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Abstract

The challenges in high usage of renewable energy resources such as the solar

power, wind power, and biomass fuel have been addressed recently in both

academic and commercial societies to solve the global warming and fossil fuel

exhaustion problems. Under the situation, automakers have accelerated the

development and practical applications of green vehicles or environmentally

friendly vehicles as hybrid cars, plug-in hybrids, electric cars, and fuel

cell-powered hydrogen cars. Rechargeable batteries are indispensable for

these green vehicles, and the research and development have focused on

the lithium (Li) ion rechargeable battery because of its high energy density.

In the battery, the Li ions are shuttled between the positive and negative

electrodes by the applied voltage through the nonaqueous electrolyte and

separator. Such charge and discharge reactions in the Li-ion battery involve

following key processes: the transport of the Li ions in both electrode

and electrolyte materials, the charge transfer at the electrolyte-electrode

interfaces, and the internal structural changes of the electrodes relating to

the increase in the Li density. Much interest exists to advance the power,

capacity, recharging speed, and durability of the Li-ion battery.

The graphite can form various intercalation compounds by incorporating

atoms (ions) and small molecules between the carbon (C) layers. Among

these, the Li-graphite intercalation compound (Li-GIC) is put to practical

use as a negative electrode of the Li-ion rechargeable battery. Among the key

processes, the transport process of the Li ions in the graphite layers is related

directly to the power performance of the Li-ion batteries. In the Li insertion

process of the Li-GIC, the Li ion creates a long-ranged stress field around

itself by expanding the inter-layer distance of the graphite. To take into

account such a long-ranged stress field in the first-principles simulation of

the Li diffusion, the hybrid quantum (QM)-classical (CL) simulation code is

developed. In the hybrid code, the QM region selected adaptively around the

Li ion following its motion is treated with the real-space density-functional

theory. The rest of the total system is described with an empirical interatomic

potential that includes a novel formula for the dispersion force between the

C atoms that belong to different layers. Buffered cluster method is applied



for coupling of the QM and CL regions.

In the present thesis we firstly perform a series of the hybrid QM-CL

simulation runs for the dynamics of a single Li-ion in the graphite at

temperature of 423 K for various values of the averaged inter-layer distance.

It is found that the Li diffusivity is suppressed substantially when the

inter-layer distance is compressed by a few percent from the equilibrium

value. On the other hand, the Li diffusivity is unaffected by the stretching of

the inter-layer distance up to a few percent. In the equilibrium and stretched

cases, the diffusive motion of the Li ion is composed of ballistic and hopping

modes. In the compressed case, the Li ion diffuses in the hopping mode

only and is confined in a small area at long times. Separately the activation

energy for the hopping diffusion is calculated at zero temperature to find that

it is as small as 0.1 eV and that the substantial contribution comes from the

deformation energy of the whole system. Based on the findings we propose

a novel mechanism to explain the unique Li-density dependence of the Li

diffusivity observed experimentally in the Li-GIC.

We secondary analyze the relation between the vertical position and

diffusivity of the Li ion in graphite. The Li diffusivity is enhanced when

the Li ion escapes from one of the two stable vertical sites to move around

the middle of the upper and lower C-layers where a resisting force on the Li

ion for the perpendicular motion is relatively weak.

Considering the analyses, we thirdly perform additional hybrid simulation

runs for the Li dynamics in graphite at 423 K under various settings of

the amplitude and frequency of alternating electric fields perpendicular to

C-layers. The in-plane diffusivity of the Li ion is enhanced significantly by

the electric field if the amplitude is larger than 0.2V/Å within its order and

the frequency is as high as 1.7 THz. The microscopic mechanisms of the

enhancement are explained.
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Chapter 1

Introduction

1.1 Motivation

The global warming that has been guessed to be caused by the emission

of greenhouse gas as carbon dioxide and the exhaustion of fossil fuel itself,

are going to limit social growth and flourish. The challenges in moving

towards renewable energy resources such as the solar power, wind power

generation, and biomass fuel have been addressed in both academic and

commercial societies. Under the situation, automakers have accelerated the

development and practical applications of green vehicles or environmentally

friendly vehicles, for example, hybrid cars (HV), plug-in hybrids (PHV),

electric cars (EV), and fuel cell-powered hydrogen cars (FC). Rechargeable

batteries are indispensable for these green vehicles, and the research and

development have focused on the lithium (Li) ion rechargeable battery.

The Li-ion rechargeable battery provides higher energy density compared

to the various other known rechargeable battery systems such as lead-acid,

nickel-cadmium, and nickel-metal hydride batteries. In the Li-ion battery,

the Li ions are shuttled between the positive and negative electrodes by the

applied voltage through the nonaqueous electrolyte and separator as shown in

Fig. 1.1. Such charge and discharge reactions involve following key processes:

the transport of the Li ions in both electrode and electrolyte materials,

the charge transfer at the electrolyte-electrode interfaces, and the internal

structural changes of the electrodes relating to the increase in the Li density.

Various requirements exist to advance the power, capacity, recharging speed,

1



CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic view of a Li-ion battery.

and durability of the Li-ion battery.

Intercalation compounds are used in the Li-ion batteries [1]. Metal-oxides

like lithiated Co oxides (LiCoO2) have become attractive positive electrodes.

While, graphite forms intercalation compounds with some metals or

small molecules inserted between its layers. The Li-graphite intercalation

compound (Li-GIC) is put to practical use as a negative electrode of the

Li-ion battery. Basically, the charge-discharge reactions of Li-ion batteries

involve: the migration of Li ions in the electrode and electrolyte materials, the

charge transfer at their insertion into (or extraction from) the host electrodes,

and the structural changes of electrodes. The transport properties of Li

in the graphite layers particularly affect the power performance of Li-ion

batteries, and the knowledge of diffusion process is required for the design

and optimization of Li-ion batteries. In order to understand the mechanism

of Li diffusion in more detail, it is essential to clarify the overall relation

between the bonding nature of Li with carbon (C) atoms in the graphite

and its structural change. From the theoretical point of view, the coupled

calculation should be performed in focusing on not only the static properties

2



1.1. MOTIVATION

such as the electronic structure on the Li-GICs but also the dynamics of Li

simultaneously.

Large, multi-scale simulation has been attracting much attention as

one of the systematic methods that meet the situation mentioned above,

where we cannot separate the macroscopic dynamical behavior of the

whole system and the microscopic processes at electronic level. Generally,

the classical molecular dynamics (MD) simulations based on an empirical

atomic interaction potential model for large systems can be handled on

parallel machines with order-N algorithm. However, the classical MD

cannot treat the chemical reaction such as the formation or scission of

chemical bonds. On the other hand, the computational efficiency of the

first-principles MD technique which treats not only electronic states by using

the quantum-mechanical (QM) theory but also time evolution of atoms has

greatly increased, but the system scale is still limited. Further improvement

of the performance of computer is desirable to apply this technique to the

system of real scale. Thus hybrid quantum (QM)-classical (CL) simulation

schemes have attracted great attention as they are aiming at both large-scale

and high accuracy. In the scheme, the reaction region where the electronic

structure should be treated by a highly accurate calculation technique such

as the density functional theory (DFT), and this region is embedded in a

CL system of atoms described with an empirical interaction model. It is

expected that we can simulate the realistic large-scale system to reproduce

the physical phenomenon of our interest by using the hybrid scheme. It is a

very active area of research and some relevant methods have been proposed,

perhaps the most popular one is ONIOM [2]. However, insufficient accuracies

are observed, especially when it is applied to three-dimensional materials.

In this study, we apply originally developed hybrid QM-CL simulation

code to analyze the diffusion process of the Li ion in Li-GICs. The region

including the inserted Li and neighboring C atoms is treated with electronic

state by the DFT code implemented with the finite difference method. On the

other hand, the classical MD method using empirical interatomic potential

is adopted to the movement of the rest C atoms of graphite. Buffered cluster

method (BCM) [3], which is a technique suited to couple the QM and CL

regions in three-dimensional materials, is applied.

3



CHAPTER 1. INTRODUCTION

The rest of the present thesis is organized as follows. The following three

sections in this chapter present a brief outline of the theory on MD, DFT,

and BCM, which are the foundations of the present code. In Chap. 2,

we will describe the details of the interatomic interaction model between

C atoms used in the CL calculation. Chapter 3 will report the simulation

results on the preparatory calculations when the hybrid QM-CL simulation

technique is applied to the Li-GIC. A series of the hybrid QM-CL simulation

runs on stress-dependence of Li diffusivity in graphite at temperature of

423 K will be performed in Chap. 4. We will discuss about the relation

between the inter-layer distance and the Li diffusivity. Possible explanation

for the significant lowering of the Li diffusivity observed experimentally at the

situation of mixed stage-structures will be given. In Chap. 5, we will analyze

the relation between the vertical position and diffusivity of the Li ion in

graphite. Motivated by the results of the present analyses, we will perform

additional hybrid simulation to demonstrate enhanced thermal diffusivity of

the Li ion by applying various settings of the amplitude and frequency of

alternating electric fields perpendicular to C-layers. The summary of the

present study will be shown in Chap. 6.

1.2 Molecular dynamics for classical (CL)

dynamics calculation

The molecular dynamics (MD) calculation is one of the most basic materials

simulation tools. This technique is used for the study of many physical

chemistry phenomena in fluid, phase transition, droplet, etc. In this section,

only the basic introduction is described.

1.2.1 Molecular dynamics

The most important point of the MD scheme is how to describe the

interatomic interaction, or how to incorporate electronic structural change

as a hidden variation. The first-principles MD simulation method with

interatomic interaction calculated on the fly from the electronic structure,

is still time-consuming. Therefore, the classical MD method which uses

4



1.2. MD FOR CL DYNAMICS CALCULATION

potentials based on experimental data or the independent electronic structure

calculation is popular. The interaction is usually divided into two-body,

three-body, and many-body terms, they may be long-ranged or short-ranged;

each term is represented by a useful function form.

The MD simulation begins by initialization of the atomic positions and

velocities. For a crystal solid, for example, the initial positions will be

determined by an atomic position in the unit cell and its spatial copies in the

crystal symmetry. Then the simulation cell contains the repeated unit cells.

The initial velocities are set by assuming Maxwell-Boltzmann distribution

along the three dimensions. This is provided by the Gaussian distributed

random numbers multiplied by the mean velocity given by
√

2kBT/m, where

kB is Boltzmann constant, T is temperature, and m is atomic mass, under

the condition that total atomic momenta are zero. When this initialization

is made for given temperature once, total energy of the system is conserved.

The MD algorithm to be mentioned in the next subsection has the time

reversal symmetry. Therefore, unlike the Monte Carlo method, if a set of

positions and velocities is given first, MD is a deterministic method in that

the time evolution is completely determined from its current state.

Statistical mechanics is used in order to extract macroscopic information

from the microscopic one provided by the MD simulations. It is based

on the concept that many individual microscopic configurations in a large

system lead to the same macroscopic properties after long time simulations.

In other words, it is not necessary to save all the detailed trajectories

of every particle (atom) in the system in order to predict the physical

properties. Usually the statistical ensemble is characterized by fixing the

thermodynamic variables (e.g., total energy E, temperature T , pressure

P , volume V , number of atoms N , or chemical potential µ). There are

various types of statistical ensembles depending on variables kept fixed.

The microcanonical ensemble is characterized by constant N, V , and E,

and denoted as NV E ensemble. Other important ensembles include the

canonical (NV T ) ensemble, the isothermal-isobaric or NPT ensemble, and

the grand-canonical (µV T ) ensemble. The thermodynamic variables which

define an ensemble can be considered as control parameters when a simulation

run is carried out.

5



CHAPTER 1. INTRODUCTION

1.2.2 Time integration of equation of motion

Various techniques to integrate the equation of motion have been developed.

One of the simplest and robust algorithms is the Verlet method. Assume

that time evolution of position x is represented by the Taylor expansion as

follows:

x(t+ δt) = x(t) + v(t)δt+
F (t)

2m
δt2 + · · · , (1.1)

where v is velocity and F denotes force. Similarly, the velocity v is expressed

as

v(t+ δt) = v(t) +
F (t)

m
δt+ · · · , (1.2)

v(t) = v(t+ δt)− F (t+ δt)

m
δt+ · · · . (1.3)

These equations lead to following formula:

v(t+ δt) = v(t) +
F (t+ δt) + F (t)

2m
δt. (1.4)

When initial position x(0) and velocity v(0) are given, their time evolutions

are obtained by updating a time step to x(t+ δt), F (t+ δt), and v(t+ δt).

The instantaneous temperature T (t) with atomic mass mi and velocity

vi of atom i is defined in the following:

3

2
NkBT (t) =

N∑
i=1

miv
2
i

2
, (1.5)

where N represents the number of atoms in simulation system. Therefore,

setting temperature to T0 is realized by the velocity scaling, that is each

atomic velocity is multiplied by the same factor

λ =

√
T0
T (t)

. (1.6)

1.3 Density functional theory for quantum

(QM) calculation

1.3.1 Basis of theory

The density functional theory (DFT) is a method used most widely for

electronic structure calculations of materials today, and it is formulated

6



1.3. DENSITY FUNCTIONAL THEORY FOR QM CALCULATION

following the idea by Kohn-Sham in 1965 [4]. They propose to replace the

originally many-body interacting system with the supported independent

(no-interacting) electron system. Various trial calculations demonstrated

high accuracies the properties of interesting systems predicted by the DFT

method. In this section, we explain the basic formulation of the Kohn-Sham

method and a way of thinking about the exchange-correlation energy

functional which is the most important element.

