A Topological Approach to Implement a Conflict
Detection System for Time-based Firewall
Policies

FER— A D7 A T7O4—ILR) DTy MEHUV AT A
DEBEAD FROSAHILT TA—F

by
SUBANA THANASEGARAN

A DISSERTATION
submitted to the Graduated School of Engineering,
Department of Computer Science and Engineering,
Nagoya Institute of Technology
in a partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
written under the supervision of
Professor NAOHISA TAKAHASHI

@

NAGOYA INSTITUTE OF TECHNOLOGY
Nagoya, Japan
November 2011

Abstract

Firewall policy management is a notoriously difficult task for any network
administrator as it is always under modification. Recently, time-based filters are widely
used to restrict the network traffic based on certain times of the day or certain days. The
firewall policies with time-based filters are called as time-based firewall policy, TFP. Due to
the introduction of TFP, the management becomes further complicated and as a result
misconfigurations like conflicts appear when a packet matches multiple filters. It makes
some filters redundant or shadowed and therefore the actual configuration is not reflected

in the network. Even though conflict detection

for firewall policies is available based on spatial analysis through geometrical approach,
when the number of filters and headers increases it takes huge computation time and
memory. The other problem is the prevailing conflict detection techniques cannot deal with
time-based filters, and as a result, when they are applied to time-based filters, the time
domain is ignored; therefore, the problem of obtaining false positive results arises, stating a
non-conflict as a conflict. This problem has not been addressed in any research regardless
of its significance. To solve these problems, we have presented the following three
analyses: (1) A Topology-based spatial analysis for conflict detection in FPs through a Bit-
vector Based Spatial Calculus named BISCAL. (2) A Geometry-based Temporal Analysis. (3)
A Topology-based Temporal Analysis. The first analysis solves the problem of high
computation time and memory. Even though, the second and third analysis solves the
problem of the ignorance of time field, it is necessary to combine the spatial and the
temporal analyses for the conflict detection in TFPs. Therefore we have proposed two
architectures as follows: (1) Simultaneous Analysis, and (2) Iterative Analysis. We have
evaluated the feasibility and usefulness of the detection systems through experimental

analysis and validated the performances of the systems.

The above three analyses and two architectures give a new methodology for

detecting conflicts in TFPs. It gives a direction that makes it possible to implement TFP

diagnosis tools based on the methodology in practice and brought a new era in the field of

conflict detection in TFPs.

Acknowledgments

At first, I would like to take this opportunity to thank Japan Ministry of Education,
Culture Sports, Science and Technology (MEXT) for awarding me the Japanese Government
Monbukagakusho Scholarship for my Masters and Doctors program. I am much honored to
be the recipient for this award. Receiving this scholarship motivates me to maintain a

peaceful life and providing me confidence and willingness to help me achieve my goals.

I would like to record my gratitude to Professor Naohisa Takahashi for his supervision,
advice, and guidance from the very early stage of this research as well as giving me
extraordinary experiences throughout my research work. His truly scientist intuition has
made him as a constant oasis of ideas and passions in science, which exceptionally inspire
and enrich my growth as a student, a researcher and a scientist want to be. I am indebted to

him more than he knows.

I would like to thank Professor Yoshiaki Katayama, for giving me suggestions in my
seminar hours, correcting my papers and helping me with the research. Above all and the
most needed, he provided me unflinching encouragement and support in various ways. I
would like to thank Professor Yuichiro Tateiwa for his cooperation and support and
providing me useful comments for my papers and helping me in Japanese Language. I also
would like to extend my gratitude to Professor Koichi Wada for providing me valuable

comments and suggestions during my presentations to improvise my research work.

[also thank the past and present members of Takahashi Laboratory who have directly
or indirectly provided me with the appropriate environment for the completion of this
work. I would like to thank my lab mates and many thanks go in particular to Mrs. Yi Yin
who helps me whenever I ask any kind of doubts and any kind of help at any time and her
crucial contribution, which made her a backbone of this research and so to this thesis. Her
involvement with her originality has triggered and nourished my intellectual maturity that
[will benefit from, for a long time to come. I have enjoyed scientific discussions with Mr.

iv

Pablo who sits next to me and I greatly value his friendship and extend my gratitude for his
constant encouragement. [would like to thank my senior Mr. Karthik Jeyakodi who guided
me about the lab environment and makes me to habituate with the Japan life at the initial
stage. I would like to acknowledge and extend my gratitude to our lab secretary Junko
Koike for taking care of all my official matters. At the foreign student’s center of Nagoya
Institute of Technology, I would like to express my gratitude to all the staff members for
helping me with various aspects from daily life in Japan to learning the Japanese language
itself. This helped eventually during discussions with my professors and lab mates about
my research work. I would also like to thank especially Mrs. Imai and Mrs. Yamamoto for

helping me in my entire study curriculum.

My special thanks go to my uncle Dr. Arulkumaran who introduced me to Nagoya
Institute of Technology to pursue my higher studies. I would like to thank Mrs. Karthik
Jegajothi for being introduced into my lab. It is a pleasure to express my gratitude
wholeheartedly to Dr. Venkatesan’s family, Dr. Mahesh’s family for their kind hospitality
during my stay in Japan. I would like to extend my special thanks to my near and dear
friends like Mr. Madan and his wife Rekha, Ms. Ulka Suryavanshi and to my cousin

Ms.Vijitha Thangaraja for their moral support towards my journey in Japan.

Finally, my family deserves special mention for their inseparable support and prayers.
I would like to thank my husband Mr. Sridharbabu whose dedication, love and persistent
confidence in me, has taken the load off my shoulder. I owe him for being unselfishly let his
intelligence, passions, and ambitions collide with mine. I would like also to thank his
parents and sister for their warmth and love towards me. I would like to sincerely thank
my father Mr. Thanasegaran who put the fundament my learning character, showing me
the joy of intellectual pursuit ever since I was a child and my mother Mrs. Leela
Thanasegaran is the one who sincerely raised me with her caring and gentle mother’s love.
I would like to express my gratitude to my younger sister Ms. Suganya Thanasegaran for

being so affectionate and loving and keep on encouraging me during my curriculum.

Finally, I would like to thank everybody who was important to the successful

realization of thesis, as well as expressing my apology that I could not mention personally

one by one.
Contents

(00 T ¢ =1 o P 1
INtrOdUCHION ...eeeiiirer e e 1
1.1 Problem Definition ..o e e 2
1.2 Research Aims and APPrOAChES........uuiii ittt e e e et e e e e ssre e e e e e e rtaaeeaeeentaeaeeeenanes 3
1.3] Y LTe V1Y o] o PP TR PRSI 5
14 RIS O T =- [1] 2= 14 (o o USSR 7
(00 T ¢ =1 P 8
Conflict Detection in Time-based Firewall Policies..........ccccevuuueiiiiiiiinenniiniinnnnns 8
2.1 ATIiMe-Based FIr@Wall POLCY, TFP.....ouiii e ettt e et ee e e eetree e e e e eenraeaeeesennssaeeesennnnsaeeeeens 8
2.2 CONFIICES TN TP Lottt e st e st e st e b et s b e s b e e st e e sabeebeesnbeesareennee 11
2.3 A Topology-based Spatial ANalYSiS......cececueiiiii i e e e eerae e e e e aees 14
2.4 TEMPOTAl ANGIYSIS . uvviieiiiiieciie et e st e e st e e e s be e e s sreae e s taeeesssaeesnsteeeassteesasseeesnseeannsenenne 15
2.4.1 A Geometry-based Temporal ANAlYSiS........ueiiieeeiiieeeiieee e erre e srre e sre e sree e e sre e e ssneeeenns 16
2.4.2 A Topology-based Temporal ANAlYSisccuveeeiieeeiiiie e rre e etee e e e s nre e 17
2.5 A SPatiotemMpPOoral ANAIYSIS ...eiiiiiiiiiiie e st re e e are e e eane 18
25.1 =T LRV CN A o] O STOTPPPOTIPN 18
2.5.2 SIMUIEANEOUS ANAIYSIS...iiiiiiiieiiiiie ittt ettt esabe e s sbaee s beeesrabeeesaaeesnns 19
2.6 6] o Tol [V o] o TSP PRSPPI 20

(@14 =T 1T g SRR |

The System Proposalcccceiiieeiiiiiiiiiiiiiiiiiieiireieneeeeneeeenssessssnsssssnsssssnnes 21
3.1 SYSTEIM OVEIVIEW....uiiiieii i ettt ee e e e e et e ettt e e e e e e e e e e e e ee e ae e e e eeeeeaeeeanessssannaaeeeaeaesennssssnnnnns 21
3.2 e E=T o] ool o] (PRSP 23
3.3 N-dimensional Spatial ANAlYSISeiiiiiiiiie e e sae 23
3.4 TeMPOFAl ANAIYSIS . .ueeiiiiee et e e e e e e e e rae e e e e e et ee e e e eseaatteeeeeeanntaeeeeeannrrneeeeaanns 23
3.5 SPAtiotEMPOral ANAIYSIS ..uveeiiiieiiieee e et e e e s e e e e st e e e e e eearr e e e e e enntraaeeeeennens 24

3.5.1 EEIAtIVE ANAIYSIS .eeievrieiiiiie e et et e e ee e e e et e e et e e s nte e e e teeesnteeeesaeeeanbeeeensaeeerreeean 25

3.5.2 SIMUITANEOUS ANAIYSIS...eiiiiiiie it etee e e e e e st te e e e rae e e s teeesrnaeeesreeeenes 25
3.6 BISCAL ..ttt sttt ettt st sh e et e b e st sh bt bt e be e e be e sate e hte e be e e beeeateenateenaee et sbeesars 25
3.7 (00T ol [V 1Y [o TSP POTUPPRNE 26

(011 F- T o) = o SRR Y J

A Topology-Based Spatial Analysis through BISCALccccccceiveiinirenicrnncrennnnas 27

4.1 2T Y O AN TSP PPPUP PPt 27
4.1.1 Data Structure: Bit-VeCtOr......cccovviiiiiiiiiiiiccii e 27
4.1.2 S 1LY O o T=T =) o] PSP 28
4.1.3 Characterization VECTOIS.coviiiiiiiiiisctce e e e 29

4.2 Implementation of a Topology-Based Spatial Analysis through BISCAL..........ccccvvviveerniieeennnenn. 31
42.1 SYSTEM OVEIVIEW..uuiiiiiiiiiiiieeiieete e et e e e e e e e e e e e e s e eesss s e s saababbbbeteeaeeaeeeaaeaaaaeaenns 31
4.2.2 PCV EXErACLOr ceeiiiiiie ettt e s s e s e 32
4.2.3 LGNV =Tt o | PP 33
4.2.4 TR EXEFACEON ..ottt e 35

4.3 EVAIUGTION Lot s 37
43.1 MathematiCal ANAIYSISuiii it sbe e e s e e e s sbee e snaeeee s 37
4.3.2 EXPErimental ANAIYSIS ...ceeiii et e ettt e e e s e e st ee e e e e ebar e e e e senrreaeeeeennees 39

4.4 (60 a1l [T] 1] o PRSPPSO PPOPRPP 42

(@0 F- T 1= g YRR - X

Temporal ANAlYSis ...ceeeeiieiieiieiiirirterecreerenereeencresescsnscrnsascrnssescrnssesesnseences 43

5.1 A Geometry-based Temporal ANAlYSiS.....cueeeiiieiiieiee et eestrre e e e e e earaeeeeeeeaees 43
5.2 A Topology-based TeMPOral ANAIYSIS ..ccovviiiiriiiiiiieieriee ettt e s sbee e s saneesaes 45
5.2.1 Primitive Time Handling Operations.......coccueeeiiieiiiieeiniiee et sre e e s 46
5.2.2 ComMPULALION OF SFSy 1ttt st e s s be e e ssabe e e saaeeesbaeesnane 47
5.3 L6 ool [V o] o TSP TSP PR 49

(@0 F- T =T PPN |

Spatiotemporal ANalysSisccceiieiiiiiiiiieiiiiiiiiiiiieerre e rrseessnssesenssssennes 50
6.1 SIMUIEANEOUS ANGIYSIS. . .uivrieeieieiitiiee ettt eecree e e eeere e e e e e esetbreeeeeeestbaeaesesessreeeeeeensrseseessnnnnres 50
6.2 O AtIVE ANGIYSIS .eiiiiieiiiiee ittt e st e e s st e e e s be e e sabre e s sabeeesaate e e sbeeeennbaeesanne 52

Vi

6.3 EVAIUGTIONS ..ot re eas 52
6.3.1 (oL A0 T=T] OO PP P PP PP PP PPN 52
6.3.1 RESUILS OFf EXPEIIMENT | eeeeiiiiiiiieee ettt ee e e e e e etbe e e e e e s sabaaeeeesessseaeeeesnnnnes 54
6.3.2 ReSUILS OFf EXPEIIMENT 1] ..eeiiiiiiiiiiiie ettt sbee e s ste e s s ate e s sabeeesnaeeee s 55

6.4 (6o a1l [T 1] o F T PP P PP PTTPTRPPPP 56

(@4 =T 1T RPNt -

Conclusion aNd FULUIE WOKKeieiririrreieieieirerereresessssesesesesesessssssesesesasssasssssseses D8
7.1 CONCIUSTON ettt ettt e e e et ettt e e e eesseeeesesaae s ae e eeasseeeeessaeesssnaaaassssseeeseesnsnnnnnnsens 58
7.2 FUBUTE WOTK oottt ettt et e e e e e e et ettt e et e sseseeeeeetaaaaanaa s seeeeeseeessssnnnsasseeeeees 58

viii

List of Figures

2.1 Internal form representation of a sample TFP.......c.cccooiiiinii i 11
2.2 Topological RelationShips.......uiviiieiriiiii ittt e e sn s 12
2.3 Spatial decomposition of filters of TFP1 defined in Figure 2.1.......c.cccoocvvviviviniinnecriienns 15
2.4 Temporal mapping of filters through geometry-based temporal analysis...........cccccuee. 16
2.5 Temporal mapping of filters through topology-based periodic cycle treatment............18
2.6 Projection of filters in 3D 0N 06/01/20T12.......coiiiiriiiie et ese e e s s ne s 19
3.1 System Overview of the conflict detection system for TFP..........ccco o 22
3.2 Two architectures of spatiotemporal analysis

(@) Iterative ANALYSIS.....uiueirier et e e e 24

(b) SIMUItAaNEOoUS ANALYSIS...uuiiiireirie e irrieee et e sr e e s e e e e e 24
4.1 Spatial diviSion Of fIlteIS......ccuii i e e s 31
4.2 System overview of topology-based conflict detection system through BISCAL............. 32
4.3 FPB in 2-dimensions

(IS T 1 L TSP S RS TF R PPPPRPROPTON 38

(o) IR 0G0 =) o TSP PP PSR 38
4.4 Comparison of topology and EOMELIYc.uiveireiririe i esr e e e e e 40
4.5 Performance Analysis of changing the ratio of wildcard in FPB

(2) COMPULALION LM ..ieiiie ettt e sr e e rr e e e en e e esns 41

(o) IRV =3 10 T0) o7 2T P SRR 41
4.6 Performance analysis of system using FPB

(2) COMPULALION LI .ceiuiiieeiie ettt e rr e e s sr e s e e sne e se e e n e sre e s 42

(o) IRV =3 10 T0) o7 2T PP PSRRI 42
5.1 Flow of operations in the mapping mechanism..........ccouveir v s 48
6.1 Overview of conflict detection system architecture through simultaneous analysis......51
6.2 Time charts

(2) CASE Lttt ettt e e e a e e er e e e e re e e ene e s e e enr e 53

(o) 0= T8 L PSSO 53
6.3 The ratio of conflicts with and without considering time..........ccccoovveriieiveriiies e 55
6.4 Comparative analysis of the different systems

(B) CASE Lottt ettt e e e n e e re e e nr e e e nre e ea e en s 56

(o)) 0% T8 U ST TRRPP 56

List of Tables

1.1 Analysis in CONflict DETECTIONcueeieiiiieicie ettt e s e e e e 6
1.2 Architecture PropPOSalS... .o iiiiiir ittt st e e s e e n e e e en s 7
4.1 Results of Mathematical ANalySiS.......cuvuiiiriieirieiie e e e e 38

Xi

10

Chapter 1

Introduction

Without a well managed firewall, a computer can be easily hijacked in few seconds.
Firewalls have been able to address most network security issues and are used in
organizations to protect the corporate intranet. Firewalls are used to filter traffic to and
from the trusted enterprise network on the basis of the firewall policies defined keeping in

mind the overall security policy of the organization.

