We take an arbitrary point ẑ = (z0, z1, z2, z3) ∈ $−1
(
T1(r)

)
. The tangent space of

M̂ = $−1
(
T1(r)

)
at ẑ is represented as

TẑM̂ =

{
(ẑ, v̂) ∈ {ẑ} × C4

∣∣∣∣ Re(z0v0 + z1v1) = 0,
Re(z2v2 + z3v3) = 0

}
.
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We denote by N̂ẑ ∈ TẑS
7 the horizontal lift of the unit normal vector N$(ẑ) of

T1(r) in CP 3(4). Since N̂ẑ ∈ TẑS
7 and is orthogonal to TẑM̂ , considering on each

component we find that it is represented as

N̂ẑ =
(
ẑ, (tan r z0, tan r z1,− cot r z2,− cot r z3)

)
.

We put ξ̂ẑ = −JN̂ẑ. We denote by 〈ξ̂ẑ〉 the real linear subspace of TẑS
7 spanned by

ξ̂ẑ, and by 〈ξ̂ẑ〉⊥ its orthogonal complement in TẑS
7. The horizontal part 〈ξ̂ẑ〉⊥∩Hẑ

of 〈ξ̂ẑ〉⊥ corresponds to the complex vector space 〈ξ$(ẑ)〉⊥, and is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ z0v0 + z1v1 = 0, z2v2 + z3v3 = 0
}
.

We should note that if we decompose Hẑ as Hẑ = V̂λ,ẑ⊕ V̂µ,ẑ⊕Rξ̂ẑ corresponding to

the decomposition of T$(ẑ)T1(r) into subspaces of principal curvature vectors then

we see

V̂λ,ẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ z2v2 + z3v3 = 0, v0 = v1 = 0
}
,

V̂µ,ẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ z0v0 + z1v1 = 0, v2 = v3 = 0
}
.

We take a point ẑ∗ = (cos r, 0, sin r, 0) ∈ M̂ and unit tangent vectors û∗ =(
ẑ∗, (0, 0, 0, 1)

)
∈ V̂λ,ẑ∗ , ŵ∗ =

(
ẑ, (0, 1, 0, 0)

)
∈ V̂µ,ẑ∗ . For an arbitrary ẑ ∈ M̂

and unit tangent vectors û =
(
ẑ, (0, 0, u2, u3)

)
∈ V̂λ,ẑ, ŵ =

(
ẑ, (w0, w1, 0, 0)

)
∈ V̂µ,ẑ,

which are expressed as

û =
(
ẑ,

(
0, 0,

ζ1z3

cos r
,− ζ1z2

cos r

))
, ŵ =

(
ẑ,

( ζ2z1

sin r
,− ζ2z0

sin r
, 0, 0

))
with some ζ1, ζ2 ∈ C satisfying |ζ1| = |ζ2| = 1, we define a unitary matrix

U+ =


z0/ cos r w0 0 0
z1/ cos r w1 0 0

0 0 z2/ sin r u2

0 0 z3/ sin r u3

 ∈ U(2) ⊕ U(2) ⊂ U(4).

This induces a linear transformation of C4 which preserves the Hermitian inner

product (( , )), hence it induces an isometry ϕ̂+
(ẑ,û,ŵ) of S7. It clearly satisfies

ϕ̂+
(ẑ,û,ŵ)

(
M̂

)
= M̂ and ϕ̂+

(ẑ,û,ŵ)

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

(ẑ,û,ŵ)(p̂) for arbitrary θ ∈ [0, 2π)
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and p̂ ∈ M̂ . Therefore ϕ̂+
(ẑ,û,ŵ) induces an isometry ϕ̃+

(ẑ,û,ŵ) of CP 3(4) satisfying

ϕ̃+
(ẑ,û,ŵ) ◦$ = $ ◦ ϕ̂+

(ẑ,û,ŵ), ϕ̃+
(ẑ,û,ŵ)

(
$(ẑ∗)

)
= $(ẑ),

dϕ̃+
(ẑ,û,ŵ)

(
d$(û∗)

)
= d$(û), dϕ̃+

(ẑ,û,ŵ)

(
d$(ŵ∗)

)
= d$(ŵ).

Since we have U+J = JU+ for the matrix J =
√
−1E, we find that ϕ̃+

(ẑ,û,ŵ)

is holomorphic, that is, dϕ̃+
(ẑ,û,ŵ) ◦ J = J ◦ dϕ̃+

(ẑ,û,ŵ). In particular, it satisfies

dϕ̃+
(ẑ,û,ŵ)

(
ξ$(ẑ∗)

)
= ξ$(ẑ).

We next consider a matrix

Ψ =


ε O O O
O ε O O
O O ε O
O O O ε

 ∈ O(8) with ε =

(
1 0
0 −1

)
∈ O(2).

This matrix induces a map C4 3 (p0, p1, p2, p3) 7→ (p̄0, p̄1, p̄2, p̄3) ∈ C4. If we define

a matrix U− by U− = U+Ψ , it induces a linear transformation of C4 which pre-

serves the Hermitian inner product. By the representation of M̂ , we see it induces

an isometry ϕ̂−
(ẑ,û,ŵ) of S7 satisfying ϕ̂−

(ẑ,û,ŵ)

(
M̂

)
= M̂ . It is clear that it satisfies

ϕ̂−
(ẑ,û,ŵ)

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

(ẑ,û,ŵ)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . As we have

U−J = JU− for the matrix J =
√
−1E, we find that ϕ̂−

(ẑ,û,ŵ) induces an isometry

ϕ̃−
(ẑ,û,ŵ) of CP 3(4) satisfying

ϕ̃−
(ẑ,û,ŵ) ◦$ = $ ◦ ϕ̂−

(z,u,w), dϕ̃−
(ẑ,û,ŵ) ◦ J = −J ◦ dϕ̃−

(ẑ,û,ŵ),

ϕ̃−
(ẑ,û,ŵ)($(ẑ∗)) = $(ẑ),

dϕ̃−
(ẑ,û,ŵ)(d$(û∗)) = d$(û), dϕ̃−

((ẑ,û,ŵ))(d$(ŵ∗)) = d$(ŵ).

In particular, it satisfies dϕ̃−
(ẑ,û,ŵ)

(
ξ$(ẑ∗)

)
= −ξ$(ẑ).

As we constructed desirable isometries for a fixed triplet
(
$(ẑ∗), d$(û∗), d$(ŵ∗)

)
and an arbitrary triplet

(
$(ẑ), d$(û), d$(ŵ)

)
, we can get our conclusion along the

same lines as in the proof of Lemma 7.1. �

Remark 7.2. Every isometry of T`(r) in CP n(c) is equivariant.
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Proof of Proposition 7.3. “Only if” part. Suppose γ1, γ2 are congruent to each other.

There is an isometry ϕ satisfying γ2 = ϕ ◦ γ1. Since ϕ is equivariant, we see by

Lemma 3.5, it preserves the decomposition of the holomorphic distribution T 0T`(r)

into subbundles of principal curvature vectors. Hence we find τγ1 = τγ2 . When ϕ

satisfies dϕ ◦ φ = φ ◦ dϕ, we find that κ1 = κ2, ργ1 = ργ2 , and when ϕ satisfies

dϕ ◦ φ = −φ ◦ dϕ, we find that κ1 = −κ2, ργ1 = −ργ2 , by the same way as in the

proof of Proposition 7.2.

“If” part. On the other hand, we suppose one of the three conditions holds.

1) If ργ1 = ργ2 = ±1, Lemma 7.3 shows that we have an isometry ϕ+ of G(r)

satisfying ϕ+
(
γ1(0)

)
= γ2(0) and dϕ+

(
γ̇1(0)

)
= γ̇2(0). If ργ1 = −ργ2 = ±1, we have

an isometry ϕ− of G(r) satisfying ϕ−(
γ1(0)

)
= γ2(0) and dϕ−(

γ̇1(0)
)

= −γ̇2(0).

Since γ1 and γ2 are geodesics, we find that they are congruent to each other by the

uniquness of solutions of linear differential equations.

2),3) If ργ1 = ργ2 and κ1 = κ2, by Lemma 7.1, we can take an isometry ϕ+ of G(r)

which satisfies φ ◦ dϕ+ = dϕ+ ◦ φ and

ϕ+
(
γ1(0)

)
= γ2(0), dϕ+

(
ξγ1(0)

)
= ξγ2(0),

dϕ+
(
ProjVλ

(γ̇1(0))
)

= ProjVλ
(γ̇2(0)), dϕ+

(
ProjVµ

(γ̇1(0))
)

= ProjVµ
(γ̇2(0)).

We hence have

dϕ+
(
γ̇1(0)

)
= dϕ+

(
ProjVλ

(γ̇1(0)) + ProjVµ
(γ̇1(0)) + ργ1ξγ1(0)

)
= ProjVλ

(γ̇2(0)) + ProjVµ
(γ̇2(0)) + ργ1ξγ2(0) = γ̇2(0).

If ργ1 = −ργ2 and κ1 = −κ2, by Lemma 7.1, we can take an isometry ϕ− of G(r)

which satisfies φ ◦ dϕ− = −dϕ− ◦ φ and

ϕ−(
γ1(0)

)
= γ2(0), dϕ−(

ξγ1(0)

)
= −ξγ2(0),

dϕ−(
ProjVλ

(γ̇1(0))
)

= ProjVλ
(γ̇2(0)), dϕ−(

ProjVµ
(γ̇1(0))

)
= ProjVµ

(γ̇2(0)).

We hence have

dϕ−(
γ̇1(0)

)
= dϕ−(

ProjVλ
(γ̇1(0)) + ProjVµ

(γ̇1(0)) + ργ1ξγ1(0)

)
= ProjVλ

(γ̇2(0)) + ProjVµ
(γ̇2(0)) − ργ1ξγ2(0) = γ̇2(0).
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With the aid of Lemma 3.6 we find they are congruent to each other by the uniquness

of solutions of linear differential equations. �

Corollary 7.5. Every trajectory for an arbitrary Sasakian magnetic field on a hy-

persurface of type (A2) in CP n(c) is Killing.

We are now in the position to investigate circular trajectories on hypersurfaces of

type (A2). We apply Lemma 6.3.

Proposition 7.4. Let γ be a trajectory for a non-trivial Sasakian magnetic field Fκ

on a hypersurface of type (A2) in a complex projective space CP n(c).

(1) It is a geodesic if and only if ργ = ±1,

(2) It is a circle of positive geodesic curvature if and only if one of the following

conditions holds:

i) τγ = 0 and κργ = −(
√
c/2) tan

(√
c r/2

)
,

ii) τγ =
√

1 − ρ2
γ and κργ = (

√
c/2) cot

(√
c r/2

)
,

iii) ργ = 0 and τγ = sin
(√

c r/2
)
.

In these cases, the geodesic curvature of γ is |κ|
√

1 − ρ2
γ.

Proof. As structure torsions of trajectories are constant function by Corollary 7.1,

we need to study the condition (2)-ii) in Lemma 6.3. Thus we study the case that

|ργ| < 1. As we calculated in the proof of Lemma 7.2, we have

Aγ̇ = λProjVλ

(
γ̇
)

+ µProjVµ

(
γ̇
)

+ ργνξ,

〈Aγ̇, γ̇〉 = (ν − µ)ρ2
γ − µρ2

γ + (λ− µ)τ 2
γ .

We therefore find that the condition (2)-ii) in Lemma 6.3 turns to

(7.1)
ργ(λ− κργ) ProjVλ

(γ̇) + ργ(µ− κργ) ProjVµ
(γ̇)

+ {κργ − κρ3
γ − λτ 2

γ − µ(1 − ρ2
γ − τ 2

γ )}ξ = 0.
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We first consider the case of ProjVλ
(γ̇) = 0, which is the case that τγ = 0. In this

case, the above equality (7.1) turns to

(κργ − µ)
{
−ργProjVµ

(γ̇) + (1 − ρ2
γ)ξ

}
= 0.

As we have |ργ| < 1, this shows κργ = µ.

Next we consider the case of ProjVµ
(γ̇) = 0, which is the case that τγ =

√
1 − ρ2

γ.

The equality (7.1) turns to

(κργ − λ)
{
−ργProjVλ

(γ̇) + (1 − ρ2
γ)ξ

}
= 0.

Hence we have κργ = λ.

Finally we consider the case of 0 < τγ <
√

1 − ρ2
γ. In this case, as ProjVλ

(γ̇),

ProjVµ
(γ̇) and ξ are linearly independent, we get

ργ(λ− κργ) = 0,

ργ(µ− κργ) = 0,

κργ − κρ3
γ − λτ 2

γ − µ(1 − ρ2
γ − τ 2

γ ) = 0,

Since λ 6= µ, we get ργ = 0 from the first two equalities. Hence we get λτ 2
γ + µ(1 −

τ 2
γ ) = 0. We here substitute principal curvatures to this condition. We have

0 = cot
(√c r

2

)
τ 2
γ − tan

(√c r
2

)
(1 − τ 2

γ ) =
τ 2
γ

sin
(√

c r
2

)
cos

(√
c r
2

) − tan
(√c r

2

)
,

which shows τ 2
γ = sin2

(√
c r/2

)
. As τγ ≥ 0, we get the conclusion. �

Corollary 7.6. For a given Sasakian magnetic field Fκ on a hypersurface of type

(A2) in CP n(c), we have at most three congruence classes of circular trajectories in

strong sense.

Corollary 7.7. Geodesic trajectories for non-trivial Sasakian magnetic fields on a

hypersurface of type (A2) in CP n(c) are congruent to each other in strong sense.

As we have cot
(√

c r/2
)
> tan

(√
c r/2

)
when 0 < r < π/(2

√
c) and cot

(√
c r/2

)
<

tan
(√

c r/2
)

when π/(2
√
c) < r < π/

√
c, the situation changes whether the radius r
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of tube is less than, equal to or greater than π/(2
√
c). Since the geodesic curvature

of a circular trajectory γ for Fκ is |κ|
√

1 − ρ2
γ , we obtain the following results.

Theorem 7.2. Let Fκ be a non-trivial Sasakian magnetic field on a tube T`(r) of

radius r (0 < r < π/(2
√
c)) around totally geodesic CP `(c) (1 ≤ ` ≤ n − 2) in

CP n(c).

(1) A trajectory γ for Fκ with ργ = 0 and τγ = sin(
√
c r/2) is circular. In this

case its geodesic curvature is |κ|.

(2) When 0 < |κ| ≤ (
√
c/2) tan(

√
c r/2), there are no circular trajectories for

Fκ other than those in (1).

(3) When (
√
c/2) tan(

√
c r/2) < |κ| ≤ (

√
c/2) cot(

√
c r/2), a trajectory for Fκ

is circular if and only if it satisfies either the condition in (1) or ργ =

−(
√
c/(2κ)) tan(

√
c r/2) and τγ = 0. In the latter case its geodesic curvature

is
√
κ2 − (c/4) tan2(

√
c r/2) .

(4) When |κ| > (
√
c/2) cot(

√
c r/2), a trajectory for Fκ is circular if and only if

it satisfies one of the following;

i) the condition in (1),

ii) ργ = −(
√
c/(2κ)) tan(

√
c r/2) and τγ = 0,

iii) ργ = (
√
c/(2κ)) cot(

√
c r/2) and τγ =

√
1 − ρ2

γ.

In the second case, its geodesic curvature is
√
κ2 − (c/4) tan2(

√
c r/2) , and

in the third case, its geodesic curvature is
√
κ2 − (c/4) cot2(

√
c r/2) .

Theorem 7.3. Let Fκ be a non-trivial Sasakian magnetic field on a tube T`(π/2
√
c)

(1 ≤ ` ≤ n− 2) in CP n(c).

(1) A trajectory γ for Fκ with ργ = 0 and τγ =
√

2/2 is circular. In this case its

geodesic curvature is |κ|.

(2) When 0 < |κ| ≤
√
c/2, there are no circular trajectories fot Fκ other than

those in (1).
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(3) When |κ| >
√
c/2, a trajectory for Fκ is circular if and only if it satisfies

one of the following;

i) the condition in (1),

ii) ργ = −
√
c/(2κ) and τγ = 0,

iii) ργ =
√
c/(2κ) and τγ =

√
1 − ρ2

γ.

In the second and the third cases its geodesic curvature is
√
κ2 − (c/4) .

Theorem 7.4. Let Fκ be a non-trivial Sasakian magnetic field on a tube T`(r) of

radius r (π/(2
√
c) < r < π/

√
c) around totally geodesic CP `(c) (1 ≤ ` ≤ n − 2) in

CP n(c).

(1) A trajectory γ for Fκ with ργ = 0 and τγ = sin(
√
c r/2) is circular. In this

case its geodesic curvature is |κ|.

(2) When 0 < |κ| ≤ (
√
c/2) cot(

√
c r/2), there are no circular trajectories for Fκ

other than those in (1).

(3) When (
√
c/2) cot(

√
c r/2) < |κ| ≤ (

√
c/2) tan(

√
c r/2), a trajectory for Fκ

is circular if and only if it satisfies either the condition in (1) or ργ =

(
√
c/2κ) cot(

√
c r/2) and τγ =

√
1 − ρ2

γ. In the latter case its geodesic cur-

vature is
√
κ2 − (c/4) cot2(

√
c r/2) .

(4) When |κ| > (
√
c/2) tan(

√
c r/2), a trajectory for Fκ is circular if and only if

it satisfies one of the following;

i) the condition in (1),

ii) ργ = −(
√
c/2κ) tan(

√
c r/2) and τγ = 0,

iii) ργ = (
√
c/2κ) cot(

√
c r/2) and τγ =

√
1 − ρ2

γ.

In the second case, its geodesic curvature is
√
κ2 − (c/4) tan2(

√
c r/2) , and

in the third case, its geodesic curvature is
√
κ2 − (c/4) cot2(

√
c r/2) .

With these theorems we can refine Corollary 7.6 by considering strengths of

Sasakian magnetic fields.
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By Proposition 7.3, in order to study features of trajectories we only need to

consider T1(r) in CP 3(c), which is real 5 dimensional. Therefore we find that tra-

jectories are at most of proper order 5 as Frenet curves. For more detail, we will

discuss in the forthcoming paper.



8. Extrinsic shapes of circular trajectories on geodesic spheres in CP n

When we study curves on a submanifold M in an ambient space M̃ , it is one of

basic ways to study these curves by looking them from M̃ . Let ι : M → M̃ be an

isometric immersion. For a curve γ on M we call the curve γ̃ = ι ◦ γ its extrinsic

shape. In order to simplify the notations we sometimes denote γ̃ also by γ.

In this section we study extrinsic shapes of circular trajectories on geodesic spheres

in a complex projective space CP n(c). Since it is known that every isometry ϕ of

a geodesic sphere G(r) in CP n(c) is equivariant, that is there is an isometry ϕ̃ of

CP n(c) satisfying ϕ̃ ◦ ι = ι ◦ ϕ with an isometric immersion ι : G(r) → CP n(c)

(Remark 7.1), and since every trajectory for a Sasakian magnetic field is Killing

(Corollary 7.2), we see the extrinsic shape of an arbitrary trajectory is also Killing.

We here study more detail on their extrinsic shapes of trajectories. To simplify our

calculation we first consider the case c = 4.

Proposition 8.1. Let G(r) be a geodesic sphere of radius r (0 < r < π/2) in

CP n(4).

(1) When π/4 < r < π/2, the extrinsic shape of circular F±1-trajectory is a

circle of geodesic curvature k1 =
√

1−cot2 r and of complex torsion τ12 =

∓
√

1−cot2 r.

(2) Otherwise, the extrinsic shape of circular Fκ-trajectory is an essential Killing

helix of proper order 4 which satisfies the condition (II) in Lemma 4.9. Its

geodesic curvatures are given as

k1 =
1

κ2

√
κ6 + (1−2κ2) cot2 r, k2 =

|κ2−1| cot r
√
κ2−cot2 r

κ2
√
κ6 + (1 − 2κ2) cot2 r

,

k3 =
κ2−cot2 r√

κ6 + (1−2κ2) cot2 r
.
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Proof. Since a circular Fκ-trajectory γ satisfies κργ = cot r and ργ 6= ±1, we see

Aγ̇ = (cot r)γ̇ − (ργ tan r)ξ = κργ γ̇ − κ−1ξ,

〈Aγ̇, γ̇〉 = cot r − ρ2
γ tan r = ργ(κ− κ−1).

Hence we have

∇̃γ̇ γ̇ = κφγ̇ + 〈Aγ̇, γ̇〉N = κ(Jγ̇ − ργN ) + ργ(κ− κ−1)N

= κJγ̇ − ργκ
−1N ,

with a unit normal vector field N on G(r) in CP n(4). Thus we obtain ∇̃γ̇ γ̇ = k1Y2

with

k1 =
√
κ2(1−ρ2

γ) + ρ2
γ(κ−κ−1)2 =

√
κ2−2ρ2

γ+κ
−2ρ2

γ (6= 0),

Y2 =
1

k1

(
κJγ̇ − ργκ

−1N
)
.

Continuing calculation we have

∇̃γ̇

(
κJγ̇ − ργκ

−1N
)

= −κ2γ̇ + ργκ
−1Aγ̇ + ργξ

= −(κ2−2ρ2
γ+κ

−2ρ2
γ)γ̇ + ργ(κ

−2−1)(ργ γ̇ − ξ).

When κ = ±1, which is the case that π/4 < r < π/2 and ργ = ± cot r, we have

k1∇̃γ̇ γ̇ = −(1 − ρ2
γ)γ̇, hence find that the extrinsic shape of γ is a circle of positive

geodesic curvature
√

1 − cot2 r. Otherwise we have k1∇̃γ̇Y2 = −k2
1γ̇ + k1k2Y3 with

k2 = k−1
1 |ργ(κ−2−1)|

√
1−ρ2

γ, Y3 =
sgn

(
ργ(κ

−2−1)
)√

1−ρ2
γ

(ργ γ̇ − ξ),

where, as usual, sgn(α) denotes the signature of a number α. By (3.2) we have

∇̃γ̇(ργ γ̇ − ξ) = ργ∇̃γ̇ γ̇ + ∇̃γ̇(JN ) = ργ
(
κJγ̇ − ργκ

−1N
)
− JAγ̇

= ργ
(
κJγ̇ − ργκ

−1N
)
− J

(
κργ γ̇ − κ−1ξ

)
= (1−ρ2

γ)κ
−1N .

Separating the component which is parallel to Y2 we have

∇̃γ̇(ργ γ̇ − ξ) = sgn
(
ργ(κ

−2−1)
)√

1−ρ2
γ (−k2Y2 + k2Y2) + (1−ρ2

γ)κ
−1N
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= −
ργ(κ

−2−1)(1−ρ2
γ)

k1

· 1

k1

(κJγ̇ − ργκ
−1N )

+
ργκ

−1(1−κ2)(1−ρ2
γ)

k2
1

(φγ̇ + ργN )

+
κ−1(1−ρ2

γ)

k2
1

{
ρ2
γ(1−κ−2) + k2

1

}
N

= −
ργ(κ

−2−1)(1−ρ2
γ)

k1

· 1

k1

(κJγ̇ − ργκ
−1N )

+
1−ρ2

γ

k2
1

{
−ργ(κ−κ−1)φγ̇ + κ(1−ρ2

γ)N
}
,

hence we obtain ∇̃γ̇Y3 = −k2Y2 + k3Y4 with

k3 = k−1
1 (1−ρ2

γ) (> 0), Y4 =
sgn

(
ργ(κ

−2−1)
)

k1

√
1−ρ2

γ

{
−ργ(κ−κ−1)φγ̇ + κ(1−ρ2

γ)N
}
.

Since we see

∇̃γ̇

{
−ργ(κ−κ−1)φγ̇ + κ(1−ρ2

γ)N
}

= ∇̃γ̇

{
−ργ(κ−κ−1)Jγ̇ + (κ−ρ2

γκ
−1)N

}
= −ργ(κ−κ−1)J

(
κJγ̇ − ργκ

−1N
)
− (κ−ρ2

γκ
−1)Aγ̇

= ργ(κ
2−1)γ̇ − ρ2

γ(1−κ−2)ξ − (κ−ρ2
γκ

−1)
(
κργ γ̇ − κ−1ξ

)
= −(1−ρ2

γ)(ργ γ̇ − ξ),

the extrinsic shape is a helix of proper order 4. In view of the Frenet frame

{γ̇, Y2, Y3, Y4} of the extrinsic shape, as they are formed by γ̇, Jγ̇,N , JN = −ξ,

we find that it lies on some totally geodesic CP 2. Therefore we see it is essential.

Moreover, as we have

k1 − k3 =
κ6 + (1−2κ2) cot2 r − κ2(κ2−cot2 r)

κ2
√
κ6 + (1−2κ2) cot2 r

=
(κ2−1)(κ4−cot2 r)

κ2
√
κ6 + (1−2κ2) cot2 r

=
(κ2−1)(κ2−ρ2

γ)

|κ|
√
κ4−2κ2ρ2

γ+ρ
2
γ

,

k2
2+(k1−k3)

2 =
(κ2−1)2(1−ρ2

γ)ρ
2
γ

κ2(κ4−2κ2ρ2
γ+ρ

2
γ)

+
(κ2−1)2(κ2−ρ2

γ)
2

κ2(κ4−2κ2ρ2
γ+ρ

2
γ)

2
= (κ−κ−1)2,
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we see

k1 − k3√
k2

2+(k1−k3)2
=

κ(κ−κ−1)(κ2−ρ2
γ)

|κ−κ−1| |κ|
√
κ4−2κ2ρ2

γ+ρ
2
γ

=
sgn(κ2 − 1)(κ2−ρ2

γ)√
κ4−2κ2ρ2

γ+ρ
2
γ

.

We hence find

τ12 = 〈γ̇, JY2〉 =
1

k1

〈γ̇, J
(
κJγ̇ − ργκ

−1N
)
〉 =

1

k1

〈γ̇,−κγ̇ + ργκ
−1ξ〉

=
sgn(κ) · (ρ2

γ−κ2)√
κ4−2κ2ρ2

γ + ρ2
γ

=
−sgn(κ−κ−1) · (k1−k3)√

k2
2 + (k1−k3)2

,

τ34 = 〈Y3, JY4〉 =
1

k1(1−ρ2
γ)

〈
ργ γ̇ − ξ, ργ(κ−κ−1)γ̇ − (κ− ρ2

γκ
−1)ξ

〉
=

|κ|(κ2−ρ2
γ)

κ
√
κ4−2κ2ρ2

γ+ρ
2
γ

=
sgn(κ) · (κ2−ρ2

γ)√
κ4−2κ2ρ2

γ+ρ
2
γ

=
sgn(κ−κ−1) · (k1−k3)√

k2
2 + (k1−k3)2

.

Therefore the extrinsic shape satisfies the condition (II) in Lemma 4.9 when it is of

proper order 4. �

Remark 8.1. When π/4 < r < π/2, by the above proof we find that the extrinsic

shape of a circular F±
√

cot r-trajectory has the complex torsions τ12 = τ34 = 0,

because κργ = cot r. Hence we can conclude that it is a moderate Killing helix. That

is, an essential Killing helix whose complex torsions satisfy τ12 = τ13 = τ24 = τ34 = 0

and τ23 = −τ14 = 1.

In order to study trajectories on geodesic spheres in CP n(c), it is useful to make

use of homothetical changes of metrics. Let (M, 〈 , 〉) be a Riemannian manifold.

Another Riemannian metric 〈 , 〉′ is said to be homothetic to 〈 , 〉 if there is a

positive α satisfying 〈 , 〉′ = α2〈 , 〉, and is said to be conformal to 〈 , 〉 if there is a

positive function α : M → R satisfying 〈 , 〉′p = α(p)2〈 , 〉p at each point p ∈M . In

the rest of this section, we use the symbol “ ′ ” to show that the object corresponds

to the metric 〈 , 〉′. For example, we denote by ∇′ the Riemannian connection

associated with 〈 , 〉′

By using Christoffel’s symbols, we obtain the following by direct computation.
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Lemma 8.1. Suppose 〈 , 〉′ is conformal to 〈 , 〉 (i.e. 〈 , 〉′ = α2〈 , 〉 with some

positive function α). If we put β = logα, we have

∇′
XY = ∇XY + (Xβ)Y − 〈X,Y 〉∇β.

In particular, if 〈 , 〉′ is homothetic to 〈 , 〉, we have ∇′
XY = ∇XY .

Lemma 8.2. Suppose two Riemannian metrics 〈 , 〉 and 〈 , 〉′ on a manifold M are

homothetic (〈 , 〉′ = α2〈 , 〉).

(1) For a smooth curve γ : I → M , its lengths satisfy length′(γ) = α length(γ).

In particular, distance functions satisfy d′M = α dM .

(2) For an arbitrary 2-plane ∆ in TM , its sectional curvatures satisfy Riem′(∆)

= α−2 Riem(∆).

Proof. (1) By the definition we have

length′(γ) =

∫
I

∥∥∥dγ
dt

(t)
∥∥∥′
dt =

∫
I

α
∥∥∥dγ
dt

(t)
∥∥∥ dt = α length(γ).

(2) We take an orthonormal vectors {v, w} with respect to 〈 , 〉 which span

∆. Then the vectors {α−1v, α−1w} are orthonormal with respect to 〈 , 〉′. Since

curvature tonsors R and R′ with respect to 〈 , 〉 and 〈 , 〉′ satisfy R′ = R by Lemma

8.1, we have

Riem′(∆) = 〈R′(α−1v, α−1w)α−1w, α−1v〉′ = α2〈R(α−1v, α−1w)α−1w,α−1v〉

= α−2〈R(v, w)w, v〉 = α−2Riem(∆)

by multilinearity of curvature tensors. �

Lemma 8.3. Suppose two Riemannian metrics 〈 , 〉 and 〈 , 〉′ on a manifold M

are homothetic (〈 , 〉′ = α2〈 , 〉). If γ is a helix of proper order d with respect to

〈 , 〉, then the curve σ given by σ(s) = γ(s/α) is also a helix of proper order d with

respect to 〈 , 〉′. Their geodesic curvatures satisfy k′j = kj/α for j = 1, . . . , d−1.

When M is a Kähler manifold, their complex torsions satisfy τ ′ij = τij for 1 ≤ i <

j ≤ d.
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Proof. As we have
dσ

ds
=
dt

ds

dγ

dt
, where t = s/α, we see∥∥∥dσ

ds

∥∥∥′
= α

∥∥∥dσ
ds

∥∥∥ = α
∥∥∥ 1

α

dγ

dt

∥∥∥ =
∥∥∥dγ
dt

∥∥∥ = 1,

hence find that σ is parameterized by its arclength with respect to 〈 , 〉′. Let

{Y1 = γ̇, Y2, . . . , Yd} be the Frenet frame of γ. Then {α−1Y1, α
−1Y2, . . . , α

−1Yd} are

orthonomal with respect to 〈 , 〉′, where α−1Y1 means
dσ

ds
. By Lemma 8.1 we obtain

∇′
α−1Y1

(
α−1Yj

)
= α−2∇′

γ̇Yj = α−2∇γ̇Yj = α−2
(
−kj−1Yj−1 + kjYj+1

)
= −(kj−1/α)α−1Yj−1 + (kj/α)α−1Yj+1.

We hence get k′j = kj/α.

When M is a Kähler manifold, we have

τ ′ij = 〈Y ′
i , Y

′
j 〉′ = α2〈α−1Yi, α

−1Yj〉 = 〈Yi, Yj〉 = τij.

This complete the proof. �

Lemma 8.4. Let M be a hypersurface of M̃ . Suppose two Riemannian metrics

〈 , 〉 and 〈 , 〉′ on M̃ are homothetic. If we consider induced metrics on M , shape

operators AM and A′
M with respect to them satisfy A′

M = α−1AM . In particular,

principal curvatures with respect to 〈 , 〉′ are α−1-times of principal curvatures with

respect to 〈 , 〉

Proof. By Lemma 8.1 we find that their second fundamental forms coincide:

σ′
M(X, Y ) = ∇̃′

XY −∇′
XY = ∇̃XY −∇XY = σM(X,Y )

holds for arbitrary vector fields X, Y on M . We take a unit normal N of M with

respect to 〈 , 〉. Then α−1N is a unit normal with respect to 〈 , 〉′. We hence have

〈A′
Mv, w〉′ = 〈σ′

M(v, w), α−1N〉′ = α〈σM(v, w),N〉 = α〈AMv, w〉 = 〈α−1AMv, w〉′

for arbitrary v, w ∈ TpM at each point p ∈M . We hence get A′
M = α−1AM . �
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We now study on geodesic spheres in CP n(c). Let γ be a trajectory for a Sasakian

magnetic field Fκ on a geodesic sphereG(r) in CP n(c). On CP n(c) we consider a new

metric 〈 , 〉′ = (c/4)〈 , 〉, which is homothetic to the original metric. By Lemma 8.2,

holomorphic sectional curvatures are 4 and radius of the geodesic sphere is
√
c r/2

with respect to the new metric. If we define a curve σ by σ(s) = γ
(
2t/

√
c
)
, it is a

trajectory for a Sasakian magnetic field F ′
2κ/

√
c

with respect to the new metric by

Lemmas 3.2 and 8.1. If we put N ′ = (2/
√
c)N , it is a unit normal with respect to

the new metric. Thus we find

ρσ =
〈dσ
ds
,−JN ′

〉′
=
c

4

〈 2√
c

dγ

dt
,− 2√

c
JN

〉
=

〈dγ
dt
,−JN

〉
= ργ.

Since geodesic curvatures kj of the extrinsic shape of γ satisfy kj = (
√
c/2)k′j with

the geodesic curvatures k′j of the extrinsic shape of σ by Lemma 8.3, and since

we have properties of the extrinsic shape of σ by Proposition 8.1, we obtain the

following.

Proposition 8.2. Let G(r) be a geodesic sphere of radius r (0 < r < π/
√
c) in

CP n(c).

(1) When π/(2
√
c) < r < π/

√
c, the extrinsic shape of a circular F±

√
c/2-

trajectory is a circle of geodesic curvature k1 =
√
c
{
1−cot2(

√
c r/2)

}/
2 and

of complex torsion τ12 = ∓
√

1−cot2(
√
c r/2).

(2) Otherwise, the extrinsic shape of a circular Fκ-trajectory is an essential

Killing helix of proper order 4 which satisfies the condition (II) in Lemma

4.9. Its geodesic curvatures are given as

k1 =
1

8κ2

√
64κ6 + c2(c− 8κ2) cot2(

√
c r/2),

k2 =
c|4κ2−c| cot(

√
c r/2)

√
4cκ2−c2 cot2(

√
c r/2)

8κ2
√

64κ6 + c2(c− 8κ2) cot2(
√
c r/2)

,

k3 =
c(4κ2−c cot2(

√
c r/2))

2
√

64κ6 + c2(c− 8κ2) cot2(
√
c r/2)

.
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Proof. We here make clear our computation. We take a trajectory γ for a Sasakian

magnetic field Fκ on G(r) in CP n(c). We consider a new metric 〈 , 〉′ = (c/4)〈 , 〉,

which is homothetic to the original one. If we consider a curve σ given by σ(s) =

γ
(
2t/

√
c
)
, it is a trajectory for a Sasakian magnetic field F ′

2κ/
√
c
with respect to the

new metric. With respect to this new metric the radius of the geodesic sphere G(r)

is r′ =
√
c r/2. That is, it can be seen as G′(

√
c r/2) in CP n(4).

When κ′ = 2κ/
√
c = ±1, that is when κ = ±

√
c/2, the extrinsic shape of the

trajectory σ is a circle of geodesic curvature k′1 =
√

1−cot2(
√
c r/2) with respect to

〈 , 〉′ by Proposition 8.1. We therefore find that the extrinsic shape of γ is a circle

of geodesic curvature k1 = (
√
c/2)k′1 =

√
c{1−cot2(

√
c r/2)}/2.

When κ′ = 2κ/
√
c 6= ±1, the extrinsic shape of σ is an essential Killing helix of

proper order 4 with geodesic curvatures

k′1 = κ′−2

√
κ′6 + (1−2κ′2) cot2(

√
c r/2),

k′2 =
|κ′2−1| cot(

√
c r/2)

√
κ′2−cot2(

√
c r/2)

κ′2
√
κ′6 + (1 − 2κ′2) cot2(

√
c r/2)

,

k′3 =
κ′2−cot2(

√
c r/2)√

κ′6 + (1−2κ′2) cot2(
√
c r/2)

with respect to the new metric. Therefore we find that the extrinsic shape of γ is

an essential Killing helix of proper order 4 of geodesic curvatures

k1 =

√
c

2
k′1 =

√
c

2

c

4κ2

√
64κ6

c3
+

(
1 − 8κ2

c

)
cot2(

√
c r/2),

k2 =

√
c

2
k′2 =

√
c

2

∣∣∣4κ2

c
− 1

∣∣∣ cot(
√
c r/2)

√
4κ2

c
− cot2(

√
c r/2)

4κ2

c

√
64κ6

c3
+

(
1 − 8κ2

c

)
cot2(

√
c r/2)

,

k3 =

√
c

2
k′3 =

√
c

2

4κ2

c
− cot2(

√
c r/2)√

64κ6

c3
+

(
1 − 8κ2

c

)
cot2(

√
c r/2)

.