The Hamiltonian of the system consisting of electrons and nuclei that

interact through the Coulomb potential is

Ĥ = −1

2

∑
i

∇2
i −

∑
i,I

ZI

|ri −RI |
+

1

2

∑
i̸=j

1

|ri − rj|

−
∑
I

1

2MI

∇2
I +

1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
. (1.7)

The atomic unit (h̄ = me = e = 1) is adopted, and the electron is expressed

by a subscript using a small letter; atomic nucleus having mass MI and

electronic charge ZI is denoted in the subscript using a capital letter. The

ratio me

MI
of electronic mass me and the nuclear mass is quite small. We can

separate the motion of nucleus and electronic wave function as the ratio is

small. This is the essence of the Born-Oppenheimer approximation or an

adiabatic approximation.

The following is provided as Hamiltonian of the electronic system under

Born-Oppenheimer approximation:

Ĥ = T̂ + V̂ext + V̂int + EII . (1.8)

The kinetic operator for electrons is

T̂ = −1

2

∑
i

∇2
i . (1.9)

The attractive interaction from the nuclei is

V̂ext =
∑
i,I

VI(|ri −RI |) = −
∑
i,I

ZI

|ri −RI |
, (1.10)

the electron-electron interaction is

V̂int =
1

2

∑
i ̸=j

1

|ri − rj|
, (1.11)

7



CHAPTER 1. INTRODUCTION

and the classical Coulomb interaction between nuclei is

EII =
1

2

∑
I ̸=J

ZIZJ

|RI −RJ |
, (1.12)

which contributes to the total energy of system, but has nothing to do with

the electronic state directly.

The DFT is based on the Hohenberg-Kohn theorems:

• For a system interacting in the external potential Vext, the ground state

properties of the system are uniquely determined by the ground-state

electron density.

• An energy functional for the system is defined as functional of electron

density ρ and the correct ground state electron density minimizes this

energy functional:

E[ρ] = F [ρ] +

∫
drVext(r)ρ(r) + EII , (1.13)

F [ρ] = T [ρ] + Eint[ρ]. (1.14)

The Kohn-Sham method reduces mathematically the interacting electron

system, which is hard to be treated, with a non-interacting electron system

in some effective potential under the condition that the electron density is

the same.

The Hamiltonian of the independent electron system is represented as:

H = −∇2

2
+ V (r). (1.15)

The solution for an electronic state is obtained from[
−∇2

2
+ V (r)

]
ψi(r) = εiψi(r). (1.16)

The electron is fermion having spin 1/2. Hence the total electronic state,

which obeys the Pauli principle, is given by the Slater determinant of {ψi}.
The electron density of independent system of N electrons is expressed by

the sum of squares of orbitals:

ρ(r) =
N∑
i=1

|ψi(r)|2. (1.17)

8



1.3. DENSITY FUNCTIONAL THEORY FOR QM CALCULATION

The kinetic energy Ts of the independent electrons under the condition

that ρ(r) is the same with that of the original system is given by

Ts = −1

2

∑
i

⟨ψi|∇2|ψi⟩. (1.18)

Furthermore, the classical Coulomb interaction energy of interacting electron

density ρ(r) is defined in the following:

Ehartree =
1

2

∫
ρ(r)ρ(r′)

|r − r′|
drdr′. (1.19)

In the Kohn-Sham method the energy functional in the ground state

corresponding to Eq.(1.13) is written exactly as follows:

EKS = Ts[ρ] +

∫
drVext(r)ρ(r) + Ehartree[ρ] + EII + Exc[ρ]. (1.20)

The kinetic energy of non-interacting electrons Ts is provided by functional

formula of orbitals explicitly. All the remaining many-body interaction effects

are included in the exchange-correlation energy term Exc.

The Exchange-correlation energy functional Exc can be written as follows

by comparing Eq.(1.13) and Eq.(1.20):

Exc[ρ] = T [ρ]− Ts[ρ] + Eint[ρ]− Ehartree[ρ]. (1.21)

Because the right-hand side of this equation is functional of electron density

ρ, Exc is also functional. If functional energy Exc is given, ground state energy

and electron density of many-body problem will be obtained by solving

Kohn-Sham equation for non-interacting electron system. Equation(1.21)

shows that the differences between T and Ts and a non-classical part of the

electron-electron interaction energy are included in the exchange-correlation

energy. Thus, if the energy Exc is known as a functional of the density, these

form a closed set of self-consistent equations yielding the exact answer to the

electronic structure problem, without treating complicated electron-electron

repulsion directly.

1.3.2 Kohn-Sham equation

In order to get the set of wave functions {ψi} in the ground state, which

are orthogonal because of the usage of the Slater determinant, Eq.(1.20) is

9



CHAPTER 1. INTRODUCTION

minimized with respect to ψ∗
i under the normalization condition

⟨ψi|ψi⟩ = 1 (1.22)

as

δ

δψ∗
i (r)

[
EKS −

∑
j

εj {⟨ψj|ψj⟩ − 1}

]
(1.23)

=
δTs

δψ∗
i (r)

+

[
Vext(r) +

δEhartree

δρ(r)
+
δExc

δρ(r)

]
δρ(r)

δψ∗
i (r)

− εiψi(r) (1.24)

= 0. (1.25)

Since
δTs

δψ∗
i (r)

= −1

2
∇2ψi(r) (1.26)

and
δρ(r)

δψ∗
i (r)

= ψi(r), (1.27)

the following Kohn-Sham (KS) equation is obtained:

HKSψi(r) = εiψ(r), (1.28)

HKS = −1

2
∇2 + VKS(r) (1.29)

with

VKS(r) = Vext(r) +
δEhartree

δρ(r)
+
δExc

δρ(r)
(1.30)

= Vext(r) + Vhartree(r) + Vxc(r). (1.31)

The Kohn-Sham equation has the form of the independent electron

equation. The potential and the electron density are solved numerically

through the self-consistent field (SCF) iteration [5, 6, 7] under the

orthonormalization constraint. These equations are independent of the

approximation for functional Exc[ρ] formula, and give the strict energy and

electron density of the ground state for the interacting system only if the

exact Exc[ρ] form is known.

An electron will move in the Coulomb field provided by nuclei. The effect

on electron from nuclei is included in the fixed potential for the electron. It

is established even if naked nuclear Coulomb interaction is replaced with the

psudopotential in which the core electrons are removed and only valence

10



1.3. DENSITY FUNCTIONAL THEORY FOR QM CALCULATION

electron interaction can be described. Other external potential such as

electric fields can be taken in easily. Let us consider an atomic cluster

composed of Nion ions with charge numbers {ZI} for the I-th atoms and

the valance electrons. For simplicity, the charge-neutral system is assumed

though the formulation is applicable to non-neutral systems also; the total

number of electrons Ne =
∑

I ZI .

The pseudopotential of ion-I, vion,I(r), for wave function ψi(r) acts as

vion,I(r)ψi(r) = vL,I(r)ψi(r) + vNL,I(r)|ψi⟩ (1.32)

with

vNL,I(r)|ψi⟩ =
lmax∑
l=0

l∑
m=−l

ψps
lm,I(r)∆vl,I(r)

∫
dr′ψps∗

lm,I(r
′)∆vl,I(r

′)ψi(r
′)∫

drψps∗
lm,I(r)∆vl,I(r)ψ

ps
lm,I(r)

.

(1.33)

Here the Kleinman-Bylander form [8] is adopted for the treatment of

the non-local pseudopotential. The ψps
lm,I(r) in Eq. (1.33) is the pseudo

eigen-orbital for a free atom-I at angular state denoted (l,m). The

pseudopotential at a chosen angular state l = lloc (often the maximum

of l) is regarded as the local pseudopotential, and the deviation of the

pseudopotential from the local one as the non-local pseudopotential:

vL,I(r) ≡ vlloc,I(r) and ∆vl,I(r) ≡ vl,I(r)− vlloc,I(r) (1.34)

with the pseudopotential vl,I(r) for a free ion-I at angular state l. The

vL,I(r) contains the long-ranged Coulomb potential, while the ∆vl,I(r) is

short-ranged one.

The Hartree potential in Eq. (1.31) is

Vhatree(r) =

∫
dr′ ρ(r

′)

|r − r′|
(1.35)

or determined by solving the Poisson equation:

∇2Vhatree(r) = −4πρ(r) (1.36)

with the density of electrons

ρ(r) =

Ne/2∑
i=1

2|ψi(r)|2 (1.37)

11
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in the spin neutral case.

The Vxc(r) in Eq. (1.31) is the exchange-correlation potential defined as

the functional derivative of the exchange-correlation energy:

Vxc(r) =
δExc(ρ)

δρ(r)
. (1.38)

Various approximation formulas of Exc(ρ) are given in literatures. The

simplest approximation of the exchange correlation energy term is a local

density approximation (LDA) in Ref. [9]:

ELDA
xc =

∫
drεxc[ρ]ρ(r), (1.39)

V LDA
xc = εxc[ρ] +

δεxc
δρ

ρ. (1.40)

Here, εxc[ρ] is the exchange-correlation energy per unit volume of a

homogeneous electron liquid of density ρ(r).

The number of SCF iterations required to reach the convergence, which

is independent of the target system size, is typically twenty. In the

planewave-based KS-DFT method, eigen orbitals are represented using the

planewaves under the periodic boundary conditions. And the SCF iteration

procedure contains the local iteration for all the energy levels considered.

In sweeping the orbitals for a given ρ(r) in the local iteration procedure,

orbitals are updated one by one from the lowest to highest energy levels by the

conjugate gradient method with the Gram-Schmidt orthonormalization [10]

to the orbitals at lower energy levels. Relating to the orthonormalization

constraint, the number of numerical operations in the planewave-based

KS-DFT method scales as order-N3.

1.3.3 Real space implementation

In this subsection we present a real-space approach to the density functional

calculations. In the real space density functional theory (RSDFT) method,

we set the Cartesian mesh points in three-dimensional with the mesh size

h to describe the eigen orbitals and the potentials. Therefore RSDFT has

advantages to be able to set arbitrary boundary conditions compared with

other conventional methods such as the planewave-based one. The mesh

size h in unit of the Bohr radius aB ≈ 0.529 Å corresponds to the cutoff

12
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energy 0.5(π/h)2 (a.u.) (1 a.u. of energy ≈ 27.2 eV) in the planewave-based

KS-DFT method. The overall shape of the mesh points is spherical with

radius rmax, which is determined to enclose all the ions with a few Å vacuum

width so that ρ(r) = 0 at r = rmax. The second derivative operations in

the three directions in the KS and Poisson equations are calculated by the

high-order (fourth or more) finite difference method [10, 11, 12, 13] using the

data on multiple mesh points in both plus and minus sides. For the ion with

relatively deep pseudopotential as oxygen, a smaller mesh size of h/3 is used

at around the ion only to represent the pseudopotential accurately [14].

For the grid space h, the physical coordinate of each point is expressed

in the following:

r(i, j, k) = (ih, jh, kh), (1.41)

i = {1, · · · , Nx}, j = {1, · · · , Ny}, k = {1, · · · , Nz}. (1.42)

A trapezoid rule for numerical integral is used as∫
drf(r)

.
= h3

∑
ijk

f(r(i, j, k)). (1.43)

The value of the wave function and the electron density distribution are

given only on discretized points in the real space finite difference method.

Therefore, the Kohn-Sham equation is given in a discretized form in the real

space. Here, a procedure of discretization of the Kohn-Sham Hamiltonian is

described in conformity with a finite difference approximation.

A key aspect is the availability of higher order expansions for the kinetic

energy operator, i.e., expansions of the Laplacian. If we impose a simple and

uniform grid on our system where the grid points are described by (xi, yj, zk),

we may write

∂2ψ

∂x2
=

N∑
n=−N

Cnψ(xi + nh, yj, zk) +O(h2N+2), (1.44)

where h is the grid spacing. The approximation is accurate to O(h2N+2) upon

the assumption that ψ can be approximated accurately by a power series in

h. Algorithms are available to compute the coefficients Cn for arbitrary order

in h. For example, in the case of N = 2 the coefficients Cn are provided as

13
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follows:

C−2 = C2 = − 1

12h2
, (1.45)

C−1 = C1 =
4

3h2
, (1.46)

C0 = − 5

2h2
. (1.47)

The three-dimensional Kohn-Sham equation can be summarized following

the argument mentioned above as

− 1

2

[
N∑

n1=−N

Cn1ψ(xi + n1h, yj, zk)

+
N∑

n2=−N

Cn2ψ(xi, yj + n2h, zk)

+
N∑

n3=−N

Cn3ψ(xi, yj, zk + n3h)

]
+Veff (xi, yj, zk)ψ(xi, yj, zk) = εψ(xi, yj, zk), (1.48)

Veff (xi, yj, zk)

= Vext(xi, yj, zk) + Vhartree(xi, yj, zk) + Vxc(xi, yj, zk), (1.49)

for each grid point (xi, yj, zk). If there are M grid points, the size of the full

matrix resulting from the above eigenvalue problem is M ×M . Here Vext

is the ionic pseudopotential, Vhartree is the Hartree potential, and Vxc is the

local density expression for the exchange and correlation potential. The two

fixed grid parameters used in setting up the matrix are the grid spacing h

and the order N .

The RSDFT method is well suited to the parallel computation

environment. It is free from the fast Fourier transform (FFT) method,

which occupies most of the calculation cost in conventional plane wave

expansion method. The idea of spatial decomposition of the mesh points

also works well for parallel machines. In addition, the RSDFT method has a

unique feature of numerical stability that helps to realize high computational

performance of the Gram-Schmidt orthonormalization of the orbitals as

explained below. While the Gram-Schmidt orthonormalization needs to

be performed orbital-by-orbital for stability reasons in the planewave-based
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method, it can be performed for all the orbitals together in the RSDFT

method after the orbital sweep in the local iteration procedure [13]. The

rearrangement of the Gram-Schmidt orthonormalization procedure improves

the computational performance [13] on a parallel machine by employing a

highly tuned linear-algebra library.

