
A Study on Efficient Consensus Algorithms

for Byzantine-Prone Distributed Systems

A dissertation submitted

by

M.Nazreen Banu

for the award of the degree of

Doctor of Engineering

under the guidance

of

Prof. Koichi Wada

Department of Computer Science and Engineering

Nagoya Institute of Technology, Nagoya, Japan

March 2012

List of Publications

Journal Papers

1. Nazreen Banu, Taisuke Izumi and Koichi Wada, ”Adaptive and Doubly-

Expedited One-Step Consensus in Byzantine Asynchronous Systems”,

Journal of Parallel Processing Letters, 21(4): 461-477, 2011.

Conference Papers

1. Nazreen Banu, Taisuke Izumi and Koichi Wada, ”Doubly-Expedited

One-Step Byzantine Consensus”, Proceedings of the 2010 IEEE/IFIP

International Conference on Dependable Systems and Networks(DSN),

Dependable Computing and Communication Symposium(DCCS), pp.

373-382, Jul 2010.

2. Nazreen Banu, Samia Souissi, Taisuke Izumi and Koichi Wada, ”An

improved Byzantine Agreement Protocol for Synchronous Systems with

Mobile Faults”, Proceedings of the 14th Korea-Japan Joint Workshop

on Algorithms and Computation, pp. 73-80, Jul 2011.

Technical Reports

1. Nazreen Banu, Taisuke Izumi and Koichi Wada, ”Adaptive One-Step

Byzantine Consensus”, Technical Report of IPSJ SIG, 2010-AL-128, 2,

pp. 1-9, Jan 2010.

i

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Byzantine Consensus Problem: An Overview 3

1.1.2 Various Models for Studying Byzantine Consensus . . . 4

1.1.3 Efficiency Metrics for Byzantine Consensus Algorithms 8

1.2 The Models and Metrics of Our Interest 8

1.3 Related Work and Our Objectives 9

1.3.1 One-Step Byzantine Consensus 9

1.3.2 Mobile Byzantine Consensus 12

1.4 Our Contribution: An Overview 14

1.4.1 Adaptive and Doubly-Expedited One-Step Byzantine

Consensus . 14

1.4.2 Improved Resilience against Mobile Byzantine Faults . 18

1.5 Organization . 19

2 Adaptive and Doubly-Expedited One-Step Byz. Consensus 20

2.1 Preliminaries . 21

2.1.1 System Model . 21

2.1.2 Problem Definition . 22

2.1.3 Underlying Consensus Primitive 22

2.1.4 Adaptive Condition-Based Approach 22

2.1.5 Doubly-Expedited Consensus 23

2.2 Legality for Double Expedition 23

2.2.1 Notations . 24

2.2.2 Legality Criteria . 25

ii

2.2.3 Examples for Legal Condition-Sequence Pairs 26

2.3 Adaptive and Doubly-Expedited Algorithm 29

2.3.1 Algorithm DEX . 31

2.3.2 Correctness . 32

2.4 Discussion and Open Problems 36

3 Improved Resiliency against Mobile Byzantine Faults 39

3.1 Preliminaries . 40

3.1.1 System Model . 40

3.1.2 Agent Types and Recovery Models 41

3.1.3 Problem Definition . 41

3.1.4 Notations . 42

3.2 Improved Mobile Byzantine Consensus Algorithm 42

3.2.1 Algorithm MBC . 42

3.2.2 Correctness . 45

3.3 Discussion and Open Problems 48

4 Summary and Future Directions 50

4.1 Summary of Contributions . 50

4.2 Future Directions . 51

iii

List of Figures

2.1 Algorithm DEX . 30

2.2 Identical Byzantine failure model 31

3.1 Algorithm MBC for CEFAR model 43

3.2 Procedure Reconstruct for CEFAR model 44

iv

List of Tables

1.1 Attributes of our systems. 9

1.2 Performance comparison of DEX with existing works. 17

1.3 Performance comparison of MBC with previous works 19

v

Abstract

The distributed consensus problem is a fundamental and important problem

in designing fault-tolerant distributed systems. In this problem, defined over

a set of n processes, each process proposes a value, and all correct processes

must decide on a common value, which is one of the proposed values. It

has gained a leadership position as it is used as a key tool in many practical

agreement problems such as atomic broadcast, view synchrony, etc. Sev-

eral forms of the consensus problem have been proposed during the past

three decades, considering various aspects like nature (crash or Byzantine)

and computing power (bounded or unbounded) of the adversary, model of

the underlying system (synchronous or asynchronous), etc. This dissertation

studies the consensus problem in both asynchronous and synchronous sys-

tems with a more destructive adversary, namely computationally unbounded

Byzantine adversary. Note that, any algorithm that solves the Byzantine

consensus problem must work correctly no matter how the faulty processes

behave, and hence assuming the Byzantine adversary leads to more complex

and challenging algorithms.

In asynchronous systems, we carry out in-depth investigation on one-step

Byzantine consensus algorithms that guarantee decision in one communica-

tion step (a communication step consists of a process sending a message to

all other processes and receiving messages from them). In general, Byzantine

consensus algorithms guarantee one-step decision only in favorable situations

(e.g., when all processes propose the same value) and no one-step algorithm

can support a two-step decision. We present a novel generic one-step Byzan-

tine algorithm, called DEX, that circumvents these impossibilities using the

adaptive condition-based approach. Algorithm DEX has two distinguished

features: adaptiveness and double-expedition property. Adaptiveness makes

it sensitive to only the actual number of failures so that it provides fast termi-

nation for a large number of inputs when there are fewer failures (a common

case in practice). The other feature, double-expedition property facilitates

the two-step decision in addition to the one-step decision. To the best of

our knowledge, double-expedition property is a new concept introduced by

us, and DEX is the first algorithm having such a feature. In addition, we

show that our algorithm is optimal in terms of the number of processes for

one-step consensus.

In synchronous systems, we study the consensus problem with a pow-

erful Byzantine adversary which can inject up to t malicious agents (such

as viruses) that move from processes to processes at full speed and corrupt

them in a dynamic fashion. This variant of the consensus problem is popu-

larly known as the mobile Byzantine consensus problem. In a previous result,

Garay has shown that n > 6t (n is the total number of processes, and t is

the number of mobile faults) is sufficient to solve the problem even in the

presence of strong agents that can move with full speed (in the sense that

each agent can take a movement in every communication step) and make

corrupted processes forget that they run the algorithm by erasing their local

memories (as a result, after recovery a process must learn the current state

of computation including the code from other processes). Many following re-

sults have improved the above result, but with some additional assumptions.

The question, whether this result can be improved without any additional

assumption, remains open. In this dissertation, we first answer this question,

by providing an algorithm MBC that works with n > 4t under the same set-

tings. In addition, we study the mobile Byzantine consensus a new system

model in which agents do move at full speed, but they do not erase the local

memories of processes, and the processes are allowed to restart their algo-

rithms immediately after their recovery with some predefined state. This

new model mainly differs from Garay’s model in the sense that it allows

recovering processes to rejoin the on-going execution without learning the

current state of computation, while in Garay’s model processes must learn

the current state of computation before reintegration. We show that our

algorithm MBC also works in this new model with minor modifications.

ii

Chapter 1

Introduction

1.1 Background

”Can you live without ATM and Internet? What do you do, if

your ATM machine shows incorrect balance? or your email access

is completely denied?”

World Wide Web and Automatic banking(Teller Machine) systems are the

best examples for distributed systems that play vital roles in our day-to-day

lives. A distributed system is a collection of autonomous (probably heteroge-

neous) computers connected through a network and distribution middleware,

in order to provide certain kind of services. The distributed systems provide

several good properties such as high performance, scalability, openness, etc.,

which enable them to overcome many physical limitations of centralized sys-

tems. However, if not designed carefully, a distributed system can decrease

the reliability of computation and/or functionality. In fact, designing a prop-

erly functioning distributed system is notoriously difficult. One of the key

factors causing the difficulty is faults, which means that computing entities

can fail independently, leaving some components operational while others are

not. Leslie Lamport once amusingly defined distributed systems as such:

A distributed system is one in which the failure of a computer you didn’t

even know existed can render your own computer unusable.

In large scale systems, it is unavoidable that the system is subject to faults.

1

Hence, fault tolerance, which is the ability of a system to perform its functions

correctly even in the presence of partial failures, is highly required.

The distributed consensus problem (in what follows, we simply call the

consensus problem for short) is a fundamental and important problem that

has to be solved in designing fault-tolerant distributed systems. This prob-

lem can be stated informally as: how to ensure that a set of distributed

processes achieve agreement on a value or an action despite a number of

faulty processes. This problem is interesting both in theoretical and practi-

cal aspects. From theoretical point of view, the significance of the consensus

problem derives from several other distributed systems problems being re-

ducible or equivalent to it. Examples are atomic broadcast [21, 24, 47],

non-blocking atomic commit [46], group membership [46] and state machine

replication[65]. The relations between the consensus problem and other dis-

tributed ones are important because the consensus problem is deeply studied

problem and many results stated for the consensus problem automatically

apply to these other ones. From a system perspective, replication of com-

ponents and services is an important paradigm that can be employed for

information protection in critical applications, and consensus plays a funda-

mental role in many replication algorithms. Some example solutions based

on these ideas are: Bessani et al. [9] and Yin et al. [73] use replication to

implement fault- and intrusion-tolerant firewall devices; Cachin et al. [16]

and Castro and Liskvo [18], Chun et al. [22] and Veronese et al. [71] pro-

pose replication algorithms to implement highly resilient services, like data

historians or DNS (essential for the Internet).

Algorithms that solve consensus vary much depending on the assumptions

that are made about the system. This dissertation considers the systems that

experience Byzantine faults, more destructive faults which do not put any

constraints on how processes fail. Algorithms based on this system model are

expected to work correctly no matter how faulty processes behave. Byzantine

consensus algorithms are highly essential for practical systems to deal with

malicious attacks or situations in which faults are difficult to characterize.

For instance, an attacker might modify the behavior of a process it controls in

order to change the outcome of the consensus algorithm. However, assuming

Byzantine faults leads to more complex and challenging algorithms.

2

In this dissertation, we study the consensus problem in Byzantine-prone

distributed systems and contribute significantly for the advancement of the

state-of-the-art research on this problem. This chapter is now molded in the

following manner: First, we give an overview of our problem which starts by

tracing the genesis of the problem. Then, we list different models in which

the problem has been studied so far and can be looked at in future. Next,

we present various metrics that are used for evaluating Byzantine consensus

algorithms. After that, we present the models and metrics of our interest.

Next, we provide the related work and our objectives. We then emphasize on

our contributions in this thesis and their impacts on the literature. Lastly,

we describe the chapter wise organization of this thesis.

1.1.1 Byzantine Consensus Problem: An Overview

The problem of Byzantine consensus (popularly known as Byzantine Gen-

eral’s problem) is introduced by Lamport et al. in [52]. The most basic and

commonly used form of Byzantine consensus is as follows: Byzantine con-

sensus, among a set of n processes each having a private input value, allows

all non-faulty processes to reach an agreement on a common value even if

faulty processes try to prevent agreement among the nonfaulty processes.

The faulty behavior may range from simple mistakes to total breakdown to

skillful adversarial talent. For instance, a faulty process can send messages

when it is not supposed to, make conflicting claims to other processes, act

dead for a while and then revive itself, or the faulty processes can act mali-

ciously against the protocol in an coordinated fashion. Attaining agreement

on a common value is difficult as one does not know whom to trust.

This problem can be informally stated in terms of three properties: each

process proposes a value, and the non-faulty processes have to decide (Ter-

mination property) on a common output value (Agreement property) that

has to be related to the set of input values (Validity property). This problem

has drawn much attention over the years and many aspects of the problem

have been studied considering various models [1, 2, 4, 7, 8, 10, 11, 12, 13, 17,

26, 31, 32, 33, 37, 40, 51, 53, 57, 69, 70].

3

1.1.2 Various Models for Studying Byzantine Consen-

sus

The Byzantine consensus problem may take many different forms, depending

on the computational model (that talks about the attributes of the processes

and the communication channels) and the adversary model (that captures

the nature, capacity and computing power of the adversary).

Computational model

The prominent attributes of the processes and the communication channels

that lead to the various classifications of Byzantine consensus are discussed

below.

• Synchrony of Network (Synchronous or Asynchronous or Hy-

brid): Synchrony divides the systems into three types: synchronous,

asynchronous and hybrid. In synchronous systems [53], all processes

have access to a common global clock and there exists a known upper

bound on the relative speed of processes and the message transmis-

sion delay. Processes execute in lockstep: the execution is divided into

rounds and in each round, each process sends a message to all other

processes, receives the messages sent to it and does some local compu-

tation.

In asynchronous systems, there is no global clock and there is no fixed

upper bound on the relative processes speed and the message latency.

In particular, the messages may be received in an order different from

the one in which they were sent. Thus, in asynchronous systems [53],

the inherent difficulty in designing a protocol comes from the fact that

when a process does not receive an expected message then it cannot

decide whether the sender is corrupted (and did not send the message at

all) or the message is just delayed in the network. So a process can not

wait to consider the values sent by all processes before commencing its

computation at any particular step, as waiting for all of them can turn

out to be endless. Due to this, the protocols in asynchronous systems

are generally involved in nature and require new sets of primitives.

4

There is another class of system called hybrid system that exercises the

properties of synchronous and asynchronous systems in many different

ways. There are at least three different notions for hybrid system avail-

able in the literature: (a) a hybrid system that allows a few synchronous

rounds followed by a fully asynchronous communication; (b) a hybrid

system [18], that behaves asynchronously for some time interval, but

that eventually stabilizes and starts to behave more synchronously, and

(c) a hybrid system that alternates between synchrony and asynchrony

[10]. The synchrony reflects some effects on the behavior of adversary

as well. In asynchronous systems, the adversary is given the power to

schedule the delivery of all messages in the network.