Since complex torsions stay invariant under the homothetic change of metrics, we

get the conclusion �
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Table 5. Homothetic change of metrics and correspondence of geo-
metric datas

———————————————————————————————————(
CP n, 〈 , 〉

)
−→

(
CP n, 〈 , 〉′

)
holomorphic sectional curvature c 4

a geodesic sphere G(r) = G′(√c r/2)
trajectory γ for Fκ σ for F ′

2κ/
√
c

geometric datas kj k′j = (2/
√
c)kj

length(γ) length′(σ) = (
√
c/2)length(γ)

———————————————————————————————————

For about extrinsic shapes of trajectories for Sasakian magnetic fields on a real

hypersurface of type (A2) in CP n(c), we find that they are Killing helices of order at

most 6 by Corollary 7.5 and by the fact that every isometry of a real hypersurface

of type (A2) is equivariant. But for more detail we will discuss in the forthcoming

paper. We here only note that we have a corresponding result on geodesics on

hypersurfaces of type (A2) in CP n given by Adachi[4].



9. Length of circular trajectories on geodesic spheres in CP n

In this section we study whether circular trajectories on a geodesic sphere in

CP n(c) are closed or not. A smooth curve γ parameterized by its arclength on a

Riemannian manifold is said to be closed it there is a positive constant tc satisfying

γ(t) = γ(t + tc) for all t. The minimum positive tc with this property is called the

length of γ and is denoted by length(γ). When a smooth curve is not closed we say

it is open and set length(γ) = ∞. Our goal in this section is to show the following.

Theorem 9.1. Let G(r) be a geodesic sphere of radius r (0<r<π/
√
c) in a complex

projective space CP n(c) of constant holomorphic sectional curvature c. A circular

trajectory γ for a Sasakian magnetic field Fκ on G(r) satisfies the following:

(1) When π/2
√
c < r < π/

√
c and κ2 = c

{
3
√

2{cot2(
√
c r/2)+1}−4

}/
8, it is

closed and its length is 4π
√

(1/c) sin(
√
c r/2)

{
3
√

2−4 sin(
√
c r/2)

}
.

(2) Otherwise, γ is closed if and only if

(2κ2+c)
∣∣32κ4+32cκ2−c2

(
9 cot2(

√
c r/2)+1

)∣∣{
16κ4+16cκ2−c2

(
3 cot2(

√
c r/2)−1

)}3/2
=

q(9p2−q2)

(3p2+q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q. In

this case its length is given as

4πδ(p, q)|κ|
√

(3p2+q2)/
{
16κ4+16cκ2−c2

(
3 cot2(

√
c r/2)−1

)}
,

where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.

9.1. Relation of connections. In order to study curves on CP n(4), it is one of

natural ways to make use of a Hopf fibration $ : S2n+1(1) → CP n(4). As S2n+1(1)

is contained in Cn+1, it connects the geometry of complex projective spaces with the

geometry of complex Euclidean spaces. Let N̂ denote the outward unit normal of

S2n+1(1) in Cn+1. We denote by ∇̂ and ∇ the Riemannian connections on S2n+1(1)

and Cn+1, respectively. We also denote by ∇̃ the Riemannian connection on CP n(4).
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Lemma 9.1. Let X, Y ∈ X (CP n(4)) be vector fields on CP n(4). If we regard them

as horizontal vector fields on S2n+1(1), we have the following:

(9.1) ∇XY = ∇̃XY − 〈X,Y 〉N̂ + 〈X, JY 〉JN̂ ,

where N̂ denotes the outward unit normal vector field on S2n+1 in Cn+1.

Proof. We first consider the relationship between the Riemannian connections ∇ on

Cn+1 and ∇̂ on S2n+1(1). Since S2n+1(1) is a real hypersurface, its shape operator

is quite simple. They are related as ∇̂X̂ Ŷ = ∇X̂ Ŷ − 〈∇X̂ Ŷ , N̂ 〉N̂ for vector fields

X̂, Ŷ on S2n+1(1), As we have N̂ẑ = (ẑ, ẑ) ∈ {ẑ} × Cn+1 at ẑ ∈ S2n+1, we have

〈∇X̂ Ŷ , N̂ 〉 = ∇X̂〈Ŷ , N̂ 〉 − 〈Ŷ ,∇X̂N̂ 〉 = −〈Ŷ , X̂〉,

we find

(9.2) ∇X̂ Ŷ = ∇̂X̂ Ŷ − 〈X̂, Ŷ 〉N̂ .

Next, we study the relationship between the connections ∇̂ on S2n+1(1) and ∇̃

on CP n(4). As we see in §2.2, the vertical part of the tangent space TẑS
2n+1 at

ẑ is generated by JN̂ẑ = (ẑ,
√
−1ẑ). Hence they are related as ∇̃XY = ∇̂XY −

〈∇̂XY, JN̂ 〉JN̂ for vector fields X,Y on CP n(4), which are regarded as horizontal

vector fields on S2n+1(1), because the horizontal lift of ∇̃XY does not have vertical

component. Since we have

〈∇̂XY, JN̂ 〉 = ∇̂X〈Y, JN̂ 〉 − 〈Y, ∇̂X(JN̂ )〉 = −
〈
Y,∇X(JN̂ ) + 〈X, JN̂ 〉N̂

〉
= −〈Y, J∇XN̂ 〉 = −〈Y, JX〉 = 〈X, JY 〉,

we obtain

(9.3) ∇̂XY = ∇̃XY + 〈X, JY 〉JN̂ .

Combining these relations (9.2) and (9.3) we get the conclusion. �

As a consequence of this relationship between connections, we have an explicit

expression of geodesics on CP n(4).
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Corollary 9.1. On CP n(4), a geodesic γ with γ(0) = $(ẑ) and γ̇(0) = d$
(
(ẑ, û)

)
is given as γ(t) = $

(
ẑ cos t+ û sin t

)
. Here, we take (ẑ, û) horizontal.

Proof. Let γ̂ be a horizontal lift of γ. Regarding this curve as a curve in Cn+1, we find

it satisfies ∇ ˙̂γ
˙̂γ = −N̂γ̂ by Lemma 9.1. On S2n+1 in Cn+1, we can identify the position

vector with outward unit normal at that point. Therefore this differential equation

can be written as γ̂′′ + γ̂ = 0. Solving this equation, we get the conclusion. �

9.2. Review of circles on CP n(4). In order to show Theorem 9.1 we here recall

the result on lengths of circles on CP n(4) due to T. Adachi and S. Maeda.

Lemma 9.2 (Adachi-Maeda[10]). Let σ be a circle of geodesic curvature 1/
√

2 and of

complex torsion τ (0 ≤ |τ | < 1) on CP n(4). We denote by aτ , bτ , cτ (aτ < bτ < cτ )

the three distinct real solutions of the cubic equation

(9.4) Θ3 − 3

2
Θ +

τ√
2

= 0.

If one of the ratios bτ/aτ , cτ/bτ , aτ/cτ is rational, hence equivalently if all of these

ratios are rational, then the curve σ is closed with length 2π×L.C.M.
{
(bτ−aτ )−1, (cτ−

bτ )
−1

}
. Here, L.C.M.(α, β) for positive α, β denotes the least common multiple of

α, β, which is the minimum of the set {mα | m = 1, 2, . . .} ∩ {mβ | m = 1, 2, . . .}.

Proof. As σ satisfies

∇̃σ̇σ̇ =
1√
2
Y, ∇̃σ̇Y = − 1√

2
σ̇,

we have by (9.1) that its horizontal lift σ̂ satisfies

∇ ˙̂σ
˙̂σ =

1√
2
Y − N̂ , ∇ ˙̂σY = − 1√

2
˙̂σ + τJN̂ .

Therefore we find that it satisfies

∇ ˙̂σ∇ ˙̂σ
˙̂σ =

1√
2
∇ ˙̂σY −∇ ˙̂σN̂ = −1

2
˙̂σ +

τ√
2
JN̂ − ˙̂σ,
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which is equivalent to

σ̂′′′ +
3

2
σ̂′ −

√
−1

τ√
2
σ̂ = 0

as a curve in Cn+1. Its characteristic equation is

Λ3 +
3

2
Λ−

√
1

2
τ = 0.

In order to realize it, if we put Θ = −
√
−1Λ, we then obtain (9.4).

Since |τ | < 1, we find that this cubic equation (9.4) have three distinct solutions

by considering the differential of its left hand side with respect to Θ. By use of these

solutions aτ , bτ , cτ (aτ < bτ < cτ ) we have σ̂(t) = Aτe
√
−1aτ t+Bτe

√
−1bτ t+Cτe

√
−1cτ t.

with some Aτ , Bτ , Cτ ∈ Cn+1 defined by σ̂(0), ˙̂σ(0) and horizontal lift of Y (0). Since

τ 6= ±1, and since ˙̂σ(0) and horizontal lift of Y (0) are orthogonal to both σ̂(0) and

Jσ̂(0), we find that they are linearly independent over C. As σ is closed if and only

if
Aτe

√
−1aτ (t+t0) +Bτe

√
−1bτ (t+t0) + Cτe

√
−1cτ (t+t0)

= e
√
−1θ(t)

{
Aτe

√
−1aτ t +Bτe

√
−1bτ t + Cτe

√
−1cτ t

}
with some θ(t) ∈ R, linearly independency of {Aτ , Bτ , Cτ} shows that it is equivalent

to 
e
√
−1aτ (t+t0) = e

√
−1(aτ t+θ(t)),

e
√
−1bτ (t+t0) = e

√
−1(bτ t+θ(t)),

e
√
−1cτ (t+t0) = e

√
−1(cτ t+θ(t)),

hence to


e
√
−1aτ t0 = e

√
−1θ(t),

e
√
−1bτ t0 = e

√
−1θ(t),

e
√
−1cτ t0 = e

√
−1θ(t),

Clearly, it is equivalent to e
√
−1(bτ−aτ )t0 = e

√
−1(cτ−aτ )t0 = 1. Thus we obtain that σ

is closed if and only if (bτ − aτ )t0 ∈ 2πZ and (cτ − aτ )t0 ∈ 2πZ, which is equivalent

to the condition that (cτ −aτ )/(bτ −aτ ) is rational. Since the coefficient of the term

Θ2 is zero, we have aτ + bτ + cτ = 0, hence we see

cτ − aτ
bτ − aτ

= −1 − 3aτ
bτ − aτ

= −1 − 3

(bτ/aτ ) − 1
.

Thus (cτ −aτ )/(bτ −aτ ) is rational if and only if bτ/aτ is rational. Again as we have

aτ + bτ + cτ = 0, we find one of bτ/aτ , cτ/bτ , aτ/cτ is rational if and only if all of
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them are rational. Since the length of closed σ satisfies (bτ − aτ )length(σ) ∈ 2πZ

and (cτ − aτ )length(σ) ∈ 2πZ, we get the conclusion. �

This Lemma 9.2 gives an arithmetic condition on circles to be closed. On the other

hand, we can fortunately obtain all circles of geodesic curvature 1/
√

2 geometrically.

We consider a parallel embedding S1 × Sn−1/∼→ CP n(4) defined by

(
e
√
−1θ, a1, . . . , an

)
7→ $



(
e−2

√
−1θ/3 + 2a1e

√
−1θ/3

)/
3

√
2
(
e−2

√
−1θ/3 − a1e

√
−1θ/3

)/
3

√
−1(2/

√
6) a2e

√
−1θ/3

...√
−1(2/

√
6) ame

√
−1θ/3


with a Hopf fibration $ : S2n+1(1) → CP n(4). Here ∼ denotes the equivalence rela-

tion obtained by identifying two points (e
√
−1θ, a1, . . . , an) and (−e

√
−1θ,−a1, . . . ,−an)

on S1 × Sn−1. The metric on S1 × Sn−1/∼ is induced by the metric

〈(u1, v1), (u2, v2)〉 =
2

9
〈u1, u2〉S1 +

2

3
〈v1, v2〉Sn−1

for (u1, v1), (u2, v2) ∈ T(p1,p2)(S
1 × Sn−1) ∼= Tp1S

1 × Tp2S
n−1 defined with standard

metrics on S1 and Sn−1. As was shown by Naitoh[40], the second fundamental form

σS1×Sn−1 of this embedding is expressed as
σS1×Sn−1(u, u) = −(1/

√
2)Ju,

σS1×Sn−1(u, v) = (1/
√

2)Jv,

σS1×Sn−1(v, v) = (1/
√

2)Ju

for an arbitrary unit tangent vector v ∈ TSn−1 and the normalized vector u of ∂/∂θ.

geodesics on S1 × Sn−1/∼ are mapped to circles of geodesic curvature 1/
√

2 on

CP n(4). By the definition of the metric on S1 × Sn−1/∼ we have the following:

Proposition 9.1 (Adachi-Maeda[10], Adachi-Maeda-Udagawa[13]). A circle of geo-

desic curvature 1/
√

2 and of complex torsion τ on CP n(4) has the following properties:

(1) If τ = ±1, it is closed of length 2
√

2π/3.
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(2) If τ = 0, it is closed of length 2
√

6π/3.

(3) If 0 < |τ | < 1, it is closed if and only if τ = ±q(9p2 − q2)(3p2 + q2)−3/2 holds

with some relatively prime positive integers p, q (p > q). In this case, its

length is given as πδ(p, q)
√

2(3p2+q2)/3, where δ(p, q) = 1 when pq is odd

and δ(p, q) = 2 when pq is even.

9.3. Length of closed circular trajectories on CP n. We are now in the position

to show Theorem 9.1. For the sake of simplicity we first consider the case c = 4.

Lemma 9.3. Let γ be a circular trajectory γ on a geodesic sphere G(r) in CP n(4).

Let aκ, bκ, cκ (aκ<bκ<cκ) be three distinct solutions of the cubic equation

(9.5) Θ3 − (κ−κ−1)Θ2 − (2−ρ2
γ)Θ − (1 − ρ2

γ)κ
−1 = 0

Then, γ is closed if and only if there exists a constant dκ satisfying that all of the

ratios

(aκ−dκ)/(bκ−dκ), (bκ−dκ)/(cκ−dκ), (cκ−dκ)/(aκ−dκ)

are rational. In this case, its length is 2π×L.C.M.
{
(bκ−aκ)−1, (cκ−bκ)−1

}
.

Proof. By Proposition 8.1 the extrinsic shape of γ is either a circle or an essentially

Killing helix of proper order 4. We take a horizontal lift γ̂ of the extrinsic shape of

γ with respect to a Hopf fibration $ and regard it as a curve in Cn+1.

We first consider the latter case that the extrinsic shape of γ is an essentially

Killing helix of proper order 4. In this case it is determined by the differential

equations

∇̃γ̇ γ̇ = k1Y2, ∇̃γ̇Y2 = −k1γ̇ + k2Y3,

and the equations ∇̃γ̇Y3 = −k2Y2 + k3Y4, ∇̃γ̇Y4 = −k3Y3 are auxiliary (see Lemma

4.9 and also see Adachi[6]). We hence consider the first two equations. By use of
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(9.1) and Lemma 4.9 and Proposition 8.1, we find that its horizontal lift γ̂ satisfies
∇ ˙̂γ

˙̂γ = k1Y2 − N̂ ,

∇ ˙̂γY2 = −k1
˙̂γ + k2Y3 + τ12JN̂

= −k3
˙̂γ + sgn(κ− κ−1)

√
k2

2 + (k1−k3)2JY2 + τ12JN̂ .

Since we have

k1 =
1

|κ|

√
κ4−2κ2ρ2

γ+ρ
2
γ, k3 = (1−ρ2

γ)/k1,

sgn(κ− κ−1)
√
k2

2 + (k1−k3)2 = κ− κ−1, τ12 =
ργ

2 − κ2

κk1

,

by the proof of Proposition 8.1, we obtain

∇ ˙̂γ∇ ˙̂γ
˙̂γ = k1∇ ˙̂γY2 − ˙̂γ

= −(k1k3+1) ˙̂γ + k1(κ−κ−1)JY2 + κ−1(ρ2
γ − κ2)JN̂

= −(2 − ρ2
γ)

˙̂γ + (κ−κ−1)J
(
∇ ˙̂γ

˙̂γ + N
)

+ κ−1(ρ2
γ − κ2)JN̂

= −(2 − ρ2
γ)

˙̂γ + (κ−κ−1)J∇ ˙̂γ
˙̂γ + κ−1(ρ2

γ − 1)JN̂ .

Thus we obtain that it satisfies the following differential equation

(9.6) γ̂′′′ −
√
−1(κ−κ−1)γ̂′′ + (2−ρ2

γ)γ̂
′ +

√
−1(1 − ρ2

γ)κ
−1γ̂ = 0.

Next we consider the case that the extrinsic shape of γ is a circle. In this case

κ = ±1. If we consider its horizontal lift γ̂, then it satisfies

∇ ˙̂γ
˙̂γ = k1Y2 − N̂ , ∇ ˙̂γY2 = −k1

˙̂γ + τ12JN̂

with k1 =
√

1−cot2 r, τ12 = ∓
√

1−cot2 r. We therefore obtain

∇ ˙̂γ∇ ˙̂γ
˙̂γ = k1∇ ˙̂γY2 − ˙̂γ = −(k2

1 + 1) ˙̂γ + k1τ12JN̂ = −(2−cot2 r) ˙̂γ ∓ (1−cot2 r)JN̂ .

Since we have κ = ±1, hence have ρ2
γ = cot2 r, we find it also satisfies (9.6).

We here consider the characteristic equation of the linear differential equation

(9.6) of constant coefficients, which is given by

Λ3 −
√
−1(κ−κ−1)Λ2 + (2−ρ2

γ)Λ+
√
−1(1 − ρ2

γ)κ
−1 = 0.
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In order to realize it, we put Θ = −
√
−1Λ, then obtain (9.5). Since γ̂ lies on

S2n+1(1), the cubic equation (9.5) should have three distinct real solutions, otherwise

γ̂ is unbounded. By use of these solutions aκ, bκ, cκ we find that a horizontal lift γ̂

on S2n+1 in Cn+1 is of the form

γ̂(t) = Aκe
√
−1aκt+Bκe

√
−1bκt+Cκe

√
−1cκt

with some Aκ, Bκ, Cκ ∈ Cn+1. These Aκ, Bκ, Cκ are determined by γ̂(0), ˙̂γ(0) and

Y2(0). Here, we consider Y2(0) as its horizontal lift. The complex torsion satisfies

τ12 6= ±1 because
(
κ4 − 2κ2ρ2

γ + ρ2
γ

)
− (κ2 − ρ2

γ)
2 = ρ2

γ(1 − ρ2
γ) 6= 0. Here we used

the property that 0 < |ργ| < 1 for a circular trajectory γ. Since ˙̂γ(0) and Y2(0) are

orthogonal to both γ̂(0) and Jγ̂(0), with the aid of τ12 6= ±1, we find Aκ, Bκ, Cκ are

linearly independent over C. Hence by the same argument as in the proof of Lemma

9.2, we find that γ is closed if and only if there exists a constant dκ satisfying that

all of the ratios

(aκ−dκ)/(bκ−dκ), (bκ−dκ)/(cκ−dκ), (cκ−dκ)/(aκ−dκ)

are rational, and that its length in this case is 2π×L.C.M.
{
(bκ−aκ)−1, (cκ−bκ)−1

}
. �

We shall transplant the result on circles on CP n(4) to our trajectories. To do

this we modify the cubic equation (9.5) by changing the variable. First we make a

parallel translation by putting Θ1 = Θ − 1
3
(κ−κ−1). We then find that (9.5) turns

to

Θ3
1 −

1

3
(κ2+κ−2+4−3ρ2

γ)Θ1 −
1

27

(
2κ3+12κ−9κρ2

γ+15κ−1−18κ−1ρ2
γ−2κ−3

)
= 0.

Next we make the coefficient of degree one of this cubic equation to be 3/2 by putting

ϑ =
(
3
/√

2(κ2+κ−2+4−3ρ2
γ)

)
Θ1. We should note that κ2+κ−2+4−3ρ2

γ > 0 because

|ργ| < 1. Thus by putting

ϑ =
(
3Θ−κ+κ−1

)
/
√

2(κ2+κ−2+4−3ρ2
γ),
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we find the equation (9.5) turns to

(9.7) ϑ3 − 3

2
ϑ−

sgn(κ)·(κ2+2){2κ4+(8−9ρ2
γ)κ

2−1}
2
√

2(κ4+4κ2−3ρ2
γκ

2+1)3/2
= 0.

We set

τ(κ; r) = −
sgn(κ)·(κ2+2){2κ4+(8−9ρ2

γ)κ
2−1}

2(κ4+4κ2−3ρ2
γκ

2+1)3/2
.

Here, as we have

4(κ4+4κ2−3ρ2
γκ

2 + 1)3 − (κ2+2)2{2κ4+(8−9ρ2
γ)κ

2 − 1}2

= 27κ8 + 18(16+7ρ2
γ−3ρ6

γ)κ
6 + 4{7+54ρ2

γ(1−ρ2
γ)}κ4 + 108(1−ρ2

γ) > 0,

we obtain |τ(κ; r)| < 1. This guarantees that the equality (9.5) has three distinct

real solutions directly.

We now compare (9.7) and (9.4). By use of the solutions aτ , bτ , cτ (aτ < bτ < cτ )

for (9.4) with τ = τ(κ; r), the change of variables of Θ to ϑ shows that

aκ =
(
aτ

√
2(κ2+κ−2+4−3ρ2

γ) + κ−κ−1
)/

3,

bκ =
(
bτ

√
2(κ2+κ−2+4−3ρ2

γ) + κ−κ−1
)/

3,

cκ =
(
cτ

√
2(κ2+κ−2+4−3ρ2

γ) + κ−κ−1
)/

3.

Thus by putting dκ = (κ− κ−1)/3 we find

aκ − dκ
bκ − dκ

=
aτ
bτ
,

bκ − dκ
cκ − dκ

=
bτ
cτ
,

cκ − dκ
aκ − dκ

=
cτ
aτ
.

Therefore, we find that γ is closed if and only if a circle σ of geodesic curvature

1/
√

2 and of complex torsion τ(κ; r) on CP n(4) is closed. Moreover, in this case, we

obtain

length(γ) = 2π×L.C.M.
{
(bκ−aκ)−1, (cκ−bκ)−1

}
= 2π×L.C.M.

{
(bτ−aτ )−1, (cτ−bτ )−1

}
× 3{2(κ2+κ−2+4−3ρ2

γ)}−1/2

= 3 length(σ)
/√

2(κ2+κ−2+4−3ρ2
γ).
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First we consider the case that τ(κ; r) = ±q(9p2−q2)(3p2+q2)−3/2. By Proposition

9.1 we find that this circular trajectory γ is closed and that its length is given by

1

3
πδ(p, q)

√
2(3p2+q2) × 3√

2{κ2 + (1 − 3 cot2 r)κ−2 + 4}

= πδ(p, q)

√
3p2+q2

κ2 + (1 − 3 cot2 r)κ−2 + 4
.

We next consider the case corresponding to the case of τ = 0. Clearly we have

τ(κ; r) = 0 if and only if 2κ4 + 8κ2 − 9 cot2 r − 1 = 0, because κργ = cot r. The

solution of this equation 2κ4 + 8κ2 − 9 cot2 r − 1 = 0 is

κ2 =
(
3
√

2(cot2 r+1)−4
)/

2 =
(
3
√

2(sin r)−1−4
)/

2.

(We note that 3
√

2/4 > 1.) Since the condition κργ = cot r shows |κ| > cot r, we

have to check whether this occurs. As we see
(
3
√

2(sin r)−1−4
)/

2 > cot2 r if and

only if (2 cot2 r+1)(cot2 r−1) < 0, we find that there is κ satisfying τ(κ; r) = 0

when π/4 < r < π/2. Thus we have τ(κ; r) = 0 if and only if π/4 < r < π/2 and

κ2 =
(
3
√

2(sin r)−1−4
)/

2.

In this case γ is closed and is of length

2
√

6

3
π × 3√

2{κ2 + (1 − 3 cot2 r)κ−2 + 4}
=

2
√

6π|κ|√
9 cot2 r+1 + 2(1−3 cot2 r)

=
2
√

2π

cot2 r+1
×

√(
3
√

2(sin r)−1−4
)/

2 = 2π

√
sin r(3

√
2−4 sin r).

Therefore we have proved the following.

Theorem 9.2. Let γ be a circular Fκ-trajectory on a geodesic sphere G(r) of radius

r (0<r<π/2) in CP n(4).

(1) When π/4< r < π/2 and κ2 =
(
3
√

2(cot2 r+1)−4
)/

2, it is closed and its

length is 2π
√

sin r
(
3
√

2−4 sin r
)
.

(2) Otherwise, γ is closed if and only if

(κ2+2)
∣∣2κ4+8κ2−9 cot2 r−1

∣∣
2(κ4+4κ2−3 cot2 r+1)3/2

=
q(9p2−q2)

(3p2+q2)3/2
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holds with some relatively prime positive integers p, q satisfying p > q. In

this case, its length is given as πδ(p, q)|κ|
√

(3p2+q2)/(κ4+4κ2−3 cot2 r+1),

where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.

In order to study trajectories on geodesic spheres in a general complex projective

space CP n(c), we make use of homothetic changes of metrics.

Proof of Theorem 9.1. Let γ be a circular trajectory for a Sasakian magnetic field

Fκ on a geodesic sphere G(r) in CP n(c). As was mentioned in §8, on CP n(c) we

consider a new metric 〈 , 〉′ = (c/4)〈 , 〉. Then holomorphic sectional curvatures are

4 and the radius of the geodesic sphere is
√
c r/2 with respect to the new metric. If

we define a curve σ by σ(s) = γ
(
2t/

√
c
)
, it is a circular trajectory for a Sasakian

magnetic field F ′
2κ/

√
c with respect to the new metric.

When κ′ = 2κ/
√
c =

(
3
√

2
(
cot2(

√
c r/2)+1

)
−4

)/
2, the trajectory σ is closed

and its length is 2π
√

sin(
√
c r/2)

(
3
√

2−4 sin(
√
c r/2)

)
. Since we have length′(σ) =

(
√
c/2)length(γ), we get the first assertion.

When κ′ satisfies

(κ′2+2)
∣∣2κ′4+8κ′2−9 cot2(

√
c r/2)−1

∣∣
2(κ′4+4κ′2−3 cot2(

√
c r/2)+1)3/2

=
q(9p2−q2)

(3p2+q2)3/2
,

that is, when κ satisfies

q(9p2−q2)

(3p2+q2)3/2
=

(
4κ2

c
+2

)∣∣32κ4

c2
+ 32κ2

c
−9 cot2(

√
c r/2)−1

∣∣
2
(

16κ4

c2
+ 16κ2

c
−3 cot2(

√
c r/2)+1

)3/2

=
(2κ2+c)

∣∣32κ4+32cκ2−9c2 cot2(
√
c r/2)−c2

∣∣(
16κ4+16cκ2−3c2 cot2(

√
c r/2)+c2

)3/2
,

the trajectory σ is closed. Hence γ is closed and its length is
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length(γ) =
2√
c

length′(σ) =
2√
c
πδ(p, q)|κ′|

√
3p2+q2

κ′4+4κ′2−3 cot2(
√
c r/2)+1

=
2√
c
πδ(p, q)

2|κ|√
c

√
3p2+q2

16κ4

c2
+ 16κ2

c
−3 cot2(

√
c r/2)+1

= 4πδ(p, q)|κ|

√
3p2+q2

16κ4+16cκ2−3c2 cot2(
√
c r/2)+c2

.

This complete the proof. �



10. Hadamard manifolds

Let M be a topological space and p0 ∈ M be a fixed point. A continuous map

γ : [0, 1] → M is called a closed curve or a loop with base point p0 if it satisfies

γ(0) = γ(1) = p0. We denote by C(M ; p0) the set of all loops on M with base point

p0. For γ ∈ C(M ; p0) we have γ−1 ∈ C(M ; p0) which is given by γ−1(t) = γ(1 − t).

For two loops γ1, γ2 ∈ C(M ; p0) we define γ1 · γ2 ∈ C(M ; p0) by

γ1 · γ2(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2,

γ2(2t− 1) if 1/2 < t ≤ 1.

We say γ1 ∈ C(M ; p0) is homotopic to γ2 ∈ C(M ; p0) if there is a continuous map

Γ : [0, 1] × [0, 1] → M satisfying Γ (t, 0) = γ1(t) and Γ (t, 1) = γ2(t) for all t ∈ [0, 1].

For γ ∈ C(M ; p0), considering a continuous map Γ : [0, 1] × [0, 1] → M given by

Γ (t, s) = γ(t), we see γ is homotopic to itself. If γ1 is homotopic to γ2 by a continuous

map Γ , by a continuous map Υ : [0, 1] × [0, 1] → M given by Υ (t, s) = Γ (t, 1 − s)

we find γ2 is homotopic to γ1. If γ1 is homotopic to γ2 by a continuous map Γ1 and

if γ2 is homotopic to γ3 by a continuous map Γ2, then considering a continuous map

Γ : [0, 1] × [0, 1] →M given by

Γ (t, s) =

{
Γ1(t, 2s) if 0 ≤ s ≤ 1/2,

Γ2(t, 2s− 1) if 1/2 < s ≤ 1,

we find γ1 is homotopic to γ3. Thus we see the homotpoic property gives an equiv-

alence relation. The quotient space of C(M ; p0) under this equivalence relation is

called the fundamental group of M and is denoted by π1(M, p0). When M is arc-

wise connected, this group does not depend on the choice of p0. We call M simply

connected if π1(M) consists only of the identity, which means that every loop is

homotopic to a constant curve γ0 : [0, 1] →M with γ0(t) = p0.

A complete, simply connected Reimannian manifold of nonpositive curvature is

said to be a Hadamard manifold. We here breifly make mention of variations of

geodesics. Given a geodesic γ on a Riemannian manifold M , we call a smooth
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map α : R × (−ε, ε) → M a variation of geodesics if α(·, s) is a geodesic for each

s ∈ (−ε, ε). A vector field ∂α/∂s(t, 0) along γ is called a Jacobi field. A Jacobi field

Y along γ is hence a vector field along γ satisfying ∇γ̇∇γ̇Y + R(Y, γ̇)γ̇ = 0. Given

a point p ∈M we define an exponential map expp : TpM →M by

expp(v) =

{
γv/‖v‖(‖v‖), if v 6= 0p,

p, if v = 0p,

where γu denotes the geodesic satisfying γ̇u(0) = u. By Rauch’s comparison theorem

on Jacobi fields (see Cheeger-Ebin[27] or Sakai[43], for example), every exponential

map on a Hadamard manifold does not have singular points, hence is bijective.

Therefore a Hadamard manifold is diffeomorphic to a Euclidean space Rm if its

dimension is m. Since a complex hyperbolic space CHn(c) is a typical example

of Hadamard manifolds, we here make mention of some fundamental notations and

some basic results on Hadamard manifolds (see Eberlein-O’Neil[29] and Eberlein[28],

for more detail).

10.1. Ideal boundary. Let M̃ be a Hadamard manifold of dimension m (≥ 2).

Two geodesic half lines γ1, γ2 : [0,∞) → M̃ of unit speed on M̃ are said to be as-

ymptotic if the distance d
(
γ1(t), γ2(t)

)
between γ1(t) and γ2(t) is a bounded function

with respect to t. As we usually consider geodesics are defined on R on a complete

Riemannian manifold, we here use a terminology “geodesic half lines” to make clear

that they are only defined on a half line [0,∞). It is clear that asymptotic relation

is an equivalence relation on the set of all geodesic half lines of unit speed on M̃ . We

call an equivalence class of asymptotic geodesic half lines on M̃ a point at infinity for

M̃ . We denote by M̃(∞) the set of all points at infinity for M̃ . For a geodesic half

line γ, the equivalence class containing γ is denoted by γ(∞). When γ is a geodesic

of unit speed, we can consider two geodesic half lines t 7→ γ(t) and t 7→ γ(−t), hence

denote by γ(∞) and γ(−∞) the points at infinity corresponding to them.
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For example, a Euclidean space Rm is a Hadamard manifold. Two geodesic half

lines, which are nothing but usual half lines, are asymptotic if and only if they are

parallel. Therefore, the set Rm(∞) of points at infinity is bijective to Sm−1. The

same property holds in general. For an arbitrary point p on a Hadamard manifold

M̃ , for given a geodesic half line γ on M̃ there is a unique geodesic half line σ of

unit speed with σ(0) = p and which is asymptotic to γ (see Eberlein-O’Neil[29]).

Therefore, the set M̃(∞) is bijective to the unit tangent space UpM̃ ' Sm−1.

We now induce a topology on M̃ = M̃ ∪ M̃(∞). On M̃ we induce the original

topology of M̃ . This means that the restricted topology on the subset M̃ of M̃

coincide with the original topology. We are hence enough to induce a topology on

M̃(∞). Let p0 ∈ M̃ be an arbitrary point. We define the angle at p0 in the following

way.

i) For given a point q ∈ M̃ , we take a geodesic segment of unit speed γp0q

satisfying γp0q(0) = p0 and γp0q
(
d(p0, q)

)
= q.

ii) For given a point z ∈ M̃(∞), we take a geodesic half line of unit speed γp0z

satisfying γp0z(0) = p0 and γp0z(∞) = z.

For given two points p, q ∈ M̃ = M̃ ∪ M̃(∞), we set ∠p0(p, q) the angle between two

vectors γ̇p0p(0) and γ̇p0q(0). We take an arbitrary point z ∈ M̃(∞) and arbitrary

positive numbers ε, r, and put

Vp0(z; ε, r) =
{
q ∈ M̃

∣∣ ∠p0(z, q) < ε
}
\

{
q ∈ M̃

∣∣ d(p0, q) ≤ r
}
.

Considering M̃(∞) ' Up0M̃ , we can induce a neighborhood basis of z by
{
Vp0(z; ε, r)

∣∣
ε, r

}
. This topology on M̃ is called the cone topology. With this topology M̃ is home-

omorphic to a closed unit ball Bm =
{
x ∈ Rm

∣∣ ‖x‖ ≤ 1
}
, hence is compact, and M̃

is a dense open subset in M̃ . We call M̃(∞) with cone topology the ideal boundary

of M̃ and is also denoted by ∂M̃ .
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10.2. Ball model of a complex hyperbolic space. We define a complex hyper-

bolic space CHn in §2 as a quatient space of an anti-de Sitter space H2n+1
1 under

the S1 action. We here give another representation, which is called a ball model of

a complex hyperbolic space. Let Dn denote a unit open ball in Cn, that is

Dn =
{
w = (w1, w2, . . . , wn) ∈ Cn

∣∣ |w1|+· · ·+|wn| < 1
}
.

We identify a point $(z) ∈ CHn, z = (z0, z1, . . . , zn) ∈ H2n+1
1 ⊂ Cn+1

1 with the

point
(
z1/z0, . . . , zn/z0

)
∈ Dn. Since −|z0|2+ |z1|2+ · · ·+ |zn| = −1, we see z0 6= 0

and |z1/z0|2 + · · ·+ |zn/z0|2 = 1 − 1
|z0|2 < 1. On this model, images of geodesics

are circle-arcs which meet orthogonal to the topological boundary ∂Dn. Therefore,

the ideal boundary with respect to the cone topology coincides with the topological

boundary.

Figure 1. Geodesics on a ball model of CHn



11. Circular trajectories on horospheres in CHn

We devote this section and the next three sections to study trajectories on stan-

dard real hypersurfaces in a complex hyperbolic space. In this section we study on

a horosphere HS in CHn(c), which is called a real hypersurface of type (A0). A

horosphere HS has two distinct principal curvatures λ =
√
|c|/2 and ν =

√
|c|. Its

characteristic vector field ξ satisfies Aξ = νξ and every tangent vector v orthogonal

to ξ satisfies Av = λv with the shape operator A. In particular, the shape operator

and the characteristic tensor satisfy Aφ = φA.

11.1. Trajectories on horospheres. We first study trajectories from the view-

point of Frenet-Serre formula. By Corollary 7.1, we know that every trajectory on

HS has constant structure torsion. By the same proof as of Proposition 7.1, that is,

by substituting λ =
√

|c|/2 in that proof, we have the following.

Proposition 11.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field

Fκ on a horosphere HS in a complex hyperbolic space CHn(c).

(1) It is a geodesic if and only if ργ = ±1,

(2) It is a circle of positive geodesic curvature if and only if κργ =
√

|c|/2. In

this case, its geodesic curvature is
√

4κ2+c
/
2.

(3) Otherwise, it is a helix of proper order 3 whose geodesic curvatures are

|κ|
√

1 − ρ2
γ and |2κργ −

√
c|/2.

If we restrict ourselves to circular trajectories, as |ργ| < 1, we have the following

result.

Theorem 11.1. Let Fκ be a non-trivial Sasakian magnetic field on a horosphere

HS in CHn(c).

(1) When 0 < |κ| ≤
√

|c|/2, there are no circular trajectories for Fκ.
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(2) When |κ| >
√

|c|/2, a trajectory for Fκ is circular if and only if ργ =√
|c|/(2κ). In this case its geodesic curvature is

√
κ2 + (c/4) .

Congruency conditions on circular trajectories on a horosphere are given in the

same way as in Proposition 7.2.