1.4 Hybrid quantum classical simulation

The hybrid quantum (QM)-classical (CL) simulation is expected as one of

the calculation methods aiming at both large-scale and high accuracy. In

this method, the reaction region, where the electronic structure is treated by

a highly accurate calculation technique such as the DFT, is embedded in a

classical dynamics system of atoms based on an empirical interaction model.

In the hybrid QM-CL simulation, the atomic bond is cut at the QM-CL

boundary and dangling bond forms. As for this dangling bond, its influence

on electronic state or bonding distance of the atoms in the QM region should

be removed. The link-atom (or handshake atom) method [15] that uses

hydrogen atoms for termination of the QM atoms is usually applied to couple

the QM and CL regions. By using link-atom method, however, there is the

case that influence of the surface reconstruction with the relaxation of the

boundary atom extends to the atoms of whole system and a large distortion

from the original stable structure is produced. In this study, we adopt the

buffered cluster method (BCM) [3], which requires no link-atoms and is more

precise and a general-purpose model. In following subsection we present

outline of the BCM.

1.4.1 Buffered cluster method

In the BCM, additional atoms called buffer atoms are put to terminate the

dangling bond of the QM atoms at QM-CL boundaries. The positions of the

buffer atoms are adjusted so as to minimize the potential energy under the

constraint of fixing the position of the QM atoms for the CL calculation of the

QM cluster region. In the QM calculation, the positions of the buffer atoms

are not relaxed. Therefore various surface reconstructions of the QM cluster
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region are suppressed in the BCM. The demonstrations for simulation about

the stress corrosion clacking mechanism of silicon and the alumina make this

technique be practical [3].

Among target system, we assume a region dealt with by the QM

calculation as cluster region. The subscript CL denotes the physical

properties calculated from the CL calculation, or QM denotes ones computed

from the QM calculation.

In the hybrid QM-CL simulation, the Hamiltonian of the system is defined

as follows:

H(Rall,P all) = H system

CL (Rall,P all) +
∑
cluster

(Ecluster

QM − Ecluster

CL ). (1.50)

Here, Rall and P all represent the position and momentum of all atoms,

respectively. Hamiltonian H system
CL is obtained by applying the CL calculation

to the whole system: H system
CL = Ekin(P all) + Esystem

CL (Rall). The last two terms

in Eq. (1.50) are energies given from the QM and CL calculations in the

cluster region, respectively.

We assume the group of an atomic position in the cluster region to be

{rcluster}. The energy term in the cluster region is given by the function

depending on only rcluster in the BCM:

Ecluster

QM = Ecluster

QM ({rcluster}), (1.51)

Ecluster

CL = Ecluster

CL ({rcluster}). (1.52)

In the QM and CL calculations in the cluster region, additional atoms are

set on the dangling bonds in order to terminate the bonds of the atoms in

cluster which are cut on the boundary or surface of region. This additional

atom is called ’buffer atom’.

The constituent atomic element of the system is used as the buffer atoms

to mimic the original bonding in the CL calculation in the cluster region.

The position of this buffer atom is adjusted under the condition of the atomic

position rcluster in the cluster region fixing to minimize potential energy Ecluster
CL .

In the QM calculation in the cluster region, the constituent atom or hydrogen

atom is chosen as the buffer atom corresponding to the coordination number

of original atom. Its position is provided with reference to a position of buffer

atom determined by the CL calculation in the cluster region and not relaxed

16



1.4. HYBRID QUANTUM CLASSICAL SIMULATION

when the QM calculation is conducted. If buffer atoms are relaxed in the QM

calculation, there is the possibility of various surface reconstructions. When

hydrogen atom is chosen as the buffer atom, its position {rb} is set to be

rb = βrbuffer
CL + (1− β)rcluster with scaling factor β. On the other hand, in the

case that the constituent atom is put as buffer atom, it becomes rb = rbuffer
CL .

The force to act on the atom in the cluster region is as follows:

F i = − ∂H

∂rcluster,i

(1.53)

= − ∂Esystem
CL

∂rcluster,i

−
∑
cluster

(
∂Ecluster

QM

∂rcluster,i

− ∂Ecluster
CL

∂rcluster,i

)
, (1.54)

∂Ecluster
QM

∂rcluster,i

=

(
∂Ecluster

QM

∂rcluster,i

)
fix {rb}

+
buffer∑
j

∂Ecluster
QM

∂rb,j

(
∂rb,j

∂rcluster,i

)
CL

, (1.55)

∂Ecluster
CL

∂rcluster,i

=

(
∂Ecluster

CL

∂rcluster,i

)
fix {rb}

. (1.56)

Here {rb} is the position of buffer atom,
(

∂rb,j

∂rcluster,i

)
CL

is provided from the

numerical finite difference in the CL calculation in cluster region. Moreover,

Eq. (1.55) includes the force term of buffer atom
∂Ecluster

QM

∂rb,j
which is calculated

from the QM calculation in the cluster region.

Atomic forces outside of the cluster region are given as the next formula,

assuming their positions to be {renv}:

F i = −∂E
system
CL

∂renv,i

. (1.57)
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Chapter 2

Application for carbons

In this chapter we will describe the details of the potential models for carbons

used in the classical MD simulation and their validity will be inspected.

2.1 Settings in CL calculation

In the hybrid QM-CL simulation method, the CL calculation is performed

for the CL region, that is, the whole system minus the QM-cluster region.

The velocity Verlet algorithm is used to integrate the Newton’s equation of

motion for all the atoms. The Brenner-type of interatomic potential [16] is

adopted for the C atoms of the graphite. The Brenner type potential is useful

for circumstances that have as single, double, conjugated double, and triple

bond in the C-C bonding between carbon atoms, and has the Tersoff type

potential [17] form.

We show below the formula of Brenner-type potential E and its derivative

to be necessary for a calculation of the force. In addition, i and j are labels

of the atoms, rij = |ri − rj| is atomic distance, θijk expresses bond angle

between two vectors of (rj − ri, rk − ri).

2.1.1 Brenner-type potential for intra-layer of carbons

Potential energy E is given as a sum of the binding energies between two

atoms consisted of the repulsive term VR(rij) and the attractive term VA(rij):

E =
∑
i

∑
j(j>i)

[
VR(rij)−BijVA(rij)

]
. (2.1)
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The many-body effect is taken in through the factor Bij in front of the

attractive potential term. The repulsive potential term VR(r) and attractive

term VA(r) are considered to be exponential function formulas in reference to

the Morse potential. They include the cutoff function fij(r) which determines

the interacting distance:

VR(r) = fij(r)
D

S − 1
exp

[
−
√
2Sβ(r −R)

]
, (2.2)

VA(r) = fij(r)
DS

S − 1
exp

[
−
√

2

S
β(r −R)

]
, (2.3)

fij(r) =


1, r ≤ R(1)

1
2
+ 1

2
cos

[
π (r−R(1))

R(2)−R(1)

]
, R(1) < r < R(2)

0, r ≥ R(2)

. (2.4)

Here, R,D, and S are respectively the equilibrium distance of two-body

interaction, the minimum value of the potential, and the ratio of working

distance for attractive force to that for repulsive one. In the case of S = 2,

these equations result in the Morse potential. The parameter β with a

dimension of a reciprocal of distance is determined from the atomic force

constant. The cutoff function fij(r) is defined with the function form which

the atomic interaction between atom i and j becomes zero smoothly. The

distance R(1) decides the working range of the interatomic covalent bond,

and there is no-interaction in r ≥ R(2). Many-body interaction-effect

factor Bij makes Bij symmetric. The correction term FCC expressing π

conjugate-bonding effect is added in symmetrization of Bij:

Bij =
1

2

[
(Bij +Bji) + FCC(Ni, Nj, N

conj
ij )

]
, (2.5)

Bij =

[
1 +

∑
k ̸=i,j

G(θijk)fik(rik)

× exp {α[(rij −R)− (rik −R)]}

]−δ

, (2.6)

G(θ) = α0

[
1 +

c20
d20

− c20
d20 + (1 + cos θ)2

]
. (2.7)

The function form of Bij is determined by the relations with the bond order

and the coordination number of a local atom, and it depends on the bond

angle and the bonding distance. Function G(θ) expresses the bond angle
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dependence of Bij and changes for a bond angle smoothly. Parameter c0

decides strength of the influence from a bond angle, and d0 determines

the amount of change of the bond angle. Parameter α in the exponential

function term in Eq.(2.6) reveals the range where the difference in two

bonding distance rij and rik is taken into account. In correction term

FCC(Ni, Nj, N
conj
ij ), Ni indicates the number of atoms combined with atom

i.

Parameters used in this study are shown in Table 2.1, which are optimized

to reproduce the binding energy and the equilibrium lattice constant of

carbon based materials. In addition, the value of the correction term FCC

listed in paper of Brenner [16] is also written for reference. But the correction

term FCC is omitted in this study, because it is often left out in the calculation

for the graphite and diamond.

We employ in Table 2.1 the same parameter values listed in Table I in

Ref. [16] except for the equilibrium distance. The equilibrium distance is

set to be 1.33116 Å so that the calculated equilibrium lattice constant of the

graphite becomes equal to the one computed from the QM calculation, which

is slightly longer than that in Ref. [16]. Such a fine tuning of the parameters

in the CL potential is necessary in order not to create artificial stress at the

QM-CL boundary in the hybrid QM-CL simulation method [18].

Table 2.1: Parameters of Brenner-type potential.

R [Å] D [eV] β [1/Å] S δ α

1.33116 6.325 1.5 1.29 0.80464 0.0

R(1) [Å] R(2) [Å] α0 c20 d20

1.7 2.0 0.011304 192 2.52

FCC(2, 3, 1) FCC(2, 3, 2) FCC(1, 2, 2) except for left

−0.0465 −0.0465 −0.0355 0
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2.1.2 Derivatives of Brenner-type potential

The derivatives of Brenner-type potential which are needed in the calculation

of atomic forces are complicated. For interested readers we here write down

them explicitly as follows:

∂E

∂ri

=
∑
j(j>i)

[
dVR(rij)

drij

∂rij
∂ri

−Bij
dVA(rij)

drij

∂rij
∂ri

−VA(rij)
∂Bij

∂ri

]
, (2.8)

∂E

∂rj

=
∑
i

[
dVR(rij)

drij

∂rij
∂rj

−Bij
dVA(rij)

drij

∂rij
∂rj

−VA(rij)
∂Bij

∂rj

]
, (2.9)

∂E

∂rk

=
∑
i

∑
j>i

[
−VA(rij)

∂Bij

∂rk

]
, (2.10)

dVR
dr

=
dfij
dr

D

S − 1
exp

[
−
√
2Sβ(r −R)

]
+ VR(r)(−

√
2Sβ), (2.11)

dVA
dr

=
dfij
dr

DS

S − 1
exp

[
−
√

2

S
β(r −R)

]
+ VA(r)(−

√
2

S
β), (2.12)

dfij
dr

=


0, r ≤ R(1)

−1
2

π
R(2)−R(1) sin

[
π (r−R(1))

R(2)−R(1)

]
, R(1) < r < R(2)

0, r ≥ R(2)

, (2.13)

Tij = 1

+
∑
k ̸=i,j

G(θijk)fik(rik) exp {α[(rij −R)− (rik −R)]} , (2.14)

Tji = 1

+
∑
k ̸=i,j

G(θjik)fjk(rjk) exp {α[(rij −R)− (rjk −R)]} , (2.15)

∂Bij

∂ri

=
1

2

[
∂Bij

∂ri

+
∂Bji

∂ri

]
, (2.16)

∂Bij

∂ri

= (−δ)Bij

Tij

∂Tij
∂ri

, (2.17)
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∂Tij
∂ri

=
∂Tij

∂ cos θijk

∂ cos θijk
∂ri

+
∂Tij
∂rij

∂rij
∂ri

+
∂Tij
∂rik

∂rik
∂ri

, (2.18)

∂Tij
∂ cos θ

=
∑
k ̸=i,j

∂G

∂ cos θ
fik(rik) exp {α[(rij −R)− (rik −R)]} , (2.19)

∂G

∂ cos θ
=

α0c
2
02(1 + cos θ)

[d20 + (1 + cos θ)2]2
, (2.20)

∂Tij
∂rij

=
∑
k ̸=i,j

G(θijk)fik(rik)α exp {α[(rij −R)− (rik −R)]} , (2.21)

∂Tij
∂rik

=
∑
k ̸=i,j

G(θijk)

(
dfik
drik

− fikα

)
× exp {α[(rij −R)− (rik −R)]} , (2.22)

∂Bji

∂ri

= (−δ)Bji

Tji

∂Tji
∂ri

, (2.23)

∂Tji
∂ri

=
∂Tji

∂ cos θjik

∂ cos θjik
∂ri

+
∂Tji
∂rij

∂rij
∂ri

, (2.24)

∂Tji
∂ cos θ

=
∑
k ̸=i,j

∂G

∂ cos θ
fjk(rjk) exp {α[(rij −R)− (rjk −R)]} , (2.25)

∂Tji
∂rij

=
∑
k ̸=i,j

G(θjik)fjk(rjk)α exp {α[(rij −R)− (rjk −R)]} , (2.26)

∂Tji
∂rjk

=
∑
k ̸=i,j

G(θjik)

(
dfjk
drjk

− fjkα

)
× exp {α[(rij −R)− (rjk −R)]} , (2.27)

∂Bij

∂rj

=
1

2

[
∂Bij

∂rj

+
∂Bji

∂rj

]
, (2.28)

∂Bij

∂rj

= (−δ)Bij

Tij

∂Tij
∂rj

, (2.29)

∂Tij
∂rj

=
∂Tij

∂ cos θijk

∂ cos θijk
∂rj

+
∂Tij
∂rij

∂rij
∂rj

, (2.30)