• Medium of Communication (Uni-cast channel or Multi-cast

channel or Broadcast channel): In any protocol, the processes

communicate with each other over channels where channels can be uni-

cast/point-to-point (one-to-one), multi-cast (one-to-many) and broad-

cast (one-to-all). The uni-cast/point-to-point channel enables both way

communication between two processes. Multi-cast channels allow a pro-

cess to send some message identically to a subset of processes in the

network. The broadcast channel allows a process to send some message

identically to all other processes in the network. Uni-cast and broadcast

channels are two extreme cases of multi-cast channels. We may con-

sider the channels to be undirected and directed. Most of the literature

on Byzantine consensus assume the existence of pairwise point-to-point

undirected channels among the processes and often, broadcast channels

are also assumed. In many other cases, in the absence of broadcast

channel, it is simulated by executing broadcast (a variant of Byzantine

consensus) protocol. There is little work in the literature that considers

multi-cast channels [23, 61]. In general, when we say channel (or link),

we will usually mean uni-cast or point-to-point channel.

• Network Topology (Complete or Incomplete): The topology of

the network can be complete or incomplete. In a complete network,

every pair of processes are directly connected, while in an incomplete

network, the connectivity can be limited. Except a very few attempts

5

[1, 28, 29, 52], most of the work on Byzantine consensus consider com-

plete networks.

• Control over Channels (Reliable or Unreliable): We distinguish

two levels of control over the channels: reliable and unreliable. In

reliable channels, messages are neither lost, corrupted nor duplicated.

In unreliable channels, messages may be either dropped or corrupted,

or spurious ones may be generated.

Adversary Model

Various models of Byzantine consensus can be obtained based on the kinds

of adversary. Some of the features which characterize the adversary are

discussed below.

• Computational Resources (Bounded or Unbounded): The com-

putational resources at the disposal of the adversary may be limited

to probabilistic polynomial time as in cryptographic settings [34]. On

the other hand adversary may have unbounded computing power as in

information theoretic settings [5].

• Mobility (Static or Adaptive/Dynamic or Mobile/Proactive):

Depending on the point in time when the adversary is allowed to cor-

rupt processes, adversary can be of three types: static, adaptive/dynamic

and mobile/proactive. If the adversary decides on the set of processes

that it would corrupt before the protocol begins its execution, then

that adversary is referred to as static adversary [6]. Thus, the set of

corrupted processes is fixed (but typically unknown) during the whole

computation. More generally, the adversary may be allowed to corrupt

processes during the protocol execution, depending on the information

gathered so far. Such an adversary is called adaptive or dynamic. Thus,

an adaptive or dynamic adversary [38] chooses which processes to cor-

rupt as the computation proceeds. In both the above cases, once a

processes is corrupted, it remains corrupted for the rest of the protocol

execution. Like an adaptive adversary, a mobile adversary can corrupt

processes at any time, but it can also release corrupted processes and

6

regain the capability to corrupt further processes. Thus, an adversary

is mobile [15, 43] if it can corrupt, in an adaptive way, a different set

of processes at different times during the execution. That is, a process

once corrupted need not remain so throughout. Mobile adversaries

model, for example, the virus attacks.

• Corruption Capacity (Threshold or Non-threshold): The num-

ber of processes that an adversary can keep corrupted at any given

instance of time is its corruption capacity. There are two different

ways for specifying the number of corrupted processes, viz. threshold

and non-threshold. In the threshold specialization [52], the number

of corrupted processes, at any given time, is limited to at most t (a

threshold). The non-threshold specialization is a generalization of the

threshold one. In the non-threshold specialization [41], an adversary

structure, which is a set of subsets of the processes, is used where the

adversary is permitted to corrupt the processes of any one arbitrarily

chosen subset in the adversary structure.

• Scheduling Capacity (Message-Oblivious or Message-Conscious):

In asynchronous systems, the adversary may be able to schedule the

messages and processes. The message-oblivious adversary [42] is a weak

adversary which cannot look at the internal state of processes or the

contents of messages. Hence, it neither controls the delivery order of

messages nor schedules correct processes. The message-conscious [66]

adversary has full knowledge of the internal states of faulty processes

and the contents of messages in the network. It can dynamically decide

which process takes the next step by arbitrarily delaying messages be-

tween processes. However, this adversary operates under the following

restrictions: the final schedule must be fair, meaning that all correct

processes take infinitely many steps, and the messages are eventually

delivered.

7

1.1.3 Efficiency Metrics for Byzantine Consensus Al-

gorithms

The efficiency of Byzantine consensus algorithms is usually evaluated by using

four different metrics: resilience, time complexity, communication complexity

and computation complexity. Remember that, the total number of processes

participating in an algorithm is often designated with the letter n.

1. Resilience: It is the maximum number of corrupted processes that

the algorithm can tolerate and still satisfy its properties.

2. Time Complexity: The time complexity is the maximum number of

rounds taken for the execution of the algorithm. A round consists of

a process sending a message, receiving one or more messages sent by

other processes and performing some local computation. An algorithm

is called round efficient if its round complexity is (at most) polynomial

in n.

3. Communication Complexity: It is the total number of bits com-

municated by the correct processes in the protocol. A protocol is called

communication efficient if its communication complexity is (at most)

polynomial in n.

4. Computation Complexity: It is the computational resources re-

quired by the correct processes during a protocol execution. An algo-

rithm is called computationally efficient if the computational resources

required by each correct process are (at most) polynomial in n.

1.2 The Models and Metrics of Our Interest

In this dissertation, we are interested in investigating Byzantine consensus in

two system models (that mainly differ in synchrony assumptions and mobility

of faults) with the aim to design protocols that minimize the two important

parameters, namely, the total number of processes and the required number

of communication rounds. Table 1.2 describes the attributes of our systems.

In brief, we first concentrate on designing fast-terminating highly-resilient

8

Byzantine protocols for asynchronous systems prone to adaptive computa-

tionally unbounded Byzantine adversary. Next, we focus on designing mobile

Byzantine consensus protocols for synchronous systems that provide better

resilience than the existing protocols. We will discuss about our models more

elaborately and will present the formal definitions of the consensus problem

in respective models in individual chapters of this thesis.

System Model1 System Model2

Computational Model:

1. Synchrony of Network Asynchronous Synchronous

2. Medium of Communication Point-to-point channels Point-to-point channels

3. Network Topology Complete network Complete network

4. Control over Channels Reliable Channels Reliable Channels

Adversary Model:

1. Mobility Adaptive Mobile

2. Computational Resources Unbounded computing power Unbounded computing power

3. Corruption Capacity Threshold Threshold

4. Scheduling Capacity Message-conscious ——

Table 1.1: Attributes of our systems.

1.3 Related Work and Our Objectives

We divide the literature survey into two parts: the first part focuses on the

works in asynchronous systems that motivated us to investigate one-step

Byzantine consensus algorithms (which guarantee consensus in one round).

The second part presents the works that stimulated us to explore mobile

Byzantine consensus in synchronous systems.

1.3.1 One-Step Byzantine Consensus

It is far from a trivial task to design Byzantine consensus algorithms for asyn-

chronous systems since these algorithms have to deal with the uncertainty

and unpredictability created by the combined effect of Byzantine behavior

and asynchrony. A more discouraging impossibility result (called FLP result

[39]) shows that the consensus problem can not be solved deterministically

9

in asynchronous systems even if a single process can crash (when a pro-

cess crashes, it stops prematurely and makes no operation subsequently, and

hence crash faults are less severe than Byzantine faults). This result has

led to a large number of works that attempt to circumvent it by slightly

modifying the system model. Examples include: randomization [4, 60], fail-

ure detectors [21, 54], partial synchrony [30, 36], hybridization/wormholes

[25, 58], condition-based approach [55].

The number of communication steps (usually called rounds) required to

achieve consensus is one of the important measures of consensus algorithms.

It has been proved that any consensus algorithm requires at least two com-

munication steps for decision even in failure-free executions [50]. This lower

bound often becomes a dominant part of the performance overhead imposed

on consensus-based applications. However, this fact does not imply that

the two-step lower bound is incurred for every input (an input to consensus

algorithms is defined as a n-tuple consisting of all proposed values). For

example, it does not hold for the case where all processes propose the same

value. Furthermore, in typical runs of consensus-based applications, the con-

sensus algorithm often receives such good inputs. For instance, consider a

replicated state machine: the replicated servers need to agree on the pro-

cessing order of the update requests; if a client broadcasts its request to all

servers and there is no contention, then all servers propose the same request

as the candidate they will handle next; practically, it is not so often that

two or more concurrent update-requests arise for the same data object. This

observation induces an interest in one-step decision for good inputs.

The first attempt to circumvent this two-step lower bound is done by

Brasileiro et al. [14]. They propose a general framework to convert any

crash-tolerant algorithm into the one that solves the consensus for any input

and especially terminates in one step when all processes propose the same

value. In other results [27, 35], the notion of one-step decision is considered

in combination with the other schemes such as randomization and failure

detectors.

An interesting aspect of one-step decision schemes is to characterize the

situations where one-step decision is possible. The first investigation in that

aspect is considered by Mostefaoui et al. [56] in synchronous systems prone

10

to crash failures. It applies the condition-based approach for obtaining a good

one-step decision scheme. This result is extended by Izumi and Masuzawa

[49]. They give the complete characterization of conditions that make one-

step decision possible.

While all the above results are considered on crash failure model, Fried-

man et al. [42] have presented an asynchronous Byzantine consensus protocol

that guarantees one-step decision when all processes propose the same value.

But, their protocol can not tolerate a message-conscious adversary, which

can arbitrarily re-order messages. In the following work BOSCO [66], the

authors have devised a simple Byzantine one-step algorithm that can defeat

a strong message-conscious adversary. This work has shown two variants of

one-step Byzantine consensus problem, weak and strong ones, and a lower

bound on the number of processes needed for each. The weak one-step guar-

antees one-step decision only when all the processes propose the same value

and no process is faulty, but the strong one-step must guarantee it in any

situation in the case of a common proposed value, regardless of the number of

faulty processes. In addition, the authors proved that the assumptions n > 5t

and n > 7t are necessary for weak and strong one-step Byzantine consen-

sus, respectively, where n is the number of processes and t is the maximum

number of faulty processes.

The two major drawbacks of one-step Byzantine algorithms are the lack

of adaptiveness to the actual number of failures and the impossibility of

zero-degradation [27, 45]. In short, adaptiveness is an interesting property of

consensus algorithms, which makes the algorithms sensitive only to the num-

ber of failures k (k ≤ t) that actually occur in a given run, rather than on the

(total) number of failures t that can be tolerated. Adaptive algorithms are

very appealing in practice since they guarantee some additional good prop-

erties when there are fewer failures. In practice, failures rarely occur. Hence,

in the context of one-step algorithms, it is reasonable to expect that, in runs

where fewer failures occur, an algorithm should provide one-step decision for

a large number of inputs than in runs with many failures. Unfortunately, all

previous one-step Byzantine algorithms are non-adaptive: their efficiencies

depend only on the total number of failures that can be tolerated, rather

than the actual number of failures. Consequently, these algorithms behave

11

pessimistically in runs where there are fewer failures and provide one-step

decision for very few inputs. Similarly, the zero-degradation is another im-

portant feature of consensus algorithms based on failure detectors, which

always guarantees the best complexity (i.e., two step decision) in stable runs

where the failure detector does not make any mistakes and its output is sta-

ble. Existing results [27, 45] have proved that no consensus algorithm can

be simultaneously one-step and zero-degrading. It means that, one-step al-

gorithms are optimal (i.e., one-step) for some particular case (e.g., when all

processes propose the same value), but need at least three communication

steps starting from other configurations. It has also been shown that achiev-

ing both one-step decision and zero-degradation, even with crash failures,

requires a stronger assumption about failure detections such as the existence

of eventually perfect failure detector ¦P [27]. These results raise a natural

question:

Can we design a Byzantine algorithm that simultaneously be adaptive,

one-step and zero-degrading, without having any additional assumptions?

The first objective of our dissertation is to present an adaptive one-step

Byzantine consensus algorithm that provides fast termination for a large

number of inputs when there are fewer failures, and ensures the two-step

decision in addition to the one-step decision.

1.3.2 Mobile Byzantine Consensus

Computer viruses pose one of the central problems in distributed systems. In

many cases, reaching a common agreement among fault-free processes in the

presence of moving malicious agents (viruses), is highly required. This sub-

section considers the problem of reaching and maintaining agreement among

a set of correct processes in the presence of a powerful adversary that dis-

tributes malicious agents which can corrupt processes at any time and move

from one process to another. This problem is referred to as the mobile Byzan-

tine consensus problem.

In a previous work [43], Garay has studied the power of disruption of mo-

bile Byzantine faults as a function of the speed with which they can traverse

12

the network (called roaming pace). The roaming pace ρ denotes the minimal

amount of time (i.e., the number of rounds) that has to elapse between the

time at which an agent leaves a process, and the time at which it starts to

corrupt another process. For example, ρ = 3 means that an agent takes at

least 3 rounds to hop from one process to another. Also, Garay [43] proposed

two Byzantine consensus protocols for synchronous systems: The first one

assumes n > 6t and can cope with malicious agents that move at full speed

(i.e., ρ = 1); The second one assumes n > 4t and deal with agents that

move at half speed (i.e., ρ = 2). These protocols run in O(n) communication

rounds. In his system model, an agent can move from one process to another

at any time during a round and can make corrupted processes forget that

they run the algorithm by erasing their local memories (as a result, after

recovery a process must learn the current state of computation including the

code from other processes). In addition, the agent is allowed to corrupt a

new process before the currently corrupted process recovers.

In the following work, Burhman et al. [15] proposed an optimal Byzan-

tine consensus algorithm with n > 3t for full speed agents. However, their

model has two additional assumptions: agents can move from one process to

another only through messages (i.e., the migration of the agents is possible

only during the send operations), and a faulty process must recover and learn

the current state of computation before another process can fail instead of

it. In a recent work, Biely et al. [10] proposed a mobile Byzantine consen-

sus algorithm for partially synchronous system for n > 3t, with the same

assumption that a faulty process must recover and learn the current state

of computation before another process can fail instead of it. However, this

algorithm terminates only when all processes have recovered. In a different

work, Schmid et al. [64] proposed impossibility results and lower bounds for

mobile Byzantine consensus, but for link failure model.