Proposition 11.2 (Adachi[3]). Trajectories γ1 for a Sasakian magnetic field Fκ1

and γ2 for Fκ2 on a horosphere HS in CHn(c) are congruent to each other in strong

sense if and only if one of the following conditions holds:

i) |ργ1 | = |ργ2 | = 1,

ii) ργ1 = ργ2 = 0 and |κ1| = |κ2|,

iii) 0 < |ργ1| = |ργ2 | < 1 and κ1ργ1 = κ2ργ2.

In order to show this proposition we need to construct some isometries of horo-

spheres. Once we show the following Lemma, then we can prove the above Propo-

sition by just the same way as of Proposition 7.2. Through an isometric immersion

ι : HS → CHn(c) we consider THS as a subset of TCHn(c).

Lemma 11.1. Let x, x′ ∈ HS be arbitrary points on a horosphere HS in CHn(c).

Given unit tangent vectors u ∈ 〈ξx〉⊥ ⊂ TxHS and u′ ∈ 〈ξx′〉⊥ ⊂ Tx′HS which are

orthogonal to ξ at x and x′, there exist isometries ϕ̃+, ϕ̃− of CHn(c) satisfying the

following conditions:

i) ϕ̃+
(
HS

)
= ϕ̃−(

HS
)

= HS,

(i.e. HS is invariant under the actions of ϕ̃+ and ϕ̃−);

ii) ϕ̃+(x) = ϕ̃−(x) = x′;

iii) dϕ̃+(u) = dϕ̃−(u) = u′,

iv) dϕ̃+ ◦ J = J ◦ dϕ̃+ and dϕ̃− ◦ J = −J ◦ dϕ̃−,

in particular, dϕ̃+(ξx) = ξx′ and dϕ̃−(ξx) = −ξx′.
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Proof. For the sake of simplicity, we only treat the case n = 2 and c = −4. As we

see in §5.3 we may consider that

$−1(HS) =
{
(z0, z1, z2) ∈ C3

∣∣ −|z0|2+|z1|2+|z2|2 = −1, |z0−z1| = 1
}

through a canonical fibration $ : H5
1 → CH2. We take an arbitrary point ẑ =

(z0, z1, z2) ∈ $−1(HS). The tangent space of M̂ = $−1(HS) at ẑ is represented as

TẑM̂ =

{
(ẑ, v̂) ∈ {ẑ}×C3

∣∣∣∣ Re
(
−z0v0+z1v1+z2v2

)
= 0,

Re
(
(z0−z1)(v0−v1)

)
= 0

}
.

We denote by N̂ẑ ∈ TẑH
5
1 the horizontal lift of the unit normal vector N$(ẑ) of HS

in CH2(−4). Since N̂ẑ is orthogonal to TẑM̂ , we find it is represented as

N̂ẑ =
(
ẑ, (−z1, z0−2z1,−z2)

)
.

In fact, for (ẑ, v̂) ∈ TẑM̂ we have

Re
(
z1v0+(z0−2z1)v1−z2v2

)
= Re

(
−(z0−z1)(v0−v1)+z0v0−z1v1−z2v2

)
= 0,

hence it is orthogonal to N̂ẑ. We put ξ̂ẑ = −JN̂ẑ =
(
ẑ,
√
−1(z1,−z0 +2z1, z2)

)
.

We denote by 〈ξ̂ẑ〉 the real linear subspace of TẑH
5
1 spanned by ξ̂ẑ, and by 〈ξ̂ẑ〉⊥ its

orthogonal complement in TẑH
5
1 . The horizontal part 〈ξ̂ẑ〉⊥∩Hẑ of 〈ξ̂ẑ〉⊥ corresponds

to 〈ξ$(ẑ)〉⊥, and is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =

{
(ẑ, v̂) ∈ {ẑ}×C3

∣∣∣∣ −z0v0+z1v1+z2v2 = 0,
(z0−z1)(v0−v1) = 0

}
=

{(
ẑ,

( αz2

z0−z1

,
αz2

z0−z1

, α
)) ∣∣∣∣ α ∈ C

}
.

We take a point ẑ∗ = (1, 0, 0) ∈ M̂ and a unit tangent vector û∗ =
(
ẑ∗, (0, 0, 1)

)
∈

〈ξ̂ẑ∗〉⊥ ∩Hẑ∗ . For ẑ ∈ M̂ and α ∈ C with |α|2 = |z0 − z1|2/(|z0 − z1|2+|z2|2), we put

û =
(
ẑ, (αz2/(z0−z1), αz2/(z0−z1), α)

)
∈ UzM̂,

and consider a matrix

U+ =

z0 −z1 αz2/(z0−z1)
z1 z0−2z1 αz2/(z0−z1)
z2 −z2 α

 ∈ U(2, 1),
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This induces a linear transformation of C3
1 which preserves the Hermitian product

〈〈 , 〉〉, hence it induces an isometry ϕ̂+
(ẑ,û) of H5

1 . If we take an arbitrary p̂ =

(p0, p1, p2) ∈ M̂ , the point

ϕ̂+
(ẑ,û)(ẑ) = (p′0, p

′
1, p

′
2)

=
(
z0p0−z1p1+u1p2, z1p0−(z0−2z1)p1+u1p2, z2(p0−p1)+αp2

)
satisfies

|p′0 − p′1| =
∣∣(z0 − z1)(p0 − p1)

∣∣ = |p0 − p1| = 1.

Therefore we see ϕ̂+
(ẑ,û)

(
M̂

)
= M̂ . It is clear that ϕ̂+

(ẑ,û)(e
√
−1θp̂) = e

√
−1θϕ̂+

(ẑ,û)(p̂) for

arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . Since it is needless to say that U+J = JU+ for

the matrix J =
√
−1E, we find that ϕ̂+

(ẑ,û) induces an isomtry ϕ̃+
(ẑ,û) of CH2(−4)

satisfying
ϕ̃+

(ẑ,û) ◦$ = $ ◦ ϕ̂+
(ẑ,û), dϕ̃+

(ẑ,û) ◦ J = J ◦ dϕ̃+
(ẑ,û),

ϕ̃+
((ẑ,û))($(ẑ∗)) = $(ẑ), dϕ̃+

(ẑ,û)

(
d$(û∗)

)
= d$(û).

In particular, it satisfies dϕ̃+
(ẑ,û)

(
ξẑ∗) = ξẑ.

We next consider a matrix

Ψ =

 ε O O
O ε O
O O ε

 ∈ O(6) with ε =

(
1 0
0 −1

)
∈ O(2).

This matrix induces a map C3 3 (p0, p1, p2) 7→ (p̄0, p̄1, p̄2) ∈ C3. If we define a

matrix U− by U− = U+Ψ , it induces a linear transformation of C3
1 which preserves

the Hermitian product. By the representation of M̂ , we see it induces an isometry

ϕ̂−
(ẑ,û) of H5

1 satisfying ϕ̂−
(ẑ,û)

(
M̂

)
= M̂ . It is clear that it satisfies ϕ̂−

(ẑ,û)

(
e
√
−1θp̂

)
=

e−
√
−1θϕ̂−

(ẑ,û)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . As we have U−J = −JU− for

the matrix J =
√
−1E, we find that ϕ̂−

(ẑ,û) induces an isometry ϕ̃−
(ẑ,û) of CHn(−4)

satisfying
ϕ̃−

(ẑ,û) ◦$ = $ ◦ ϕ̂−
(z,u), dϕ̃−

(ẑ,û) ◦ J = −J ◦ dϕ̃+
(ẑ,û),

ϕ̃−
(ẑ,û)($(ẑ∗)) = $(ẑ), dϕ̃−

(ẑ,û)

(
d$(û∗)

)
= d$(û).

In particular, it satisfies dϕ̃−
(ẑ,û)

(
ξẑ∗) = −ξẑ.
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As we constructed desirable isometries for a fixed pair
(
$(ẑ∗), d$(û∗)

)
and an

arbitrary pair
(
$(ẑ), d$(û)

)
, we can get our conclusion. �

Corollary 11.1. Every circular trajectory on HS in CHn(c) is Killing.

Corollary 11.2. Circular trajectories for a given Sasakian magnetic field Fκ on a

horosphere in CHn(c) are congruent to each other in strong sense.

Corollary 11.3. Geodesic trajectories for non-trivial Sasakian magnetic fields on a

horosphere in CHn(c) are congruent to each other in strong sense.

11.2. Extrinsic shapes of circular trajectories on HS. We next study extrinsic

shapes of circular trajectories on a horosphere HS in CHn(c).

Proposition 11.3. The extrinsic shape of a circular trajectory for a non-trivial

Sasakian magnetic field Fκ on HS in CHn(−4) is an essential Killing helix of proper

order 4 and satisfies the condition (I) in Lemma 4.9. Its geodesic curvatures are

k1 =
1

κ2

√
κ6+2κ2+1, k2 =

(κ2+1)
√
κ2−1

κ2
√
κ6+2κ2+1

, k3 =
κ2−1√

κ6+2κ2+1
,

and its complex torsions satisfy

τ12 = τ34 = −κ+ κ−3

k1

=
−sgn(κ) · (k1+k3)√

k2
2 + (k1+k3)2

, τ13 = τ24 = 0,

τ23 = τ14 = −sgn(κ)
√

1−κ−2

κ2k1

=
−sgn(κ) · k2√
k2

2 + (k1+k3)2
,

Proof. Since a circular Fκ-trajectory γ satisfies κργ = 1, we have

Aγ̇ = γ̇ + ργξ = γ̇ + κ−1ξ,

〈Aγ̇, γ̇〉 = 1 + ρ2
γ = 1 + κ−2.

By use of Gauss formula (3.1), we have

∇̃γ̇ γ̇ = κφγ̇ + 〈Aγ̇, γ̇〉N = κφγ̇ + (1+κ−2)N = κJγ̇ + κ−2N
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with a unit normal N on HS in CHn(−c). If we set

k1 = ‖κJγ̇ + κ−2N‖ =
√
κ2+2ργκ−1+κ−4 =

√
κ2+2κ−2+κ−4 (> 0),

Y2 =
(
κJγ̇ + κ−2N

)/
k1,

we have ∇̃γ̇ γ̇ = k1Y2. Differentiating Y2 we have

∇̃γ̇(κJγ̇ + κ−2N ) = κJ∇̃γ̇ γ̇ − κ−2Aγ̇ = −(κ2 + κ−2)γ̇ − κ−1(1 + κ−2)ξ

= −(κ2 + 2κ−2 + κ−4)γ̇ − κ−1(1 + κ−2)(ξ − κ−1γ̇).

By setting

k2 = |κ−1|(1 + κ−2)
√

1 − κ−2/k1 (> 0), Y3 = sgn(κ)(κ−1γ̇ − ξ)
/√

1 − κ−2,

we see ∇̃γ̇Y2 = −k1γ̇ + k2Y3. Continuing calculation we have

∇̃γ̇(κ
−1γ̇ − ξ) = Jγ̇ + κ−3N − JAγ̇ = κ−1(κ−2 − 1)N

= −sgn(κ)
√

1 − κ−2 k2Y2 + κ−1(κ−2 − 1)N + sgn(κ)
√

1 − κ−2 k2Y2

= −sgn(κ)
√

1−κ−2k2Y2 + κ−1(κ−2−1)N

+ k−2
1 κ−1(1+κ−2)(1−κ−2)

(
κJγ̇ + κ−2N

)
= −sgn(κ)k2Y2 + k−2

1 (1−κ−2)
{
(1+κ−2)Jγ̇ − (κ+κ−3)N

}
= −sgn(κ)k2Y2 + k−2

1 (1−κ−2)
{
(1+κ−2)φγ̇ − (κ−κ−1)N

}
.

We therefore set

k3 = k−2
1

√
1−κ−2‖(1+κ−2)φγ̇ − (κ−κ−1)N‖ = k−1

1 (1−κ−2) (> 0),

Y4 = sgn(κ)k−1
1 (1−κ−2)−1/2

{
(1+κ−2)φγ̇ − (κ−κ−1)N

}
.

We then have ∇̃γ̇Y3 = −k2Y2 + k3Y4. Moreover we have

∇̃γ̇

{
(1+κ−2)φγ̇ − (κ−κ−1)N

}
= ∇̃γ̇

{
(1+κ−2)Jγ̇ − (κ+κ−3)N

}
= (1+κ−2)J

(
κJγ̇ + κ−2N

)
+ (κ+κ−3)Aγ̇

= −(κ+κ−1)γ̇ − κ−2(1+κ−2)ξ + (κ+κ−3)(γ̇ + κ−1ξ)

= −(1−κ−2)(κ−1γ̇ − ξ).

We hence get ∇̃γ̇Y4 = −k3Y3, and find that the extrinsic shape of γ is a helix of

proper order 4. In view of the Frenet frame {γ̇, Y2, Y3, Y4} of the extrinsic shape, as
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they are formed by γ̇, Jγ̇,N , JN = −ξ, we find that it lies on some totally geodesic

CH2. Therefore we see it is essential.

Next we compute its complex torsions and study their relations to geodesic cur-

vatures. We have

k1 + k3 =
√
κ2+2κ−2+κ−4 +

1−κ−2

√
κ2+2κ−2+κ−4

=
(κ2+1)(1+κ−4)√
κ2+2κ−2+κ−4

,

k2
2 + (k1+k3)

2 =
κ−2(1+κ−2)2(1−κ−2) + (κ2+1)2(1+κ−4)2

κ2+2κ−2+κ−4
= (κ+κ−1)2.

We also have that complex torsions are as follows:

τ12 =
1

k1

〈γ̇,−κγ̇ − κ−2ξ〉 = −κ+ κ−3

k1

=
−sgn(κ) · (κ1+κ3)√

κ2
2+(κ1+κ3)2

,

τ34 =
1

k1(1−κ−2)

〈
κ−1γ̇ − ξ,−(1+κ−2)γ̇ + (κ+κ−3)ξ

〉
= −κ+κ−3

k1

= τ12,

τ23 =
sgn(κ)

k1

√
1−κ−2

〈
κJγ̇ + κ−2N , κ−1Jγ̇ −N

〉
= −sgn(κ)

√
1−κ−2

κ2k1

=
−sgn(κ) · k2√
k2

2+(k1+k3)2
,

τ14 =
sgn(κ)

k1(1−κ−2)

〈
γ̇,−(1+κ−2)γ̇ + (κ+κ−3)ξ

〉
. = −sgn(κ)

√
1−κ−2

κ2k1

= τ23.

This completes the proof. �

Based on Proposition 11.3, by making use of homothetic changes of metrics, we

can obtain properties of extrinsic shapes of circular trajectories on a horospheres in

a general complex hyperbolic space CHn(c).

Proposition 11.4. The extrinsic shape of a circular trajectory for a non-trivial

Sasakian magnetic field Fκ on HS in CHn(c) is an essential Killing helix of proper

order 4 and satisfies the condition (I) in Lemma 4.9. Its geodesic curvatures are

k1 =

√
64κ6+8c2κ2−c3

8κ2
, k2 =

|c|3/2(4κ2−c)
√

4κ2+c

8κ2
√

64κ6 + 8c2κ2 − c3
, k3 =

|c|(4κ2 + c)

2
√

64κ6 + 8c2κ2 − c3
.

Proof. We consider a new metric 〈 , 〉′ = (|c|/4)〈 , 〉 on CHn, which is homothetic

to the original metric. Then it has constant holomorphic sectional curvatures −4
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with respect to this metric. Though the levels of Busemann functions change, HS

is also a horosphere with respect to this new metric.

We take a trajectory γ for a Sasakian magnetic field Fκ and consider a curve σ

given by σ(s) = γ
(
2s/

√
|c|

)
, which is a trajectory for a Sasakian magnetic field

F ′
2κ/

√
|c|

with respect to the new metric. By Proposition 11.3, its extrinsic shape in

CHn(−4) is an essential Killing helix of proper order 4 with geodesic curvatures

k′1 =
1

κ′2

√
κ′6+2κ′2+1, k′2 =

(κ′2+1)
√
κ′2−1

κ′2
√
κ′6+2κ′2+1

, k′3 =
κ′2−1√

κ′6+2κ′2+1
,

where κ′ = 2κ/
√

|c|. Therefore, by Lemma 8.3, the extrinsic shape of γ in CHn(c)

is an essential Killing helix of proper order 4 with geodesic curvatures

k1 =

√
|c|
2

k′1 =

√
|c|
2

|c|
4κ2

√
64κ6

|c|3
+

8κ2

|c|
+ 1 =

1

8κ2

√
64κ6 + 8|c|2κ2 + |c|3,

k2 =

√
|c|
2

k′2 =

√
|c|
2

(
4κ2

|c| + 1
)√

4κ2

|c| − 1

4κ2

|c|

√
64κ6

|c|3 + 8κ2

|c| + 1
=

|c|3/2(4κ2 + |c|)
√

4κ2 − |c|
8κ2

√
64κ6 + 8|c|2κ2 + |c|3

,

k3 =

√
|c|
2

k′3 =

√
|c|
2

4κ2

|c| − 1√
64κ6

|c|3 + 8κ2

|c| + 1
=

|c|(4κ2 − |c|)
2
√

64κ6 + 8|c|2κ2 + |c|3
.

Since complex torsions of helices are invariant under homothetic changes of metrics,

we get the conclusion. �

11.3. Relation of connections on CHn and Cn+1. As we studied circular tra-

jectories on geodesic spheres in CP n through Hopf fibrations, we study circular

trajectories on horospheres through the fibration $ : H2n+1
1 → CHn(−4) of anti-de

Sitter space H2n+1
1 . Let N̂ denote a normal vector field on H2n+1

1 in Cn+1
1 with

〈〈N̂ , N̂ 〉〉 = −1. Here, like in §2, we denote by Cn+1
1 a complex Euclidean space

Cn+1 admitting a Hermitian form 〈〈 , 〉〉. We denote by ∇̂ and ∇ the connections

associated with 〈 , 〉 = Re〈〈 , 〉〉 on H2n+1
1 and Cn+1

1 , respectively. We also denote by

∇̃ the Riemmanian connection on CHn(−4).
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Lemma 11.2. Let X, Y ∈ X (CHn) be vector fields on CHn(−4). If we regard them

as horizontal vector fields on H2n+1
1 through the fibration $, then they satisfy

(11.1) ∇XY = ∇̃XY + 〈X, Y 〉N̂ − 〈X, JY 〉JN̂ .

Proof. The connections ∇ on Cn+1
1 and ∇̂ on H2n+1

1 are related as

∇̂XY = ∇XY − 〈∇̂XY, N̂ 〉
〈N̂ , N̂ 〉

N̂ = ∇XY + 〈∇̂XY, N̂ 〉N̂ .

Since Y is orthogonal to N̂ , we have

〈∇̂XY, N̂ 〉 = ∇̂X〈Y, N̂ 〉 − 〈Y, ∇̂XN̂ 〉 = −〈Y,X〉,

hence obtain

(11.2) ∇XY = ∇̂XY + 〈X, Y 〉N̂ .

Next we study the relationship between the connections ∇̂ on H2n+1
1 and ∇̃ on

CHn(c). Since we need to delete the vertical component, they are related as

∇̃XY = ∇̂XY − 〈∇̂XY, JN̂ 〉
〈JN̂ , JN̂ 〉

JN̂ = ∇̂XY + 〈∇̂XY, JN̂ 〉JN̂ .

Since Y is horizontal, by use of (11.2) we have

〈∇̂XY, JN̂ 〉 = ∇̂X〈Y, JN̂ 〉 − 〈Y, ∇̂X(JN̂ )〉 = −
〈
Y,∇X(JN̂ ) − 〈X, JN̂ 〉N̂

〉
= −〈Y, J∇XN̂ 〉 = −〈Y, JX〉 = 〈X, JY 〉.

Thus we obtain

(11.3) ∇̂XY = ∇̃XY − 〈X, JY 〉JN̂ .

Combining (11.2) and (11.3), we get the conclusion. �

11.4. Behaviors of circular trajectories on HS. We now study behaviors of tra-

jectories on a horosphere in CHn(c). A smooth curve σ : R → CHn(c) parameterized

by its arc-length on CHn is said to be unbounded in both directions if both of the sets

σ
(
[0,∞)

)
, σ

(
(−∞, 0]

)
are unbounded. For a smooth curve σ which is unbounded

in both directions, we set σ(∞) = limt→∞ σ(t), σ(−∞) = limt→−∞ σ(t) ∈ ∂CHn
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if they exist and call them points at infinity. Since σ is parameterized by its ar-

clength, if σ(∞) or σ(−∞) exists, then it lies on the ideal boundary ∂CHn. When

σ is a curve on a real hypersurface in CHn(c), considering its extrinsic shape, we

also employ these terminologies to this curve.

Lemma 11.3. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a horosphere HS in CHn(−4). A horizontal lift γ̂ of the extrinsic shape

of γ satisfies

(11.4) γ̂′′′ −
√
−1(κ+κ−1)γ̂′′ − (2−κ−2)γ̂′ +

√
−1κ−1(1−κ−2)γ̂ = 0

as a curve in Cn+1
1 .

Proof. By Proposition 11.3, the extrinsic shape of γ is an essential Killing helix of

proper order 4. In this case, it is determined by the differential equations ∇̃γ̇ γ̇ =

k1Y2, ∇̃γ̇Y2 = −k1γ̇ + k2Y3. By use of (11.1) and Lemma 4.9, we find that a

horizontal lift γ̂ of the extrinsic shape of γ satisfies ∇ ˙̂γ
˙̂γ = k1Y2 + N̂ ,

∇ ˙̂γY2 = −k1
˙̂γ + k2Y3 − τ12JN̂ = k3

˙̂γ + sgn(κ)
√
k2

2 + (k1+k3)2JY2 − τ12JN̂ .

We therefore have

∇ ˙̂γ∇ ˙̂γ
˙̂γ = k1∇ ˙̂γY2 + ˙̂γ

= (1 + k1k3) ˙̂γ + (κ+κ−1)k1JY2 + (κ+κ−3)JN̂

= (2−κ−2) ˙̂γ + (κ+κ−1)J
(
∇ ˙̂γ

˙̂γ − N̂
)

+ (κ+κ−3)JN̂

= (2−κ−2) ˙̂γ + (κ+κ−1)J∇ ˙̂γ
˙̂γ − κ−1(1−κ−2)JN̂ ,

and get the conclusion. �

Theorem 11.2. Every circular trajectory γ on a horosphere HS in CHn(c) is un-

bounded in both directions. In particular, it has a single point at infinity; γ(∞) =

γ(−∞).
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Proof. We are enough to consider the case c = −4. By Lemma 11.3, we have a hor-

izontal lift of the extrinsic shape of γ satisfies the equation (11.4). Its characteristic

equation

Λ3 −
√
−1(κ+κ−1)Λ2 − (2−κ−2)Λ+

√
−1κ−1(1−κ−2) = 0

has a double solution
√
−1/κ and a solution

√
−1(κ2−1)/κ. Therefore γ̂ is of the

form

γ̂(t) = (A+ tB)e
√
−1t/κ + Ce

√
−1(κ2−1)t/κ

with some A,B,C ∈ Cn+1. This shows that γ̂ is unbounded in Cn+1
1 , hence γ is

unbounded. As HS has only one point at infinity we have γ(∞) = γ(−∞). We here

show this directly. If we describe the extrinsic shape of γ on the ball model Dn we

have

γ(t) =

(
(A1 + tB1)e

√
−1t/κ + C1e

√
−1(κ2−1)t/κ

(A0 + tB0)e
√
−1t/κ + C0e

√
−1(κ2−1)t/κ

,

. . . . . . ,
(An + tBn)e

√
−1t/κ + Cne

√
−1(κ2−1)t/κ

(A0 + tB0)e
√
−1t/κ + C0e

√
−1(κ2−1)t/κ

)
,

where A = (a0, . . . , An), B = (B0, . . . , Bn), C = (C0, . . . , Cn) ∈ Cn+1
1 . Therefore we

find limt→∞ γ(t) =
(
B1/B0, . . . , Bn/B0

)
= limt→−∞ γ(t) ∈ S2n−1 ∈ ∂Dn. �



12. Circular trajectories on geodesic spheres in CHn

In this section we study circular trajectories on geodesic spheres in a complex

hyperbolic space CHn(c). A geodesic sphere also have two principal curvatures

λ = (
√

|c|/2) coth
(√

|c| r/2
)

and ν =
√
|c| coth

(√
|c| r

)
. Its characteristic vector

field ξ satisfies Aξ = νξ and every tangent vector v orthogonal to ξ satisfies Av = λv

with the shape operator A. In particular, the shape operator and the characteristic

tensor satisfy Aφ = φA.

12.1. Trajectories on geodesic spheres in CHn. We first study trajectories from

the viewpoint of Frenet-Serre formula. By Corollary 7.1, we know that every trajec-

tory on a geodesic sphere G(r) has constant structure torsion. By the same proof

as of Proposition 7.1, that is, by substituting λ = (
√

|c|/2) coth
(√

|c| r/2
)
, we have

the following.

Proposition 12.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field

Fk on a geodesic sphere G(r) in a complex hyperbolic space CHn(c).

(1) It is a geodesic if and only if ργ = ±1,

(2) It is a circle of positive geodesic curvature if and only if

κργ = (
√
|c|/2) coth

(√
|c| r/2

)
.

In this case, its geodesic curvature is
√

4κ2+c coth2
(√

|c| r/2
) /

2.

(3) Otherwise, it is a helix of proper order 3 whose geodesic curvatures are

|κ|
√

1 − ρ2
γ and

∣∣2κργ − √
|c|

∣∣ coth
(√

|c| r/2
)
/2.

If we restrict ourselves to circular trajectories, as |ργ| < 1, we have the following

result.

Theorem 12.1. Let Fκ be a non-trivial Sasakian magnetic field on a geodesic sphere

G(r) of radius r in CHn(c).
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(1) When 0 < |κ| ≤ (
√

|c|/2) coth(
√

|c|r/2), there are no circular trajectories

for Fκ.

(2) When |κ| > (
√
|c|/2) coth(

√
|c|r/2), a trajectory for Fκ is circular if and

only if ργ = (
√

|c|/(2κ)) coth(
√
|c|r/2). In this case its geodesic curvature

is
√
κ2 + (c/4) coth2(

√
|c|r/2) .

Congruency conditions on circular trajectories on a geodesic sphere are given in

the same way as in Proposition 7.2.

Proposition 12.2 (Adachi[3]). Trajectories γ1 for a Sasakian magnetic field Fκ1

and γ2 for Fκ2 on a geodesic sphere G(r) in CHn(c) are congruent to each other in

strong sense if and only if one of the following conditions holds:

i) |ργ1 | = |ργ2 | = 1,

ii) ργ1 = ργ2 = 0 and |κ1| = |κ2|,

iii) 0 < |ργ1 | = |ργ2 | < 1 and κ1ργ1 = κ2ργ2.

In order to show this we here study isometries of a geodesic sphere G(r) in CHn.

Once we show the following Lemma, then we can prove the above Proposition by

just the same way as of Proposition 7.2. Through an isometric immersion ι : G(r) →

CHn(c) we may consider that TG(r) is a subset of TCHn.

Lemma 12.1. Let x, x′ ∈ G(r) be arbitrary points on a geodesic sphere G(r) in

CHn(c). Given unit tangent vectors u ∈ 〈ξx〉⊥ ⊂ TxG(r) and u′ ∈ 〈ξx′〉⊥ ⊂ Tx′G(r)

which are orthogonal to ξ at x and x′, there exist isometries ϕ̃+, ϕ̃− of CHn(c)

satisfying the following conditions:

i) ϕ̃+
(
G(r)

)
= ϕ̃−(

G(r)
)

= G(r),

(i.e. G(r) is invariant under the actions of ϕ̃+ and ϕ̃−);

ii) ϕ̃+(x) = ϕ̃−(x) = x′;

iii) dϕ̃+(u) = dϕ̃−(u) = u′,
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iv) dϕ̃+ ◦ J = J ◦ dϕ̃+ and dϕ̃− ◦ J = −J ◦ dϕ̃−,

in particular, dϕ̃+(ξx) = ξx′ and dϕ̃−(ξx) = −ξx′.

Proof. For the sake of simplicity we only consider the case n = 2 and c = −4. As

we mentioned in §5.3, we may consider that

$−1
(
G(r)

)
=

{
z = (z0, z1, z2) ∈ C3

∣∣ |z0| = cosh r, |z1|2 + |z2|2 = sinh2 r
}

= S1(1/ cosh2 r) × S3(1/ sinh2 r) ⊂ C × C2

through a Hopf fibration $ : H5
1 → CH2. We take an arbitrary point ẑ =

(z0, z1, z2) ∈ $−1
(
G(r)

)
. The tangent space of M̂ = $−1

(
G(r)

)
at this point ẑ

is represented by

TẑM̂ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ Re(z0v̄0) = Re(z1v̄1 + z2v̄2) = 0
}
.

We denote by N̂ẑ ∈ TẑH
5
1 the horizontal lift of the unit normal vector N$(ẑ) of G(r)

in CH2(−4). Since N̂ẑ is orthogonal to TẑM̂ , we find that it is represented as

N̂ẑ =
(
ẑ, (− tanh rz0, coth rz1, coth rz2)

)
.

We set ξ̂ẑ = −JN̂ẑ with the complex structure J on C3
1. We hence have

ξ̂ẑ =
(
ẑ,−

√
−1(− tanh rz0, coth rz1, coth rz2)

)
.

We denote by 〈ξ̂ẑ〉 the real linear subspace of TzH
5
1 spanned by ξ̂ẑ, and by 〈ξ̂ẑ〉⊥ its

orthogonal complement in TẑH1
5. The horizontal part 〈ξ̂ẑ〉⊥ ∩ Hẑ of 〈ξ̂ẑ〉⊥ corre-

sponds to 〈ξ$(ẑ)〉⊥, and is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ v0 = 0, z1v1 + z2v2 = 0
}
.

We here take a point ẑ∗ = (cosh r, sinh r, 0) ∈ M̂ and a unit tangent vector û∗ =(
ẑ∗, (0, 0, 1)

)
∈ 〈ξ̂ẑ∗〉⊥∩Hẑ∗ . At this point we see ξ̂ẑ∗ =

(
ẑ∗,

√
−1(sinh r,− cosh r, 0)

)
.

For an arbitrary point ẑ =
(
z0, z1, z2

)
∈ M̂ and an arbitrary unit tangent vector

û =
(
ẑ,

(
0, u1, u2

))
∈ 〈ξ̂ẑ〉⊥ ∩Hẑ, which is expressed as

û =

(
ẑ,

(
0,

ζz2

sinh r
,− ζz1

sinh r

))
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with some ζ ∈ C satisfying |ζ| = 1, we take a unitary matrix

U+ =

z0/ cosh r 0 0
0 z1/ sinh r u1

0 z2/ sinh r u2

 ∈ U(0, 1) ⊕ U(2) ⊂ U(2, 1).

This induces a linear transformation on C3 which preserves the Hermitian product

〈〈 〉〉, hence it induces an isometry ϕ̂+
(ẑ,û) of H5

1 . It is clear that it preserves M̂

and satisfies ϕ̂+
(ẑ,û)

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

(ẑ,û)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ .

Therefore, we find that ϕ̂+
(ẑ,û) induces an isometry ϕ̃+

(ẑ,û) of CHn(−4) satisfying ϕ̃+
(ẑ,û)◦

$ = $ ◦ ϕ̂+
(ẑ,û) and ϕ̃+

(ẑ,û)

(
$(ẑ∗)

)
= $(ẑ), dϕ̃+

(ẑ,û)

(
d$(û∗)

)
= d$(û), dϕ̃+

(ẑ,û)(ξẑ∗) =

ξẑ. As U+J = JU+ with the matrix J =
√
−1E, where E is the identity, we find

that ϕ̃+
(ẑ,û) satisfies dϕ̃+

(ẑ,û) ◦ J = J ◦ dϕ̃+
(ẑ,û).

Next we consider a matrix

Ψ =

 ε O O
O ε O
O O ε

 ∈ O(6) with ε =

(
1 0
0 −1

)
∈ O(2).

This matrix induces a map C3 3 (w0, w1, w2) 7→ (w̄0, w̄1, w̄2) ∈ C3. If we take

a matrix U− = U+Ψ , as ΨJ = −JΨ , it induces an isometry ϕ̂−
(ẑ,û) of H5

1 which

preserves M̂ . It is clear that it satisfies ϕ̂−
(ẑ,û)

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

(ẑ,û)(p̂) for arbitrary

θ ∈ [0, 2π) and p̂ ∈ M̂ . As we have U−J = −JU− for the matrix J =
√
−1E, we

find that ϕ̂−
(ẑ,û) induces an isometry ϕ̃−

(ẑ,û) of CHn(−4) satisfying

ϕ̃−
(ẑ,û) ◦$ = $ ◦ ϕ̂−

(ẑ,û), dϕ̂−
(ẑ,û) ◦ J = −J ◦ dϕ̂−

(ẑ,û).

ϕ̃−
(ẑ,û)

(
$(ẑ∗)

)
= $(ẑ), dϕ̂−

(ẑ,û)

(
d$(û∗)

)
= d$(û).

In particular, it satisfies dϕ̂−
(ẑ,û)(ξẑ∗) = −ξẑ.

We constructed desireble isometries for a fix pair
(
$(ẑ∗), d$(û∗)

)
and an arbitrary

pair
(
$(ẑ), d$(û)

)
. For arbitrary pairs (z, u), (z′, u′), we consider isometries ϕ̃+

(ẑ′,û′)◦(
ϕ̃+

(ẑ,û)

)−1
, ϕ̃−

(ẑ′,û′) ◦
(
ϕ̃+

(ẑ,û)

)−1
, where $(ẑ) = z, $(û) = u, $(ẑ′) = z′, $(û′) = u′.

We then get the conclusion by these isometries. �
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Cn+1 ⊃ H2n+1
1 ⊃ M̂

ϕ̂−→ M̂ ⊂ H2n+1
1

$

−→ $

−→ �

$

−→ −→
CHn ⊃ G(r)

ϕ̃−→ G(r) ⊂ CHn

Remark 12.1. Every isometry ϕ of G(r) in CHn(c) is equivariant. That is, if we

denote by ι : G(r) → CHn(c) an isometric immersion, there is an isometry ϕ̃ of

CHn(c) satisfying ϕ̃ ◦ ι = ι ◦ ϕ.

Corollary 12.1. Every circular trajectory on G(r) in CHn(c) is Killing.

Corollary 12.2. Circular trajectories for a given Sasakian magnetic field Fκ on a

geodesic sphere in CHn(c) are congruent to each other in strong sense.

Corollary 12.3. Geodesic trajectories for non-trivial Sasakian magnetic fields on a

geodesic sphere in CHn(c) are congruent to each other in strong sense.

12.2. Extrinsic shapes of circular trajectories on G(r) in CHn. We next study

extrinsic shapes of circular trajectories on a geodesic sphere G(r) in CHn(c).

Proposition 12.3. The extrinsic shape of a circular trajectory for a non-trivial

Sasakian magnetic field Fκ on a geodesic sphere G(r) in CHn(−4) is an essential

Killing helix of proper order 4 and satisfies the condition (I) of Lemma 4.9. Its

geodesic curvatures are

k1 =
1

κ2

√
κ6+(2κ2+1) coth2 r, k2 =

(κ2+1) coth r
√
κ2−coth2 r

κ2

√
κ6+(2κ2+1) coth2 r

,

k3 =
κ2−coth2 r√

κ6+(2κ2+1) coth2 r
.
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and its complex torsions satisfy

τ12 = τ34 = −κ+ κ−3 coth2 r

k1

=
−sgn(κ) · (k1+k3)√

k2
2 + (k1+k3)2

, τ13 = τ24 = 0,

τ23 = τ14 = −coth r
√
κ2 − coth2 r

κ3k1

=
−sgn(κ) · k2√
k2

2 + (k1+k3)2
.

Proof. Since c = −4, we have λ = coth r, ν = 2 coth 2r, hence find ν − λ = tanh r.

We calculate geodesic curvatures by just the same way as in the proof of Proposition

8.1. By use of the circular condition κργ = coth r, we have

Aγ̇ = A
(
ργξ + (γ̇ − ργξ)

)
= λγ̇ + (ν − λ)ργξ = coth rγ̇ + κ−1ξ,

〈Aγ̇, γ̇〉 = λ+ (ν − λ)ρ2
γ = (1 + κ−2) coth r.

By use of Gauss formula (3.1), we obtain

∇̃γ̇ γ̇ = κφγ̇ + 〈Aγ̇, γ̇〉N = κJγ̇ + κ−2 coth rN .

If we put

k1 = ‖κJγ̇ + κ−2 coth rN‖ =
√
κ2 + 2κ−1ργ coth r + κ−4 coth2 r

=

√
κ2 + (2κ−2 + κ−4) coth2 r,

Y2 = (κJγ̇ + κ−2 coth rN )/k1,

we have ∇̃γ̇ γ̇ = k1Y2. We differentiate Y2. By (3.2) we have

∇̃γ̇

(
κJγ̇ + κ−2 coth rN

)
= κJ

(
κJγ̇ + κ−2 coth rN

)
− κ−2 coth rAγ̇

= −(κ2 + κ−2 coth2 r)γ̇ − (κ−1 + κ−3) coth r ξ

= −k2
1γ̇ + (κ−2 + κ−4) coth2 rγ̇ − (κ−1 + κ−3) coth r ξ

= −k2
1γ̇ + κ−4(κ2 + 1) coth r(coth rγ̇ − κξ).