∂Bji

∂rj

= (−δ)Bji

Tji

∂Tji
∂rj

, (2.31)

∂Tji
∂rj

=
∂Tji

∂ cos θjik

∂ cos θjik
∂rj

+
∂Tji
∂rij

∂rij
∂rj

+
∂Tji
∂rjk

∂rjk
∂rj

, (2.32)

∂Bij

∂rk

=
1

2

[
∂Bij

∂rk

+
∂Bji

∂rk

]
, (2.33)

∂Bij

∂rk

= (−δ)Bij

Tij

∂Tij
∂rk

, (2.34)
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∂Tij
∂rk

=
∂Tij

∂ cos θijk

∂ cos θijk
∂rk

+
∂Tij
∂rik

∂rik
∂rk

, (2.35)

∂Bji

∂rk

= (−δ)Bji

Tji

∂Tji
∂rk

, (2.36)

∂Tji
∂rk

=
∂Tji

∂ cos θjik

∂ cos θjik
∂rk

+
∂Tji
∂rjk

∂rjk
∂rk

, (2.37)

∂rij
∂ri

=
ri − rj

rij
, (2.38)

∂rij
∂rj

= −ri − rj

rij
, (2.39)

∂rik
∂ri

=
ri − rk

rik
, (2.40)

∂rik
∂rk

= −ri − rk

rik
, (2.41)

∂rjk
∂rj

=
rj − rk

rjk
, (2.42)

∂rjk
∂rk

= −rj − rk

rjk
, (2.43)

∂ cos θijk
∂ri

=
1

rij

(
∂rik
∂ri

− cos θijk
∂rij
∂ri

)
,

+
1

rik

(
∂rij
∂ri

− cos θijk
∂rik
∂ri

)
, (2.44)

∂ cos θijk
∂rj

= − 1

rij

(
∂rik
∂ri

− cos θijk
∂rij
∂ri

)
, (2.45)

∂ cos θijk
∂rk

= − 1

rik

(
∂rij
∂ri

− cos θijk
∂rik
∂ri

)
, (2.46)

∂ cos θjik
∂ri

= − 1

rij

(
∂rjk
∂rj

+ cos θjik
∂rij
∂ri

)
, (2.47)

∂ cos θjik
∂rj

=
1

rij

(
∂rjk
∂rj

+ cos θjik
∂rij
∂ri

)
+

1

rjk

(
−∂rij
∂ri

− cos θjik
∂rjk
∂rj

)
, (2.48)

∂ cos θjik
∂rk

= − 1

rjk

(
−∂rij
∂ri

− cos θjik
∂rjk
∂rj

)
. (2.49)

2.1.3 Model potential for inter-layer of carbons

In the Brenner-type potential, the cut-off distance of the interaction is 2.0 Å.

It means that only the interaction between the nearest neighbor atoms

belonging to the same layer is considered for graphite, since the inter-layer
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distance of graphite is about 3.35Å. To take into account the inter-layer

interaction of graphite, we construct the following interatomic potential

model for the dispersion (or the van der Waals) forces between the C atoms

in mutually different layers to add it to the CL potential:

Vvdw(r) = 4ε

{(σ
r

)12

− g(Z)
(σ
r

)6
}
f(r), (2.50)

ε = 2.84meV, (2.51)

σ = 3.35Å, (2.52)

g(Z) = (0.98 + 0.07h(Z))6, (2.53)

h(Z) =
1

exp((Z − 7)/0.05) + 1
, (2.54)

f(r) =


1 r < a1
1
2

(
1 + cos

(
π r−a1

a2−a1

))
a1 ≤ r ≤ a2

0 a2 < r

, (2.55)

a1 = 5.4Å, (2.56)

a2 = 5.8Å, (2.57)

with the distance r between the C atoms belonging to different layers. The

basic form of VvdW(r) is the Lennard-Jones potential. The function f(r)

works to cut-off the potential becoming zero gradually at a long distance. The

function g(Z) changes relating to the degree of similarity to the AA-sequence

of the graphite with the coordination number Z of atoms in a neighboring

layer for a given atom. The parameters ε = 2.84 meV and σ = 3.35 Å are

set in order to reproduce the experimental inter-layer energy and distance of

the graphite, respectively.

Parameter Z is decided in the following procedures. Firstly a certain

atom i is projected to the upper (or lower) layer and the projected distance

xik is measured for each atom k in the projected layer. The relations of the

projected distance xik and the integration of coordination number for some

layered structures are shown in Fig. 2.1.

From Fig. 2.1, integrated coordination number becomes maximum for

AA-sequence structure and minimum for AB-one when projected distance

xik is in the range of 2.59Å < xik < 2.79Å. For other layered structures,

it takes value between the maximum and minimum. Therefore integrated

coordination number Zi of atom i in the range of 2.59Å < xik < 2.79Å is
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Figure 2.1: The relations of the projected distance xik and the integration

of coordination number for each layered structure (AA or AB) when atom

i is projected on the neighboring layer. Red, green, blue, and cyan lines

correspond to AB-sequence, AA-sequence, the mid of AB- and AA- sequence

structures, respectively.

obtained by the following equation:

Zi =
∑
k

zik, (2.58)

zik =


1 xik < b1
1
2

(
1 + cos

(
π xik−b1

b2−b1

))
b1 ≤ xik ≤ b2

0 b2 < xik

, (2.59)

b1 = 2.59Å, (2.60)

b2 = 2.79Å. (2.61)

Similarly, the integrated coordination number Zj for atom j is obtained. The

arithmetic mean of Zi and Zj provides Z:

Z =
1

2
(Zi + Zj). (2.62)
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With the CL inter-layer potential thereby constructed for C atoms, we can

perform the simulation taking the inter-layer interaction of graphite into

consideration.

2.2 Results and Discussion

2.2.1 Validity of intra-layer potential model of carbons

At first properties of the diamond and the graphite have been calculated

in order to confirm the validity of the Brenner-type potential used in this

study. The number of atom in this calculation is set to be 1728 for the

diamond, 512 for the graphite. Results are shown in Table 2.2. The cohesive

energy and equilibrium lattice constant computed from this simulation are

good in agreement with experimental ones, but the elastic constant and bulk

modulus are in disagreement. This is because the potential parameters shown

in Table 2.1 are optimized to reproduce the biding energy and lattice constant

of carbon materials, and it is reported that the difference with experimental

value is improved when other potential parameters are used [19]. According

to the purpose of the simulation, potential parameters should be determined

so as to reproduce the desired properties appropriately.

2.2.2 Validity of inter-layer potential model of

graphite

The primary properties related to inter-layer interaction of graphite are

calculated by the CL-MD simulation to confirm the validity of the inter-layer

interaction potential model settings in this study. The results are provided

in Table 2.3 with experimental values. The calculated values reproduce the

experimental ones with precision. Therefore the inter-layer interaction of

graphite is properly considered in present model.
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Table 2.2: Physical properties of diamond and graphite obtained from the

CL-MD calculation with the Brenner-type potential.

present study experiment [20]

diamond

lattice constant a [Å] 3.558 3.567

cohesive energy Ecoh [eV/atom] −7.346 −
elastic constant c11 [GPa] 350 1081

c12 [GPa] 197 125

c44 [GPa] 352 579

bulk modulus B [GPa] 248 444

graphite

lattice constant a [Å] 2.459 2.46

cohesive energy Ecoh [eV/atom] −7.377 −7.374

elastic constant c11 [GPa] 557 −
c12 [GPa] 54 −
c44 [GPa] 252 −

bulk modulus B [GPa] 139 286− 319
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Table 2.3: Properties related to inter-layer interaction of graphite.

present

inter-layer distance

(AB-type)[Å] 3.36 3.35a

inter-layer energy

[meV/atom] 37.18
35b

52.5c

cohesive energy [eV/atom]

(AB-type) −7.41388d

(AA-type) −7.40575d

energy difference

AA−AB [meV/atom] 8.1 8e

phonon mode

B2g [cm−1] 134 127f

E2g [cm−1] 34 42f

elastic constant

c33 [GPa] 34.5 36.5g

a:Reference [21], b:Reference [22],c:Reference [23]

d:AB-type is more stable than AA-type in experimental

e:Reference [24], f :Reference [25],g:Reference [26]
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Chapter 3

Preparatory calculations

3.1 Hybrid QM-CL simulation of diamond

The hybrid QM-CL simulation using the BCM has been applied to the

diamond crystal of 1728 atoms. The simulation cell is set to be a cube 21.4Å

on each side, and periodic boundary condition is adopted. When hydrogen

atom is put as buffer atom, parameter β is needed in order to determine the

position of the buffer atom in the QM calculation. In this study, β equals

0.72 in reference to the C-H distance 1.087Å [27] of methane (CH4) molecules.

Time step is set to be ∆t = 0.97fs for the numerical integral calculus in the

MD simulation. We examine a few cases of 3 ∼ 29 of atoms in the cluster

region adopted the QM calculation. The crystal structure with cluster region

consists of 29 atoms is indicated in Fig. 3.1.

The interatomic distance of C atoms is 1.532 ∼ 1.554 Å in the cluster

region, 1.536 ∼ 1.598 Å outside the cluster region, and 1.506 ∼ 1.550 Å

on the QM-CL boundary. These values are independent of setting sizes for

cluster region and close to the interatomic distance of 1.545 Å estimated

from each side of cell. Then, it is confirmed that crystal structure in present

calculation is maintained accurately.

During a hybrid QM-CL simulation, the total energy (Hamiltonian) of

system should be conserved. The time evolutions of Hamiltonian, potential

energy, and kinetic energy are shown in Fig. 3.2 in the case that five atoms

are selected as the cluster region for the QM calculation. Although the

potential energy and kinetic energy oscillate around their equilibrium value,
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Figure 3.1: Crystal structure of diamond. Black sphere denotes the atoms

adopted the QM calculation.

the Hamiltonian remains constant with a fluctuation of energy change of

about 1.5×10−4eV, which is converted into temperature of 1.7K. The hybrid

QM-CL simulation method examined in this study is applicable definitely.

3.2 Hybrid QM-CL simulation of graphite

The hybrid QM-CL simulation using BCM is applied to the graphite

composed of 320 atoms. Each side length of simulation cell is set to be

a = 17.02Å, b = 24.56Å, c = 6.70Å, and periodic boundary condition is

adopted. Twenty C atoms with brown spheres are illustrated in Fig. 3.3 as

the cluster region. In addition, we also depict buffer atoms (green and peach

spheres) used in the QM calculation in Fig. 3.3.

The charge density distribution in the basal plane perpendicular to the

inter-layer direction (c axis) in the cluster region applied the QM calculation

is shown in Fig. 3.4. The dangling bonds exist at the buffer-C atom denoted

with green sphere, but charge density distribution corresponding to the

dangling bonds localizes well on the buffer-C atom. Therefore, buffer atoms

do not affect for the electronic structure of the central region where we want

to analyze in detail. It is confirmed that the hybrid QM-CL simulation
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Figure 3.2: The time evolution of Hamiltonian, potential, and kinetic energy.

method using the BCM in this study gives reasonable accuracies for graphite

system.

3.3 Hybrid QM-CL simulation of Li-GIC

The hybrid QM-CL simulation is applied for the Li-GIC consisting of two

layers of C atoms and one Li atom. The part of graphite is composed of 240

of C atoms. Each length of cell with dimensions (Lx = 25.52Å,Ly = 24.56Å,

Lz = 7.05Å) is prepared and periodic boundary condition is adopted. The

QM-cluster region includes the inserted Li and neighboring C atoms. Typical

crystal structure model of the Li-GIC in the hybrid simulation is depicted in

Fig. 3.5. In the Li-GIC, AA stacking structure of C-layers is observed and

we here consider AA-sequence.

We firstly set various shapes and sizes of the QM regions and check

the validity and applicability of the hybrid simulation for the Li-GIC. We

confirm that the crystal structure is sufficiently stable and there is no

unreasonable distortion in the QM-CL boundary. Furthermore, the hybrid
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Figure 3.3: Atomic cluster model for the QM calculation of the cluster region

in the hybrid QM-CL simulation for graphite. Brown, green, peach spheres

depict carbon(C), buffer atom (C), and buffer atom (H), respectively.

QM-CL simulation adopted in this study gives good conservation of total

energy of the QM-CL hybrid system during time evolution.

We secondary show the charge density distribution of a valence electron

provided by the QM calculation in Fig. 3.6. The bonding nature between Li

and C atoms which is not considered in the CL-MD calculation is able to

be known by setting the QM cluster region including Li atom. In addition,

since the valence electron density around the Li atom becomes almost zero,

the Li has positive charge and the C atoms of graphite have negative charge

as the result of charge transfer form Li to C atoms.

We will apply the hybrid QM-CL simulation method to investigate the

thermal diffusion of a single Li ion in the Li-GIC. In the Li-GIC, the guest

atom like the Li ion migrates with occupying certain preferential host sites.

If a hybrid simulation run with the fixed selection of the QM cluster region

is performed, quite large QM region and therefore huge computational times

will be needed in order to trace the motion of the Li ion. To reduce the

total computational time significantly, it is necessary to select adaptively
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0.384

0.01
0.197

[a.u.-3] 

Figure 3.4: The charge density distribution in the basal plane perpendicular

to the inter-layer direction (c axis) in the cluster region applied the QM

calculation for graphite. Brown, green, peach spheres depict carbon(C),

buffer atom (C), and buffer atom (H), respectively.

the smallest possible number of the QM atoms following the migration of

the Li within acceptable physical accuracies during the simulation. Then we

compare the forces acting on the Li and C atoms for various sizes of the QM

cluster region in the case of the renewal of the QM region. Figure 3.7 shows

the magnitude of forces for following four cases of the QM region: the small

QM-region corresponds to the set of one Li and 12 C atoms expressed the

red and black spheres in Fig. 3.7, the medium region is the set of one Li and

24 C atoms, the large region is the set of one Li and 48 C atoms, and the

extra-large region is the set of one Li and 72 C atoms. We here note that

we count total C atoms in both upper and lower layer of the Li atom before

changing the cluster region. It is desirable that the forces acting on the Li

and C atoms hardly vary before and after changing of the cluster region.

