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Abstract

Non-equilibrium phenomena with evident spatio-temporal changes in physical quantities

are notably interdisciplinary and encountered in engineering, physics, chemistry, biology and

so on. For example, such phenomena appear in mesoscopic scale fluid flow, shock waves in

the field of high-speed hydrodynamics, ultrasonic waves. In particular, in mesoscopic systems,

the effects of fluctuations become essentially significant. These phenomena have been studied

from the view point of thermodynamics.

For strongly non-equilibrium phenomena, I. Müller, T. Ruggeri and I. S. Liu proposed,

developed and applied the extended thermodynamics (ET) theory. ET can be used to describe

phenomena beyond the applicable range of well-known theory, that is, thermodynamics of irre-

versible processes (TIP) proposed by L. Onsager, C. Eckart, J. Meixner and I. Prigogine. For

phenomena with fluctuations, the Landau-Lifshitz (LL) theory, a fluctuating hydrodynamics

theory based on TIP has shown scope for future study. However, ET and LL have the following

problems:

1. ET is presently limited to rarefied monatomic gases.

2. No theory can simultaneously describe fluctuations and strongly non-equilibrium phe-

nomena.

In this thesis, the applicable range of ET is extended to rarefied polyatomic, dense monatomic

and dense polyatomic gases. For rarefied polyatomic gases, the validity of this theory is shown

by studying the dispersion relation of sound and comparing it with experimental data. The fea-

tures of the new theory are discussed by paying attention to the process of energy transfer from

the molecular translational mode to internal modes. Furthermore a fluctuating hydrodynamics

approach based on ET is proposed.

The thesis is organized as follows:

In Chapter 1, the background and the purpose of the present study is discussed. Previous

studies regarding non-equilibrium phenomena are briefly introduced by focusing on TIP, kinetic

theory and LL. In addition, the recent developed non-equilibrium thermodynamic theory, that

is, ET is introduced. In particular, the basic concepts and mathematical structure of ET are

discussed.

In Chapter 2, we discuss the ET of dense gases by adopting a system of field equations

with a different hierarchical structure than that found in previous works. It is the theory of

14 fields; mass density, velocity, temperature, viscous stress, dynamic pressure and heat flux.

As a result, most of the constitutive equations can be explicitly determined by the caloric and

thermal equations of state. The proposed theory includes rarefied polyatomic gases, and it is



shown that the rarefied-gas limit is consistent with the kinetic theory of gases. We also use the

general theory developed in this chapter to analyze three physically important systems: (1) a

gas that can be described with virial equations of state, (2) a hard-sphere system and (3) a

van der Waals fluid.

In Chapter 3, we discuss the dispersion relation of sound in rarefied polyatomic gases

(hydrogen, deuterium and hydrogen deuteride gases) based on the ET approach for dense

gases proposed in Chapter 2. In addition, we compare experimental and theoretical results.

The latter were based on the classical Navier-Stokes Fourier (NSF) theory. The applicable

frequency-range of the ET approach proved much wider than that of the NSF theory. We

also evaluated the bulk viscosity and relaxation times of non-equilibrium processes. The relax-

ation time related to the dynamic pressure has a possibility to become much larger than the

relaxation times related to shear stress and heat flux.

In Chapter 4, using the ET approach for dense gases, we discuss the thermodynamic theory

of gases with the energy transfer from the molecular translational mode to the internal modes

as an extension of Meixner’s theory. We also focus our attention on the simplest case with

only one dissipative process due to the dynamic pressure. The derived dispersion relation of

sound is compared with that derived with Meixner’s theory. The kinetic theoretical basis of

the present approach is also discussed.

In Chapter 5, we expand on the fluctuating hydrodynamics based on ET by using a 13-

variable theory for a rarefied monatomic gases as an example. After analyzing the relationship

between the proposed theory and the LL theory, we discuss the hierarchical structure of the

hydrodynamic fluctuations.

In Chapter 6, we summarize all the results, present the conclusions and suggest directions

for future investigations.
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Notations

t: time tij : stress

xi: position (i = 1, 2, 3) Sij : shear stress

ci: velocity of a molecule Π (= −Sii/3) : dynamic pressure

V : volume qi: heat flux

∂V : surface µ: shear viscosity

u: independent fields ν: bulk viscosity

m: mass of a molecule κ: heat conductivity

kB: Boltzmann constant τS : relaxation time related to shear viscosity

D: degrees of freedom τΠ: relaxation time related to bulk viscosity

h: specific entropy per unit volume τq: relaxation time related to heat flux

s: specific entropy per unit mass cv: specific heat

φi non-convective entropy flux c0: sound velocity at a equilibrium

Σ: entropy production ω: frequency

ρ: mass density k: complex wave number

T : temperature w: constant amplitude vector

ε : specific internal energy per unit mass vph: phase velocity

p : pressure α: attenuation factor

vi: velocity of a system

• A dot on a generic quantity ψ represents the material time derivative:

ψ̇ ≡ ∂ψ

∂t
+ vi

∂ψ

∂xi
.

• Parentheses around a set of N indices represent the symmetrization with respect to

these indices, that is, the sum over all N ! permutations of the indices divided by N !. For

example,

a(ibj) =
1

2!
(aibj + ajbi),

a(ibjck) =
1

3!
[ai(bjck + bkcj) + aj(bkci + bick) + ak(bicj + bjci)] .

• Angular brackets denote the symmetric traceless part with respect to these indices (de-

viatoric part). For example,

a⟨ij⟩ = a(ij) −
1

3
akkδij .

iv



Chapter 1

Introduction

1.1 Background

1.1.1 What are the theory requirements in modern science and engineering?

The real world is full of complex and different non-equilibrium phenomena, such as the flow of

air, the temperature change in the coffee, sound propagation and so on, which tend to approach

equilibrium with high probability. Such phenomena attract our genuine curiosity, and draw our

attention as they are intimately-connected with our life. Our recognition of nature starts with

the recognition of macroscopic materials; we know that such phenomena can be treated well

as the time evolution of macroscopic variables, which are a continuum with respect to time

and space. In other words, non-equilibrium phenomena can be described by the dynamics

of a continuum body without the microscopic details. Thus, the continuum dynamics that

include thermodynamics and fluid dynamics were developed. On the other hand, materials are

made of molecules, which consist of atoms, and atoms consist of elementary particles. This

fact indicates that macroscopic phenomena are caused by the motion of microscopic particles.

Thus, statistical mechanics and kinetic theory were developed.

The abovementioned descriptions indicate that we recognize, in nature, a hierarchical struc-

ture that depends on scale. Governing equations were proposed for each hierarchical level. For

example, in the case of the dynamics of gases, the hierarchical structure and corresponding

typical equations are shown in Table 1.1. To understand a macroscopic system, the links

among hierarchical levels should be considered.

In modern science and engineering, mesoscopic scale phenomena are noteworthy. As an ex-

ample, one can consider thermal and hydrodynamic phenomena in the field of micro-fabrication

technology, ultrasonic waves, shock waves in high-speed hydrodynamics, chemical reactions

within the body and so on. To consider mesoscopic scale phenomena, we need to describe the

evident spatio-temporal changes in physical quantities. Moreover, in the spatially mesoscopic

1



CHAPTER 1. INTRODUCTION

Table 1.1: Hierarchical structure

Hierarchy level Typical equation

Microscopic scale description Liouville equation

Mesoscopic scale description Boltzmann equation

Macroscopic scale description Navier-Stokes Fourier

scale, the effect of “fluctuation”.

In this thesis, we have paid attention to phenomena related to fluids. The Boltzmann equa-

tion in Table 1.1 gives good results for gas-related phenomena; however, its applicability range

is mainly limited to rarefied gases. To construct a general theory that describes mesoscopic

phenomena, with or without fluctuation, a phenomenological approach, i.e., thermodynamical

approach is needed. This is our purpose in this thesis. After the formulation of non-equilibrium

thermodynamics, the way for statistical mechanical description will be paved as equilibrium

thermodynamics guided equilibrium statistical mechanics.

1.1.2 Applications

As already mentioned, the need to understand of the non-equilibrium phenomena is interdis-

ciplinary. Some examples are given below.

Ultrasonic waves: An ultrasonic wave is a high-frequency sound wave in which physical

quantities undergo evident changes temporally. Ultrasonic waves are used in non-destructive

inspection of construction works, biomedical ultrasound, ultrasonic diagnosis and ultrasonic

motor technology. Studies of ultrasonic waces have used ultrasonic wave’s characteristics such

as dispersion, absorption, reflection, inflection and interference.

Shock waves: A shock wave is characterized by steep and rapid changes in physical quan-

tities at the shock front. For example, shock waves appear around a spacecraft entering the

Earth’s atmosphere. Therefore, to design better and safer spacecrafts, the effect of shock

waves must be considered. The structure of a shock wave can be studied by non-equilibrium

thermodynamics.

Thermal and hydrodynamic phenomena with fluctuations in fluids at the meso-

scopic scale: The rapid development of nanotechnology involves nano-particles and mi-

crofabrication method for manufacturing nanodevices such as micro electro mechanical sys-

tems(MEMS); hence, more accurate control of fluids in the meso or nano scale is required. In

2



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

these technologies, the effect of fluctuations cannot be ignored, especially in flow channels of

small width and objects of small size. For example, to cntrol the shape of nanojet ejection or

the breakdown of a fluid to droplets, the effect of fluctuations has to be studied [1].

1.2 Brief summary of non-equilibrium physics

In this section, we have summarized some of the most notable achievements in the field of non-

equilibrium physics, especially fluid physics. In particular, we concentrated on the historical

development of the new non-equilibrium thermodynamics. Therefore, we give a brief summary

of non-equilibrium physics from the point of view of (i) continuum dynamics, (ii) kinetic theory

and (iii) theory of fluctuations. We do not discuss the topic in detail despite the many good

examples from the non-equilibrium statistical mechanics literature.

1.2.1 Continuum dynamics

First, we consider the theory that treats the dynamics of a continuum body, the so-called

continuum dynamics. This approach proved extremely fruitful when applied to describe equi-

librium and non-equilibrium state of matter. Several particularly important theories were

based on this approach.

Equilibrium thermodynamics

We first review the equilibrium thermodynamics, because of its importance in science and

engineering. Equilibrium thermodynamics describes the relations between equilibrium states

as the name suggests. The definition of equilibrium is that “The system is spatio-temporally

uniform at rest.” The system is completely characterized by state variables such as tempera-

ture, pressure and density. This theory is systematized based on the law of the conservation

of energy (first law of thermodynamics) by Julius Robert von Mayer, James Prescott Joule

and Hermann von Helmholtz, and the entropy inequality (second law of thermodynamics) by

Rudolf Clausius and William Thomson (Lord Kelvin).

Irreversibility and phenomenological laws

The entropy inequality introduces the concept of irreversibility, which indicates the time evolu-

tion of the system, that is, the existence of irreversible processes from a non-equilibrium state

to an equilibrium state. Examples of irreversible processes are heat conduction, diffusion, shear

flow and electrical conduction. They are caused by the spatio-temporal non-uniformity of a

system. Phenomenological relations were proposed and applied to describe the irreversible

processes and various non-uniformities of system (Table 1.2).

3



CHAPTER 1. INTRODUCTION

Table 1.2: The phenomenological relations between irreversible processes and various non-

uniformities of system.

Irreversible process Phenomenological law

Heat conduction Fourier’s law : heat flux ∝ temperature gradient

Diffusion Fick’s law : matter flow ∝ concentration gradient

Shear flow Navier-Stokes law : shear stress ∝ velocity gradient

Electrical conduction Ohm’s law : electric current ∝ electric potential gradient

Field variables and balance equations

To describe the spatio-temporal changes in a system, we introduce field variables that are

a function of space x and time t. The changes in field variables are caused by the flux,

production and supply from the outside. Therefore, the field variables are governed by the

balance equations, which are satisfied by all materials. On the other hand, the materials

characteristics are reflected in the constitutive equations. The abovementioned concepts can

be summarized as follows: (i) the construction of suitable balance equations for the investigated

system and (ii) the derivation of constitutive equations for the investigated materials.

Let us consider the general form of the balance equations for a one-component fluid. The

shape, size and location of the system change, because the elements of the surface ∂V of

volume V move with velocity ui(x, t)(i = 1, 2, 3), depend on the position x and time t. A

general quantity Ψ of the system can be expressed by the specific value ψ per mass density ρ

as follows:

Ψ =

∫
V
ρψdV. (1.1)

By considering the effects of flux, production and supply, the time evolution of Ψ follows the

equation of balance:

d

dt

∫
V
ρψdV = −

∫
∂V
ρψ(vi − ui)nidA−

∫
∂V
ϕinidA+

∫
v
ρ(π + ι)dV. (1.2)

The first term on the right-hand side of Eq. (1.2) represents the convective flux through the

surface, and the second term represents the non-convective flux through an outer unit normal

ni to ∂V and the third term comprises by the production density ρπ and supply density ρι.

For simplicity, we consider the system at rest. In this case, ui = 0 and V is independent of

time. From Eq. (1.2) and by using Gauss’s theorem, in a regular point where the smoothness

4



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

is guaranteed, we obtain the time evolution equation of ψ in the local form

∂ρψ

∂t
+
∂(ρψvi + ϕi)

∂xi
= ρ(π + ι). (1.3)

Based on Eq. (1.3), let us consider the balance equations of mass, momentum and energy, i.e.

the laws of conservation with no productions. The time evolution of the mass density ρ only

depends on the convective flux. The time evolution of the momentum density ρvi depends on

the stress tij for the non-convective flux and on the external force for the supply. The time

evolution of the energy density ρε where ε is the specific internal energy, depends on the heat

flux qi for non-convective flux and on the specific value of absorbed heat radiation Z for supply,

where suffixes i, j = 1, 2, 3. We summarize ψ, ϕ, π and ι of the conservation laws in Table 1.2.1.

Figure 1.1: The system in the flow.

Table 1.3: The density, non-convective flux, production and supply for conservation laws of

mass density, momentum and energy

Ψ ψ ϕ π ι

Mass 1 0 0 0

Momentum vi −tij 0 fi

Energy ε+ v2

2 −tijvj + qi 0 fivi + Z

Thermodynamics of irreversible process

The thermodynamics of irreversible process (TIP) [2, 24, 88] by Lars Onsager, Carl Henry

Eckart, Josef Meixner, Ilya Prigogine to describe non-equilibrium phenomena. Linear TIP

theory describes the irreversible processes well and has played a fundamental role in many

5



CHAPTER 1. INTRODUCTION

engineering and scientific fields fields, for systems not far from equilibrium. Therefore, a

system is characterized by slow variables.

Let us summarize the TIP for a one-component, viscous, heat-conducting fluid, which is

characterized by five fields:

mass density ρ(xi, t),

velocity vi(xi, t), (1.4)

temperature T (xi, t),

(1.5)

The time evolution of each field is governed by the law of conservation of mass, momentum

and energy. We assume that there is not a body force and supply. In this case, by substituting

the elements of Table (1.2.1) with fi = 0 and ι=0 into Eq. (1.3), we obtain

ρ+ ρ
∂vj
∂xj

= 0,

ρv̇i −
∂tij
∂xj

= 0,

ρε̇+
∂qj
∂xj

− tij
∂vi
∂xj

= 0,

(1.6)

where the pressure p and the specific internal energy ε depend on ρ and T , and the stress is

given by tij = −pδij+Sij where Π = −Sii/3 is the dynamic pressure. To obtain the closed field

equations, we consider the constitutive equations that relate ε, S⟨ij⟩,Π, qi to the independent

fields.

At local equilibrium even though the whole system is not in equilibrium, there are elements

that are in equilibrium. Based on this assumption, the relation between the specific entropy

density s(x, t) and ε(x, t), the so-called Gibbs relation, is

ṡ =
1

T

(
ε̇− p

ρ2
ρ̇

)
, (1.7)

where the pressure p is a function of ρ and T . By substituting the laws of conservation in Eq.