The question that remains open is the following:

Can we improve the result of Garay [43](n > 6t) without adding any

additional assumptions?

The second objective of our dissertation is to investigate the mobile

Byzantine consensus problem in Garay’s model to find the answer for the

13

above question. In addition, we aim at studying this problem in a new model

in which malicious agents can move at full speed, but they can not erase the

local memories of processes, and a corrupted process can restart the algo-

rithm immediately with some predefined state after its recovery. Note that,

this new model differs from Garay’s model in the sense that it allows the

recovering processes to rejoin the on-going execution without knowing the

current state of computation, while in Garay’s model processes must learn

the current state of computation before rejoining.

1.4 Our Contribution: An Overview

This section is devoted for the description of our contributions. In this thesis,

we first study the Byzantine consensus in asynchronous systems with better

one-step decision schemes. Then, we focus on mobile Byzantine consensus

in synchronous systems with the aim to present an algorithm that provides

better resiliency than the existing algorithms.

1.4.1 Adaptive and Doubly-Expedited One-Step Byzan-

tine Consensus

As seen in Section 1.3.1, the two major drawbacks of the existing one-step

Byzantine algorithms are the lack of adaptiveness to the actual number of

failures (due to which, they provide one-step decision for very few inputs)

and the impossibility of zero-degradation (which says that no one-step algo-

rithm can support two-step decision). In this thesis, we design an efficient

one-step Byzantine algorithm that circumvents these drawbacks using adap-

tive condition-based approach[48]. This approach has taken its root from

condition-based approach [55], which says that if a problem is not solvable

for general inputs, it is better to solve it for a restricted set of inputs. In

condition-based approach, a condition represents some restriction to inputs.

In the context of consensus problem, it is defined as a subset of all possi-

ble input vectors (whose entries correspond to the proposal of each process).

For instance, C
prv(m)
t is a privileged-value-based condition [14] defined for t

crash failures which includes all input vectors where the privileged value m

14

appears more than t times (the privileged value is one of the proposal values

which is given high priority among the set of all possible proposal values).

A condition-based algorithm instantiated with a condition guarantees some

good properties if the actual input vector belonging to that condition. Moste-

faoui et al. [55] have presented a class of conditions, called d-legal conditions,

and a condition-based algorithm which solves consensus in asynchronous sys-

tems where at most d processes can crash. In adaptive condition-based ap-

proach, the set of input vectors belonging to a condition dynamically changes

according to the actual number of faulty processes (typically, a small number

of faults allow the condition with a large number of inputs). The adaptive-

ness property of a condition (defined for t failures) can be characterized

by a condition sequence, which is defined as a sequence of t + 1 conditions

(C0, C1, ..., Ck, ..., Ct) such that Ck ⊇ Ck+1 for any k(0 ≤ k ≤ t − 1) and

the k-th condition is a subset of all possible input vectors which guarantee

some good properties when the actual number of faulty processes is at most

k. From the definition, the condition Ck+1 is a subset of Ck. In the context

of one-step consensus, it means that if an algorithm is instantiated with a

one-step condition sequence, in runs where at most k processes are faulty, it

provides one-step decision for more number of inputs than in runs where at

most k + 1 are faulty. In a previous result [49], Izumi et al. have presented

such a one-step condition sequence and an adaptive condition-based one-step

algorithm for crash-failure model [49], however, there is no result to apply

it in Byzantine-failure model. In this dissertation, we construct one-step

condition sequences for Byzantine failure models such that each sequence

S1 = (C1
0 , C

1
1 , ..., C

1
k , ..., C

1
t) where the k-th condition is the set of input vec-

tors that support one-step decision when at most k processes are Byzantine.

A condition-based algorithm instantiated with a condition-sequence S1 can

terminate in one-step when the actual input vector belonging to the k-th

condition and at most k processes exhibit Byzantine behavior.

Another interesting point is that, the zero-degradation impossibility result

does not say that the two-step decision is impossible for any input. It means

that there are good inputs for which the one-step consensus algorithms can

provide two-step termination (Remember that, previous one-step algorithms

provide one-step termination when the actual input vector belonging to the

15

given condition, otherwise they require at least three communication steps for

termination. That is, they never provide two-step decision). In our work, we

identify the (good) inputs that support two-step decision and construct two-

step condition sequences such that each sequence S2 = (C2
0 , C

2
1 , ..., C

2
k , ..., C

2
t)

where the k-th condition is the set of all input vectors that allow two-step

decision when at most k processes are Byzantine. This helps us to realize

a doubly-expedited consensus algorithm, which equips a two-step condition

sequence in addition to a one-step condition sequence. Since our algorithm

is instantiated with a pair of condition sequences (S1, S2), each for one-step

and two-step decisions respectively, in any execution where at most k pro-

cesses are Byzantine, it provides one-step and two-step decisions if the actual

input vector belonging to C1
k and C2

k respectively. In addition, in the same

way as [49], we can equip our doubly-expedited algorithm with an underly-

ing consensus primitive (which can be any algorithm that solves Byzantine

consensus in asynchronous systems, but takes more than two steps). As a

result, our algorithm can terminate for any input that even lies out of the

(given one-step and two-step) conditions, but not in one or two steps.

To explain the concept of double-expedition more clearly, here we present

an example. Using the privilege-value based condition C
prv(m)
t , let us con-

struct a condition-sequence pair for doubly-expedited Byzantine consensus

as follows:

< S1, S2 >= ((C
prv(m)1

0 , C
prv(m)1

1 , ..., C
prv(m)1

k , ..., C
prv(m)1

t),

(C
prv(m)2

0 , C
prv(m)2

1 , ..., C
prv(m)2

k , ..., C
prv(m)2

t))

where C
prv(m)1

k and C
prv(m)2

k contain input vectors where the privileged value

m appears more than 3t+ k and 2t+ k times respectively. Let A be an algo-

rithm instantiated with this condition sequence pair for values t = 1, the set

of all possible proposal values V = {0, 1, 2, 3} and m = 3. Consider the four

input vectors I1 =< 0, 1, 2, 2, 3 >, I2 =< 0, 1, 3, 3, 3 >, I3 =< 1, 3, 3, 3, 3 >,

I4 =< 3, 3, 3, 3, 3 >. When the actual number of failures is 1, A provides

one-step decision for the vector I4 since I4 is contained in C
prv(m)1

1 , but it

terminates in two-steps for vector I3 since I3 is in C
prv(m)2

1 . When there are

no failures, A guarantees one-step decision for vectors I3 and I4 since I3 and

I4 are in C
prv(m)1

0 , and provides two-step termination for I2 since I2 is con-

tained in C
prv(m)2

0 . For the vector I1, the algorithm terminates, but not in

16

one or two steps.

In brief, this dissertation contributes an adaptive doubly-expedited Byzan-

tine consensus algorithm DEX whose distinguished features can be summa-

rized as follows:

• In our construction, we show a generic framework of the algorithm

based on the notion of adaptive condition-based approach. To attain

the double-expedition property in adaptive manner, the framework is

instantiated with a pair of condition sequences, each of which corre-

sponds to the situations of one-step and two-step decisions respectively.

We also show sufficient criteria, say legality, for the condition-sequence

pair such that the doubly-expedited algorithms can be instantiated by

using any condition-sequence pair satisfying them.

• We propose two examples of legal condition-sequence pair, called frequency-

based pair and privileged-value-based pair. They have distinct advan-

tages in the sense that the number of processes and expedited situa-

tions corresponding to each pair is different. Interestingly, when com-

pared with the previous algorithms, our algorithm is optimal in terms

of the number of processes required for one-step decision. For example,

frequency-based pair instantiation of our algorithm breaks the lower

bound proved by BOSCO [66] for one-step Byzantine consensus. Table

1.4.1 compares the frequency-based pair instantiation of our algorithm

with the previous results.

System Failure Number of Situations guaranteeing Situations guaranteeing

Model Model Processes One-step Decision Two-step Decision

Brasileiro et al. [14] Asyn. Crash 3t+1 Agreed proposals –

Mostefaoui et al. [56] Syn. Crash t+1 Condition-Based –

Izumi et al. [49] Asyn. Crash 3t+1 Condition-Based –

Friedman et al. [42] Asyn. Byzan. 7t+ 1 Agreed proposals –

5t+1 Agreed proposals –

Song et al. [66] Asyn. Byzan. (Weak)

(Bosco) 7t+ 1 Agreed proposals –

(Strong) of correct processes

Our Results (DEX) Asyn. Byzan. 6t+1 Condition-Based Condition-Based

Table 1.2: Performance comparison of DEX with existing works.

17

• One drawback of the proposed framework is that it trades the deci-

sion scheme at third step for double-expedition property. This draw-

back causes a performance degradation in consensus-based applications

when we consider pessimistic runs (that is, when the given input is out

of the conditions). However, standing on its optimistic counterpart, we

make a large number of inputs belong to the conditions so that our al-

gorithm decides in one or two steps for many cases and achieves better

performance in average.

To the best of our knowledge, double expedition property is the concept

newly introduced by us. Hence, our work is the first result showing the

feasibility for both one- and two-step decisions simultaneously with no help

of additional stronger assumptions.

1.4.2 Improved Resilience against Mobile Byzantine

Faults

Next, we study mobile Byzantine consensus in synchronous systems in the

presence of stronger malicious agents, modelled by Garay[43]. We name these

agents as Code-Erasable Free-moving (CEF) agents, as they can move with

full speed at any time during a round and make corrupted processes forget

that they run the algorithm by erasing their local memories (as a result, the

recovering processes must learn the current state of computation including

the code from currently correct processes before participating in the on-going

execution).

We present a mobile Byzantine Consensus algorithm MBC that outper-

forms Garay’s algorithm in the same settings. That is, our algorithm requires

n > 4t instead of n > 6t (Garay’s result) to tolerate CEF agents. In addition,

we introduce a new model of agents, named Code-Intact Free-moving (CIF)

agents, which do move with full speed at any time during a round, but do

not erase the local memories of corrupted processes. In contrast to Garay’s

model, we allow processes to re-join the on-going execution with some pre-

defined state. We show that our algorithm MBC also works with this model

with minor modifications. Note that, this new model allows the recovering

processes to rejoin the on-going execution without learning the current state

18

of computation while Garay’s model requires that processes must learn it

before reintegration.

Table 1.3 compares our results with the existing ones. The circled num-

bers can be described as follows:

1©: an agent can erase the local memory of a process.

2©: an agent can take a movement at any time during a round.

3©: an agent can corrupt a new process before currently corrupted process

recovers.

4©: Processes can re-join the execution with the current state of computation.

5©: Processes can re-join the execution with some predefined state.

CEF Agent model CIF Agent model Weak agent model

1©+ 2©+ 3©+ 4© 2©+ 3©+ 5© 1©+ 4©
Garay [43] n > 6t – –

Burhman et al. [15] – – n > 3t

Our Results (MBC) n > 4t n > 4t –

Table 1.3: Performance comparison of MBC with previous works

1.5 Organization

The thesis consists of four chapters. In chapter 2, we introduce a new con-

cept, called double-expedition property, for one-step Byzantine consensus

and present an adaptive doubly-expedited one-step Byzantine consensus al-

gorithm (DEX) for asynchronous systems. In chapter 3, we study mobile

consensus problem in synchronous systems and present an efficient mobile

Byzantine consensus algorithm (MBC) that provides better resilience than

the existing algorithms. In Chapter 4, we present the summary of our results

and future directions for pursuing research in Byzantine consensus.

19

Chapter 2

Adaptive and

Doubly-Expedited One-Step

Byz. Consensus

One of the important optimization aspects of consensus algorithms is to ex-

pedite the decision in favorable situations. For instance, assuming n > 3t,

algorithms achieve consensus in one communication step when all processes

propose the same value. In the literature, such algorithms are called one-step

consensus algorithms. In this chapter, we investigate one-step consensus in

asynchronous systems in the presence of an adaptive, threshold, message-

conscious Byzantine adversary having unbounded computing power. In gen-

eral, one-step algorithms are optimal (i.e., one-step) for very few inputs and

no one-step algorithm supports a two-step decision. We present a novel

adaptive doubly-expedited one-step algorithm, called DEX, that circumvents

these difficulties using adaptive condition-based approach [48]. In this ap-

proach, a condition is a subset of all possible input vectors (whose entries

correspond to the proposal of each process) and the contents of the condi-

tion dynamically changes according to the actual number of faulty processes

(typically, a small number of faults allow the condition with a large num-

ber of inputs). The adaptiveness property is defined by using a sequence

of conditions, called condition sequence. When DEX is instantiated with a

pair of such condition sequences (each corresponds to one-step and two-step

20

decisions respectively), it gets the ability to provide both one-step and two-

step decisions for a large number of inputs when there are fewer failures. We

define some legality criteria for condition-sequence pairs and show that DEX

can be instantiated with any condition-sequence pair satisfying them. We

also present two examples for such legal condition-sequence pairs, namely

frequency-based pair and privileged-value-based pair.

This chapter is organized as follows: Section 2.1 presents the system

model, the definition of the Byzantine consensus problem and other nec-

essary formalizations. Section 2.2 provides the legality criteria for doubly-

expedited condition-sequence pairs and two examples of condition-sequence

pairs satisfying them. Section 2.3 describes the generic framework of the

doubly-expedited one-step Byzantine consensus algorithm DEX and proves

its correctness. Section 2.4 presents a discussion on our algorithm DEX and

some interesting problems for future work.

2.1 Preliminaries

2.1.1 System Model

We assume an asynchronous distributed system that consists of a set
∏

=

{p1, p2, . . . , pn} of n processes. Each process communicates with each other

process by sending messages over a reliable link where message loss, duplica-

tion and corruption never occur. Besides, there is no assumption about the

relative speed of processes or about the timely delivery of messages.