From Fig. 3.7, ’large’ region satisfies this condition enough and it should be

set as the QM cluster region in order to get rid of influence with the renewal

of the QM region.
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Figure 3.5: Crystal structure model of Li-GIC in the hybrid QM-CL

simulation . Red (Li) and black (C) sphere depicts atoms included the QM

cluster region. Gray spheres show the CL-C atoms.

A snapshot of the Li diffusion process provided from a hybrid calculation

is depicted in Fig. 3.8. The upper and lower C-layers of the inserted Li are

set to be AA-stacking structure, and other C-layers are set to be AB-one.

The motion of Li atom at temperature of T = 398 K is tempted by that

of the graphite C atoms, and tends to become slow when the movement

of the C atoms calms down. The mean square displacement in respect

to time t is shown in Fig. 3.9. The diffusion coefficient calculated from

the mean-square-displacement of Li atom in the present hybrid dynamics is

estimated as 7×10−5cm2/sec, which is in good agreement with experimental

one reported values of order of 10−5cm2/sec for the dilute Li density

phase [28]. If the inter-layer interaction of graphite is not considered,

the calculated diffusion coefficient is ten times larger than that with the
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z xyz xy 0 0.378 [a.u.-3]0.189
Li

Figure 3.6: The valence charge-density distribution around the Li atom in

(0100) plane. The large red, gray and small black spheres indicate Li, C and

quantum-calculated C atoms, respectively.

inter-layer interaction. The effect of the inter-layer interaction is important

for the diffusion process of the Li in the Li-GIC.

The stacking structure of the graphite is AB sequence generally, but

it is known to change into AA-type by the insertion of Li. Therefore, at

temperature T = 398K, we examine a Li diffusion process while stacking

structure of the C-layers are varying with AB ⇔ AA, assuming the following

procedures:

• A Li atom is inserted to AB sequence type of graphite.

• Very small force, which hardly influence on temperature, is provided to

the upper layer of the inserted Li and then stacking structure of layers

sandwiching Li changes to AA sequence.

• Dynamics is investigated with varying the number of Li atom. (Li is

set 1 or 2 for 1728 of C atoms.)

The time evolution of parameter Z which distinguishes AB-type sequence

from AA-type of the C-layers and trajectory of Li are shown in Fig. 3.10.

Parameter Z becomes 8 for AB-type structure, on while 10 for AA-type.

It takes between 8 and 10 for the intermediate structure of AA- and

AB-type. When Li density is dilute like this calculation condition, the
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Figure 3.7: Before and after the change of the cluster region, the forces

acting Li and C atoms around it. Red (Li) and black (C) sphere depicts

atoms included the cluster region.

stacking structure of C-layers once changes into AA sequence by the Li

insertion, however, it changes into AB sequence immediately. Therefore it is

thought that the C-layers of the Li-GIC have AB-type structure in the initial

stage of Li insertion. On the other hand, the case of higher Li density can

keep AA-type structure longer than AB-type. So, the C-layers in the Li-GIC

become AA sequence with increasing the Li density. In addition, trajectories

of Li suggest that Li moves well in varying from AA- to AB-type sequence.
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A A A A A B B 
B B 

(a) (b) 
Figure 3.8: A snapshot of Li diffusion process provided from a hybrid

calculation at temperature of T = 398 K. Red, black, and white spheres are

Li, QM-calculated C, and CL-calculated C atoms, respectively. Trajectory

of Li is also drawn. (a)Top view. (b)Side view. The letters of “A” or “B”

denote the stacking structure of C-layers.

Figure 3.9: Time evolution of mean square displacements of Li at

temperature T = 398K. Dot straight line shows the line approximated for

the calculation of the diffusion coefficient.

39



CHAPTER 3. PREPARATORY CALCULATIONS

Figure 3.10: (a)The time evolution of parameter Z which distinguishes

AB-type from AA of the C layers in Li-GIC. (b,c)Trajectories of x coordinate

of Li. Blue (magenta) line depicts in the case of one (two) Li atom(s).
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Chapter 4

Stress-dependence of Li

diffusivity in graphite

4.1 Introduction

The graphite can form various intercalation compounds by incorporating

atoms (ions) and small molecules between its layers. The lithium

(Li)-graphite intercalation compound (Li-GIC) is put to practical use as

a negative electrode of the Li-ion rechargeable battery. In the battery,

the Li ions are shuttled between the positive and negative electrodes by

the applied voltage through the nonaqueous electrolyte and separator.

Such charge-discharge reactions in the Li-ion battery involve following key

processes: the transport of the Li ions in both electrode and electrolyte

materials, the charge transfer at the electrolyte-electrode interfaces, and the

internal structural changes of the electrodes as the Li density is increased.

Much interest exists to advance the power, capacity, and durability of the

Li-ion battery relating to the recent electric power saving and environmental

problems. Among the key processes, the transport process of the Li ions in

the graphite layers is related directly to the power performance of the Li-ion

batteries. We will address the problem of the Li diffusivity in the graphite

at finite temperatures by exploiting the concurrent-type hybrid simulation

technique developed recently. Our investigation of the Li diffusivity in the

graphite is not only interesting as a fundamental physical process but also

important to design advanced Li-ion batteries.
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It is well known that the inter-layer distance of the Li-GIC expands by

about 10% with the insertion of the Li: for instance, the distance is 3.35 Å

for pure graphite, while 3.70 Å for LiC6 [29]. We here note that the Li-GIC

transforms among various microscopic structures [30] accompanied with the

change in the layer-stacking sequence as the averaged Li-density increases:

the random-stage structure is seen at low Li-density, the stage-4 structure

that denotes the existence of four C-layers between the inserted Li-layers

at a higher Li-density, the stage-3 structure at a much higher Li-density,

etc.; the AB sequence at low Li-density, while the AA sequence at high

Li-density as in LiC6. Owing to the high stiffness of the C-layer in parallel

to the layer surface, those structural and sequential changes of the Li-GIC

should extend to the long range. The expansion around the Li ion mentioned

above creates the stress field in the C layers, which should affect the Li

diffusivity. The relation between the Li diffusivity and the stress field is

expected also for the following situation. Since the layers of the graphite are

easy to be compressed or stretched due to their weak C-C interaction through

the dispersion force, it is natural to expect that the Li ion may diffuse slower

or faster when the graphite is pushed or pulled, respectively. Despite the

fundamental importance of the issue, no quantitative evidences have been

reported about the possible stress (or inter-layer distance) dependence of the

Li diffusivity either from experiments or simulations.

Motivated by those, in the present paper, we will investigate the relation

between the Li diffusivity and inter-layer distance of the graphite by the

hybrid quantum (QM)-classical (CL) simulation method [31, 15, 32]. The

hybrid QM-CL simulation method has been attracting great attention as it

is one of the methods that aim to treat large-scale atomistic system with

high physical accuracies. In the hybrid method, the QM region whose

electronic structures are calculated explicitly by the first-principles method

as the density-functional theory (DFT) is embedded in a CL system of atoms

that uses an empirical interatomic potential model. In the present study, we

consider a single Li-ion inserted in the graphite; the total system is charge

neutral. The QM region that includes the inserted Li and neighboring C

atoms is treated by the DFT implemented in real space. The CL method

that uses an empirical interatomic potential is applied to the rest of the
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graphite. The buffered cluster method [3] is adopted to couple the QM and

CL regions dynamically.

Remarkable merits of using the hybrid QM-CL method for the present

simulation of the Li ion in the graphite are the following. (i) The hybrid

QM-CL method can investigate the diffusion process of the Li-GIC with the

influence of surrounding C atoms taken into consideration at a reasonable

computational cost. On the other hand, the CL molecular dynamics

(MD) method cannot describe generally the chemical reactions such as the

charge transfer between the Li and C atoms. Also the first-principles MD

method that uses the DFT for electronic structure calculation cannot treat

a large-scale graphite system required to study the migration of the Li ion.

(ii) The dispersion forces for the inter-layer interaction of the graphite can be

incorporated easily through the CL interatomic potential model in the hybrid

QM-CL method. Remember that the dispersion force cannot be taken into

consideration in the conventional DFT method. (iii) It is not necessary to

construct an empirical interatomic potential between the Li and C atoms. If

we succeed to construct the proper interatomic potential between the Li and

C, we can simulate the Li diffusion in the Li-GIC by the CL-MD method.

However, as we will show in § 4.3, the activation energy for the Li diffusion

is quite small. It is not easy to construct a precise potential between the Li

and C atoms for our purposes.

The rest of the present paper is organized as follows. In § 4.2, we will

describe briefly the simulation method and system. Section 4.3 will report

the simulation results on the Li dynamics in the graphite at various settings.

We will discuss about the relation between the inter-layer distance and the

Li diffusivity. Possible explanation for the significant lowering of the Li

diffusivity observed experimentally at the situation of mixed stage-structures

will be given. We will conclude the present study in § 4.4.

4.2 Hybrid QM-CL simulation method

We apply the hybrid QM-CL simulation method to investigate the thermal

diffusion of a single Li-ion in the graphite with both compression and

stretching of the averaged inter-layer distance of the graphite. The details of
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the hybrid QM-CL simulation method can be found in Refs. [3, 18, 32].

4.2.1 Buffered cluster method

In the hybrid QM-CL simulation method, a cluster of atoms is selected from

the total system as the QM region. The Li ion and its surrounding C atoms

make the QM region in the present simulation. Artificial dangling bonds

therefore form at the QM-CL boundary. Possible influence of the dangling

bonds on the electronic states and the atomic forces should be minimized.

The link-atom method that uses the hydrogen atoms for termination of

the dangling bonds is often adopted to couple the QM and CL regions.

Depending on the selection of the QM region, however, using the link atom

method results in significant relaxation of the artificial surface of the QM

region and unwanted deformation of the whole system from the original

configuration. We therefore adopt the buffered cluster method (BCM) [3],

which requires no link-atom and is insensitive to the selection of the QM

region. To use the BCM, we put additional atoms of either H or C (i.e.,

constituent species), called the buffer atoms, at the QM-CL boundaries

to terminate the dangling bonds. The positions of the buffer atoms are

determined so as to minimize the potential energy of the corresponding

cluster in classical calculation under the constraint of fixed classical buffer

atoms. Note that the positions of the buffer atoms are not relaxed in the

QM calculation. Thereby artificial surface relaxation of the QM region is

suppressed in the BCM.

4.2.2 QM calculation

For the QM calculation in the hybrid QM-CL simulation, we use the

real-space DFT method in which the Laplacian operations in the Kohn-Sham

and Poisson equations are evaluated with the finite difference method. The

real-space DFT is well-suited to the present setting of the free boundary

condition in the QM calculation (i.e., the atomic cluster in vacuum).

The details of the algorithm were described in Refs. [31, 15, 33]. The

Troullier-Martin-type normconserving pseudopotentials [34] are used to

describe the interaction of the valence electrons and nuclei (ions). The
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generalized gradient approximation formula introduced by Perdew, Burke,

and Ernzerhof [35] is adopted to the exchange-correlation energy term.

The Kohn-Sham orbitals and Hartree field are represented on the uniform

Cartesian mesh points. The fourth-order finite-difference method is used for

the Laplacian operation [36]. For parallel computation, those data on the

mesh points are divided into domains to be stored in the compute nodes.

The multi-grid method [37] is employed for acceleration of the convergence

of the long-wavelength components of the data on the mesh points. The grid

spacing h = 0.45 a.u. (1 a.u. ≈ 0.5292 Å), which corresponds to the cutoff

energy (π/h)2 ≈ 49 Ry (1 Ry = 13.6 eV) in the plane waves DFT method.

In addition, the smaller grid spacing of h/3 is used only around the atoms.

4.2.3 CL calculation

In the hybrid QM-CL simulation method, the CL-MD calculation is

performed for the CL region, that is, the whole system minus the QM region.

The velocity Verlet algorithm is used to integrate the Newton’s equations

of motion for all the atoms (or ions in the QM region). The Brenner’s

interatomic potential [16] is adopted for the C atoms of the graphite. We

employ the parameter values listed in Table I in Ref. [16] except for the

equilibrium distance. The equilibrium distance is set to 1.33116 Å so that

the calculated equilibrium lattice constant of the graphite becomes equal to

the one calculated with the QM calculation, which is slightly longer than

that in Ref. [16]. Such a fine tuning of the parameters in the CL potential is

necessary in order not to create artificial stress at the QM-CL boundary in the

hybrid QM-CL simulation method [18]. In the Brenner-type potential, the

cut-off distance of the interaction is 2.0 Å. It means that only the interaction

between the nearest neighbor atoms belonging to the same layer is considered.

To take into account the inter-layer interaction, we construct the following

interatomic potential model for the dispersion (or the van der Waals) forces

between the C atoms to add it to the CL potential:

VvdW(r) = 4ε

{(σ
r

)12

− g(Z)
(σ
r

)6
}
f(r) (4.1)

with the distance r between the C atoms belonging to different layers. The

basic form of VvdW(r) is that of the Lennard-Jones potential. The f(r) works

45



CHAPTER 4. STRESS-DEPENDENCE OF LI DIFFUSIVITY IN
GRAPHITE

to cut-off the potential gradually at a long distance. The g(Z) changes

relating to the degree of similarity to the AA sequence of the graphite with

the coordination number Z of atoms in a neighboring layer for a given atom.