Since |κ| > coth r, by putting

k2 = k1
−1(κ2 + 1)κ−4 coth r

√
κ2 − coth2 r,

Y3 = (coth rγ̇ − κξ)
/√

κ2 − coth2 r,

we have ∇̃γ̇Y2 = −k1γ̇ + k2Y3. Continuing calculations we have

∇̃γ̇(coth rγ̇ − κξ) = κ coth rJγ̇ + κ−2 coth2 rN + κJ∇̃γ̇N = (κ−2 coth2 r − 1)N .
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We therefore find that

∇̃γ̇Y3 = −k2Y2 + k2Y2 − κ−2
√
κ2 − coth2 rN

= −k2Y2 +
(κ2 + 1) coth r

√
κ2 − coth2 r

k2
1κ

4

{
κφγ̇ + (κ−2 + 1) coth rN

}
− κ−2

√
κ2 − coth2 rN

= −k2Y2 +
(κ2 + 1) coth r

√
κ2 − coth2 r

k2
1κ

3
φγ̇

+

√
κ2 − coth2 r

k2
1κ

2

{
(κ−2 + 1)2 coth2 r − κ2 − (2κ−2 + κ−4) coth2 r

}
N

= −k2Y2 +

√
κ2 − coth2 r

k2
1κ

2

{
(κ+ κ−1) coth rφγ̇ − (κ2 − coth2 r)N

}
.

As we have

‖(κ+ κ−1) coth rφγ̇ − (κ2 − coth2 r)N‖2 = (κ2 − coth2 r)k2
1,

by putting

k3 = k1
−1(1 − κ−2 coth2 r),

Y4 =
1

k1

√
κ2 − coth2 r

{(κ+ κ−1) coth r φγ̇ − (κ2 − coth2 r)N},

we see ∇̃γ̇Y3 = −k2Y2 + k3Y4. Moreover, we have

∇̃γ̇{(κ+ κ−1) coth r φγ̇ − (κ2 − coth2 r)N}

= (κ+ κ−1) coth r J(κJγ̇ + κ−2 coth rN ) + (κ2 + κ−2 coth2 r)(coth rγ̇ + κ−1ξ)

= −(1 − κ−2 coth2 r)(coth rγ̇ − κξ),

hence have ∇̃γ̇Y4 = −k3Y3. We therefore find that the extrinsic shape of γ is a helix

of proper order 4.

Next we compute complex torsions of the extrinsic shape of γ. We first note that

k1 + k3 = k−1
1 (κ2 + 1)(1 + κ−4 coth2 r),

k2
2 + (k1 + k3)

2 = (κ+ κ−1)2.
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By direct computation we get

τ12 =
1

k1

〈γ̇, J(κJγ̇ + κ−2 coth rN )〉 = −κ+ κ−3 coth2 r

k1

=
−sgn(κ) · (k1+k3)√

k2
2 + (k1+k3)2

,

τ34 =
1

k1(κ2 − coth2 r)

〈
cosh r γ̇ − κξ,−(κ+ κ−1) coth r γ̇ + (κ2 + κ−2 coth2 r)ξ

〉
= −κ+ κ−3 coth2 r

k1

,

τ23 =
1

k1

√
κ2 − coth2 r

〈
κJγ̇ + κ−2 coth rN , J(coth rγ̇ − κξ)

〉
= −coth r

√
κ2 − coth2 r

κ3k1

=
−sgn(κ) · k2√
k2

2 + (k1+k3)2
,

τ14 =
1

k1

√
κ2 − coth2 r

〈
γ̇,−(κ+ κ−1) coth r γ̇ + (κ2 + κ−2 coth2 r)ξ

〉
= −coth r

√
κ2 − coth2 r

κ3k1

.

Thus, we obtain the conclusion. �

We here rewrite the above result into a result on extrinsic shapes of circular

trajectories on geodesic spheres in a complex hyperbolic space CHn(c).

Proposition 12.4. The extrinsic shape of a circular trajectory for a non-trivial

Sasakian magnetic field Fκ on a geodesic sphere G(r) in CHn(c) is an essential

Killing helix of proper order 4 and satisfies the condition (I) of Lemma 4.9. Its

geodesic curvatures are

k1 =
1

8κ2

√
64κ6+c2(8κ2−c) coth2(

√
|c| r/2),

k2 =
|c|3/2(4κ2−c) coth(

√
|c| r/2)

√
4κ2+c coth2(

√
|c| r/2)

8κ2

√
64κ6+c2(8κ2−c) coth2(

√
|c| r/2)

,

k3 =
|c|(4κ2+c coth2(

√
|c| r/2))

2
√

64κ6+c2(8κ2−c) coth2(
√

|c| r/2)
.
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Proof. As usual, we consider a new metric 〈 , 〉′ = (|c|/4)〈 , 〉 on CHn. Then it

has constant holomorphic sectional curvatures −4, and the radius of the geodesic

sphere turns to r′ =
√
|c| r/2. If we define a smooth curve σ by σ(s) = γ(2s/

√
|c|),

then it is a circular trajectory for a Sasakian magnetic field F′
2κ/

√
|c|

with respect to

the new metric. By Proposition 12.3 we see the extrinsic shape of σ is an essential

Killing helix of proper order 4 with geodesic curvatures

k′1 =
1

κ′2

√
κ′6+(2κ′2+1) coth2 r′, k′2 =

(κ′2+1) coth r′
√
κ′2−coth2 r′

κ′2
√
κ′6+(2κ′2+1) coth2 r′

,

k′3 =
κ′2−coth2 r′√

κ′6+(2κ′2+1) coth2 r′
,

where κ′ = 2κ/
√

|c|. Therefore, by Lemma 8.3, the extrinsic shape of γ in CHn(c)

is an essential Killing helix of proper order 4 with geodesic curvatures

k1 =

√
|c|
2

k′1 =

√
|c|
2

|c|
4κ2

√
64κ6

|c|3
+

(8κ2

|c|
+ 1

)
coth2(

√
|c| r/2)

=
1

8κ2

√
64κ6 + (8|c|2κ2 + |c|3) coth2(

√
|c| r/2),

k2 =

√
|c|
2

k′2 =

√
|c|
2

(
4κ2

|c| + 1
)
coth(

√
|c| r/2)

√
4κ2

|c| − coth2(
√

|c| r/2)

4κ2

|c|

√
64κ6

|c|3 +
(

8κ2

|c| + 1
)
coth2(

√
|c| r/2)

=
|c|3/2(4κ2 + |c|) coth(

√
|c| r/2)

√
4κ2 − |c| coth2(

√
|c| r/2)

8κ2

√
64κ6 + (8|c|2κ2 + |c|3) coth2(

√
|c| r/2)

,

k3 =

√
|c|
2

k′3 =

√
|c|
2

4κ2

|c| − coth2(
√

|c| r/2)√
64κ6

|c|3 +
(

8κ2

|c| + 1
)
coth2(

√
|c| r/2)

=
|c|

(
4κ2 − |c| coth2(

√
|c| r/2)

)
2
√

64κ6 + (8|c|2κ2 + |c|3) coth2(
√
|c| r/2)

.

Since complex torsions of helices are invariant under homothetic changes of metrics,

we get the conclusion. �
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12.3. Lengths of circular trajectories on G(r) in CHn. We now study proper-

ties of circular trajectories on G(r) in CHn(c). Since geodesic spheres are compact, it

is clear that extrinsic shapes of trajectories for Sasakian magnetic fields are bounded

curves in CHn(c). We therefore interested in whether circular trajectories are closed

or not. For this study we first consider horizontal lifts of extrinsic shapes of circular

trajectories with respect to the canonical fibration $ : H2n+1
1 → CHn. We can get

the following by just the same way as of the proof of Lemma 11.3 by use of Lemma

4.9 and the equality (11.1).

Lemma 12.2. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a geodesic sphere G(r) in CHn(−4). A horizontal lift γ̂ of the extrinsic

shape of γ satisfies

(12.1) γ̂′′′ −
√
−1(κ+κ−1)γ̂′′ − (2−κ−2 coth2 r)γ̂′ +

√
−1(κ−1−κ−3 coth2 r)γ̂ = 0.

as a curve in Cn+1
1 .

Proof. By Proposition 12.3, the extrinsic shape of γ is an essential Killing helix of

proper order 4. In this case, it is determined by the differential equations

∇̃γ̇ γ̇ = k1Y2, ∇̃γ̇Y2 = −k1γ̇ + k2Y3.

By use of the relationship (11.1) of connections and Lemma 4.9, we find that a

horizontal lift of the extrinsic shape of γ satisfies ∇ ˙̂γ
˙̂γ = k1Y2 + N̂ ,

∇ ˙̂γY2 = −k1
˙̂γ + k2Y3 − τ12JN̂ = k3

˙̂γ + sgn(κ)
√
k2

2 + (k1+k3)2JY2 − τ12JN̂ ,

where

k3 = k1
−1(1 − κ−2 coth2 r),

√
k2

2 + (k1+k3)2 = |κ+κ−1|,

τ12 = −k−1
1 (κ+κ−3 coth2 r).

We therefore have
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∇ ˙̂γ∇ ˙̂γ
˙̂γ = k1∇ ˙̂γY2 + ˙̂γ

= (1 + k1k3) ˙̂γ + (κ+κ−1)k1JY2 + (κ+κ−3 coth2 r)JN̂

= (2−κ−2 coth2 r) ˙̂γ + (κ+κ−1)J
(
∇ ˙̂γ

˙̂γ − N̂
)

+ (κ+κ−3 coth2 r)JN̂

= (2−κ−2 coth2) ˙̂γ + (κ+κ−1)J∇ ˙̂γ
˙̂γ − κ−1(1−κ−2 coth2 r)JN̂ ,

and get the conclusion. �

We consider the characteristic equation of the linear differential equation (12.1)

of constant coefficents, which is given by

Λ3 −
√
−1(κ+κ−1)Λ2 − (2−κ−2 coth2 r)Λ+

√
−1(κ−1 − κ−3 coth2 r) = 0.

Since the extrinsic shape of a trajectory γ on G(r) is bounded, this cubic equation

should have three distinct pure imaginary solutions. We shall check this by direct

computation later (in the proof of Theorem 12.2). If we put Θ = −
√
−1Λ to realize

it, then along the same lines as in the proof of Lemma 9.2 we obtain the following.

Corollary 12.4. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a geodesic sphere G(r) in CHn(−4). Let aκ, bκ, cκ (aκ < bκ < cκ) be

three distinct solutions of the cubic equation

(12.2) Θ3 − (κ+κ−1)Θ2 + (2−κ−2 coth2 r)Θ − (κ−1 − κ−3 coth2 r) = 0.

Then, γ is closed if and only if there exists a constant dκ satisfying that all of the

ratios

(aκ−dκ)/(bκ−dκ), (bκ−dκ)/(cκ−dκ), (cκ−dκ)/(aκ−dκ)

are rational. In this case, its length is 2π×L.C.M.
{
(bκ−aκ)−1, (cκ−bκ)−1

}
.

We are now in the position to make use of geometric properties of circles on

CP n(4) for getting conditions that circular trajectories on CHn are closed.
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Theorem 12.2. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a geodesic sphere G(r) of radius r in CHn(−4).

(1) When r> log
(√

2+1
)

and κ = ±
√

2, it is closed and its length is 2
√

2π sinh r.

(2) Otherwise, it is closed if and only if∣∣κ2−2
∣∣(2κ4−8κ2+9 coth2 r−1)

2(κ4−4κ2+3 coth2 r+1)3/2
=

q(9p2 − q2)

(3p2 + q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q. In

this case its length is given as πδ(p, q)|κ|
√

(3p2+q2)/(κ4−4κ2+3 coth2 r+1),

where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.

Proof. In order to transplant the result on circles on CP n(4) to our trajectories, we

modify the cubic equation (12.2). First we make a parallel translation by putting

Θ1 = Θ − 1
3
(κ+κ−1). We then find that (12.2) turns to

Θ3
1 −

1

3

{
κ2−4+κ−2(3 coth2 r+1)

}
Θ1

− 1

27

{
2κ3−12κ+3κ−1(3 coth2 r+5)−2κ−3(9 coth2 r−1)

}
= 0.

As we have κ2−4+κ−2(3 coth2 r+1) = (κ−2κ−1)2+3κ−2(coth2 r−1) > 0, we make

the coefficient of degree one of this cubic equation to be 3/2 by putting

ϑ =
(
3
/√

2{κ2−4+κ−2(3 coth2 r+1)}
)
Θ1

=
(
3Θ−κ−κ−1

)
/

√
2{κ2−4+κ−2(3 coth2 r+1)}.

We find the equation (12.2) turns to

(12.3) ϑ3 − 3

2
ϑ− sgn(κ)·(κ2−2)(2κ4−8κ2+9 coth2 r−1)

2
√

2(κ4−4κ2+3 coth2 r+1)3/2
= 0.

We set

τG(κ; r) = −sgn(κ)·(κ2−2)(2κ4−8κ2+9 coth2 r−1)

2(κ4−4κ2+3 coth2 r+1)3/2
.
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Here, as we have

4(κ4−4κ2+3 coth2 r+1)3 − (κ2−2)2(2κ4−8κ2+9 coth2 r−1)2

= 27(coth2 r − 1)2(κ4 − 4κ2 + 4 coth2 r)

= 27(coth2 r − 1)2
{
(κ2 − 2)2 + 4(coth2 r − 1)

}
> 0,

we obtain |τG(κ; r)| < 1. This guarantees that the equality (12.2) has three distinct

real solutions directly.

We now compare (12.3) and (9.4). With the solutions aτ , bτ , cτ (aτ < bτ < cτ ) for

(9.4) with τ = τG(κ; r), the change of variables of Θ to ϑ shows that the solutions

aκ, bκ, cκ of (12.2) satisfy

aκ =
(
aτ

√
2{κ2−4+κ−2(3 coth2 r+1)} + κ+κ−1

)/
3,

bκ =
(
bτ

√
2{κ2−4+κ−2(3 coth2 r+1)} + κ+κ−1

)/
3,

cκ =
(
cτ

√
2{κ2−4+κ−2(3 coth2 r+1)} + κ+κ−1

)/
3.

Thus by putting dκ = (κ+ κ−1)/3 we find

aκ − dκ
bκ − dκ

=
aτ
bτ
,

bκ − dκ
cκ − dκ

=
bτ
cτ
,

cκ − dκ
aκ − dκ

=
cτ
aτ
.

Therefore, we find that γ is closed if and only if a circle σ of geodesic curvature

1/
√

2 and of complex torsion τ(κ; r) on CP n(4) is closed. Moreover, in this case, we

obtain

length(γ) = 2π×L.C.M.
{
(bκ−aκ)−1, (cκ−bκ)−1

}
= 2π×L.C.M.

{
(bτ−aτ )−1, (cτ−bτ )−1

}
×

{
2{κ2−4+κ−2(3 coth2 r+1)}

}−1/2

= 3 length(σ)
/√

2{κ2−4+κ−2(3 coth2 r+1)}.

First we consider the case that τG(κ; r) = ±q(9p2 − q2)(3p2 + q2)−3/2. By Propo-

sition 9.1 we find that this circular trajectory γ is closed and that its length is given
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by
1

3
πδ(p, q)

√
2(3p2+q2) × 3√

2{κ2−4+κ−2(3 coth2 r+1)}

= πδ(p, q)

√
3p2+q2

κ2−4+κ−2(3 coth2 r+1)
.

We next consider the case corresponding to the case of τ = 0. Since

2κ4−8κ2+9 coth2 r−1 = 2(κ2−2)2+9(coth2 r−1) > 0,

we have τG(κ; r) = 0 if and only if κ = ±
√

2. Since we need |κ| > coth r by the

circular condition, we have coth r <
√

2, which is equivalent to cosh2 r > 2. We

therefore have r > log(
√

2+1). In this case, we find that γ is closed and its length is

2
√

6π

3
× 3√

3(coth2 r−1)
= 2

√
2π sinh r.

This complete the proof. �

We now study circular trajectories on geodesic spheres in CHn(c) by make use of

the homothetic change of metrics given in Proposition 12.4.

Theorem 12.3. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a geodesic sphere G(r) of radius r in CHn(c).

(1) When r>2/
√

|c| log
(√

2+1
)

and κ = ±
√

|c|/2, it is closed and its length is

4
√

2/|c|π sinh r.

(2) Otherwise, it is closed if and only if∣∣2κ2+c
∣∣{32κ4+32cκ2+c2

(
9 coth2(

√
|c| r/2)−1

)
}

{16κ4+16cκ2+c
(
3 coth2(

√
|c| r/2)+1

)
}3/2

=
q(9p2 − q2)

(3p2 + q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q. In

this case its length is given as

4πδ(p, q)|κ|
√

3p2+q2

16κ4+16cκ2+c2
(
3 coth2(

√
|c| r/2)+1

) ,
where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.
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Proof. We consider a new metric on CHn given by 〈 , 〉′ = |c|/4〈 , 〉. Then it has

constant holomorphic sectional curvatures −4, and the radius of the geodesic sphere

turns to r′ =
√

|c| r/2. If we define a smooth curve σ by σ(s) = γ(2s/
√

|c|), then

it is a circular trajectory for a Sasakian magnetic field F′
2κ/

√
|c|

with respect to the

new metric.

When r′ > log(
√

2+1) and κ′ = ±
√

2, that is, when r > (2/
√
|c|) log(

√
2+1) and

κ = ±
√
|c|/2, the trajectory σ is closed and length′(σ) = 2

√
2π sinh r′. We hence

find that γ is closed and

length(γ) =
2√
|c|

× length′(σ) = 4

√
2

|c|
π sinh(

√
|c| r/2)

(see Table 5 in §8).

In other case, the trajectory σ is closed if and only if∣∣κ′2−2
∣∣(2κ′4−8κ′2+9 coth2 r′−1)

2(κ′4−4κ′2+3 coth2 r′+1)3/2
=

q(9p2 − q2)

(3p2 + q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q, and its length

is given as

length′(σ) = πδ(p, q)|κ′|
√

(3p2+q2)/(κ′4−4κ′2+3 coth2 r′+1).

Substituting κ′ = 2κ/
√

|c| and r′ =
√

|c| r/2, we find that γ is closed if and only if

q(9p2 − q2)

(3p2 + q2)3/2
=

∣∣4κ2

|c| −2
∣∣(32κ4

|c|2 − 32κ2

|c| +9 coth2(
√

|c| r/2)−1
)

2
(

16κ4

|c|2 − 16κ2

|c| +3 coth2(
√

|c| r/2)+1
)3/2

=

∣∣2κ2−|c|
∣∣{32κ4−32|c|κ2+|c|2

(
9 coth2(

√
|c| r/2)−1

)
}

{16κ4−16|c|κ2+|c|2
(
3 coth2(

√
|c| r/2)+1

)
}3/2

,

and its length is given by

length(γ) =
2√
|c|

× length′(σ)

=
2π√
|c|
δ(p, q)

2|κ|√
|c|

√
3p2+q2

16κ4

|c|2 − 16κ2

|c| +3 coth2(
√

|c| r/2)+1
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= 4πδ(p, q)|κ|
√

3p2+q2

16κ4−16|c|κ2+|c|2
(
3 coth2(

√
|c| r/2)+1

) .
This complete the proof. �



13. Circular trajectories on tubes around totally geodesic CHn−1 in CHn

In this section we study circular trajectories on tubes around totally geodesic

CHn−1(c) in a complex hyperbolic space CHn(c). A tube T (r) around totally ge-

odesic CHn−1 also have two principal curvatures λ = (
√

|c|/2) tanh
(√

|c| r/2
)

and

ν =
√
|c| coth

(√
|c| r

)
. Its characteristic vector field ξ satisfies Aξ = νξ and every

vector v orthogonal to ξ satisfies Av = λv with the shape operator A. In particular,

the shape operator and the characteristic tensor satisfy Aφ = φA.

13.1. Trajectories on tubes around CHn−1 in CHn. We first study trajectories

from the viewpoint of Frenet-Serre formula. By Corollary 7.1, we know that every

trajectory on a tube T (r) has constant structure torsion. By the same proof as of

Proposition 7.1, we have the following.

Proposition 13.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field Fκ

on a tube T (r) of radius r around totally geodesic CHn−1(c) in a complex hyperbolic

space CHn(c).

(1) It is a geodesic if and only if ργ = ±1.

(2) It is a circle of positive geodesic curvature if and only if

κργ = (
√
|c|/2) tanh

(√
|c| r/2

)
.

In this case, its geodesic curvature is
√

4κ2+c tanh2
(√

|c| r/2
) /

2.

(3) Otherwise, it is a helix of proper order 3 whose geodesic curvatures are

|κ|
√

1 − ρ2
γ and

∣∣2κργ − √
|c|

∣∣ tanh
(√

|c| r/2
)
/2.

If we restrict ourselves to circular trajectories, as |ργ| < 1, we have the following

result.

Theorem 13.1. Let Fκ be a non-trivial Sasakian magnetic field on a tube T (r) of

radius r around CHn−1(c) in CHn(c).
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(1) When 0 < |κ| ≤ (
√

|c|/2) tanh(
√

|c|r/2), there are no circular trajectories

for Fκ.

(2) When |κ| > (
√
|c|/2) tanh(

√
|c|r/2), a trajectory for Fκ is circular if and

only if ργ = (
√

|c|/(2κ)) tanh(
√

|c|r/2). In this case its geodesic curvature

is
√
κ2 + (c/4) tanh2(

√
|c|r/2) .

Congruency conditions on circular trajectories on a tube around totally geodesic

complex hypersurface are given in the same way as in Proposition 7.2.

Proposition 13.2 (Adachi[3]). Trajectories γ1 for a Sasakian magnetic field Fκ1

and γ2 for Fκ2 on a tube T (r) around totally geodesic CHn−1(c) in CHn(c) are

congruent to each other in strong sense if and only if one of the following conditions

holds:

i) |ργ1 | = |ργ2 | = 1,

ii) ργ1 = ργ2 = 0 and |κ1| = |κ2|,

iii) 0 < |ργ1 | = |ργ2 | < 1 and κ1ργ1 = κ2ργ2.

In order to show this proposition, by the same argument as in the proof of Propo-

sition 7.2, we only need the following.

Lemma 13.1. Let x, x′ ∈ T (r) be arbitrary points on a tube T (r) in CHn(c). Given

unit tangent vectors u ∈ 〈ξx〉⊥ ⊂ TxT (r) and u′ ∈ 〈ξx′〉⊥ ⊂ Tx′T (r) which are

orthogonal to ξ at x and x′, there exist isometries ϕ̃+, ϕ̃− of CHn(c) satisfying the

following conditions:

i) ϕ̃+
(
T (r)

)
= ϕ̃−(

T (r)
)

= T (r),

(i.e. T (r) is invariant under the actions of ϕ̃+ and ϕ̃−);

ii) ϕ̃+(x) = ϕ̃−(x) = x′;

iii) dϕ̃+(u) = dϕ̃−(u) = u′,
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iv) dϕ̃+ ◦ J = J ◦ dϕ̃+ and dϕ̃− ◦ J = −J ◦ dϕ̃−,

in particular, dϕ̃+(ξx) = ξx′ and dϕ̃−(ξx) = −ξx′.

Proof. For the sake of simplicity, we only treat the case n = 2 and c = −4. As we

see in §5.3 we may consider that

$−1
(
T (r)

)
=

{
(z0, z1, z2) ∈ C3

∣∣ −|z0|2 + |z1|2 = − cosh2 r, |z2| = sinh r
}

= H3
1 × S1 ⊂ C2 × C

through a canonical fibration $ : H5
1 → CH2. We take an arbitrary point ẑ =

(z0, z1, z2) ∈ $−1
(
T (r)

)
. The tangent space of M̂ = $−1

(
T (r)

)
at ẑ is represented

as

TẑM̂ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ Re
(
−z0v0+z1v1

)
= Re(z2v2) = 0

}
.

We denote by N̂ẑ ∈ TẑH
5
1 the horizontal lift of the unit normal vector N$(ẑ) of T (r)

in CH2(−4). Since N̂ẑ is orthogonal to TẑM̂ , we find it is represented as

Nẑ =
(
ẑ, (− tanh r z0,− tanh r z1,− coth r z2)

)
.

By putting ξ̂ẑ = −JNẑ =
(
ẑ,
√
−1(tanh r z0, tanh r z1, coth r z2)

)
, we denote by

〈ξ̂ẑ〉 the real linear subspace of TẑH
5
1 spanned by ξ̂ẑ, and by 〈ξ̂ẑ〉⊥ its orthogonal

complement in TẑH
5
1 . The horizontal part 〈ξ̂ẑ〉⊥∩Hẑ of 〈ξ̂ẑ〉⊥ corresponds to 〈ξ$(ẑ)〉⊥,

and is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =
{
(ẑ, v̂) ∈ {ẑ}×C3

∣∣ −z0v0+z1v1 = 0, v2 = 0
}
.

We take a point ẑ∗ = (cosh r, 0, sinh r) ∈ M̂ and a unit tangent vector û∗ =(
ẑ∗, (0, 1, 0)

)
∈ 〈ξ̂ẑ∗〉⊥∩Hẑ∗ . For an arbitrary point ẑ ∈ M̂ and an arbitrary unit tan-

gent vector û ∈ 〈ξ̂ẑ〉⊥∩Hẑ, which is expressed as û =
(
ẑ, (ζz1/ cosh r, ζz0/ cosh r, 0)

)
with some ζ ∈ C satisfying |ζ| = 1, we consider a matrix

U+ =

z0/ cosh r u0 0
z1/ cosh r u1 0

0 0 z2/ sinh r

 ∈ U(1, 1) ⊕ U(1).
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This induces a linear transformation of C3
1 which preserves the Hermitian product

〈〈 , 〉〉, hence it induces an isometry ϕ̂+
(ẑ,û) of H5

1 . It clearly satisfies ϕ̂+
(ẑ,û)

(
M̂

)
= M̂

and ϕ̂+
(ẑ,û)

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

(ẑ,û)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . Therefore,

we find that ϕ̂+
(ẑ,û) induces an isometry ϕ̃+

(ẑ,û) of CHn(−4) satisfying

ϕ̃+
(ẑ,û) ◦$ = $ ◦ ϕ̂+

(ẑ,û), ϕ̃+
(ẑ,û)

(
$(ẑ∗)

)
= $(ẑ), dϕ̃+

(ẑ,û)

(
d$(û∗)

)
= d$(û).

Since we have U+J = JU+ for the matrix J =
√
−1E, we find that ϕ̃+

(ẑ,û) is holomor-

phic, that is, dϕ̃+
(ẑ,û)J = Jdϕ̃+

(ẑ,û). In particular, it satisfies dϕ̃+
(ẑ,û)

(
ξ$(ẑ∗)

)
= ξ$(ẑ).

We next consider a matrix

Ψ =

 ε O O
O ε O
O O ε

 ∈ O(6) with ε =

(
1 0
0 −1

)
∈ O(2).

If we define a matrix U− by U− = U+Ψ , it induces a linear transformation of C3
1 which

preserves the Hermitian product, hence it induces an isometry ϕ̂−
(ẑ,û) of H5

1 which

preserves M̂ . It is clear that it satisfies ϕ̂−
(ẑ,û)

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

(ẑ,û)(p̂) for arbitrary

θ ∈ [0, 2π) and p̂ ∈ M̂ . As we have U−J = −JU− for the matrix J =
√
−1E, we

find that ϕ̂−
(ẑ,û) induces an isometry ϕ̃−

(ẑ,û) of CHn(−4) satisfying

ϕ̃−
(ẑ,û) ◦$ = $ ◦ ϕ̂−

(z,u), dϕ̃−
(ẑ,û)J = −Jdϕ̃+

(ẑ,û),

ϕ̃−
(ẑ,û)($(ẑ∗)) = $(ẑ), dϕ̃−

(ẑ,û)(d$(û∗)) = d$(û).

In particular, it satisfies dϕ̃−
(ẑ,û)

(
ξ$(ẑ∗)

)
= −ξ$(ẑ).

As we constructed desireble isometries for a fixed pair
(
$(ẑ∗), d$(û∗)

)
and an

arbitrary pair
(
$(ẑ), d$(û)

)
, we can get our conclusion. �

Remark 13.1. Every isometry of T (r) in CHn(c) is equivariant.

Corollary 13.1. Every circular trajectory on a tube T (r) around CHn−1(c) in

CHn(c) is Killing.

Corollary 13.2. Circular trajectories for a given Sasakian magnetic field Fκ on a

tube T (r) in CHn(c) are congruent to each other in strong sense.
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Corollary 13.3. Geodesic trajectories for non-trivial Sasakian magnetic fields on a

tube T (r) in CHn(c) are congruent to each other in strong sense.

13.2. Extrinsic shapes of circular trajectories on T (r) in CHn. We next study

extrinsic shapes of circular trajectories on a tube T (r) in CHn(c). We first treat the

case c = −4.

Proposition 13.3. The extrinsic shape of a circular trajectory for a non-trivial

Sasakian magnetic field Fκ on a tube T (r) around CHn−1(−4) in CHn(−4) is an

essential Killing helix of proper order 4 and satisfies the condition (I) of Lemma

4.9. Its geodesic curvatures are

k1 =
1

κ2

√
κ6+(1+2κ2) tanh2 r, k2 =

(κ2+1) tanh r
√
κ2−tanh2 r

κ2

√
κ6+(1+2κ2) tanh2 r

,

k3 =
κ2−tanh2 r√

κ6+(1+2κ2) tanh2 r
,

and its complex torsions satisfy

τ12 = τ34 = −κ+ κ−3 tanh2 r

k1

=
−sgn(κ) · (k1+k3)√

k2
2 + (k1+k3)2

, τ13 = τ24 = 0,

τ23 = τ14 = −tanh r
√
κ2 − tanh2 r

κ3k1

=
−sgn(κ) · k2√
k2

2 + (k1+k3)2
.

Proof. Since c = −4, we have λ = tanh r, ν = 2 coth 2r, hence find ν − λ = coth r.

By use of the circular condition κργ = tanh r, we have

Aγ̇ = A
(
ργξ + (γ̇ − ργξ)

)
= λγ̇ + (ν − λ)ργξ = tanh rγ̇ + κ−1ξ,

〈Aγ̇, γ̇〉 = λ+ (ν − λ)ρ2
γ = (1 + κ−2) tanh r.

Thus, our calculation on Frenet-Serre formula of the extrinsic shape of a circular

trajectory γ goes through by just the same way as in the proof of Proposition 8.1

if we change coth r to tanh r in that proof. Its geodesic curvatures and its Frenet
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frame are given as

k1 =

√
κ2 + (2κ−2 + κ−4) tanh2 r, k2 = k1

−1(κ2 + 1)κ−4 tanh r
√
κ2 − tanh2 r,

k3 = k1
−1(1 − κ−2 tanh2 r),

and
γ̇, Y2 = (κJγ̇ + κ−2 tanh rN )/k1, Y3 = (tanh rγ̇ − κξ)

/√
κ2 − tanh2 r,

Y4 =
1

k1

√
κ2 − tanh2 r

{(κ+ κ−1) tanh r φγ̇ − (κ2 − tanh2 r)N}

 .

As we have

k1 + k3 = k−1
1 (κ2 + 1)(1 + κ−4 tanh2 r), k2

2 + (k1 + k3)
2 = (κ+ κ−1)2,

we obtain the conclusion. �

We here rewrite the above result into a result on extrinsic shapes of circular trajec-

tories on a tube T (r) around a complex hypersurface in a complex hyperbolic space

CHn(c) by use of a homothetic change of metrics. By the proof of Proposition 13.3,

we only need to change coth(
√

|c| r/2) to tanh(
√

|c| r/2) in the result of Proposition

12.4.

Proposition 13.4. The extrinsic shape of a circular trajectory for a non-trivial

Sasakian magnetic field Fκ on a tube T (r) around CHn−1(c) in CHn(c) is an essen-

tial Killing helix of proper order 4 and satisfies the condition (I) of Lemma 4.9. Its

geodesic curvatures are

k1 =
1

8κ2

√
64κ6+c2(8κ2−c) tanh2(

√
|c| r/2),

k2 =
|c|3/2(4κ2−c) tanh(

√
|c| r/2)

√
4κ2+c tanh2(

√
|c| r/2)

8κ2

√
64κ6+c2(8κ2−c) tanh2(

√
|c| r/2)

,

k3 =
|c|

{
4κ2+c tanh2(

√
|c| r/2)

}
2
√

64κ6+c2(8κ2−c) tanh2(
√

|c| r/2)
.
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13.3. Behaviors of circular trajectories on T (r) in CHn. We now study prop-

erties of circular trajectories on T (r) in CHn(c). Since T (r) is not compact, we have

to consider whether trajectories are bounded or not at first. As we do not make use

of principal curvatures essentially in the proof of Lemma 12.2, it also works in this

case.

Lemma 13.2. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a tube T (r) in CHn(−4). A horizontal lift γ̂ of the extrinsic shape of γ

satisfies

(13.1) γ̂′′′ −
√
−1(κ+κ−1)γ̂′′ − (2−κ−2 tanh2 r)γ̂′ +

√
−1κ−1(1−κ−2 tanh2 r)γ̂ = 0

as a curve in Cn+1
1 .

Proof. Since the extrinsic shape of γ is an essential Killing helix of proper order 4

by Proposition 13.3, we find γ̂ satisfies ∇ ˙̂γ
˙̂γ = k1Y2 + N̂ ,

∇ ˙̂γY2 = k3
˙̂γ + sgn(κ)

√
k2

2 + (k1+k3)2JY2 − τ12JN̂ ,

with

k3 = k1
−1(1−κ−2 tanh2 r),

√
k2

2 + (k1+k3)2 = |κ+κ−1|,

τ12 = −k−1
1 (κ+κ−3 tanh2 r),

by Lemma 4.9. We hence obtain

∇ ˙̂γ∇ ˙̂γ
˙̂γ = k1∇ ˙̂γY2 + ˙̂γ

= (1 + k1k3) ˙̂γ + (κ+κ−1)k1JY2 + (κ+κ−3 tanh2 r)JN̂

= (2−κ−2 tanh2 r) ˙̂γ + (κ+κ−1)J
(
∇ ˙̂γ

˙̂γ − N̂
)

+ (κ+κ−3 tanh2 r)JN̂ ,

and get the conclusion. �

We now consider the characteristic equation of the differential equation for a

horizontal lift γ̂ of the extrinsic shape of a circular trajectory γ on T (r) in CHn(−4).
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It is given as

(13.2) Λ3 −
√
−1(κ+κ−1)Λ2 − (2− κ−2 tanh2 r)Λ+

√
−1(κ−1− κ−3 tanh2 r) = 0.

We study its solutions. We first realize this equation by putting Θ = −
√
−1Λ. We

have

(13.3) Θ3 − (κ+κ−1)Θ2 + (2− κ−2 tanh2 r)Θ − (κ−1− κ−3 tanh2 r) = 0.

If we put Θ1 = Θ − (κ+κ−1)/3, we find this cubic equation turns to

(13.4)
Θ3

1 −
1

3

{
κ2−4+(1+3 tanh2 r)κ−2

}
Θ1

− 1

27

{
2κ3−12κ+3(5+3 tanh2 r)κ−1+2(1 − 9 tanh2 r)κ−3

}
= 0.

We set ζ(κ; r) = κ2−4+(1+3 tanh2 r)κ−2, which is the coefficient of Θ1 of the left

hand side of the equation (13.4). When ζ(κ; r) = 0, which is the case

κ2 = 2 ±
√

3(1−tanh2 r) = 2 ± (
√

3/ cosh r),

we find that the coefficient of order zero of the left hand side does not vanish.

Hence, the equation (13.4) has only one real solution. Similarly, when ζ(κ; r) < 0,

which is the case 2−
√

3(cosh r)−1 ≤ κ2 ≤ 2+
√

3(cosh r)−1, the left hand side of

(13.4) is monotone increasing with respect to Θ1. We hence find that the equation

(13.4) also has only one real solution in this case. When ζ(κ; r) > 0, by putting

ϑ = 3Θ1

/√
2ζ(κ; r) we see (13.4) turns to

(13.5) ϑ3 − (3/2)ϑ+ τT (κ; r)/
√

2 = 0,

where

τT (κ; r) = −sgn(κ)
(κ2−2)(2κ4−8κ2+9 tanh2 r−1)

2
(
κ4−4κ2+3 tanh2 r+1)3/2

.

Thus we see the equation (13.5) has three distinct real solutions if and only if

|τT (κ; r)| < 1, hence so does the equation (13.4). As we have

4(κ4−4κ2+3 tanh2 r+1)3 − (κ2−2)2(2κ4−8κ2+9 tanh2 r−1)2

= 27(tanh2 r − 1)2(κ4 − 4κ2 + 4 tanh2 r),
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we obtain that |τT (κ; r)| < 1 if and only if

κ2 < 2{1 − (cosh r)−1} or κ2 > 2{1 + (cosh r)−1}.

When τT (κ; r) = ±1, the equation (13.4) has a double real solution and a single real

solution. When |τT (κ; r)| > 1, it has only one real solution.

Under the above consideration on solutions of the characteristic equation (13.2),

we study conditions for circular trajectories to be bounded.