Packet filtering technique in firewall provides initial level of security and operates
on the network layer or the internet layer. In packet filtering network packets are accepted
or denied based upon the predefined ordered set of filters, called a firewall policy FP. Each
filter f in FP has a condition and an action (accepts or deny). When the key fields of the
header of an incoming packet P satisfy the conditions of the filter f, the filter’s action will be
carried out on the incoming packet. A first matching scheme is used by many packet
filtering systems such as IPFW in FreeBSD [33]. When the firewall finds a first matching
filter fsatisfies P’s header fields, it applies the filter’s action to the packet P.

Recently, Time-based filters are widely in use to control network traffic in time [34-
36]. It is actively used in many applications like Access Control Lists, Surf control web filter
and Linux iptables [36]. This is very handy when a service is required to be available only
at certain times of a day or even certain days. For example, they can allow better QOS in the
accounting department during the last three days of a month and can shutdown certain
social networking sites during business hours. A firewall policy with time-based filters is

called as a Time-based Firewall Policy TFP.

Although the deployment of firewall technology is the first important milestone
toward securing networks, the effectiveness of firewall security may be limited or
compromised by a poor management of firewall policy rules. One of the interesting

problems is that how extent the rules are useful, up-to-dated, well-organized or efficient to

reflect current characteristics and volume of network packets. For example, the network
traffic trend may show that some rules are out-dated or not used recently. This may further
lead one to consider removing, aggregating or reordering of the rules to optimize the
firewall policy and efficiency. Also, server and network logs may validate or confirm that

firewall policy rules are updated and consistent with the current network services.

It is a highly tedious job for the administrator to maintain and manage firewall
policies as always it is subjected to modification. For example, in examining 37 firewalls in
production enterprise networks, Wool found that all the firewalls were misconfigured and
vulnerable [2]. Among many misconfigurations, conflict is a misconfiguration that often
occurs in firewall polices. When a packet matches two or more filters in the firewall policy,
conflict occurs. Due to the presence of conflicts in the firewall policies, the lower priority
filter in the firewall policies will be never executed (error) and sometimes executed
(warning). These kinds of conflicts create potential security holes and bring unintended
traffic into the network as conflicting policies do not reflect the administrator’s intention.
Hazem et al. found that there is a high probability of creating conflicts even by expert
system administrators and network practitioners [10]. Therefore it is required to bridge the
gap between what is written in the firewall policy rules and what is being observed in the

network.

1.1 Problem Definition

Various techniques have been developed to detect the conflicts in the firewall
policies [4-26] to help the administrators. Hazem et al developed a conflict detection
algorithm which computes the relationship between two filters based on the result of
subsequent comparisons [10]. It detects conflicts by comparing the relationship between
every two filters. Spatial analysis of firewall policies is also an interesting area of research
for the problem of conflict detection. In this analysis, the n-key fields are projected in n-
dimensional space and the n-dimensional topological relationships, TR» of the filters are
computed. The main advantage of spatial analysis is that the relationships between
combinations of filters can be computed by projecting in the n-dimensional space at once

other than the two filters and therefore a systematic and powerful conflict classification is

possible. The two types of spatial analysis are geometrical analysis and topological analysis.
Yin et al developed a conflict detection system based upon the spatial decomposition of the
firewall policies [4]. The drawback of this approach is that when the number of filters and
the matching key fields increases, it demands high memory usage and computation time.
Therefore it is necessary to solve this problem by preserving the advantages of spatial

analysis.

The other problem is that, the prevailing techniques cannot deal with the problem of
conflict detection for TFPs. As a result, when they are applied to TFPs, the time domain is
ignored; therefore, the problem of obtaining false positive results arises, stating a non-
conflict as a conflict. This problem has not been addressed in previous researches
regardless of its significance. When we summarize the above discussions, the two main
problems are as follows: (1) Large consumption of memory and computation time to
detect conflicts through spatial analysis, (2) Presence of false positive results during

conflict detection for TFPs.

1.2 Research Aims and Approaches

To solve the above problems, our main research goals are: (1) To develop a conflict
detection technique based upon spatial analysis with low computation time and memory,
(2) To develop a conflict detection system for TFPs to discard the false positive results. To
achieve our research goals, we have studied the importance of spatial analysis of firewall
policies and investigated the possibility of the conflict detection through topology. We have
found that the topology-based conflict detection can able to discard the drawbacks in the
geometrical approach by preserving the advantages of spatial analysis. And also, we have
made a thorough research on temporal analysis through geometry and topology and
developed the following techniques to solve the above problems:

P1: A topology-based conflict detection through a Bit-vector based Spatial Calculus
BISCAL.

P2: A geometry -based temporal analysis.

P3: A topology-based temporal analysis.

By our first proposal, we have solved the first problem which takes less computation
time and memory than the previous geometry-based conflict detection technique. It
computes the n-dimensional topological relationships, TR of the filters to detect conflicts.
To practically implement the conflict detection system, we have proposed an
implementation method called a bit-vector based spatial calculus named BISCAL. It is a
systematic and simple way of extracting the TR» of the filters through bit-vector based
logical operations. To solve the second problem, it is necessary to analyze the time domain

and therefore we have proposed the analyses P2 and P3.

The P2 and P3 analyze the TFPs in time domain through geometry and topology
respectively. In the geometry-basis, the filters are projected in a predetermined conflict
detection period and the filters are divided in their boundaries and the temporal analysis is
performed. The disadvantage of this analysis is that when the conflict detection period is
long, it takes large computation time and memory. To solve this problem, we have
proposed a topology-based temporal analysis. In this analysis, there is a mapping
mechanism to project the filters in time domain. It removes the unnecessary repetitions of

the periodic time-based filters when the conflict detection period is long.

Even though we have proposed techniques to analyze TFPs in the time domain, it is
necessary to combine the spatial and the temporal analysis to compute the conflicts in TFPs.
To achieve the goal, we have proposed the following architectures in which the analysis in
time and space can be combined: (1) Simultaneous Analysis, (2) Iterative Analysis. In both

the architectures either of the two temporal analyses can be incorporated.

In the simultaneous analysis, the TFPs are analyzed in time and space domains at
the same time and the TR»*! of the filters are computed. In the Iterative Analysis, the time
domain is divided into intervals by dividing the filter in their boundaries and for each time
interval, the filter sets are analyzed in the n-dimensional space and finally the results of all
the intervals are combined to find the TR»*1 of the filters. We have proposed the extension

of BISCAL which can compute the TR*1 of the filters for TFPs.

We have evaluated the architectures by performing comparative and experimental

analysis of the two system architectures and validated the better performance systems.

4

With our experimental results, we have found that the workload of the network
administrator can be decreased and an effective management of time-based firewall

policies can be achieved by practicing our conflict detection systems.

1.3 Related Work

Over the past few years, researches on the analysis of firewalls have received much
attention [2-32]. Hazem et al developed a conflict detection algorithm which computes the
relationship between two filters based on the result of subsequent comparisons [10]. The
condition of every two filters is compared to find whether it makes any conflict or not.
Matsuda have proposed a packet filtering rules compression model by matrix
decomposition. The matrixes are the smallest hyper cubes into which a hyper space
including a filter set is decomposed at all the boundary derived from the range values of the
filters. Mapping these matrixes to the filters enables to find unnecessary filters [30]. Yin et
al developed a conflict detection system based upon geometry-based spatial analysis of
filters [4]. The filters are projected in n-dimensional space where the co-ordinates of the
filters are the boundary values of the condition of a filter. The filters are decomposed in
their boundaries into subspaces and the geometrical location of the filters in the n-
dimensional space is analyzed to find the conflicts. The advantage of conflict detection
through spatial analysis is that conflicts caused by combinations of filters can be computed.
But, the disadvantage of the previous system is that when the number of filters and headers

increases, it takes huge computation time and memory to compute the conflicts.

The two different types of spatial analysis are geometry-basis and topology-basis. In
our research, we have thoroughly studied the geometry-based and topology-based spatial
analysis of filters in n-dimensional space. All the previous works mentioned above can be
considered as a geometry-based analysis because they treat with the location of the filters,
i.e,, the range values specified in the condition of the filters during the analysis of conflict
detection. In our research, we have found that analyzing the topology of the filters is
sufficient enough to find the conflicts in the filters. For example, rather than analyzing the
geometrical location of the filters, the essential subspaces that are necessary to extract the

topology of the filters is sufficient to extract conflicts. By this way, we can able to reduce the

number of subspaces that is required for conflict detection and also the advantage of
finding the conflicts between the combinations of filters is also possible. Thereby, we
discard the drawbacks of the geometry-based spatial analysis, and developed a topology-
based spatial analysis, P1 for conflict detection in FPs. We have implemented it through a

bit-vector based spatial calculus named BISCAL.

Even though, a lot of techniques are available to detect conflicts in FPs, there is no
technique prevailing to find the conflicts in TFPs. If the TFPs are analyzed with available
conflict detection techniques, false positive results arise saying a non-conflict as conflict. It
occurs due to the ignorance of time domain during conflict detection. Therefore we have
proposed a geometry-based temporal analysis to analyze the filters in the time domain in
P2. In the geometry-based analysis, when the conflict detection period is long, the periodic
time-based filters repeat ample number of times, and takes huge computation time and
memory. To solve this problem, we have proposed a topology-based temporal analysis in
P3. Our research contributions for the conflict detection of TFPs in the space and time

domains are shown in Table 1.1.

To compute the conflicts in TFPs, it is necessary to analyze both the space and time
domain. Therefore, we have proposed the following architectures to combine the analysis
of topology-based spatial analysis and the temporal analysis: (1) Simultaneous Analysis,
and (2) Iterative Analysis. In both the architectures, regarding the time domain, either one
of P2 or P3 can be incorporated as shown in Table 1.2. By the above three analyses and two
architectures, we could able to solve the problems discussed in the related work and have

contributed a new era for the conflict detection in TFPs.

Table 1.1 Analyses in Conflict Detection

Domain
Space Time
Spatial Analysis
Geometry Yin et al [4], P2

Eppstein et al [9]

Topology P1 P3

Table 1.2 Architecture Proposals

Space Time
Architecture
Simultaneous P1 P2 (or)
Analysis P3
Iterative Analysis P1 P2 (or)
P3

1.4 Thesis Organization

This research produces several conferences and journal papers and this work is a
compilation of those papers’ propositions and results. The papers’ material is rearranged in
a more comprehensive order and a more extensive review of the literature was made.
Chapter 2 presents the conflict detection in the firewall policies, which introduces the
internal form of a TFP, spatial decomposition of firewall policies, temporal analysis and the
spatiotemporal analysis.

Chapter 3 presents the proposed system. It first introduces the overview of the proposed
system and discusses the essential components in the proposed system in detail.

Chapter 4 describes the topology-based spatial analysis, and the implementation method
through BISCAL and its evaluations.

In Chapter 5 discusses the topology-based temporal analysis and the geometry-based
temporal analysis.

Chapter 6 discusses the spatiotemporal analysis through simultaneous and iterative
analysis in detail and the evaluations of the two architectures.

Chapter 7 presents the conclusions of this dissertation and presents suggestions for future

work.

Chapter 2

Conflict Detection in Time-based Firewall
Policies

A firewall protects the network from unauthorized access and facilitates a secure
access to the outside world. The packet filtering technique in a firewall provides a basic
level of security and operates on the network layer of the OSI model or at the IP layer of the
TCP/IP model. It controls the network traffic using a predefined, ordered set of filters
called firewall policy, FP. Every filter f has a condition and an action. The condition consists
of ‘n’ predicates and the action can be either accept or deny. Each predicate in the condition
is written based on the values contained in each ‘n’ key field of a packet header. A packet P
matches a filter fif and only if the packet header satisfies all the predicates in the condition

of the filter.

2.1 A Time-Based Firewall Policy, TFP

Recently, time-based firewall policies have been introduced to control the network
traffic in time. They are actively used in many applications like CISCO ACLs, surf control
web filters, and Linux iptables. They are very handy when a service is required to be
available only at certain times during the day or even certain days. For example, they can
allow better QOS in the accounting department during the last three days of a month and
also control certain unintended web services during business hours. A firewall policy with
a time field is called time-based firewall policy, TFP. The time-field specifies the time
constraint, which restricts the network traffic at specific dates and times. A packet P
matches a time-based filter fif and only if the arrival time of P satisfies the time constraint
of fand the values of P’s key fields satisfy all the predicates in the condition of f.

We have formally designed a TFP that consists of an ordered set of ‘m’filters and is
expressed as follows: TFP: (fy, fi,...,fm-1). Consider the time-based filters f;and f; (i, j & [0, m -
1], i <j), where the filter f; is placed before f; in the TFP. We adopt the first matching

filtering scheme where the priority of the filter decreases from fy to fm-1. Each filter f;
consists of a condition and an action. The condition consists of (n + 1) predicates, (pio,
pi1,.--pin), and f; is expressed as follows:

fi: pio, Pit,--Pin, action,

where pip to pin-1 are the constraints for the values of the key fields to be used in packet
filtering and pi» is a predicate that specifies a time constraint. The commonly used key
fields are source IP addresses (represented as SrcIP), destination IP addresses (DesIP),

source ports (SrcPort), destination ports (DesPort), and protocols (Pro).