The adversary that we consider is an adaptive, threshold, message-conscious

Byzantine adversary having unbounded computing power. By this, we mean

that the adversary can corrupt at most t processes out of the n processes dur-

ing the algorithm execution, and it controls and coordinates the actions of

the corrupted/faulty processes. Also, since it has full knowledge of the con-

tents of messages, for example, it may choose to arbitrarily delay messages

between any two correct processes (but messages are eventually delivered).

A faulty process can behave arbitrarily, which means that it is allowed even

not to follow the deployed algorithm. A process that is not faulty is said to

be correct. Each process knows the value of t in advance. We also denote by

21

k, the actual number of failures during executions. Notice that, no process

can be aware of the value of k. Throughout this chapter, we assume n > 3t,

which is the necessary assumption to solve Byzantine consensus [51, 59].

2.1.2 Problem Definition

In Byzantine consensus problem, each correct process pi has an initial value

vi from the set V of all possible initial values, and decides a value v according

to the following rules:

• Termination: Each correct process eventually decides a value.

• Agreement: If two correct processes decide, they must decide the

same value.

• Unanimity: If all correct processes propose the same value v, then no

correct process decides a value different from v.

2.1.3 Underlying Consensus Primitive

In general, the consensus problem can not be solved in asynchronous systems

without any additional assumptions [39]. Hence, we need some assumptions

to guarantee the correct termination for arbitrary inputs. Many kinds of as-

sumptions, such as partial synchrony, failure detectors, etc., are considered in

past literatures. As our research direction is finding the feasibility of one-step

decision, we simply assume an abstraction of them. More precisely, the sys-

tem is assumed to be equipped with an underlying consensus primitive that

ensures agreement, termination and unanimity, but provides no guarantees

about its running time.

2.1.4 Adaptive Condition-Based Approach

The condition-based approach is one of the sophisticated methods used to

overcome several impossibility results in the consensus problem (e.g., impos-

sibility of consensus in asynchronous systems, time complexity lower bounds

in synchronous consensus). The principle of this approach is to restrict in-

puts so that the generally-unsolvable problem can become solvable. In this

22

approach, an input vector is an n-dimensional vector, whose i-th entry con-

tains a value proposed by process pi. Note that, since a faulty process can

propose different values to distinct processes, the entries corresponding to

Byzantine processes are regarded to contain meaningless values. A condition

defined for n processes is a subset of all possible input vectors. Adaptive-

ness in the condition-based approach is a property that allows a condition

to change dynamically according to the actual number of faulty processes.

That is, the fewer failures allow the condition with a large number of in-

put vectors. Adaptiveness of a condition is defined by a condition sequence

(C0, C1, ..., Ck, ..., Ct) satisfying Ck ⊇ Ck+1 for any k(0 ≤ k ≤ t − 1), where

the k-th condition corresponds to the set of input vectors that is valid when

the actual number of faults is less than or equal to k.

2.1.5 Doubly-Expedited Consensus

In this subsection, we introduce a novel feature of consensus algorithms,

called double-expedition property. In the execution of a doubly-expedited

algorithm, each process has two chances for fast decision, i.e., it can de-

cide in either one step or two steps. Since the fast decision is guaran-

teed only for good inputs, we introduce the condition-sequence pair as fol-

lows: (S1, S2) = ((C1
0 , C

1
1 , · · · , C1

k , · · · , C1
t), (C2

0 , C
2
1 , · · · , C2

k , · · · , C2
t)), where

S1 and S2 correspond to the condition sequences that identify the situations

guaranteeing one-step and two-step decisions respectively such that for any

k(0 ≤ k ≤ t), C1
k ⊂ C2

k . For example, consider the input vector I such that

I 6∈ C1
k , I ∈ C1

k−1 and I ∈ C2
k hold. Then, if I is given to the consensus algo-

rithm and the actual number of faulty processes is less than k, all processes

decide in one step because I ∈ C1
k−1. If (exactly) k processes are faulty, then

one-step decision is no more guaranteed, but all the processes necessarily

decide in two steps because of I ∈ C2
k .

2.2 Legality for Double Expedition

It is clear that we cannot design doubly-expedited consensus algorithms for

any pair of condition sequences. In this section, we propose sufficient crite-

23

ria such that we can construct a doubly-expedited algorithm characterized

by any condition-sequence pair satisfying them. In addition, we show two

examples of condition-sequence pairs satisfying these criteria.

2.2.1 Notations

Let V be an ordered set of all possible proposal values. We introduce the

default value ⊥ not in V . Let I be an input vector in Vn. We define a

view J of I to be a vector in (V ∪ {⊥})n, which is obtained by replacing

at most t entries in I by ⊥. We denote J [k] as the k-th element of J .

The number of occurrences of a value v in a view J is denoted by #v(J).

For two views J1 and J2, the containment relation J1 ≤ J2 is defined as

∀k(1 ≤ k ≤ n) : J1[k] 6=⊥⇒ J1[k] = J2[k]. Also, for two views J1 and

J2, let dist(J1, J2) be the Hamming distance between J1 and J2 (that is,

dist(J1, J2) = |{k ∈ {1, 2, ..n}|J1[k] 6= J2[k]}|). As well as, Vn
k denotes the

set of all views where the ⊥ value appears at most k times. The number of

non-default values in J is denoted by |J |.
We show the two fundamental properties holding for input vectors and

their views.

Proposition 1 Given an input vector I and any proposed value a ∈ V , if

∃I ′ : dist(I, I ′) ≤ k, then #a(I
′) ≥ #a(I)− k and #a(I

′) ≤ #a(I) + k hold.

Lemma 1 Given any two views J and J ′ and any proposed value a ∈ V , if

∃I, I ′ : J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ k, the following inequalities hold.

• #a(J
′) ≥ #a(J)−#⊥(J ′)− k.

• #a(J
′) ≤ #a(J) + #⊥(J) + k.

Proof Consider two views J and J ′ such that J ≤ I∧J ′ ≤ I ′∧dist(I, I ′) ≤
k. Let x and y be the number of entries that contain ⊥ in J and J ′, respec-

tively. Since J ≤ I, at most x entries of I, corresponding to ⊥’s in J , can

contain a. Hence, we get #a(I) ≥ #a(J) and #a(I) ≤ #a(J)+x. In addition,

since dist(I, I ′) ≤ k, from proposition 1, it follows that #a(I
′) ≥ #a(I) − k

and #a(I
′) ≤ #a(I)+k. From the above inequalities, it is clear that #a(I

′) ≥

24

#a(J)−k and #a(I
′) ≤ #a(J)+x+k. Then, as J ′ ≤ I ′, at most y entries of

J ′, corresponding to a’s in I ′, can contain ⊥. It implies that #a(J
′) ≤ #a(I

′)

and #a(J
′) ≥ #a(I

′) − y. Hence, we get #a(J
′) ≥ #a(J) − y − k and

#a(J
′) ≤ #a(J) + x + k. Thus, the lemma holds. 2

2.2.2 Legality Criteria

Given a pair of condition sequences (S1, S2), we consider two predicates

P1, P2 : Vn
t → {True, False}1 and a function F : Vn

t → V . Then, (S1, S2) is

said to be legal if we can define P1, P2 and F satisfying the following five

properties:

• (LT1) ∀J ∈ Vn
t : ∃I : I ∈ C1

k ∧ dist(J, I) ≤ k ⇒ P1(J).

• (LT2) ∀J ∈ Vn
t : ∃I : I ∈ C2

k ∧ dist(J, I) ≤ k ⇒ P2(J).

• (LA3) ∀J, J ′ ∈ Vn
t : P1(J) ∧ ∃I, I ′ : J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t ⇒

F (J) = F (J ′).

• (LA4) ∀J, J ′ ∈ Vn
t : P2(J) ∧ ∃I : J ≤ I ∧ J ′ ≤ I ⇒ F (J) = F (J ′).

• (LU5) ∀J ∈ Vn
t : F (J) = a ⇒ #a(J) > t ∨ a is the most common

non-⊥ value in J .

These properties are used to enforce the basic requirements of the doubly-

expedited Byzantine consensus. Informally, P1 and P2 are the predicates to

test whether the current view of a process contains sufficient information to

decide in one or two step(s) respectively, and F is the function to obtain

the decision value from the current view. The first property LT1 is used for

imposing one-step termination. The predicate P1 must allow each correct

process to decide in one step if its view has the possibility to come from an

input vector included in the condition C1
k and the actual number of failures

is less than or equal to k. Similarly, the property LT2 corresponds to two-

step decision. The property LA3 states that if a process decides in one

step based on its view J , using F , then at any process with view J ′, the

1In what follows P1(J) = true is abbreviated as P1(J)

25

equality F(J’)=F(J) holds, provided P1(J) holds. The property LT4 works

in a similar manner for two-step decision. More precisely, the property LA3

(or LA4) enforces the agreement between one-step (or two-step) decision and

others. The last property LU5 is the one to guarantee unanimity.

2.2.3 Examples for Legal Condition-Sequence Pairs

2.2.3.1 Frequency-Based Pair

Here we introduce a legal condition-sequence pair (P freq) based on the frequency-

based condition given in [55], and prove its legality. Let 1st(J) be a non-⊥
value that appears most often in a vector J . If two or more values appear

most often in J , then the largest one is selected. Let Ĵ be a vector ob-

tained by replacing 1st(J) from J by ⊥, and we define 2nd(J) = 1st(Ĵ).

That is, 2nd(J) is the second most frequent value in J . The frequency-based

condition Cfreq
d is defined as follows:

Cfreq
d = {I ∈ Vn|#1st(I)(I)−#2nd(I)(I) > d}

It is known that Cfreq
d belongs to d-legal conditions [55]., which is the class of

conditions that are necessary and sufficient to solve the consensus in failure

prone asynchronous systems, where at most d processes can crash. Using

this condition, we can construct the frequency-based condition-sequence pair

(P freq) with the associated parameters P1freq, P2freq and F freq as follows:

P freq = (S1, S2) = ((C1
0 , C

1
1 , C

1
2 , · · · , C1

k , · · · , C1
t), (C2

0 , C
2
1 , C

2
2 , · · · , C2

k , · · · , C2
t))

where C1
k = Cfreq

4t+2k and C2
k = Cfreq

2t+2k

• P1freq(J) ≡ #1st(J)(J)−#2nd(J)(J) > 4t.

• P2freq(J) ≡ #1st(J)(J)−#2nd(J)(J) > 2t.

• F freq(J) = 1st(J).

Notice that, a stronger assumption n > 6t is required to construct P freq.

Theorem 1 The condition-sequence pair P freq is legal.

26

Proof LT1: We have to show that ∀J ∈ Vn
t : ∃I ∈ C1

k ∧ dist(J, I) ≤
k ⇒ P1(J). That is, #1st(I)(I) − #2nd(I)(I) > 4t + 2k ∧ dist(J, I) ≤ k ⇒
#1st(J)(J)−#2nd(J)(J) > 4t.

Since I ∈ C1
k , we have #1st(I)(I)−#2nd(I)(I) > 4t+2k. As dist(J, I) ≤ k,

from proposition 1, it follows that #1st(I)(J) ≥ #1st(I)(I) − k and #x(J) ≤
#x(I) + k for any value x 6= 1st(I). Since 2nd(I) is the second most fre-

quent value in I, #x(J) ≤ #2nd(I)(I) + k. Hence, #1st(I)(J) − #x(J) ≥
#1st(I)(I)− k−#2nd(I)(I)− k. Therefore, we get #1st(I)(J)−#x(J) > 4t. It

implies that 1st(I) = 1st(J) and #1st(J)(J)−#2nd(J)(J) > 4t.

LT2: We have to show that ∀J ∈ Vn
t : ∃I ∈ C2

k ∧ dist(J, I) ≤ k ⇒ P2(J).

That is, #1st(I)(I) − #2nd(I)(I) > 2t + 2k ∧ dist(J, I) ≤ k ⇒ #1st(J)(J) −
#2nd(J)(J) > 2t.

The proof is almost the same as the proof of LT1 (with only replacing C1
k

and 4t with C2
k and 2t respectively).

LA3: Consider J, J ′ ∈ Vn
t . We have to show that if P1freq(J) ∧ ∃I, I ′ : J ≤

I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t, then 1st(J) = 1st(J ′).

Since P1freq(J) holds, #1st(J)(J) − #v(J) > 4t also holds for any value

v 6= 1st(J). Then, as J, J ′ ∈ Vn
t ∧ J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t,

from lemma 1, it follows that #1st(J)(J
′) ≥ #1st(J)(J) − 2t and #v(J

′) ≤
#v(J) + 2t. Hence, we get #1st(J)(J

′) − #v(J
′) ≥ #1st(J)(J) − #v(J) − 4t.

Since #1st(J)(J)−#v(J) > 4t, it is clear that #1st(J)(J
′)−#v(J

′) > 0. Thus,

we get 1st(J) = 1st(J ′).

LA4: Consider J, J ′ ∈ Vn
t . It suffices to show that if P2freq(J) ∧ ∃I : J ≤

I ∧ J ′ ≤ I, then 1st(J) = 1st(J ′).

Since P2freq(J) holds, #1st(J)(J) − #v(J) > 2t also holds for any v 6=
1st(J). Then, as J, J ′ ∈ Vn

t ∧ J ≤ I ∧ J ′ ≤ I ∧ dist(I, I) = 0, from lemma 1,

it follows that #1st(J)(J
′) ≥ #1st(J)(J)−t and #v(J

′) ≤ #v(J)+t. Hence, we

get #1st(J)(J
′)−#v(J

′) ≥ #1st(J)(J)−#v(J)−2t. Since #1st(J)(J)−#v(J) >

2t, it follows that #1st(J)(J
′) − #v(J

′) > 0. Therefore, we conclude that

1st(J) = 1st(J ′) holds.