The parameters ε = 2.84 meV and σ = 3.35 Å are set in order to reproduce

the experimental inter-layer energy and distance of the graphite, respectively.

With the CL interatomic potential thereby constructed for C atoms, the

elastic constant for the direction perpendicular to graphite layers becomes

c33 = 34.5 GPa, which is in good agreement with the experimental value 36.5

GPa [26].

The hybrid QM-CL simulation will be performed in the micro-canonical

ensemble, that is, the total number of atoms, the shape and volume of the

simulation box, and the total energy are constant. The velocity scaling,

however, will be applied to control the system temperature.

4.2.4 Target system

The simulation system is composed of 3072 C atoms and a single Li-ion under

the periodic boundary condition as shown in Fig. 4.1. As will be explained

in § 4.3, the charge transfer occurs between the Li and neighboring C atoms,

resulting in formation of the Li+ state. In total, eight C-layers exist. The

graphite assumes the AB sequence since we are interested in the situation of

low Li-density. A cluster of atoms composed of the Li and the surrounding

C atoms belonging to the two sandwiching layers is set to the QM region.

The dynamic selection of the C atoms around the Li ion in motion follows

the rule to realize sufficient physical accuracies of the atomic forces, which is

pre-determined in a way similar to Ref. [32].

To set proper sizes (Lx, Ly, Lz) of the simulation system at a finite

temperature T , we begin with considering the sizes at T = 0 K. Here the

x- and y-axes are set along the layer, while the z-axis perpendicular to the

layer. The hybrid QM-CL simulation at T = 0 K gives (Lx, Ly, Lz) = (34.44

Å, 29.83 Å, 26.97 Å) as the equilibrium values. The Lx and Ly values are the

same as those for the pure graphite; the Lz is only 0.1 Å longer than that for

the pure graphite. Since the thermal expansion along the layer is quite small,

we use the same values of (Lx, Ly) at finite temperatures also. On the other

hand, the thermal expansion along the z-axis is substantial. As shown in
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Figure 4.1: The side (x− y) view of the total simulation system. The large

red and medium green spheres are respectively the Li and C atoms in the

QM region. The small blue spheres are the C atoms in the CL region.
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Fig. 4.2, we find through separate CL-MD simulation that the coefficient of

linear thermal expansion of the pure graphite in z-direction is 6.7×10−5 K−1

with the present CL potential. It is in accord with the experimental data of

7.34 × 10−5 K−1 [21] and is the same order with another experimental data

of 2.7 × 10−5 K−1 [38]. We assume that the same expansion coefficient can

be applied to the present system since the Li density is too small to affect

the system size. Therefore, multiplying the linear expansion factor for 423

K to Lz = 26.97 Å for T = 0, we find the equilibrium value of Lz = 27.74 Å

for T = 423 K.

We are interested in the possible effects of change of Lz on the Li

diffusivity at T = 423 K. For the compressed situation, we consider −3.9%

and −1.7% changes in Lz from the original value of 27.74 Å. For the

stretched situation, the 2.9% change in Lz. In addition, we consider the

case of 0.6% change in Lz. If we take into account the elongation of

0.35 Å in the inter-layer distance by the Li insertion [29], the resulting

Lz = 27.74 + 0.35 = 28.09 Å may be taken as the equilibrium value at

423 K. Since Lz = 27.92 Å in the 0.6% case is about the middle of the two

estimates (27.74 Å and 28.09 Å) for the equilibrium value of Lz at 423 K,

we regard the 0.6% case as the equilibrium condition, which relates to the

situation of no pressure on the layers.

4.3 Results and discussion

We depict in Fig. 4.3 the valence-electron density on a y-plane in the QM

region calculated using the hybrid QM-CL simulation method. The black

sphere at around the center of the QM region is the Li ion. The bonding

nature between the neighboring C atoms is observed. We find almost no

electrons in the vicinity of the Li, indicating significant electron transfer

from Li atom to the C atoms to form the Li+ state.

Figure 4.4 shows the mean square displacements (MSD) of the Li ion as

functions of time in the four cases (−3.9%, −1.7%, 0.6%, and 2.9% changes

of Lz) at T = 423 K. Since there exists only a single Li-ion in the system,

we shift the time origin of the MSD by every 0.1 ps to increase the number

of data samples for better statistics. The total simulation time is 12 ps for
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Figure 4.2: The averaged inter-layer distance of the graphite at equilibrium

as a function of temperature T (K), obtained through separate classical MD

simulation. The solid line shows the fitting formula f(T ) = 3.36(1 + 6.7 ×
10−5T ).
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Figure 4.3: The valence-electron density on a y-plane in the QM region

obtained in the hybrid QM-CL simulation. The black sphere is the Li ion,

while the gray spheres the C atoms. The density less than 0.001 a.u.−3 is

omitted.
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each run; the time step is 1.0 fs. Therefore the curves in Fig. 4.4 appear

to have substantial fluctuations as the time (i.e., the horizontal axis) gets

longer (t >4 ps). The curves in Fig. 4.4 are not linear enough to estimate

the diffusion coefficients at long times. However, characteristic dependence

of the Li diffusivity on the change of Lz is observed as follows.

The MSD’s for t = 0 ∼ 3 ps that have small statistical errors, show

the clear dependence on Lz. As expected, the MSD’s in the equilibrium

(0.6%) and stretched (2.9%) cases are larger than that in the compressed

(−1.7% and −3.9%) cases. In the equilibrium and stretched cases, we find

a super-linear (or partly parabolic) behavior of the MSD as a function of

time at short times (t = 0 ∼ 1 ps), while a linear behavior at longer times

(t = 1 ∼ 3 ps). In the compressed cases, the MSD increases in proportion

to time for t = 0 ∼ 3 ps. The super-linear behavior in the equilibrium and

stretched cases indicate a mixture of ballistic and hopping motion of the Li

ion. On the other hand, the accurate linear behavior in the compressed cases

means the usual hopping motion.

There exist insufficient statistics in the MSD data for t = 4 ∼ 10 ps,

resulting in large fluctuations. In the equilibrium and stretched cases, we

find no obvious deviation of the MSD from the linear extrapolation of the

data for t = 1 ∼ 3 ps. In a compressed case (−1.7%), the clear change of

the MSD from the linear to saturation behavior is observed. We will explain

the mechanism of the saturation behavior later in this section in terms of the

cage effect.

The trajectory of the Li ion during 10 ps in each run is plotted in Fig. 4.5;

the initial and final positions of the Li ion are depicted with the open arrow

and the large red sphere, respectively. The green spheres are the C atoms in

the QM region. When the graphite layers assume the equilibrium distance

or stretched one, the Li ion migrates over a wide area. On the other hand,

the Li ion appears to be confined in the compressed cases, particularly in

the −1.7% case. In the equilibrium and stretched cases (0.6% and 2.8%) in

Fig. 4.5, we observe both hopping and ballistic modes of the Li ion motion.

In the hopping mode, the Li ion moves to avoid the places at which two C

atoms belonging to different layers assume the same x − y positions (see,

Fig. 4.6). However, as remarked in Fig.4.5 with black arrows, we find the Li
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Figure 4.4: The mean square displacements of the Li ion as functions of time

in the hybrid QM-CL simulation at 423 K for the compressed (−3.9% and

−1.7%), equilibrium (0.6%), and stretched (2.9%) values of Lz. For better

statistics, the time origins are set at every 0.1 ps in the simulation run of

total 12 ps.
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ion in the ballistic mode can pass through such a place. The ballistic motion

makes the MSD super-linear or parabolic in time as already pointed out for

the 2.9% and 0.6% cases in Fig. 4.4. Detailed analyses of the ballistic-motion

events show that the inter-layer distances at near places of the Li ion toward

the direction of its motion are always larger than 3.85 Å. The value 3.85 Å

means stretching the inter-layer distance by 0.36 Å (0.27 Å) as compared to

the averaged value in the 0.6% (2.9%) case. We, in fact, find that the thermal

fluctuation produces such a local stretching frequently at various places in

those simulation cases.

In order to understand the mechanisms of the Li diffusivity, the activation

energy for the hopping diffusion of the Li ion is evaluated using the hybrid

QM-CL simulation method. Figure 4.6 depicts the positions of the Li ion in

the ground state (GS) and the transition state (TS). The activation energy,

which is calculated by subtracting the energy in the GS from that in TS,

in each case of the Lz change is plotted in Fig. 4.7. The activation energy

obtained from the total energy, i.e., the filled sphere in Fig. 4.7, includes both

contributions of the QM and CL regions. We find that the activation energy

is quite small, less than 0.07 eV, irrespective of Lz. Therefore, the Li ion

can diffuse easily by the thermal fluctuation. As the inter-layer distance

becomes shorter, the activation energy estimated from the total energy

increases substantially, which supports our finding of suppressed diffusivity

by compression.

The contribution of the QM region (i.e., around the Li ion) to the

activation energy changes little when the system is compressed or stretched.

On the other hand, the contribution of the CL region (far from the Li ion)

increases as the system is compressed, which means that the distortion of

the C atoms far from the Li ion affects the activation energy. Note that

the major contribution to the activation energy in compressed system comes

from the CL region as seen in Fig. 4.7. Since the long-ranged distortion is

formed in cooperation with a large number of C atoms, the deformation field

cannot change in a short time. We guess that such a relatively long-lived

deformation field works as a cage for the motion of the Li-ion, resulting in

a relatively small migration area as observed clearly in the compressed case

(−1.7%) in Fig. 4.5.
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Figure 4.5: The trajectory of the Li ion during 10 ps viewed from z-direction,

obtained in the hybrid QM-CL simulation. The four cases of the change of

Lz are considered. The initial position of the Li ion is depicted by the open

arrow. The final position by the large red sphere. The green spheres are the

C atoms in the QM region. The black arrows depict the places where the Li

ion passes through the places at which two C atoms belonging to different

layers assume the same x− y positions.
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Figure 4.6: The Li ion at the ground and transition states in the hopping

diffusion in the graphite. The Li ion is sandwiched by two C-layers.
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The DFT calculation [39] reported that the elastic constant c33 of the

graphite relating to the deformation perpendicular to the layers, increases

with increasing the Li density. It is therefore reasonable to consider that the

region around the Li ion is hard to be compressed in comparison to the one

without the Li. Using the hybrid QM-CL simulation method, we calculate

the local strain of the inter-layer distance at both nearby and far regions of

the Li ion in the graphite at T = 0 K. The standard inter-layer distance at

T = 0 K is evaluated from the equilibrium distance of the graphite system

size Lz = 26.97 Å irrespective of regions. The local strain for a given Lz,

calculated in reference to the standard value, is plotted in Fig. 4.8. The local

strain at the far region changes in proportion to Lz. On the other hand,

the local strain at the nearby region changes differently. The gradient of the

slope with respect to Lz indicates that (i) the nearby region is harder than

the pure graphite for Lz < 26.97 Å; (ii) it is softer for Lz = 26.97 ∼ 27.6

Å (iii) it has similar stiffness for Lz = 27.6 ∼ 28.2 Å. The finding (i) means

the accumulation of the deformation energy in the far regions relating to its

relative softness when the system is compressed. It is the reason of substantial

contribution of the far region to the activation energy in the compressed

situation. The similar finding of the substantial contribution of the peripheral

(CL) region to the activation energy in the highly strained situation has been

reported for the activation energy of the O atom in the Si crystal [18].

To analyze possible error in the activation energy, we calculate the energy

with a different method in a similar setting. We use the projector augmented

wave method for the DFT calculation implemented in the VASP code [40],

which is expected to have higher accuracy since the core electrons are treated

also in addition to the valence electrons. We prepare the supercell, 3× 3× 2

of the unit cell, of the graphite in the AB-sequence. Then a single Li atom

is inserted. Hence the total system contains 72 C atoms and 1 Li atom. The

supercell and all the atomic positions are relaxed in the GS; the supercell

and the positions of the C atoms in the TS. The calculated results by the

VASP are listed in Table 4.1 for both GS and TS. The activation energy

evaluated from the electronic energy is 0.09 eV, which is the same order of

0.05 eV obtained by the hybrid QM-CL simulation method at zero strain.

Considering the difference in the target system used in the two methods, we
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Figure 4.7: The activation energy for the hopping diffusion of the Li ion

in the graphite at T = 0 K calculated using the hybrid QM-CL simulation

method. The filled circles with the black curve represent the data evaluated

using the total energy. The open circles with the gray curve represent the

data using the energy of the QM region only. The strain corresponds to

the variation of Lz from the equilibrium distance of 26.97 Å at 0 K. The

error bars indicate the estimated overall errors relating to the convergence

fluctuation in the real-space DFT method.
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Figure 4.8: The local strains as functions of Lz calculated using the hybrid

QM-CL simulation method at T = 0 K. The open blue spheres are for the

region near the Li ion; the filled red spheres, for the region far from the Li

ion. The black line represents the ideal case of uniform strain.
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Table 4.1: The results of various quantities at the ground state (GS) and

transition state (TS) calculated using the VASP code. The Eele, E
400K
vib , S400K

vib ,

and G400K = Eele+E
400K
vib +pV −TS400K

vib are the electronic energy at T = 0 K,

the vibrational energy including the zero-point energy, the phonon entropy,

and the Gibbs free-energy at T = 400 K, respectively. The electronic energy

is measured in reference to the standard states of the atomic elements.

Eele pV E400K
vib S400K

vib G400K

(eV) (eV) (eV) (eV/K) (eV)

GS −7.94 2.79 13.88 0.0063 6.22

TS −7.85 2.74 13.75 0.0059 6.26

∆ (TS-GS) 0.09 −0.06 −0.13 −0.00036 0.04

state that no substantial difference in the activation energy exists between

the two results. In addition we calculate the activation free-energy using the

phonon package MedeA [41]. Relatively large contribution of the phonon

entropy T∆S = −0.14 eV is found at 400 K. Finally the difference in the

Gibbs free-energy between the GS and TS becomes 0.04 eV.