Each predicate pi (i @ [0, m —1], k& [0, n - 1]) can be represented as an exact value,
a prefix, a range value, or a list in many firewall systems. However, in this thesis, we use
only the range value for the sake of simplicity, because a filter with predicates in other
forms can be easily converted into one or multiple filters with range values. Each predicate
pik (i @ [0, m —1], k@ [0, n - 1]) is represented as aix< ux< bix, by using a uniform range
value [aix, bix) and the value in the kth key field of the packet header, ux. The predicate pi, is
the time constraint that the packet arrival time must satisfy to match the filter. It is
represented as isActive(f;, T), which is defined below by using a time constraint; the time
constraint which consists of a time range [ts;, te;), a date d;, and a set of days of the week S;
as well as T = (¢, de, dy), where t, de, and dy are the time, date, and day of the week when a

packet arrives at the firewall.
[isActive(f;,T)]
isActive(f,T) = ((tsist<tei) B (de=di)) @ ((tsis t < te;) @ (dy @ Sy)).

At a given time and date T, we say that a filter f; is active if isActive(f, T) is TRUE. We
also say that a packet P satisfies the time constraint of a filter fif P arrives at the firewall
when the filter fis active. Now, we define a predicate isMatched(P, T, f;), which shows

whether a packet with arrival time and date T matches a filter f; as follows.
[isMatched(P, T, f1)]

isMatched(P, T, fi) = (aio < uo < bio) B...A(Qin- 1< Un-1< bin-1) B isActive(f; T).

We represent a filter in the form called internal form, which includes the range
values instead of the predicates in (n + 1) fields. Since we can use a date and days of the
week alternatively in the (n + 1)t field, i.e., the time field, there are two types of forms to

represent a filter as follows:
(1) Type-1: periodic filter
fir [aio, big), [ai1, bit),....[ain-1, bin - 1), ([tsi tei), Si), action,
(2) Type-2: non-periodic filter
fit [aio, bio), [ai1, bi1),...,[ain -1, bin - 1), ([tsi tei), di), action

The field ([tsi tei), Si) in a type-1 filter and ([tsi tei), di) in a type-2 filter are called
ActTIME, in which the subfield [tsi te;) is called TIME and the subfields S; and d; are called
DAY. ts; and te; in the subfield TIME represent the start and stop values, respectively. The
time and date are represented in a 24-h format hh:mm and DD/MM/YYYY, respectively.
The days of the week are a subset of S = {Sun, Mon,...,.Sat}. For example, S; = {Mon, Fri}.

Figure 2.1 shows an example TFP written in the internal form, including the 0t field
SrcIP, the 1st field DesIP, and the time field ActTIME. In this figure, the hyphen in the sub-
field DAY shows S, which implies every day. We also represent the predicates and the
action by fipname and fi.action, respectively, where pname is a predicate name. For

example, f3 ActTIME.TIME.start = 08:00, and f;.action = Deny in the TFP shown in Figure 2.1.

In the example given in Figure 2.1, f;is periodic and becomes active from 12:00 to
14:00 on every Friday and f2is periodic and becomes active from 10:00 to 18:00 every day,
whereas the default filter f5 is always active. f3 is non-periodic and becomes active from
8:00 to 12:00 on January 4, 2012. For example, when a packet P arrives at 08:00 on June 27,
2011, the four filters fy, f2, f4, and fsbecome active. A packet matches a filter f from the
above filters if the filter has the values ug and u; in SrcIP and DeslIP fields such that (faip<
Uo < f-big) B (f-ai1 < u1 < fbi1). The default filter f5 has the lowest priority, which denies access

to all the packets when no other filter matches the packet.

10

ActTIME

SrclP DesIP TIME DAY Action
fo [0,5) [0,5) [08:00, 12:00) Mon, Fri Accept
fi [2,4) [2,4) [12:00, 14:00) Fri Deny
f, [2,4) [2,4) [10:00, 18:00) - Accept
fs [5.6) [6.,8) [08:00,12:00) | 04/01/2012 Deny
f, [0,2) [0,2) | [10:00,14:00) - Deny
fs [0,232) | [0,2%%) [[00:00,24:00) - Deny

Figure 2.1 Internal form representation of a sample TFP
2.2 Conflicts in TFP

A conflict occurs in a TFP when a packet matches multiple time-based filters. In our
research we compute the n-dimensional topological relationships TR" of the filters to find
the conflicts in firewall policies. The n-dimension refers to the ‘n’ number of key fields in
the firewall policies. As we know that the TFP has ‘n+1’ number of key fields, we also need
to analyze the n+1t field - the time field to compute the conflicts in TFPs. Therefore we
have to find the TR to find the conflicts in TFP. Initially, we explain TR" of the filters and
then we explain how TR is computed from TR". There are five topological relationships
TR~ to identify conflicts between any pair of filters, fiand f; in FPs. In other words, TR" (f; f;)
= {disjoint, inside, contains, equal, overlap}. The relations are shown in two dimensions in
Figure 2.2, and can be generalized for higher dimensions. The filter space of a filter fis

represented by FS (f).

Disjoint: TR" (f;, f;) = disjoint when the intersection of the filters spaces is empty or FS (f})
FS (f;) =@, as shown in Figure 2.2(a).

Inside: TR" (f;, f;) = inside when f; is completely enclosed by f; or FS (f;) @ FS (f;), as shown
in Figure 2.2(b).

Contains: When f; is enclosed by filter f;, or FS (f;) @ FS (f;), then we say that there exists a
relation TR" (f;, f;) = contains between filters f; and f;, as shown in Figure 2.2(c). Contains is

the converse of the inside relation.

Equal: TR~ (f;, fj) = equal when f; and f; are equal, or FS (f;) = FS (fi), as shown in Figure
2.2(d).

11

0 |LE

fi

fi 1

a) Disjoint

Figure 2.2 Topological relationships

Overlap: When f; and f; do not satisfy any one of the above four relationships, then

we can say that TR" (f;, f;) =overlap, as shown in Figure 2.2(e).

We introduce TRx+1(f;, f;) as a topological relationship between filters f; and f; in the
(n + 1)t dimension, the time field by using the temporal relationship between the time

periods of the filters, in which isActive(f;, T) = TRUE and isActive(f;,T) = TRUE, as follows:

Disjoint if isActive(f;,T) = FALSE for all T such that isActive(f;T) = TRUE,
Equal if isActive(f;T) = TRUE for all T such that isActive(f; T) = TRUE,
and isActive(f; T) = TRUE for all T such that isActive(f;,T) = TRUE,
if TRa+1(fi f}) # equal and isActive(f;, T) = TRUE, for all T such that
isActive (f,T) = TRUE,

TRu+1(f; fi) = Inside

Contains if TRu+1(f; f;) # equal and isActive(f;, T) = TRUE for all T such
that isActive(f; T) = TRUE,
Overlap otherwise.
A filter f; has a single time period, in which isActive(f,T) = TRUE, if it is non-periodic,
i.e., it has a time and date in the time field, whereas it has infinite number of time periods if

itis periodic, i.e., it has time and days of the week in the time field.

Now, we combine the n-dimensional topological relationships between the filters
TR" and the temporal relationship between the filters TR, -1 so that the topological

relationship between two filters f; and f; in the (n + 1)-dimensional space TR"* can be

determined as follows:

b) Inside

12

c) Contains

d) Equal

e) Overlap

(" disjoint if TRn(f; fj) = disjoint or TRy + 1(f; fj) = disjoint,
equal if TRY(f; f;) = equal and TRu+1(f; fj) = equal,
TR+ 1(f, f)= < inside if TR(f; f}) = inside and TRa-1(f; f) = inside,

contains if TR*(f; f}) = contains and TRy + 1(f; f;) = contains,

_overlap otherwise.

The filter f; is either partially or completely covered by f, except in the disjoint
relation. In the contains and equal relations, f; is completely covered by f; and thus, f; causes
an error in f;. In the inside and overlap relations, the filter f; creates a warning for f; as f; is
partially covered by fi. Therefore, we can say that f; and f; do not cause any conflict when

they have the disjoint relation.

Further, the conflicts are classified into two types of errors and three types of
warnings according to TR"*I(f;, f;) and the action of the filters. We have been inspired by
[10], which classifies conflicts into four types, and in addition, we have introduced a new
type of conflict called redundancy warning. We have defined all the types of errors and

warnings as follows:

(a) Shadowing error: There exists a shadowing error between f; and f; when any of the

following conditions is true.
TR+ 1(f;, f;) = equal, and fi.action # fj.action
TR +1(f;, f;) = contains, and fi.action # fi.action

(b) Correlation warning: A filter f; generates a correlation warning in f;j when the

following condition is true.
TR +1(f;, f;) = overlap, and fi.action # f.action

(c) Generalization warning: There exists a generalization warning in f; and f; when the

following condition is true.

TR+ 1(f;, f;) = inside, and fi.action # f.action

13

(d) Redundancy error: A filter f; causes a redundancy error in fiwhen any one of the

following conditions is true.
TR +1(f;, f;) = equal, fi.action = fi.action
TR +1(f;, f;) = contains, fi.action = f.action

(e) Redundancy warning: A filter f; causes a redundancy warning in filter f; when any

one of the following conditions is true.
TRr+1(f;, f;) = inside, and fi.action = f.action
TR+ 1(f;, f;) = overlap, and f.action = f.action

By applying the above conditions for each TR»*1(f;, f;) and its action, we have found that f;
causes a generalization warning in f2, fo causes a redundancy warning in f, and fp causes a
correlation warning in f;. The filter f3 is a disjoint filter and the filters fy, f; are no error and
warning filters. Thus, our system can successfully detect and classify the conflicts into two

types of errors, three types of warnings, and no error and warning filters.

2.3 A Topology-based Spatial Analysis

As we have discussed earlier, our first approach is the topology-based spatial

analysis for the conflict detection in firewall polices.

According to Max]. Egenhofer, topological relationships are a subset of spatial
relationships [1]. Topological notations include the concepts of continuity, closure, interior,
and boundary, and are defined in terms of neighborhood relations. Topological equivalence
is a crucial criterion when comparing the relationships between objects. It does not
preserve distances and directions. Topology refers to the way in which the filters are

connected to each other.

When the number of key fields in a packet is n, the packet can be represented as a
point in n-dimensional space or packet space. A filter is represented as a subspace of a
packet space, called the filter space FS, which includes all the points of the packet that

match the filter. The geometric shape of the filters in a two-dimensional space is a rectangle,

14

and in an n-dimensional space, it is a hypercube or n-cube. The sample firewall policy in

figure 2.1 is represented spatially in Figure 2.3.

Des IP
32
2 .
s |] N
i Sg
6 [S I
So i S S, fo
U B e K T S
S3 S4 fl' f 55
218" s is
Src IP
0 2 4 6 532

Figure 2.3 Spatial decomposition of filters of TFP1 defined in Figure 2.1

We perform a spatial decomposition of the n-dimensional space until dividing the
filter boundaries reach its last dimension. The final decomposed space is called a subspace
Si. In a topology-based system, the location is discarded, and concentrates only on the
uniqueness of the subspaces. In other words, it only selects the subspaces with different
filter sets and removes the subspaces with the same filter sets. For example, even
though, there are ten subspaces, So...So resulting in the spatial decomposition from Figure
2.3, we consider only the unique subspaces for our topology-based spatial analysis.

Therefore, we consider only the four unique subspaces with different filter sets, namely

{tfo}, {fo f1, f2}, {fo f4}, {f3}} for extracting the TR» of the filters.

2.4 Temporal Analysis

To find the conflicts in TFP, it is mandatory to temporally analyze the filters in the
TFPs. We project the time constraints of the time-based filters in the time domain by
projecting the filters in the temporal space and find the relationship between the filters
TRu+1(fi, f;). Our second approach is the geometry-based temporal analysis and the
third approach is the topology-based temporal analysis. In both analyses, the filters

are analyzed in temporal space to extract the TRy.1(f;, f;) of the filter sets.

15

2.4.1 A Geometry-based Temporal Analysis

In this analysis, we define a conflict detection period CDP and a live filter as follows:

CDP: A CDP is a range of dates [Start, Stop], which specifies the filters to be analyzed in

conflict detection.

Live Filter: A filter fis called a live filter if it is active during some time duration [ty, tz]
such that CDP.Start < t1 < t; < CDP.Stop, and a set of live filters LF is taken into

consideration in conflict detection.

However, for a given conflict detection period CDP, a periodic filter can be
represented as a filter having a finite number of time periods. For example, for the given
CDP =[01/01/2012, 31/12/2012], the temporal relationships among the filters in the TFP
shown in Figure 2.1 are represented as shown in Figure 2.4. After the projection of the
filters in the predetermined CDP, the filter sets present in each interval are extracted and
analyzed to compute the TRy+1 of the filters. From this Figure, we can see that TRy +1(f2, f4) =
contains, TRn+1(f1, fz) = inside, TRn+1(fo, f1) = disjoint, and so on. In this analysis, when the
CDP is long, same number of filter sets repeats ample number of times and it takes huge
computation time and memory to process all the filter sets for conflict detection. This

drawback is driven away by the topology-based temporal analysis.

o, I | 120 de b5 | le dz | s, do b hua, |, hi2, iz | lighis hig li7, | lus, luo log o,
T 7SN S| FRE O 7 N I /N S E R 75 S N S A B EAE S AL KRS A
I —— == | = :fﬁﬁ He——> |1 &> >
ot L SR
A e N L
R IR L R I U R R R R A
S Pl : : S SN
A A T A 1t
111 S S £ A B L B 5 A
P <= & 1 A A A I
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 1l
01/01/2012 02/01/2012 ' 03/01/2012 04/01/2012 05/01/2012 06 /01/2012 07/01/2012 wxsssnnes 31/12/2012
SUN MON TUE WED THU FRI SAT

Figure 2.4 Temporal Mapping of filters through geometry-based temporal analysis.

16

2.4.2 A Topology-based Temporal Analysis

In this analysis, we consider only the topology of the time-based filters projected in
the temporal space. We propose a periodic cycle treatment which consists of a mapping
mechanism to treat the periodic filters. It maps the time-based filters only on certain
days and the period of temporal mapping is independent of the CDP. For example, if the
conflict detection period is either a month or year, mapping of the periodic filters do not

change and remains the same. The mapping depends on the input TFP and not by the CDP.