Theorem 13.2. On a tube T (r) of radius r around totally geodesic CHn−1(−4) in

CHn(−4) the behavior of a circular trajectory γ for Fκ is as follows;

(1) If κ satisfies 2
{
1−(cosh r)−1

}
< κ2 < 2

{
1+(cosh r)−1

}
, it is unbounded in

both directions and has two distinct points at infinity.

(2) When κ2 = 2
{
1±(cosh r)−1

}
, it is also unbounded in both directions but has

a single point at infinity.

(3) If κ satisfies either tanh2 r < κ2 < 2
{
1−(cosh r)−1

}
or κ2 > 2

{
1+(cosh r)−1

}
,

then it is bounded.

Proof. We first consider the case ζ(κ, r) ≤ 0 for κ with |κ| > tanh r. Such case occurs

when 2−
√

3(cosh r)−1 ≤ κ2 ≤ 2+
√

3(cosh r)−1. In this case, as the characteristic

equation (13.2) has one pure imaginary solution and two distinct solutions which are

not pure imaginary, we find that γ is unbounded in both directions. More precisely,

the solutions of (13.4) are of the form −2ακ, ακ ±
√
−1βκ with real numbers ακ, βκ

satisfying 3(3α2
κ−β2

κ) = ζ(κ; r), ακ 6= 0 and βκ 6= 0. We hence find that a horizontal

lift γ̂ of the extrinsic shape of γ is of the form

γ̂(t) = Ae
√
−1{−2ακ+(κ+κ−1)/3}t + (Beβκt + Ce−βκt)e

√
−1{ακ+(κ+κ−1)/3}t

with C-linearly independent A,B,C ∈ Cn+1. Hence, rewriting this expression on

the ball model Dn of a complex hyperbolic space, we obtain that γ has two distinct

points at infinity, which are
(
B1

B0
, . . . , Bn

B0

)
,

(
C1

C0
, . . . , Cn

C0

)
∈ Dn if we consider in Dn.
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We next study the case ζ(κ, r) > 0 and |τT (κ; r)| < 1 for κ with |κ| > tanh r.

Such a case occurs if tanh2 r < κ2 < 2
{
1−(cosh r)−1

}
or κ2 > 2

{
1+(cosh r)−1

}
.

In this case, the equation (13.2) has 3 distinct pure imaginary solutions. We hence

find that γ is bounded.

We consider the case ζ(κ, r) > 0 and |τT (κ; r)| > 1 for κ with |κ| > tanh r. Such

a case occurs if one of the following holds:

i) 2
{
1−(cosh r)−1

}
< κ2 < 2−

√
3(cosh r)−1,

ii) 2+
√

3(cosh r)−1 < κ2 < 2
{
1+(cosh r)−1

}
.

The solutions of (13.5) are of the form −2ακ, ακ±
√
−1βκ with real numbers ακ, βκ

satisfying 2(3α2
κ−β2

κ) = 3 and 2
√

2ακ(α
2
κ+β2

κ) = τT (κ; r). In particular, we have

βκ 6= 0. Thus we find that a horizontal lift γ̂ of the extrinsic shape of γ is of the

form

γ̂(t) = Ae
√
−1{−2

√
2ζ(κ;r)ακ+(κ+κ−1)}t/3

+ (Be
√

2ζ(κ;r)βκt/3 + Ce−
√

2ζ(κ;r)βκt/3)e
√
−1{

√
2ζ(κ;r)ακ+(κ+κ−1)}t/3

with C-linearly independent A,B,C ∈ Cn+1. This shows that γ is unbounded and

has two distinct points at infinity in this case.

We finally consider the case τT (κ; r) = ±1. This case occurs when κ2 = 2
{
1±

(cosh r)−1
}
. Here, the double signs for τT (κ; r) and for κ2 are independent. Since

the equation (13.5) has a double solution ±1/
√

2 and a simple solution ∓
√

2 in this

case, where the double signs correspond to the double sign for τT (κ; r), we find that

a horizontal lift γ̂ of the extrinsic shape of γ is of the form

γ̂(t) = Ae
√
−1{∓2

√
ζ(κ;r)+(κ+κ−1)}t/3 + (B + Ct)e

√
−1{±

√
ζ(κ;r)+(κ+κ−1)}t/3

with C-linearly independent A,B,C ∈ Cn+1. Thus we find γ is unbounded and has

a single point at infinity, which is expressed as
(
C1

C0
, . . . , Cn

C0

)
∈ Dn, in this case. We

hence get the conclusion. �
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Since trajectories are defined by their initial velocity vectors, it is clear that un-

bounded trajectories are open. We hence study whether bounded circular trajecto-

ries are closed or not on tubes around totally geodesic CHn−1 in CHn. We shall show

the following by just the same way as we studied circular trajectories on geodesic

spheres in CHn.

Theorem 13.3. Let γ be a bounded circular trajectory for a non-trivial Sasakian

magnetic field Fκ on a tube T (r) of radius r around CHn−1(−4) in CHn(−4).

(1) When r ≤ log(
√

2+1) and κ2 = {4+3
√

2(cosh r)−1}/2, it is closed of length

2π
√

cosh r
(
4 cosh r+3

√
2
)
.

(2) When r > log(
√

2+1) and κ2 = {4±3
√

2(cosh r)−1}/2, it is closed of length

2π
√

cosh r
(
4 cosh r±3

√
2
)
, where double signs take the same signatures.

(3) If κ satisfies either tanh2 r < κ2 < 2
{
1−(cosh r)−1

}
or κ2 > 2

{
1+(cosh r)−1

}
and is not in the cases of (1) and (2), it is closed if and only if

|κ2−2|
∣∣2κ4−8κ2+9 tanh2 r−1

∣∣
2(κ4−4κ2+3 tanh2 r+1)3/2

=
q(9p2 − q2)

(3p2 + q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q. In

this case its length is given as πδ(p, q)|κ|
√

(3p2+q2)
/
(κ4−4κ2+3 tanh2 r+1),

where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.

Proof. By Theorem 13.2, we need to consider the case that three conditions ζ(κ; r) >

0, |τT (κ; r)| < 1 and |κ| > tanh r hold. We compare (13.5) with the characteristic

equation (9.4) for circles on CP n(4) of geodesic curvature 1/
√

2 and complex torsion

τ = τT (κ; r).

First we consider the case τT (κ; r) = 0. By the definition of τT (κ; r), we see this

occurs if κ2 = 2 or κ2 = {4 ± 3
√

2(cosh r)−1}/2. But as the conditions ζ(κ; r) > 0

and |τT (κ; r)| < 1 show that κ2 < 2{1−(cosh r)−1} or κ2 > 2{1+(cosh r)−1}, we need

not consider the case κ2 = 2. We also have to consider the condition κ2 > tanh2 r.
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It is clear that both

{4+3
√

2(cosh r)−1}/2 > tanh2 r and {4+3
√

2(cosh r)−1}/2 > 2{1+(cosh r)−1}

hold. On the other hand, though {4−3
√

2(cosh r)−1}/2 < 2{1−(cosh r)−1} clearly

holds, by direct computation we find that {4 − 3
√

2(cosh r)−1}/2 > tanh2 r holds if

and only if 2 tanh2 r > 1, which is equivalent to r > log(
√

2+1). Thus we see that

bounded circular trajectories satisfy τT (κ; r) = 0 if and only if one of the following

holds:

i) κ2 = {4+3
√

2(cosh r)−1}/2,

ii) r > log(
√

2+1) and κ2 = {4−3
√

2(cosh r)−1}/2 (> 0).

In this case we have ζ(κ; r) = 3/{cosh r(4 cosh r ± 3
√

2)}. We now transplant the

properties of circles on CP n(4) to circular trajectories. Since the solutions of (9.4)

with τ = 0 are ±
√

6/2, 0, we find the solutions of (13.3) are

aκ = −cκ =
1

3

(
(
√

6/2)
√

2ζ(κ; r) + κ+ κ−1
)
, bκ = 0.

Thus, we find that γ is closed and its length is

length(γ) =
2
√

6π

3
× 3√

2ζ(κ; r)
= 2π

√
cosh r(4 cosh r ± 3

√
2).

This shows the first and the second assertions.

We next consider the case 0 < |τT (κ; r)| < 1 under the assumption that ζ(κ; r) > 0

and κ2 > tanh2 r. Such a case occurs if and only if one of the following holds:

i) tanh2 r < κ2 < 2
{
1−(cosh r)−1

}
and κ2 6= {4−3

√
2(cosh r)−1}/2,

ii) κ2 > 2
{
1+(cosh r)−1

}
and κ2 6= {4+3

√
2(cosh r)−1}/2.

In this case, by use of the solutions aτ , bτ .cτ of (9.4) with τ = τT (κ; r), we see the

solutions aκ, bκ, cκ of (13.3) are given as

aκ =
(
aτ

√
2ζ(κ; r)+κ+κ−1

)
/3, bκ =

(
bτ

√
2ζ(κ; r)+κ+κ−1

)
/3,

cκ =
(
cτ

√
2ζ(κ; r)+κ+κ−1

)
/3.
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Hence, γ is closed if and only if τT (κ; r) = ±q(9p2− q2)(3p2 + q2)−3/2 with some

relativly prime positive integers p, q satisfying p > q, and its length is

length(γ) =
1

3
πδ(p, q)

√
2(3p2+q2) × 3√

2ζ(κ; r)

= πδ(p, q)|κ|

√
3p2+q2

κ4−4κ2+3 tanh2 r+1
.

This complete the proof. �

We now study circular trajectories on tubes in a general complex hyperbolic space

by use of a homothetic change of metrics.

Theorem 13.4. Let γ be a circular trajectory for a non-trivial Sasakian magnetic

field Fκ on a tube T (r) of radius r around totally geodesic CHn−1(c) in CHn(c).

(1) If κ satisfies

(|c|/2)
{
1−

(
cosh(

√
|c| r/2)

)−1}
<κ2<(|c|/2)

{
1+

(
cosh(

√
|c| r/2)

)−1}
,

it is unbounded in both directions and has two distinct points at infinity.

(2) When κ2 = (|c|/2)
{
1 ±

(
cosh(

√
|c| r/2)

)−1}
, it is also unbounded in both

directions but has a single point at infinity.

(3) If κ satisfies one of the following conditions

i) (|c|/4) tanh2(
√
|c| r/2) < κ2 < (|c|/2)

{
1−

(
cosh(

√
|c| r/2)

)−1}
,

ii) κ2 > (|c|/2)
{
1+

(
cosh(

√
|c| r/2)

)−1}
,

then it is bounded and satisfies the following.

1) When

r ≤ (2/
√
|c|) log(

√
2+1) and κ2 = |c|{4+3

√
2
(
cosh(

√
|c| r/2)

)−1}/8,

it is closed of length

4π

√
cosh(

√
|c| r/2)

(
4 cosh(

√
|c| r/2)+3

√
2
)/

|c| .

2) When

r > (2/
√

|c|) log(
√

2+1) and κ2 = |c|{4±3
√

2
(
cosh(

√
|c| r/2)

)−1}/8,
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it is closed of length

4π

√
cosh(

√
|c| r/2)

(
4 cosh(

√
|c| r/2)±3

√
2
)/
c ,

where double signs take the same signatures.

3) If κ satisfies one of the following conditions

i) (|c|/4) tanh2(
√
c r/2) < κ2 < (|c|/2)

{
1−

(
cosh(

√
|c| r/2)

)−1}
,

ii) κ2 > (|c|/2)
{
1+

(
cosh(

√
|c| r/2)

)−1}
and is not in the cases of 3−1) and 3−2), it is closed if and only if

|2κ2+c|
∣∣32κ4+32cκ2+c2

(
9 tanh2(

√
|c| r/2)−1

)∣∣{
16κ4+16cκ2+c2

(
3 tanh2(

√
|c| r/2)+1

)}3/2
=

q(9p2 − q2)

(3p2 + q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q.

In this case its length is given as

4πδ(p, q)|κ|
√

3p2+q2

16κ4+16cκ2+c2
(
3 tanh2(

√
|c| r/2)+1

) ,
where δ(p, q) = 1 when pq is odd and δ(p, q) = 2 when pq is even.

Proof. We consider a new metric on CHn given by 〈 , 〉′ = (|c|/4)〈 , 〉. Then it has

constant holomorphic sectional curvatures −4, and the radius of the tube around

complex hypersurface turns to r′ =
√

|c| r/2. If we define a smooth curve σ by

σ(s) = γ(2s/
√

|c|), then it is a circular trajectory for a Sasakian magnetic field

F′
κ′ (κ′ = 2κ/

√
|c|) with respect to the new metric.

First we consider whether γ is bounded or not. Since σ is unbounded with two

distinct points at infinity in the case 2
{
1−(cosh r′)−1

}
<κ′2<2

{
1+(cosh r′)−1

}
, we

find γ is unbounded and has distinct points at infinity if and only if

c

2

{
1−

(
cosh(

√
|c| r/2)

)−1}
< κ2 <

c

2

{
1+

(
cosh(

√
|c| r/2)

)−1}
.

Similarly we find γ is unbounded in both directions and has a single point at in-

finity if and only if κ′2 = 2
{
1±(cosh r′)−1

}
, which is quivalent to κ2 = (c/2)

{
1±(

cosh(
√
|c| r/2)

)−1}
.
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Next we consider the case that γ is bounded. This occurs if and only if one of the

following holds:

i) κ2 > (c/2)
{
1+

(
cosh(

√
|c| r/2)

)−1}
,

ii) (c/4) tanh2 r < κ2 < (c/2)
{
1−

(
cosh(

√
|c| r/2)

)−1}
.

When r′ ≤ log(
√

2+1) and κ′2 = {4+3
√

2(cosh r′)−1}/2, that is, when r ≤

(2/
√
|c|) log(

√
2+1) and κ2 = |c|

{
4+3

√
2
(
cosh(

√
|c| r/2)

)−1}
/8, the trajectory σ is

closed and length′(σ) = 2π
√

cosh r′
(
4 cosh r′+3

√
2
)
. We hence find that γ is closed

and

length(γ) =
2√
|c|

length′(σ) = 4π

√
cosh(

√
|c| r/2)

(
4 cosh(

√
|c| r/2)+3

√
2
)
/|c|

(see Table 5 in §8).

When r′ > log(
√

2+1) and κ′2 = {4± 3
√

2(cosh r′)−1}/2, that is, when r >

(2/
√
|c|) log(

√
2+1) and κ2 = |c|{4±3

√
2
(
cosh(

√
|c| r/2)

)−1}/8, the trajectory σ is

closed and length′(σ) = 2π
√

cosh r′
(
4 cosh r′±3

√
2
)
. We hence find that γ is closed

and

length(γ) = 4π

√
cosh(

√
|c| r/2)

(
4 cosh(

√
|c| r/2)±3

√
2
)
|c| .

In other case, the trajectory σ is closed if and only if∣∣κ′2−2
∣∣|2κ′4−8κ′2+9 tanh2 r′−1|

2(κ′4−4κ′2+3 tanh2 r′+1)3/2
=

q(9p2 − q2)

(3p2 + q2)3/2

holds with some relatively prime positive integers p, q satisfying p > q, and its length

is given as

length′(σ) = πδ(p, q)|κ′|
√

(3p2+q2)/(κ′4−4κ′2+3 tanh2 r′+1).

Substituting κ′ = 2κ/
√

|c| and r′ =
√

|c| r/2, we find that γ is closed if and only if

q(9p2 − q2)

(3p2 + q2)3/2
=

∣∣4κ2

|c| −2
∣∣∣∣32κ4

|c|2 − 32κ2

|c| +9 tanh2(
√
|c| r/2)−1

∣∣
2
(

16κ4

|c|2 − 16κ2

|c| +3 tanh2(
√
|c| r/2)+1

)3/2

=

∣∣2κ2−|c|
∣∣{32κ4−32|c|κ2+|c|2(9 tanh2(

√
|c| r/2)−1)}

{16κ4−16|c|κ2+|c|2(3 tanh2(
√
|c| r/2)+1)}3/2

,
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and its length is given by

length(γ) = (2/
√

|c|) × length′(σ)

=
2π√
|c|
δ(p, q)

2|κ|√
|c|

√
3p2+q2

16κ4

|c|2 − 16κ2

|c| +3 tanh2(
√
|c| r/2)+1

= 4πδ(p, q)|κ|
√

3p2+q2

16κ4−16|c|κ2+|c|2(3 tanh2(
√
|c| r/2)+1)

.

This complete the proof. �



14. Circular trajectories on real hypersurfaces of type (A2) in CHn

In this section we study circular trajectories on a tube T`(r) of radius r around

totally geodesic CH` (1 ≤ ` ≤ n − 2) in a complex hyperbolic space CHn(c). A

tube T`(r) in CHn(c) also have three principal curvatures

λ = (
√
|c|/2) coth

(√
|c| r/2

)
, µ = (

√
|c|/2) tanh

(√
|c| r/2

)
, ν =

√
|c| coth

(√
|c| r

)
.

Its characteristic vector field ξ satisfies Aξ = νξ and λ, µ are principal curvatures

for vectors orthogonal to ξ. On this real hypersurface, the shape operator and the

characteristic tensor also satisfy Aφ = φA.

Proposition 14.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field

Fκ on a hypersurface of type (A2) in a nonflat complex hyperbolic space CHn(c).

(1) It is a geodesic if and only if ργ = ±1.

(2) It is a circle of positive geodesic curvature if and only if one of the following

condition holds:

i) τγ = 0 and κργ = (
√

|c|/2) tanh
(√

|c| r/2
)
,

ii) τγ =
√

1 − ρ2
γ and κργ = (

√
|c|/2) coth

(√
|c| r/2

)
.

In these cases, the geodesic curvature of γ is |κ|
√

1 − ρ2
γ.

Proof. Just like the proof of Proposition 7.4, we consider the condition (2)-ii) in

Lemma 6.3 by decomposing γ̇ into principal curvature vectors. We denote by T 0M =

Vλ ⊕ Vµ the decomposition into subbundles of principal curvature vectors. We then

have γ is circular if and only if the following holds:

ργ(λ− κργ) ProjVλ
(γ̇) + ργ(µ− κργ) ProjVµ

(γ̇)

+ {κργ − κρ3
γ − λτ 2

γ − µ(1 − ρ2
γ − τ 2

γ )}ξ = 0,

where ProjVλ
: TM → Vλ and ProjVµ

: TM → Vµ denote the projections. As was

shown in the proof of Proposition 7.4, we see this holds if and only if one of the

following conditions holds
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i) τγ = 0 and κργ = µ,

ii) τγ =
√

1 − ρ2
γ and κργ = λ,

iii) ργ = 0 and λτ 2
γ + µ(1 − τ 2

γ ) = 0.

Being different from the case of tubes in CP n, the third case does not occur. As

a matter of fact, by substituting principal curvatures we have

λτ 2
γ + µ(1 − τ 2

γ ) =

√
|c| τ 2

γ

sinh
(√

|c| r
) +

√
|c|
2

tanh

√
|c| r
2

> 0.

We hence get the conclusion. �

Since |ργ| < 1 and coth
(√

|c| r/2
)
> tanh

(√
|c| r/2

)
, we have the following.

Theorem 14.1. We consider a non-trivial Sasakian magnetic field Fκ on a tube

T`(r) of radius r around CH`(c) (1 ≤ ` ≤ n− 2) in CHn(c).

(1) When 0 < |κ| ≤
(√

|c|/2
)
tanh

(√
|c|r/2

)
, there are no circular trajectories

for Fκ.

(2) When
(√

|c|/2
)
tanh

(√
|c| r/2

)
< |κ| ≤

(√
|c|/2

)
coth

(√
|c| r/2

)
, a trajec-

tory γ for Fκ is circular if and only if it satisfies the condition

ργ =
(√

|c|/(2κ)
)
tanh(

√
|c|r/2

)
and τγ = 0.

(3) When |κ| >
(√

|c|/2
)
coth(

√
|c|r/2

)
, a Fκ-trajectory γ is circular if and only

if it satisfies one of the following:

i) ργ =
(√

|c|/2κ
)
tanh

(√
|c| r/2

)
and τγ = 0,

ii) ργ =
(√

|c|/2κ
)
coth

(√
|c| r/2

)
and τγ =

√
1 − ρ2

γ.

Before we close this section we here make mention of congruence theorem on

trajectories on hypersurfaces of type (A2) in CHn.

Proposition 14.2. We consider a hypersurface T`(r) of type (A2) in a complex

hyperbolic space CHn(c). Trajectories γ1 for a Sasakian magnetic field Fκ1 and γ2

for Fκ2 on T`(r) are congruent to each other in strong sense if and only if one of

the following conditions holds:
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i) |ργ1 | = |ργ2 | = 1,

ii) ργ1 = ργ2 = 0, τγ1 = τγ2 and |κ1| = |κ2|,

iii) 0 < |ργ1| = |ργ2 | < 1, τγ1 = τγ2 and κ1ργ1 = κ2ργ2.

We can show this proposition by just the same way as of Proposition 7.3. We

decompose the tangent space TxT`(r) of a real hypersurface T`(r) of type (A2) at x

as TxT`(r) = Vλ,x ⊕ Vµ,x ⊕ Rξx, where Vλ,x and Vµ,x are the subspaces of principal

curvature vectors orthogonal to ξx which correspond to principal curvatures λ and

µ, respectively. Through an isometric immersion ι : T`(r) → CHn(c) we consider

TT`(r) as a subset of TCHn(c). We can prove the following Lemma by just the

same way as of Lemma 7.3.

Lemma 14.1. Let x, x′ ∈ T`(r) be arbitrary points on a hypersurface T`(r) of type

(A2) in CHn(c). Given unit tangent vectors u ∈ Vλ,x, w ∈ Vµ,x and u′ ∈ Vλ,x′ , w
′ ∈

Vµ,x′, there exist isometries ϕ̃+, ϕ̃− of CHn(c) satisfying the following conditions:

i) ϕ̃+
(
T`(r)

)
= ϕ̃−(

T`(r)
)

= T`(r),

(i.e. T`(r) is invariant under the actions of ϕ̃+ and ϕ̃−);

ii) ϕ̃+(x) = ϕ̃−(x) = x′;

iii) dϕ̃+(u) = dϕ̃−(u) = u′ and dϕ̃+(w) = dϕ̃−(w) = w′

iv) dϕ̃+ ◦ J = J ◦ dϕ̃+ and dϕ̃− ◦ J = −J ◦ dϕ̃−,

in particular, dϕ̃+(ξx) = ξx′ and dϕ̃−(ξx) = −ξx′.

Proof. For the sake of simplicity, we are enough to consider the case n = 3, ` = 1

and c = −4. As we see in §5.3 we may consider that

$−1
(
T1(r)

)
=

{
(z0, z1, z2, z3) ∈ C4

∣∣∣∣ −|z0|2 + |z1|2 = − cosh2 r,
|z2|2 + |z3|2 = sinh2 r

}
= H3

1 × S3 ⊂ C2 × C2.
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We take an arbitrary point ẑ = (z0, z1, z2, z3) ∈ $−1
(
T1(r)

)
. The tangent space

M̂ = $−1
(
T1(r)

)
at ẑ is represented as

TẑM̂ =

{
(ẑ, v̂) ∈ {ẑ} × C4

∣∣∣∣ Re(−z0v0 + z1v1) = 0,
Re(z2v2 + z3v3) = 0

}
.

We denote by N̂ẑ ∈ TẑH
7
1 the horizontal lift of the unit normal vector N$(ẑ) of

T1(r) in CH3(−4). Since N̂ẑ ∈ TẑH
7
1 and is orthogonal to TẑM̂ , considering on each

component, we find that it is represented as

N̂ẑ =
(
ẑ, (− tanh r z0,− tanh r z1,− coth r z2,− coth r z3)

)
.

By putting ξ̂ẑ = −JN̂ẑ, we denote by 〈ξ̂ẑ〉 the real linear subspace of TẑH
7
1 spanned

by ξ̂ẑ, and by 〈ξ̂ẑ〉⊥ its orthogonal complement in TẑH
7
1 . The horizontal part 〈ξ̂ẑ〉⊥∩

Hẑ of 〈ξ̂ẑ〉⊥ corresponds to the complex vector space 〈ξ$(ẑ)〉⊥, and is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ −z0v0 + z1v1 = 0, z2v2 + z3v3 = 0
}
.

We should note that if we decompose Hẑ as Hẑ = V̂λ,ẑ⊕ V̂µ,ẑ⊕Rξ̂ẑ corresponding to

the decomposition of T$(ẑ)T1(r) into subspaces of principal curvature vectors then

we see
V̂λ,ẑ =

{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ z2v2 + z3v3 = 0, v0 = v1 = 0
}
,

V̂µ,ẑ =
{
(ẑ, v̂) ∈ {ẑ} × C3

∣∣ −z0v0 + z1v1 = 0, v2 = v3 = 0
}
.

We take a point ẑ∗ = (cosh r, 0, sinh r, 0) ∈ M̂ and unit tangent vectors û∗ =(
ẑ∗, (0, 0, 0, 1)

)
∈ V̂λ,ẑ∗ , ŵ∗ =

(
ẑ, (0, 1, 0, 0)

)
∈ V̂µ,ẑ∗ . For an arbitrary ẑ ∈ M̂ and

unit tangent vectors û =
(
ẑ, (0, 0, u2, u3)

)
∈ V̂λ,ẑ, ŵ =

(
ẑ, (w0, w1, 0, 0)

)
∈ V̂µ,ẑ,

which are expressed as

û =
(
ẑ,

(
0, 0,

ζ1z3

cosh r
,
ζ1z2

cosh r

))
, ŵ =

(
ẑ,

( ζ2z1

sinh r
,− ζ2z0

sinh r
, 0, 0

))
with some ζ1, ζ2 ∈ C satisfying |ζ1| = |ζ2| = 1, we define a unitary matrix

U+ =


z0/ cosh r w0 0 0
z1/ cosh r w1 0 0

0 0 z2/ sinh r u2

0 0 z3/ sinh r u3

 ∈ U(1, 1) ⊕ U(2) ⊂ U(3, 1).
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This induces a linear transformation of C4
1 which preserves the Hermitian product

〈〈 , 〉〉, hence it induces an isometry ϕ̂+
(ẑ,û,ŵ) of H7

1 . Clearly, it satisfies ϕ̂+
(ẑ,û,ŵ)

(
M̂

)
=

M̂ and ϕ̂+
(ẑ,û,ŵ)

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

(ẑ,û,ŵ)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ .

Therefore ϕ̂+
(ẑ,û,ŵ) induces an isometry ϕ̃+

(ẑ,û,ŵ) of CH3(−4) satisfying

ϕ̃+
(ẑ,û,ŵ) ◦$ = $ ◦ ϕ̂+

(ẑ,û,ŵ), ϕ̃+
(ẑ,û,ŵ)

(
$(ẑ∗)

)
= $(ẑ),

dϕ̃+
(ẑ,û,ŵ)

(
d$(û∗)

)
= d$(û), dϕ̃+

(ẑ,û,ŵ)

(
d$(ŵ∗)

)
= d$(ŵ).

Since we have U+J = JU+ for the matrix J =
√
−1E, we find that ϕ̃+

(ẑ,û,ŵ) is holo-

morphic, that is, dϕ̃+
(ẑ,û,ŵ)J = Jdϕ̃+

(ẑ,û,ŵ). In particular, it satisfies dϕ̃+
(ẑ,û,ŵ)

(
ξ$(ẑ∗)

)
=

ξ$(ẑ).

We next consider a matrix

Ψ =


ε O O O
O ε O O
O O ε O
O O O ε

 ∈ O(8) with ε =

(
1 0
0 −1

)
∈ O(2).

This matrix induces a map C4
1 3 (p0, p1, p2, p3) 7→ (p̄0, p̄1, p̄2, p̄3) ∈ C4

1. If we define a

matrix U− by U− = U+Ψ , it induces a linear transformation of C4
1 which preserves the

Hermitian product. By the representation of M̂ , we see it induces an isometry ϕ̂−
(ẑ,û,ŵ)

of H7
1 satisfying ϕ̂−

(ẑ,û,ŵ)

(
M̂

)
= M̂ . It is clear that it satisfies ϕ̂−

(ẑ,û,ŵ)

(
e
√
−1θp̂

)
=

e−
√
−1θϕ̂−

(ẑ,û,ŵ)(p̂) for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . As we have U−J = JU− for

the matrix J =
√
−1E, we find that ϕ̂−

(ẑ,û,ŵ) induces an isometry ϕ̃−
(ẑ,û,ŵ) of CH3(−4)

satisfying

ϕ̃−
(ẑ,û,ŵ) ◦$ = $ ◦ ϕ̂−

(z,u,w), dϕ̃−
(ẑ,û,ŵ)J = −Jdϕ̃+

(ẑ,û,ŵ),

ϕ̃−
(ẑ,û,ŵ)($(ẑ∗)) = $(ẑ),

dϕ̃−
(ẑ,û,ŵ)(d$(û∗)) = d$(û), dϕ̃−

((ẑ,û,ŵ))(d$(ŵ∗)) = d$(ŵ).

In particular, it satisfies dϕ̃−
(ẑ,û,ŵ)

(
ξ$(ẑ∗)

)
= −ξ$(ẑ).

As we constructed desirable isometries for a fixed triplet
(
$(ẑ∗), d$(û∗), d$(ŵ∗)

)
and an arbitrary triplet

(
$(ẑ), d$(û), d$(ŵ)

)
, we can get our conclusion along the

same lines as in Lemma 7.1. �
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Remark 14.1. Every isometry of T`(r) in CHn(c) is equivariant.

Corollary 14.1. Every circular trajectory on a real hypersurface T`(r) in CHn(c)

is Killing.

By Proposition 14.1 we have the following.

Corollary 14.2. For a given Sasakian magnetic field Fκ on a real hypersurface

T`(r) of type (A2) in CHn(c), we have at most two congruence classes of circular

trajectories in strong sense.

If we take into account Theorem 14.1, we can refine the above by considering

strengths of Sasakian magnetic fields.

Corollary 14.3. Geodesic trajectories for non-trivial Sasakian magnetic fields on a

real hypersurface T`(r) of type (A2) in CHn(c) are congruent to each other in strong

sense.

For about extrinsic shapes of trajectories for Sasakian magnetic fields on a real

hypersurface of type (A2) in CHn(c), we find that they are Killing helices of order at

most 6 by Corollary 13.1 and by the fact that every isometry of a real hypersurface

of type (A2) is equivariant. But for more detail we will discuss in the forthcoming

paper. For geodesics on this hypersurface we have a corresponding result in [4].



15. Trajectories on geodesic spheres in a complex Euclidean space

In ths section we study trajectories on some real hypersurfaces in a complex Eu-

clidean space Cn. In Cn, typical examples of real hypersurfaces are a standard sphere

S2n−1(c) of radius 1/
√
c and a Euclidean space R2n−1. Since R2n−1 is a horosphere

in a Hadamard manifold Cn, it is interesting to compare properties of trajectories

on these hypersurfaces and those on standard real hypersurfaces in CHn(c).

15.1. Trajectories on Euclidean hypersurfaces. First we consider a condition

for trajectories on Euclidean hyperplanes to be circles. Without loss of generality,

we can represent a Euclidean hyperplane R2n−1 in Cn by {(x1+
√
−1y1, . . . , xn−1+

√
−1yn−1, xn)}. In this case, we have N = (0, . . . , 0,

√
−1), hence find that ξ =

(0, . . . , 0, 1) is a parallel vector field on R2n−1.

Let γ be a trajectory for a Sasakian magnetic field Fκ on R2n−1. Its structure

torsion ργ is constant along γ because

ρ′γ = γ̇〈γ̇, ξ〉 = 〈κφγ̇, ξ〉 = 0.

In order to study the behavior of γ, we denote as γ = (γ], γ∗), where γ∗ : R → R

is the last component and γ] : R → R2n−2 ∼= Cn−1. Then the equation ∇γ̇ γ̇ = κφγ̇

(i.e. γ′′ = κφγ′) is equivalent to the system of equations{
γ′′] = κJγ′],

γ′′∗ = 0.

Solving this system of differential equations, we find

γ(t) = γ(0) +
(1

κ
γ′](0){sinκt+

√
−1(1−cosκt)}, ργt

)
.

Thus we obtain the following.

Proposition 15.1. On a Euclidean real hypersurface R2n−1 in a complex Euclidean

space Cn, a trajectory γ for a non-trivial Sasakian magnetic field Fκ is as follows.

(1) It is a geodesic if and only if ργ = ±1.



§15. Trajectories on geodesic spheres in a complex Euclidean space 145

(2) It is circular if and only if its structure torsion satisfies ργ = 0. In this case,

its geodesic curvature is |κ| and it is closed of length 2π/|κ|.

(3) Otherwise, it is a helix of proper order 3 whose geodesic curvatures are k1 =

|κ|
√

1−ργ2 and k2 = |κργ|. In particular it is unbounded in both directions.

Proof. We shall write down the Frenet formula for γ by the expression of components.

As its velocity vector is expressed as γ′ = (γ′], γ
′
∗), its structure torsion is given by

ργ =
〈
(γ′], γ

′
∗), (0, 1)

〉
= γ′∗.

When ργ 6= 0,±1, by direct computation we have

γ′′ = (κJγ′], 0) = |κ|
√

1−ρ2
γ

( sgn(κ)√
1−ρ2

γ

Jγ′], 0
)
,

sgn(κ)√
1−ρ2

γ

(
Jγ′], 0

)′
=

sgn(κ)√
1−ρ2

γ

(
−κγ′], 0

)
= −|κ|

√
1−ρ2

γγ
′ +

|κ|√
1−ρ2

γ

(
−ρ2

γγ
′
], (1−ρ2

γ)γ
′
∗
)

= −|κ|
√

1−ρ2
γγ

′ + |κργ|
(
− |ργ|√

1−ρ2
γ

γ′],

√
1−ρ2

γ

|ργ|
γ′∗

)
,

(
− |ργ|√

1−ρ2
γ

γ′],

√
1−ρ2

γ

|ργ|
γ′∗

)′
= − κ|ργ|√

1−ρ2
γ

(
Jγ′], 0

)
= −|κργ|

( sgn(κ)√
1−ρ2

γ

Jγ′], 0
)
.

Hence it is a helix of proper order 3. When ργ = ±1, as γ = (0, γ∗), we see γ′′ = 0,

hence is a geodesic. When ργ = 0, as we have γ∗ ≡ 0 and γ = (γ], 0), we see

γ′′′ = −κ2γ′, hence is a circle of geodesic curvature |κ|.

On a Euclidean space R2n−1, it is known that every circle of positive geodesic

curvature k is closed of length 2π/k and that all helix of proper order 3, which are

also called ordinary helices, are unbounded homogeneous curve. We hence get the

conclusion. �

We note that as a hyperplane R2n−1 is totally geodesic in Cn the extrinsic shapes

of trajectories on R2n−1 in Cn is the same as in Proposition 15.1.
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15.2. Trajectories on standard spheres. We next consider hyperspheres in Cn.

A standard sphere S2n−1(c) in Cn of constant sectional curvature c, which is also

called a hypersphere and is expressed as a sphere of radius 1/
√
c;

S2n−1(c) =
{
(z1, . . . , zn) ∈ Cn

∣∣ |z1|2 + · · · |zn|2 = 1/c
}
.

We take its inward unit normal N . That is, at a point z ∈ S2n−1(c) the vector

is given as Nz = −
√
cz. We denote by ∇ and ∇ the Riemannian connections on

S2n−1(c) and Cn, respectively. We then have

(15.1) ∇XY = ∇XY −〈∇XY,N〉N = ∇XY + 〈Y,∇XN〉N = ∇XY −
√
c〈X, Y 〉N

for all vector fields X, Y ∈ X
(
S2n−1(c)

)
. Therefore we have 〈AX, Y 〉 =

√
c〈X, Y 〉,

hence have Av =
√
cv for all v ∈ TS2n−1(c) and find that it is totally umbilic.

In particular, we see the characteristic tensor satisfies Aφ = φA, and find that

the structure torsion of each trajectory γ for a Sasakian magnetic field Fκ on this

standard sphere is constant along γ. For properties of trajectories on spheres in the

sense of Frenet-Serre formula we have the following.

Proposition 15.2. Let Fκ be a non-trivial Sasakian magnetic field on a standard

sphere S2n−1(c) in Cn.

(1) A trajectory γ is a geodesic if and only if ργ = ±1.

(2) When |κ| ≤
√
c, there are no circular trajectories for Fκ.

(3) When |κ| >
√
c, a trajectory γ for Fκis circular if and only if ργ =

√
c/κ. In

this case its geodesic curvature is
√
κ2 − c, hence it is closed of length 2π/|κ|.

(4) If a trajectory γ for Fκ is not a circle, that is ργ 6= ±1,
√
c/κ, then it is a helix

of proper order 3 whose geodesic curvatures are |κ|
√

1 − ρ2
γ and |κργ −

√
c|.

Proof. We do the same calculation as in Lemma 6.3 and Proposition 7.1. When

ργ = ±1, as we have ∇γ̇ γ̇ = κφγ̇ = 0, it is a geodesic. When ργ 6= ±1, we set
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Y2 =
(
sgn(κ)/

√
1 − ρ2

γ

)
φγ̇. Since Aγ̇ =

√
cγ̇, we have

∇γ̇(φγ̇) = ργAγ̇ − 〈Aγ̇, γ̇〉ξ − κ
(
γ̇ − ργξ

)
= −κ(1 − ρ2

γ)γ̇ + (κργ −
√
c)(ξ − ργ γ̇).