(1.6) into this relation, we obtain

ρṡ+
∂

∂xi

(qi
T

)
= − qi

T 2

∂T

∂xi
+

1

T
S⟨ij⟩

∂v⟨i

∂xj⟩
− 1

T
Π
∂vn
∂xn

. (1.8)

Equation (1.8) can be interpreted as the balance equation of entropy. Subsequently, the entropy

flux and production can be described with the following equations:

entropy flux: φi =
qi
T

entropy production: Σ = − qi
T 2

∂T

∂xi
+

1

T
S⟨ij⟩

∂v⟨i

∂xj⟩
− 1

T
Π
∂vn
∂xn

.
(1.9)

6



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

Table 1.4: Thermodynamic fluxes and thermodynamic forces.

Thermodynamic fluxes Thermodynamic forces

heat flux qi temperature gradient
∂T

∂xi

traceless part of viscous stress S⟨ij⟩ deviatoric velocity gradient
∂v⟨i

∂xj⟩

dynamic pressure Π divergence of velocity
∂vn
∂xn

Entropy production is expressed as product of the dissipative flux of the conserved quantities

(thermodynamic fluxes) and the gradients of the intensive variables (thermodynamic forces)

in Table 1.4.

For the linear constitutive equations, we assume a linear relationship between the thermo-

dynamic fluxes and thermodynamics forces as follows

qi = −κ ∂T
∂xi

,

S⟨ij⟩ = 2µ
∂v⟨i

∂xj⟩
,

Π = −ν ∂vn
∂xn

,

(1.10)

where the heat conductivity κ, shear viscosity µ and bulk viscosity ν are positive because of

the requirement of the entropy principle in Eq. (1.8). These relations are known as the Navier-

Stokes Fourier law, which we mentioned before. When the heat conductivity, shear viscosity

and bulk viscosity are given, and the thermal and caloric equations of state p = p̂(ρ, T ) and

ε = ε̂(ρ, T ) are adopted, all the coefficients in the basic equations can be determined.

Finally, we summarize the closed field equations of Eq. (1.6) as

ρ̇+ ρ
∂vj
∂xj

= 0,

ρv̇i +
∂

∂xj

[
(p+Π)δij − S⟨ij⟩

]
= 0,

ρ

(
∂ε

∂T

)
ρ

Ṫ +
∂qj
∂xj

+

[(
p− ρ2

(
∂ε

∂ρ

)
T

+Π

)
δij − S⟨ij⟩

]
∂vi
∂xj

= 0.

(1.11)

This set of equations is part of the Navier-Stokes Fourier (NSF) theory which is a well-known

theory of viscous heat-conducting fluids in the framework of TIP.

In the present section, we have summarized the case in which the irreversible processes exist

independently. However, in general, the irreversible processes appear in a coupled form, such

as the Seebeck effect, the Peltier effect and the Soret effect. Such coupled effects are explained

by Onsager’s reciprocal relations, which are derived from considering the fluctuations.
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CHAPTER 1. INTRODUCTION

The problems of TIP

TIP is a successful theory; however, it has two fundamental problems.

The first problem is that the applicable range of TIP is limited by the assumption of

local equilibrium. Therefore, TIP cannot describe non-equilibrium phenomena with evident

spatio-temporal changes of physical quantities beyond this assumption.

The second problem is that TIP cannot be applied to relativistic phenomena, in principle,

because the propagation speed of information becomes infinite. We demonstrate this specifi-

cally for a one-component fluid with constant mass density at rest. Then, the time evolution

equation of temperature in Eq. (1.11)3 becomes

∂T

∂t
=

κ

ρ
(
∂ε
∂T

)
ρ

△T. (1.12)

The solution of this equation is

T (x, t) =
1

(4πDt)3/2

∫ ∞

−∞
T (y, 0)exp

(
−(y − x)2

4Dt

)
dy (1.13)

where D = κ
ρ/

∂ε
∂T . This implies that the temperature at space x and time t is influenced by

the temperature at all spaces and t = 0. This means that the information spreads to space

with infinite speed with regard to temperature. From a theoretical point of view, this is the

problem of infinite speed of disturbances, which is called the paradox of heat conduction, and

it is attributed to the parabolic character of the basic equations that are spatially non-local

constitutive equations [3].

Studies beyond TIP

After the establishment of TIP, many studies were proposed to process much stronger non-

equilibrium phenomena. These studies may be classified into two types:

1. Far from equilibrium and based on the local equilibrium assumption

In a far-from-equilibrium state, non-linearity becomes increasingly essential and generates

diversity. Several approaches were taken based on the foundations of TIP. In this case,

the thermodynamic fluxes are no longer linear functions of the thermodynamic forces [4].

Studies based on the theory of stability are necessary because the violation of stability

causes a system to transform to a dissipative structure. Then, bifurcation phenomena

are obsereved and the knowledge of dynamical systems is introduced. The Belousov-

Zhabotinsky reaction is a well-known example of a dissipative structure.

2. The theory beyond the assumption of local equilibrium

TIP adopts the slow variables as independent variables. To describe the rapid changes in

8



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

physical quantities, studies that adopted the fast variables as well as the slow variables

were developed. For example, some additive equations, which indicate relaxation of

the dissipative variables, are introduced into the laws of conservation in the field of gas

dynamics as in Meixner’s theory [5, 6, 7]. Although there are many theories such as the

extended TIP or extended irreversible thermodynamics, the extended thermodynamics

(ET) theory [8, 9], which is based on symmetric hyperbolic system, has been anticipated

because of its principled systematic structure and many applications of its.

In particular, we paid attention to the latter approach and subsequently discuss the innovative

work of Cattaneo [10]. who wanted to improve the paradox of heat conduction in TIP. He tried

to change the character of the basic equations from parabolic to hyperbolic by introducing the

time derivative of heat flux. Many theoretical approaches were based on Cattaneo’s work, and

the results led to the extended thermodynamics theory.

Cattaneo equation: Let us return to Eq. (1.12), which is derived from the law of the

conservation of energy for a system with constant mass at rest and Fourier’s law, Eq. (1.10)1.

The paradox of heat conduction is caused by the fact that Fourier’s law does not include a time

interval for the propagation of heat. Cattaneo proposed that the duration of heat propagation

should be of concern and used the following equation:

qi = −κ

(
∂T

∂xi
− τ

˙(
∂T

∂xi

))
, (1.14)

where τ is the relaxation time. By substituting Eq. (1.14) into the law of the conservation of

energy Eq. (1.11)3 with a constant mass density at rest, the following equation is obtained

Ṫ =
κ

ρεT

(
∆T − τ ˙(∆T )

)
.

This is still a parabolic equation. To obtain a hyperbolic-type equation, we assume that the

operator τ d
dt is small and consider the following expansion(

1− τ
d

dt

)−1

≈ 1 + τ
d

dt
.

Then, Eq. (1.14) is rewritten as

qi + τ q̇i = −κ ∂T
∂xi

. (1.15)

This equation is called the Cattaneo equation. From the law of conservation of energy for a

system with a constant mass density at rest, we obtain

τ T̈ + Ṫ =
κ

ρεT
∆T. (1.16)

9



CHAPTER 1. INTRODUCTION

When τ > 0, this equation becomes hyperbolic.

The problem with the Cattaneo equation is its lack of mathematical rigor. Many studies

followed Cattaneo’s work. I. Müller tried to modify Navier-Stokes Fourier law by adopting

a Cattaneo-like equation, and he introduced the time derivatives of stress and heat flux into

the constitutive equations by considering that the entropy depends on them. However, this

approach has several problems. For example, the material frame indifference is violated, the

hyperbolicity of the system is not certain and there are some determined variables in the field

equations. Such problems are solved by the extended thermodynamics theory, something that

will be discussed below.

1.2.2 Kinetic Theory

Besides the phenomenological approach, the kinetic theoretical approach of molecules plays a

crucial role in the field of non-equilibrium physics. This approach considers microscopic details

such as the collision of molecules. From a historical view point, this approach originated from

the study of Daniel Bernoulli regarding the introduction of equilibrium pressure by considering

the change in momentum before or after the collision of molecules to a wall in the early

18th century. After a long while, this idea was reintroduced by John Herapath in the early

19th century. Karl Krönig re-derived the Boyle-Charle’s law based on kinetic theory. Rudolf

Clausius distiguished gas, liquid and solid states based on molecular motion. In addition,

he introduced the concept of the mean free path. James Clerk Maxwell introduced the idea

of probability distributions and formulated the kinetic theory as we know it today, which

became the basis of statistical mechanics theory. Ludwig Eduard Boltzmann deduced the time

evolution of the distribution function for rarefied monatomic gases, the so-called Boltzmann

equation. Based on the Boltzmann equation, many studies were developed, and the theory is

still useful today.

Many studies followed the publication of the Boltzmann equation. Boltzmann derived

the collision term based on the physically-feasible assumption, the so-called Stoßzahlansatz.

To obtain the macroscopic equations based on the Boltzmann equation, Sydney Chapmann,

David Enskog and David Hilbert proposed the closure method, which derived the constitutive

equations, which is consistent with the Navier-Stokes Fourier system. As an extension of the

Chapman-Enskog method to constitutive equations with a second- or third-order term, the

Burnet equation or super Burnet equation was proposed [11]. On the other hand, Harold Grad

also proposed a closure method, which adopted additive moment equations. Moreover, new

closure method recently appeared that is based on the maximum entropy principle (MEP)

[12, 13] which has usefulness not only in the kinetic theory but also in other fields such as

information theory. The details of Grad’s and MEP’s approach will be discussed below.

10



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

Although the kinetic theoretical approach is useful, it is well established only for rarefied

monatomic gases. Due to the complexity of the microscopic details, it seems difficult to extend

the applicable range of kinetic theoretical approach to rarefied polyatomic, dense monatomic

and dense gases. By using a special models, several studies for such gases were appeared.

For example, for rarefied polyatomic gases, there appeared some theories [14, 15, 16] based

on the so-called Borgnakke-Larsen model [16]. In particular, recently, the theory based on

the MEP recently appeared [12, 13]. For dense gases, there are also many studies based on

the Enskog equation or the modified Enskog equation, which consider the hard-sphere effect

on the Boltzmann equation [17, 18]. For example, moment equations based on the Enskog

equation were proposed by Gilberto Medeiros Kremer and E. Rosa [19]. As an extension

of the Grad method, the generalized hydrodynamics is proposed by Byung Chan Eu [20].

Moreover, moment equations based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)

hierarchical structure were developed [21, 22].

Hereafter, we recall the Boltzmann equation and the macroscopic equations derived by it

to show the usefulness of kinetic theory. Moreover, we introduce the Grad’s moment method

and the maximum entropy principle as the method of the closure.

Boltzmann equation

Let us consider the rarefied monatomic gases. In the kinetic theoretical approach, the state

of the system is characterized by the distribution function on the phase space. In general, the

dynamics of N -body system is governed by the Liouville equation which is the equation for N -

body distribution function, and the Liouville equation is reduced to the Boltzmann equation

for one-body distribution function through the BBGKY-hierarchy structure. The one-body

distribution function f(xi, ci, t) with the time t, position of the i-th particle xi and its velocity

ci, is defined through the number of particles in the volume element between xi and xi + dxi

with velocities between ci and ci + dci at t:

N = f(xi, ci, t)dxdc. (1.17)

With this the Boltzmann equation without the inertial force is expressed as follows

∂f

∂t
+ ci

∂f

∂xi
+ fi

∂f

∂ci
= S, (1.18)

where the first, second and third term of left-hand-side are the time variation of f in phase space

by time evolution, flux and the effect of external force fi, respectively. S in right-hand-side is

the rate of production and annihilation of the point caused by molecular collisions. Boltzmann

put forward the so-called Stoßzahlansatz(moleculer chaos hypothesis), and estimated as follows:

S =

∫
(f ′f1

′ − ff1)σg sin θdθdεdc1, (1.19)

where f ′, f1
′
, f, f1 are the distribution function with velocity c′, c1

′
, c, c1, respectively.

11



CHAPTER 1. INTRODUCTION

Moment equations

The macroscopic quantities are defined as the mean value over a representative elementary

volume. In general, the mean value of a function ψ(x, c, t) is defined as

ψ̄(x, t) =
1

ρ

∫
mψfdc, (1.20)

where ρ is the mass density which defined as the mean value of ψ = 1. The time evolution of

ψ̄ is obtained upon (1.18) by multiplying mψ and integration over all c.

∂ρψ̄

∂t
+
∂ρψci
∂xi

− ρfi
∂ψ

∂ci

= ρ

(
∂ψ

∂t
+ ci

∂ψ

∂xi

)
+

1

4
m

∫ (
ψ + ψ1 − ψ′ − ψ1′

)(
f ′f1

′ − ff1
)
σg sin θdθdεdcdc′, (1.21)

where the second and third terms on the left-hand-side express flux and the density of supply

of ρψ̄, and the right-hand-side expresses the density of production of ρψ̄.

Let us express the integration of the case that ψ is given by the moment of ci as follows:

Fi1, i2, ··· , iN =

∫
mci1ci2 · · · ciN fdc. (1.22)

Then the following physical variables are expressed as follows:

mass density F = ρ,

momentum density Fi = ρvi, (1.23)

momentum flux Fij =

∫
ρcicjfdc,

flux of momentum flux Fijk =

∫
ρcicjckfdc.

In particular, the trace part of Fij is a value proportional to the energy density. From (1.21)

we obtain the time evolution equation of Fi1, i2, ··· , iN ,

∂Fi1, i2, ··· , iN
∂t

+
∂Fi1, i2, ···iN , j

∂xj
−NF(i1, i2, ···iN−1

fiN ) = Pi1, i2, ··· , iN , (1.24)

where Pi1, i2, ··· , iN is the production term expressed by using the right-hand-side term of (1.21).

The balance equation (1.24) indicates that there is a system which the moments satisfy an

infinity hierarchy of balance laws. In such system, there is a noticeable feature that the flux

in an equation becomes the density in the next equation. As a special case, we express the

system truncated the hierarchy at the density with tensor of rank N . When we express the

vectors of moments up to tensorial order N as F (N), F
(N)
i and P (N), such system is expressed

as

∂F (N)

∂t
+
∂F

(N)
i

∂xi
= P (N), (1.25)

12



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

where we ignore the external force. By introducing a vectorΦ(N) = (1, ci1 , ci1ci2 , · · · , ci1ci2 · · · ciN )
T ,

F (N), F
(N)
i and P (N) are expressed as follows:

F (N) = m

∫
fΦ(N)dc, F

(N)
i = m

∫
fciΦ

(N)dc, P (N) = m

∫
SΦ(N)dc. (1.26)

Here, we have the problem of closure because the last flux and the production terms are not in

the list of the densities. To close this system it is necessary to find the constitutive equations.

We will see the closure procedures after introducing the several important variables.

We can also define the intrinsic variables of system by introducing the peculiar velocity Ci

defined by Ci = ci − vi. As the moment of Ci, we define the intrinsic variables F̂i1, i2, ··· , iN

corresponding to the moments (1.22) as follows:

F̂i1, i2, ··· , iN =

∫
mCi1Ci2 · · ·CiN fdc. (1.27)

It is clear that F̂ = F = ρ and F̂i = 0. Moreover the following conventional physical quantities

are introduced as follows:

specific internal energy ε ≡ F̂ii

2ρ
=

1

2ρ

∫
mCiCifdc,

stress tij = −pδij + S⟨ij⟩ ≡ −F̂ij = −
∫
mCiCjfdc, (1.28)

heat flux qi ≡
F̂ppi

2
=

1

2

∫
mCpCpCifdc.