This mapping mechanism consists of three categories of mapping corresponding to
the three types of filters. We denote the filters that are active in weekdays as FW, the filters
that are active in every day as FE, and the filters that are active in date as FD. The three
categories are 1) specified days of the week, 2) unspecified days of the week, and 3) date. The
first one is for FW, the second one is for FE and the third one is for FD. In the specified days
of the week mapping, the FW and FE are mapped. It is performed to find the conflicting
filters of FW in the input TFP. In the unspecified days of the week, as the name mentioned,
the weekdays which are not specified in the input TFP are analyzed in which the FE is
mapped. If all the weekdays are specified in the input TFP, then there is no need for
mapping the unspecified days of the week. In date mapping, initially FE and FD are mapped.
During mapping the filters in FD, the weekday of each filter is referred and the filters from

FW that are active in that referred weekday is selected and mapped along with FD and FE.

For example, the filters in Fig.1 are mapped through the topology-based spatial
analysis as shown in Figure 2.5. We can infer that, a single Monday and Friday is projected
in the specified days of the week category. As the filters are active only on two weekdays in
TFP, the filters active on everyday are mapped separately in the unspecified days of the

week which corresponds to Tue, Wed, Thu, Sat and Sun.

In the date category, as the filter f3(04/01/2012) in Fig.1 falls on Wed, the date filters
are mapped with filters active on Wednesday, and filters active on everyday to find the
conflicting filters on 04/01/2012. In this mapping, there are 14 time intervals, and the

filter sets present in all the intervals are processed to find the conflicting filters sets in TFP.

17

Thereby, the unnecessary repetitions of periodic filters are removed, as the mapping

mechanism is independent of the conflict detection period.

Mon Fri Tue, Wed, Thu, Sat, Sun Wed
} M A ‘
R LY | o,
< SR ! P H N
Lo, P ; :]c : :
P I A : il
S E—— e 1121 | S |
Ef4 N fo D E
b ! P ot
< Ly N =
ToT: T, Ts 1,05 Tg Ty Ts To Tio T11 T12 Tis
Unspecified Date

Specified days of the week days of the week 04/01/2012

Figure 2.5 Temporal mapping of filters through periodic cycle treatment

2.5 A Spatiotemporal Analysis

To compute the conflicts in TFPs, it is necessary to analyze both the n-dimensional
space and the temporal Space. Therefore we need to find methods how to combine both the
analysis to find the TR"*1of the filters. By combining n-dimensional spatial analysis, P1 and
the temporal analysis P2 or P3, we can detect the conflicts in TFP by extracting the TR"* ! of
the filters. We have proposed two architectures to combine the spatial analysis and the
temporal analysis and they are called as Iterative and Simultaneous Analysis. In both the

analysis, the temporal analysis can be performed either by P2 or P3.

2.5.1 Iterative Analysis

In this architecture, initially the filters are temporally projected in the temporal
space either through geometry-based temporal analysis or topology-based temporal
analysis. The projected filters are divided in their boundaries and the filter sets present in
each interval are extracted. The filter sets in each interval, T; are further analyzed in the n-
dimensional space and their TR of the filters are computed. After finding TR"
corresponding to all the intervals, the results are compared and finally the TR"*1of the

filters are computed and the conflict classification is performed.

18

2.5.2 Simultaneous Analysis

In this architecture, the n-dimensional space and the temporal analysis are
simultaneously analyzed. As we have mentioned earlier, the temporal analysis can be
performed in both ways either through topology and geometry. We have explained the
n+1-dimensional representation of the sample policy shown in Figure 2.1 in Figure 2.6.
When the number of key fields in a packet header is ‘n’, the packet arrival time and date is
in the (n + 1)*»dimension and a packet can be viewed as a point in an (n + 1)-dimensional
packet space. As we have discussed earlier, the filter space of a time-based filter is
represented by a subspace of an (n + 1)-dimensional packet space, which includes all the
points of the packet that match the filter, including the time constraint. The filter space of
the time-based filter f; is represented as a cube in 3D and the example TFP is plotted in
Figure 2.6, where the range of values in the (n + 1)t dimension is given by 00:00

06,/01/2012 to 24:00 06/01/2012.

For a given packet P, time and date of the packet arrival T, and filter f; is
Matched(P,T,f;) does not become TRUE if is Active(f; T) is not TRUE. We identify the TR"*1(f;
fi) discussed above for each filter pair in the TFP by simultaneously analyzing the n-
dimensional packet space and the temporal space to find the conflicts and its classification

in the TFP.

Des IP

fo

SrcIP

fa

Time

Figure 2.6 Projection of filters in 3D on 06/01/2012

19

2.6 Conclusion

In this chapter, we have discussed about the formalization of the TFP and the
extraction of internal form of the TFP. We have also explained how conflict occurs in a TFP.
We have explained how the n-dimensional spatial analysis and the temporal analysis can
be combined and the two architectures of spatiotemporal analysis. We have found that by
combining the three analyses in any two architectures, it becomes possible to find the TR

of the filters and thus the conflict detection and classification can be done for any TFP.

20

Chapter 3

The System Proposal

3.1 System Overview

The main goal of the proposed system is to detect and classify the conflicts that can
occur in TFP that consists of m filters and (n+1) number of key fields. It computes the TR
of the filter pairs and classifies into errors and warnings for f;according to the topological
relationships. We have proposed an implementation method called BISCAL- a Bit-Vector
Based Spatial Calculus to extract the TR"*! of the filters and also we have proposed a time
divisor which makes the temporal analysis. The time divisor can able to make both
geometry and topology-based spatial analysis. The topology-based spatial analysis is made
through the periodic cycle treatment. The overview of the proposed system is shown in
Figure 3.1 and consists of a user interface, preprocessor, spatial divisor, time divisor,
periodic cycle treatment, BISCAL and a conflict detector and classifier. The default filter is
the least priority filter fi, - and is not considered for conflict detection as it always conflicts
with the remaining filters. The system receives the TFP and follows the procedure given

below.

Step 1: Initially, the network administrator makes a request for conflict detection for

a TFP and inputs the TFP to the user interface. It converts the TFP into a text file format.

Step 2: The preprocessor translates the text file to an internal form of the TFP as we

have explained in the chapter 2.

Step 3: In this step, the spatiotemporal analysis is performed. The TR*1 of the filters
are computed by analyzing the space and time, and the conflicts are detected and classified

from the TR+ of the filters through BISCAL.

Step 4: The classified conflicts are displayed in the user interface and the results are

given to the network administrator.

21

The step 3 is further explained in detail as follows:

Step 3.1: The key fields from 0 to n-1 are projected in n-dimensional space and the

topology-based n-dimensional spatial analysis is performed.

Step 3.2: The nth key field is analyzed and the filters are projected in the temporal

space and the temporal relationship, TRx+1 of the filters are computed. It can be achieved

either by geometry-based temporal analysis or topology-based temporal analysis.

TFPin text
file format

TFP
— User

Interface

Network
Administrator

> Preprocessor

Internal form

Conflicted,

Filter Sets : Conflict
[¢————| Detector
and
Classifier

Spatiotemporal Analysis

N-dimensional

. . Temporal Analysis
spatial analysis

A

[Topological
F}elationships
1 offilters

Decomposed
filter sets

BISCAL

Figure 3.1 System Overview of the Conflict Detection System for TFP

Step 3.3: The n-dimensional analysis and the temporal analysis are combined either

through simultaneous or iterative analysis and the decomposed filter sets are computed.

Step 3.4: The decomposed filter sets of the 0 to n+ 1 key field are given to the BISCAL,

and the TR of the filters is extracted through BISCAL.

Step 3.5: Then, the conflict detector and classifier computes the conflicting filter sets

from the TR"*! of the filters. It classifies the conflicts as we have discussed in the previous

chapter into two types of errors and three types of warnings.

22

3.2 Preprocessor

It consists of a text file reader and a translator which converts the input text file to
the internal form which is the readable format in the conflict detection system. All the
predicates in the TFP are converted into range values as we have explained in the chapter 2
and are called an internal form of TFP. All the m filters are converted into its corresponding
internal form in the preprocessor and the internal form of TFP is fed to the spatiotemporal

analysis.

3.3 N-dimensional Spatial Analysis

The spatial decomposition of n-dimensional space is performed until each filter is
divided at all its boundaries in the last dimension. As we have discussed in the previous
chapter, when the number of keys fields in a packet is n, the packet can be represented as a
point in an n-Dimensional space called the packet space and the filter is represented by a
rectangle in 2D and a hypercube in n-dimension. The filters are projected in n-dimensional
space and decomposed in their boundaries and forms subspaces. The unique subspaces in
the n-dimensional space are extracted and the filter sets present in each subspace are

extracted.

3.4 Temporal Analysis

We have proposed time divisor to implement the temporal analysis. In this analysis,
the filters are projected in temporal space and the filters are divided in their boundaries
and the filter sets present in each time interval are extracted. The mapping of the filters
can be done either by geometry-based temporal analysis or the topology-based temporal
analysis. In the geometry-based temporal analysis, the filters are projected in a
predetermined conflict detection period, CDP and the filters are mapped along it. For
example, if we want to detect conflicts for the year 2012, the CDP would be {[01/01/2012,
31/12/2012]}. In this period, the filters are projected and divided into intervals and the

filter sets present in all the intervals are extracted.

23

In the topology-based temporal analysis, the mapping of the filters in the time

domain is independent of the CDP. The mapping period is determined by a mapping

mechanism which has a periodic cycle treatment. It maps the filters only in a specified

period consisting of few days. The filters are projected only in that certain days and the

filters are divided in their boundaries and the filter sets present in all the intervals are

computed and the decomposed filter sets are extracted by the time divisor.

3.5 Spatiotemporal Analysis

It combines the n-dimensional spatial analysis and the temporal analysis. We have

proposed two architectures to combine the n-dimensional space and the temporal space.

They are iterative and simultaneous analysis and their system overview is shown in Figure

3.2 (a) and Figure 3.2 (b) respectively.

Internal
form of

the TFP
—_—

Internal
form of
TFP,CDP

Time
Divisor

Decomposed TR"
Filter sets - of the filters
Spatial inT Computation of InT,
i 0 TR"through
Filter sets Divisor BISCAL - S -
TR")
he fil
De:ﬁ)tmposted fthe filters of the filters
Ii:;_se s Computation of InT, Conflict OUTPUT
i 1 n onflic
Sp§t|al TR"through Computation 1. Errors
Divisor BISCAL el detector [> S
of TR and 2. Warnings
through . 3. Non Conflicts
Classifier
BISCAL
TR"
. Dec.omposed ofthe filters
Filter sets Filter sets c p— InT
inT . inT.. omputation P
N lpt S;.)a.tlal = of TR"through
Divisor BISCAL
(a) Iterative Analysis
Decomposed
Time Filter sets TR*1
Divisor _ of the _ OUTPUT
Computation filters Conflict
of TR™! 5| Detector 1. Errors
o through and 2. Warnings
Spatia BISCAL Classifier 3. Non Conflicts
Divisors

(b) Simultaneous Analysis

Figure 3.2 Two architectures of spatiotemporal analysis

24

3.5.1 Iterative Analysis

The system overview of this analysis is shown in Figure 3.2(a). Initially, the filters
are decomposed in the time domain. The filters are projected in the temporal space and
decomposed into boundaries and forms time intervals, Ti. For example, if there is ‘p’
number of intervals in the temporal space, then the filter set present in each interval are
extracted. The filters sets present in each interval are further analyzed in n-dimensional
space to find the TR» of the filters through BISCAL. For each interval, the TR» is computed
and the results are fed to the next step. All the interval results are combined and the TR*!
of the filters are computed through BISCAL. The conflicting filter sets of the TFP are
computed from the TR of the filters and conflicts are further classified in the conflict

detector and the classifier.

3.5.2 Simultaneous Analysis

The space and time are simultaneously analyzed in the n+1-dimensioanl space and
the decomposed filter sets in the n+1-dimensional space are given to BISCAL as shown in
Figure 3.2(b). It computes the TR"*I of the filters and the results are fed to the conflict
detector. In the conflict detector and classifier, the conflicts are computed from the TR of

the filters and classified as shown in the previous chapter.

3.6 BISCAL

We have proposed a Bit-vector based Spatial Calculus named BISCAL and
constructed a new conflict detection framework through BISCAL which analyzes the TR*!
of the filters. It is a systematic and simple implementation method to find the TR"*! of the
filters. The main advantage of BISCAL is that the operations on the filter sets become easier.
It consists of seven primitive operators and three Characterization Vectors, CVs. It converts
the filter sets into bit-vector format and computes the TR"*I of the filters through the seven
primitive operations. The characterization vectors are used to preserve the intermediate

results.

25

A TFP which consists of m filters is represented by a bit-vector [be...bm-1], where a bit
b; in the bit-vector represents the filter f. If a filter is selected from the TFP, then the value
of the corresponding bit is 1, and if not, then the value of the bit is 0. For example, let us
consider a TFP consist of five filters fy, f3, f2, f3 and f4. If filters (f3, f3, f4) are selected from TFP,
then the bit-vector is [01011]. In this method, we make the bit-vector for the decomposed
filter sets for all the 0 to n key fields and then the TR"*! of the filters are computed. Because

this thesis focuses on bit-vectors, hereinafter we will refer to a bit-vector as simply vector.

3.7 Conclusion

We have explained the overall system overview and each component is further
explained in detail in the upcoming chapters. Our proposed system computes the TR"*lof
the filters through BISCAL by simple logical operations and the implementation of BISCAL
is explained in detail. By implementing our system proposal, the network administrator
could take decisions in removing the conflicts in TFPs and can easily manage the TFPs in

industrial environments.

26

Chapter 4

A Topology-Based Spatial Analysis through
BISCAL

We have proposed a topology-based spatial analysis for the firewall policies to

detect conflicts in the firewall policies. We introduce a bit-vector based spatial calculus
named BISCAL and constructed a new conflict detection framework through BISCAL which
analyzes the TRn*! of the filters to detect and classify conflicts. In this chapter, we
concentrate only on the n-dimensional spatial analysis and therefore we discuss the
extraction of TR" of the filters through BISCAL. We discuss the design and implementation
of the topology-based conflict detection system that shows how effectively the BISCAL can
be adopted for conflict detection. In this chapter, we discuss the extraction of the TR» of the
filters and therefore we ignore the time-field in the implementation of the sample TFP

shown in Figure 2.1 and therefore the input of the conflict detection system becomes an FP.

4.1 BISCAL

BISCAL operates on the filter sets to extract the topological relationship of the
filters. It treats the filter sets in a bit-vector format and uses seven primitive operators to
find the topological relationship of the filters and three special vectors called
characterization vectors to preserve the intermediate results. The main advantage of
BISCAL is that it finds the disjoint filters in the intermediate stage of computation and
removes those filters from the conflict computation. This is because a filter that is disjoint

in any dimension is always disjoint in any dimension.