It is known experimentally that the drastic lowering to one severalth of

the Li diffusivity occurs in the Li-GIC at particular values of the Li density

that correspond to the coexistence of different stage-structures [28]: random

(dilute)-stage and stage-4, stage-4 and stage-3, etc. This has been thought to

be attributed to the coexistence of two different phases and the movement of

the phase boundary. From our findings about the stress-dependence of the Li

diffusivity in the graphite explained above, we can propose another possible

mechanism for the drastic lowering of the Li diffusivity as follows. Suppose

a phase boundary in the Li-GIC in which one phase assumes the dilute

random-stage and another does the stage-4, as illustrated in Fig. 4.9. The

X-ray diffraction measurement showed that the averaged inter-layer distance

gets longer as the stage structure advances relating to the increase in the

Li density [42]. Therefore, due to the relative elongation of the averaged

inter-layer distance in the stage-4 phase, compressive and stretching stresses

work on average on the stage-4 and the random-stage sides, respectively, at

the phase boundary (see, Fig. 4.9). We have demonstrated in Fig. 4.4 that

only 2% compression in z-direction suppresses the Li diffusivity substantially:
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the MSD in the −1.7% case is about one third of that in the 0.6% case. The

compressive stress in the stage-4 side of the phase boundary may play a role

to create a confining bank for the Li diffusion. If such a phase boundary

extends to the entire system, significant lowering of the Li diffusivity should

result.

Remarks on the proposed mechanism for the drastic lowering of the Li

diffusivity at the stage-mixture situation are in order. (i) Though difference

exists about the layer-stacking between the AA sequence around the Li-rich

layers in the stage-4 structure and the AB sequence assumed in our simulation

runs, we expect a similar suppression of the Li diffusivity due to compression

occurs also in the stage-4 structure. (ii) Since the Li insertion expands

the inter-layer distance by about 10%, the 2% compression of the averaged

inter-layer distance that we just mentioned can be realized. (iii) Compressive

stress also emerges in the random-stage side for the neighboring two layers

with the Li ions inserted on the random-stage side and no Li ion on the

stage-4 side, as illustrated in Fig. 4.9. However, because of the relatively

low density of the Li ions in the random-stage structure as compared to

the stage-4 structure, the Li ions in the random-stage structure should be

affected little by such a compressive stress. Rather, the exclusive volume

effect [43] that causes repulsive interaction between the Li ions located just

above and below graphite layers should lower the Li diffusivity. In fact, the Li

diffusivity decreases as the Li density increases in the random-stage [28]. (iv)

In reality the graphite layers often warp and bend, which means the existence

of mixture of the AA- and AB-sequences. Since the inter-layer distance is

larger by 4% in the AA-sequence than in the AB-sequence, similar mechanism

for the Li diffusivity may work also for this situation.

In all the simulation runs explained in the present paper, only a single

Li-ion in the graphite is treated, in other words, mutual interaction between

the Li ions is ignored. As already pointed out in Ref. [43] as the exclusive

volume effect, the Li-Li interaction should affect the Li diffusivity. We are

working on the issue by performing a larger scale hybrid QM-CL simulation,

in which neighboring Li ions and their surrounding C atom are treated

together as a single QM region. Such a large QM region is treated by

our novel divide-and-conquer-type order-N DFT method to be reported in
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Figure 4.9: Schematic illustration of the phase boundary of the random-stage

and stage-4 structures in the Li-GIC. The blue horizontal lines indicate the

graphite layers. The stresses acting on the layers due the differences in the

inter-layer distance, are depicted by the arrows.

a separate paper. Combined effects of the external stress and the Li-Li

interaction will be clarified.

4.4 Conclusions

We have applied the hybrid QM-CL simulation code to analyze the stress

dependence of the diffusivity of a single Li-ion in the graphite at T = 423

K by changing the averaged inter-layer distance (by plus and minus a few

percent). The real-space DFT method has been applied to treat the QM

region that is selected adaptively to include the Li and its surrounding C

atoms. The weak C-C interaction (i.e., the dispersion force) acting between

different C-layers has been modeled through the CL interatomic potential.

Thereby we have found that the Li diffusivity is suppressed significantly in

the compressed case, while no substantial change is observed in the stretched

case. In the stretched case, the Li-ion motion has shown both hopping and

ballistic modes. On the other hand, in the compressed case, the Li ion has

diffused through the hopping mode only and has been found to be confined in

a relatively small area at longer times; its mechanism has been explained in
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terms of the cage effect. The activation energy for the hopping diffusion has

been found as small as 0.1 eV at T = 0 K, in accordance with the fast thermal

diffusion of the Li ion observed in the present simulation. From our findings

about the stress-dependence of the Li diffusivity in the graphite, we have

proposed a possible mechanism for the drastic lowering of the Li diffusivity

at particular densities of Li observed experimentally in the Li-GIC.
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Chapter 5

Enhanced thermal diffusion of

Li in graphite by alternating

vertical electric field

5.1 Introduction

Graphite can form various intercalation compounds by incorporating ions,

atoms, and small molecules between the C layers. Among these, a

lithium-graphite intercalation compound (Li-GIC) is put to practical use as

a negative electrode of the Li-ion rechargeable battery[44]. In the battery,

Li ions are shuttled between the positive and negative electrodes through

a nonaqueous electrolyte and a separator in electrochemical reactions of

discharging and recharging with the applied voltage. Such discharging and

recharging reactions in the Li-ion battery involve the following key processes:

the transport of Li ions in both electrode and electrolyte materials, the charge

transfer at the electrolyte-electrode interfaces, and the internal structural

changes of the electrodes as the Li density changes. There is much interest in

advancing the power, capacity, recharging speed, and durability of the Li-ion

battery relating to the recent electric power conservation and environmental

problems. Among the key processes, the transport process of the Li ions in

graphite is related directly to the recharging speed and power of the battery.

Lithium diffusivity in graphite has been investigated both experimentally

and theoretically. The diffusion coefficients obtained in the experiments[28,
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45] vary in a wide range of 10−5 ∼ 10−12 cm2/s depending on not only

the experimental conditions but also the measurement methods. We here

note that extracting the net diffusion coefficient of Li ions from measured

data is not easy as it requires additional information on the inhomogeneous

distribution of Li ions, the surface area of the sample, and other factors. On

the other hand, Toyoura and coworkers [46, 47] evaluated by first-principles

calculations the mean frequencies of the hopping of the Li ion in LiC6 on the

basis of the transition state theory; the hopping process involving interstitials

and vacancies of graphite was considered. Persson et al. [48] calculated the

Li diffusion coefficients of LixC6 at x > 0.2 by kinetic Monte Carlo simulation

using the Li migration barrier energy obtained by the first-principles method

and the configurational energy of Li ions and vacancies evaluated with the

cluster expansion method. They found that Li diffusivity depends principally

on the inter-layer spacing at low Li densities and on the in-plane Li-Li

interaction at high Li densities.

The Li ion in graphite creates a long-ranged stress field around itself

by expanding the inter-layer spacing by about 10%. We have recently

investigated the stress dependence of the diffusivity of the Li ion in graphite

at a temperature T = 423 K using the hybrid quantum (QM)-classical

(CL) simulation method by changing the average inter-layer spacing [49].

In the method, a relatively small region for the density-functional theory of

electrons selected adaptively around the Li ion was embedded in the total

system described by classical interatomic potentials, to include the effect of

the surrounding C atoms in the QM region at a reasonable computational

cost (see the following paragraphs for details). The layers in graphite

were assumed to form an AB stacking sequence as we were interested in

a low-Li-density situation. Our findings obtained include the following [49]:

(i) The majority of the valence electrons of the Li atom is transferred to the

surrounding C atoms irrespective of the average inter-layer spacing, resulting

in the Li ion state. (ii) In the few %-stretched and equilibrium cases, the Li

ion migrates in the inter-layer spacing with changes between the hopping and

ballistic modes. In the hopping mode, the Li ion shows frequent transitions

between the upper and lower vertical sites in the spacing that are located

near the upper and lower layers, respectively. The two vertical sites emerge
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because the Li ion is stable at the location above or below the center of a

six-membered C ring by less than half of the inter-layer distance in thermally

expanded graphite with an AB stacking sequence [see Fig. 5.1 (top)]. Ballistic

motion can occur when the instantaneous inter-layer spacing around the Li

ion becomes larger than 3.85 Å. (iii) In the few %-compressed case, the Li ion

diffuses in the hopping mode only. This shows the tendency of confinement

due to deformed layers (i.e., the cage effect). Considering these, in this

paper, we will firstly analyze the relation between the vertical transition and

diffusivity of the Li ion in graphite. Motivated by the results of the present

analyses, we will secondary perform a series of hybrid QM-CL simulation

runs to demonstrate an enhanced thermal diffusivity of Li ions by applying

alternating electric fields perpendicular to the layers.

5.2 Settings in simulation

The simulation system in the present and former studies is composed of 3, 072

C atoms and a single Li atom, whose positions are {RI}, at temperature T =

423 K under the periodic boundary conditions (PBCs) as shown in Fig. 5.1.

Eight layers form the AB stacking sequence in the vertical (z) direction. The

system dimensions are (Lx, Ly, Lz) = (34.44 Å, 29.83 Å, 28.55 Å). Here, Lx

and Ly are the equilibrium values at T = 0 K obtained in the hybrid QM-CL

simulation, while Lz corresponds to a 2.9% expansion of the equilibrium

value at T = 0 K to take into account thermal expansion. A cluster of atoms

composed of the Li and surrounding C atoms in the neighboring layers that

sandwich the Li ion is reselected as the QM region with an interval of about

50 fs or longer depending on the situation; the rest of the whole system is

called the CL region. Various electric fields in the z-direction are applied to

the system in this study, while Lz was varied in the former study.

We advance the hybrid QM-CL simulation method to investigate Li

dynamics in graphite at high accuracies with both effects of all the C atoms

in the system and external electric field included. The buffered cluster

method[3] is used to realize a seamless mechanical coupling of the QM and

CL regions at the atomic scale. Since the electronic structure calculation is

performed for the QM region only, the higher accuracy in the electrochemical
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Figure 5.1: Top (x-y) and side (x-z) views of simulation system in hybrid

QM-CL simulation run at T = 423 K with zero external electric field. The

large and medium spheres are respectively the Li and C atoms in the QM

region. The small spheres with bonds are C atoms in the CL region. The

curve is the trajectory of the Li ion for the 10 ps obtained in the simulation

run. The large arrow depicts the initial position of the Li ion. The small

arrows indicate the places where the changes between the hopping and

ballistic modes occur during the migration. The C-Li distances du and dl

are depicted.
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reaction is expected for the larger QM region. For fast computation, the

dynamic reselection[32] of C atoms around the Li ion in motion follows the

rule to reselect about 60 C atoms in units of six-membered C rings from

the instantaneous atomic configuration. In the method, we introduce buffer

atoms for the QM calculation of the QM region. The species of the buffer

atoms in the present setting is H, whose positions are determined at every

time step to minimize the potential energy of a corresponding classical atomic

cluster. The atomic forces during Li diffusion are confirmed to have sufficient

accuracies in separate simulation runs. Assuming the inactiveness of C atoms

in the CL region to the external electric field, we apply uniform electric fields

in the z-direction to the QM region with various amplitudes and frequencies

to see their possible effects on the Li diffusivity. The velocity-Verlet algorithm

is used to integrate Newton’s equations of motion of all the atoms using the

atomic forces calculated. The velocity scaling with a factor common to all

the atoms is also applied to maintain the system temperature.

For the QM region with buffer atoms under the external electric field E,

we consider the following Kohn-Sham (KS) equation in the DFT:[
−∇2

2
+ veff(r, {RI}) +E · r

]
ψi(r) = εiψi(r) (5.1)

with an eigen orbital and energy of ψi and εi, respectively (the atomic unit

is used). Here, veff(r, {RI}) is the effective potential energy for an electron

at r without the external electric field. Charge neutrality is assumed in the

calculation. The force on atom-I is obtained by adding F I = ZIE (ZI is the

ion charge) to the atomic force caused by electron-electron, electron-ion, and

ion-ion interactions. We use the real-space implemented density-functional

theory (DFT) code by representing the KS orbitals and Hartree field on the

uniform Cartesian mesh points. The fourth-order finite-difference method is

used for the Laplacian operation [36]. The multigrid method [37] is employed

to accelerate convergence. For parallel computation, those data on the mesh

points are decomposed into computation nodes of a parallel machine for

storing and computation. The mesh size h = 0.45 aB (1 aB ≈ 0.5292 Å),

which corresponds to the cutoff energy (π/h)2 ≈ 49 Ry (1 Ry ≈ 13.6 eV)

in the planewave-based DFT method. In addition, the smaller mesh size

of h/3 is used only around the atoms. The real-space DFT method has
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the advantage of applicability to various settings of the external electric

field. The norm-conserving pseudopotentials [34] are used to describe

the interaction of valence electrons and ions. The generalized gradient

approximation formula [35] is adopted for the exchange-correlation energy.

Details of the QM calculation algorithm were described in refs. [31, 15, 33].

The classical interatomic potential by Brenner[16] is applied to C atoms

in the CL region. We employ the parameter values listed in Table I in

ref. [16], except for the equilibrium distance. The equilibrium distance is set

to 1.33116 Å so that the equilibrium lattice constant of graphite matches

well with that obtained in the QM region, which is slightly longer than that

assumed in ref. [16]. Such an adjustment of parameters in the CL potential

is necessary in order not to create artificial stress at the QM-CL boundary in

the hybrid QM-CL simulation method [18]. In the Brenner-type potential,

only the interaction between nearest-neighbor atoms in the same layer is

considered. To take into account the inter-layer interaction due to dispersion

(or the van der Waals) forces, we add the following interatomic potential

particularly for C atoms in different layers:

VvdW(R) = 4ε

{( σ
R

)12

− g(Z)
( σ
R

)6
}
f(R), (5.2)

with the distance R between C atoms. The basic form of VvdW(R)

is that of the Lennard-Jones potential. The function f(R) works to

cutoff the potential gradually at a long distance of approximately 5.6 Å.