By considering that there is no dynamic pressure p(x, t) in rarefied monatomic gases, the

pressure is defined by the trace part of stress (1.28)2.

p(x, t) =
1

3

∫
mC2fdc =

2

3
ρε. (1.29)

From the caloric equation of state ε = 3
2
kB
m T , we may introduce the temperature T as follows:

kBT =
m

3ρ

∫
mC2fdc

k

m
T (x, t). (1.30)

From Eqs (1.22) and (1.27), we can realize that there are the relations between two kinds

of moments as follows:

F = F̂ = (= ρ) ,

Fi = F̂ vi (= ρvi) ,

Fij = F̂ij + ρvivj ,

Fijk = F̂ijk + 3F̂(ijvk) + ρvivjvk.

(1.31)
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Balance equation of entropy and local equilibrium

The entropy density is obtained as the mean value of

ψ = −kB
m

(
ln

(
f

y

)
− 1

)
, (1.32)

where the constant 1/y is the smallest element in phase space that can accommodate a position

and a velocity. The reason why we can interpret such mean value as the entropy principle is

clarified when we consider the balance equation of it:

∂ρ(−kB
m ln f)

∂t
+

∂

∂xj

[
ρ(−kB

m
ln f)vj + (−kB

m
Cj ln f)

]
=
kB
4

∫
ln
f ′f1

′

ff1
(f ′f1

′ − ff1)gσ sin θdθdεdc1dc. (1.33)

The production of this balance equation is non-negative. This fact indicates that the balance

equation (1.33) can be interpreted as the entropy inequality:

∂ρs

∂t
+

∂

∂xj
(ρsvj + φj) = Σ ≧ 0, (1.34)

where s, φi and Σ are the specific entropy density, non-convective entropy flux and entropy

production. Therefore s, φi and Σ are defined as follows

ρs = −kB
∫

ln

(
f

y
− 1

)
fdc, (1.35)

φi = −kB
∫
Ci ln

(
f

y
− 1

)
fdc, (1.36)

Σ =
kB
4

∫
ln
f ′f1

′

ff1
(f ′f1

′ − ff1)gσ sin θdθdεdc1dc. (1.37)

The local equilibrium is defined as the state that entropy production Σ is minimum 0. This

result restrict the form of the equilibrium distribution function fE . By substituting fE into

the moments (1.22), we obtain only ρ, ρvi and ε at local equilibrium state. This means that

fE can be expressed by these variables, and the explicit expression of it is as follows

fE =
ρ

m

√(
m

2πkBT

)3

e
− m

2kBT
C2

. (1.38)

This distribution function is called Maxwell distribution.

By using fE the entropy density sE is also expressed

sE =
kB
m

3
2
− ln

b ρm
√(

m

2πkBT

)3

 . (1.39)

The first derivation of it is

dsE =
kB
m

(
3

2

1

T
dT − 1

ρ
dρ

)
.

The Gibbs relation which is well-known in the equilibrium thermodynamics is reconstructed.
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Closure by Grad’s 13 moment method

By introducing the Grad’s moment method [23], we consider the closure problem of balance

equations (1.25). This method adopts more fields as independent variables than that of NSF

theory. Let us consider that the system is characterized by 13 fields F, Fi, Fij , Fppi. The balance

equations of these without body force and supply are expressed by Eq. (1.25) as follows:

∂F

∂t
+
∂Fi

∂xi
= 0,

∂Fi

∂t
+
∂Fij

∂xj
= 0,

∂Fij

∂t
+
∂Fijk

∂xk
= P⟨ij⟩,

∂Fppi

∂t
+
∂Fppik

∂xk
= Pppi,

(1.40)

where first two equations and trace part of third equation denote the conservation laws of mass,

momentum and energy, respectively. The production terms P⟨ij⟩ and Pppi are estimated when

the special model for molecular interaction are assumed. For example, for maxwell molecules

we have

P⟨ij⟩ = −3

2
ρB(F⟨ij⟩ − ρv⟨ivj⟩),

Piij = −ρB(Fiij − 3F(iivj) − ρviv
2),

(1.41)

where B is the positive constant which depends on the length of interaction. By substituting

(1.28) and (1.31) into (1.40), we can obtain the time evolution equations for ρ, vi, ε, S⟨ij⟩, qi.

∂ρ

∂t
+
∂ρvi
∂xi

= 0,

∂ρvi
∂t

+
∂

∂xj

(
ρvivj + pδij − S⟨ij⟩

)
= 0,

∂
(
ρε+ ρ

2v
2
)

∂t
+

∂

∂xj

[(
ρε+

ρ

2
v2
)
vj + (pδij − S⟨ij⟩)vi + qj

]
= 0,

Ṡ⟨ij⟩ + S⟨ij⟩
∂vn
∂xn

−
∂F̂⟨ij⟩n

∂xn
− 2p

∂v⟨i

∂xj⟩
+ 2S⟨n⟨i⟩

∂vj⟩

∂xn
= −3

2
BS⟨ij⟩,

q̇i + qi
∂vn
∂xn

+
1

2

∂F̂inkk

∂xn
− 1

ρ
(−pδik + S⟨ik⟩)

∂(−pδkn + S⟨kn⟩)

∂xn

+
3

2

p

ρ

∂(−pδin + S⟨in⟩)

∂xn
+ qn

∂vi
∂xn

+ F̂nij
∂vj
∂xn

= −ρBqi

(1.42)

The system (1.42) (or Eq. (1.40)) is not closed by ρ, vi, ε, S⟨ij⟩, qi (or F, Fi, Fij , Fppi). To

close the system we assume the following constitutive equations

F̂⟨ij⟩n = F̂⟨ij⟩n(ρ, vi, T, S⟨ij⟩, qi),

F̂ijkk = F̂ijkk(ρ, vi, T, S⟨ij⟩, qi).
(1.43)
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To obtain the constitutive equations, Grad proposed to expand the distribution function

f around fE , that is, the distribution function at the local equilibrium state, by the Hermit

polynomial. Then f is expressed as

f =

(
a+ ai

∂

∂ci
+ aij

∂2

∂ci∂cj
+ aijk

∂3

∂ci∂cj∂ck
+ · · ·

)
fE , (1.44)

where a, ai, aij , · · · are the function of xi, and t. By using (1.38), we can rewrite this distri-

bution function as follows

f = fE

(
a− ai

m

kBT
Ci + aij

(
m

kBT

)2(
CiCj −

kBT

m
δij

)

− aijk

(
m

kBT

)3(
CiCjCk −

kBT

m
(δijCk + δjkCi + δkiCj)

)
+ · · ·

)
. (1.45)

By using this distribution function, the average of a function ψ(x, c, t) around local equilibrium

is obtained as

ψ̄ = aψ̄E − ai
∂ψ

∂ci

E

+ aij
∂2ψ

∂ci∂cj

E

− aijk
∂3ψ

∂ci∂cj∂ck

E

+ · · · , (1.46)

where the notation E denotes the integration by the Maxwell distribution ψ̄E = m
ρ

∫
ψfEdc. By

putting ψ = 1, ci, −ρCiCj , ρ
1
2C

2Ci in Eq. (1.46), we obtain the expression of the coefficients

a, ai, aij , aiij as the functions of ρ, vi, T, S⟨ij⟩, qj as follows:

a = 1, ai = 0, aii = 0, aij = − 1

2ρ
S⟨ij⟩, aikk = − 1

3ρ
qi. (1.47)

To close the system within 13-moment we ignore a⟨ij⟩k and the higher order tensors in

the expansion of the distribution function. Then we obtain the following distribution function

from Eqs. (1.45) and (1.47).

fG = fE

(
1− 1

2ρ
S⟨ij⟩

(
m

kBT
CiCj − δij

)
− 1

p

m

kBT
qiCi

(
1− 1

5

mC2

kBT

))
, (1.48)

where fG is called Grad distribution function. When we exploit the Grad distribution function

instead of the original one in (1.22), we can express constitutive quantities (1.43) with 13-

moment. Then we obtain

F̂⟨ij⟩k =
2

5

(
qiδjk + qjδik −

2

3
qkδij

)
, (1.49)

F̂iijk = 5p
kBT

m
δjk −

7

2
S⟨pq⟩ (δjpδkq + δjqδkp) . (1.50)
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By using these constitutive equations we obtain the closed field equations.

∂ρ

∂t
+
∂ρvi
∂xi

= 0,

∂ρvi
∂t

+
∂

∂xj

(
ρvivj + pδij − S⟨ij⟩

)
= 0,

∂
(
ρε+ ρ

2v
2
)

∂t
+

∂

∂xj

[(
ρε+

ρ

2
v2
)
vj + (pδij − S⟨ij⟩)vi + qj

]
= 0,

Ṡ⟨ij⟩ + S⟨ij⟩
∂vn
∂xn

− 2

5

∂

∂xn
(qnδij + qiδjn + qjδin)− 2p

∂v⟨i

∂xj⟩
+ 2S⟨n⟨i⟩

∂vj⟩

∂xn
= −3

2
ρBS⟨ij⟩,

q̇i + qi
∂vn
∂xn

+
1

2

∂

∂xn

(
5p
kBT

m
δin − 7

2
S⟨pq⟩

kBT

m
(δinδpq + δipδnq + δnpδiq)

)
,

− 1

ρ
(−pδik + S⟨ik⟩)

∂(−pδkn + S⟨kn⟩)

∂xn
+

3

2

p

ρ

∂(−pδin + S⟨in⟩)

∂xn

+ qn
∂vi
∂xn

+
2

5
qi
∂vn
∂xn

+
4

5
qn
∂v(i

∂xn)
= −ρBqi.

(1.51)

In a similar way, the entropy density s and entropy flux φi are also expressed by using the

Grad distribution function.

s =
k

m
ln
T 3/2

ρ
+ ζ −

S⟨ij⟩S⟨ij⟩

4pρT
− qiqi

5p2T
, (1.52)

φi =
qi
T

+
2

5pT
S⟨ij⟩qj . (1.53)

Thus we obtain the closed field equations and also the expression of entropy density by

adopting the closure by the Grad moment method.

Maximum entropy principle

Instead of the Grad moment method, we introduce the another closure which is based on

maximum entropy principle. This method has shown its usefulness not only kinetic theory but

also other fields such as information theory.

The maximum entropy principle states that the actual distribution function f is the one

which maximizes the entropy under the system characterized by N -fields F (N) with balance

equation (1.26)1. We consider the case that the entropy density (h = ρs) is expressed by the

following general form;

h =

∫
ψ(f)dc, (1.54)

instead of the expression (1.32). This requirement is expressed as the condition that the

following function is maximum

L(f,Λα) =

∫
ψ(f)dc+Λ(N) ·

(
F (N) −m

∫
cαfdc

)
, (1.55)
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where Λα is the Lagrange multipliers and Λ(N) is the vector composed of Λα. Therefore first

variation of L with respect to f must be 0, then we obtain∫ (
dψ

df
−mΛ(N) ·Φ(N)

)
δfdc = 0, (1.56)

and this indicates

dψ

df
= mΛ(N) ·Φ(N). (1.57)

Moreover, from this, we conclude that f is a function of

χ = mΛ(N) ·Φ(N), (1.58)

and ψ(f) has the form

ψ(f) = χf −
∫
fdχ. (1.59)

In particular, in the case that the entropy is expressed by (1.32), i.e, ψ = −kBf
(
ln f

y − 1
)
,

we obtain the distribution function

f = y exp

(
− 1

kB
Λ̃ ·Φ

)
, (1.60)

where Λ̃ = Λ − ΛE . The distribution function f is expanded in the neighborhood of local

equilibrium, then it can be approximated as

f = fE

(
1− 1

kB
Λ̃αψα

)
, (1.61)

where fE denotes the Maxwell distribution function (1.38). By substituting Eqs.(1.61) into

(1.26), we obtain the Lagrange multipliers

F (N) − F
(N)
E =

∫
fE(xi, ci, t)

(
− χ

kB

)
dc. (1.62)

Inserting the Lagrange multipliers which are the solutions of (1.61) and (1.62) into (1.26)2,3,

we obtain the constitutive equations by

F
(N)
i = m

∫
ciΦ

(
1− m

kB
Λ̃ ·Φ

)
fEdc,

P (N) = m

∫
ΦS

((
1− m

kB
Λ̃ ·Φ

)
fE

)
dc.

(1.63)

Here, we have seen the case of rarefied monatomic gases. Recently this method exploited

in the case of rarefied polyatomic gases [13].
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1.2.3 Fluctuation

The brief history of fluctuating hydrodynamics

In 1827 the botanist Robert Brown observed the random motion of small pollen grains of the

plant suspended in the water, the so-called Brownian motion. This is the starting point of the

study of fluctuation. The theoretical study of fluctuation starts from consideration of Brownian

motion by Albert Einstein in 1905 and Marian Smoluchowski in 1906. These studies and the

experimental study which checked these theories by Jean Baptiste Perrin in 1909 showed the

existence of atoms. Moreover, in 1908, Paul Langevin made up a phenomenological governing

equation of a Brownian particle.

In the field of non-equilibrium thermodynamics, Onsager derived the reciprocal relation

based on the principle of microscopic reversibility and regression hypothesis. As we mentioned

before this relation is the fundamental of TIP. Based on TIP, Lev Davidovich Landau and

Evgeny Mikhailovich Lifshitz developed fluctuating-hydrodynamic theory for viscous, heat-

conducting fluids with Navier-Stokes Fourier laws in 1950’s [86, 24, 87]. In order to incorporate

thermal fluctuations into hydrodynamics, they introduced additional stochastic flux terms into

the constitutive equations for the viscous stress and heat flux by applying the fluctuation-

dissipation theorem by Melville Saul Green, Fujio Nakano and Ryogo Kubo [25, 26, 27, 28],

which determine the speed of relaxation from the fluctuation of equilibrium state. See also

reviews [29, 30, 31].

Nowadays the Landau-Lifshitz (LL) theory attracts much attention, especially, as the ba-

sic theory for microflows and nanoflows, which may play an important role, for example, in

the fields of nano-technology [32, 33] and molecular biology [34, 35]. Numerical analysis of

the fluctuations by using the theory have been made extensively [36, 37, 38, 39, 40, 41, 42].

The fluctuating-hydrodynamic approach can also contribute to the study of fluctuations in

nonequilibrium states [31, 43, 44].

Landau-Lifshitz theory

Here we summarize the Landau-Lifshitz(LL) theory [86, 24, 87].

Let us consider the general case, that is, the case that the entropy production Σ is given

by

Σ = −ẋaXa, (1.64)

where xa is the variables which characterize the system and Xa is the coefficients corresponding

to xa. We assume the linear constitutive equations

ẋa = CabXb, (1.65)
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where Cab is the phenomenological coefficients.

We introduce the Gaussian white noise fa into the constitutive equation in such a way that

ẋa = −CabXb + fa. (1.66)

The average and the correlations of fa are given by

⟨fa(x, t)⟩ = 0,

⟨fa(x, t)fb(x′, t)⟩ = kB(Cab + Cba)δ(x− x′)δ(t− t′),
(1.67)

where the brackets ⟨ ⟩ in the left-hand side stand for the statistical average at the reference

equilibrium state.

Let us return to the NSF theory, and recall (1.9). In this case we have

ẋi = {Sij , qi}, Xi =

{
− 1

T

∂v(i

∂xj)
,
1

T 2

∂T

∂xi

}
. (1.68)

The random forces are introduced as follows:

S⟨ij⟩ = 2µ
∂v⟨i

∂xj⟩
+ f⟨ij⟩, Π = ν

∂vn
∂xn

+ fii, qi = −κ ∂T
∂xi

+ gi, (1.69)

and

⟨fik(x, t)flm(x′, t′)⟩ = 2T

(
µ(δilδkm + δimδkl) +

(
ν − 2

3
µ

)
δikδlm

)
δ(x− x′)δ(t− t′), (1.70)

⟨gi(x, t)gj(x′, t′)⟩ = 2κT 2δijδ(x− x′)δ(t− t′). (1.71)

We obtained the method how to introduce the random forces into the continuum dynamics

and clarified the its properties. However the present procedure is based on TIP. Therefore the

present theory cannot be applied to strongly non-equilibrium.