4.1.1 Data Structure: Bit-Vector

An FP which consists of m filters is represented by a bit-vector [bo...bm-1], where a bit
b in the bit-vector represents the filter f;. If a filter is selected from the FP, then the value of

the corresponding bit is 1, and if not, then the value of the bit is 0. For example, let FPO

27

consist of {fy, f1, f2, f3 f4}. If filters (f1, f3 f4) are selected from FPO, then the bit-vector is
[01011]. Because this paper focuses on bit-vectors, hereinafter we will refer to a bit-vector
as simply vector. The main reason for choosing the bit-vector representation is that it
makes easier to apply logical operations to find the topological relationships between the
filters. We introduce a function V2S that transforms the 1s in the vector to its

corresponding filters. For example, V28 ([11100]) = {fs, f1, f2}-

4.1.2 Primitive Operators

There are seven primitive operators in BISCAL that compute the topological
relationships of the filters. They are explained with example vectors vl and v2, where vl=
[1010] and v2 = [1011].

1) AND Operator (AND): This operator computes a bit-wise AND for a set of vectors. For
example, AND ({v1,v2}) =AND ({[1010], [1011]}) = [1010].

2) Cartesian-AND Operator (C-AND): It computes the Cartesian product of two sets of
vectors A and B and then computes the logical AND for the resulting vectors. C-AND (A, B)
={AND ((a, b)), | (a,b) @ A x B}.

3) OR Operator (OR): This operator computes a bit-wise OR for a set of vectors. For
example, OR (v1,v2) =0OR ({[1010], [1011]}) =[1011].

4) Counting one Operator (C1): This operator counts the number of 1s in an input vector.
For example, C1 (v1) = C1 ([1010]) = 2.

5) NOT Operator (NOT): This operator returns the complement of an input vector. For
example, NOT (v1) = NOT ([1010]) = [0101].

6) Pair-filters Operator (PF): This operator returns a set from two filter sets that contain
the possible combinations of the two filters in each of the input vectors. For example, PF
(110101, [1011]) = {{fo, f2}, {fo. 2}, {fo, S5}, {2 f3}}-

7) Permutation Operator (PO): This operator returns a set from two filter sets in which

each filter is a filter selected from each of two input filter sets. For example, PO ({fo}, {f1, f2})

= o, f}, {fo, f23}-

28

4.1.3 Characterization Vectors

The characterization vectors are the vectors that characterize the topological
relationship of the filters. There are two types of characterization vectors: 1) vectors
characterizing the topological relationship of the filters in the packet space, called CV and,
2) vectors characterizing the topological relationship of the filters projected on each axis of

the packet space, called PCV.

A. Characterization vectors for filters in the packet space

CVs characterize the topological relationship of the filters in n-dimensional packet

space. They consist of the following three kinds of vectors.

a) Co-existence Vectors Set (OVS): OV is a vector in which a bit of the vector is 1 if the
corresponding filter co-exists with another filter in some subspace of the packet space. OVS
is a set of all OVs. For example, in figure 2.3, fy, f1 and f; co-exist in Sy, therefore the vector

representation is, OV=[11100].

b) Fully Covered Vector (FV): FV is vector in which the value of b; is 1, if f; is fully
covered in n-dimensional space. For example, in figure 2.3, f, f> and fz are fully covered in

two-dimension and therefore, FV=[01101].

c) Disjoint Vector (DV): If a filter f; is disjoint from all other filters in n-dimensional
space, then the value of bit b; is set to 1 in DV. For example, in figure 2.3, f3 is a disjoint filter
and therefore DV=[00010].

B. Characterization vectors for projections of filters on each axis of
the packet space

PCVs are computed by using the projection of the filters on each axis of the packet
space. The Xi(fo,..fm-1) is an ordered set of the it" predicates of the filters in FP and the
projection of the filters on the it" axis of the packet space corresponding to the it" key, X;. All
the projected filters except for the default filter are decomposed in the boundaries
specified by their ith predicate. As a result of the decomposition, the axis is divided into

multiple intervals. Figure 4.1 shows an example of the spatial division for the projection of

29

the filters in FP on the 0t axis corresponding to the 0th key Xy or SrcIP and shows that six

intervals, Io...Is, are made by the decomposition of Xo(fo...f5).

Each interval has a set of filters, called sub-domain filter set, in which it predicate of
the filter is always true within the interval. The sub-domain filter sets for all the intervals
on the ith axis except the empty sets form a set, named SFS;. Each sub-domain filter set is
transformed into a vector, and as a result, the SFS; is transformed into a set of vectors, SVSi.
If a filter f; exists in a sub-domain filter set, the corresponding bit of the vector b; is set to 1.
For example, SFSo = {{fo} {fo f1, f2}, {fo f4}, {f3}} and SVSoe = {[10000], [11100], [10001],
[00010]} for the spatial division for the projection of the filters in sample FP mentioned in

the above.

PCVi characterizes the topological relationship of the projected filters on the it" axis

and consists of the following three kinds of vectors.

a) POVS;: POV; is a vector in which a bit of the vector is 1 if the corresponding projected
filter co-exists with another projected filter in some interval on the ith axis of the packet

space. POVS; is a set of all POVS;s. For example, in figure 4.1, POVSo = {[11100], [10001]}.

b) PFVi: PFV; is vector in which the value of bit b; is 1 if the projection of f; is fully covered
on ith axis of the packet space. For example, in figure 4.1, the projections of {f3, f2} and {f}

are fully covered and therefore, PFVo=[01101].

c) PDVi: If a filter f; is disjoint from all other filters projected on it" axis of the packet space,
then the value of b;is set to 1 in PDVi. For example, in figure 4.1, f3 is disjoint and therefore

PDV)= [00010].

30

o L L s lo SRR P I3

: o : A .
T N AT B
| < | < i
. I A i ! . bof, ! P i
: < Pk ' A TN
S0 R T s N U/ B B o
{fo. fa} {fo, f, 123 {fo} {fs} {fo. fu} {fo, f1, 2} {fo} {fs}
SrclP DeslIP

Figure 4.1 Spatial division of filters

4.2 Implementation of a Topology-Based Spatial
Analysis through BISCAL

4.2.1 System Overview

Our proposed system detects and classifies the conflicts in the given firewall policy,
FP which consists of m filters and n key fields. The default filter is a least priority filter fm -1
and is not considered for conflict detection as it always conflicts with the remaining filters.
Our system computes the topological relation of each filter pair (f; fj), where f; is the
conflicting filter and f; is the conflict causing filter. It then decides the errors and warnings
for f;according to the topological relation based on the conflict classification described in

chapter 2.

The overview of the proposed system is shown in figure 4.2 and consists of a

vertical decomposer, spatial divisors, PCV extractors, a CV extractor, and a TR extractor.
The system receives the FP, and follows the procedure given below.

STEP 1: The vertical decomposer divides the FP into n sequences. Each sequence includes
the ith predicate of the filters in FP and represents projections of the filters in FP on the ith
axis of the packet space, Xi(fo,...,fm-1), where i is from 0 to n-1.

STEP 2: The spatial divisor makes SFS; by the spatial division of the projection X; (fs,...,fm-1)

31

on the ith axis in the way as described in the previous section for each projection where i is

from 0 to n-1.

STEP 3: The PCV; extractor transforms SFS; into SVS; in the way as described in the

previous section and calculates PCV; by applying the BISCAL to the vectors in the SVS;

where iis from 0 to n-1.

STEP 4: The CV extractor calculate the CVs by combining the results of PCVs with the

BISCAL.

STEP 5: The TR extractor calculates the TR» among all combinations of two filters in the FP

using BISCAL and classifies them into two types of errors, three types of warnings and

others (neither errors nor warnings), as explained in the chapter 2.2.

Output

1. Shadowingerror
2. Redundancy error
3 3. Generalizationwarning

4. Correlation warning

Spatial | SFS, | PCV,
Xolfy...,)] DWViSOY Extractor
Input
FP™ | Vertical | Spatial |75} pCv, o OV TR
Decomposer Divisor Extractor Extractorl | Extractor
Xn-l(fo...fm-l) Spat|a| SFSni PCVn_l PCVn_l
Divisor | |Extractor

5. Redundancy warning
6. Neither error norwarningfilters

Figure 4.2 System overview of topology-based conflict detection system through BISCAL

The computation of the last three steps is taken over by BISCAL. It extracts the

topological relationships for all the combinations of two filters from the CVs, and classifies

them into five types of conflicts and others (neither error nor warning filters). The last

three steps are explained in detail in the following subsections.

4.2.2 PCV Extractor

The PCV extractors calculate POVSs, PDVs and PFVs by the following steps.

32

STEP 3-1: POVS; is computed as follows:

Initialize POVSi= {@};

For all v @ SVS;, if C1 (v) > 1, POVS;=POVS; & v;

For example, POVSo = {[11100], [10001]} for the SVSy calculated above.

STEP 3-2: PDV; is calculated as follows:

PDV; = NOT (OR (POVSy));

For example, when POVSy is the value calculated above, PDVo= NOT ([11101]) = [00010].

STEP 3-3: In the calculation of PFV;, the non-fully covered filters on the ith axis of the
packet space are computed initially and lastly the fully covered filters are computed. The
non-fully covered filters are identified in NF; by finding a vector in SVS; with a single 1,
because the non-fully covered filters are somehow alone in any subspace. For example, in
figure 4.1, fo is a non-fully covered filter, because fy is alone in many subspaces. In this way,
the corresponding bits of non-fully covered filters are made 0, and the fully covered vector

PFViis derived.

Initialize NF; = {@};

Forall v@ SVS, if C1 (v) =1, NFi= NF @ v;
PFV;=NOT (OR (NF));

For example, in Xo, SVSo = {[10000], [11100], [10001], [00010]}, as mentioned above, NFo =
{[10000], [00010]}, and PFVo= NOT ([10010]) = [01101].

4.2.3 CV Extractor

CV Extractor calculates the CVs using the PCV;(i=0...n-1), calculated in the previous
subsection. Before the computation of the CVs, we remove the disjoint filters from
POVSi(i=0...n-1) and PFV;(i=0...n-1) to discard the disjoint filters from conflict detection.

Using this technique, we improve our system efficiency, as unnecessary computations are

33

removed by discarding possibilities to make a filter pair with disjoint filters during the

computation.

We introduce a vector DV', in which the value of a bit of the vector is 1 if the
corresponding filter is disjoint in any one dimension. It is similar to DV because a bit in DV’
is 1 if the corresponding filter is disjoint on the n-dimensional space, but is different from
DV in that a bit in DV' might be 0 if the corresponding filter is disjoint on the n-dimensional
space. The POVS; and PFV; calculated in the previous subsection are replaced with OVS;y'
and FVi', respectively. Here, a bit becomes ‘0’ if the corresponding filter is shown to be a

disjoint filter in DV', in order to improve the efficiency of the computation.

STEP 4-1: DV', OVS;' and FV;' are calculated as follows. In this step, the disjoint filters are
removed from OVS;' and FVi' to discard the possibility of a disjoint filter in the upcoming

conflict detection steps.
DV'= OR (PDVy...PDV,..PDV,.1);
For eachi=0ton-1, OVS;'= C-AND (NOT (DV"), POVS;), and FV'; = AND (NOT (DV"), PFVj);

STEP 4-2: The OVS is calculated according to the following sub-steps, which calculate the
intermediate results, IR, and then finally, the OVS.

0oVS = {@};

IR1= C-AND (OVS,', OVS1");

Fori=2ton-1, repeat IR; = C-AND (OVS;, IRi.1);
For all v @ IRs.1, if C1 (v) =1, 0VS = 0VS @ v;

STEP 4-3: A filter is fully covered in an n dimension only when it is fully covered in all one

dimensions, and therefore FV is computed as follows:
NF, = {ﬂ},

For all v B IRy.1, if C1 (v) =1, NFo= NF B v;

34

FV=AND (FVo'..FVx.1', (NOT (OR (NFu))));
STEP 4-4: DV is calculated in the same way as the vectors of one-dimension.
DV=NOT (OR (0VS));

For example, the CVs for SAMPLE TFP, shown in Table 2.1, are computed for two dimension
(SrcIP, DesIP), as follows: OVS = {[11100], [10001]}, FV=[01101] and DV =[00010].

4.2.4 TR Extractor

The TR Extractor calculates the sets of filter pairs, CCTP and CCTPtopology, SO that we
can obtain the topological relationships for all the filter pairs in the firewall policy from the
above sets, and apply the rules for conflict classification defined in Chapter 2.2. Filter pairs
that have the conflict causing topology are defined in CCTP as follows:

CCTP ={(f f)) | TR (fi, f;) @ {inside, contains, equal, overlap}}.

The two filter pairs that have the same topological relationship are defined in CCTPtopology
in more detail, as follows:

CCTPropology = {(fi ;) | TR (fi, f}) = topology}, where 'topology' is one of inside, contains,
equal, or overlap.

For example: CCTPoveriap = {(fi, f;) | TR (f;, f;) = overlap}.
Step 5-1: Computation of Disjoint filters

The disjoint filters are computed in the DF as follows:

DF=V2S (DV);

For example, for FP1, DF =V2S ([00010]) = {f3}, which shows that f3 is a disjoint filter in
the sample TFP.

Step 5-2: Computation of CCTP
CCTP = {@};
For each v @ OVS, CCTP = CCTP & PF (v);

For example, the CCTP of the sample FP is as follows: OVS={[11100], [10001]}, CCTP = {(fo,
f1, (fo. f2), (fu, f2), (fo, fa)}-

35

STEP 5-3: Classification of topology between filter pairs
Initially, we calculate the fully covered filter pairs, and then lastly, each CCTPopology-
STEP 5-3-1: Computation of fully covered filter pairs

We introduce two sets, S and SP, where S is a set of all fully covered filters in FP, and
SP is a set of fully covered filter pairs. If f; is a fully covered filter in S, and f; (i <j) is some
filter in FP, a filter pair (f; f;) is in either one of CCTPinside, CCTPcontains, Or CCTPequal. The

computational steps for S and SP are as follows:

Initialize SP = {@};
S = V2S (FV);

for each fx of S, do {
FFr=[11..1];
for each v @ OVS,
if brof vis 1, FFx = AND (FFy, v);
Set bk to 0 in FFy;
SP =SP @ PO ({fx}, V2S (FFy)); }
For example, the SP for the sample FP is calculated as follows:
S= V2S ([01101]) = {f1, f2 f«} and OVS= {[11100], [10001]}. Then, FF; = AND
{[11111],[11100]} =[11100].

Similarly, FF, and FF4 are calculated as follows: FF1 =AND ([11111], [111000]) =
[11100], FF3 =AND ([11111],[10010]) =[10010].

Set fi bit to ‘0’ in FFy, and therefore, FFo= [01100], FF1=[10100] and FF3=[10000].
SP=PO ({f1}, {fo, f2}) B PO ({2}, {fo. f1}) @ PO ({fa}, {fo}) = {{fo, f1. f2}, {f4 fo}}.
STEP5-3-2: Computation of CCTPqopology

All the combinations of filter pairs are classified using the values calculated above,

according to their topological relationships.