Thus, we find γ is a circle if and only if κργ −
√
c = 0. Since |ργ| < 1 in this case,

this equality does not hold when |κ| ≤
√
c. When κργ 6=

√
c, we have

∇γ̇(ξ − ργ γ̇) = φAγ̇ − ργκφγ̇ = (
√
c− κργ)φγ̇.

Therefore we find it is a helix of proper order 3 in this case.

On a standard sphere S2n−1(c), it is known that every circle of geodesic curvature

k is closed of length 2π/
√
k2 + c. We hence get the conclusion. �

We here compare Propositions 15.1, 15.2 and Theorems 9.1, 12.3, 13.4 on circu-

lar trajectories on geodesic spheres and tubes around totally geodesic hyperplanes,

which are real hypersurfaces of type (A1), in a nonflat CMn(c). On hyperplanes

and hyperspheres in Cn every circular trajectory is closed. On the contrary, on

real hypersurfaces of type (A1) in a nonflat CMn(c), there are infinitely many open

circular trajectories and infinitly many closed circular trajectories. This is quite

different feature of circular trajectories.

We also point out that lengths of circular trajectories on standard spheres do not

depend on sectional curvatures of spheres. In order to make clear this point, we

study the extrinsic shapes of circular trajectories.

Proposition 15.3. Let γ be a circular trajectory for Fκ on S2n−1(c). Then its

extrinsic shape in Cn is a circle of geodesic curvature |κ|.

Proof. We take the inword unit normal N on S2n−1 in Cn. Since ∇XY = ∇XY +
√
c〈X, Y 〉N by (15.1), we find the following: ∇γ̇ γ̇ = ∇γ̇ γ̇ +

√
cN = κφγ̇ +

√
cN ,

∇γ̇

(
κφγ̇ +

√
cN

)
= −κ2(1 − ρ2

γ)γ̇ +
√
cAγ̇ = −{κ2(1 − ρ2

γ) + c}γ̇.
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As we have

‖κφγ̇ +
√
cN‖2 =

√
κ2(1 − ρ2

γ) + c = κ2

by the circular condition κργ =
√
c, we get the conclusion. �



16. Trajectories which are also curves of order 2 on real hypersurfaces of

type (B) in CHn

In previous sections we studied circular trajectories on real hypersurfaces of type

(A). We are hence interested in investigating whether there exist circular trajectories

on homogeneous Hopf real hypersurfaces other than of type (A). As we see in Lemma

6.3, if a trajectory γ for a Sasakian magnetic field is a circle of positive geodesic

curvature, we know that its structure torsion ργ has to be constant. As we have

ρ′γ = 1
2

〈
(φA−Aφ)γ̇, γ̇

〉
by Lemma 6.2, we need to study the behavior of φA−Aφ. For

real hypersurfaces of type (A), as their shape operators and characteristic tensors

are simultaneously diagonalizable (recall Lemma 5.4), we obtained that structure

torsions of trajectories are always constant. But such properties do not hold for

other standard real hypersurfaces. Though there is a result on differentials of shape

operators for real hypersurfaces of type (B) given by Ki-Kim-Nakagawa [33], the

author could not follow them. We therefore study structure torsions of trajectories

from other point of view.

Our original interest lies on the existence of trajectories which are “simple” as

curves. In this sense, circles are quite good objects. But as Sasakian magnetic fields

are not uniform, the condition that geodesic curvatures are constant seems too hard

on hypersurfaces which do not have so high symmetries. Therefore, we weaken the

condition on geodesic curvatures, and consider the case that geodesic curvatures are

functions. Since plane curves are sometimes treated in submanifold theory to study

shapes of submanifolds, employing the notion of curves of order 2, which includes

both of the notions of Frenet curve of order 2 and plane curves, we study trajectories

which are also curves of order 2 in this section and next two sections.

16.1. Trajectories which are curves of order 2 on hypersurfaces of type

(B). We first study on real hypersurfaces of type (B) in a nonflat complex space
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form CMn(c). For a real hypersurface M of type (B), the holomorphic distribution

T 0M =
{
v ∈ TM

∣∣ 〈V, ξ〉 = 0
}

of its tangent bundle TM splits into two subbundles

of principal curvature vectors which are orthogonal to ξ as T 0M = Vλ ⊕ Vµ. Here

Vλ and Vµ correspond to the principal curvatures

λ =

{
−(

√
c/2) cot

(√
c r/2

)
, if M ⊂ CP n(c),

(
√
|c|/2) coth

(√
|c| r/2

)
, if M ⊂ CHn(c),

µ =

{
(
√
c/2) tan

(√
c r/2

)
, if M ⊂ CP n(c),

(
√
|c|/2) tanh

(√
|c| r/2

)
, if M ⊂ CHn(c),

respectively. We note that the principal curvature of ξ is

ν =

{√
c tan

√
cr, if M ⊂ CP n(c),√

|c| tanh
√
|c|r, if M ⊂ CHn(c).

The characteristic tensor φ acts on TM = Vλ⊕Vµ⊕Rξ as φ(Vλ) = Vµ and φ(Vµ) = Vλ.

Proposition 16.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field Fκ

on a real hypersurface M of type (B) in a nonflat CMn(c). Suppose γ is also a curve

of order 2 and |ργ| < 1. If we decompose its velocity vector as γ̇ = Xγ + Yγ + ργξ ∈

Vλ ⊕ Vµ ⊕ Rξ, we have

(16.1)


ργ(1 − ρ2

γ)(κργ − λ)Xγ = ργ(λ− µ)〈φXγ, Yγ〉φYγ,

ργ(1 − ρ2
γ)(κργ − µ)Yγ = ργ(λ− µ)〈φXγ, Yγ〉φXγ,

κργ(1 − ρ2
γ) = λ‖Xγ‖2 + µ‖Yγ‖2,

and

(16.2) ‖Xγ‖2 =
(1 − ρ2

γ)(κργ − µ)

λ− µ
, ‖Yγ‖2 =

(1 − ρ2
γ)(λ− κργ)

λ− µ
.

In particular, ργ satisfies min{λ, µ} ≤ κργ ≤ max{λ, µ}.

Moreover, ργ does not vanishes on a real hypersurface M in a complex hyperbolic

space CHn(c).

Proof. Since γ is a curve of order 2, it satisfies

‖∇γ̇ γ̇‖2
(
∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇

)
= 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉∇γ̇ γ̇
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by definition. We here take account of the condition that γ is a trajectory. By direct

computation we obtain

∇γ̇∇γ̇ γ̇ = κ∇γ̇

(
φγ̇

)
= κ

{
(∇γ̇φ)γ̇ + φ∇γ̇ γ̇

}
= κ

{
ργAγ̇ − 〈Aγ̇, γ̇〉ξ + κφ2γ̇

}
.

By use of the decomposition γ̇ as γ̇ = Xγ + Yγ + ργξ ∈ Vλ ⊕ Vµ ⊕ Rξ, we find

∇γ̇ γ̇ = κ
(
φYγ + φXγ

)
,

∇γ̇∇γ̇ γ̇ = κ
{
(ργλ− κ)Xγ + (ργµ− κ)Yγ −

(
λ‖Xγ‖2 + µ‖Yγ‖2

)
ξ
}
.

Since φ(Xγ) ∈ Vµ, φ(Yγ) ∈ Vλ, by substituting these into the above equality, we

obtain
κ3(1−ρ2

γ)
{
ργ(λ− κργ)Xγ + ργ(µ− κργ)Yγ

+
(
κργ(1 − ρ2

γ) − λ‖Xγ‖2 − µ‖Yγ‖2
)
ξ
}

= κ3ργ(µ− λ)〈φXγ, Yγ〉(φYγ + φXγ)

Comparing each components, we find that a trajectory γ is a curve of order 2 if and

only if the equalities (16.1) hold.

Next we consider norms of Xγ and Yγ. If we suppose ργ(t0) = 0 at some t0, the

third equation in (16.1) and the definition of ργ show thatλ‖Xγ(t0)‖2 + µ‖Yγ(t0)‖2 = 0,

‖Xγ(t0)‖2 + ‖Yγ(t0)‖2 = 1.

When M is a real hypersurface in CHn(c), as λ > µ > 0, we do not have solutions,

hence find that ργ never vanishes. When M is a real hypersurface in CP n(c), as

λ < 0 < µ, we see

‖Xγ(t0)‖2 = µ/(µ− λ), ‖Yγ(t0)‖2 = −λ/(µ− λ).

We now consider on the domain where ργ(t) 6= 0. We then have (1 − ρ2
γ)(κργ − λ)Xγ = (λ− µ)〈φXγ, Yγ〉φYγ,

(1 − ρ2
γ)(κργ − µ)Yγ = (λ− µ)〈φXγ, Yγ〉φXγ.

These equalities show that Yγ is parallel to φXγ. Hence we see 〈φXγ, Yγ〉2 =

‖Xγ‖2‖Yγ‖2. Since ργ 6= ±1, we note that either Xγ does not vanish or Yγ does
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not vanish at each point. If Xγ(t1) = 0 at some t1, by the second equality we have

κργ(t1) = µ and ‖Yγ(t1)‖2 = 1 − ρ2
γ(t1). Similarly, if Yγ(t1) = 0 at some t1, then we

have κργ(t1) = λ and ‖Xγ(t1)‖2 = 1 − ρ2
γ(t1). If both Xγ and Yγ do not vanish, by

taking inner products of both sides of the first equality with Xγ and with φYγ, we

obtain

‖Xγ‖2 =
(1 − ρ2

γ)(κργ − µ)

λ− µ
, ‖Yγ‖2 =

(1 − ρ2
γ)(λ− κργ)

λ− µ
.

We can see that this expression include the cases ργ vanishes, ‖Xγ‖ vanishes and

‖Yγ‖ vanishes. We hence get the conclusion. �

As a direct consequence of the above Proposition, we can obtain a result on non-

existence of trajectories which are curves of order 2 on real hypersurfaces of type

(B) in a complex hyperbolic space.

Proposition 16.2. If the strength of a Sasakian magnetic field Fκ on a real hy-

persurface R(r) of type (B) in CHn(c) satisfies 0 < |κ| ≤ (
√

|c|/2) tanh(
√

|c| r/2),

then there are no Fκ-trajectories which are curves of order 2 and are not geodesics.

Proof. By Lemma 6.1, if we have ργ(t0) = ±1 at some point t0, then we find that

ργ ≡ ±1 and γ is a geodesic. Therefore we only need to treat the case |ργ| < 1.

The equalities (16.2) in Proposition 16.1 show that the structure torsion ργ of a

trajectory γ which is also a curve of order 2 satisfies λ ≥ κργ ≥ µ (> 0). Since

|ργ| < 1, we find |κ| > µ and get the conclusion. �

For a real hypersurfaces of type (B) in a complex projective space, we can not con-

clude such a non-existence theorem only by Proposition 16.1 because two principal

curvatures have different signatures.

16.2. Behaviors of structure torsions on hypersurfaces of type (B) in CHn.

For now we can not conclude whether there exists a trajectory which are also curves
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of order 2 on real hypersurfaces in CMn(c). We further our study on structure

torsions under the hypothesis of existence of such trajectories.

Let γ be a trajectory which are also curve of order 2 on a real hypersurface R(r) of

type (B) in CHn(c). By use of the same notations as in Proposition 16.1, we denote

as γ̇ = Xγ + Yγ + ργξ ∈ Vλ ⊕ Vµ ⊕ Rξ for a trajectory γ which is a curve of order 2

on a real hypersurface of type (B). Recalling the computation on the derivative of

its structure torsion ργ in Lemma 6.3, we have

(16.3)
ρ′γ = 〈γ̇, φAγ̇〉 = 〈γ̇, λφXγ + µφYγ〉

= λ〈Yγ, φXγ〉 + µ〈Xγ, φYγ〉 = (λ− µ)〈φXγ, Yγ〉.

By Proposition 16.1 we see ργ never vanishes. As we see in the proof of Proposition

16.1, we have 〈φXγ, Yγ〉2 = ‖Xγ‖2‖Yγ‖2 in this case. Therefore, the above equation

turns to

(16.4)
(
ρ′γ

)2
= (λ− µ)2‖Xγ‖2 ‖Yγ‖2 = (1 − ρ2

γ)
2(λ− κργ)(κργ − µ).

We solve this differential equation.

1) If |κ| > µ, we see that ργ ≡ µ/κ is the solution of the above equation;

2) if |κ| > λ, then ργ ≡ λ/κ and ργ ≡ µ/κ are solutions of the above equation.

We should note that ρ = λ/κ on some interval and ρ = µ/κ on some other interval

can not occur because trajectories for Sasakian magnetic fields are not bifurcated.

In those cases, Xγ ≡ 0 and ‖Yγ‖2 ≡ 1 − ρ2
γ when ργ ≡ µ/κ, and Yγ ≡ 0 and

‖Xγ‖2 ≡ 1− ρ2
γ when ργ ≡ λ/κ. In view of structure torsions of trajectories on real

hypersurfaces of type (A), such cases likely occur. We shall discuss this later, and

here we focus our mind on behaviors of their structure torsions.

We study other solutions. We first consider the case κ > 0. The equation (16.4)

guarantees that µ/κ ≤ ργ ≤ λ/κ. We modify the equation

dt =
±dργ

(1 − ρ2
γ)

√
(λ− κργ)(κργ − µ)



154 Tuya BAO

by changing variable. Here, the double sign corresponds to the signature of ρ′γ . We

put y =
√

(λ−κργ)/(κργ−µ). As we have

ργ =
µy2 + λ

κ(y2 + 1)
and

dργ
dy

= − 2y(λ− µ)

κ(y2 + 1)2
,

we get

I : =

∫
dργ

(1 − ρ2
γ)

√
(λ− κργ)(κργ − µ)

=

∫
1{

1 −
(
µy2+λ
κ(y2+1)

)2}
y
(
µy2+λ
y2+1

− µ
) × 2y(µ− λ)

κ(y2 + 1)2
dy

=

∫
2κ(y2 + 1)

(µy2 + λ)2 − κ2(y2 + 1)2
dy

=

∫ { 1

(µ− κ)y2 + (λ− κ)
− 1

(µ+ κ)y2 + (λ+ κ)

}
dy.

In order to continue our computation, we divide the situation into 3 cases. When

λ > κ > µ, we have

I = − 1√
(κ+µ)(λ+κ)

tan−1

√
κ+µ

λ+κ
y

+
1

2
√
λ−κ

∫ { 1
√
κ−µ y +

√
λ−κ

− 1
√
κ−µ y −

√
λ−κ

}
dy

= − 1√
(κ+µ)(λ+κ)

tan−1

√
(κ+µ)(λ−κργ)
(λ+κ)(κργ−µ)

+
1

2
√

(λ−κ)(κ−µ)
log

∣∣∣∣∣
√

(κ−µ)(λ−κργ) +
√

(λ−κ)(κργ−µ)√
(κ−µ)(λ−κργ) −

√
(λ−κ)(κργ−µ)

∣∣∣∣∣ .
When κ = λ, we have

I =
1

(κ−µ)y
− 1√

(κ+µ)(λ+κ)
tan−1

√
κ+µ

λ+κ
y

=

√
κργ−µ

(λ−µ)
√
λ−κργ

− 1√
(κ+µ)(λ+κ)

tan−1

√
(κ+µ)(λ−κργ)
(λ+κ)(κργ−µ)

.



§16. Trajectories which are also curves of order 2 on hypersurfaces of type (B) in CHn 155

When κ > λ, we have

I = − 1√
(κ−µ)(κ−λ)

tan−1

√
κ−µ
κ−λ

y − 1√
(κ+µ)(λ+κ)

tan−1

√
κ+µ

λ+κ
y

= − 1√
(κ−µ)(κ−λ)

tan−1

√
(κ−µ)(λ−κργ)
(κ−λ)(κργ−µ)

− 1√
(κ+µ)(λ+κ)

tan−1

√
(κ+µ)(λ−κργ)
(λ+κ)(κργ−µ)

.

Summarizing up, by solving the differential equation (16.4), we obtain the following:

(16.5) t+ C = −sgn
(
ρ′γ(t)

){ 1√
(κ+µ)(κ+λ)

tan−1

√
(κ+µ)(λ−κργ)
(κ+λ)(κργ−µ)

− fκ(ργ)

}
,

where the constant C is determined by initial condition, the function fκ is given as

fκ(ργ) =



1

2
√

(κ−µ)(λ−κ)
log

∣∣∣∣∣
√

(κ−µ)(λ−κργ) +
√

(λ−κ)(κργ−µ)√
(κ−µ)(λ−κργ) −

√
(λ−κ)(κργ−µ)

∣∣∣∣∣ ,
when µ < κ < λ,

√
κργ−µ

(λ−µ)
√
λ−κργ

, when κ = λ,

−1√
(κ−µ)(κ−λ)

tan−1

√
(κ−µ)(λ−κργ)
(κ−λ)(κργ−µ)

, when κ > λ,

and sgn
(
ρ′γ(t)

)
denotes the signature of ρ′γ(t). This means that we need to treat sep-

arately on the interval where ρ′γ is positive and on the interval where ρ′γ is negative.

We now study the behavior of the function ργ. We first study the case µ < κ ≤ λ.

Suppose µ/κ < ργ(t∗) < 1 (≤ λ/κ) at some t∗. By (16.4) we see ρ′γ(t∗) 6= 0,

hence have an interval (t−, t+) with t− < t∗ < t+ satisfying that ρ′γ(t) 6= 0 on this

interval and limt↓t− ρ
′
γ(t) = 0 = limt↑t+ ρ

′
γ(t). When ρ′γ(t∗) > 0, as ργ < 1, we find

t+ = ∞ and limt→∞ ργ(t) = 1. As a matter of fact, if we suppose t+ < ∞, then

we have ργ(t+) = 1 by (16.4). By Lemma 6.1, we find γ is a geodesic and satisfies

ργ ≡ 1, which is a contradiction. In this case, we also find limt↓t− ργ(t) = µ/κ by

(16.4). In view of the equality (16.5), the right hand side goes to a finite value

−π/(2
√

(κ+µ)(κ+λ)) when we make t ↓ t−. Therefore we find t− > −∞. By
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homogeneity of M and the fact that trajectories can not be bifurcated, there is

t[ (< t−) such that ρ′γ(t) < 0 on the interval (t[, t−) and limt↓t[ ρ
′
γ(t) = 0. Again as

ργ < 1, we find t[ = −∞ and limt→−∞ ργ(t) = 1. When ρ′γ(t∗) < 0, by the same

argument we have ρ′γ(t) < 0 on the interval (−∞, t+) and ρ′γ(t) > 0 on the interval

(t+,∞), and have limt→−∞ ργ(t) = limt→∞ ργ(t) = 1, ργ(t+) = µ/κ. The image can

be seen in Figure 2. This is just an image and is not the graph of the function ργ.

1

tt-

Figure 2. µ < κ ≤ λ

tt0

1

1t 2t

Figure 3. κ > λ

We next consider the case κ > λ. Suppose µ/κ < ργ(t∗) < λ/κ at some t∗. We

then have an interval (t−, t+) with t− < t∗ < t+ satisfying that ρ′γ(t) 6= 0 on this

interval and limt↓t− ρ
′
γ(t) = 0 = limt↑t+ ρ

′
γ(t). When ρ′γ(t∗) > 0, we set t− = t0

and t+ = t1. By (16.4), we have limt↑t1 ργ(t) = λ/κ and limt↓t0 ργ(t) = µ/κ. In

view of the equality (16.5), the right hand side goes to a finite value 0 when we

make t ↑ t1. We hence find that t1 < ∞. By the same argument as in the case

µ < κ ≤ λ, we also find that t0 > −∞. Repeating the same argument, we have a

sequence {ti}−∞<i<∞ such that ρ′γ(t) < 0 on the interval (t2j−1, t2j) and ρ′γ(t) > 0

on the interval (t2j, t2j+1), and ργ(t2j) = µ/κ, ργ(t2j+1) = λ/κ. We also note that

the interval is

ti+1 − ti =
π

2
√

(κ+µ)(κ+λ)
+

π

2
√

(κ−µ)(κ−λ)
.

Hence it is periodic with period
(
π/

√
(κ+µ)(κ+λ)

)
+

(
π/

√
(κ−µ)(κ−λ)

)
. When

ρ′γ(t∗) < 0, by setting t− = t−1 and t+ = t0, we get such a sequence. The image can

be seen in Figure 3.
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We finally consider the case κ < 0. In this case we reverse the orientation of the

trajectory γ. That is we consider a curve σ which is defined by σ(t) = γ(−t). Then

it is a trajectory for F−κ and is a curve of order 2. Summarizing up we have the

following.

Lemma 16.1. Let Fκ be a non-trivial Sasakian magnetic field on a real hypersurface

R(r) of type (B) in CHn(c). Suppose there exist a Fκ-trajectory γ which is also a

curve of order 2. Then its structure torsion ργ satisfies the following with λ =

(
√
|c|/2) coth

(√
|c| r/2

)
and µ = (

√
|c|/2) tanh

(√
|c| r/2

)
.

(I) When µ < κ ≤ λ,

1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ µ/κ, (Xγ ≡ 0, ‖Yγ‖ = 1 − ρ2
γ);

3) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = µ/κ.

(II) When −µ > κ ≥ −λ,

1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ µ/κ, (Xγ ≡ 0, ‖Yγ‖ = 1 − ρ2
γ);

3) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = µ/κ.

(III) When |κ| > λ,

1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ µ/κ, (Xγ ≡ 0, ‖Yγ‖ = 1 − ρ2
γ);

3) ργ ≡ λ/κ, (Yγ ≡ 0, ‖Xγ‖ = 1 − ρ2
γ);

4) ργ is a periodic function satisfying µ ≤ κργ ≤ λ. In this case κργ takes all

the values in the interval [µ, λ].
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16.3. Trajectories which are curves of order 2 on hypersurfaces of type

(B) in CHn. We now consider whether these cases in Lemma 16.1 really occur.

For this sake we consider R(r) through a Hopf fibration $ : H2n+1
1 → CHn in the

case c = −4. As we mentioned in §5.3, we may consider that

$−1
(
R(r)

)
=

{
ẑ = (z0, z1, . . . , zn) ∈ Cn+1

∣∣∣∣ −|z0|2 + |z1|2 + · · · + |zn|2 = −1,
| −z2

0 + z2
1 + · · · + z2

n| = cosh 2r

}

=

e
√
−1θ


x0+

√
−1y0

x1+
√
−1y1

...
xn+

√
−1yn


t

∈ Cn+1

∣∣∣∣∣∣∣∣
θ ∈ R,

−x0y0 + x1y1 + · · · + xnyn = 0,
−x2

0 + x2
1 + · · · + x2

n = − cosh2 r,
−y2

0 + y2
1 + · · · + y2

n = sinh2 r

 .

We take a point ẑ ∈ M̂ = $−1
(
R(r)

)
which is represented as above with θ = 0. The

horizontal part Hẑ of the tangent space TẑM̂ at ẑ is represented as

Hẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣∣∣
−x0u0 + x1u1 + · · · + xnun = 0,
−y0v0 + y1v1 + · · · + ynvn = 0,
−x0v0+x1v1+· · ·+xnvn

−y0u0+y1u1+· · ·+ynun = 0

 ,

where we denote ŵ =
(
u0 +

√
−1v0, u1 +

√
−1v1, . . . , un+

√
−1vn

)
. The horizontal

lift N̂ẑ of the unit normal vector N$(ẑ) of R(r) in CHn(−4), which is a unit normal

vector of M̂ in H2n+1
1 , is represented as

N̂ẑ =

(
ẑ,


− tanh rx0−

√
−1 coth ry0

− tanh rx1−
√
−1 coth ry1

...
− tanh rxn−

√
−1 coth ryn


t)

∈ {ẑ} × Cn+1.

We put ξ̂ẑ = −JN̂ẑ, which is the horizontal lift of ξ$(ẑ) and is given as

ξ̂ẑ =

(
ẑ,


− coth ry0+

√
−1 tanh rx0

− coth ry1+
√
−1 tanh rx1

...
− coth ryn+

√
−1 tanh rxn


t)

∈ {ẑ} × Cn+1.
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Therefore we find that the horizontal lift of 〈ξ$(ẑ)〉⊥ = T 0
$(ẑ)R(r) is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣∣∣
−x0u0 + x1u1 + · · · + xnun = 0,
−y0u0 + y1u1 + · · · + ynun = 0,
−y0v0 + y1v1 + · · · + ynvn = 0,
−x0v0 + x1v1 + · · · + xnvn = 0


=

{
(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣ −z0w0 + z1w1 + · · · + znwn = 0,
−z0w0 + z1w1 + · · · + znwn = 0

}
.

The horizontal lifts of the subspaces Vλ,$(ẑ) and Vµ,$(ẑ) of principal curvature vectors

are given as

V̂λ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣
−x0v0 + x1v1 + · · · + xnvn = 0,
−y0v0 + y1v1 + · · · + ynvn = 0,

u0 = u1 = · · · = un = 0

 ,

V̂µ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣
−x0u0 + x1u1 + · · · + xnun = 0,
−y0u0 + y1u1 + · · · + ynun = 0,

v0 = v1 = · · · = vn = 0

 .

In order to simplify the description, for x = (x0, x1, . . . , xn), x = (x′0, x
′
1, . . . , x

′
n) ∈

Rn+1, we set

〈〈x, x′〉〉 = −x0x
′
0 + x1x

′
1 + · · · + xnx

′
n.

Though it is the same notation as of the Hermitian form on Cn+1
1 , one may do not

confuse them.

Let γ be a trajectory for Fκ which is also a curve of order 2. We suppose κργ(t0) =

µ at some point t0. We take its horizontal lift γ̂ satisfying that γ̂(t0) ∈ M̂ is

represented with θ = 0 in our representation. We denote as γ̂(t0) = ẑ] = x] +
√
−1y] ∈ Cn+1 and γ̂′(t0) = (ẑ], u] +

√
−1v]) ∈ Hẑ]

⊂ {ẑ]} × Cn+1 with some

x], y], u], v] ∈ Rn+1. By Proposition 16.1 (see also Lemma 16.1), we see

V̂µ,ẑ]
3 γ̂′(t0) − ργ(t0)ξ̂γ̂(t0)

=
(
ẑ],

(
u] + ργ(t0) coth r y]

)
+
√
−1

(
v] − ργ(t0) tanh r x]

))
.

We therefore obtain

(16.6)

{
v] = ργ(t0) tanh r x],

〈〈u], u]〉〉 + 2ργ(t0) coth r〈〈u], y]〉〉 + ρ2
γ(t0) coth2 r〈〈y], y]〉〉 = 1 − ρ2

γ(t0),
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As γ̂′(t0) ∈ Hγ̂(t0), we have 〈〈u], y]〉〉 + 〈〈v], x]〉〉 = 0. Hence, by the definition of

structure torsions, we have

(16.7)
ργ(t0) = 〈γ̇(t0), ξγ(t0)〉 = 〈〈u],− coth r y]〉〉 + 〈〈v], tanh r x]〉〉

= −(coth r + tanh r)〈〈u], y]〉〉.

Since 〈〈x], x]〉〉 = − cosh2 r, 〈〈y], y]〉〉 = sinh2 r, by (16.6) and (16.7) we obtain

〈〈u], u]〉〉 = 1 − ρ2
γ(t0)(1 + cosh2 r) +

2ρ2
γ(t0) coth r

coth r + tanh r

We therefore get

1 = ‖γ̇(t0)‖2 = 〈〈u], u]〉〉 + 〈〈v], v]〉〉

= 1 − ρ2
γ(t0)(1 + cosh2 r) +

2ρ2
γ(t0) cosh2 r

cosh2 r + sinh2 r
− ρ2

γ(t0) sinh2 r

= 1 −
4ρ2

γ(t0) cosh2 r sinh2 r

cosh2 r + sinh2 r
.

This shows ργ(t0) = 0, which is a contradiction.

We next suppose κργ(t0) = λ at some point t0. By using the same notations we

see by Proposition 16.1 (see also Lemma 16.1) that

V̂λ,ẑ]
3 γ̂′(t0) − ργ(t0)ξ̂γ̂(t0)

=
(
ẑ],

(
u] + ργ(t0) coth r y]

)
+
√
−1

(
v] − ργ(t0) tanh r x]

))
.

We hence obtain

(16.8)

{
u] = −ργ(t0) coth r y],

〈〈v], v]〉〉 − 2ργ(t0) tanh r〈〈v], x]〉〉 + ρ2
γ(t0) tanh2 r〈〈x], x]〉〉 = 1 − ρ2

γ(t0),

By (16.7) and (16.8), we obtain

〈〈v], v]〉〉 = 1 + ρ2
γ(t0)(sinh2 r − 1) +

2ρ2
γ(t0) tanh r

coth r + tanh r
.

We therefore get

1 = ‖γ̇(t0)‖2 = 〈〈u], u]〉〉 + 〈〈v], v]〉〉

= 1 + ρ2
γ(t0)(sinh2 r − 1) +

2ρ2
γ(t0) sinh2 r

cosh2 r + sinh2 r
+ ρ2

γ(t0) cosh2 r

= 1 +
4ρ2

γ(t0) sinh2 r cosh2 r

cosh2 r + sinh2 r
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This shows ργ(t0) = 0, which is a contradiction. Thus we can conclude that if a

trajectory Fκ is also a curve of order 2 then its structure torsion satisfies neither

κργ(t0) = µ nor κργ(t0) = λ at arbitrary t0.

Combining the above argument with Lemma 16.1 and Proposition 16.2 we get the

following.

Theorem 16.1. On a real hypersurface R(r) of type (B) in CHn(c) there are no

trajectories for Sasakian magnetic fields which are curves of order 2 and are not

geodesics.

Remark 16.1. For non-trivial Sasakian magnetic fields on a real hypersurface R(r) of

type (B) in CHn(c), trajectories are geodesic if and only if their structure torsions

satisfy ργ ≡ ±1.

We here make mention of congruence classes of geodesic trajectories.

Proposition 16.3. On a real hypersurface R(r) of type (B) in CHn(c), all geodesic

trajectories for non-trivial Sasakian magnetic fields are congruent to each other in

strong sense.

We can obtain this by the following Lemma. Let TzR(r) = Vλ,z ⊕ Vµ,z ⊕ Rξz be

the splitting of the tangent space at z ∈ R(r) into subspaces of principal curvature

vectors.

Lemma 16.2. Let z, z′ ∈ R(r) be arbitrary points on a hypersurface R(r) of type (B)

in CHn(c). Given unit tangent vectors w ∈ Vλ,z, ς ∈ Vµ,z and w′ ∈ Vλ,z′ , ς
′ ∈ Vµ,z′,

we have isometries ϕ̃+
λ , ϕ̃

−
λ , ϕ̃

+
µ , ϕ̃

−
µ of CHn satisfying the following conditions:

i) ϕ̃+
λ

(
R(r)

)
= ϕ̃+

µ

(
R(r)

)
= ϕ̃−

λ

(
R(r)

)
= ϕ̃−

µ

(
R(r)

)
= R(r);

ii) ϕ̃+
λ (z) = ϕ̃+

µ (z) = ϕ̃−
λ (z) = ϕ̃−

µ (z) = z′;

iii) dϕ̃+
λ (ξz) = dϕ̃+

µ (ξz) = ξz′ and dϕ̃−
λ (ξz) = dϕ̃−

µ (ξz) = −ξz′ ;
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iv) dϕ̃+
λ (w) = dϕ̃−

λ (w) = w′, dϕ̃+
µ (ς) = dϕ̃−

µ (ς) = ς ′,

v) dϕ̃+
λ ◦ J = J ◦ dϕ̃+

λ , dϕ̃
+
µ ◦ J = J ◦ dϕ̃+

µ ,

vi) dϕ̃−
λ ◦ J = −J ◦ dϕ̃−

λ , dϕ̃
−
µ ◦ J = −J ◦ dϕ̃−

µ .

Proof. We consider the case n = 3 and c = −4. We may consider that

$−1
(
R(r)

)
=

e
√
−1θ


x0+

√
−1y0

x1+
√
−1y1

x2+
√
−1y2

x3+
√
−1y3


t

∈ C4

∣∣∣∣∣∣∣∣
θ ∈ R,

−x0y0 + x1y1 + x2y2 + x3y3 = 0,
−x2

0 + x2
1 + x2

2 + x2
3 = − cosh2 r,

−y2
0 + y2

1 + y2
2 + y2

3 = sinh2 r

 .

We take a point ẑ ∈ M̂ = $−1
(
R(r)

)
which is represented as above with θ = 0. At

this point the horizontal lift ξ̂ẑ of ξ$(ẑ) is given as

ξ̂ẑ =

(
ẑ,


− coth ry0+

√
−1 tanh rx0

− coth ry1+
√
−1 tanh rx1

− coth ry2+
√
−1 tanh rx2

− coth ry3+
√
−1 tanh rx3


t)

∈ {ẑ} × C4,

and the horizontal lifts of the subspaces Vλ,z and Vµ,z of principal curvature vectors

are

V̂λ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × C4

∣∣∣∣∣∣
−x0v0 + x1v1 + x2v2 + x3v3 = 0,
−y0v0 + y1v1 + y2v2 + y3v3 = 0,

u0 = u1 = u2 = u3 = 0

 ,

V̂µ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × C4

∣∣∣∣∣∣
−x0u0 + x1u1 + x2u2 + x3u3 = 0,
−y0u0 + y1u1 + y2u2 + y3u3 = 0,

v0 = v1 = v2 = v3 = 0

 .

We now take a point ẑ∗ = (cosh r,
√
−1 sinh r, 0, 0) ∈ M̂ and unit tangent vectors

ŵ∗ =
(
ẑ∗, (0, 0,

√
−1, 0)

)
∈ V̂λ,ẑ∗ , ς̂∗ =

(
ẑ∗, (0, 0, 0, 1)

)
∈ V̂µ,ẑ∗ . We then see ξ̂ẑ∗ =(

ẑ∗, (
√
−1 sinh r,− cosh r, 0, 0)

)
. At an arbitrary point ẑ ∈ M̂ which is represented

with θ = 0, we take an arbitrary unit tangent vectors ŵ ∈ V̂λ,ẑ, ς̂ ∈ V̂µ,ẑ. We also

take unit tangent vectors ŵ′ ∈ V̂λ,ẑ, ς̂
′ ∈ V̂µ,ẑ satisfying 〈〈ŵ, ŵ′〉〉 = 〈〈ς̂ , ς̂ ′〉〉 = 0. Here,

we note that we use the symbols ŵ, ŵ′, ς̂ , ς̂ ′ both for tangent vectors and for elements

of C4 showing these tangent vectors. We define matrices U+
λ , U

+
µ ∈ O(3, 1) ⊂ U(3, 1)
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by

U+
λ =


x0/ cosh r y0/ sinh r v0 v′0
x1/ cosh r y1/ sinh r v1 v′1
x2/ cosh r y2/ sinh r v2 v′2
x3/ cosh r y3/ sinh r v3 v′3

 , U+
µ =


x0/ cosh r y0/ sinh r u′0 u0

x1/ cosh r y1/ sinh r u′1 u1

x2/ cosh r y2/ sinh r u′2 u2

x3/ cosh r y3/ sinh r u′3 u3

 .

We also consider a matrix

Ψ =


ε O O O
O ε O O
O O ε O
O O O ε

 ∈ O(4) with ε =

(
1 0
0 −1

)
,

and define U−
λ , U

−
µ by

U−
λ =


x0/ cosh r −y0/ sinh r −v0 v′0
x1/ cosh r −y1/ sinh r −v1 v′1
x2/ cosh r −y2/ sinh r −v2 v′2
x3/ cosh r −y3/ sinh r −v3 v′3

Ψ,

U−
µ =


x0/ cosh r −y0/ sinh r −u′0 u0

x1/ cosh r −y1/ sinh r −u′1 u1

x2/ cosh r −y2/ sinh r −u′2 u2

x3/ cosh r −y3/ sinh r −u′3 u3

Ψ.