1.3 Extended thermodynamics

In the previous section, we have briefly summarized the non-equilibrium physics, in particular,

TIP, kinetic theory based on Boltzmann equation and LL, and made clear the problems of

each approaches. To overcome these problems, through the many studies for non-equilibrium

thermodynamics theory, there appeared the new theory; extended thermodynamics (ET) [8, 9]

from the view point of continuum dynamics by Ingo Müller. ET is a phenomenological field

theory capable for description of non-equilibrium phenomena with steep gradients and rapid

changes of physical variables. Therefore this theory may be suitable for the out of local

equilibrium, while TIP relies essentially on the assumption of local equilibrium. In this respect,

the validity range of ET is wider than that of TIP. Moreover, ET can predict finite speeds
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of disturbances as its basic system of equations is hyperbolic. On the contrary, TIP predicts

infinite speeds of disturbances because of its parabolic character.

In the early stage of ET, a theory for rarefied monatomic gases was developed [8, 45]. For

example, the ET theory of rarefied monatomic gases with 13 fields is a theory of 13 independent

fields; mass density, momentum density, momentum flux, and energy flux. By the use of the

proper constitutive equations compatible with the universal physical principles, a closed system

of field equations is obtained. A remarkable point is that the constitutive equations can be

explicitly determined from the equilibrium caloric and thermal equations of state. It is shown

that the NSF theory comes out as a limiting case of ET through carrying out the Maxwellian

iteration [46]. The closed system of field equations is totally consistent with the counterpart

system of the moments in the kinetic theory which we have already seen in Chapter 1, Section

2.2.

In the following part we explain the formal structure of ET of rarefied monatomic gases

described above, and as a typical case, we will see the 13 fields case.

1.3.1 Independent variables and balance equations

Let us consider a one-component fluid. In the NSF theory the system is characterized by 5

slow variables; the mass density, velocity and temperature. On the other hand, ET adopts fast

variables in addition to slow variables as independent fields. Here we consider N independent

fields u case. The closed field equations are based on the balance equations for N densities;

F = (F, Fk1 , · · · , Fk1k2...kn , · · · ). Corresponding to Eq. (1.3), we symbolize the non-convective

fluxes and productions as I = (0, Iik1 , · · · , Iik1k2...kn , · · · ) and P = (0, 0, · · · , Pk1k2...kn , · · · ),
respectively. We can summarize these symbols in Table 1.5 corresponding to Table 1.2.1.

Table 1.5: The density, non-convective flux and production for the balance equations of ET.

Ψ ρψ (density) ϕ (non-convective flux) ρπ (production)

Mass F ≡ ρ 0 0

Momentum Fk1 ≡ ρvi Iik1 0

Second order tensor Fk1k2 Iik1k2 P⟨ij⟩
...

...
...

...

N -th order tensor Fk1k2...kn Iik1k2...kn Pk1k2...kn
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When we put the elements of Table 1.5 on (1.3), the balance equation for each densities are

obtained as follows:

∂F

∂t
+
∂Fi

∂xi
= 0,

∂Fk1

∂t
+
∂Fik1

∂xi
= 0,

∂Fk1k2

∂t
+
∂Fik1k2

∂xi
= P⟨k1k2⟩,

∂Fk1k2k3

∂t
+
∂Fik1k2k3

∂xi
= Pk1k2k3 , (1.72)

...

∂Fk1k2...kn

∂t
+
∂Fik1k2...kn

∂xi
= Pk1k2...kn ,

...,

where Fik1k2...kn = Fk1k2...knvi + Iik1k2...kn is the flux of Fk1k2...kn . The first two equations and

the trace part of the third equation represent the conservation laws of mass, momentum and

energy, respectively. It is noticeable that there are the hierarchy structure of the system with

the following two features; (i) the tensorial rank of the equations increases one by one starting

from the mass balance equation, and (ii) the flux in one equation becomes the density in

the next equation. Such hierarchy is dictated by the moment equations (1.25) in the kinetic

theory of monatomic gases. Moreover there is no dynamics pressure, and as a consequence

Fii(= ρv2 + 3p) is, except for a factor 1/2, equal to the energy density, ρv2/2 + ρε, and

therefore 3p = 2ρε, where vi, ε and p are the velocity, specific internal energy density and

pressure, respectively. Therefore ET with this hierarchy structure is valid only for rarefied

monatomic gases.

1.3.2 Constitutive theory of ET

For convenience, we write the balance equations (1.72) as the vector form:

∂F

∂t
+
∂Fi

∂xi
= P , (1.73)

where the components of F is composed of densities and Fi and P are the corresponding fluxes

and productions.

When the hierarchy of the basic equations are truncated at some hierarchy level, we need,

as a closure procedure, constitutive equations for the quantities that are not independent field

variables. In ET, we assume that such quantities depend locally on the densities:

F = F (u), Fi = Fi(u), P = P (u). (1.74)
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The constitutive theory of ET can be summarized that the functional forms of constitutive

equations are severely restricted by the universal physical principles;

• Entropy principle

• Material frame indifference principle

In particular the entropy principle is composed of the following two requirements:

1. The entropy inequality

This inequality means that

∂h

∂t
+
∂hi
∂xi

= Σ ≥ 0, (1.75)

where h, hi and Σ are the entropy density entropy flux and entropy production, respec-

tively. We require this inequality to hold for all thermodynamic processes. Here h, hi

and Σ are constitutive quantities

h = h(u), hi = hi(u), Σ = Σ(u). (1.76)

2. The convexity of entropy density

This requirement can be expressed that

∂2h

∂u∂u
is negative definite. (1.77)

Most of the constitutive equations are fully prescribed by the equilibrium properties of

gases [8, 45]. We study the details of each requirement in following subsubsections.

Entropy inequality The requirement that the entropy inequality hold for all solutions of

the balance equations can be expressed by the following in equality with Lagrange multipliers

Λ:

∂h

∂t
+
∂hi
∂xi

−Λ ·
(
∂F

∂t
+
∂Fi

∂xi
− P

)
≥ 0. (1.78)

By considering the constitutive equations (1.74) and (1.76), Eq. (1.78) are written as follows:(
∂h

∂u
−Λ · ∂F

∂u

)
∂u

∂t
+

(
∂hi
∂u

−Λ · ∂Fi

∂u

)
∂u

∂xi
+Λ · P ≥ 0. (1.79)

This inequality must be hold for all ∂u
∂t and ∂u

∂xi
, therefore the coefficients of these must be 0.

This means that there must be exist the following relation:

∂h

∂u
= Λ · ∂F

∂u
,
∂hi
∂u

= Λ · ∂Fi

∂u
. (1.80)
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These relations can be written as

dh = Λ · dF , dhi = Λ · dFi. (1.81)

Then, the residual entropy inequality is expressed as follows:

Σ = Λ · P ≥ 0 (1.82)

Without loss of generality we can choose u = F , and then, Eqs.(1.80) are rewritten as

follows:

∂h

∂u
= Λ. (1.83)

This indicates that ∂2h
∂u∂u = ∂Λ

∂u , therefore ∂Λ
∂u is symmetric and negative definite from the

requirement convexity of entropy density (1.77). Then we can invert the independent variables

from u to Λ is locally and globally, and we can take Λ as independent variables.

For the simple calculation we introduce the new potentials

h′ = Λ · F − h, h′i = Λ · Fi − hi. (1.84)

h′ is the Legendre transform of h because of the fact that h is a concave function of F and Eq.

(1.83). The relations (1.81) between h and F or hi and Fi are converted to the relations with

respect to h′, h′i and Λ.

dh′ = F · dΛ, dh′i = Fi · dΛ. (1.85)

Therefore F and Fi are expressed as follows

F =
∂h′

∂Λ
, Fi =

∂h′i
∂Λ

. (1.86)

From the integrability of h′ we can find that

∂F

∂Λ
is symmetric. (1.87)

Furthermore, by considering Eq. (1.86), the entropy density and entropy flux are expressed

as the function of Λ.

h = Λ · ∂h
′

∂Λ
− h′, hi = Λ · ∂h

′
i

∂Λ
− h′i. (1.88)

Convexity of entropy principle By using Eq. (1.86) the balance equations (1.73) can be

written with the Lagrange multipliers as

∂2h′

∂Λ∂Λ
· ∂Λ
∂t

+
∂2h′i
∂Λ∂Λ

· ∂Λ
∂xi

= P . (1.89)
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This system is symmetric which obtained by choosing the Lagrange multipliers as the inde-

pendent fileds. In this sense, the Lagrange multipliers show their importance, and these are

called main fields [47].

This system is symmetric hyperbolic when ∂2h′

∂Λ∂Λ is definite, and this is satisfied by the

requirement of entropy inequality. In other words, the system is symmetric hyperbolic if the

following inequality is satisfied

∂2h′

∂Λ∂Λ
δΛδΛ = δΛδu =

∂2h

∂u∂u
δuδu < 0. (1.90)

The symmetric hyperbolic system has good mathematical properties, that is, the well-posedness

of Cauchy problems, i.e. the existence, uniqueness and continuous dependence of the solutions

on the data.

Main subsystem

We split the main fields (n-vector) Λ into m-vector L and (n−m)-vector l. Then the system

(1.89) is split into the two systems, that is,

∂2h′(L, l)

∂L∂L
· ∂L
∂t

+
∂2h′i(L, l)

∂L∂L
· ∂L
∂xi

= R(L, l), (1.91)

∂2h′(L, l)

∂l∂l
· ∂l
∂t

+
∂2h′i(L, l)

∂l∂l
· ∂l
∂xi

= r(L, l), (1.92)

where R and r are the corresponding productions to L and l, respectively. Let us consider

the case that l = l∗ = const 1. Then the remaining system is determined by (1.91)1, that is,

∂2h′(L, l∗)

∂L∂L
· ∂L
∂t

+
∂2h′i(L, l

∗)

∂L∂L
· ∂L
∂xi

= R(L, l∗). (1.93)

This system is called main subsystem of the system (1.89). The solutions of the main subsystem

satisfy a balance equation of subentropy:

∂h̄

∂t
+
∂h̄i
∂xi

= Σ̄, (1.94)

where subentropy h̄(Λ, l∗), subentropy flux h̄i(Λ, l
∗) and subentropy production Σ̄(Λ, l∗) are

related to the restrictions of the entropy h(Λ, l∗), entropy flux hi(Λ, l
∗) and entropy production

Σ(Λ, l∗) of the full system through

h̄(Λ, l∗) = h(Λ, l∗)− l∗ ·
(
∂h′(Λ, l)

∂l

)
l=l∗

,

h̄i(Λ, l
∗) = hi(Λ, l

∗)− l∗ ·
(
∂h′i(Λ, l)

∂l

)
l=l∗

,

Σ̄(Λ, l∗) = L · P (Λ, l∗).

(1.95)

1The constraint for l is generalized to the case that l depends on t and xi in [48].
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These relations are come from Eq. (1.91) and the definition of h̄ and h̄i:

h̄(Λ, l∗) = −h′(Λ, l∗) +L · ∂h
′(Λ, l∗)

∂L
,

h̄i(Λ, l
∗) = −h′i(Λ, l∗) +L · ∂h

′
i(Λ, l

∗)

∂L
.

(1.96)

These definition of subentropy density, subentropy flux and subentropy production are equiv-

alent to the relation (1.88) and (1.82) for the full system, respectively. The subentropy is

convex, therefore the main subsystem is symmetric hyperbolic.

Moreover it has been proved that the there are the following relations between characteristic

speeds of full system λ and of subsystem λ̄:

λmax(Λ, l
∗, n⃗) ≥ λ̄max(Λ, l

∗, n⃗),

λmin(Λ, l
∗, n⃗) ≤ λ̄min(Λ, l

∗, n⃗),
(1.97)

where λmax = max
k=1,2,...,n

λ(k), λ̄max = max
k=1,2,...,m

λ̄(k), λmin = min
k=1,2,...,n

λ(k), λ̄min = min
k=1,2,...,m

λ̄(k)

and n⃗ is a unit normal of front.

Galilean invariance

We require that the constitutive functions do not changed by the change of frame. Such

invariance makes clear the velocity independence of constitutive quantities.

In non-relativistic case, there are three types of transformation of frame:

Rotation transformation: x∗i = Oijxj , t∗ = t,

Galilean transformation: x∗i = Oijxj + cit, t∗ = t, (1.98)

Euclidean transformation: x∗i = Oij(t)xj + bi(t), t∗ = t.

If a quantity which the relation between before and after Galilean or Euclidean transformation

of its are given by

Ti1i2...iA = Oi1j1Oi2j2 . . . OiAjATj1j2...jA , (1.99)

such quantity is called Galilean or objective tensor, respectively. The velocity is transformed

according to the rules:

Rotation transformation: v∗i = Oijvj ,

Galilean transformation: v∗i = Oijvj + ci, (1.100)

Euclidean transformation: v∗i = Oij(t)vj + Ȯij(t)vj + ḃi(t).

Therefore the velocity is not Galilean or objective tensor.
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In general the fields u may be composed by the velocity vi and remaining (N − 3) vector

w which are assumed to be Galilean tensors. Then we may write

F = F (v,w), Fi = Fi(v,w), P = P (v,w), (1.101)

h = h(v,w), hi = hi(v,w), Σ = Σ(v,w). (1.102)

We can split the fluxes F i and hi into convective and non-convective flux

Fi = F vi + Ii, h = hvi + φi, (1.103)

where I and φi are the non-convective flux and entropy flux, respectively, and the functions

of v,w.

Let us summarize the result of the requirement of the Galilean invariance for the system

(1.73) and the entropy inequality (1.75) (see details in [49]). From the Galilean invariance for

entropy inequality (1.75), we can eliminate the velocity dependence from h, φi and Σ, therefore

h = h(w), φi = φi(w), Σ = Σ(w). (1.104)

On the other hand, the Galilean invariance for the system (1.73) shows that there exist the

following relations

F = X(v)F̂ (w), Ii = X(v)Îi(w), P = X(v)P̂ (w), (1.105)

where F̂ , Îi and P̂ are the Galilean tensor and called intrinsic variables. X(v) is a matrix

composed of only v. From the general theory we can proof that X(v) has the following

properties:

X(v(1) + v(2)) = X(v(1))X(v(2)) = X(v(2))X(v(1)), X(0) = 1. (1.106)

And these properties imply that the differential of X(v) are expressed by using constant

matrices Ar as follows:

∂X

∂vr
(v) = ArX(v) = X(v)Ar, (1.107)

where

Ar =
∂X

∂vr
(0), ArAs = AsAr. (1.108)

Then we can conclude thatX(v) is an exponential function of the components vr with constant

matrices Ar as coefficients:

X(v) = eA
rvr = 1+Arvr +

1

2
ArAsvrvs + · · · . (1.109)
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Therefore, when Ar are known, we can obtain the explicit form of X(v).

By using Eq.(1.105), the balance equations (1.73) are written with intrinsic variables as

follows:

X

{
dF̂

dt
+ F̂

∂vi
∂xi

+
∂Îi
∂xi

+Ar

{
F̂
dvr
dt

+ Îi
∂vr
∂xi

}
− P̂

}
= 0. (1.110)

The fact that h, φi and Σ are the Galilean tensor restrict the entropy principle. With Eqs.