CCTPequal = {(ﬁ;ﬁ) |ﬁ'ﬁ S, (ﬁ!ﬁ) SP}'

CCTPinsice = {(fi,) | iR S, /8, (fi, f;) B SP};

36

CCTPcontains = {(ﬁ;ﬁ)lﬁ S;ﬁ S, (ﬁ;ﬁ) SP};
The CCTPoverap is calculated as follows:
CCTpover]ap = CCTPSP;

For example, the SP for the sample FP calculated in the STEP 5-3-1 leads us to the
following two sets: CCTPequal = {(f2, fz)} and CCTPinside = {(fo, f1), (fo, f2), (fo, f4)}-

Step 5-4: Conflict Classification

By using the sets of filter pairs calculated in the previous steps, we can determine
the topological relationships TR (f; fj) between any pair of filters f; and f;, and according to
the rules described in chapter 2.2, any filter f; is classified. For example, the filters in the
sample TFP in Figure 2.1 are classified as follows: f; has a shadowing error caused by fy, f2
has a redundancy error caused by fo, f has a shadowing error caused by fy and fy and f3 are

no error and warning filters.

4.3 Evaluation

We have evaluated the n-dimensional spatial analysis for conflict detection for FPs
using a mathematical analysis with a special case of FP. We have also developed a
prototype of our system in JAVA programming language and then performed an
experimental analysis to evaluate the efficiency of the conflict detection for FPs through a

topology-based n-dimensional spatial analysis.

4.3.1 Mathematical Analysis

As we have discussed earlier, the efficiency of the conflict detection system is
decided by the number of subspaces required to find the relationship between the filters.
The basic difference in geometry and topology is that topology considers only the unique
subspaces, whereas geometry considers all the subspaces. Therefore, the computation time
and memory requirements for a topology-based approach are less than that of a geometry-
based approach. But in general, it is difficult to mathematically analyze the difference
between the computation time and memory requirements in geometry and topology-based

approaches. Therefore, we selected an example policy, FPA, which includes a lot of conflicts,

37

with each and every filter is symmetrical to each other, and every filter conflicting with all
the other filters. The two-dimensional spatial representation of FPA with 3 filters is shown

in figure 4.3(a) and m+1 filter is shown in figure 4.3(b).

In figure 4.3(a), for sake of simplicity, we have represented each subspace with a
numerical digit. The subspaces with the same filter sets (non-unique subspaces) are
represented by a single numerical digit. For example, the number zero refers the subspace
of filter fy, and the number four represents the subspace with filters {f;, fz}. Firstly, we

compare the difference between the number of subspaces in figure 4.3 (a).

X, A , \ \ | | fo
T | T e fi
bemmdem e e ——— S B
1 2 L . i o
3 4 5 4 3f2 :.___i ___________ - R i__f_njt]‘:
. 1 2 1 -
o 0 o
Xo' Xo'
(a) 3filters (b) m+1 filters

Figure 4.3 FPA in 2-dimension

The computation of conflicts through topological approach requires only six
subspaces, whereas the geometrical approach requires all thirteen subspaces for conflict
detection. Likewise, if new filters are added by preserving the symmetrical structure, as
shown in figure 4.3 (b), we have derived the difference in subspaces required for the

topology and geometry approaches for figure 4.3.

Table 4.1 Results of Mathematical analysis

Number of Geometry Topology
filters
2 5 3
5 41 15
100 19801 5050
1000 1998001 500500

38

When an m+1t filter is added in FPA, the number of new subspaces increases by
four times the value of m in total and there exists m+1 number of unique subspaces
following the sum of natural number series. Therefore in topological approach, when the
m+1t filter is added, the number of subspaces considered for conflict detection is m+1.
However, in the geometrical approach, when the m+1t filter is added, the total number of
subspaces considered is four times the value of m. We can derive the following equations
for the number of subspaces NSifor both approaches.

Topology:

NSi(m) = (m?+m)/2 and
NSi(m +1) = NSi(m) + (m +1).

Geometry:

NSi(m) = m? + (m - 1)2 and
NSi(m + 1) = NSi(m) + 4(m).

We have substituted different values of m, and tabulated the number of subspaces in
Table 4.1. Our mathematical analysis shows that the number of subspaces for the topology
approach is nearly one-fourth of the geometrical approach in two-dimensional space. The
difference between the topology approach and the geometry approach is much larger when
the dimension increases. In practical firewall policies, the efficiency of the topology
approach is extremely high, because BISCAL removes the disjoint filters in the intermediate

computation itself. We verified it using the experimental analysis in the next section.

4.3.2 Experimental Analysis

We have evaluated our system by performing a comparative analysis between the
proposed system and conventional geometry-based approaches [4, 9]. Our experiments
were performed on Intel (R) Core (TM) i5 CPU 750 @ 2.67 GHz 2.67 GHz with 4.00GM RAM
running on Windows 7 professional. We conducted experiments with two policies, FPA and
FPB. FPA is the policy discussed in the previous subsection, and FPB is a synthetic firewall
policy, which is generated by adding a large number of filters to a small practical firewall.

We have developed FPB based on the practical firewall policy being used in our lab. It

39

consists of 99 packet filters of 5 dimensions, with 32-bit SrcIP, DesIP addresses, 16-bit
SrcPort, DesPort numbers, and an 8-bit protocol. The synthetic firewall policy (FPB) ranges
in size from 100 to 1000. In this paper, like other conflict detection techniques [4]-[26], we
did not consider the stateful filters for experimental evaluation. The treatment of conflict
detection in stateful firewalls is a topic for future work. We conducted three experiments

with both FPA and FPB.
Exp.1: Comparative performance analysis of topology and geometry [4, 9] using FPA.

Exp.2: Evaluation of the system behavior in different scenarios by varying the ratio of

wildcards in FPB.

Exp.3: Evaluation of system behavior in practical firewall policies by varying the number

of filters in FPB.

In the three experiments, we have measured parameters such as memory and
computation time. Memory is compared by examining the number of subspaces (NS)
required for conflict computation. Computation time is the measure of the program
execution time until conflict classification. We conducted three experiments, as shown
above, and plotted graphs showing the number of filters on the x-axis, and the computation
time expressed in seconds and memory expressed in KB and MB on the y-axis. The results
of Exp.1 are shown in Figure 4.4. It is clear from the graph that our proposed topology-

based system performs better than the geometrical approach.

~—&—TOPOLOGY —#— GEOMETRY
180
160 g
140 /
m 120 /
< 100
3 so A
£ 60 /-,/
g 20 P S
o .
5 10 15 20 25 30
Number of filters

Figure 4.4 Comparison of topology and geometry

40

Exp.2 is performed by varying the ratio of the wildcards of the input filters, as
shown in Figure 4.5 (a) and Figure 4.5 (b). This analysis is performed to examine how the
system behaves with different kinds of polices used in various environments. We have
synthesized various FPs by varying the distribution of wildcards in FPB. We found that the
computation time is less when the ratio of wildcards is in two extremes. When the ratio of
wildcards is high, most of the filters occupy the n-dimensional space. As a result, there are
only a few unique subspaces for conflict detection, as most of the subspaces have the same
set of filters. When the ratio of wildcards is too low, most of the filters become disjoint to
the others, and therefore the number of conflicting subspaces is less. Therefore the

memory and computation time is less for lower and higher percentages of wildcards.

—0-10% —B-30% —+-50% —T0% ——=00% | 100 - 0% “W30% ~450% —70% ~+~90%

60

50 10

140
30

p 4
20
0 AMM 0.001

N
Memory (MB)

\

Computation time (s)

100 200 300 400 SO0 600 700 200 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of filters Number of filters
(a) Computation Time (b) Memory

Figure 4.5 Performance Analysis of changing the ration of wildcard in FPB

Exp.3 is performed using FPB to examine the system behavior with practical firewall
policies. When the number of filters is increased, the system requires a reasonable
computation time and memory when detecting conflicts, as shown in Figure 4.6 (a) and
Figure 4.6 (b). For example, the system takes only 100 seconds to detect and classify the

conflicts for m = 500.

41

1000

—
o
o

e

\

Z 100)
E // g
= >
o 1
é 10 s /
8 9]
3 2
01
- /)
8 1
100 200 300 400 500 600 700 001
01 100 200 300 400 500 600 700
' Number of filters Number of filters
(a) Computation time (b) Memory

Figure 4.6 Performance Analysis of system using FPB
4.4 Conclusion

In this chapter, we have completely discussed about the extraction of conflicts for a
FP. By the above explanation, it is very clear that BISCAL is a simple and systematic way of
extracting the conflicts through simple logical operations and characterization vectors. The
main advantage of the topology-based approach is only the unique subspaces are
considered for conflict detection and therefore the computation time and memory required
is reduced. In addition, implementation through BISCAL preserves the intermediate results
in the characterization vectors and also the disjoint filters are removed in the intermediate
stage itself and improve the efficiency of the conflict detection system. We have also proved
in the mathematical analysis with a special case that topology-based approach performs

better than geometry.

42

Chapter 5

Temporal Analysis

Conflict detection in TFPs requires the analysis of time-domain for finding TR»*1 of
the filters. We know that by ignoring the time-field, false positive results occur saying a
non-conflict as a conflict and thereby the workload of the network administrator becomes
too hectic. In our research we have extensively studied the possibilities of analyzing the
time-field in temporal space through geometry and topology. We have discussed the
algorithms and steps to compute the temporal analysis through two methods, geometry-
based and topology-based. The temporal analysis is been implemented by time-divisor
which can perform the temporal analysis by either of the two analysis. As we have
discussed earlier, we represent the filters that are active in weekdays as FW, filters that are

active in every day as FE and the filters that are active in dates as FD.

5.1 A Geometry-based Temporal Analysis

In this analysis, the filters are projected in temporal space for a predetermined CDP
and the decomposed filter sets, SFS, in the time field are computed. The computation of

CDP and live filter is discussed in the Chapter 2.4.1.

For a given CDP, the time divisor discovers the decomposed filter sets of the filters.
The input is the Xu{fo...fm-1} which represents the time field of the TFP that obtains the
values in the ActTIME fields of the filters and outputs the decomposed filter sets, SFSn

according to the following steps.

STEP1: It adds all the periodic filters in the TFP to a set of live filters LF and selects a non-
periodic filter fifrom the TFP that satisfies the following predicate and adds it to LF:
CDP.Start < fi. ActTIME.DAY < CDP.Stop.

STEP2: It maps a filter in LF onto the temporal axis, i.e., the (n + 1)thaxis, according to the

values in the time field of the filter, i.e., start and stop fi.ActTIME. For example, if a filter f; is

43

active on Wednesday from 08:00 to 12:00, it is mapped from 08:00 to 12:00 on every
Wednesday in the CDP. If a filter is active on every day, the boundary values corresponding

to all the days in the CDP are identified.

STEP3: It decomposes each filter in its boundaries, which are mapped onto the temporal
axis by in STEP2, so that time intervals such as Iy, I3, etc.,are created similar to those in the

spatial divisor discussed in the previous chapter.

STEP4: [t obtains a set of filters from each interval created in STEP3 and makes SFS;, using

the filter set.
STEP2 is described in detail as follows.

STEP2.1: It classifies the filters in LF into two groups: FW and FD, where FW is a set of

periodic filters and FD is a set of non-periodic filters.
STEP2.2: It makes a set of dates: TDS, which are within the CDP.

STEP2.3: It makes an array of a set of boundary values, L, by executing the FilterMapper
algorithm shown in below, where LJ[i] is the set of boundary values [X, Y) of the filter f;,
where X.date and X.time are the date and time for the start edge of a time interval and

Y.date and Y.time are the date and time for the stop edge of the time interval.

In the FilterMapper, the function GetDay(date) translates the given date to a day of the

week.
[FilterMapper]

for each date in TDS do {
for each f;in LF do{

if (((ff @ FW) and (GetDay(date) @ fi.ActTIME.DAY)) or ((fi @ FD) and date =
fi.ActTIME.DAY))) then {

X.date = date; X.time = f. ActTIME.TIME.start;

Y.date = date; Y.time = f. ActTIME.TIME.stop;

append (X, Y) to L[i];}}}

44

For example, the computational steps for the TFP shown in Figure 2.1 where CDP =
[01/01/2012,31/12/2012] are as follows: step 1 adds all the periodic filters fy, fi, f2, f2 into
LF and selects the non-periodic filter f3 and adds it into the LF, since 01/01/2012 <
04/01/2012 <31/12/2012. Step 2 computes the boundary values of the filters in the CDP.
In this step, the FilterMapper algorithm finds that the non-periodic filter f; has a single
boundary value: ([04/01/2012, 08:00], [04/01/2012, 12:00]) and that the filter fjhas
multiple boundary values: (([01/01/2012, 08:00], [01/01/2012, 12:00]),...,([31/12/2012,
08:00], [31/12/2012, 12:00])). After determining the boundary values, the filters are
mapped in the temporal axis accordingly. In step 3, the mapped filters are decomposed and
intervals such as Iy, I, etc., are formed as shown in Figure 2.4. Due to space limitations, we
have shown the filters in the temporal space only from 01/01/2012 to 07/01/2012 in

Figure 2.4. In the final step, the filter sets in each interval are added to SFSz and therefore,

SES2={{fa, fa}, {f2}, {fo}, {fo, f2, fa}--.}-

In this analysis, when the CDP is long, the periodic filters repeat numerous times
and therefore the number of decomposed filter sets would be huge. For example, as we
have seen temporal mapping in Figure 2.4, the filters in FE repeats nearly 365 times in a
year and the filters in FW repeats nearly 52 times in the mapping. The number of filters
sets in all the intervals will be huge, and takes huge computation time and memory to find
the conflicts. To solve this problem, we have proposed a topology-based temporal analysis

to discard the unnecessary repetitions of the periodic filters.

5.2 A Topology-based Temporal Analysis

In this topology-based temporal analysis, rather than analyzing the geometrical
location of the time-based filters in the CDP, we only focus on the topology of the filters. To
detect the conflicts, it is necessary to compute the temporal relationship of the filters.
Therefore, the filters are mapped only in certain days, and the decomposed filter sets, SFS,
are computed. By this approach, the unnecessary repetitions of the periodic filters can be
eliminated. Therefore we have proposed a mapping mechanism in for treating the periodic

cycle filters.

45

In this analysis, the time divisor consists of seven primitive operations to achieve
the mapping mechanism and they are Cycle Separator, Divide, Select-1, Select-2, Sum,
Decompose and Remove. We briefly discuss the necessity of each operation below. In order
to map filters in their corresponding days, initially filters are separated using cycle
separator. As we map the filters corresponding to day-basis, filters longer than a day is
divided using divide operation. Select-1 operation selects the filters that are active in
weekdays, FW and Select-2 operation selects the filters that are active in everyday, FE and
the filters that are active in date, FD. The different types of filters, FE, FW and FD are
mapped together using sum operation. Filters are decomposed in filter boundaries and
SFSy are extracted using decompose operation. The unnecessary filter sets are removed
using remove operation. We have shown the mapping of topology-based temporal analysis

in figure 2.5 and the flow of operations of the time divisor is shown in Figure 5.1.