27

LU5: This property is trivially satisfied since 1st(J) is the most frequent

non-⊥ value in J . 2

2.2.3.2 Privileged-Value-Based Pair

Here, we present another legal condition-sequence pair (P prv), constructed

from a privileged-value-based condition, and prove its legality. In some prac-

tical agreement problems such as atomic commitment, a single value (e.g.,

commit) is often proposed by most of the processes. The previous results

[14, 45] have shown that, if this value is assigned some privilege, it is possible

to expedite the decision. Let us assume that there is a value (say m) that

is privileged among the set of all proposal values. Each process knows the

value m a priori. Then, the privileged-value-based condition C
prv(m)
d can be

defined as follows:

C
prv(m)
d = {I ∈ Vn|#m(I) > d}

Note that C
prv(m)
d also belongs to d-legal conditions [55]. Using this con-

dition, we can construct the privileged-value-based condition-sequence pair

P prv with the related parameters P1prv, P2prv and F prv as follows:

P prv = (S1, S2) = ((C1
0 , C

1
1 , C

1
2 , · · · , C1

k , · · · , C1
t), (C2

0 , C
2
1 , C

2
2 , · · · , C2

k , · · · , C2
t))

where C1
k = C

prv(m)
3t+k and C2

k = C
prv(m)
2t+k

• P1prv(J) ≡ #m(J) > 3t.

• P2prv(J) ≡ #m(J) > 2t.

• F prv(J) = m if #m(J) > t. Otherwise, F prv(J) = the most frequent

non-⊥ value in J .

Notice that, the assumption n > 4t is required to make P prv meaningful.

Theorem 2 The condition-sequence pair P prv is legal.

Proof LT1: Assume I ∈ C1
k . We have to show that ∀J ∈ Vn

t , if dist(J, I) ≤
k, then #m(J) > 3t holds.

28

Since I ∈ C1
k , #m(I) > 3t + k holds. Then, as dist(J, I) ≤ k, it follows

that #m(J) ≥ #m(I) − k. Hence, #m(J) > 3t + k − k. This implies that

#m(J) > 3t.

LT2: Assume I ∈ C2
k . We have to show that ∀J ∈ Vn

t , if dist(J, I) ≤ k,

then #m(J) > 2t holds.

This proof is almost the same as the proof of LT1 (with only replacing

C1
k and 3t with C2

k and 2t respectively).

LA3: Consider J, J ′ ∈ Vn
t . We have to show that if P1prv(J) ∧ ∃I, I ′ : J ≤

I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t, then F prv(J) = F prv(J ′).

Since P1prv(J) holds, #m(J) > 3t and F prv(J) = m also hold. Then,

as J, J ′ ∈ Vn
t ∧ J ≤ I ∧ J ′ ≤ I ′ ∧ dist(I, I ′) ≤ t, from lemma 1, it is di-

rectly implied that #m(J ′) ≥ #m(J)− 2t. Since #m(J) > 3t, it follows that

#m(J ′) > t. Hence, F prv(J ′) = m = F prv(J).

LA4: Consider J, J ′ ∈ Vn
t . We have to show that if P2prv(J) ∧ ∃I : J ≤

I ∧ J ′ ≤ I, then F prv(J) = F prv(J ′).

Since P2prv(J) holds, it follows that #m(J) > 2t and F prv(J) = m. Also,

as J, J ′ ∈ Vn
t ∧ J ≤ I ∧ J ′ ≤ I ∧ dist(I, I) = 0, from lemma 1, it is implied

that #m(J ′) ≥ #m(J)− t. Since #m(J) > 2t, we get #m(J ′) > t. Hence, we

conclude that F prv(J ′) = m = F prv(J).

LU5: This property is trivially satisfied because F prv(J) is either m (when

#m(J) > t) or the most frequent non-⊥ value in J . 2

2.3 Adaptive and Doubly-Expedited Algorithm

This section presents a generic doubly-expedited algorithm DEX for one-

step Byzantine consensus that can be instantiated with any legal condition-

sequence pair.

29

Function Consensus(vi)

Initially J1i[k] =⊥, J2i[k] =⊥ and echo-senti[k] = False for each k, 1 ≤ k ≤ n;

decidedi = False, proposedi = False, noci = 0

begin

1 : Upon Proposei(vi) do:

2 : Broadcasti(PROP , vi);

3 : Upon Receivei(PROP , vj) from any process pj do:

4 : if echo-senti[j] = False then

5 : J1i[j] = vj ;

6 : Broadcasti(ECHO , vj , j);

7 : echo-senti[j] = True;

8 : end if

9 : if |J1i| ≥ n− t and P1(J1i) and decidedi = False then

10 : Decidei(F (J1i)); decidedi = True;

11 : end if

12 : Upon Receivei(ECHO , vj , j) do:

13 : noci = number of copies of (ECHO , vj , j)

14 : received so far from distinct processes;

15 : if noci > (n + t)/2 then J2i[j] = vj ; end if

% Hence, ((J2i[k] 6=⊥) ∧ (J2j [k] 6=⊥)) ⇒ (J2i[k] = J2j [k])%

16 : if |J2i| ≥ n− t and proposedi = False then

17 : UC proposei(F (J2i));

18 : proposedi = True;

19 : end if

20 : if |J2i| ≥ n− t and P2(J2i) and decidedi = False then

21 : Decidei(F (J2i)); decidedi = True;

22 : end if

23 : Upon UC decidei(v) do:

24 : if decidedi = False then

25 : Decidei(v); decidedi = True;

26 : end if

end

Figure 2.1: Algorithm DEX

30

2.3.1 Algorithm DEX

Figure 2.1 provides the pseudocode of the algorithm. Our algorithm pro-

vides each process pi with two events Proposei(v) and Decidei(v
′). pi ini-

tially proposes a value v using Proposei(v) and eventually decides a value

v′ using Decidei(v
′). The processes exchange messages using the standard

Broadcast/Receive primitives. The underlying consensus is served by two

primitives UC proposei(v) and UC decidei(v) which correspond to proposal of

a value v and decision by v respectively.

For two-step decision, our algorithm actually exploits an idea in [3] used

for simulating Identical Byzantine failure model on the top of general Byzan-

tine failure model. Informally, the Identical Byzantine system guarantees

that even if Byzantine processes send arbitrary messages, all processes that

receive a message from a faulty process receive the same message. Figure 2.2

shows how the Identical Byzantine system works. In this system, a correct

process accepts a message only when it knows there are enough witnesses for

the broadcast of this message. More precisely, in identical Byzantine failure

model, Byzantine failures appear as crash failures.

┴┴┴┴

P1

P2

P3

P4

1

1

1

0

0 0

1

0

┴┴┴┴

P1

P2

P3

P4

1

1

1

0

0
0

1

1

Standard Broadcast Identical Broadcast

Figure 2.2: Identical Byzantine system: Let processes P1, P2, P4 are correct

and P3 is faulty; Even if P3 sends different messages to P1 and P4, they

receive the same message.

Our algorithm works as follows: Each process pi starts a consensus exe-

cution with the invocation of Consensus(vi) where vi is its initial proposal

value. First, each process pi broadcasts a message < PROP , vi > to pro-

vide the other processes with vi. When pi receives < PROP , vj > from any

31

process pj, it stores vj into the view J1i, which corresponds to one-step deci-

sion. Also, it acts as a witness for that broadcast and sends its own message

< ECHO , vj, j > to all processes unless it has already echoed for process pj.

Then, when at least n−t messages are received at J1i, pi tries to make a deci-

sion by evaluating P1(J1i). If P1(J1i) is true, pi immediately decides F (J1i),

that is, it decides in one step. Otherwise, pi repeats the attempt whenever

J1i is updated. When pi receives the same message < ECHO , vj, j > from

more than (n + t)/2 distinct processes, it accepts that message and stores vj

into the view J2i, which corresponds to two-step decision. When pi receives

at least n − t messages at J2i, it activates the underlying consensus with

F (J2i). In addition, it evaluates P2(J2i) to check whether J2i is sufficient

for taking decision. If P2(J2i) is true, pi immediately decides F (J2i), that

is, it decides in two steps. Otherwise, pi repeats the check with each update

at J2i. Also, when the underlying consensus decides, each pi simply borrows

the decision of the underlying consensus unless it has decided already.

2.3.2 Correctness

We prove the correctness of our algorithm by showing that it provides both

one- and two-step decisions when it is instantiated with any legal condition-

sequence pair (S1, S2). In the following proofs, let I be the actual input

vector, and I1
i , I2

i be vectors obtained respectively from the views J1i, J2i ∈
Vn

t by replacing the default values with corresponding values in I. Remember

that, since we know that the Byzantine problem cannot be solved with t ≥
n/3, we assume that n > 3t.

Lemma 2 Let pi and pj be two correct processes. If (J2i[k] 6=⊥)∧(J2j[k] 6=⊥
), then J2i[k] = J2j[k] for each k(1 ≤ k ≤ n).

Proof It is proved by contradiction. Let us consider two correct processes

pi and pj such that J2i[k] = v, J2j[k] = v′ and v 6= v′ for some process

pk. It follows that pi and pj have collected echo messages from more than

(n + t)/2 distinct processes for v and v′ each. Notice that, any two sets of

(n + t)/2 processes have at least t + 1 processes in common. Since there are

32

only t Byzantine processes, at least one correct process must have sent two

different echo messages for pk. But, it follows directly from the algorithm

code that, for any process k, a correct process will send the same echo message

to all processes. This is a contradiction. 2

Lemma 3 For any two correct processes pi and pj, (1) if J1i[k] = v and/or

J2j[k] = v, then v is proposed by process pk, and (2) if (J1i[k] 6=⊥) ∧
(J2j[k] 6=⊥), then J1i[k] = J2j[k] for each correct process pk, (1 ≤ k ≤ n).

Proof Assume that J1i[k] = v, J2j[k] = v′ and v 6= v′ for some correct

process pk. Since links between processes are private, a Byzantine process

cannot forge a message from a correct process. Hence, it is clear that if

J1i[k] = v, then v is proposed by pk. Then, from J2j[k] = v′, it is implied that

pj must have collected the same echo message < ECHO , v′, k > from more

than (n + t)/2 distinct processes. Notice that, a correct process broadcasts

an echo message < ECHO , v′, k > for pk if and only if it receives a proposal

message < PROP , v′ > from pk. Also, since there are only t Byzantine

processes such that t < (n + t)/2, they cannot make pj accept for pk a value

that is not proposed by pk. Therefore, it is sure that v′ is proposed by pk.

Then, if v 6= v′, it follows that the correct process pk have sent two different

proposal values. This is a contradiction. 2

Lemma 4 (Termination) Each correct process pi eventually decides.

Proof Since there are at most t Byzantine processes, each correct process

pi receives messages from at least n − t processes. It implies that, at some

point |J2i| ≥ n − t. Hence, pi certainly initiates the underlying consensus.

Since the underlying consensus guarantees termination, pi can decide when

the underlying consensus decides. It follows that each process eventually

decides. 2

Lemma 5 (Agreement) No two correct processes decide different values.

Proof Let two correct processes pi and pj decide vi and vj respectively.

Then, we prove that vi = vj. Consider the following six cases.

33

• (Case 1) When both pi and pj decide in one step at line 10.

Since both pi and pj decide in one step, P1(J1i) and P1(J1j) hold.

Let us construct two vectors I1
i and I1

j . From the definitions of I1
i and

I1
j , it follows that J1i ≤ I1

i and J1j ≤ I1
j hold. Since there are at most

t Byzantine processes, and only the Byzantine processes send different

values to distinct processes, the vectors I1
i and I1

j can differ in at most

t entries . Hence, dist(I1
i , I1

j) ≤ t also holds. From property LA3, it is

clear that vi = F (J1i) = F (J1j) = vj. Thus, we can conclude that pi

and pj decide the same value.

• (Case 2) When pi decides in one step at line 10 and pj decides in two

steps at line 21.

Since pi and pj decide in one and two step(s) respectively, P1(J1i) and

P2(J2j) hold. Similar to Case 1, we can construct two vectors I1
i and

I2
j such that J1i ≤ I1

i and J2j ≤ I2
j hold. From lemma 3, it follows

that the vectors I1
i and I2

j can differ in at most t entries correspond to

Byzantine processes. Hence, dist(I1
i , I2

j) ≤ t also holds. From property

LA3, it is clear that vi = F (J1i) = F (J2j) = vj.

• (Case 3) When both pi and pj decide in two steps at line 21.

Since pi and pj decide in two steps, P2(J2i) and P2(J2j) hold. From

lemma 2, it follows that if an entry in J2i contains a non-⊥ value

v, then the same entry in J2j contains either v or ⊥ and vice versa.

Hence, it is possible to have a vector I ′ such that ∀k(1 ≤ k ≤ n) :

(J2i[k] 6=⊥⇒ I ′[k] = J2i[k]) ∧ (J2j[k] 6=⊥⇒ I ′[k] = J2j[k]). This

implies that J2i ≤ I ′ and J2j ≤ I ′ hold. Thus, from property LA4, we

get vi = F (J2i) = F (J2j) = vj.

• (Case 4) When pi decides in one step at line 10 and pj decides using

underlying consensus at line 25.

Since pj decides using the underlying consensus, and the underlying

consensus satisfies unanimity, it is sufficient to show that every correct

process pk proposes vi at line 17. We know that pi decides using J1i and

pk uses J2k to propose a value to the underlying consensus. Construct

34

the two vectors I1
i and I2

k . By the same argument as Case 2, we can

show that J1i ≤ I1
i , J2k ≤ I2

k and dist(I1
i , I2

k) ≤ t hold. From property

LA3, we get vi = F (J1i) = F (J2k) = vk. Hence, it is clear that each

process pk proposes vi.

• (Case 5) When pi decides in two steps at line 21 and pj decides using

underlying consensus at line 25.

Since pj decides by the underlying consensus, similar to Case 4, we

have to show that every correct process pk proposes vi to the underlying

consensus at line 17. We know that pi decides using J2i and pk uses J2k

to propose a value to the underlying consensus. By the same argument

as Case 3, we can construct a vector I ′ such that J2i ≤ I ′ and J2k ≤ I ′.