(1.81) and (1.105), we obtain

dh = Λ̂ · dF̂ , dφi = Λ̂ · dÎi, Λ̂ · P̂ = Σ ≥ 0, (1.111)

and constraints

Λ̂ ·ArF̂ = 0, Λ̂ ·ArF̂ i = −ĥ′δir, (1.112)

where Λ̂ is the matrices composed of Galilean tensor and defined with Λ as follows

tΛ = tΛ̂X−1 = tΛ̂X(−v). (1.113)

From Eqs. (1.105) and (1.113), we can find that the potentials h′ and φ′
i (:the non-

convective part of h′i defined h
′
i = h′vi + φ′

i) are also the Galilean invariant, and expressed

h′ = Λ̂ · F̂ − h, φ′
i = Λ̂ · Îi − φi. (1.114)

Instead of (1.85) we obtain

dh′ = F̂ · dΛ̂, dφ′
i = Îi · dΛ̂,

and F̂ =
∂h′

∂Λ̂
, Îi =

∂φ′
i

∂Λ̂
.

(1.115)

By using (1.115)(or (1.111)) and (1.112), we can determine the constitutive equations.

Finally we consider the explicit form of X. We require that both the system and its

subsystem (with respect to F ) are Galilean invariant. Then, we can find that X(v) is lower

triangular matrix. With (1.108), (1.109) this property, the Galilean invariance of balance

equations (1.73) determine the elements of A and X by taking several steps of rescaling F , Ii

and P [49]. Here we show only the result.

1 0 0 0 0 0

vk1
δh1
k1

0 0 0 0

vk1
vk2

2δh1
(k1

vk2) 0 0 0 0

vk1
vk2

vk3
3δh1v(k1

vk2
vk3) δh1

k1
δh2
k2

δh3
k3

0 0 0

..

.
..
.

..

.
. . .

..

.
..
.

vk1
vk2

vk3
· · ·vkn

(n
1

)
δh1v(k1

vk2
· · ·vkN ) · · · δh1

k1
δh2
k2

· · ·δhn
kn

0 0

..

.
..
.

..

.
..
.

. . .
..
.

vk1
vk2

vk3
· · ·vkN

(N
1

)
δh1v(k1

vk2
· · ·vkN ) · · ·

(N
n

)
δh1
k1

δh2
k2

· · ·δhn
kn

v(kn+1
· · ·vkN ) · · · δh1

k1
δh1
k1

δh2
k2

· · ·δhN
kN


.

(1.116)
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1.3.3 13 fields case

As a typical example, we show ET of rarefied monatomic gases with 13 independent fields

[8, 45] ;

mass density F (= ρ),

momentum density Fi,

momentum flux Fij ,

energy flux Fppi.

By adopting the balance equations (Section 3.1) and the constitutive theory (Section 3.2), we

obtain the closed field equations.

Balance equation

The system of field equations is of balance type such that

∂F

∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Fij

∂t
+
∂Fijk

∂xk
= P⟨ij⟩,

∂Fppi

∂t
+
∂Fppik

∂xk
= Pppi,

(1.117)

where Fijk and Fppik are the fluxes of Fij and Fppi, respectively, and P⟨ij⟩ and Pppi are the pro-

ductions with respect to Fij and Fppi, respectively. Here P⟨ij⟩ is a symmetric traceless tensor.

The first two equations and the trace part of the third equation represent the conservation

laws of mass, momentum and energy, respectively.

In order to close the system (1.117), we need constitutive equations for

F⟨ij⟩k, Fppik, P⟨ij⟩, Pppi. (1.118)

In ET the constitutive quantities F⟨ij⟩k, Fppik, P⟨ij⟩ and Pppi are assumed to depend on F, Fi, Fij , Fppi

locally and instantaneously.

F⟨ij⟩k = F⟨ij⟩k(F, Fi, Fij , Fppi),

Fppik = Fppik (F, Fi, Fij , Fppi) ,

P⟨ij⟩ = P⟨ij⟩(F, Fi, Fij , Fppi),

Pppi = Pppi (F, Fi, Fij , Fppi) .

(1.119)
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Entropy inequality

We recall the entropy inequality (1.75)

∂h

∂t
+
∂hi
∂xi

= Σ ≥ 0.

This inequality is held for all thermodynamics processes, and h and hi are also constitutive

quantities.

h = h(F, Fi, Fij , Fppi), hi = hi(F, Fi, Fij , Fppi). (1.120)

The requirement of the entropy inequality can be expressed by introducing the Lagrange

multipliersΛ = T (Λ,Λi,Λij ,Λppi) as Eq. (1.78). Following the general theory, we obtain follow-

ing relationship between the independent variables and Lagrange multipliers. Corresponding

to Eq. (1.80), we obtain

∂h

∂F
= Λ,

∂h

∂Fi
= Λi,

∂h

∂Λij
= Fij ,

∂h

∂Λppi
= Fppi, (1.121)

∂hi
∂Fi

= Λ,
∂hi
∂Fik

= Λk,
∂hi
∂Flmi

= Λlm,
∂h

∂Fppli
= Λppi. (1.122)

Then the derivatives of the entropy density and flux are expressed as

dh = ΛdF + ΛidFi + ΛijdFij + ΛppidFppi,

dhi = ΛdFi + ΛpdFpi + ΛlmdFlmi + ΛppldFqqli.
(1.123)

The residual inequality is that

Σ = Λ⟨ij⟩F⟨ij⟩ + ΛppiFqqi ≥ 0. (1.124)

Galilean invariance

The system (1.117) should be Galilean invariant. By Eqs (1.105) and (1.116), the velocity

dependence of the quantities is made clear with the intrinsic tensors F̂ = T (ρ, 0,mij ,mppi),

Îi = T (0,mij ,mijk,mppik) and P̂ = T (0, 0, P⟨ip⟩, Pi). Then we obtain the relations between

original variables and intrinsic variables as follows:

Fij = mij + ρvivj ,

Fijk = mijk + 3m(ijvk) + ρvivjvk,

Fppij = mppij + 4m(ijpvp) + 6m(ipvpvj) + ρv2vivj ,

Pppi = Pi + 2P⟨ip⟩vp,

(1.125)
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where mij ,mijk,mppij , P⟨ij⟩ and Pi are the Galilean tensors. With Eq.(1.125) the balance

equations (1.117) can be expressed as

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂mij

∂xj
= 0,

ṁij +mij
∂vk
∂xk

+
∂mijk

∂xk
+ 2

∂v(i

∂xk
mj)k = P⟨ij⟩,

ṁppi +mppi
∂vk
∂xk

+
∂mppik

∂xk
+ 2

∂vp
∂xk

mpik +
∂vi
∂xk

mppk + 2mpiv̇p +mppv̇i = Pi.

(1.126)

The first, second and trace part of third equations represent the conservation laws of mass,

momentum and energy, respectively, m⟨ij⟩, mii, mppi have the following conventional meaning:

stress tij
(
= −pδij + S⟨ij⟩

)
= −m⟨ij⟩,

specific internal energy ε =
1

2ρ
mii, (1.127)

heat flux qi =
1

2
mppi,

where p and S⟨ij⟩ are the pressure and viscous stress, respectively. Therefore mij is symmetric

because we deal with non-polar materials. As we mentioned before we consider the rarefied

monatomic gases, therefore the dynamic pressure is 0, and there is the relation 3p = 2ρε.

From the Galilena invariance of entropy inequality, we can remove the velocity from h and

φi.

h = h(ρ, mij , mppi), φk = φk(ρ, mij , mppi). (1.128)

We have a one-by-one correspondence between constitutive equations F, Fi, Fij , Fijk, Fppik, h, hi

and intrinsic variables ρ, vi,mij ,mijk,mppik, h, φi. Therefore the constitutive equations (1.119)

and (1.120) for ψ′ = {m⟨ij⟩k,miijk, P⟨ij⟩, Pi, h, φi} are rewritten as follows:

ψ′ = ψ′(ρ, mij , miij). (1.129)

We can also make clear the velocity dependence of the Lagrange multipliers Λ. By Eq.

(1.113) we obtain the relation between Λ = T (Λ,Λi,Λij ,Λppi) and Galilean tensors Λ̂ =

T (λ, λi, λij , λppi) as follows:

λ = Λ+ Λivi + Λijvivj + Λppiv
2vi,

λi = Λi + 2Λijvj + Λppj(v
2δij + 2vivj),

λij = Λij + Λppi3v(iδij),

λppi = Λppi.

(1.130)
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Then we obtain the derivatives of h and φi from (1.111) as follows:

dh = λdρ+ λijdmij + λjdmiij , (1.131)

dφk = λidmik + λijdmijk + λjdmiijk, (1.132)

and the constraints (1.112) are expressed as

λiρ+ λimkk + 2λppkmik = 0, (1.133)

− (h− λρ− λrsmrs − λrmllr)δik + 2λirmrk + λppimrrk + 2λpprmirk = 0. (1.134)

The residual inequality (1.124) is also rewritten as the form without velocity

Σ = λ⟨ij⟩P⟨ij⟩ + λppiPi ≥ 0. (1.135)

Equilibrium

The equilibrium is defined as the case that the productions P⟨ij⟩ and Pi are 0:

PE
⟨ij⟩ = 0, PE

i = 0,

where the symbol E means the value at equilibrium. In the equilibrium the entropy production

have minimum value 0, and its necesarily condition is dΣE = 0:

dΣE = λE⟨ij⟩dP⟨ij⟩|E + λEppidPi|E = 0.

Therefore we obtain

λE⟨ij⟩ = 0, λEppi = 0. (1.136)

From this, we may interpret λ⟨ij⟩ and λppi as the variables which characterize a nonequilibrium

state.

By considering mii = 2ρε, the derivation of entropy density at an equilibrium state has the

following expression from (1.131)

dhE = λEdρ+
2

3
λEkkd(ρε). (1.137)

At an equilibrium state there is the following relation so-called Gibbs relation:

dhE = − g

T
dρ+

1

T
d(ρε), (1.138)

where g(= ε + p/ρ − Ts) is the chemical potential and T is the absolute temperature. The

comparison between Eq.(1.137) and the Gibbs relation (1.138) gives us the following relations:

λE = − g

T
, λEkk =

3

2T
. (1.139)

In this way ET introduce the temperature through the Lagrange multipliers.
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Constitutive equations

By introducing the new potentials h′ and φ′
k as (1.84) we adopt {λ, λij , λppi} as independent

variable instead of {ρ,mij ,mppi}.

h′ = λρ+ λijmij + λppimqqi − h

φ′
k = λimik + λijmijk + λppimqqik − φk

(1.140)

Then we obtain

dh′ = ρdλ+mijdλij +mqqidλppi,

dφ′
k = mikdλi +mijkdλij +mqqikdλppi.

(1.141)

Let us consider the representation of h′ and φ′
k. These are expressed as the expansion near

equilibrium, that is, the polynominal in λ⟨ij⟩, λppi because the new potentials h′ and φ′
k are

isotropic functions of {λ, λij , λppi}. Up to second order near equilibrium state {λ, λii}, h′ and
φ′
i are represented as follows

h′ = h′E + h1λ⟨ij⟩λ⟨ij⟩ + h2λppiλqqi + h3λ⟨ij⟩λ⟨ni⟩λ⟨nj⟩ + h4λ⟨ij⟩λppiλqqj +O(3),

φ′
k = β1λppk + β2λ⟨kj⟩λppi +O(3),

(1.142)

where the coefficients h′E , h1, h2, h3, h4, β1, β2 and β3 are the function of λ, λii. From Eqs.(1.137)

and (1.140), we have

h′E = −pE
T
.

From Eq.(1.142) we obtain

dh′ = dh′E + λ⟨ij⟩λ⟨ij⟩dh1 + λppiλppidh2 + λ⟨ij⟩λ⟨ni⟩λ⟨nj⟩dh3 + λ⟨ij⟩λppiλqqjdh4

+
(
2h1λ⟨ij⟩ + 3h3λ⟨n⟨i⟩λ⟨n⟩j⟩

)
dλ⟨ij⟩

+
(
2h2λppi + 2h4λ⟨ij⟩λqqj

)
dλppi,+O(3) (1.143)

dφ′
k = λppkdβ1 + λ⟨ki⟩λppidβ2

+ β1dλppk + β2λ⟨ki⟩dλppi + β2λppidλ⟨ki⟩ +O(3). (1.144)

We compare the two expressions of ∂h′

∂λ ,
∂h′

∂λii
, ∂h′

∂λ⟨ij⟩
and ∂h′

∂λppi
from Eqs.(1.141) and (1.143) .

Then we obtain

ρ = ρE +
∂h1
∂λ

λ⟨ij⟩λ⟨ij⟩ +
∂h2
∂λ

λppiλppi +O(3),

mii = 2ρEεE + 3
∂h1
∂λll

λ⟨ij⟩λ⟨ij⟩ + 3
∂h2
∂λll

λppiλppi +O(3),

m⟨ij⟩ = 2h1λ⟨ij⟩ + 3h2λ⟨i⟨n⟩λ⟨n⟩j⟩ + h4λpp⟨iλj⟩qq +O(3),

mppi = 2h2λppi + 2h4λ⟨ik⟩λppk.

(1.145)
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Within the linear constitutive equations, we may interpret ρ = ρE and ε = εE . Henceforth we

ignore the notation E for ρ and ε.

In the same way we compare the two expressions of
∂φ′

k
∂λ ,

∂φ′
k

∂λii
,

∂φ′
k

∂λ⟨ij⟩
and

∂φ′
k

∂λppi
from Eqs.(1.141)

and (1.144). Then we obtain

∂β1
∂λ

= −5pT,

∂β2
∂λ

= −10
p

ρ

∂h1
∂λ

− 4h1T,

∂β1
∂λll

=
2h2
3

− 25

3

p2T

ρ
,

∂β2
∂λll

=
2h4
3

+
10p

ρ

∂h1
∂λll

+
20

3
h1
pT

ρ
,

m⟨rs⟩k =

(
β2 − 10h1

p

ρ

)
λpp⟨rδs⟩k +O(2),

mppik = β1δik + β2λ⟨ik⟩ +O(2).

(1.146)

Taking into account that m⟨rsk⟩ = O(2), we can obtain the following relation from (1.145)4

and (1.146)5.

β2 =
4

5
h2 + 10

p

ρ
h1. (1.147)

By substituting (1.140), (1.145) and (1.146) into (1.134), we obtain the following relation

h1 = −pT, h3 =
4

3
pT 2, h4 = −18

5
h2T. (1.148)

For convenience, we take {ρ, T} as independent variables instead of {λ, λii}. Then, the

relations (1.145) and (1.146) are rewritten in terms of {ρ, T}. To consider the equations of

state, we recall the Gibbs relation. As the integrability condition of Gibbs relation, we have(
∂ε

∂ρ

)
T

=
1

ρ2

(
p− T

(
∂p

∂T

))
. (1.149)

Furthermore we introduce z = ρ/T 3/2 instead of ρ. Then we obtain the thermal equation of

state from (1.149) as follows

p = T 5/2F (z), (1.150)

which is come out from the integrability condition of Gibbs relation (1.149) and 3p = 2ρε. This

form of pressure can express both the classical and quantum ideal gases. From Eqs. (1.147),

(1.148) and first four relation in (1.146), we obtain the explicit form of β1 and β2:

β1 = 5T 7/2

(∫
FF ′

z
dz + c

)
+ C,

β2 = −14T 9/2

(∫
FF ′

z
dz + c

)
,

(1.151)
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where c and C are the integration constants. With these we can calculate the coefficients of h′

h1 = −T 7/2F (z),

h2 = T 9/2

[
25

2

F 2

z
− 35

2

(∫
FF ′

z
dz + c

)]
,

h3 =
4

3
T 9/2F (z),

h4 = T 11/2

[
−45

F 2

z
+ 63

(∫
FF ′

z
dz + c

)]
.