These four matrices induce linear transformations of C4
1 which preserves the Her-

mitian form 〈〈 , 〉〉, hence induce isometries ϕ̂+
ẑ,λ, ϕ̂

+
ẑ,µ, ϕ̂

−
ẑ,λ, ϕ̂

−
ẑ,µ of H7

1 . Since

U±
λ , U

±
µ ∈ U(3, 1), these isometries preserve M̂ and satisfy

ϕ̂+
ẑ,λ

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

ẑ,λ(p̂), ϕ̂+
ẑ,µ

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

ẑ,µ(p̂),

ϕ̂−
ẑ,λ

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

ẑ,λ(p̂), ϕ̂−
ẑ,µ

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

ẑ,µ(p̂),

for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . As U±
λ , U

±
µ ∈ O(3, 1), we have

dϕ̂+
ẑ,λ ◦ φ̂ = φ̂ ◦ dϕ̂+

ẑ,λ, dϕ̂+
ẑ,µ ◦ φ̂ = φ̂ ◦ dϕ̂+

ẑ,µ,

dϕ̂−
ẑ,λ ◦ φ̂ = −φ̂ ◦ dϕ̂−

ẑ,λ, dϕ̂−
ẑ,µ ◦ φ̂ = −φ̂ ◦ dϕ̂−

ẑ,µ

on horizontal part H of the tangent bundle of H7
1 , where φ̂ denotes the charac-

teristic tensor on H7
1 in C4

1. Therefore ϕ̂+
ẑ,λ, ϕ̂

+
ẑ,µ, ϕ̂

−
ẑ,λ and ϕ̂−

ẑ,µ induce isometries

ϕ̃+
ẑ,λ, ϕ̃

+
ẑ,µ, ϕ̃

−
ẑ,λ, ϕ̃

−
ẑ,µ of CH3(−4) satisfying

i) ϕ̃±
ẑ,λ ◦$ = $ ◦ ϕ̂±

ẑ,λ, ϕ̃±
ẑ,µ ◦$ = $ ◦ ϕ̂±

ẑ,µ,
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ii) ϕ̃±
ẑ,λ

(
$(ẑ∗)

)
= ϕ̃±

ẑ,µ

(
$(ẑ∗)

)
= $(ẑ),

iii) dϕ̃+
ẑ,λ(ξẑ∗) = dϕ̃+

ẑ,µ(ξẑ∗) = ξẑ, dϕ̃
−
ẑ,λ(ξẑ∗) = dϕ̃−

ẑ,µ(ξẑ∗) = −ξẑ,

iv) dϕ̃±
ẑ,λ

(
d$(ŵ∗)

)
= d$(ŵ), dϕ̃±

ẑ,µ

(
d$(ς̂∗)

)
= d$(ς̂),

v) dϕ̃+
ẑ,λ ◦ J = J ◦ dϕ̃+

ẑ,λ, dϕ̃
+
ẑ,µ ◦ J = J ◦ dϕ̃+

ẑ,µ,

vi) dϕ̃−
ẑ,λ ◦ J = −J ◦ dϕ̃−

ẑ,λ, dϕ̃
−
ẑ,µ ◦ J = −J ◦ dϕ̃−

ẑ,µ.

This leads us to the conclusion for n ≥ 3. In the case n = 2, we have ς = ±φ(w), ς ′ =

±φ(w′). Our argument goes through also in this case. We hence complete the

proof. �

In Lemma 16.2, we consider the case that 〈w, φ(ς)〉 = 〈w′, φ(ς ′)〉 = 0. In the above

proof we consider matrices U+, U− ∈ O(3, 1) given by

U+ =


x0/ cosh r y0/ sinh r v0 u0

x1/ cosh r y1/ sinh r v1 u1

x2/ cosh r y2/ sinh r v2 u2

x3/ cosh r y3/ sinh r v3 u3

 ,

U− =


x0/ cosh r −y0/ sinh r −v0 u0

x1/ cosh r −y1/ sinh r −v1 u1

x2/ cosh r −y2/ sinh r −v2 u2

x3/ cosh r −y3/ sinh r −v3 u3

Ψ

instead of U+
λ , U

−
λ . We can then obtain the following.

Lemma 16.3. Let z, z′ ∈ R(r) be arbitrary points on a hypersurface R(r) of type

(B) in CHn(c). For unit tangent vectors w ∈ Vλ,z, ς ∈ Vµ,z and w′ ∈ Vλ,z′ , ς
′ ∈ Vµ,z′

satisfying 〈w, φς〉 = 〈w′, φς ′〉 = 0, there are isometries ϕ̃+, ϕ̃− of CHn satisfying

i) ϕ̃+
(
R(r)

)
= ϕ̃−(

R(r)
)

= R(r),

ii) ϕ̃+(z) = ϕ̃−(z) = z′,

iii) dϕ̃+(ξz) = ξz′ , dϕ̃
−(ξz) = −ξz′,

iv) dϕ̃+(w) = dϕ̃−(w) = w′,

v) dϕ̃+(ς) = dϕ̃−(ς) = ς ′,

vi) dϕ̃+ ◦ J = J ◦ dϕ̃+, dϕ̃− ◦ J = −J ◦ dϕ̃−.



§16. Trajectories which are also curves of order 2 on hypersurfaces of type (B) in CHn 165

Remark 16.2. Every isometry of a real hypersurface R(r) of type (B) in CHn(c) is

equivariant.



17. Trajectories which are also curves of order 2 on real hypersurfaces of

type (B) in CP n

In this section we study trajectories for Sasakian magnetic fields on a real hyper-

surface R(r) of type (B) in CP n(c) along the lines in the previous section.

17.1. Behaviors of structure torsions on hypersurfaces of type (B) in CP n.

We fist consider the behavior of structure torsions. We suppose there is a trajectory

γ for a non-trivial Sasakian magnetic field Fκ on R(r) which are also a curve of

order 2 and study the behavior of its structure torsion ργ. Being different from the

case in CHn(c), as principal curvatures λ, µ of vectors orthogonal to ξ, which are

λ = −(
√
c/2) cot

(√
c r/2

)
, µ = (

√
c/2) tan

(√
c r/2

)
, satisfy λ < 0 < µ and |λ| > µ,

we find that the function ργ may satisfy ργ ≡ 0 on some interval. By homogeneity

of M we see ργ ≡ 0 in this case. In the rest of cases ργ = 0 on a discrete subset of

R. We consider on the open dense subset T =
{
t ∈ R

∣∣ ργ(t) 6= 0
}

in R. As we

see in the proof of Proposition 16.1, we have 〈φXγ, Yγ〉2 = ‖Xγ‖2‖Yγ‖2 in this case.

Therefore, by the same argument as in §16.2, we find ργ also satisfies the differential

equation

(17.1)
(
ρ′γ

)2
= (1 − ρ2

γ)
2(µ− κργ)(κργ − λ)

on T , which is the same equation as (16.4). By smoothness of ργ, we find ργ satisfies

this differential equation on whole R in this case.

We consider this differential equation.

1) If |κ| > µ, we see that ργ ≡ µ/κ is a solution of the above equation;

2) if |κ| > |λ|, then ργ ≡ λ/κ and ργ ≡ µ/κ are solutions of the above equation.

In those cases, by (16.2) we obtain Xγ ≡ 0 and ‖Yγ‖2 ≡ 1− ρ2
γ when ργ ≡ µ/κ, and

Yγ ≡ 0 and ‖Xγ‖2 ≡ 1 − ρ2
γ when ργ ≡ λ/κ.
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We study other solutions. First we consider the case κ > 0. By the differential

equation (17.1), we have λ/κ ≤ ργ ≤ µ/κ. We solve the differential equation (17.1)

by modifying it as

dt =
±dργ

(1 − ρ2
γ)

√
(µ− κργ)(κργ − λ)

,

where the double sign corresponds to the signature of ρ′γ. Our argument is almost

the same as in §16.2, but we need to take the signatures carefully. We put y =√
(µ− κργ)/(κργ − λ). As we have

ργ =
λy2 + µ

κ(y2 + 1)
and

dργ
dy

= − 2y(µ− λ)

κ(y2 + 1)2
,

we get

I : =

∫
dργ

(1 − ρ2
γ)

√
(µ− κργ)(κργ − λ)

dt

=

∫
1{

1 −
(
λy2+µ
κ(y2+1)

)2}
y
(
λy2+µ
y2+1

− λ
) × 2y(λ− µ)

κ(y2 + 1)2
dy

=

∫
2κ(y2 + 1)

(λy2 + µ)2 − κ2(y2 + 1)2
dy

=

∫ { 1

(λ− κ)y2 + (µ− κ)
− 1

(λ+ κ)y2 + (µ+ κ)

}
dy.

We continue computation by dividing the situation into five cases. When 0 < κ < µ,

we have

I =
1

2
√
µ−κ

∫ { 1√
κ−λ y +

√
µ−κ

− 1√
κ−λ y −

√
µ−κ

}
dy

+
1

2
√
µ+κ

∫ { 1√
|λ|−κ y −

√
µ+κ

− 1√
|λ|−κ y +

√
µ+κ

}
dy

=
1

2
√

(µ−κ)(κ−λ)
log

∣∣∣∣∣
√

(κ−λ)(µ−κργ) +
√

(µ−κ)(κργ−λ)√
(κ−λ)(µ−κργ) −

√
(µ−κ)(κργ−λ)

∣∣∣∣∣
+

1

2
√

(µ+κ)(|λ|−κ)
log

∣∣∣∣∣
√

(|λ|−κ)(µ−κργ) −
√

(µ+κ)(κργ−λ)√
(|λ|−κ)(µ−κργ) +

√
(µ+κ)(κργ−λ)

∣∣∣∣∣ .
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When κ = µ, we have

I =
1

(κ−λ)y
+

1

2
√

(µ+κ)(|λ|−κ)
log

∣∣∣∣∣
√

(|λ|−κ)(µ−κργ) −
√

(µ+κ)(κργ−λ)√
(|λ|−κ)(µ−κργ) +

√
(µ+κ)(κργ−λ)

∣∣∣∣∣
=

√
κργ−λ

(κ−λ)
√
µ−κργ

+
1

2
√

(µ+κ)(|λ|−κ)
log

∣∣∣∣∣
√

(|λ|−κ)(µ−κργ) −
√

(µ+κ)(κργ−λ)√
(|λ|−κ)(µ−κργ) +

√
(µ+κ)(κργ−λ)

∣∣∣∣∣ .
When µ < κ < |λ|, we have

I =
−1√

(κ−λ)(κ−µ)
tan−1

√
κ−λ
κ−µ

y

+
1

2
√

(µ+κ)(|λ|−κ)
log

∣∣∣∣∣
√

(|λ|−κ)(µ−κργ) −
√

(µ+κ)(κργ−λ)√
(|λ|−κ)(µ−κργ) +

√
(µ+κ)(κργ−λ)

∣∣∣∣∣
=

−1√
(κ−λ)(κ−µ)

tan−1

√
(κ−λ)(µ−κργ)
(κ−µ)(κργ−λ)

+
1

2
√

(µ+κ)(|λ|−κ)
log

∣∣∣∣∣
√

(|λ|−κ)(µ−κργ) −
√

(µ+κ)(κργ−λ)√
(|λ|−κ)(µ−κργ) +

√
(µ+κ)(κργ−λ)

∣∣∣∣∣ .
When κ = |λ|, we have

I =
−1√

(κ−λ)(κ−µ)
tan−1

√
(κ−λ)(µ−κργ)
(κ−µ)(κργ−λ)

− y

µ+κ

=
−1√

(κ−λ)(κ−µ)
tan−1

√
(κ−λ)(µ−κργ)
(κ−µ)(κργ−λ)

−
√
µ−κργ

(µ+κ)
√
κργ−λ

.

When κ > |λ|, we have

I =
−1√

(κ−λ)(κ−µ)
tan−1

√
(κ−λ)(µ−κργ)
(κ−µ)(κργ−λ)

− 1√
(κ+λ)(κ+µ)

tan−1

√
κ+λ

κ+µ
y
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=
−1√

(κ−λ)(κ−µ)
tan−1

√
(κ−λ)(µ−κργ)
(κ−µ)(κργ−λ)

− 1√
(κ+λ)(κ+µ)

tan−1

√
(κ+λ)(µ−κργ)
(κ+µ)(κργ−λ)

.

Summarizing up, by solving the differential equation (17.1), we obtain the following:

(17.2) t+ C = sgn
(
ρ′γ(t)

)
{fκ(ργ) − gκ(ργ)},

where the constant C is determined by initial condition, the functions fκ, gκ are

given as

fκ(ργ) =



1

2
√

(µ−κ)(κ−λ)
log

∣∣∣∣∣
√

(κ−λ)(µ−κργ) +
√

(µ−κ)(κργ−λ)√
(κ−λ)(µ−κργ) −

√
(µ−κ)(κργ−λ)

∣∣∣∣∣ ,
if 0 < κ < µ,√

κργ−λ
(κ−λ)

√
µ−κργ

, if κ = µ,

−1√
(κ−λ)(κ−µ)

tan−1

√
(κ−λ)(µ−κργ)
(κ−µ)(κργ−λ)

, if κ > µ,

gκ(ργ) =



1

2
√

(µ+κ)(|λ|−κ)
log

∣∣∣∣∣
√

(|λ|−κ)(µ−κργ) +
√

(µ+κ)(κργ−λ)√
(|λ|−κ)(µ−κργ) −

√
(µ+κ)(κργ−λ)

∣∣∣∣∣ ,
if 0 < κ < |λ|,

√
µ−κργ

(µ+κ)
√
κργ−λ

, if κ = |λ|,

1√
(κ+λ)(κ+µ)

tan−1

√
(κ+λ)(µ−κργ)
(κ+µ)(κργ−λ)

, if κ > |λ|,

and sgn
(
ργ(t)

)
denotes the signature of ργ(t) at initial.

We now study the behavior of ργ. We first study the case 0 < κ ≤ µ (< |λ|).

Suppose (−1 ≤) λ/κ < ργ(t∗) < 1 (≤ µ/κ) and ργ(t∗) 6= 0 at some t∗. By (17.1)

we see ρ′γ(t∗) 6= 0, hence have an interval (t−, t+) with t− < t∗ < t+ satisfying that

ρ′γ(t) 6= 0 on this interval and limt↓t− ρ
′
γ(t) = 0 = limt↑t+ ρ

′
γ(t). When ρ′γ(t∗) > 0, as

−1 < ργ < 1, we find t+ = ∞, t− = −∞ and limt→∞ ργ(t) = 1, limt→−∞ ργ(t) = −1.
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This means that ργ is monotone increasing (see Figure 4). As a matter of fact, we can

get the above conclusion by just the same way as in §16.2. If we suppose t− > −∞,

then we have ργ(t−) = −1 by (17.1). Thus we see γ is a geodesic and satisfies

ργ ≡ −1 by Lemma 6.1, which is a contradiction. Similarly, when ρ′γ(t∗) < 0, we

find t+ = ∞, t− = −∞ and limt→∞ ργ(t) = −1, limt→−∞ ργ(t) = 1. This means

that ργ is monotone decreasing (see Figure 4).

Next we consider the case µ < κ ≤ |λ|. Suppose (λ/κ ≤) −1 < ργ(t∗) < µ/κ (< 1)

at some t∗. By (17.1) we see ρ′γ(t∗) 6= 0, hence have an interval (t−, t+) with t− <

t∗ < t+ satisfying that ρ′γ(t) 6= 0 on this interval and limt↓t− ρ
′
γ(t) = 0 = limt↑t+ ρ

′
γ(t).

When ρ′γ(t∗) > 0, as −1 < ργ, we find that t− = −∞ and limt→−∞ ργ(t) = −1. We

also find that limt↑t+ ργ(t) = µ/κ by (17.1). Since the right hand side of (17.2)

goes to a finite value 0 when we make t ↑ t+, we find t+ < ∞. Thus, there is

t] (> t+) such that ρ′γ(t) < 0 on the interval (t+, t]) and limt↑t] ρ
′
γ(t) = 0. Again,

as ργ > −1, we find that t] = ∞ and limt→∞ ργ(t) = −1. When ρ′γ(t∗) < 0, by the

same argument we obtain that ργ satisfies the similar property (see Figure 5).

In the case κ > |λ|, we find that the argument in §16.2 goes through by changing

λ to |λ|. We have a sequence {ti}−∞<i<∞ such that ρ′γ(t) > 0 on the interval

(t2j−1, t2j) and ρ′γ(t) < 0 on the interval (t2j, t2j+1), and ργ(t2j) = µ/κ, ργ(t2j+1) =

λ/κ, ρ′γ(ti) = 0 (see Figure 6). In this case, the lengths of intervals are

ti+1 − ti =
π

2
√

(κ+µ)(κ+λ)
+

π

2
√

(κ−µ)(κ−λ)
.

Hence it is periodic with period
(
π/

√
(κ+µ)(κ+λ)

)
+

(
π/

√
(κ−µ)(κ−λ)

)
.

1

t

-1

1

t

-1

Figure 4. 0 < κ ≤ µ
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1

tt+
1-

0

Figure 5. µ < κ ≤ |λ|

tt0

1

1t 2t

1-

Figure 6. κ > |λ|

When κ < 0, by changing the orientation of γ and defining σ(t) = γ(−t), we have

a trajectory σ for F−κ. As ρσ(t) = −ργ(−t), we obtain the following.

Lemma 17.1. Let Fκ be a non-trivial Sasakian magnetic field on a real hypersurface

R(r) of type (B) in CP n(c). Suppose there exist a Fκ-trajectory γ which is also a

curve of order 2. Then its structure torsion ργ satisfies the following with λ =

−(
√
c/2) cot

(√
c r/2

)
and µ = (

√
c/2) tan

(√
c r/2

)
.

(I) When 0 < |κ| ≤ µ,

1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ 0;

3) ργ is strictly monotone increasing and satisfies limt→−∞ ργ(t) = −1 and

limt→∞ ργ(t) = 1;

4) ργ is strictly monotone decreasing and satisfies limt→−∞ ργ(t) = 1 and

limt→∞ ργ(t) = −1.

(II) When µ < κ ≤ |λ|,

1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ 0;

3) ργ ≡ µ/κ, (Xγ ≡ 0, ‖Yγ‖ = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = µ/κ.

(III) When −µ > κ ≥ λ,
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1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ 0;

3) ργ ≡ µ/κ, (Xγ ≡ 0, ‖Yγ‖ = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = µ/κ.

(IV) When |κ| > |λ|,

1) ργ ≡ ±1, (γ is a geodesic);

2) ργ ≡ 0;

3) ργ ≡ µ/κ, (Xγ ≡ 0, ‖Yγ‖ = 1 − ρ2
γ);

4) ργ ≡ λ/κ, (Yγ ≡ 0, ‖Xγ‖ = 1 − ρ2
γ);

5) ργ is a periodic function satisfying λ ≤ κργ ≤ µ. In this case κργ takes all

the values in the interval [λ, µ].

17.2. Circular trajectories on hypersurfaces of type (B) in CP n. Just like

the case of real hypersurfaces of type (B) in CHn, we now consider whether these

cases in Lemma 17.1 occur. For this sake we consider R(r) through a Hopf fibration

$ : S2n+1 → CP n in the case c = 4. As we mentioned in §5.2, we may consider that

$−1
(
R(r)

)
=

{
z = (z0, z1, . . . , zn) ∈ Cn+1

∣∣∣∣ |z0|2 + · · · + |zn|2 = 1,
|z2

0 + · · · + z2
2 | = cos 2r

}

=

e
√
−1θ

x0+
√
−1y0

...
x2+

√
−1y2


t

∈ Cn+1

∣∣∣∣∣∣∣∣
θ ∈ R,
x0y0 + · · · + xnyn = 0,
x2

0 + · · · + x2
n = cos2 r,

y2
0 + · · · + y2

n = sin2 r

 .

We take a point ẑ ∈ M̂ = $−1
(
R(r)

)
which is represented as above with θ = 0. The

horizontal part Hẑ of the tangent space TẑM̂ at ẑ is represented as

Hẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣
x0u0 + · · · + xnun = 0,
y0v0 + · · · + ynvn = 0,
x0v0 + · · · + xnvn+y0u0 + · · · ynun = 0

 ,
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where we denote ŵ =
(
u0+

√
−1v0, . . . , un+

√
−1vn

)
. The horizontal lift N̂ẑ of the

unit normal vector N$(ẑ) of R(r) in CP n(4), which is a unit normal vector of M̂ in

S2n+1, is represented as

N̂ẑ =
(
ẑ,

(
− tan rx0+

√
−1 cot ry0, . . . ,− tan rxn+

√
−1 cot ryn

))
∈ {ẑ} × Cn+1.

We put ξ̂ẑ = −JN̂ẑ, which is a horizontal lift of ξ$(ẑ) and is given by

ξ̂ẑ =
(
ẑ,

(
cot ry0+

√
−1 tan rx0, . . . , cot ryn+

√
−1 tan rxn

))
∈ {ẑ} × Cn+1.

We therefore find that the horizontal lift of 〈ξ$(ẑ)〉⊥ = T 0
$(ẑ)R(r) is represented as

〈ξ̂ẑ〉⊥ ∩Hẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣∣∣
x0u0 + · · · + xnun = 0,
y0u0 + · · · + ynun = 0,
y0v0 + · · · + ynvn = 0,
x0v0 + · · · + xnvn = 0


=

{
(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣ z0w0 + · · · + znwn = 0,
z0w0 + · · · + znwn = 0

}
.

The horizontal lifts of the subspaces Vλ,$(ẑ), Vµ,$(ẑ) of principal curvature vectors

are

V̂λ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣
x0v0 + · · · + xnvn = 0,
y0v0 + · · · + ynvn = 0,
u0 = · · · = un = 0

 ,

V̂µ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × Cn+1

∣∣∣∣∣∣
x0u0 + · · · + xnun = 0,
y0u0 + · · · + ynun = 0,
v0 = · · · = v2 = 0

 .

In order to simplify the description, we denote by (( , )) the standard inner product

on Rn+1, that is, for x = (x0, x1, . . . , xn), x = (x′0, x
′
1, . . . , x

′
n) ∈ Rn+1, we set

((x, x′)) = x0y0 + x1y1 + · · · + xnyn.

Let γ be a trajectory for a non-trivial Sasakian magnetic field Fκ on R(r) which

is also a curve of order 2. We suppose κργ(t0) = µ at some point t0. We take

its horizontal lift γ̂ satisfying that γ̂(t0) ∈ M̂ is represented with θ = 0 in our

representation. We denote as γ̂(t0) = ẑ] = x] +
√
−1y] ∈ Cn+1 and γ̂′(t0) =
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(ẑ], u]+
√
−1v]) ∈ Hẑ]

⊂ {ẑ]}×Cn+1 with some x], y], u], v] ∈ Rn+1. By Proposition

16.1 (see also Lemma 17.1), we see

V̂µ,ẑ]
3 γ̂′(t0) − ργ(t0)ξ̂γ̂(t0)

=
(
ẑ],

(
u] − ργ(t0) cot r y]

)
+
√
−1

(
v] − ργ(t0) tan r x]

))
.

We therefore obtain

(17.3)

{
v] = ργ(t0) tan r x],

((u], u])) − 2ργ(t0) cot r((u], y])) + ρ2
γ(t0) cot2 r((y], y])) = 1 − ρ2

γ(t0).

As γ̂′(t0) ∈ Hγ̂(t0), we have ((u], y])) + ((v], x])) = 0. Hence, by the definition of

structure torsions, we have

(17.4)
ργ(t0) = 〈γ̇(t0), ξγ(t0)〉 = ((u], cot r y])) + ((v], tan r x]))

= (cot r − tan r)((u], y])).

Since ((x], x])) = cos2 r, ((y], y])) = sin2 r, by (16.6) and (16.7) we obtain

((u], u])) = 1 − ρ2
γ(t0)(1 + cos2 r) +

2ρ2
γ(t0) cot r

cot r − tan r
.

We therefore get

1 = ‖γ̇(t0)‖2 = ((u], u])) + ((v], v]))

= 1 − ρ2
γ(t0)(1 + cos2 r) +

2ρ2
γ(t0) cos2 r

cos2 r − sin2 r
+ ρ2

γ(t0) sin2 r

= 1 −
4ρ2

γ(t0) cos2 r sin2 r

cos2 r − sin2 r
.

This shows ργ(t0) = 0, which is a contradiction because we supposed that κργ(t0) =

µ.

We next suppose κργ(t0) = λ at some point t0. By using the same notations we

see by Proposition 16.1 (see also Lemma 17.1) that

V̂λ,ẑ]
3 γ̂′(t0) − ργ(t0)ξ̂γ̂(t0)

=
(
ẑ],

(
u] − ργ(t0) cot r y]

)
+
√
−1

(
v] − ργ(t0) tan r x]

))
.

We hence obtain

(17.5)

{
u] = ργ(t0) cot r y],

((v], v])) − 2ργ(t0) tan r((v], x])) + ρ2
γ(t0) tan2 r((x], x])) = 1 − ρ2

γ(t0).
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By (17.4) and (17.5), we obtain

((v], v])) = 1 − ρ2
γ(t0)(1 + sin2 r) −

2ρ2
γ(t0) tan r

cot r − tan r
.

We therefore get

1 = ‖γ̇(t0)‖2 = ((u], u])) + ((v], v]))

= 1 − ρ2
γ(t0)(1 + sin2 r) −

2ρ2
γ(t0) sin2 r

cos2 r − sin2 r
+ ρ2

γ(t0) cos2 r

= 1 −
4ρ2

γ(t0) sin2 r cos2 r

cos2 r − sin2 r
.

This shows ργ(t0) = 0, which is a contradiction because we supposed κργ(t0) = λ.

Thus we can conclude that if a trajectory for non-trivial Fκ is also a curve of order

2 then its structure torsion satisfies neither κργ(t0) = µ nor κργ(t0) = λ at arbitrary

t0.

We also consider the case that ργ ≡ 0. Recalling Lemma 6.2 we have

0 = ρ′γ = 〈φAγ̇, γ̇〉 =
〈
φ(λXγ + µYγ), Xγ+Yγ+ργξ

〉
= (µ−λ)〈Xγ, φYγ〉

because φ(Vµ) = Vλ. This shows that 〈Xγ, φYγ〉 = 0. When n = 2, as dim(Vλ,p) =

dim(Vµ,p) = 1 at each point p ∈ R(r)
(
⊂ CP 2(c)

)
and ‖Xγ‖2 = µ/(µ−λ), ‖Yγ‖2 =

−λ/(µ−λ), this is a contradiction. Hence we find that the case that ργ ≡ 0 also

does not occur when n = 2.

Combining the above argument with Lemma 17.1 we get the following.

Theorem 17.1. On a real hypersurface R(r) of type (B) in CP 2(c), there are no

circular trajectories for Sasakian magnetic fields.

Theorem 17.2. On a real hypersurface R(r) of type (B) in CP n(c) with n ≥ 3, there

are no circular trajectories for Sasakian magnetic fields having non-null structure

torsions.
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Theorem 17.3. Let Fκ be a non-trivial Sasakian magnetic field on a real hyper-

surface R(r) of type (B) in CP n(c). When |κ| > (
√
c/2) tan

(√
c r/2

)
, we have the

following.

(1) There are no trajectories for Fκ which are curve of order 2, are not geodesics

and have non-null structure torsions.

(2) A trajectory for Fκ is a geodesic if and only if ργ ≡ ±1.

The author guesses that even if |κ| ≤ (
√
c/2) tan

(√
c r/2

)
the above non-existence

theorem holds. Though we have no idea for this by now, we can say the following.

Proposition 17.1. Let Fκ be a Sasakian magnetic field whose strength satisfies

0 < |κ| ≤ (
√
c/2) tan

(√
c r/2

)
on a real hypersurface R(r) of type (B) in CP n(c).

(1) When n = 2, there are at most 2 congruence classes of trajectories for Fκ

which are curve of order 2 and are not geodesics.

(2) When n ≥ 3, there are at most 2 congruence classes of trajectories for Fκ

which are curve of order 2, are not geodesics and do not have null structure

torsions.

Proposition 17.2. On a real hypersurface R(r) of type (B) in CP n(c), all geodesic

trajectories for non-trivial Sasakian magnetic fields are congruent to each other.

In order to show this we need the following results on isometries. Let TzR(r) =

Vλ,z ⊕ Vµ,z ⊕Rξz be the splitting of the tangent space at z ∈ R(r) into subspaces of

principal curvature vecoters.

Lemma 17.2. Let z, z′ ∈ R(r) be arbitrary points on a hypersurface R(r) of type (B)

in CP n(c). Given unit tangent vectors w ∈ Vλ,z, ς ∈ Vµ,z and w′ ∈ Vλ,z′ , ς
′ ∈ Vµ,z′,

we have isometries ϕ̃+
λ , ϕ̃

+
µ , ϕ̃

−
λ , ϕ̃

−
µ of CP n satisfying the following conditions:

i) ϕ̃+
λ

(
R(r)

)
= ϕ̃+

µ

(
R(r)

)
= ϕ̃−

λ

(
R(r)

)
= ϕ̃−

µ

(
R(r)

)
= R(r);
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ii) ϕ̃+
λ (z) = ϕ̃+

µ (z) = ϕ̃−
λ (z) = ϕ̃−

µ (z) = z′;

iii) dϕ̃+
λ (ξz) = dϕ̃+

µ (ξz) = ξz′, dϕ̃
−
λ (ξz) = dϕ̃−

µ (ξz) = −ξz′ ;

iv) dϕ̃+
λ (w) = dϕ̃−

λ (w) = w′, dϕ̃+
µ (ς) = dϕ̃−

µ (ς) = ς ′,

v) dϕ̃+
λ ◦ J = J ◦ dϕ̃+

λ , dϕ̃
+
µ ◦ J = J ◦ dϕ̃+

µ ,

vi) dϕ̃−
λ ◦ J = −J ◦ dϕ̃−

λ , dϕ̃
−
µ ◦ J = −J ◦ dϕ̃−

µ .

Proof. We consider the case n = 3 and c = 4. We may consider

$−1
(
R(r)

)
=

e
√
−1θ


x0+

√
−1y0

x1+
√
−1y1

x2+
√
−1y2

x3+
√
−1y3


t

∈ C4

∣∣∣∣∣∣∣∣
θ ∈ R,

x0y0 + x1y1 + x2y2 + x3y3 = 0,
x2

0 + x2
1 + x2

2 + x2
3 = cos2 r,

y2
0 + y2

1 + y2
2 + y2

3 = sin2 r

 .

We take a point ẑ ∈ M̂ = $−1
(
R(r)

)
which is represented as above with θ = 0. At

this point the horizontal lift ξ̂ẑ of ξ$(ẑ) is given as

ξ̂ẑ =
(
ẑ,


cot ry0+

√
−1 tan rx0

cot ry1+
√
−1 tan rx1

cot ry2+
√
−1 tan rx2

cot ry3+
√
−1 tan rx3


t)

∈ {ẑ} × C4.

and the horizontal lifts of the subspaces Vλ,z and Vµ,z of principal curvature vectors

are

V̂λ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × C4

∣∣∣∣∣∣
x0v0 + x1v1 + x2v2 + x3v3 = 0,
y0v0 + y1v1 + y2v2 + y3v3 = 0,

u0 = u1 = u2 = u3 = 0

 ,

V̂µ,ẑ =

(ẑ, ŵ) ∈ {ẑ} × C4

∣∣∣∣∣∣
x0u0 + x1u1 + x2u2 + x3u3 = 0,
y0u0 + y1u1 + y2u2 + y3u3 = 0,

v0 = v1 = v2 = v3 = 0

 .

We now take a point ẑ∗ = (cos r,
√
−1 sin r, 0, 0) ∈ M̂ and unit tangent vectors

ŵ∗ =
(
ẑ∗, (0, 0,

√
−1, 0)

)
∈ V̂λ,ẑ∗ , ς̂∗ =

(
ẑ∗, (0, 0, 0, 1)

)
∈ V̂µ,ẑ∗ . We then see ξ̂ẑ∗ =(

ẑ∗, (
√
−1 sin r, cos r, 0, 0)

)
. At an arbitrary point ẑ ∈ M̂ which is represented with

θ = 0 in our expression, we take an arbitrary unit tangent vectors ŵ ∈ V̂λ,ẑ, ς̂ ∈ V̂µ,ẑ.

We also take unit tangent vectors ŵ′ ∈ V̂λ,ẑ, ς̂
′ ∈ V̂µ,ẑ satisfying ((ŵ, ŵ′)) = ((ς̂ , ς̂ ′)) =
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0. We define orthogonal matrices U+
λ , U

+
µ ∈ O(4) ⊂ U(4) by

U+
λ =


x0/ cos r y0/ sin r v0 v′0
x1/ cos r y1/ sin r v1 v′1
x2/ cos r y2/ sin r v2 v′2
x2/ cos r y2/ sin r v3 v′3

 , U+
µ =


x0/ cos r y0/ sin r u′0 u0

x1/ cos r y1/ sin r u′1 u1

x2/ cos r y2/ sin r u′2 u2

x2/ cos r y2/ sin r u′3 u3

 .

We also consider a matrix

Ψ =


ε O O O
O ε O O
O O ε O
O O O ε

 ∈ O(4) with ε =

(
1 0
0 −1

)
,

and define U−
λ , U

−
µ by

U−
λ =


x0/ cos r −y0/ sin r −v0 v′0
x1/ cos r −y1/ sin r −v1 v′1
x2/ cos r −y2/ sin r −v2 v′2
x2/ cos r −y2/ sin r −v3 v′3

Ψ,

U−
µ =


x0/ cos r −y0/ sin r −u′0 u0

x1/ cos r −y1/ sin r −u′1 u1

x2/ cos r −y2/ sin r −u′2 u2

x2/ cos r −y2/ sin r −u′3 u3

Ψ.

These four matrices induce linear transformations of C4 which preserves the Her-

mitian inner product (( , )) on C4, hence induce isometries ϕ̂+
ẑ,λ, ϕ̂

+
ẑ,µ, ϕ̂

−
ẑ,λ, ϕ̂

−
ẑ,µ of

S7. Since U±
λ , U

±
µ are orthogonal, these isometries preserve M̂ and satisfy

ϕ̂+
ẑ,λ

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

ẑ,λ(p̂), ϕ̂+
ẑ,µ

(
e
√
−1θp̂

)
= e

√
−1θϕ̂+

ẑ,µ(p̂),

ϕ̂−
ẑ,λ

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

ẑ,λ(p̂), ϕ̂−
ẑ,µ

(
e
√
−1θp̂

)
= e−

√
−1θϕ̂−

ẑ,µ(p̂)

for arbitrary θ ∈ [0, 2π) and p̂ ∈ M̂ . As U±
λ , U

±
µ ∈ O(4), we have

dϕ̂+
ẑ,λ ◦ φ̂ = φ̂ ◦ dϕ̂+

ẑ,λ, dϕ̂+
ẑ,µ ◦ φ̂ = φ̂ ◦ dϕ̂+

ẑ,µ,

dϕ̂−
ẑ,λ ◦ φ̂ = −φ̂ ◦ dϕ̂−

ẑ,λ, dϕ̂−
ẑ,µ ◦ φ̂ = −φ̂ ◦ dϕ̂−

ẑ,µ

on horizontal part H of the tangent bundle of S7, where φ̂ denotes the charac-

teristic tensor on S7 in C4. Therefore ϕ̂+
ẑ,λ, ϕ̂

+
ẑ,µ, ϕ̂

−
ẑ,λ and ϕ̂−

ẑ,µ induce isometries

ϕ̃+
ẑ,λ, ϕ̃

+
ẑ,µϕ̃

+
ẑ,λ, ϕ̃

−
ẑ,µ of CP 3(4) satisfying

i) ϕ̃±
ẑ,λ ◦$ = $ ◦ ϕ̂λẑ , ϕ̃±

ẑ,µ ◦$ = $ ◦ ϕ̂±
ẑ,µ,
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ii) ϕ̃±
ẑ,λ

(
$(ẑ∗)

)
= ϕ̃µẑ

(
$(ẑ∗)

)
= $(ẑ),

iii) dϕ̃+
ẑ,λ(ξẑ∗) = dϕ̃+

ẑ,µ(ξẑ∗) = ξẑ, dϕ̃+
ẑ,λ(ξẑ∗) = dϕ̃+

ẑ,µ(ξẑ∗) = −ξẑ,

iv) dϕ̃±
ẑ,λ

(
d$(ŵ∗)

)
= d$(ŵ), dϕ̃±

ẑ,µ

(
d$(ς̂∗)

)
= d$(ς̂),

v) dϕ̃+
ẑ,λ ◦ J = J ◦ dϕ̃+

ẑ,λ, dϕ̃
+
ẑ,µ ◦ J = J ◦ dϕ̃+

ẑ,µ,

vi) dϕ̃−
ẑ,λ ◦ J = −J ◦ dϕ̃−

ẑ,λ, dϕ̃
−
ẑ,µ ◦ J = −J ◦ dϕ̃−

ẑ,µ.

This leads us to the conclusion for n ≥ 3. In the case n = 2, we have ς = ±φ(w), ς ′ =

±φ(w′). Our argument goes through also in this case. We hence complete the

proof. �

In Lemma 17.2, we consider the case that 〈w, φ(ς)〉 = 〈w′, φ(ς ′)〉 = 0. In the above

proof we consider matrices U+, U− ∈ O(3, 1) given by

U+ =


x0/ cos r y0/ sin r v0 u0

x1/ cos r y1/ sin r v1 u1

x2/ cos r y2/ sin r v2 u2

x3/ cos r y3/ sin r v3 u3

 ,

U− =


x0/ cos r −y0/ sin r −v0 u0

x1/ cos r −y1/ sin r −v1 u1

x2/ cos r −y2/ sin r −v2 u2

x3/ cos r −y3/ sin r −v3 u3

Ψ

instead of U+
λ , U

−
λ . We can then obtain the following.

Lemma 17.3. Let z, z′ ∈ R(r) be arbitrary points on a hypersurface R(r) of type

(B) in CP n(c). For unit tangent vectors w ∈ Vλ,z, ς ∈ Vµ,z and w′ ∈ Vλ,z′ , ς
′ ∈ Vµ,z′

satisfying 〈w, φς〉 = 〈w′, φς ′〉 = 0, there are isometries ϕ̃+, ϕ̃− of CP n satisfying

i) ϕ̃+
(
R(r)

)
= ϕ̃−(

R(r)
)

= R(r),

ii) ϕ̃+(z) = ϕ̃+(z) = z′,

iii) dϕ̃+(ξz) = ξz′ , dϕ̃
−(ξz) = −ξz′,

iv) dϕ̃+(w) = dϕ̃+(w) = w′,

v) dϕ̃+(ς) = dϕ̃+(ς) = ς ′.

vi) dϕ̃+ ◦ J = J ◦ dϕ̃+, dϕ̃− ◦ J = −J ◦ dϕ̃−.
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Remark 17.1. Every isometry of a real hypersurface R(r) of type (B) in CP n(c) is

equivariant.