From property LA4, it is clear that vi = F (J2i) = F (J2k) = vk. Hence,

we can conclude that each process pk proposes vi.

• (Case 6) When both pi and pj decide at line 25.

Since the underlying consensus guarantees agreement property, we can

conclude that vi = vj.

2

Lemma 6 (Unanimity) If all correct processes propose the same value v,

then no correct process decides a value different from v.

Proof Let k be the actual number of Byzantine processes and all correct

processes propose the same value v. Since k ≤ t, at each correct process pi, no

value except v appears more than t times in J1i and J2i. If pi decides at line

10 or 21, its decision value is either F (J1i) or F (J2i). From the definition of

LU5, it follows that F (J1i) = F (J2i) = v. Hence, pi decides v. In addition,

since each pi proposes F (J2i)(that is, v) to the underlying consensus and the

underlying consensus satisfies unanimity, any correct process that decides

using underlying consensus decides only v. Hence, the unanimity holds. 2

Lemma 7 The algorithm DEX guarantees one-step decision for any input

vector I belonging to C1
k if at most k processes exhibit Byzantine behavior.

35

Proof Since there are at most k Byzantine processes, each correct process

pi is guaranteed to receive messages from n − k correct processes. Hence,

eventually dist(J1i, I) ≤ k holds. From property LT1, it follows that pi

decides in one step. 2

Lemma 8 The algorithm DEX guarantees two-step decision if the input

vector I belonging to C2
k and at most k processes are Byzantine.

Proof As stated in lemma 7, since there are at most k Byzantine processes

each correct process pi can receive messages from all n− k correct processes.

Hence, eventually dist(J2i, I) ≤ k holds. From property LT2, it is clear that

pi decides in two steps. 2

The above lemmas imply the following theorem:

Theorem 3 For any instantiation with legal condition-sequence pairs, the

algorithm DEX is a doubly-expedited one-step consensus algorithm.

2.4 Discussion and Open Problems

• When compared with a recent work BOSCO [66], DEX improves on

the bound t, namely to be strong one-step it requires n > 6t instead

of n > 7t, and hence circumvents the lower bound (n > 7t) shown by

BOSCO. This improvement is achieved from its adaptiveness property.

More explicitly, previous Byzantine algorithms allow a process to wait

for messages from only n−t processes without the risk of being blocked

forever. As a result, each process can miss messages from at most t

correct processes. These algorithms in fact add t to the ratio between

t and n to compensate the possible missing messages. However, since

DEX allows each process to collect messages from all correct processes,

such requirement is eliminated. This enables DEX to keep the number

of processes n minimum. In addition, compared to BOSCO, DEX

achieves stronger fast-decision guarantees, which can be explained by

specifying BOSCO in the context of condition-based approach. The

two variants of BOSCO, weak and strong ones, can be specified using

36

condition-sequence pairs as follows: P = ((C1
0 , C

1
1 , C

1
2 , · · · , C1

k , · · · , C1
t),

(C2
0 , C

2
1 , C

2
2 , · · · , C2

k , · · · , C2
t)), where for the strong one-step C1

k = Cfreq
7t

and C2
k = φ for each k(0 ≤ k ≤ t), and for the weak one-step C1

0 =

Cfreq
5t , C1

k = φ for each k(1 ≤ k ≤ t) and C2
k = φ for each k(0 ≤ k ≤ t).

It shows that our frequency-based pair instantiation of DEX (where

C1
k = Cfreq

4t+2k and C2
k = Cfreq

2t+2k for each k(0 ≤ k ≤ t)) is strictly better

than BOSCO for the strong one-step. Also, for the weak one-step,

we can construct a strictly better algorithm in our framework using

a condition-sequence pair where C1
k = Cfreq

4t+2k, for each k(0 ≤ k ≤
bt/2c), C1

k = φ for each k(bt/2c < k ≤ t) and C2
k = Cfreq

2t+2k for each

k(0 ≤ k ≤ t).

• Our algorithm DEX is optimally resilient for one-step Byzantine con-

sensus and achieves better message complexity, that is O(n2). However,

it does not meet the n > 3t lower bound [51, 59] for Byzantine con-

sensus in asynchronous systems. This can be viewed as the price to

be paid to favor fast termination, simplicity and communication effi-

ciency. (Code simplicity implies shorter development time and lower

chances for bugs. Fast termination means better service to clients, and

reduced communication complexity means improved throughput). As

the cost of hardware goes down, it may be reasonable to prefer such

solutions in some circumstances. For example, in order to tolerate one

Byzantine failure, an algorithm that assumes n > 3t but whose com-

plexity is O(n3) messages, used in a system of 4 processes, generates

in each round 64 messages. But, for algorithms (like ours) that assume

n > 4t or n > 6t, but with O(n2) messages per round, we get 25 and 49

messages, respectively. Moreover, the design of asynchronous Byzan-

tine consensus that meet all lower bounds (on the value of t, the early

decision in good circumstances, etc) is still an open problem.

• Unlike previous algorithms [19, 59], DEX does not require heavy mech-

anisms such as ”message proofs”, ”certificates”, or any kind of appli-

cation level signatures. Also, DEX does not explicitly depend on any

complicated mechanisms, such as partial synchrony and oracles, al-

though the subroutine invoked by DEX may have such dependencies.

37

With a judicious choice of the consensus subroutine, DEX can toler-

ate a strong adaptive message-conscious adversary that can corrupt

processes during the execution of the algorithm, arbitrarily re-order

messages and collude with Byzantine processors. An example of an

algorithm that can be used as a subroutine in DEX is the Ben-Or algo-

rithm [4]. Algorithms that do not provide validity, such as PBFT [19],

cannot be used by DEX.

We now conclude this chapter with a few interesting open questions:

• Open Problem 1: Can we eliminate the drawback of DEX? or we

may ask: Can we design a one-step algorithm that does not waste any

communication step?

• Open Problem 2: What is the lower bound on the number of pro-

cesses for the strong one-step Byzantine consensus in asynchronous

systems?

• Open Problem 3: Can we design a one-step algorithm with better

message complexity than what is shown here?

38

Chapter 3

Improved Resiliency against

Mobile Byzantine Faults

In this chapter, we study the problem of reaching and maintaining agreement

among the set of non-faulty processes in the presence of a powerful adversary

that distributes up to t malicious agents which can move from one process

to another and try to corrupt them. This problem is referred to as mobile

Byzantine consensus problem. In a previous result [43], Garay has shown

that n > 6t is sufficient to solve this problem even in the presence of strong

agents that can move with full speed (in the sense that each agent can take

a movement in every round) and can make corrupted processes forget that

they run the algorithm (as a result, after recovery a process must learn the

current state of computation including the code from other processes). In

this chapter, we improve this result, by providing an algorithm MBC that

requires n > 4t to solve this problem in the same settings. In addition, we

show that our algorithm can also work for a model in which any process can

restart the algorithm immediately (but with some predefined state) after its

recovery.

The organization of this chapter is as follows: Section 3.1 provides the

system model, the definition of the mobile Byzantine consensus problem, and

other necessary formalizations. In section 3.2, presents our mobile Byzantine

consensus algorithm MBC and prove its correctness. Section 3.3 presents a

discussion on our new algorithm and some interesting problems for future

39

work.

3.1 Preliminaries

3.1.1 System Model

We consider a distributed system that consists of n processes numbered from

1 to n. Each process communicates with each other by sending messages over

a reliable link where neither message loss, duplication nor corruption occurs.

Our system is synchronous. This means that its execution is organized by

a sequence of rounds during which each process can send messages to other

processes, receive messages, and perform some local computation. Also, a

message sent in some round is necessarily received within in the same round.

We assume that the system is interfered by a powerful computationally

unbounded adversary which can inject up to t malicious agents into the

system. These agents can move from processes to processes at full speed

and corrupt them in a dynamic fashion. Because of the mobility of agents,

any process can be corrupted during the course of the algorithm. However,

we assume that one process remains uncorrupted for O(n) rounds, since a

discouraging impossibility result [63] proved that consensus is not solvable

without restrictions even with a single mobile failure. Since each agent can

corrupt one process at a round, the total number of corrupted processes in

any round is at most t. A corrupted process may behave arbitrarily, which

means that even it is allowed not to follow the deployed algorithm. We

also assume that, a corrupted process can recover and re-join the on-going

execution after the corrupting agent left it. We refer the processes that are

corrupted in the current round as faulty, and the processes that were faulty

in the previous round, but no longer as cured. Also, we use the term correct

to refer the processes that are neither faulty nor cured in the current round.

In the next subsection, we define two types of agents and their corre-

sponding recovery models.

40

3.1.2 Agent Types and Recovery Models

Based on the severity of corruption, we can model two types of agents as

follows:

• Code-Erasable Free-moving (CEF) agent: In addition to cor-

ruption, this agent do erase the local memory of the infected process

including the code. It can also migrate from one process to another at

any time during a round.

• Code-Intact Free-moving (CIF) agent: This agent can corrupt a

process, but it can not erase its local memory. Also, it can migrate

from one process to another at any time during a round.

We now construct two recovery models, one for each type of agent as

follows: assume that an agent leaves a process p in round r.

• CEF Agent Recovery (CEFAR) Model: Process p recovers in

round r + 1. After recovery, it learns the code and the current state of

computation from other processes by receiving messages that were sent

in round r + 1. Then, p starts participating in the on-going execution

from round r + 2.

• CIF Agent Recovery (CIFAR) model: Process p recovers to some

predefined state in round r +1 and starts participating in the on-going

execution in the same round. However, any process q that receives a

message from p in this round can realize that p is a cured process and

p can not contribute in a meaningful way to the on-going execution.

Note that, the CIFAR model allows the recovering processes to rejoin the

on-going execution without learning the current state of computation while

the CEFAR model requires that processes must learn it before reintegration.

3.1.3 Problem Definition

In mobile Byzantine consensus problem, each correct process p has an initial

value vp from the set V of all possible initial values, and decides a value v

according to the following rules.

41

• Termination: Each correct process eventually irreversibly decides a

value v.

• Agreement: The correct processes decide on the same value.

• Unanimity: If all correct processes have the same initial value v, then

no correct process decides a value different from v.

• Consistency maintenance: Once agreement is reached among cur-

rently correct processes, it must be maintained among the (possibly

different) correct processes.

Note that, any algorithm that solves the above problem is responsible not

only for reaching the agreement, but for preserving the agreement among all

correct processes forever. This is required, since even if agreement is reached

at some point, the mobile agents can move to corrupt the correct processes

and make the agreement disappear.

3.1.4 Notations

Let V be an ordered set of all possible proposal values. We introduce the

default value ⊥ such that ⊥/∈ V and ⊥< min(V). Let I be an vector in

(V ∪ {⊥})n. The number of occurrences of a value v in I is denoted by

#v(I).

3.2 Improved Mobile Byzantine Consensus Al-

gorithm

3.2.1 Algorithm MBC

In this subsection, we present a mobile Byzantine consensus algorithm MBC

for synchronous systems with CEFAR model. The algorithm is described in

Fig. 3.1. It requires n > 4t and at least one process remains uncorrupted for

at least 3n rounds. This algorithm consists of phases, each phase is made of

three rounds, namely, Proposal round, Voting round, and Coordinator round

during which the processes exchange messages. Each message consists of

42

Algorithm MBC

1 : val ← v

2 : Begin

3 : for all s from 1 to ∞ do

4 : coord-accept ← True

Proposal round of phase s

5 : PV ← [⊥,⊥, ...,⊥]

6 : Send (PROP, val) to all

7 : for all i do: if a message (PROP, v) is received from process i then PV [i] ← v

8 : if (∃v 6=⊥: #v(PV) ≥ n− 2t and #v(PV) + #⊥(PV) ≥ n− t) then

9 : val ← v

10 : else

11 : val ← ⊥
12 : end if

Voting round of phase s

13 : SV ← [⊥,⊥, ...,⊥]

14 : Send (VOTE, val) to all

15 : for all i do: if a message (VOTE, v) is received from process i then SV [i] ← v

16 : if (∃v 6=⊥: #v(SV) > 2t) then

17 : val ← v

18 : coord-accept ← False

19 : else if (∃v 6=⊥: #v(SV) > t) then

20 : val ← v

21 : else

22 : val ← ⊥
23 : end if

Coordinator round of phase s

24 : EV ← [⊥,⊥, ...,⊥][⊥,⊥, ...,⊥]

25 : Send (ECHO, SV) to all

26 : for all i do: if a message (ECHO, sv) is received from process i then EV [i] ← sv

27 : if I am cured then

28 : Reconstruct()

29 : coord ← s mod n;

30 : if (∃v 6=⊥: #v(EV [coord]) > t) then coord ← v else coord ←⊥ end if

31 : if coord-accept = True then

32 : val ← max{coord-val, min{V}}
33 : end for

34 : End

Figure 3.1: Algorithm MBC for CEFAR model

43

Procedure Reconstruct()

35 : Begin

36 : for all i do

37 : if ∃v 6=⊥ such that |{j|EV [j][i] = v}| > n− 2t then

38 : SV [i] ← v

39 : else

40 : SV [i] ← ⊥
41 : end if

42 : end for

43 : if (∃v 6=⊥: #v(SV) > 2t) then

44 : val ← v

45 : coord-accept ← False

46 : else if (∃v 6=⊥: #v(SV) > t) then

47 : val ← v

48 : else

49 : val ← ⊥
50 : end if

51 : End

Figure 3.2: Procedure Reconstruct for CEFAR model

values and a message tag (such as PROP, VOTE and ECHO) that indicates

the name of the round in which it is sent. These messages can also include

the algorithmic code and the current state of computation, etc., that help

the recovering processes to correctly reintegrate into the on-going execution,

but they are omitted for the sake of clarity. Remember that, by definition, in

CEFAR model the cured processes do not send messages but they can receive

messages. The three rounds are detailed as follows, where in the description,

just ’process’ means correct or cured one.