(1.152)

Therefor we determined all coefficients of the representaion of h′ and φ′
k by the equilibrium

properties, that is, T and z.

The stability of entropy production

Let us consider the representation of production terms P⟨ij⟩ and Pppi in the same manner as

the representaion of h′ and φ′
k.

P⟨ij⟩ = σλ⟨ij⟩ +O(2),

Pi = τλppi +O(2),
(1.153)

where σ and τ are the function of λ and λll.

From the entropy inequality (1.135) we obtain

Σ = σλ⟨ij⟩λ⟨ij⟩ + τλppiλqqi +O(3) ≧ 0. (1.154)

The entropy production must be the minimum 0 in equilibrium, therefore σ and τ must be

satisfy the following inequalities

σ > 0, τ > 0. (1.155)

Linear constitutive equations as function of {ρ, T, S⟨ij⟩, qi}

We obtained the linear constitutive equations (1.146)3, (1.146)4 and (1.153) with the relations

(1.151) and (1.152) as the function of {ρ, T, λ⟨ij⟩, λppi}. By inverting Eqs. (1.145)3 and

(1.145)4, we can obtain the linear constitutive equations as the function of {ρ, vi, T, S⟨ij⟩, qj}.
The viscous stress S⟨ij⟩ and heat flux qi are related to m⟨ij⟩ and mppi from (1.127)) as

m⟨ij⟩ = −S⟨ij⟩ and mppi = 2qi , therefore (1.145)3 and (1.145)4 are expressed within first-order

terms with respect to non-equilibrium variables as follows:

S⟨ij⟩ = −2h1λ⟨ij⟩ +O(2),

qj = h2λppi +O(2).
(1.156)
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Therefore the Lagrange multipliers λ⟨ij⟩ and λppi are expressed by S⟨ij⟩ and qi as follows:

λ⟨ij⟩ = − 1

2h1
S⟨ij⟩ +O(2),

λppi =
1

h2
qj +O(2).

(1.157)

Then the constitutive equations are written as

m⟨ij⟩k =

(
β2 − 10

p

ρ

)
1

h2
q⟨iδj⟩k +O(2),

mppik = β1δik −
β2
2h1

S⟨ik⟩ +O(2),

P⟨ij⟩ = − σ

2h1
S⟨ij⟩ +O(2),

Pi =
τ

h2
qi +O(2).

(1.158)

Entropy density and entropy flux

From (1.140) we obtain the entropy density and entropy flux as the function of {ρ, T,m⟨ij⟩,mppi}.

h = ρ

[
3

2

∫ (
F ′

z
− 5

3

F

z2

)
dz + ζ

]
−
m⟨ij⟩m⟨ij⟩

4T 7/2F (z)
− mppimqqi

10T 7/2F (z)
[
7 T
F (z)

(∫
FF ′

z dz + c
)
− 5T F (z)

z

] ,
φk =

1

2T
mppi −

2

10

1

T 7/2F (z)
m⟨kj⟩mppj .

(1.159)

Convexity near equilibrium

The requirement of convexity of entropy density with respect to {ρ, vi, T, S⟨ij⟩, qj} near equi-

librium is fulfilled when the following inequalities are satisfied: in equilibrium state

F (z) > 0, 7

(∫
FF ′

z
dz + c

)
− 5

F 2

z
> 0, (1.160)

0 < F ′ <
5

3

F

z
. (1.161)

For classical ideal gases all inequalities are satisfied. For quantum ideal gases all inequalities

are also satisfied except for the strongly degenerate Fermi gases and strongly degenerate Bose

gases which have the relation F ′ = 5
3
F
z and F ′ = 0, respectively.
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1.3.4 Field equations

The closed field equations with the equation of state for ideal gases p = T 5/2F (z)
(
z = ρ

T 3/2

)
are obtained

ρ̇+ ρ
∂vi
∂xi

= 0,

ρv̇i −
∂(S⟨ij⟩ − T 5/2F (z)δij)

∂xj
= 0,

ρ
3

2

˙(
T
F (z)

z

)
+
∂qj
∂xj

−
(
S⟨ij⟩ − T 5/2F (z)δij

) ∂vi
∂xj

= 0,

ρ

[
˙(

S⟨ik⟩

ρ

)
+ 2

Sl⟨i

ρ

∂vk⟩

∂xl

]
− 4

5

∂q⟨i

∂xk⟩
= − 1

τS
Sik,

ρ

[
˙(qi
ρ

)
+
qk
ρ

∂vi
∂xk

]
− 1

2

∂

∂xk

[(
7
T

F (z)
S⟨ij⟩ − 5T 7/2δij

)(∫
FF ′

z
dz + c

)]

+
2

5

∂vk
∂xk

+
4

5
qk
∂v(i

∂xk)
−
(
S⟨ij⟩ − T 5/2F (z)δij

)
ρ

∂
(
S⟨jk⟩ − T 5/2F (z)δjk

)
∂xk

+
3

2

T 5/2F (z)

ρ

∂
(
S⟨ik⟩ − T 5/2F (z)δik

)
∂xk

= − 1

τq
qi,

(1.162)

where the relaxation time τS and τq are as follows:

τS =
2T 7/2F (z)

σ
,

τq =
5T 9/2

[
7
(∫

FF ′

z dz + c
)
− 5F 2

z

]
τ

.

(1.163)

In particular in the case of classical ideal gases, the equation of state has following form

p = ρ
k

m
T, (1.164)

therefore, we have

F (z) =
k

m
z. (1.165)

By using the equation of state (1.164)(or (1.165)) we obtain the closed field equations for
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classical ideal gases.

ρ̇+ ρ
∂vi
∂xi

= 0,

ρv̇i −
∂(S⟨ij⟩ − pδij)

∂xj
= 0,

ρ
3

2

k

m
Ṫ +

∂qj
∂xj

− (S⟨ij⟩ − pδij)
∂vi
∂xj

= 0,

Ṡ⟨ij⟩ + 2S⟨n⟨i⟩
∂vj⟩

∂xn
+ S⟨ij⟩

∂vn
∂xn

− 4

5

∂q⟨i

∂xj⟩
− 2p

∂v⟨i

∂xj⟩
= − 1

τt
S⟨ij⟩,

q̇i + qk
∂vi
∂xk

+
7

5
qi
∂vk
∂xk

+
4

5
qk
∂v(i

∂xk)
− k

m
T
∂S⟨ij⟩

∂xj

−
S⟨ij⟩

ρ

∂S⟨jk⟩

∂xk
− 7

2

k

m
S⟨ij⟩

∂T

∂xj
+
S⟨ij⟩

ρ

∂p

∂xj
+

5

2

k

m
p
∂T

∂xi
= − 1

τq
qi.

(1.166)

In this case the relaxation times are written as

τS =
2

σ

k

m
T 2ρ,

τq =
1

τ

(
10

(
k

m

)2

T 3ρ+ 35T 9/2c

)
.

(1.167)

Comparison with kinetic theory

The closed system of field equations is totally consistent with the system of the moments in

the kinetic theory as the counterpart. Therefore we may conclude that c = 0.

1.3.5 Maxwellian iteration

The NSF theory comes out as a limiting case of ET through carrying out the so-called

Maxwellian iteration [46]. In this respect, NSF can be seen as an approximation of ET

where the relaxation times of dissipative fluxes (viscous stress and heat flux) are negligible

(Navier-Stokes Fourier limit).

We carry out the Maxwellian iteration in the field equations by the following procedures:

1. The 0th iterates; S
(0)
⟨ij⟩ and q

(0)
i

The viscous stress and heat flux have it equilibrium values, therefore S
(0)
⟨ij⟩ = 0 and

q
(0)
i = 0.

2. The 1st iterates; S
(1)
⟨ij⟩ and q

(1)
i

S
(1)
⟨ij⟩ and q

(1)
i are obtained by substituting the 0th iterates S

(0)
⟨ij⟩ and q

(0)
i into the left-
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hand-side of the field equations. Then we obtain

S
(1)
⟨ij⟩ = 2T 5/2F (z)τS

∂v⟨i

∂xj⟩
,

q
(1)
i = −5

4
T 5/2

[
5
F 2

z
− 7

∫
FF ′

z
dz

]
τq
∂T

∂xi
.

(1.168)

On the other hand, we have the laws of Navier-Stokes and Fourier (1.10).

S⟨ij⟩ = 2µ
∂v⟨i

∂xj⟩
, qi = −κ ∂T

∂xi
,

where µ and κ are the shear viscosity and heat conductivity, respectively. The comparison

reveals that

µ = T 5/2F (z)τS ,

κ = −5

4
T 5/2

[
5
F 2

z
− 7

∫
FF ′

z
dz

]
τq.

(1.169)

In particular, for classical ideal gases, we obtain

µ =
kB
m
ρTτS ,

κ =
5

2

(
kB
m

)2

ρTτq.

(1.170)

We can therefore estimate the values of the relaxation times τS and τq from the experi-

mental data of the coefficients µ and κ.

The second iterates and higher iterates are obtained in a similar way. S
(2)
⟨ij⟩ and q

(2)
i are

obtained which include the second order term with respect to τS and τq.

S
(2)
⟨ij⟩ = 2pτS

∂v⟨i

∂xj∂
− ρτS

[
˙(

2pτS
ρ

∂v⟨i

∂xj∂

)
+

4pτS
ρ

∂v⟨l

∂x⟨i⟩

∂vk⟩

∂xl

]
− 4

5
τS
∂
(
θτq

∂T
∂x⟨i

)
∂xj⟩

,

q
(2)
i = −θτq

∂T

∂xi
+ ρτq

[
˙(

θτq
ρ

∂T

∂xi

)
+
θτq
ρ

∂T

∂xk

∂vi
∂xk

]
+ τq

∂
[
7T 7/2τS

∂v⟨i
∂xj⟩

∫
FF ′

z dz
]

∂xj

+
2

5
θτ2q

∂T

∂xi

∂vk
∂xk

+
4

5
θτ2q

∂T

∂xk

∂v(i

∂xk)
+ 2

p

ρ
τqτS

∂v⟨i

∂xj⟩

∂
(
2pτS

∂v⟨j
∂xk⟩

)
∂xk

− 2
p

ρ
τqτS

∂v⟨i

∂xj⟩

∂p

∂xj
− p

ρ
τq
∂
(
2pτS

∂v⟨i
∂xk⟩

)
∂xk

− 3

2

p

ρ
τq
∂
(
2pτS

∂v⟨i
∂xk⟩

)
∂xk

,

where

θ =
5

4
T 5/2

[
5
F 2

z
− 7

∫
FF ′

z
dz

]
(1.171)

For further order iteration, we may estimate that the form include the n-th order term

with respect to τS and τq in n-th order iteration. This means that this iteration scheme is the

expansion with respect to the relaxation time.
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1.3.6 The after the establishment of ET for rarefied monatomic gases

After the establishment of ET for rarefied monatomic gases, this theory has been applied

successfully to various nonequilibrium phenomena such as light scattering, sound waves, heat

waves (second sound), structure of shock waves [8]. Besides, there appeared many studies of

ET for rarefied polyatomic gases [50, 51, 52] and also for dense gases [53, 54, 55, 56, 57]. In

contrast to ET for rarefied monatomic gases, in these theories, there exists a fatal difficulty that

the constitutive equations cannot be determined in a fully explicit way from the caloric and

thermal equations of state. There remain many phenomenological constants in the constitutive

equations that are impossible to be evaluated experimentally or theoretically.

On the other hand, from the view point of fluctuating hydrodynamics, the development of

ET open new field, that is, the theory which is applicable to the state with evident spatio-

temporal changes of physical quantities where LL cannot be applied is much-expected.

1.4 Purpose and organization of this thesis

Up to this point, we have seen the present state of non-equilibrium physics, and these problems.

Then our course is decided, that is, the purpose of the present thesis is to construct the following

two theories beyond the applicable range of previous works:

1. ET of rarefied polyatomic gases, dense monatomic gases and dense polyatomic gases

2. Fluctuating hydrodynamics based on ET.

Moreover, responding to the construction of these new theories, we should show the validity

and features of these. In the present thesis, we show the recent achievement about these

studies.

The organization of this thesis can be summarized as follows:

In Chapter 1, the background and purpose of the present study was summarized. The

previous studies for non-equilibrium phenomena are briefly summarized by focusing around

TIP, kinetic theory and LL. Moreover the recent developed non-equilibrium thermodynamics,

i.e., ET was introduced. In particular the basic concepts and mathematical structures of ET

were discussed.

In Chapter 2, we study ET of dense gases by adopting the system of field equations with

a different hierarchy structure to that adopted in the previous works. It is the theory of 14

fields of mass density, velocity, temperature, viscous stress, dynamic pressure and heat flux.

As a result, most of the constitutive equations can be determined explicitly by the caloric and

thermal equations of state. This theory includes rarefied polyatomic gases, and it is shown

that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also
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1.4. PURPOSE AND ORGANIZATION OF THIS THESIS

analyze two physically important systems, that is, a hard-sphere system and a van der Waals

fluid, by using the general theory developed in the former part of the present chapter.

In Chapter 3, we study the dispersion relation for sound in rarefied polyatomic gases

(hydrogen, deuterium and hydrogen deuteride gases) based on the ET approach proposed in

Chapter 2. We compare the relation with those obtained in experiments and by the classical

NSF theory. The applicable frequency-range of the ET theory is proved to be much wider than

that of the NSF theory. We evaluate the values of the bulk viscosity and the relaxation times

involved in nonequilibrium processes. The relaxation time related to the dynamic pressure has

a possibility to become much larger than the other relaxation times related to the shear stress

and the heat flux.

In Chapter 4, based on ET, we study a thermodynamic theory of gases with the en-

ergy transfer from the molecular translational mode to the internal modes as an extension of

Meixner’s theory. We focus our attention on the simplest case with only one dissipative process

due to the dynamic pressure. The dispersion relation for sound derived from the present the-

ory is compared with that from Meixner’s theory. The kinetic theoretical basis of the present

approach is also discussed.

In Chapter 5, we develop a theory of fluctuating hydrodynamics based on extended ther-

modynamics through studying the 13-variable theory for a rarefied monatomic gases as a

representative case. After analyzing the relationship between the present theory and the LL

theory, we discuss the hierarchy structure of the hydrodynamic fluctuations.

In Chapter 6, summary and concluding remarks of this thesis will be shown.
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CHAPTER 1. INTRODUCTION

Chap. 1-3: ET of Rarefied Monatomic Gases
Chap. 2: ET of Dense Gases Chap. 5: Fluctuating Hydrodynamics Based on ET

Chap. 1-2:  LLKinetic Theory(Chap. 1-2)
ET
TIP(Chap. 1-2)

Chap. 3: Linear Waves in Rarefied Polyatomic Gases Based on ETChap. 4: ET of Dense Gases with 6 Fields
Figure 1.2: Flow chart of this thesis. ET: Extended Thermodynamics, TIP: Thermodynamics

of irreversible process, LL: Landau-Lifthitz theory.
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Chapter 2

Extended thermodynamics of dense

gases

In this chapter the applicable range of extended thermodynamics theory is extended to rarefied

polyatomic gases, dense monatomic gases and dense polyatomic gases. The basic ideas of

constitutive theory are the same with that shown in Chap 1. The essential difference from the

previous theories stems from the hierarchy structure of balance equations. The obtained closed

field equations are discussed in the following four cases separately: (i) Rarefied monatomic

gases, (ii) rarefied polyatomic gases, (iii) dense monatomic gases, and (iv) dense polyatomic

gases. Moreover, the applications for the physically important systems (a hard-sphere system

and a van der Waals fluid) are discussed.