5.2.1 Primitive Time Handling Operations

We explain the primitive operations with two types of filter sets where Fiis set of

filters and T; is set of filter sets and the operations are explained for the sample TFP given

in the Figure 2.1

1. Cycle Separator: It separates the input filter based on the type of filter. It separates
the filters into day, day of the week and date filters. Cycle Separator (F) = (FD, FW,

FA). For example, Cycle Separator ({fo, f1, f2, f3, f4}) = {{f2, fa}.{fo, f1}, {f3}}-

2. Divide: If any of the given input set of filters is longer than a day, it is divided into
many single-day filters. Input: F; Output: F; where F; holds the input filter sets and F;
holds the output filter sets. For example, divide (fo, f1) = (fo’, fo”, f1). It divides fp into
fo’(active on Mon) and fp” (active on Fri). The other filters are returned as like the

input.

3. Select-1: It selects the filters based upon the specific day of the week. Select-1(F;) =
(Fsun,....Fsat), where Fsun is the set of filters that are active in any Sunday to Fsat is the

filters that are active on Saturday. If there are no filters on that particular day of the

46

week, it returns the empty set. For example, Select-1({fo’, fo”, f1}) = {}{fo}, {3 {3, {3,
{fo” fi1, {1

4. Select-2: It selects the filter sets based upon the weekday and date. For example, for
Figure 2.1, Select-2({f3}) = ({}, {}, {3, {f3}, {}, {}, {})- The difference between Select-1
and Select-2 operation is, if multiple filters fall on Sunday with a different date, the

filters are returned separately.

5. Sum: It computes the union of all the inputs. The input can be either F; or # Sum
({Fi}, {Fi}) = ({Fs, F}), SUM ({ 7}, { £}) = ({ %, Z}). For example, For Fig.1, Sum ({fo}, {f1,
fa, f3) = {fo, f1, f5, f4}.

6. Decompose: It decomposes the input filters in their boundaries and returns the filter

sets which correspond to each interval, Ti. Input: F;, Output: # For example, in

Figure 2.5, when the unspecified day filters are decomposed, then, decompose ({f2,

f4) ={(fzfa), (F2)}-

7. Remove: This operation removes the alias filter sets. Input: Fi; Output: F;. For

example, Remove {{fof ifs}, {fof3}, {fofsf3}, {fofs}, {fofof3}} = (fofif3), {fof3), (fofofsh).
5.2.2 Computation of SFS,

The flow of operations for the mapping mechanism for the topology-based temporal
analysis is shown in Figure 5.1. The input is the Xu{fo,...fm-1} which represents the time field
of the TFP. Initially, the time-based filters are separated using cycle separator. It results in
three set of filters where FD = {f;, f4}, FW’= {fy, fi} and FD’ = {f3}. In Figure 5.1, the numbered
circles corresponds to the operations performed in mapping unspecified days, specified
days and date filters respectively. If any filter is longer than a day, the filters are divided
using divide operation. The filter fj is divided into two filters fy’, active on Mon and f»” which

is active on Fri.

47

Input

Xn(fo,-fm-1) - Unspecified days of the week
- Specified days of the week
Cycle - Date
separator
FW’ FD’
HOL NNl W TT— @
; b Divide Divide \
i 5 v J— i 5
Select-1 Select-2

| L Pwey Fwysat ¥

| FE | | : |

—> SUM SUM b ;

: L FE+FVVSUn FE+FWSHH | FD+FWsat |

B /N—sum | - SUM | |

E Vv i i VFE+FW5Un \}:E+FWS‘3“§ | \U:E_H:WSun_I_FDSun \l/FE+FW;$at+|:DSat
Decompose Decompose |-+ Decompose || Decompose |---| Decompose | :

i y

Remove

Output ‘L
SFS,
Figure 5.1 Flow of operations in the mapping mechanism

In the next step, the FW and FD undergo select-1 and select-2 operation respectively.
For the sample TFP in Figure 2.1, it selects the filters that are active in different weekdays
are, FWMon = [£,4 FWFri= {f,”} and FDWed = {f3}. The FE is mapped with FW using sum

operation. Likewise, FD is summed with FE and a subset of FW (the filters that are active in

48

the weekday of FD) is summed using sum operation. The remaining flow of operations is
shown only for Sun and Sat as all the other days of the week are similar. The next step is
decomposing the filters in their boundaries and the filters in each T; are extracted. As per
the computational steps, Feo = {{f2.f4}, {f2}}, Fmon = {{fo'}, {fofofa}, {fofa}, {f2}}, Fen = {{fo"},
{fo’fof4}, {fif2fa}, {f2}}, Fo-wed = {{f3}, {f2f3f4}, {f2f4}, {f2}}. If all the seven days of the week are
specified, then there is no need of unspecified days of the week separately. The filter sets
identified in decompose operation are summed up using the sum operation. Finally, the
alias filter sets are removed using remove operation. A filter which is active in multiple days
are represented as f and f” for showing the differentiation in the mapping. As far as conflict
detection is concerned, there is no need of separation, therefore the multiple filters are
reunited as before as a single filter. Therefore the alias filters of divided filter sets are also
considered and removed in the remove operation if any. The filter sets for SFS2= {{f2f4}, {f2},
{fofzf4}, {fo}, {f1f2f4}, {f3}}. Therefore, there exists six unique filter sets in the time-field that

must be considered for conflict detection.

5.3 Conclusion

We have elaborately discussed the extraction of SFS, in terms of geometry-based
and topology-based analysis. We have found that topology-based temporal analysis
performs better than the geometry-based, as the unnecessary repetitions are removed by
projecting the filters in a short period of few days and as a result the number of filter sets

considered for conflict detection is comparatively reduced.

49

Chapter 6

Spatiotemporal Analysis

Conflict detection in TFP is a challenging task for managing the firewall policies.
Even though various conflict detection techniques were proposed, if they are treated with
TFPs, they produce false positive results as the time-field is ignored. There is no significant
research made in the field of conflict detection in TFPs. We have proposed a conflict
detection system for TFPs which can be achieved by spatiotemporal analysis. We have
developed two architectures to perform the spatiotemporal analysis as follows: (1)
Simultaneous Analysis, (2) Iterative Analysis. Both of the analyses detects and classifies the
conflicts in the given time-based firewall policy TFP, which consists of m filters and (n + 1)
fields. It computes the (n + 1)-dimensional topological relationship of each filter pair (f; f;),
TR"*1(f;, f;) and classifies it into errors and warnings for f;according to the topological
relationships. All the conflicting combinations of the filters are obtained from the CVs and
classified into five types of conflicts and other results (no error and warning filters). We
have also performed some evaluations to validate the performances of the different
architectures. We have made experimental analysis to show the percentage of the false
positive results that can occur when time field is ignorned, and have also performed

evalutaions to find the better performance systems.

6.1 Simultaneous Analysis

In this architecture, the temporal analysis and the topology-based spatial analysis
are simultaneously analyzed. The system overview is shown in the Figure 6.1. The main
difference between the system overveiw of the n-dimensional spatial analysis and the
simultaneous analysis is that an additional dimension (the n+1t dimension) for the time-

domain is analyzed.

The system receives the internal form of the TFP and CDP as the input and follows

the procedures given below: (1) The vertical decomposer divides the TFP into (n + 1)

50

divisions, in which each division includes the it" field of the TFP and is represented by X;
(fo...fm-1). (2) For each it field from i= 0 to n - 1, the spatial divisor projects the filters on
the it" axis and decomposes them in their boundaries to form intervals, and the filter sets in
each interval are added to the set of filter sets for the it" field SFS;. The time divisor finds the
interaction of the filters in the time field X, (fo...fm-1) and adds the results to SFS.. (3) The
PCV extractors compute the PCV from the SFS; in each dimension using BISCAL. (4) The CV
extractors calculate the CVs by combining the PCVs obtained in the previous step using
BISCAL. (5) The TR *1(f, f;) for all the filter pairs in the TFP are detected using BISCAL in
the TR extractors. (6) The conflict detector and the classifier classifies the conflicts into
errors, warnings, and no error and warning filters according to the TR"*1(f; f;) for all the

filter pairs in the TFP.

The computation of TR*1 of the filters are completely the same as the extraction of
TR of the filters discussed in chapter 4 except the computation in the time divisor. As we
have discussed the computational steps in extracting SFS, through temporal analysis in

chapter 5, we omit the computational steps in this chapter.

Computation
spatial |0 pev,) trough
Xolfo-fna) 7 divisor extractor PCV, BISCAL
OUTPUT
Classified Conflicts
Internal form : . Conflict 1. Shadowing error
Of TFP, CDP Wil : : vV R OIIM Deteclor 2. Redundancy error
! decommosr Xoalfo-.-fra) PCV,,, extractor [extractor [nd ™ 3, Generalization warning
p T IsFs,, Clssifir 4, Correlationwarning
Spatial PCVyy 5. Redundancy warning
divisor extractor 6. Neither error nor waming filter sets
) SFS
Time "\ PCV,
Yol foa), CDP divisor exractor | POV

Figure 6.1 Overview of the conflict detection system architecture through simultaneous analysis

51

6.2 Iterative Analysis

The system overview of this architecture is shown in Figure 3.2. The system
receives the internal form of the TFP and CDP as the input and follows the procedure given
below. (1) The time divisor decomposes the X; (fo...fm-1) into ‘p’ divisions either through
geometry-based temporal analysis or the topology-based temporal analysis. (2) For each
interval from Ty to Tp.;, each filter set from SFS, which has multiple filters, are extracted
and given to the spatial divisor for n-dimensional spatial analysis. (3) Project the filters on
the n-dimensional space and decomposes them in their boundaries to form decomposed
filter sets. (4) The TR of the filters are computed from the decomposed filter sets through
BISCAL as we have previously discussed in chapter 4. (5) The results of the TR of the
filters are gathered and the TR"*I(f; f;) of the TFP is computed through BISCAL. (6) The
conflict detector and classifier detects the conflicts and classifies the conflicts into errors,
warnings, and no error and warning filters according to the TR*I(f; f;) for all the filter

pairs in the TFP.

6.3 Evaluations

6.3.1 Experiments

We have developed the prototype systems in JAVA programming language and the
experiments were performed on Intel (R) Core (TM) i5 CPU 750 @ 2.67 GHz 2.67 GHz with
4.00GM RAM running on Windows 7 professional. Due to the unavailability of publicly used
TFPs, we have synthesized a number of policies, TFP (m) which was synthesized from FP

(m), which has m filters as follows:
(1) FP (m)

We have synthesized a firewall policy without time-field, FP(m), by using a firewall
policy of 100 filters without the time-field, FP1, which has five fields, SrcIP, DeslIP, SrcPort,
DesPort and Pro and is used in our laboratory, as follows: it is a first-m filters of the FPy, in
case m <100 while it is a combination of the FP1 and new filters which are synthesized by

using a randomly selected filter from FPL in case m>100.

52

(2) TFP (m)

We have converted the FP (m) to TFP (m) by adding the values of TIME and DAY in
the ActTIME field as follows: the kt filter in TFP (m) is a combination of the kt filter of FP
(m) and generated values of TIME as given by the two time charts shown in figure 6.2. The
time chart shown in Figure 6.2 (a) is created based on control the network traffic in time in
industrial environments. The time chart shown in figure 6.2(b) is created to create large

number of conflicts in the TFPs to compare the system performances.

Time intervals L 01002300
1. Business Hrs 10:00-17:00 S 05100 21:00
2 Moming 08:00-12:00 5 08:00_ 16100
3, Afternoon—— 12:00-17:00 e oo
4, Lunch 12:00-13:00 5 09:00_ 1900
5.Fullday — 00:00-2359 10 o e

(a) Casel (b) Case Il

Figure 6.2 Time Charts

We randomly generated values of DAY by adding a single non-periodic filter which
is active on 12 Sept 2012 and the remaining m-1 DAY values are selected as periodic filters.
The remaining m-1 filters are periodic filters and it is controlled by two parameters, p1-the
percentage of FE and p2- the percentage of FW. We varied the percentage of p1 and p2 by
maintaining the sum of p1 and p2 as 1. For example, if we add 20% of p1 filters, then we

add 80% of p2 filters to make the sum of p1 and p2 as 1.

As we know that, there are two architectures to detect the conflicts of TFP and two
types of temporal analysis, we construct four systems by making different combinations of
the systems and the type of temporal analysis. We found that there are four combinations

of systems to detect the conflicts in TFP as follows,

1. SystemA: A conflict detection system through Iterative Analysis which incorporates

geometry-based temporal analysis.

53

2. SystemB: A conflict detection system through Iterative Analysis which incorporates

topology-based temporal analysis.

3. SystemC: A conflict detection system through Simultaneous Analysis which

incorporates the geometry-based temporal analysis.

4. System D: A conflict detection system through Simultaneous Analysis which

incorporates the topology-based temporal analysis.

We compare the above four systems and finds the system which performs well in

terms of computation time.

Experiment I: We evaluated the usefulness of the proposed system by comparing the
number of conflicts detected with and without considering the time field and by

investigating the percentage of false positive results.

Experiment II: We evaluated the feasibility of the proposed system by investigating the
computation time of the four systems in terms of two parameters: the number of filters and

the length of CDP.

6.3.1 Results of Experiment I

We have compared the ratio of conflicts, which the two systems detected in the TFP
(100). We have performed this experiment to determine the percentage of false positive
results that the prevailing techniques can generate during conflict detection for TFPs. We
introduce a class of conflicts ¢, which shows an error from among {shadowing error,
redundancy error, correlation warning, generalization warning, redundancy warning and no
error or warning}, which have been classified in chapter 2, and define the ratio of each class

of conflicts as follows:

Number of class-c conflicts by considering time

R(c) =

Number of class-c conflicts without considering time

54

00

I

N

[

[
~
N

Ratio, R (c)

-
Ly
N

[
~
00

1/16]

Shadowing Redundancy Generalization Redundancy Correlation No Error
error error warning warning warning or warning

Figure 6.3 The ratio of conflicts with and without considering time

The figure 6.3 shows the relationship between the class of conflicts and R. In this
Figure, we find that the ratio of shadowing error is 1/16 and that of redundancy erroris 1/5.
We also find that the filters exhibiting generalization warning and redundancy warning also
considerably reduced, as shown in Figure 6.3. The increase in the correlation warning
shows that the fully covered filters become partially covered in the (n + 1)-dimensional
space and a large increase in the no error and warning filter shows that nearly 50% of the
filters become disjoint in the temporal space. Since the workload of the administrator is
directly proportional to the effort towards reconfiguration of the conflicting filters, the
workload of the administrator is reduced drastically as the number of conflicting filters is
reduced. Therefore, we conclude that the proposed system takes eliminate false positive
results completely and thereby, help to reduce the workload of the network administrator

to a reasonable level.