• Proposal round: The aim of this round is to end up in a situation where

there is a single value v (v 6=⊥), such that every process adopts either

v or ⊥. To attain this goal, each currently correct process sends a

message < PROP, val > to provide the other processes with its value

val and stores the received values in vector PV . Note that, since cured

processes (if any) are silent, the entries that correspond to them in PV

contain ⊥. Each process adopts a value v if only if it appears at least

n−2t times in its vector PV and the sum of the number of occurrences

44

of v and ⊥ in PV is at least n − t. Since any two sets of n − t values

will intersect at a correct process’s value, it is ensured that there exists

a single value v and all processes, that do not adopt ⊥, will adopt the

same value v.

• Voting round: In this round, each process checks for the existence of a

unique value v. If such a value v exists, then it adopts v and chooses

not to adopt the coordinator value in the next round, else it chooses to

adopt the coordinator value in the following round. To do this, each

correct process sends its value val in a message < V OTE, val > to all

processes and stores the received values in a vector SV . Then, if more

than 2t of the votes are for some value v, then it adopts v and chooses

not to accept the coordinator value by setting its variable coord-accept

as ”False”. If more than t of the votes are for v, then it adopts v,

otherwise, it adopts ⊥. In these cases, processes choose to accept the

coordinator value.

• Coordinator round: The aim of this round is to try to make all pro-

cesses have the same value. In this round, each correct process sends

a message < ECHO,SV > to provide its vector SV to all processes,

and stores the received vectors in EV . A cured process in this round

executes the procedure Reconstruct, given in Fig. 3.2, to reconstruct

the values for its variables val and coord-accept. Since, all processes

are supposed to send their vectors, each process can compute the cur-

rent coordinator value. Then, a process adopts the current coordinator

value only if its variable coord-accept is ”True”. The secret of the algo-

rithm is, when the coordinator is correct, at the end of the coordinator

round, all processes have the same value v in its variable val regardless

of whether they accept or ignore the coordinator value.

3.2.2 Correctness

In the following, for a given phase l, let N v
c (l) and N v

cu(l) respectively be the

number of correct processes with val = v and the number of cured processes

that learnt v, at the end of the phase l.

45

Lemma 9 (Agreement) The correct processes decide on the same value.

Proof We say that the agreement is reached if all correct processes have

the same value, say v, at the end of some phase l.

Claim. There exists a phase l such that at the end of l all correct and cured

processes have the same value v. That is, the condition N v
c (l)+N v

cu(l) ≥ n−t

holds. End of the Claim.

Once we establish this claim, the lemma directly follows.

Proof of the claim. Remember that, we have assumed one process, say k,

that remains uncorrupted for at least 3n rounds. Let l be the phase in which

this uncorrupted process k is the coordinator. Note that, as k is correct,

it will send the same vector SVk to all processes. There are two cases to

consider (at line 31 of algorithm MBC):

• (Case 1:) coord-accept is True for every process p (it means p chooses

to adopt the coordinator value). Since all processes get the same vector

SVk from k, they compute the same value v at line 32 and adopt it.

Hence, N v
c (l) + N v

cu(l) ≥ n− t holds. The claim follows.

• (Case 2:) coord-accept is False for some process p (it means that p

does not adopt the coordinator value, but other processes do adopt that

value). Since coord-accept is False at p, it follows that, there exists

some value v such that #v(SVp) > 2t, and hence p adopts v. Note

that, in voting round, if two correct processes vote for v /∈⊥ and v′ /∈⊥
respectively, then v = v′. Also, since there are at most t Byzantine

processes, and cured processes do not cast vote, it is guaranteed that

at coordinator k , #v(SVk) > t and #v′(SVk) ≤ t holds for any value v′

(v′ /∈ {v,⊥}). As a result, at every process the coordinator value is v.

It follows that all processes (correct and cured) adopt the same value v

regardless of whether they accept or ignore the coordinator value. The

claim follows.

2

Lemma 10 (Consistency maintenance) Let n ≥ 4t + 1. If at the end

phase l, N v
c (l)+N v

cu(l) ≥ n−t holds for some value v, then N v
c (m)+N v

cu(m) ≥
n− t holds at all phases m (m > l).

46

Proof Assume that at the end of the phase l, N v
c (l) + N v

cu(l) ≥ n− t holds

for some value v. In the proposal round of phase l + 1, at most t new faults

can occur, and hence at least n−2t correct processes will send v. As for each

new fault there is a cured process, at each process p, #v(PVp) ≥ n− 2t and

#v(PVp) + #⊥(PVp) ≥ n − t holds. Hence, all correct and cured processes

(that is, at least n− t processes) set their values to v.

In the voting round, since at most t new faults can occur, at least n−2t ≥
2t + 1 processes vote for v. Hence, each p can collect at least n − 2t votes

for v (i.e., #v(SVp) > 2t) . Also, as there are only t Byzantine faults, p can

collect at most t votes for some value v′(v′ /∈ {v,⊥}). Therefore, p assigns v

to val and ”False” to coord-accept.

In the coordinator round, all (at least n−2t correct) processes send their

vector SV to all processes. Since the correct processes do not accept the

coordinator value, their values remain as v. For each new fault, there is a

cured process. When each cured process reconstructs its vector SV using

procedure Reconstruct, it finds that #v(SV) > 2t. Thus, it adopts v and

ignores the coordinator value. As a result, at the end of l + 1, N v
c (l + 1) +

N v
cu(l + 1) ≥ n− t holds and the lemma follows. 2

Lemma 11 (Unanimity) If all correct processes have the same initial value

v, then no correct process decides a value different from v.

Proof Since at the beginning of first phase all correct processes (at least n-t)

have the same initial value v, by using the same arguments as in lemma 10, we

can show that at the end of first phase, the condition N v
c (1)+N v

cu(1) ≥ n− t

holds and this situation continues in all the following phases. Hence, the

lemma holds. 2

Lemma 12 (Termination) Each correct process eventually irreversibly de-

cides a value.

Proof From lemma 9, it is proved that all processes (correct and cured)

decide on the same value v (v ∈ V) at the end of the correct coordinator

phase l. As well as, from lemma 10, it is proved that this decision value is

never changed. Hence, each correct process eventually irreversibly decides a

value. 2

47

Theorem 4 Let n > 4t. The algorithm MBC described in Fig. 3.1 solves

the mobile Byzantine consensus problem.

Proof The proof follows from lemmas 9, 10, 11, and 12. 2

The algorithm MBC can work in the new model, CIFAR model, with a few

lines of additional code given below:

6: Send (PROP, val) to all

6.1: if a message (MSG-TAG, *) received from t + 1 distinct processes then

6.2: msg-tag ← MSG-TAG

6.3: Learn s

6.4: Case (msg-tag = PROP) : go to line 7

6.5: (msg-tag = V OTE) : go to line 15

6.6: (msg-tag = ECHO) : go to line 26

6.7: End Case

52: On Recovery

53: val ←⊥
54: go to line 2.

Theorem 5 Let n > 4t. The algorithm MBC described in 3.1 solves the

mobile Byzantine consensus problem in synchronous systems with CIFAR

model.

Proof Notice that, in CIFAR model, the cured processes participate in the

on-going execution with some predefined state ⊥. Hence, in every execution,

the vectors computed by each process are exactly same to the corresponding

ones resulted from the same execution in CEFAR model. Hence, lemmas 9,

10, 11 and 12 are exactly the same. Thus, the proof follows. 2

3.3 Discussion and Open Problems

We conjecture that we can not improve the resilience more than n > 4t in

both CEFAR and CIFAR models, since a previous result [68] has proved that,

even in a stronger model in which faults are static, n > 4t is the necessary

assumption to solve consensus with t benign failures and t Byzantine failures.

Note that, benign failures are less severe than Byzantine failures. Examples

for benign failures are omission failure and data-out-of-bound failure: when

a process fails by omission, it forgets to send or receive messages, and when

48

it fails by data-out-of-bound, its proposal values are out of the set of all

possible proposal values to consensus algorithms. In CEFAR model, we may

consider the cured processes as omission failures since they do not send any

messages. Similarly, in CIFAR model, the cured processes may be considered

as data-out-of-bound failures since they send the value ⊥/∈ V . Hence, we can

say that our models also allow t benign and t Byzantine failures in every

round. Above all, our models are weaker models in the sense that the set of

faulty processes dynamically changes in every round.

This chapter leaves the following interesting questions:

• Open Problem 1: What is the lower bound on the number of pro-

cesses for mobile Byzantine consensus in both CEFAR and CIFAR

models?

• Open Problem 2: Can we improve the resilience further by reducing

the speed of mobile agents? or We may ask : What is the relationship

between resilience and the speed of agents?

49

Chapter 4

Summary and Future

Directions

In this chapter, we summarize our contributions in this thesis and mention

some problems for future investigations.

4.1 Summary of Contributions

We first summarize our main achievements concerning one-step Byzantine

consensus.

• We have investigated one-step Byzantine consensus in asynchronous

systems and have shown that the efficiency of the one-step Byzantine

algorithms can be improved by adaptive condition-based approach. We

have also shown that the impossibility of zero-degradation in one-step

consensus can be circumvented by double-expedition property, a new

concept introduced by us.

• We have proposed a novel generic adaptive doubly-expedited one-step

Byzantine algorithm DEX that guarantees fast termination for a large

number of inputs when there are fewer failures and provides both one-

and two-step decisions without any additional stronger assumptions.

Another important feature of our algorithm is that it is optimal in

terms of the number of processes for one-step asynchronous consensus.

50

In addition, DEX can be instantiated with any condition-sequence pair

satisfying the legality criteria defined by us. We also presented two

examples of such legal condition-sequence pairs, namely frequency-based

pair and privileged-value-based pair. One drawback of our algorithm is

that it trades the decision scheme at third step for double-expedition

property.

Next, we summarize our contribution for mobile Byzantine Consensus.

• We have improved the result of Garay [43] without any additional as-

sumption. That is, we have proposed a mobile Byzantine consensus

algorithm MBC for synchronous systems prone to malicious agents

that can corrupt processes and move at full speed from processes to

processes to corrupt new processes before the currently corrupted pro-

cesses recover. This algorithm improves on the bound t, namely it

requires n > 4t, in stead of n > 6t (Garay’s result). In addition, we

show that our algorithm can also work for a new model in which any

process can restart the algorithm immediately but with some prede-

fined state after its recovery.

4.2 Future Directions

• Mobile Byzantine consensus with Homonyms: In this thesis,

we have assumed a network in which processes have distinct identi-

ties. However, it might be a very strong assumption in systems like

[62, 67], due to the fact that authenticated unique identifiers are typi-

cally achieved through collision free hash functions and these schemes

may be vulnerable to malicious attacks, since inputs that produce the

same output for some such functions can be found efficiently [72]. In

addition, in many cases, processes (users) may wish to preserve their

privacy by remaining anonymous. However, in a fully anonymous sys-

tem where processes have no identifiers at all Byzantine consensus is

simply impossible. By using a limited number of identifiers, that is by

assigning l identifiers to n processes where l ≤ n, one can preserve some

level of anonymity and hide, to some extent, the association between

51

users and identifiers. In the literature, the processes with the same iden-

tifier are called as Homonyms [26]. There have been very few works [26]

that attempt to design protocols that work with homonyms. We may

study the mobile Byzantine consensus in networks with homonyms.

• Incomplete Network: In this thesis, we restricted our network to

complete network. But in real life it is quite impractical to have an

underlying network as complete network where every two processes

can communicate between them through their private reliable channel.

There have been very little attempt [1, 28, 29, 52] to characterize and

find feasible solutions for Byzantine consensus over incomplete net-

works. Thus it is very important to pursue further research in that

network model.

• Mobile Network: While the topology of the network is assumed to

remain unchanged throughout the runtime of the protocol in this thesis,

such an assumption may not always hold in practice. We infer that the

ideas to deal with mobile adversaries over static networks can be used

to thwart static adversaries in mobile networks (over the same set of

processes) - this is because, the disappearing of an edge can be treated

as that edge being newly fail-stop corrupted, while the reappearing of

a new edge may be treated as the curing of that infected edge.

• Unknown Network: In this thesis, we assumed that the set of pro-

cesses that participate in consensus execution is static and known. But

in a scenario of unknown networks, the set and number of participants

are previously unknown. Each participant knows only its neighbors.

There have been very few works that study consensus in the context

of dynamic and self-organizing systems characterized by unknown net-

work [1, 20, 44]. We may further study Byzantine consensus in un-

known networks.

52

Acknowledgements

This thesis is the end of my journey in obtaining my Ph.D. At this mo-

ment of accomplishment, it is my pleasure to express my thanks to all those

who contributed in many ways to the success of this study and made it an

unforgettable experience for me.

First of all, I would like to express my deep and sincere gratitude to my

wonderful supervisor Prof. Koichi Wada for accepting me in his laboratory

and for his support in dissecting distributed consensus. This work would not

have been possible without his guidance, support and encouragement. His

perpetual energy, wide knowledge and enthusiasm in research have been of

great value for me. In addition, he was always accessible and willing to help

his students. As a result, research life became smooth and rewarding for me.

I am also extremely indebted to my co-supervisor Prof. Taisuke Izumi

who sharpened my thinking, refined my arguments, improved my writing

and, most of all, provided both support and kindness at all times. He was

and remains my best role model for a scientist, mentor, and teacher.

I take this opportunity to sincerely acknowledge the Japanese Govern-

ment for providing financial assistance in the form of MONBUKAGAKUSHO

(MEXT) scholarship which buttressed me to perform my work comfortably.

I also acknowledge Nagoya Institute of Technology for providing me an excel-

lent research atmosphere. I would like to thank Hori foundation for providing

financial support for my travel to an international workshop.

I will forever be thankful to my former college research advisor Prof. D.I.

George Amalarethinam. He was the reason why I decided to pursue my

doctoral course in Japan. I will never forget the philosophical conversations

that we had many times. As I look back now, I see how those conversations

boosted my spirits, changed many aspects of my life immensely.