2.1 Introduction

Extended thermodynamics (ET) is applicable to highly nonequilibrium phenomena with steep

gradients in space and rapid changes in time out of local equilibrium by adopting dissipa-

tive fluxes as independent fields and the spatio-temporally local constitutive equations. Such

constitutive equations are severely restricted by imposing the universal physical principles; En-

tropy principle, Causality, and Objectivity. As we have seen in Chap. 1, for rarefied monatomic

gases ET is totally consistent with the Grad’s procedure in the kinetic theory based on the

Boltzmann equation.

The Navier-Stokes Fourier (NSF) theory comes out as a limiting case of ET through carrying

out Maxwellian iteration [46] which neglects the relaxation times of dissipative fluxes. However,

within its validity range, the classical Navier-Stokes Fourier theory is applicable to any fluids

that are not necessarily limited to rarefied gases nor to monatomic gases. Therefore, after the

successful establishment of ET for rarefied monatomic gases, there appeared many studies of
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CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

ET for rarefied polyatomic gases [50, 51, 52] and also for real gases (or dense gases) [53, 54,

55, 56, 57].

In dense gases, no relationship between the pressure p and the specific internal energy ε

exists, and moreover the dynamic pressure Π (trace of the viscous stress) does not vanish.

Taking these two facts into account, the previous authors tried to establish ET by postulating

a similar hierarchy structure to ET of rarefied monatomic gases(Eq. (1.72)), but with 14

densities including a fourth-rank tensorial density [55, 57]. However, the other feature that

a flux in a equation becomes a density in the next equation was abandoned. Because of this

generality, the constitutive equations could not be fully determined from the knowledge of

the equilibrium properties of gases. Moreover, as we expect, when the Maxwellian iteration

procedure is applied, we have to obtain the Navier-Stokes Fourier constitutive equations. The

postulation of the fourth-rank tensorial density seems to be not well justified because, as can be

seen in the next section, it does not have any straightforward counterpart in the Navier-Stokes

Fourier limit.

The objective of the present chapter is to propose an ET theory of dense gases by adopting

the system of field equations with a different hierarchy structure to (1.72). We will show that

most of the constitutive equations can be determined explicitly by the caloric and thermal

equations of state. We will also analyze the theory in the following four cases separately: (i)

Rarefied monatomic gases, (ii) rarefied polyatomic gases, (iii) dense monatomic gases, and (iv)

dense polyatomic gases. In addition, the two physically important systems, that is, a hard-

sphere system and a van der Waals gas, by using the general theory developed in the present

chapter.

2.2 Model of dense gases

2.2.1 Heuristic viewpoint

In order to grasp the structure of the basic system appropriate for ET of dense gases, first

of all, let us reconsider the structure of the Navier-Stokes Fourier system (Chapter 1, Section

2.1). In addition to the usual conservation laws of mass, momentum, and energy:

∂ρ

∂t
+

∂

∂xk
(ρvk) = 0,

∂

∂t
(ρvi) +

∂

∂xk
(ρvivk − tik) = 0,

∂

∂t

(
ρv2

2
+ ρε

)
+

∂

∂xk

[(
ρv2

2
+ ρε

)
vk − tkjvj + qk

]
= 0,

(2.1)
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we have the constitutive equations:

S⟨ij⟩ = 2µ
∂v⟨i

∂xj⟩
, Π = −ν ∂vk

∂xk
, qi = −κ ∂T

∂xi
, (2.2)

where tij is the stress expressed by

tij = −pδij + Sij = − (p+Π) δij + S⟨ij⟩ (2.3)

with Sij being the viscous stress and Π(≡ −Sii/3) the dynamic pressure, and qi is the heat flux.

The coefficients µ, ν and κ are the shear viscosity, the bulk viscosity and the heat conductivity,

respectively. Here we observe that the equation (2.2) can be rewritten in the form:

∂

∂xk

(
viδjk + vjδik −

2

3
vkδij

)
=
S⟨ij⟩

µ
,

∂vk
∂xk

= −Π

ν
,

∂T

∂xk
= −qk

κ
.

(2.4)

The system composed of equations (2.1) and (2.4) can be seen as a system of 14 equations for

the 14 unknown variables: ρ, vi , ε, qi, S⟨ij⟩ and Π. Its mathematical structure is in the form

of balance type, but, in eq. (2.4), we have no term with time derivative. Therefore the system

is not hyperbolic but parabolic.

It is, therefore, natural to assume that the mathematical structure of balance laws in ET

of dense gases must be of the following type:

∂F

∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Fij

∂t
+
∂Fijk

∂xk
= Pij ,

∂Gii

∂t
+
∂Giik

∂xk
= 0,

∂Gppi

∂t
+
∂Gppik

∂xk
= Qppi,

(2.5)

where F is the mass density, Fi is the momentum density, Gii is the energy density, Fij is

the momentum flux, and Gppi is the energy flux. And Fijk and Gppik are the fluxes of Fij

and Gppi, respectively, and Pij and Qppi are the productions with respect to Fij and Gppi,

respectively. To justify this structure, we observe that equations (2.1) correspond to (2.5)1,2,3

with the condition that Fii is different from Gii because, as mentioned before, no relation

exists between the pressure and the internal energy in dense gases. The equation (2.5)4 can

be splitted into the deviatoric and trace parts that have the mathematical structure of (2.4)1,2

when the terms with time derivatives are neglected. While equation (2.5)5 in the steady case

have the mathematical structure of the type of the Fourier’s law (2.4)3.
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We observe also that the structure of (2.5) is much more restrictive than that adopted in

the previous works, and moreover the system does not have the fourth-rank tensor in the set

of densities.

To sum up, the hierarchy structure of the system (2.5) is composed of two parallel series:

The one is the series starting from the mass and momentum balance equations (F -series)

and the other is from the energy balance equation (G-series). In each series, the flux in

one equation becomes the density in the next equation. Such a structure is also completely

consistent with the structure of the set of balance equations derived from the Bogoliubov-

Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of many-body distribution functions [22] in

statistical mechanics, which is valid not only for rarefied gases but also for dense gases and

liquids.

2.2.2 Statement of the model of dense gases

We can now definitely formulate the thermodynamic model for ET of dense gases as follows:

The basic system of field equations is of balance type given by (2.5) with 14 independent field

variables,

mass density: F (= ρ),

momentum density: Fi (= ρvi),

energy density: Gii,

momentum flux: Fij ,

energy flux: Gppi.

(2.6)

2.2.3 Galilean invariance

We decompose Fi1···ink and Gi1···ink into the convective and non-convective parts:

Fi1···ink = Fi1···invk +Hi1···ink,

Gi1···ink = Gi1···invk + Ji1···ink.

In particular, the quantities Fijk and Gppik are decomposed as follows: Fijk = Fijvk + Hijk

and Gppik = Gppivk + Jppik.

As the balance equations (2.5) should be invariant under the Galilean transformation, from

the general theory [49], the dependence of the quantities on the velocity can be expressed as
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2.2. MODEL OF DENSE GASES

follows:

Gii = ρvivi +mii,

Fij = ρvivj +Mij ,

Gppi = ρvpvpvi +mppvi + 2Mpivp +mppi,

Hijk = 2v(iMj)k +Mijk,

Jppik = 3v(pvpMi)k + 2vpMpik + vimppk +mppik,

Qppi = Qi + 2vpPpi,

(2.7)

where mii, Mij , mppi, Mijk and mppik do not depend on the velocity, and the productions Pij

and Qi are also independent of the velocity.

With Eq. (2.7), the balance equations (2.5) can be rewritten as

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂Mij

∂xj
= 0,

ṁii +mii
∂vk
∂xk

+
∂miik

∂xk
+ 2

∂vi
∂xk

Mik = 0,

Ṁii +Mii
∂vk
∂xk

+
∂Miik

∂xk
+ 2

∂vi
∂xk

Mik = Pii,

Ṁ⟨ij⟩ +M⟨ij⟩
∂vk
∂xk

+
∂M⟨ij⟩k

∂xk
+ 2

∂v⟨i

∂xk
Mj⟩k = P⟨ij⟩,

ṁppi +mppi
∂vk
∂xk

+
∂mppik

∂xk
+ 2

∂vp
∂xk

Mpik +
∂vi
∂xk

mppk + 2Mpiv̇p +mppv̇i = Qi.

(2.8)

As the first three equations represent the conservation laws of mass, momentum and energy,

the quantities Mij , mii and mppi have the following conventional meanings:

stress tensor: tij = −Mij (= − (p+Π) δij + S⟨ij⟩), (2.9)

specific internal energy: ε =
1

2ρ
mii, (2.10)

heat flux: qi =
1

2
mppi, (2.11)

where the pressure p depends only on ρ and mii. We will see in Section 3.3 that the decompo-

sition in Eq. (2.9) is consistent in the present theory. Mij is symmetric because we deal with

non-polar materials. Therefore Pij is symmetric and Mijk is symmetric only with respect to

the first two indices.

We may adopt {ρ, vi, mii, Π, M⟨ij⟩, mppi} as a set of independent variables instead of

{F, Fi, Gii, Fii, F⟨ij⟩, Gppi}. The balance equation ofMii (Eq.(4.4)4) is then rewritten as follows:

Π̇ +

(
5

3
p− ρ

∂p

∂ρ
− (mrr + 2p)

∂p

∂mqq

)
∂vk
∂xk

+

(
5

3
− 2

∂p

∂mqq

)
Π
∂vk
∂xk

+ 2

(
1

3
− ∂p

∂mqq

)
∂vr
∂xk

M⟨rk⟩ +
1

3

∂Mrrk

∂xk
− ∂p

∂mqq

∂mrrk

∂xk
=
Prr

3
. (2.12)
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2.3 Constitutive equations

We need the constitutive equations in order to set up the closed system of field equations. We

assume that the constitutive quantities at one point and time depend on the independent fields

at that point and time, i.e., local and instantaneous, therefore we have

Ψ = Ψ̂(ρ, mii, Π, M⟨ij⟩, mppi), (2.13)

where Ψ is one of the constitutive quantities {Mijk, mppik, Pij , Qi}.

We apply to the present case the constitutive theory established in ET [8] where we impose

the following universal physical principles on the constitutive equations:

• Material frame indifference principle:

The proper constitutive equations are independent of an observer. The material frame

indifference principle together with the requirement of the Galilean invariance of balance

laws constitute the so-called objectivity principle (the principle of relativity).

• Entropy principle:

All solutions of the system of field equations must satisfy the entropy balance with a

non-negative entropy production:

∂h

∂t
+
∂(hvk + φk)

∂xk
= Σ ≧ 0 ⇔ ḣ+ h

∂vk
∂xk

+
∂φk

∂xk
= Σ ≧ 0, (2.14)

where h is the entropy density, hk is the entropy flux (hk = hvk + φk: φk is the non-

convective entropy flux), and Σ is the entropy production. Here h and φk are constitutive

quantities:

h = h(ρ, mii, Π, M⟨ij⟩, mppi),

φk = φk(ρ, mii, Π, M⟨ij⟩, mppi).
(2.15)

• Causality:

This requires the concavity of the entropy density and guarantees the hyperbolicity of

the system of field equations. This also ensures the well-posedness (local in time) of a

Cauchy problem and the finiteness of the propagation speeds of disturbances.
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2.3.1 Relations derived from the entropy principle

The entropy principle can be expressed that the following inequality with Lagrange multipliers

λ, λi, µll, λij and µlli must be satisfied for all fields, ρ through mppi [58]:

ḣ+ h
∂vk
∂xk

+
∂φk

∂xk
− λ

[
ρ̇+ ρ

∂vk
∂xk

]
− λi

[
ρv̇i +

∂Mij

∂xj

]
− µll

[
ṁii +mii

∂vk
∂xk

+
∂miik

∂xk
+ 2

∂vi
∂xk

Mik

]
− λii

[
Π̇ +

(
5

3
p− ρ

∂p

∂ρ
− (mrr + 2p)

∂p

∂mqq

)
∂vk
∂xk

+

(
5

3
− 2

∂p

∂mqq

)
Π
∂vk
∂xk

+ 2

(
1

3
− ∂p

∂mqq

)
∂vr
∂xk

M⟨rk⟩ +
1

3

∂Mrrk

∂xk
− ∂p

∂mqq

∂mrrk

∂xk
− Prr

3

]
− λ⟨ij⟩

[
Ṁ⟨ij⟩ +M⟨ij⟩

∂vk
∂xk

+
∂M⟨ij⟩k

∂xk
+ 2

∂v⟨i

∂xk
Mj⟩k − P⟨ij⟩

]
− µlli

[
ṁppi +mppi

∂vk
∂xk

+
∂mppik

∂xk
+ 2

∂vp
∂xk

Mpik +
∂vi
∂xk

mppk + 2Mipv̇p +mppv̇i −Qi

]
≧ 0.

Using the expressions (4.2.2) and (2.15) and taking into account the fact that the following

derivatives,

ρ̇, v̇i, ṁll, Π̇, Ṁ⟨ij⟩, ṁppi,
∂ρ

∂xk
,
∂vi
∂xk

,
∂mll

∂xk
,
∂Π

∂xk
,
∂M⟨ij⟩

∂xk
,
∂mppi

∂xk
, (2.16)

can have any values, we obtain the relations:

dh = λdρ+ µlldmii + λiidΠ + λ⟨ij⟩dM⟨ij⟩ + µllidmppi, (2.17)

dφk = λkdp+ λkdΠ + λidM⟨ik⟩ +

(
µll − λll

∂p

∂mqq

)
dmiik

+
λll
3
dMiik + λ⟨ij⟩dM⟨ij⟩k + µllidmppik, (2.18)

and

λi = −1

ρ
(µllimkk + 2µlliMij) , (2.19)[

h− λρ− µll(mss + 2p)− 2µllΠ− λll

(
5

3
p− ρ

∂p

∂ρ
− (mss + 2p)

∂p

∂mrr

)
− λllΠ

(
5

3
− 2

∂p

∂mrr

)
− λ⟨rs⟩M⟨rs⟩ − µllimssr

]
δik

− 2µllM⟨ik⟩ + 2
∂p

∂mrr
M⟨ik⟩λll − 2µlliM⟨ij⟩k −

2

3
µlliMppk

− µllimppk − 2λ⟨ir⟩M⟨rk⟩ −
2

3
λllM⟨ik⟩ − 2λ⟨ik⟩(p+Π) = 0. (2.20)

The residual inequality is given by

Σ =
1

3
λiiPjj + λ⟨ij⟩P⟨ij⟩ + µlliQi ≧ 0. (2.21)
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2.3.2 Equilibrium

Equilibrium is defined as a process in which the productions Pii, P⟨ij⟩ and Qi vanish. The

entropy production Σ becomes minimum and vanishes in equilibrium, and then we obtain the

necessary conditions:

λEii = 0, λE⟨ij⟩ = 0, µElli = 0, (2.22)

where index E denotes equilibrium. Therefore the Lagrange multipliers λii, λ⟨ij⟩ and µlli play a

role of characterizing nonequilibrium phenomena, and will be called nonequilibrium variables.

From Eq. (2.17) and mii = 2ρε, we have the relation:

dhE = λEdρ+ 2µEll d(ρε). (2.23)

On the other hand, taking into account that hE = ρs where s is the entropy density and that

Tds = dε− (p/ρ2)dρ (the Gibbs equation), we have

dhE = − g

T
dρ+

1

T
d(ρε), (2.24)

where g (= ε+ p/ρ−Ts) is the chemical potential and T the abosolute temperature. Now, by

comparison, we conclude that

λE = − g

T
, µEll =

1

2T
. (2.25)

We observe that the trace part of Eq. (2.20) in equilibrium becomes an identity.