Proof of Proposition 17.1. If γ is a trajectory for Fκ which is also a curve of order

2, is not a geodesic and does not have null structure torsion, then we see that

its structure torsion ργ takes all values in the interval (−1, 1) and that Yγ(0) =

±λ− κργ(0)

κργ(0) − µ
φXγ(0), where we decompose γ̇ as γ̇ = Xγ +Yγ +ργξγ ∈ Vλ⊕Vµ⊕Rξ.

We say γ has positive principal torsion if the signature in the expression of Yγ(0) is

positive, and say negative principal torsion if the signature is negative.

(2) We take two trajectories γ1, γ2 for Fκ which are also curves of order 2, are

not geodesics and do not have null structure torsions. Then we have t0 satisfy-

ing ργ2(t0) = ργ1(0). By Lemma 17.2, there is an isometry ϕ of R(r) satisfying

ϕ
(
γ1(0)

)
= γ2(t0), dϕ

(
Xγ1(0)

)
= Xγ2(t0). If both γ1, γ2 have positive principal

torsions, then we have

Yγ2(t0) = φXγ2(t0) = dϕ
(
φXγ1(0)

)
= dϕ

(
Yγ1(0)

)
.

Similarly, if both of them have negative principal torsions, we have

Yγ2(t0) = −φXγ2(t0) = −dϕ
(
φXγ1(0)

)
= dϕ

(
−φXγ1(0)

)
= dϕ

(
Yγ1(0)

)
.

Thus they are congruent to each other in each of these cases.

(1) As we do not have trajectories having null structure torsions in this case, we

get the conclusion by the above argument. �

Remark 17.2. If a trajectory γ for Fκ with 0 < |κ| ≤ (
√
c/2) tan

(√
c r/2

)
on R(r)

in CP n(c) which is also a curve of order 2 and is not a geodesic exists, then its

structure torsion satisfies the following:

(1) it is monotone increasing when γ has positive principal torsion;

(2) it is monotone decreasing when γ has negative principal torsion;

(3) it is constantly 0 when γ has null principal torsion.



§17. Trajectories which are also curves of order 2 on real hypersurfaces of type (B) in CP n 181

Proof of Proposition 17.2. As a trajectory γ is geodesic, we have 0 = ∇γ̇ γ̇ = κφγ̇ =

κ(φYγ + φXγ), hence get Xγ = Yγ = 0 and ργ = ±1. On the other hand, if ργ = ±1

then γ is a geodesic by Lemma 6.1. We get the assertion by Lemma 17.2. �



18. Structure torsions of trajectories on real hypersurfaces of

exceptional type in CP n

We devote this section to study structure torsions of trajectories for Sasakian

magnetic fields on real hypersurfaces of exceptional types in CP n(c), that is, hy-

persurfaces of types (C), (D) and (E) in a complex projective space. For a real

hypersurface M of type one of (C), (D) and (E), the holomorphic distribution T 0M

of its tangent bundle TM splits into four subbundles of principal curvature vectors

which are orthogonal to ξ as T 0M = Vλ1 ⊕ Vλ2 ⊕ Vλ3 ⊕ Vλ4 . Here, if M is a homo-

geneous real hypersurface of radius r given in §5, the subbundles Vλ1 , Vλ2 , Vλ3 , Vλ4

correspond to the principal curvatures

λ1 =
(√

c/2
)
cot

(√
cr/2

)
, λ2 = −

(√
c/2

)
tan

√
cr/2

)
,

λ3 =
(√

c/2
)
cot

(√
cr/2 − π/4

)
, λ4 =

(√
c/2

)
cot

(√
cr/2 + π/4

)
,

respectively. We note that the principal curvature of ξ is ν =
√
c cot

√
cr. The

characteristic tensor φ acts on TM = Vλ1 ⊕ Vλ2 ⊕ Vλ3 ⊕ Vλ4 ⊕ Rξ as

φ(Vλ1) = Vλ1 , φ(Vλ2) = Vλ2 , φ(Vλ3) = Vλ4 , φ(Vλ4) = Vλ3 , φ(Rξ) = 0.

In order to make clear the radius r of M as a tube, we shall denote it as M(r) in

this section.

Proposition 18.1. Let γ be a trajectory for a non-trivial Sasakian magnetic field

Fκ on a real hypersurface M of type one of (C), (D) and (E) in CP n(c). Suppose

γ is also a curve of order 2 and |ργ| < 1. If we decompose its velocity vector as

γ̇ = Xγ + Yγ + Zγ + Wγ + ργξ ∈ Vλ1 ⊕ Vλ2 ⊕ Vλ3 ⊕ Vλ4 ⊕ Rξ, we find one of the

following holds:

1) ργ ≡ 0,

2) κργ ≡ λ1, Yγ = Zγ = Wγ ≡ 0 and ‖Xγ‖ ≡
√

1 − ρ2
γ,

3) κργ ≡ λ2, Xγ = Zγ = Wγ ≡ 0 and ‖Yγ‖ ≡
√

1 − ρ2
γ,
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4) Xγ = Yγ ≡ 0 and the following equalities

(18.1)


(1 − ρ2

γ)(λ3 − κργ)Zγ = (λ3 − λ4)〈Zγ, φWγ〉φWγ,

(1 − ρ2
γ)(λ4 − κργ)Wγ = (λ3 − λ4)〈Zγ, φWγ〉φZγ,

κργ(1 − ρ2
γ) = λ3‖Zγ‖2 + λ4‖Wγ‖2,

hold. In particular, Zγ and Wγ are parallel and have

‖Zγ‖2 =
(1 − ρ2

γ)(λ4 − κργ)

λ4 − λ3

, ‖Wγ‖2 =
(1 − ρ2

γ)(κργ − λ3)

λ4 − λ3

,

and ργ satisfies λ3 ≤ κργ ≤ λ3.

In the case 1) the situations ‖Yγ(t)‖ = ‖Zγ(t)‖ = 0 and ‖Xγ(t)‖ = ‖Wγ(t)‖ = 0 do

not occur at any point t.

Proof. By use of the decomposition γ̇ = Xγ + Yγ + Zγ + Wγ + ργξ ∈ Vλ1 ⊕ Vλ2 ⊕

Vλ3 ⊕ Vλ4 ⊕ Rξ, we find that the trajectory γ satisfies the following:

∇γ̇ γ̇ = κφγ̇ = κ
(
φXγ + φYγ + φWγ + φZγ

)
,

∇γ̇∇γ̇ γ̇ = κ
{
(∇γ̇φ)γ̇ + φ∇γ̇ γ̇

}
= κ

{
ργAγ̇ − 〈Aγ̇, γ̇〉ξ + κφ2γ̇

}
= κ

{
(ργλ1−κ)Xγ + (ργλ2−κ)Yγ + (ργλ3−κ)Zγ + (ργλ4−κ)Wγ

−
(
λ1‖Xγ‖2 + λ2‖Yγ‖2 + λ3‖Zγ‖2 + λ4‖Wγ‖2

)
ξ
}
.

Since γ is also a curve of order 2, we substitute these into the equality

‖∇γ̇ γ̇‖2
(
∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇

)
= 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉∇γ̇ γ̇.

As we have ‖∇γ̇ γ̇‖ = |κ|
√

1 − ρ2
γ, considering the action of φ, we get

κ3(1 − ρ2
γ)

{
ργ(λ1 − κργ)Xγ + ργ(λ2 − κργ)Yγ + ργ(λ3 − κργ)Zγ + ργ(λ4 − κργ)Wγ

+
(
κργ(1 − ρ2

γ) − λ1‖Xγ‖2 − λ2‖Yγ‖2 − λ3‖Zγ‖2 − λ4‖Wγ‖2
)
ξ
}

= κ3ργ(λ3 − λ4)〈Zγ, φWγ〉(φXγ + φYγ + φWγ + φZγ).
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Comparing each components of subbundles of principal curvature vectors, we find

the following hold:

(18.2)



ργ(1 − ρ2
γ)(λ1 − κργ)Xγ = ργ(λ3 − λ4)〈Zγ, φWγ〉φXγ, · · · · · · · · · 1©

ργ(1 − ρ2
γ)(λ2 − κργ)Yγ = ργ(λ3 − λ4)〈Zγ, φWγ〉φYγ, · · · · · · · · · 2©

ργ(1 − ρ2
γ)(λ3 − κργ)Zγ = ργ(λ3 − λ4)〈Zγ, φWγ〉φWγ, · · · · · · · · · 3©

ργ(1 − ρ2
γ)(λ4 − κργ)Wγ = ργ(λ3 − λ4)〈Zγ, φWγ〉φZγ, · · · · · · · · · 4©

κργ(1 − ρ2
γ) = λ1‖Xγ‖2 + λ2‖Yγ‖2 + λ3‖Zγ‖2 + λ4‖Wγ‖2. · · · 5©

Since λ1 > λ4 > 0 > λ2 > λ3, we find that the function ργ may vanishes on some

interval. By homogeneity of M we see ργ ≡ 0 in this case. In the rest of cases it

might occur ργ = 0 on some discrete subset of R. We consider on the open dense

subset T =
{
t ∈ R

∣∣ ργ(t) 6= 0
}

in R. We choose a point t0 ∈ T . If Xγ(t0) 6= 0,

then we have κργ(t0) = λ1 and 〈Zγ(t0), φWγ(t0)〉 = 0 by the equality 1© in (18.2).

We then obtain Yγ(t0) = Zγ(t0) = Wγ(t0) = 0 by the equalities 2©, 3©, 4©, hence

obtain ‖Xγ(t0)‖ =
√

1 − ρ2
γ(t0). By smoothness of ‖Xγ‖ we find that κργ ≡ λ1 and

Yγ = Zγ = Wγ ≡ 0 on R. Similarly, if Yγ(t0) 6= 0, then we have κργ ≡ λ2 and

Xγ = Zγ = Wγ ≡ 0 on R. We next consider the case Xγ = Yγ ≡ 0. Considering

smoothness of ργ, Zγ,Wγ, we obtain the relations (18.1) hold on R:
(1 − ρ2

γ)(κργ − λ3)Zγ = (λ4 − λ3)〈Zγ, φWγ〉φWγ,

(1 − ρ2
γ)(κργ − λ4)Wγ = (λ4 − λ3)〈Zγ, φWγ〉φZγ,

λ3‖Zγ‖2 + λ4‖Wγ‖2 = κργ(1 − ργ
2).

These equalities show that Zγ is parallel to φWγ. We hence see 〈Zγ, φWγ〉2 =

‖Zγ‖2‖Wγ‖2. Since ργ 6= ±1, we see either Zγ or Wγ does not vanish. If Zγ(t0) = 0

the second equality shows that κργ(t0) = λ4. Similarly, if Wγ(t0) = 0 the first

equality shows that κργ(t0) = λ3. If Zγ(t0) 6= 0, Wγ(t0) 6= 0, by taking inner

products of both sides of the first equality with Zγ and with φWγ, we obtain

‖Zγ(t0)‖2 =
(1 − ρ2

γ)(λ4 − κργ)

λ4 − λ3

, ‖Wγ(t0)‖2 =
(1 − ρ2

γ)(κργ − λ3)

λ4 − λ3

.
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We can see that this expression include the cases when ‖Zγ‖ vanishes and when

‖Wγ‖ vanishes. As λ4 > 0 > λ3, these expressions guarantee that λ3 ≤ κργ ≤ λ4.

We finally study the case ργ ≡ 0. The fifth equation in (18.2) and the definition

of ργ show that λ1‖Xγ‖2 + λ2‖Yγ‖2 + λ3‖Zγ‖2 + λ4‖Wγ‖2 = 0,

‖Xγ‖2 + ‖Yγ‖2 + ‖Zγ‖2 + ‖Wγ‖2 = 1.

As λ1 > λ4 > 0 > λ2 > λ3, we can conclude that situations ‖Yγ‖ = ‖Zγ‖ = 0 and

‖Xγ‖ = ‖Wγ‖ = 0 do not occur. This complete the proof. �

We now compare two systems of equations (16.1) and (18.2). As they are essen-

tially the same, we can apply the argument in §17.1 on trajectories on real hyper-

surfaces of exceptional type which are also curves of order 2. We here note that

principal curvatures satisfy λ1 > λ4 > 0 > λ2 > λ3 and
λ1 > |λ3| > λ4 > |λ2|, if 0 < r < π/(4

√
c),

λ1 = |λ3| > λ4 = |λ2|, if r = π/(4
√
c),

|λ3| > λ1 > |λ2| > λ4, if π/(4
√
c)r < π/(2

√
c).

In view of Lemma 17.1, we can conclude the following propositions.

Proposition 18.2. Let M(r) be a real hypersurface of exceptional type and of radius

r < π/(4
√
c) in CP n(c). Suppose there exist a trajectory γ for a non-trivial Sasakian

magnetic field Fκ which is also a curve of order 2 and is not a geodesic on M(r).

Then its structure torsion ργ satisfies the following with

λ1 =
(√

c/2
)
cot

(√
cr/2

)
, λ2 = −

(√
c/2

)
tan

(√
cr/2

)
,

λ3 =
(√

c/2
)
cot

(√
cr/2 − π/4

)
, λ4 =

(√
c/2

)
cot

(√
cr/2 + π/4

)
.

(I) When 0 < |κ| ≤ |λ2|,

1) ργ ≡ 0;

2) ργ is strictly monotone increasing and satisfies limt→−∞ ργ(t) = −1 and

limt→∞ ργ(t) = 1;
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3) ργ is strictly monotone decreasing and satisfies limt→−∞ ργ(t) = 1 and

limt→∞ ργ(t) = −1.

(II) When |λ2| < |κ| ≤ λ4,

1) ργ ≡ 0;

2) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

3) ργ is strictly monotone increasing and satisfies limt→−∞ ργ(t) = −1 and

limt→∞ ργ(t) = 1;

4) ργ is strictly monotone decreasing and satisfies limt→−∞ ργ(t) = 1 and

limt→∞ ργ(t) = −1.

(III) When λ4 < κ ≤ |λ3|,

1) ργ ≡ 0;

2) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖ = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(IV) When −λ4 > κ ≥ λ3,

1) ργ ≡ 0;

2) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(V) When |λ3| < |κ| ≤ λ1,

1) ργ ≡ 0;

2) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);
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3) ργ ≡ λ3/κ, (Xγ = Yγ = Wγ ≡ 0, ‖Zγ‖2 = 1 − ρ2
γ);

4) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

5) ργ is a periodic function satisfying λ3 ≤ κργ ≤ λ4.

(VI) When |κ| > λ1,

1) ργ ≡ 0;

2) ργ ≡ λ1/κ, (Yγ = Zγ = Wγ ≡ 0, ‖Xγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

4) ργ ≡ λ3/κ, (Xγ = Yγ = Wγ ≡ 0, ‖Zγ‖2 = 1 − ρ2
γ);

5) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

6) ργ is a periodic function satisfying λ3 ≤ κργ ≤ λ4.

Proposition 18.3. Let M
(
π/(4

√
c)

)
be a real hypersurface of exceptional type of

radius r = π/(4
√
c) in CP n(c). Suppose there exist a trajectory γ for a non-trivial

Sasakian magnetic field Fκ which is also a curve of order 2 and is not a geodesic on

M
(
π/(4

√
c)

)
. Then its structure torsion ργ satisfies the following with

λ1 = −λ3 =
√
c
(√

2 + 1
)
/2, −λ2 = λ4 =

√
c
(√

2 − 1
)
/2.

(I) When 0 < |κ| ≤ λ4,

1) ργ ≡ 0;

2) ργ is strictly monotone increasing and satisfies limt→−∞ ργ(t) = −1 and

limt→∞ ργ(t) = 1;

3) ργ is strictly monotone decreasing and satisfies limt→−∞ ργ(t) = 1 and

limt→∞ ργ(t) = −1.

(II) When λ4 < κ ≤ λ1,

1) ργ ≡ 0;

2) ργ ≡ −λ4/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖ = 1 − ρ2
γ);



188 Tuya BAO

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(III) When −λ4 > κ ≥ −λ1,

1) ργ ≡ 0;

2) ργ ≡ −λ4/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖ = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(IV) When |κ| > λ1,

1) ργ ≡ 0;

2) ργ ≡ λ1/κ, (Yγ = Zγ = Wγ ≡ 0, ‖Xγ‖2 = 1 − ρ2
γ);

3) ργ ≡ −λ4/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

4) ργ ≡ −λ1/κ, (Xγ = Yγ = Wγ ≡ 0, ‖Zγ‖2 = 1 − ρ2
γ);

5) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

6) ργ is a periodic function satisfying −λ1 ≤ κργ ≤ λ4.

Proposition 18.4. Let M(r) be a real hypersurface of exceptional type and of radius

r > π/(4
√
c) in CP n(c) Suppose there exist a trajectory γ for a non-trivial Sasakian

magnetic field Fκ which is also a curve of order 2 and is not a geodesic on M(r).

Then its structure torsion ργ satisfies the following with

λ1 =
(√

c/2
)
cot

(√
cr/2

)
, λ2 = −

(√
c/2

)
tan

(√
cr/2

)
,

λ3 =
(√

c/2
)
cot

(√
cr/2 − π/4

)
, λ4 =

(√
c/2

)
cot

(√
cr/2 + π/4

)
.

(I) When 0 < |κ| ≤ λ4,

1) ργ ≡ 0;
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2) ργ is strictly monotone increasing and satisfies limt→−∞ ργ(t) = −1 and

limt→∞ ργ(t) = 1;

3) ργ is strictly monotone decreasing and satisfies limt→−∞ ργ(t) = 1 and

limt→∞ ργ(t) = −1.

(II) When λ4 < κ ≤ |λ2|,

1) ργ ≡ 0;

2) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖ = 1 − ρ2
γ);

3) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(III) When −λ4 > κ ≥ λ2,

1) ργ ≡ 0;

2) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

3) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(III) When |λ2| < κ ≤ λ1,

1) ργ ≡ 0;

2) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖ = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(IV) When λ2 > κ ≥ −λ1,

1) ργ ≡ 0;

2) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);
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3) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

4) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(V) When λ1 < κ ≤ |λ3|,

1) ργ ≡ 0;

2) ργ ≡ λ1/κ, (Yγ = Zγ = Wγ ≡ 0, ‖Xγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

4) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖ = 1 − ρ2
γ);

5) limt→−∞ ργ(t) = limt→∞ ργ(t) = −1 and there is t0 satisfying that ργ is

strictly monotone increasing on the interval (−∞, t0) and strictly monotone

decreasing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(VI) When −λ1 > κ ≥ λ3,

1) ργ ≡ 0;

2) ργ ≡ λ1/κ, (Yγ = Zγ = Wγ ≡ 0, ‖Xγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

4) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);

5) limt→−∞ ργ(t) = limt→∞ ργ(t) = 1 and there is t0 satisfying that ργ is strictly

monotone decreasing on the interval (−∞, t0) and strictly monotone increas-

ing on the interval (t0,∞), and ργ(t0) = λ4/κ.

(VII) When |κ| > |λ3|,

1) ργ ≡ 0;

2) ργ ≡ λ1/κ, (Yγ = Zγ = Wγ ≡ 0, ‖Xγ‖2 = 1 − ρ2
γ);

3) ργ ≡ λ2/κ, (Xγ = Zγ = Wγ ≡ 0, ‖Yγ‖2 = 1 − ρ2
γ);

4) ργ ≡ λ3/κ, (Xγ = Yγ = Wγ ≡ 0, ‖Zγ‖2 = 1 − ρ2
γ);

5) ργ ≡ λ4/κ, (Xγ = Yγ = Zγ ≡ 0, ‖Wγ‖2 = 1 − ρ2
γ);
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6) ργ is a periodic function satisfying λ3 ≤ κργ ≤ λ4.

We set

λ(r, c) =

{(√
c/2

)
tan

(√
cr/2

)
, if 0 < r ≤ π/(4

√
c),(√

c/2
)
cot

(√
cr/2 + π/4

)
, if π/(4

√
c) < r < π/(2

√
c).

As a consequence of these propositions we can conclude the following.

Theorem 18.1. Let Fκ be a non-trivial Sasakian magnetic field on a real hyper-

surface M(r) of exceptional type in CP n(c). When 0 < |κ| ≤ λ(r, c), there are no

circular trajectories for Fκ having non-null structure torsions.

The author considers that similar result as for real hypersurfaces of type (B) holds

on the number of congruence classes of circular trajectories. We shall discuss this

in future.
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in a nonflat complex space form

As an application of our study on circular trajectories for Sasakian magnetic fields,

we give some characterizations of hypersurfaces of type (A) in this section. Even on

a real hypersurface of type (A), if we fix a Sasakian magnetic field, then its circular

trajectories have definite directions. We therefore consider all Sasakian magnetic

fields on a real hypersurface, and study the amount of circular trajectories.

Theorem 19.1. Let M be a real hypersurface in a nonflat complex space form

CMn(c) (c 6= 0). It is of type (A0) or of type (A1) if and only if for every unit

tangent vector v ∈ UM which is neither orthogonal to ξ nor parallel to ξ there is a

circular trajectory for some non-trivial Sasakian magnetic field on M whose initial

vector is v.

Proof. “Only if” part. We take an arbitrary v ∈ UM satisfying 0 < |η(v)| < 1. By

Theorems 7.1, 11.1, 12.1 and 13.1 (or by Propositions 7.1, 11.1, 12.1 and 13.1), a

trajectory for a Sasakian magnetic field Fλ/η(v) with initial vector v is circular. Here,

λ denotes the principal curvature for vectors orthogonal to ξ. This shows that the

“only if” part holds.

“If” part. For an arbitrary v ∈ UM with 0 < |η(v)| < 1 we take a circular

trajectory γ whose initial vector is v. Since γ is circular, we particularly have

ργ is constant along γ. By Lemma 6.1, we have 〈(Aφ − φA)v, v〉 = 2ρ′γ(0) = 0.

By continuity of the Riemannian metric, the shape operator and the characteristic

tensor field and by their linearity, we obtain 〈(Aφ − φA)u, u〉 = 0 for arbitrary

tangent vector u ∈ TM . Since Aφ−φA is symmetric, we find that

0 = 〈(Aφ− φA)(u+w), u+w〉

= 〈(Aφ− φA)u, u〉 + 〈(Aφ− φA)u,w〉 + 〈(Aφ− φA)w, u〉 + 〈(Aφ− φA)w,w〉

= 2〈(Aφ− φA)u,w〉
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for arbitrary u,w ∈ TM . If we take w = (Aφ− φA)u, this shows (Aφ− φA)u = 0.

We hence get Aφ−φA = 0 and find that M is of type (A) by Lemma 5.4. As

hypersurfaces of type (A2) do not satisfy the condition. For a trajectory γ on a

hypersurface of type (A2), its principal torsion satisfies 0 ≤ τγ ≤
√

1 − ρ2
γ. But

when ργ 6= 0 principal torsions of circular trajectories should satisfy τγ = 0 or

τγ =
√

1 − ρ2
γ. Thus we get the conclusion. �

The above result distinguish between hypersurfaces of types (A0), (A1) and of type

(A2). In [37] Maeda-Adachi characterized hypersurfaces of type (A) by constancy

of structure torsion of trajectories. But as all trajectories on hypersurfaces of type

(A) have constant structure torsion, we can not distinguish these hypersurfaces.

Thus we may say that the above result improve their result. But as we only use

the property that structure torsions of circular trajectories are constant, we are

interested in getting more information by existence of circular trajectories.

In order to give other characterization of homogeneous real hypersurfaces in a

complex space form, we restrict ourselves to the class of Hopf hypersurfaces. For

a real hypersurface M we consider its holomorphic distribution T 0M =
{
v ∈ TM

∣∣
〈v, ξ〉 = 0

}
, and denote by Proj0 : TM → T 0M the projection.

First we consider the constancy of structure torsions of trajectories.

Lemma 19.1. On a Hopf hypersurface M , the structure torsion ργ is constant if

and only if
〈
(φA− Aφ)Proj0(γ̇),Proj0(γ̇)

〉
≡ 0.

Proof. For a tangent vector u ∈ TM we decompose it as u = v+η(u)ξ with v ∈ T 0M .

We then have φAu = φA
(
v + η(u)ξ

)
= φ

(
Av + η(u)νξ

)
= φAv. We therefore have

〈(φA− Aφ)u, u〉 = 〈(φA− Aφ)v, u〉 = 〈(φA− Aφ)v, v〉.

Hence we get our conclusion by Lemma 6.2. �
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Next we consider the conditions that trajectories for Sasakian magnetic fields to

be circular. On a Hopf hypersurface M , the condition (2)-ii) in Lemma 6.3 that a

trajectory γ for Fκ is circular turns to

(19.1)

 ργAProj0(γ̇) = κρ2
γProj0(γ̇),

κργ(1 − ρ2
γ) + ρ2

γ〈Aξ, ξ〉 − 〈Aγ̇, γ̇〉 = 0,

if we decompose the equality in the condition (2)-ii) in Lemma 6.3 into the compo-

nent parallel to ξ and the component in T 0M . Under the condition ργ = 0, they

are equivalent to 〈Aγ̇, γ̇〉 = 0, and under the condition ργ 6= 0, they are equivalent

to AProj0(γ̇) = κργProj0(γ̇). In this case, this shows that Proj0(γ̇) is a principal

vector with principal curvature κργ.

Lemma 19.2. If γ is a circular trajectory for a Sasakian magnetic field on a Hopf

hypersurface, then either ργ ≡ 0 or Proj0
(
γ̇(t)

)
is principal at each t.

We note that the converse of the above lemma holds.

Lemma 19.3. Let γ be a trajectory for a Sasakian magnetic field on a Hopf hy-

persurface. If Proj0
(
γ̇(t)

)
is principal on an interval I, then ργ is constant on this

interval.

Proof. If AProj0
(
γ̇(t)

)
= α(t)Proj0

(
γ̇(t)

)
, by use of the computation in Lemma 6.2,

we have

ρ′γ(t) = 〈γ̇(t), φAγ̇(t)〉 =
〈
γ̇(t), φA

(
Proj0

(
γ̇(t)

))
+ φA

(
ργ(t)ξ

)〉
=

〈
γ̇(t), α(t)φProj0

(
γ̇(t)

)
+ νργ(t)φξ

〉
= α(t)〈γ̇(t), φγ̇(t)〉 = 0,

hence get the conclusion. �

We here consider to reduce the number of circular trajectories in the assumption

to characterize hypersurfaces of type (A).
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Theorem 19.2. Let M be a Hopf hypersurface in CMn. Then M is congruent to

one of hypersurfaces of types (A0) and (A1) if and only if at each point p ∈M there

exist tangent vectors v1, . . . , v2n−2 ∈ T 0
pM satisfying the following properties:

i) v1, . . . , v2n−2 span T 0
pM ;

ii) For each i (1 ≤ i ≤ 2n−2), there is a circular trajectory γi for some Sasakian

magnetic field satisfying that ργi
6= 0 and Proj0

(
γ̇i(0)

)
is parallel to vi;

iii) For each j (2 ≤ j ≤ 2n−2), there is a circular trajectory γ1j satisfying that

ργ1j
6= 0 and Proj0

(
γ̇1j(0)

)
is parallel to v1+vj.

Proof. “Only if” part. We take κ satisfying κ > λ, where λ is the principal curvature

for vectors orthogonal to ξ. For a Sasakian magnetic field Fκ and for an arbitrary

unit vector v ∈ T 0
pM , a trajectory γ with initial vector (

√
κ2−λ2 v+λξ

)
/κ is circular,

by Theorems 7.1, 11.1, 12.1 and 13.1. Thus we find that the conditions hold.

“If” part. By the conditions ii) and iii), we find that v1, . . . v2n−2 and v1 +

v2, . . . , v1 + v2n−2 are principal curvature vectors by Lemma 19.2. Since v1, . . . v2n−2

are linearly independent, we see they have the same principal curvatures. Thus T 0
pM

is a vector subspace of principal curvature vectors associated with one principal cur-

vature. Since T 0
pM is invariant under the action of φ, we find Aφ = φA, which lead

us to that M is of type (A). As the bundle T 0
pM of a hypersurface of type (A2) is

divided into two principal subbundles, we get the conclusion. �

We here consider to drop the third condition in Theorem 19.2, which may seem a

bit artificial.

Proposition 19.1. Let M be a Hopf hypersurface in CMn. Then M is a hypersur-

face of type (A) if and only if at each point p ∈ M there exist unit tangent vectors

v1, . . . , vn−1 ∈ T 0
pM satisfying the following properties:

i) v1, φv1, . . . , vn−1, φvn−1 span T 0
xM ;
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ii) For each i (1 ≤ i ≤ n−1), there are circular trajectories γ+
i , γ

−
i for some

Sasakian magnetic fields Fκ+
i
,Fκ−i

satisfying that

a) ργ+
i
(0) 6= 0, ργ−i (0) 6= 0,

b) κ+
i ργ+

i
(0) = κ−i ργ−i (0),

c) Proj0
(
γ̇+
i (0)

)
is parallel to vi and Proj0

(
γ̇−i (0)

)
is parallel to φvi;

Proof. “Only if” part. When M is a real hypersurface of types (A0) and (A1), as we

pointed out in the proof of Theorem 19.2, we have desirable tangent vectors with

given κ (> λ) and ργ = λ/κ. When M is a real hypersurface of type (A2) in CP n(c),

the holomorphic distribution T 0M splits into subbundles Vλ ⊕ Vµ of principal cur-

vature vectors associated with λ = (
√
c/2) cot(

√
c r/2), µ = −(

√
c/2) tan(

√
c r/2).

We take κ with κ > max{λ, |µ|}. By Proposition 7.4 (or Theorems 7.2, 7.3, 7.4), we

find the following:

• For an arbitrary unit vector v ∈ Vλ a trajectory γ for Fκ with initial vector

(
√
κ2−λ2 v + λξ

)
/κ is circular;

• For an arbitrary unit vector w ∈ Vµ a trajectory γ for Fκ with initial vector

(
√
κ2−λ2w + µξ

)
/κ is circular.

Since Vλ, Vµ are invariant under the action of φ, we also have desirable tangent

vectors in this case.

When M is a real hypersurface of type (A2) in CHn(c), the holomorphic distri-

bution T 0M splits into subbundles Vλ⊕ Vµ of principal curvature vectors associated

with λ = (
√

|c|/2) coth(
√

|c| r/2), µ = (
√

|c|/2) tanh(
√

|c| r/2). We take κ with

κ > λ (> µ). By Proposition 14.1 (or by Theorem 14.1), we find that M has the

same properties as for real hypersurfaces of type (A2) in CP n. Since Vλ, Vµ are also

invariant under the action of φ, we have desirable tangent vectors also in this case.

“If” part. By the condition ii) and Lemma 19.2 show that vi and φvi are prin-

cipal curvature vectors associated with the same principal curvature κ+
i ργ+

i
(0) =
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κ−i ργ−i (0). We hence find that each vector subspace of principal curvature vectors in

T 0
xM is invariant under the action of φ. Thus we find Aφ = φA and M is of type

(A). �

The proof of the above Theorem shows the following.

Proposition 19.2. Let M be a Hopf hypersurface in CMn. Then M is congruent

to one of real hypersurfaces of types (A0) and (A1) if and only if at each point

p ∈M there exist unit tangent vectors v1, . . . , v2n−2 ∈ T 0
pM and a nonzero constant

α = α(p) satisfying the following properties:

i) v1, . . . , v2n−2 span T 0
pM ;

ii) For each i (1 ≤ i ≤ 2n−2), there are circular trajectories γi for some Sasakian

magnetic fields Fκi
satisfying that κiργi

(0) = α and Proj0
(
γ̇i(0)

)
is parallel

to vi.

Proof. The “only if” part was proved in Theorem 19.2. We check the “if” part. By

Lemma 19.2, we see that v1, . . . , v2n−2 are principal curvature vectors with principal

curvature α. Thus, T 0M is the bundle of principal curvature vectors associated with

α by the condition i). In particular, we have Aφ = φA. Thus we obtain that M is

of type (A0) or of type (A1). �

We next consider to drop the condition on structure torsions in Theorem 19.2.

Theorem 19.3. Let M be a Hopf hypersurface in CP n. Then M is congruent to

one of hypersurfaces of type (A) if and only if at each point p ∈M there exist tangent

vectors v1, . . . , v2n−2 ∈ T 0
pM satisfying the following properties:

i) v1, . . . , v2n−2 span T 0
pM ;

ii) For each i (1 ≤ i ≤ 2n−2), there is a circular trajectory γi for some Sasakian

magnetic field satisfying that Proj0
(
γ̇i(0)

)
is parallel to vi;
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iii) For each i, j (2 ≤ i < j ≤ 2n−2), there is a circular trajectory γij satisfying

that Proj0
(
γ̇ij(0)

)
is parallel to vi+vj.

Theorem 19.4. Let M be a Hopf hypersurface in CHn. Then M is congruent to

one of hypersurfaces of type (A0) or (A1) if and only if at each point p ∈ M there

exist tangent vectors v1, . . . , v2n−2 ∈ T 0
pM satisfying the following properties:

i) v1, . . . , v2n−2 span T 0
pM ;

ii) For each i (1 ≤ i ≤ 2n−2), there is a circular trajectory γi for some Sasakian

magnetic field satisfying that Proj0
(
γ̇i(0)

)
is parallel to vi;

iii) For each i, j (2 ≤ i < j ≤ 2n−2), there is a circular trajectory γij satisfying

that Proj0
(
γ̇ij(0)

)
is parallel to vi+vj.

Proof of Theorems 19.3, 19.4 . The “only if” part is given in the proof of Theorem

19.2 and in the proof of Proposition 19.1. We hence consider the “if” part along the

lines in the proof of Theorem 19.1. By Lemma 19.1, the conditions ii) and iii) show

that 〈(φA−Aφ)vj, vj〉 = 0 for j = 1, . . . , 2n−2 and 〈(φA−Aφ)(vi + vj), vi + vj〉 = 0

for 1 ≤ i < j ≤ 2n−2. We hence have 〈(φA − Aφ)vi, vj〉 = 0 for 1 ≤ i, j ≤ 2n−2,

because φA − Aφ is symmetric. By the condition i), we get (φA − Aφ)vi = 0 for

i = 1, . . . , 2n−2. We then find Aφ = φA on T 0M , and hence M is of type (A).

In CHn, by Proposition 14.1, real hypersurfaces of type (A2) do not satisfy the

condition iii). Thus we get the conclusion. �

Since we give some characterization of real hypersurfaces of types (A0) and (A1),

we next consider real hypersurfaces of type (A2). In view of Theorem 19.2, we can

characterize hypersurfaces of type (A2) in the following manner.

Proposition 19.3. Let M be a Hopf hypersurface in CMn and ` be an integer with

1 ≤ ` ≤ 2n−1. Then M is congruent to a tube around of a totally geodesic CM ` or
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a tube around of a totally geodesic CMn−` if and only if at each point p ∈ M there

exist unit tangent vectors v1, . . . , v2n−2 ∈ T 0
pM satisfying the following properties:

i) v1, . . . , v2n−2 span T 0
pM ;

ii) For each i (1 ≤ i ≤ 2n−2), there is a circular trajectory γi for some Sasakian

magnetic field satisfying that ργi
6= 0 and Proj0

(
γ̇i(0)

)
is parallel to vi;

iii) For each i, j (1 ≤ i < j ≤ 2n−2`−2), there is a circular trajectory γij

satisfying that Proj0
(
γ̇ij(0)

)
is parallel to vi+vj;

iv) For each i, j (2n−2`−1 ≤ i < j ≤ 2n−2), there is a circular trajectory γij

satisfying that Proj0
(
γ̇ij(0)

)
is parallel to vi+vj;

v) Every trajectory γ satisfying that ργ 6= 0 and that Proj0
(
γ̇(0)

)
is parallel to

v1+v2n−2 is not circular.

Proof. The “only if” part is proved in the proof of Proposition 19.1. We hence show

the “if” part. We denote by V1 (⊂ T 0
pM) the subspace spanned by v1, . . . , v2n−2`−2,

and by V2 (⊂ T 0
pM) the subspace spanned by v2n−2`−1, . . . , v2n−2. By the conditions

ii) and iii) and by Lemma 19.1, we have 〈(φA− Aφ)vj, vj〉 = 0 for i = 1, . . . , 2n−2

and 〈(φA − Aφ)(vi + vj), vi + vj〉 = 0 for 1 ≤ i < j ≤ 2n−2`−2. Thus we have

〈(φA − Aφ)vi, vj〉 = 0 for 1 ≤ i, j ≤ 2n−2`−2. This shows that φA − Aφ = 0 on

V1. Similarly, by the conditions ii) and iv) we find that φA − Aφ = 0 on V2. As

T 0M = V1 + V2, we see φA = Aφ on T 0M . This shows that M is of type (A). The

condition (v) shows thatM is not of types (A0) and (A1). We get the conclusion. �

Remark 19.1. In Proposition 19.3, if M is a Hopf hypersurface in CHn, then we can

drop the condition ργ 6= 0 in the condition v).
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