The coordination-number-dependent function g(Z), which takes on values

between 0 and 1, is a measure of the degree of similarity to the AA stacking

sequence of neighboring layers using the coordination number Z of the C

atoms in a neighboring layer for a given atom. The parameters ε = 2.84 meV

and σ = 3.35 Å are determined to reproduce the experimental inter-layer

energy and spacing, respectively. With the classical interatomic potential

thus constructed, the elastic constant of pure graphite for the vertical

direction in the AB stacking sequence becomes c33 = 34.5 GPa , which is

in good agreement with the experimental value of 36.5 GPa [26].
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5.3 Results and discussion

Firstly, we analyze the relation between the vertical position and diffusion

behavior of the Li ion observed in the hybrid simulation run with a zero

electric field, i.e., E = 0. As seen in Fig. 5.1, the Li ion diffuses in

the inter-layer spacing with transitions in the vertical position. Figure 5.2

(middle) shows the time evolutions of the distances du and dl between the

Li ion and the center-of-mass positions of QM-region C atoms in the upper

and lower layers, respectively. The time evolutions of absolute values of Li

displacement in the x-, y-, and z-directions |(RLi(t)−RLi(0))x,y,z| are shown
in Fig. 5.2 (bottom). In most of the period of t = 0 to 1 ps, dl is shorter

than du, which means that the Li ion is trapped near the lower layer. During

the period, the Li ion hardly diffuses, as shown in Fig. 5.2 (bottom). In the

following period of t = 1.0 to 1.2 ps, on the other hand, dl and du are nearly

equal and the Li diffusivity is relatedly high. Such a relation between dl, du,

and the in-plane displacements of the Li ion can also be seen at approximately

t = 1.6 ps and 4.2 ps in Fig. 5.2. We may state that Li diffusivity is enhanced

when the Li ion escapes from one of the two stable vertical sites to move

around the middle of the upper and lower layers where a resisting force on

the Li ion for the perpendicular (x or y) motion is relatively weak.

Motivated by the finding stated above, we think of increasing the mean

probability of the Li residence around the middle of the upper and lower layers

to enhance the diffusivity of the Li ion in graphite by applying an alternating

vertical electric field. Figure 5.3 shows the mean squared displacements of

the Li ion as functions of time ⟨|(RLi(t)−RLi(0))|2⟩ obtained in the hybrid

QM-CL simulation runs at T = 423 K with electric field amplitudes Eamp
z =

0.0, 0.14, and 0.43 V/Å and frequencies f = 0.4, 0.8, and 1.7 THz. For

better statistics, the time origins are set every 10 fs in a simulation run with

a total of 5 ps. Since the mean squared displacements of the Li ion for

t = 0 ∼ 2 ps have small statistical errors to some extent, we can see the

following qualitative characteristics to depend on the electric field. As Eamp
z

increases with f = 0.4 THz, the Li diffusivity gets lower. This is because the

Li ion experiences a force to stay around one of the two stable vertical sites

exerted by the vertical electric fields at such a relatively low frequency. The
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Figure 5.2: Diffusion behavior of Li ion in graphite at T = 423 K with zero

external electric field, observed in hybrid QM-CL simulation run. The time

evolutions of the external electric field, du and dl, and the absolute values

of the Li displacements in three directions are depicted in top, middle, and

bottom panels, respectively.
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Figure 5.3: Time evolutions of mean squared displacements of Li ion obtained

in hybrid QM-CL simulation runs at T = 423 K with various external electric

fields. For better statistics, the time origins are set every 10 fs in a total

simulation period of 5 ps.

activation energy for the hopping diffusion of the Li ion is estimated [49] as

about 0.04 eV for the present system size Lz = 28.55 Å. Since the vertical

distance between the stable vertical site and the transition state site is about

0.2 Å, Eamp,thres
z = 0.04/0.2 = 0.2 V/Å may be the threshold value for such

a vertical transition of the Li ion to occur without the thermal energy. The

Li ion is expected to escape quickly from one of the two stable vertical sites

following the time evolution of the electric field if Eamp
z > Eamp,thres

z .

We therefore analyze the f dependence of ⟨|(RLi(t) − RLi(0))|2⟩ for

Eamp
z = 0.43 V/Å, which is larger than Eamp,thres

z . As shown in Fig. 5.3,

the Li diffusivity at f = 0.8 THz is similar to that at f = 0.4 THz and that

the Li diffusivity at f = 1.7 THz is remarkably high. The time evolutions of

the Li-C distances du and dl for E
amp
z = 0.43 V/Å at f = {0.4 THz, 1.7 THz}

are shown in Fig. 5.4. At f = 0.4 THz, the vertical position of the Li ion

is high (low) when the electric field directs upward (downward) as seen in
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Fig. 5.4(a). Since the Li ion hardly diffuses when it stays at one of the

two stable vertical sites, the effective diffusivity becomes low at such a low

frequency. At a high frequency of f = 1.7 THz, the Li ion changes its vertical

position in a chaotic manner with the large and alternating vertical forces on

it owing to the external electric field, as shown in Fig. 5.4(b). It appears that

the vertical motion of the Li ion cannot catch up with such a fast change

in the direction of the external electric field. In other words, the Li ion

experiences a retarding force from the external electric field before arriving at

a stable vertical site. The Li ion therefore increases its probability of residing

around the middle of the upper and lower layers, resulting in a significant

enhancement of Li diffusivity. We here mention about the electron density

obtained in the QM calculation with the electric field applied. Even for the

largest amplitude Eamp
z = 0.43 V/Å, the electrons are found to reside around

the C atoms and the atomic forces calculated satisfy well the action-reaction

law.

No experimental report exists about the vibrational frequency peak of

Li-GIC in the range of 1 ∼ 2 THz. For graphite, the low-frequency mode

of E2g(1) is observed at 1.26 THz in the Raman measurement [25]. If the

oscillation frequency of the external electric field is tuned to the mode, it

is likely that the vertical vibration of the layers in graphite enhances Li

diffusivity further by increasing the probability of the Li residence around the

middle of the upper and lower layers. We note that no such vibration of the

layers is observed in the present simulation runs. Technologies for generating

high-intensity radiation in the terahertz range have been advancing rapidly

in recent years, for example, using the gyrotron system [50] and the coherent

transition radiation from a linear accelerator whose field amplitude reaches

over 0.2 V/Å [51]. Experiments to demonstrate our present prediction of

enhanced Li diffusivity in graphite by using an alternating vertical electric

field should be possible in the near future.

5.4 Conclusions

In summary, we have developed a hybrid QM-CL simulation code to analyze

the effects of the external electric field on the Li diffusivity in graphite. The
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(a)

(b)

Figure 5.4: Same as Fig. 5.2, but with the external electric field amplitude

Eamp
z = 0.43 V/Å. (a) At frequency f = 0.4 THz. (b) At f = 1.7 THz.
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real-space DFT method has been used to treat the QM region under the

external electric field selected adaptively to include the Li and its surrounding

C atoms. The dispersion force acting between the C atoms in different

layers has been modeled to be included in the classical interatomic potential.

We have found that the in-plane diffusivity of the Li ion at T = 423 K is

enhanced significantly by the electric field perpendicular to the C-layers if

the amplitude Eamp
z > 0.2 V/Å and the frequency f is as high as 1.7 THz.

The mechanisms of the enhanced diffusivity have been explained in terms of

the increased probability of the Li residence around the middle of the upper

and lower layers, resulting in a weak interaction between the Li ion and the

graphite layer.

In this study, we have considered the system containing a single Li ion

in the graphite. As already pointed out in ref. [48], the Li-Li interaction

should affect Li diffusivity in Li-GIC at a higher concentration of Li. We are

working on the issue by performing a larger-scale hybrid QM-CL simulation of

Li diffusivity in graphite, in which neighboring Li ions and their surrounding

C atom are treated together as a single QM region. Such a large QM

region is treated by the divide-and-conquer-type real-space DFT method [52]

developed recently. The combined effects of the long-range stress field,

external electric field, and Li-Li interaction will be clarified in the future.
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Summary

In this thesis, we have studied on the Li diffusivity in the Li-GIC under both

stress and external electric field. In order to describe combined effects of

the electronic structure and mechanical stress at a realistic setting for the

dynamics, we have developed the hybrid QM-CL simulation code in which

the QM region described with the DFT is embedded in the CL system.

The real-space DFT code implemented using the finite difference method

has been adopted to treat the QM region that is selected adaptively to

include the Li and its surrounding C atoms in the Li-GIC. On the other

hand, the classical MD method using empirical interatomic potential has

been applied to the movement of the rest C atoms. The Brenner-type

potential has been used for the intra-layer interatomic potential between

C atoms. Novel inter-layer interaction model acting between the C atoms

in different C-layers has been constructed. Although the weak dispersion

force for the inter-layer interaction of the graphite cannot be taken into

consideration in the conventional DFT method, it can be incorporated easily

through the CL interatomic potential model in the hybrid QM-CL method.

The validity of both potential models for this study has been confirmed by

the separate calculation of the diamond and graphite prior to the hybrid

simulation. Buffered cluster method is applicable to couple the QM and CL

regions.

Let us summarize the results obtained from our hybrid QM-CL

simulations of the Li-GIC as follow:

(I) In preparatory calculations in the hybrid QM-CL simulation for the
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Li-GIC, we have set the QM regions in various shapes and sizes to find

that the crystalline structure is sufficiently stable with no unreasonable

distortion at the QM-CL boundary. The hybrid QM-CL simulation

adopted in this study shows good conservation of the total energy of

the QM-CL hybrid system during the simulation run. The charge

density at a dangling bond of a buffer atom localizes well with little

influence on the electronic structure in the central area of the QM

region.

(II) Since the valence electron density around the Li atom becomes almost

zero, the Li has positive charge and the C atoms of graphite have

negative charge as the result of charge transfer from Li to C atoms.

The diffusion coefficient calculated by the mean-square-displacement

of Li ion in the present hybrid dynamics has been estimated as 7 ×
10−5 cm2/sec, which is in good agreement with the experimental one.

We have confirmed that the Li-GIC changes into AA-type stacking

structure as the Li density becomes higher and that the Li ion moves

well when the stacking changes from AA to AB sequence.

(III) We have applied the hybrid QM-CL simulation code to analyze the

stress dependence of the diffusivity of Li in the graphite. Simulation

runs have been performed at temperature of T = 423 K, and various

stress fields have been created by changing the averaged inter-layer

distance (by plus and minus a few percent). We have found that the Li

diffusivity is suppressed significantly in the compressed case, while no

substantial change is observed in the stretched case. In the stretched

case, the Li-ion motion has shown both hopping and ballistic modes.

On the other hand, in the compressed case, the Li ion has diffused

through the hopping mode only and has been found to be confined

in a relatively small area at longer times; its mechanism has been

explained in terms of the cage effect. The activation energy for the

hopping diffusion has been found as small as 0.1 eV at T = 0 K, in

accordance with the fast thermal diffusion of the Li ion observed in

the present simulation.

(IV) The abruptly lowering of the diffusion coefficient of Li at the
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coexistence of different stage-structures was observed experimentally

in the Li-GIC. This has been thought to be attributed to the

coexistence of two different phases. In addition, we think that

our findings about the stress-dependence of the Li diffusivity in the

graphite may be another possible mechanism for the feature of the Li

diffusivity mentioned above.

(V) We have analyzed the relation between the vertical position and

diffusivity of the Li ion in graphite. The Li diffusivity is enhanced

when the Li ion escapes from one of the two stable vertical sites to move

around the middle of the upper and lower C-layers where a resisting

force on the Li ion for the perpendicular motion is relatively weak.

(VI) The effects of the external electric field on the Li diffusivity in

graphite have been analyzed. We have thereby found that the in-plane

diffusivity of the Li ion at T = 423 K is enhanced significantly by the

electric field perpendicular to the C-layers if the amplitude Eamp
z >

0.2 V/Å and the frequency is as high as 1.7 THz. Mechanisms of

the enhanced diffusivity have been explained in terms of the increased

probability of the Li residence around the middle of the upper and

lower layers, resulting in weak interaction between the Li ion and the

graphite layer.

Present simulation has focused on the system containing only a single

Li-ion in the graphite. In reality, plural Li atoms exist in the Li-GIC and

the Li-Li interaction should affect the Li diffusivity. We are now working on

the issue by performing a larger scale hybrid QM-CL simulation of the Li

diffusivity in graphite, in which neighboring Li ions and their surrounding C

atoms will be treated together as a single QM region. Such a large QM region

is treated by the divide-and-conquer-type real-space DFT method developed

recently by us. Combined effects of the long-ranged stress field, external

electric field, and the Li-Li interaction will thereby be clarified.

In the Li-ion battery, the Li ions are intercalated into graphite electrodes

from nonaqueous electrolytes by the applied voltage (i.e. external electric

field). Moreover, it is well known that electrochemical reactions involving the

decomposition of the electrolyte occur on the interface of negative electrode
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and nonaqueous electrolyte in addition to Li intercalation. The solid products

formed by the decomposition of nonaqueous electrolytes deposit on the

graphite surface, which form the so-called the solid electrolyte interphase

(SEI) layer. We will challenge to perform the hybrid simulation to reveal

such microscopic details of chemical reactions and dynamics in complicated

nano-structures.
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