6.3.2 Results of Experiment I1

The SystemA and SystemC compute the CDP through method1 as [13 Sep 2011, 12
Sep 2012] and the conflict detection period is computed through periodic cycle treatment
for SystemB and SystemD. We have conducted experiments with four different systems and
have found the computation time to find the conflicts in TFP and plotted the graph where
pl is plotted in X-axis and computation time is plotted in Y-axis. The graphs shown in
figure 6.4 (a) and (b) shows the computation time of the system when the time chart given

by case I and Case II are experimented respectively.

55

We can infer that from the graphs that, when the ratio of p1 is between 0.5 and 0.8,
computation time is comparatively higher due to the chances of the filters getting
conflicted is large and resulting in large number of conflicting filter sets. When the ratio of
pl is low, computation time is lower due to the lower number of conflicting filter sets.
When the ratio of p1 is high, computation time gradually decreases because of the lower
number of conflicting intervals even though the number of conflicting filters is large. When
we analyze the graphs, we found that, SystemC outperforms SystemB when p1 is 1 and
SystemB outperforms SystemC when p1l is between 0 and 0.8. Among all the values,
SystemD performs better than all the systems because of the advantages of the mapping in
the shortest CDP and finding the n+I1-dimensional TR of the filters through simultaneous
approach rather than interval basis. Therefore SystemD could able to reduce the
computation time to a minimum level as the repetition of filter sets are completely

removed and also the irrelevant data are removed in the initial stage of computation.

oo 100000
@ /.——I ’:7?10000
g 1000 = /././’. o
£ — £ 1000 —
S 100 S W%
S S
g g 100
%— 1 % 2 4{‘/ \
ks E 1 "
o
1 1
0 0.2 05 08 1 0 0.2 05 08 1
pl - oopl
-B-SystemA —+—SystemB -E-SystemA —&—SystemB
—<SystemC SystemD —<SystemC SystemD
(a) Casel (b) Case Il

Figure 6.4 Comparative Analysis of the different systems

6.4 Conclusion

We have described the implementation of the two architectures to compute the
TRr*1 of the filters to detect conflicts in TFPs. By our proposed system, the false positive
results can be completely avoided by computing the exact conflicts in the TFPs. We have
also found that SystemD performs better than the other combinations of the architectures.
As the number of conflicting filters is drastically reduced in TFPs, the workload of the

administrator is also reduced and therefore our proposed systems would be very helpful to

56

the network administrator in making decisions to discard the conflicts in the firewall

policies.

57

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Firewall security, like any other technology, requires proper management to
provide proper security service. Thus, just having a firewall on the boundary of a network
may not necessarily make the network any secure. One reason of this is the complexity of
managing firewalls filters and the potential network vulnerability due to filter errors and
warnings (e.g. shadowing, correlation) called conflicts. Conflict detection through spatial
analysis has lot of advantages like detection of conflicts from the combinations of filters,
but the drawback is that it takes large computation time and memory to detect the conflicts
in the firewall policies. Even though there are lots of conflict detection techniques, they
cannot be applied to detect conflicts in time-based firewall policies as the time-field is
ignored during conflict detection. This paper provides a new methodology of detecting
conflicts in the time-based firewall policies through two architectures. We have three main
contributions for the conflict detection in TFPs. We have developed a topology-based
spatial analysis through BISCAL which discards the unnecessary computations and could
able to discard the drawbacks of the previous approaches based on geometry. We have
developed methods for temporal analysis and have proposed two system architectures to
compute the conflicts in TFPs. We have made experiments with the proposed systems
through different architectures and have validated the better performance systems. Our
contributions for the conflict detection system for TFPs will be a useful tool for the network
administrator in the management of firewall policies to reconfigure the firewall policies

efficiently.

7.2 Future Work

Our future work focuses on the detection of conflicts caused by the combination of

filters through the topology-based spatial analysis through BISCAL in TFPs. Yin et al have

58

developed a conflict detection system caused by combinations of filters through geometry-
based spatial analysis for FPs [4]. We will extend our research in finding the conflicts from
the combinations of filters through BISCAL for TFPs. As we have already proved in our
research that topology performs better than geometry, we will develop a topology-based
conflict detection system for the conflicts caused by combinations of filters for TFPs.
Further we would like to extend our research to make a visualization tool for an easy
understanding of the different types of conflicts to the network administrator. For example,
if there is large number of conflicts, it is difficult to find which filter needs to be
reconfigured first. Therefore, we will develop a visualization tool for the network

administrator which shows a sequence to reconfigure the filters in the policies.

59

Publications

Journals

[1] Thanasegaran Subana, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi,
"Design and Implementation of Conflict Detection System for Time-based Firewall Policies,”
JNIT: International Journal of Next Generation Information Technology, Vol. 2, No. 4, pp. 24-
39, Nov 2011.

[2] Thanasegaran Subana, Yi Yin, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi,
"A Topology-Based Conflict Detection System for Firewall Policies using Bit-Vector-Based
Spatial Calculus,” IJCNS: International Journal of Communication Network and System
Sciences, Vol.4, No:11, pp.683-695, Nov 2011.

International Conferences

[1] Thanasegaran Subana, Yi Yin, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi:
"A Topological Approach to Detect the Conflicts in the Firewall Policies," In Proc. of 23rd
IEEE International Conference on IPDPS 2009, SSN-1569173665-paper-3.pdf, Rome, Italy,
May 2009. (IPS)’s Tokai-section Student Best Paper Award).

[2] Thanasegaran Subana, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi,
"Simultaneous Analysis of Time and Space for Conflict Detection in Time-based Firewall
Policies," In Proc. of 10t I[EEE International Conference on CIT, pp.1015-1021, Bradford,
UK, June 2010.

[3] Thanasegaran Subana, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi, "An
improved conflict detection system with periodic cycle treatment for time-based firewall
policies," In Proc. of 19t IEEE ICCCN 2010, pp.1-8, Zurich, Switzerland, Aug 2010.

Technical Reports

Thanasegaran Subana, Yi Yin, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi,
"BISCAL: Bit Vector Based Spatial Calculus for Analyzing the Misconfigurations in Firewall,"
In Proc. of IEICE IA Technical Report, 108 (409), pp.101-106, Tokyo, Japan, Jan 2009.
(Student Encouragement Award)

60

Domestic Conferences

[1] Thanasegaran Subana, Yi Yin, Yoshiaki Katayama, Naohisa Takahashi, “BISCAL: Bit
Vector Based Spatial Calculus for Analyzing Spatial Relationships between Filters,” In Proc.
of Tokai Rengo conference, 0079, Aichi Prefectural University, Japan, Sep 2008. [In
Japanese]

[2] Thanasegaran Subana, Yuichiro Tateiwa, Yoshiaki Katayama, Naohisa Takahashi,
"Detection of Conflicts in Time-dependent Firewall Policies"”, In Proc. of IEICE General
Conference, 187, Matsuyama, Japan, March 2009.

61

Scholarships and Grants

Monbukagakusho Scholarship, from October 2006 to March 2012.
Research grant from the Telecommunications Advancement Foundation, August 2010.

Research grant from the Hori Information Science Promotion Foundation, from April 2011

to March 2012.

62

Bibliography

[1] Max]. Egenhofer, “A formal definition of binary topological relationships,” LNCS
367/1989, pp.457-472, USA, 1989.

[2] A. Wool, “A quantitative study of firewall configuration errors,” Computer, vol.37, pp.62-

67,2004.

[3] N. Takahashi, “A systolic sieve array for real-time packet classification,” IPS] Journal,

vol.42, no.2, pp.146-166, 2001.

[4] Y. Yin, Y. Katayama, N. Takahashi, “Detection of conflicts caused by a combinations of

filters based on spatial relationships,” In IPS] Journal, vol.49, pp.3121-3135, Sept. 2008.

[5] T. Subana, Y.Yin, Y. Tateiwa, Y. Katayama, N. Takahashi, "BISCAL: Bit Vector Based
Spatial Calculus for analyzing the misconfigurations in firewall," Proc of IEICE IA

Technical Report, 108 (409), pp.101-106, Tokyo, Japan, Jan 2009.

[6] T. Subana, Y.Yin, Y. Tateiwa, Y. Katayama, N. Takahashi, "A topological approach to
detect the conflicts in the firewall policies," Proc. of 23rd IEEE International Conference

on IPDPS 2009, SSN-1569173665-paper-3.pdf, Rome, Italy, May 2009.

[7] T. Subana, Y. Tateiwa, Y. Katayama, N. Takahashi, "Simultaneous analysis of time and
space for conflict detection in time-based firewall policies," Proc. of 10t IEEE

International Conference on CIT, pp.1015-1021, Bradford, UK, June 2010.

[8] T. Subana, Y. Tateiwa, Y. Katayama, N. Takahashi, "An improved conflict detection
system with periodic cycle treatment for time-based firewall policies," Proc. of 19t [EEE

ICCCN 2010, pp.1-8, Zurich, Switzerland, Aug 2010.

63

[9] D. Eppstein, S. Muthukrishnan, “Internet packet filter management and rectangle

geometry,” Proc. Of 12th Annual ACM-SIAM SYM, Washington, pp.827-835, USA, 2001.

[10] H. Hamed, E. Al-Shaer, “Taxonomy of conflicts in network security policies,” IEEE

Communication Magazine, vol.44, no.3, pp.134-141, 2006.

[11] E. Al-Shaer and H.Hamed, “Modeling and management of firewall policies”, In IEEE

Transactions on Network and Service Management, Vol.1-1, Apr.2004.

[12] E. Al-Shaer, H.Hamed, R.Boutable, and M.Hasan, “Conflict classification and analysis
of distributed firewall policies”, In IEEE Journal on Selected Areas in Communication,

23(10): pp.2069-2084, 2005.

[13] E. Al-Share and H.Hamed, “Firewall policy Advisor for anomaly detection and rule

editing”, In Proc. Of 8t [EEEE/IFIP Integrated Management, (IM’2003), March 2003.

[14] E. Al-Share and H.Hamed, “Design and implementation of firewall policy advisor

tools”, Depaul CTI Technical Report, CTI-TR-02-006, August 2002.

[15] K. Golnabi, R.K. Min, L. Khan, E. Al-Shaer, “Analysis of firewall policy filters using
data mining techniques,” Proc. Of IEEE NOMS 2006, pp.305-315, Canada, April 2006.

[16] L. Yuan, J. Mai, Z. Su, H. Chen, P. Mohapatra, “FIREMAN: a toolkit for firewall
modeling and analysis,” Proc. Of IEEE Symposium on Security and Privacy, pp.199-213,
Oakland, May 2006.

[17] A. Mayer, A. Wool, E. Ziskind, “FANG: a firewall analysis engine,” Proc. of IEEE
Symposium on Security and Privacy, pp.177-187, Oakland, May 2000.

[18] A. Wool, “Architecting the lumeta firewall analyzer,” Proc. Of 10t Conf. USENIX
Security Symposium, pp.7-7, USA, Aug 2001.

[19] B.Zhang, E. Al-Shaer, R. Jagadeesan, |. Riely, C. Pitcher, “Specifications of a high-level
conflict-free firewall policy language for multi-domain networks,” Proc. Of SACMAT’07,

pp.185-194, Sophia Antipolis, France, June 2007.

64

[20] A. Hari, S. Suri, G. Parulkar, “Detecting and resolving packet filter conflicts,” Proc. of
IEEE INFOCOM 2000, pp.1203-1212, Israel, Mar. 2000.

[21] V. Capretta, B. Stepien, A. Felty, S. Matwin, “Formal correctness of conflict detection
for firewalls,” Proc. of ACM workshop on Formal Methods in Security Engineering,

Virginia, pp.22-30, USA, Nov 2007.

[22] A. Liu, E. Torng, C. Meiners, “Firewall compressor: An algorithm for minimizing
firewall policies,” Proc. of 27t IEEE INFOCOM, Phoenix, Arizona, pp. 176-180, USA, April
2008.

[23] M. Yoon, S. Chen, Z. Zhang, “Minimizing the maximum firewall rule set in a network
with multiple firewalls,” IEEE Transactions on Computers, vol.59, no.2, pp.218-230, Feb
2010.

[24] G. Misherghi, L. Yuan, Z. Su, C.-N. Chuah, H. Chen, “A general, framework for
benchmarking firewall optimization techniques,” I[EEE Transactions on Network and

Service Management, vol.5, no.4, pp.227-238, Dec. 2008.

[25] H.G. Verizon, K.A. Ahmat, “Fast and scalable method for resolving anomalies in
firewall policies,” Proc. Of 14th [EEE Global Internet Symposium 2011 at IEEE INFOCOM
2011, pp.839-844, April 2011.

[26] H. Hu, G.J. Ahn, K. Kulkarni, “FAME: A firewall anomaly management environment,”

Proc. Of ACM SafeConfig’'10, ISBN: 978-1-4503-0093-3, Oct. 2010.

[27] T. Srinivasan, N. Dhanasekar, M. Nivedita, R. Dhivyakrishnan, A.A. Azeezunnisa,
“Scalable and parallel aggregated bitvector packet classification using prefix

computation model,” Proc. Of Int SYM on PAR ELEC 2006, pp.139-144, Bialystok, 2006.

[28] T.V. Lakshman, “High-speed policy based packet forwarding using efficient multi-
dimensional range matching,” Proc. Of ACM SIGCOMM 098, vol.28, pp.203-214,
Vancouver, Sep 1998.

65

[29] S. Singh, F. Baboescu, G. Varghese,]. Wang, “Packet classification using
multidimensional cutting,” Proc. of ACM SIGCOMM 03’, pp.213-224, Germany, Feb 2003.

[30] K. Matsuda, “A packet filtering filters compression by decomposing into matrixes,”

IPS] Journal, vol.48, no.10, pp.3357-3364, 2007 [in Japanese].

[31] Yi Yin, Kazuaki Hida, Yoshiaki Katayama, Naohisa Takahashi, "Implementation of
filter reverse search system based on spatial relationships of filters", JCIT: Journal of

Convergence Information Technology, Vol. 3, No. 2, pp. pp.6 - pp.12, 2008.

[32] Young-Long Chen, Ying-Chen Chen, "Dynamic managements of the firewall policy to
mitigate DDoS attacks", JCIT: Journal of Convergence Information Technology, Vol. 6, No.

8, pp. 292-298, 2011.

[33] The FreeBSD Documentation Project, Ipfw,
http://freebsd.org/doc/enUS.IS088591 /books /handbook/firewalls-ipfw.html

[34] https://www.cisco.com/en/US/docs/security/pix/pix63 /release/notes/pixrn634.h

tml

[35] http://www.pcis.com/products/astaro firewall.html

[36] http://linux.die.net/man/8/iptables

66