53

I gratefully acknowledge my lab mate Dr. Samia Souissi for her under-

standing, encouragement and personal attention which have provided good

and smooth basis for my Ph.D. tenure. She has a tremendous influence on

my professional as well as personal development. I owe my loving thanks to

my close friends Khairunnisa, Fathima, Noorjahan, Vahida and Hafeeza who

stood by me through the ups and downs of my life. I will never forget about

those endless gossips, laughs that we had. Their friendship is truly beyond

words of acknowledgement.

My sincere thanks to my in-laws (N. Sirajudeen and Late S. Rahmath-

unisa) and sister-in-law (Dr. S. Shameema Banu) for their unconditional

support. They have always encouraged me for my study and above all they

have unconditionally supported me in all that I wanted to do in my life.

Now I would like to thank five remarkable people who had, are having

and will continue to have a tremendous influence on my life: my parents A.

Mohamed Hanifa and M. Mallika Jan , my husband S. Mohamed Farook, my

kids M. Thasleem Arifa and M. Mohamed Irfan. They have lost a lot due

to my research abroad. Without their encouragement and understanding it

would have been impossible for me to finish this work.

Above all, I would like to thank God, the almighty, for having made

everything possible by giving me strength and courage to do this work.

54

Bibliography

[1] E. A. P. Alchieri, A. N. Bessani, J. S. Fraga, and F. Greve. Byzantine

consensus with unknown participants. In Proc. of the 12th International

Conference on Principles of Distributed Systems, pages 22–40, 2008.

[2] B. Altmann, M. Fitzi, and U. M. Maurer. Byzantine agreement secure

against general adversaries in the dual failure model. volume 1693 of

LNCS, pages 123–137, 1999.

[3] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simu-

lations and Advanced Topics. Wiley, 2004.

[4] M. Ben-Or. Another advantage of free choice: Completely asynchronous

agreement protocols. In Proc. of the Second Annual ACM SIGACT-

SIGOPS Symposium on Princiles of Distributed Computing, pages 27–

30, 1983.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation(extended

abstract). In Proc. of the 20th Annual ACM Symposium on Theory of

Computing, pages 1–10, 1988.

[6] M. Ben-Or, E. Pavlov, and V. Vaikuntanathan. Byzantine agreement in

the full-information model in o(log n) rounds. In Symposium on Theory

of Computing, pages 179–186, 2006).

[7] P. Berman and J. A. Garay. Asymptotically optimal distributed consen-

sus (extended abstract). In Proc. of the 16th International Colloquium

on Automata, Languages and Programming, pages 80–94, 1989.

55

[8] P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed

consensus (extended abstract). In Proc. of 30th Annual Symposium on

Foundations of Computer Science, pages 410 –415, 1989.

[9] A. Bessani, P. Sousa, M. Correia, N. Neves, and P. Verissimo. The crutial

way of critical infrastructure protection. IEEE Security and Privacy,

6(6):44–51, 2008.

[10] M. Biely and M. Hutle. Consensus when all processes may be byzantine

for some time. Journal of Theoretical Computer Science, 412(33):4260–

4272, 2011.

[11] G. Bracha. An asynchronous b(n−1)/3c -resilient consensus protocol. In

Proc. of the Third Annual ACM Symposium on Princiles of Distributed

Computing, pages 154–162, 1984.

[12] G. Bracha. Asynchronous byzantine agreement protocols. Information

and Computation, 75(2):130–143, 1987.

[13] G. Bracha and S. Toueg. Asynchronous consensus and broadcast proto-

cols. Journal of ACM, 32(4):824–840, 1985.

[14] V. Brasileiro, F. Greve, A. Mostéfaoui, and M.Raynal. Consensus in

one communication step. In Proc. of the 6th International Conference

on Parallel Computing Technologies, volume 2127 of LNCS, pages 42–50,

2001.

[15] H. Buhrman, J. A. Garay, and J. Hoepman. Optimal resiliency against

mobile faults. In Proc. 25th International Symposium on Fault-Tolerant

Computing (FTCS’95), pages 83–89, 1995.

[16] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient

asynchronous broadcast protocols (extended abstract). In Kilian, J.,

editor, Advances in Cryptology: CRYPTO 2001, volume 2139 of LNCS,

pages 524–541, 2001.

[17] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with

optimal resilience. In Proc. of the Twenty-Fifth Annual ACM Sym-

posium on Theory of Computing, pages 42–51, 1993.

56

[18] M. Castro and B. Liskov. Practical byzantine fault tolerance and proac-

tive recovery. ACM Transactions on Computer Systems, 20(4):398–461,

2002.

[19] M. Castro and B. Liskov. Practical byzantine fault tolerance and

proactive recovery. ACM Transactions on Computer Systems (TOCS),

20(4):398–461, 2002.

[20] D. Cavin, Y. Sasson, and A. Schiper. Consensus with unknown par-

ticipants or fundamental self-organization. In Proc. of the 3rd In-

terntional Conference on AD–HOC Networks & Wireless (ADHOC-

NOW’04), pages 135–148, 2004.

[21] T. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-

tributed systems. Journal of the ACM, 43(2):225–267, 1996.

[22] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-

only memory: making adversaries stick to their word. In Proc. of the

21st ACM Symposium on Operating Systems Principles, pages 189–204,

2007.

[23] J. Considine, M. Fitzi, M. K. Franklin, L. A. Levin, U. M. Maurer, and

D. Metcalf. Byzantine agreement given partial broadcast. Journal of

Cryptology, 18(3):191–217, 2005.

[24] M. Correia, N. Neves, and P. Verissimo. From consensus to atomic

broadcast: Time-free byzantine-resistant protocols without signatures.

Computer Journal, 41(1):82–96, 2006.

[25] M. Correia, N. F. Neves, L. C. Lung, and P. Verissimo. Low complexity

byzantine resilient consensus. Distributed Computing, 17(3):237–249,

2005.

[26] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, A. Kermarrec, E. Rup-

pert, and H. Tran-The. Byzantine agreement with homonyms. In Prin-

ciples of Distributed Computing, pages 21–30, 2011.

57

[27] D. Dobre and N. Suri. One-step consensus with zero-degradation. In

Proc. of the International Conference on Dependable Systems and Net-

works(DSN’06), pages 137–146, 2006.

[28] D. Dolev. Unanimity in an unknown and unreliable environment. In

Proc. 22nd IEEE Symposium on Foundations of Computer Science,

pages 159–168, 1981.

[29] D. Dolev. The byzantine generals strike again. Journal of Algorithms,

3(1):14–30, 1982.

[30] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchronism

needed for distributed consensus. Journal of the ACM, 34(1):7797, 1987.

[31] D. Dolev, M. J. Fischer, R. J. Fowler, N. A. Lynch, and H. R. Strong.

An efficient algorithm for byzantine agreement without authentication.

Information and Control, 52(3):257–274, 1982.

[32] D. Dolev and R. Reischuk. Bounds on information exchange for byzan-

tine agreement. Journal of ACM, 32(1):191–204, 1985.

[33] D. Dolev, R. Reischuk, and H. R. Strong. Early stopping in byzantine

agreement. Journal of ACM, 37(4):720–741, 1990.

[34] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine

agreement. SIAM Journal on Computing, 12(4):656–666, 1983.

[35] P. Dutta and R. Guerraoui. Fast indulgent consensus with zero degra-

dation. In Proc. of the 4th European Dependable Computing Conference

on Dependable Computing, volume 2485 of LNCS, pages 191–208, 2002.

[36] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of

partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[37] P. Feldman and S. Micali. Byzantine agreement in constant expected

time (and trusting no one). In Proc. of 26th Annual Symposium on

Foundations of Computer Science, pages 267–276, 1985.

58

[38] P. Feldman and S. Micali. An optimal protocol for synchronous byzan-

tine agreement. SIAM Journal of Computing, 26:873–933, 1997.

[39] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed

consensus with one faulty process. Journal of ACM, 32(2):374–382,

1985.

[40] M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein, and A. Smith. De-

tectable byzantine agreement secure against faulty majorities. In Proc.

of the Twenty-First Annual ACM Symposium on Principles of Dis-

tributed Computing, pages 118–126, 2002.

[41] M. Fitzi and U. Maurer. Efficient byzantine agreement secure against

general adversaries. In Proc. of Distributed Computing (DISC ’98), vol-

ume 1499 of LNCS, 1998.

[42] R. Friedman, A. Mostefaoui, and M. Raynal. Simple and efficient oracle-

based consensus protocols for asynchronous byzantine systems. IEEE

Transactions on Dependable and Secure Computing, 2(1):46–56, 2005.

[43] J. Garay. Reaching (and maintaining) agreement in the presence of

mobile faults. In Proc. 8th International Workshop on Distributed Al-

gorithms, volume 857 of LNCS, pages 253–264, 1994.

[44] F. Greve and S. Tixeuil. Knowledge connectivity vs. synchrony require-

ments for fault-tolerant agreement in unknown networks. In Proc. of

the 37th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks(DSN ’07), pages 82–91, 2007.

[45] R. Guerraoui and M. Raynal. The information structure of indulgent

consensus. IEEE Transactions on Computers, 53(4):453–466, 2004.

[46] R. Guerraoui and A. Schiper. The generic consensus service. IEEE

Transactions on Software Engineering, 27(1):29–41, 2001.

[47] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant

broadcasts and related problems. Technical report, 1994.

59

[48] T. Izumi and T. Masuzawa. Condition adaptation in synchronous con-

sensus. IEEE Transactions on Computers, 55:843–853, 2006.

[49] T. Izumi and T. Masuzawa. One-step consensus solvability. In Proc. of

the 22nd international symposium on Distributed Computing(DISC’06),

volume 4167 of LNCS, pages 224–237. Springer, 2006.

[50] I. Keider and S. Rajsbaum. On the cost of fault-tolerant consensus when

there are no faults. SIGACT News, 32(2):45–63.

[51] L. Lamport. The weak byzantine generals problem. Journal of ACM,

30(3):668 –676, 1983.

[52] L. Lamport, R. E. Shostak, and M. C. Pease. The byzantine generals

problem. ACM Transactions on Programming Languages and Systems

(TOPLAS), 4(3):382–401, 1982.

[53] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[54] D. Malkhi and M. Reiter. Unreliable intrusion detection in distributed

computations. In Proc. of the 10th Computer Security Foundations

Workshop, pages 116–124, 1997.

[55] A. Mostefaoui, S. Rajsbaum, and M. Raynal. Conditions on input vec-

tors for consensus solvability in asynchronous distributed systems. Jour-

nal of the ACM, 50(6):922–954, 2003.

[56] A. Mostéfaoui, S. Rajsbaum, and M. Raynal. Using conditions to expe-

dite consensus in synchronous distributed systems. In Proc. of the 17th

international symposium on Distributed Computing(DISC’03), volume

2848 of LNCS, pages 249–263, 2003.

[57] A. Mostefaoui, M. Raynal, C. Travers, S. Pattersona, D. Agrawal, and

A. Abbadi. From static distributed systems to dynamic systems. In

Proc. of the 24th IEEE Symposium on Reliable Distributed Systems,

pages 109–118, 2005.

60

[58] N. F. Neves, M. Correia, and P. Verissimo. Solving vector consensus with

a wormhole. IEEE Transactions on Parallel and Distributed Systems,

16(12):1120–1131, 2005.

[59] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the

presence of faults. Journal of the ACM, 27:228–234, 1980.

[60] M. O. Rabin. Randomized byzantine generals. In Proc. of the 24th

Annual IEEE Symposium on Foundations of Computer Science, pages

403–409, 1983.

[61] D. V. S. Ravikant, M. Venkitasubramaniam, V. Srikanth, K. Srinathan,

and C. P. Rangan. On byzantine agreement over (2,3)-uniform hyper-

graphs. In Proc. of the 18th international symposium on Distributed

Computing(DISC’04), volume 3274 of LNCS, pages 450–464, 2004.

[62] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object

location and routing for large-scale peer-to-peer systems. In Proc. of

Middleware’01 : IFIP/ACM International Conference on Distributed

Systems Platforms, volume 2218 of LNCS, pages 329–350, 2001.

[63] N. Santoro and P. Widmayer. Time is not a healer. In Proc. 6th Annual

Symposium on Theor. Aspects of Computer Science(STACS89), volume

349 of LNCS.

[64] U. Schmid, B. Weiss, and I. Keidar. Impossibility results and lower

bounds for consensus under link failures. SIAM Journal on Computing,

38:1912–1951, 2009.

[65] F. Schneider. Implementing faul-tolerant services using the state ma-

chine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,

1990.

[66] Y. Song and R. Renesse. Bosco: One-step byzantine asynchronous con-

sensus. In Proc. of the 22nd international symposium on Distributed

Computing(DISC’08), volume 5218 of LNCS.

61

[67] I. Stoica, R. Morris, D. Karger, M. K. Frans, and H. Balakrishnan.

Chord: A scalable peer-to-peer lookup service for internet applications.

SIGCOMM Computer Commununication Review, 31:149–160, 2001.

[68] P. Thambidurai and P. You-Keun. Interactive consistency with multiple

failure modes. In Proc. Reliable Distributed Systems, pages 93 – 100,

1988.

[69] S. Toueg, K. J. Perry, and T. K. Srikanth. Fast distributed agreement.

SIAM Journal of Computing, 16(3):445–457, 1987.

[70] R. Turpin and B. A. Coan. Extending binary byzantine agreement

to multivalued byzantine agreement. Information Processing Letters,

18(2):73–76, 1984.

[71] G. Veronese, M. Correia, A. Bessani, and L. Lung. Highly-resilient

services for critical infrastructures. In Proc. of the Embedded Systems

and Communications Security Workshop, 2009.

[72] X. Wang and H. Yu. How to break md5 and other hash functions. In

EUROCRYPT, volume 3494 of LNCS, pages 19–35, 2005.

[73] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sep-

arating agreement from execution for byzantine fault-tolerant services.

In Proc. of the 19th ACM Symposium on Operating Systems Principles,

pages 253–267, 2003.

62