2.3.3 Derivation of the constitutive equations

In order to transform the independent variables from {ρ , mii, Π , M⟨ij⟩ , mppi} to {λ , µll, λii

, λ⟨ij⟩, µlli}, we introduce the new potentials h′ and φ′
k as follows:

h′ = λρ+ µllmii + λiiΠ+ λ⟨ij⟩M⟨ij⟩ + µllimppi − h, (2.26)

φ′
k = µllmiik +

1

3
λllMiik + λ⟨ij⟩M⟨ij⟩k + µllimppik − φk. (2.27)

Then we have

dh′ =ρdλ+miidµll +Πdλll +M⟨ij⟩dλ⟨ij⟩ +mppidµlli, (2.28)

dφ′
k =− λk (dp+ dΠ)− λidM⟨ik⟩ +

∂p

∂mjj
λlldmppk

+mppkdµll +
1

3
Miikdλll +M⟨ij⟩kdλ⟨ij⟩ +mppikdµlli. (2.29)
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By using the representation theorem that ensures the principle of objectivity, the poten-

tials h′ and φ′
k are expanded around an equilibrium state with respect to the nonequilibrium

variables {λkk, λ⟨ij⟩, µlli} as follows:

h′ = h′E + h1λkk + h2λ
2
kk + h3λ⟨ij⟩λ⟨ij⟩ + h4µppiµqqi + h5λ

3
kk + h6λkkλ⟨ij⟩λ⟨ij⟩

+ h7λ⟨ij⟩λ⟨in⟩λ⟨nj⟩ + h8λkkµppiµqqi + h9µppiµqqiλ⟨ij⟩ +O(4), (2.30)

φ′
k = (β1 + β2λll)µppi + β3λ⟨ki⟩µlli +O(3), (2.31)

where the coefficients h1, · · · , h9 and β1, β2, β3 are the functions of λ and µll. From Eqs.

(2.25)-(2.26), we have the relation:

h′E = λEρ+ µEllmii − hE = −p
E

T
. (2.32)

From Eqs. (2.30) and (2.31), we obtain

dh′ = dh′E + λkkdh1 + λ2kkdh2 + λ⟨ij⟩λ⟨ij⟩dh3 + µppiµqqidh4 + λ3kkdh5

+ λkkλ⟨ij⟩λ⟨ij⟩dh6 + λ⟨ij⟩λ⟨in⟩λ⟨nj⟩dh7 + λkkµppiµqqidh8 + µppiµqqiλ⟨ij⟩dh9

+
(
h1 + 2h2λkk + 3h5λ

2
kk + h6λ⟨ij⟩λ⟨ij⟩ + h8µppiµqqi

)
dλll

+
(
2h3λ⟨ij⟩ + 3h7λ⟨n⟨i⟩λ⟨j⟩n⟩ + 2h6λkkλ⟨ij⟩ + h9µppi⟨iµj⟩qq

)
dλ⟨ij⟩

+
(
2h4µlli + 2h8λkkµlli + 2h9λ⟨ij⟩µlli

)
dµppi +O(4), (2.33)

dφ′
k = µllidβ1 + λllµppidβ2 + λ⟨ki⟩µllidβ3 + (β1 + β2λll)dµppi

+ β3λ⟨ki⟩dµppi + β2µppidλll + β3µllidλ⟨ki⟩ +O(3). (2.34)

Comparing two expressions of ∂h′

∂λll
derived from Eqs. (2.28) and (2.33) with each other, we

obtain

Π = h1 + 2h2λkk + 3h5λ
2
kk + h6λ⟨ij⟩λ⟨ij⟩ + h8µppiµqqi +O(3). (2.35)

As Π vanishes in equilibrium, h1 ≡ 0. In a similar way, we compare two expressions of ∂h′

∂λ ,
∂h′

∂µll
, ∂h′

∂λ⟨ij⟩
and ∂h′

∂µlli
derived from Eqs. (2.28) and (2.33) with each other, then we obtain

ρ = ρE +
∂h2
∂λ

λ2kk +
∂h3
∂λ

λ⟨ij⟩λ⟨ij⟩ +
∂h4
∂λ

µppiµqqi +
∂h5
∂λ

λ3kk +
∂h6
∂λ

λkkλ⟨ij⟩λ⟨ij⟩

+
∂h7
∂λ

λ⟨ij⟩λ⟨n⟨i⟩λ⟨j⟩n⟩ +
∂h8
∂λ

λkkµppiµqqi +
∂h9
∂λ

µppiµqqiλ⟨ij⟩ +O(4),

mii = mii
E +

∂h2
∂µll

λ2kk +
∂h3
∂µll

λ⟨ij⟩λ⟨ij⟩ +
∂h4
∂µll

µppiµqqi +
∂h5
∂µll

λ3kk +
∂h6
∂µll

λkkλ⟨ij⟩λ⟨ij⟩

+
∂h7
∂µll

λ⟨ij⟩λ⟨n⟨i⟩λ⟨j⟩n⟩ +
∂h8
∂µll

λkkµppiµqqi +
∂h9
∂µll

µppiµqqjλ⟨ij⟩ +O(4),

M⟨ij⟩ = 2h3λ⟨ij⟩ + 3h7λ⟨n⟨i⟩λ⟨j⟩n⟩ + 2h6λkkλ⟨ij⟩ + h9µpp⟨iµj⟩qq +O(3),

mppi = 2h4µlli + 2h8λkkµlli + 2h9λ⟨ij⟩µlli +O(3),

(2.36)
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where ρE = ρE(λ, µll) and mii
E = mii

E(λ, µll) = 2ρE(λ, µll)ε
E(λ, µll). From Eqs. (2.36)1,2,

we can represent the pressure p as follows:

p(ρ, mii) = pE(ρE , mii
E) +

((
∂pE

∂ρE

)
mii

(
∂h2
∂λ

)
µll

+

(
∂pE

∂mii
E

)
ρ

(
∂h2
∂µll

)
λ

)
λ2kk

+

((
∂pE

∂ρE

)
mii

(
∂h3
∂λ

)
µll

+

(
∂pE

∂mii
E

)
ρ

(
∂h3
∂µll

)
λ

)
λ⟨ij⟩λ⟨ij⟩

+

((
∂pE

∂ρE

)
mii

(
∂h4
∂λ

)
µll

+

(
∂pE

∂mii
E

)
ρ

(
∂h4
∂µll

)
λ

)
µppiµqqi +O(3). (2.37)

From equations (2.36)1,2 and (2.37), we notice an important point that we have a nonequilib-

rium density ρ and an equilibrium density ρE , and that the difference ρ− ρE is in the second

order of magnitude with respect to the nonequilibrium variables. This justifies the equality,

ρ = ρE , as far as the linear theory with respect to the nonequilibrium variables is concerned.

The same is true for the quantities mii and p. This point will play a crucial role in the next

subsection.

Next we compare two expressions of
∂φ′

k
∂λ ,

∂φ′
k

∂µll
,
∂φ′

k
∂λll

,
∂φ′

k
∂λ⟨ij⟩

and
∂φ′

k
∂µlli

derived from Eqs. (2.29)

and (2.34) with each other, then we obtain

0 =

[
∂β1
∂λ

− 2
∂p

∂λ

(
ε+

p

ρ

)]
µppi

+

[
∂β2
∂λ

− 4h2
ρ

∂p

∂λ
− 2

∂p

∂mii

∂h4
∂λ

− 2
∂h4
∂λ

(
ε+

p

ρ

)]
λllµppi

+

[
∂β3
∂λ

− 4
h3
ρ

∂p

∂λ
− 2

∂h3
∂λ

(
ε+

p

ρ

)]
µppiλ⟨ik⟩ +O(3),

0 =

[
∂β1
∂µll

− 2h4 − 2
∂p

∂µll

(
ε+

p

ρ

)]
µppi

+

[
∂β2
∂µll

− 2h8 −
4h2
ρ

∂p

∂µll
− 2

∂p

∂mii

∂h4
∂µll

− 2
∂h4
∂µll

(
ε+

p

ρ

)]
λllµppi

+

[
∂β3
∂µll

− 2h9 − 4
h3
ρ

∂p

∂µll
− 2

∂h3
∂µll

(
ε+

p

ρ

)]
µppiλ⟨ik⟩ +O(3),

Miik = 3

[
β2 − 4h2

(
ε+

p

ρ

)]
µppi +O(2),

M⟨ij⟩k =

[
β3 − 4h3

(
ε+

p

ρ

)]
µlli⟨iδj⟩k +O(2),

mppik =

[
β1 +

{
β2 − 2h4

(
∂p

∂mpp

)
ρ

}
λll

]
δik + β3λ⟨ik⟩ +O(2).

(2.38)

We now derive the relations among the coefficients h2, · · · , h9 and β1, β2, β3. By substitut-

52



2.3. CONSTITUTIVE EQUATIONS

ing Eqs. (2.36), (2.38)3,4 and (2.30) into Eq.(2.20), we have

h2 =
1

4µll

(
−5

3
pE +

(
∂pE

∂ρE

)
mE

ii

ρE +

(
∂pE

∂mE
ii

)
ρE
mE

rr + 2

(
∂pE

∂mE
ii

)
ρE
pE

)
,

h3 = − pE

2µll
,

h5 =

(
2

(
∂pE

∂mE
ii

)
ρE

− 7

6

)
h2
3µll

− 1

3

(
∂pE

∂ρE

)
mE

ii

(
∂h2
∂λ

)
µll

− 1

3

(
∂pE

∂mE
ii

)
ρE

(
∂h2
∂µll

)
λ

,

h6 =
1

4µ2ll

(
7

3
pE −

(
∂pE

∂ρE

)
mE

ii

ρE −
(
∂pE

∂mE
ii

)
ρE
mE

rr − 4

(
∂pE

∂mE
ii

)
ρE
pE

)
,

h7 =
pE

3µ2ll
,

h8 = − 1

3µll

[
5

3
β3 + β2 −

1

ρE

(
10

3
h3 + 2h2

)
(mE

ii + 2pE)

]
− 5

6µll
h4 −

(
∂pE

∂ρE

)
mE

ii

(
∂h4
∂λ

)
µll

− µll

(
∂pE

∂mE
ii

)
ρE

(
∂h4
∂µll

)
λ

,

h9 = − 1

µll

[
β3
6

+ β2 −
1

ρE

(
h3
3

+ 2h2

)
(mE

ii + 2pE)

]
− h4
µll
.

(2.39)

From Eqs. (2.38)1,2, we have the relations:

∂β1
∂λ

= 2
∂pE

∂λ

(
εE +

pE

ρE

)
,

∂β2
∂λ

=
4h2
ρE

∂pE

∂λ
+ 2

(
∂pE

∂mE
ii

)
ρE

∂h4
∂λ

+ 2
∂h4
∂λ

(
εE +

pE

ρE

)
,

∂β3
∂λ

= 4
h3
ρE

∂pE

∂λ
+ 2

∂h3
∂λ

(
εE +

pE

ρE

)
,

∂β1
∂µll

= 2h4 + 2
∂pE

∂µll

(
εE +

pE

ρE

)
,

∂β2
∂µll

= 2h8 +
4h2
ρE

∂pE

∂µll
+ 2

(
∂pE

∂mE
ii

)
ρE

∂h4
∂µll

+ 2
∂h4
∂µll

(
εE +

pE

ρE

)
,

∂β3
∂µll

= 2h9 + 4
h3
ρE

∂pE

∂µll
+ 2

∂h3
∂µll

(
εE +

pE

ρE

)

(2.40)

Note that the coefficient h4 appears only in (2.39)6,7 and in (2.40)2,4,5.

2.3.4 Definitions of the temperature and the chemical potential in nonequi-

librium

As explained before, from Eqs. (2.36)1,2 and (2.37), we notice the following two points: (i)

The density ρ and the internal energy mii at a nonequilibrium state with (λ, µll, λkk, λ⟨ij⟩, µlli)

are equal to the equilibrium quantities ρE and mii
E at (λ, µll) to within second-order terms.
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This means that, as far as the linear constitutive equations are concerned, the values of (λ, µll)

are exactly those of the associated local equilibrium state [59] with the nonequilibrium state.

Therefore we can use the relations (2.25), and can introduce the temperature T and the

chemical potential g into the nonequilibrium state through the following relations:

λ = − g

T
, µll =

1

2T
. (2.41)

Hereafter we will use T and g with this understanding. (ii) The pressure p is also equal to the

local equilibrium quantity pE to within second-order terms. Thus we assure the adequateness

of the decomposition prescribed in Eq. (2.9).

For convenience, we take {ρ, T} as independent variables instead of {λ, µll}. Then the

relations (2.39) are rewritten in terms of {ρ, T} as follows:

h2 = −5

6
Tp+

ρT

2

(
∂p

∂ρ

)
T

+
T 2

2ρ

(
∂p
∂T

)2
ρ(

∂ε
∂T

)
ρ

,

h3 = −Tp,

h5 =
2Th2
3

−7

6
+

(
∂p
∂T

)
ρ

ρ
(
∂ε
∂T

)
ρ

+
ρT

3

(
∂h2
∂ρ

)
T

+
T 2

3

(
∂h2
∂T

)
ρ

(
∂p
∂T

)
ρ

ρ
(
∂ε
∂T

)
ρ

,

h6 =
7

3
pT 2 − ρT 2

(
∂p

∂ρ

)
T

− T 2

(
p+ T

(
∂p

∂T

)
ρ

) (
∂p
∂T

)
ρ

ρ
(
∂ε
∂T

)
ρ

,

h7 =
4

3
T 2p,

h8 = −2

3
Tβ2 −

10

9
Tβ3 −

5

3
Th4 + ρT

(
∂h4
∂ρ

)
T

+ T 2

(
∂h4
∂T

)
ρ

(
∂p
∂T

)
ρ

ρ
(
∂ε
∂T

)
ρ

+
8T

3

(
ε+

p

ρ

)(
h2 −

5

3
Tp

)
,

h9 = −2Tβ2 −
T

3
β3 − 2Th4 + 4T

(
ε+

p

ρ

)(
2h2 −

Tp

3

)
.

(2.42)
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And the relations (2.40) are rewritten as follows:

∂β1
∂ρ

= 2

(
ε+

p

ρ

)(
∂p

∂ρ

)
T

,

∂β2
∂ρ

= 4
h2
ρ

(
∂p

∂ρ

)
T

+ 4

(
ε+

p

ρ

)(
∂h2
∂ρ

)
T

+

(
∂h4
∂ρ

)
T

(
∂p
∂T

)
ρ

ρ
(
∂ε
∂T

)
ρ

,

∂β3
∂ρ

= −4T

(
ε+ 2

p

ρ

)(
∂p

∂ρ

)
T

,

∂β1
∂T

= 2

(
ε+

p

ρ

)(
∂p

∂T

)
ρ

− h4
T 2
,

∂β2
∂T

=
2

3T
β2 +

10

9T
β3 +

5

3T
h4 −

ρ

T

(
∂h4
∂ρ

)
T

− h2

[
8

3T

(
ε+

p

ρ

)
− 4

ρ

(
∂p

∂T

)
ρ

]

+ 4

(
ε+

p

ρ

)[
10

9
p+

(
∂h2
∂T

)
ρ

]
,

∂β3
∂T

=
2

T
β2 +

1

3T
β3 +

2

T
h4 − 8

(
ε+

p

ρ

)(
p

3
+
h2
T

)
− 4T

(
ε+ 2

p

ρ

)(
∂p

∂T

)
ρ

.

(2.43)

We will show in Sections 7 and 8 that, by using the relations (2.42), (2.43) and the equations

of state (ε = ε̂(ρ, T ), p = p̂(ρ, T )), we can derive uniquely the explicit expressions of these

coefficients except for the integration constants.

2.3.5 Linear constitutive equations

From Eqs. (2.36) and (2.38)3,4,5, the linear constitutive equations are summarized as follows:

Π = 2h2λkk,

M⟨ij⟩ = 2h3λ⟨ij⟩,

mppi = 2h4µlli,

Miik = 3

[
β2 − 4h2

(
ε+

p

ρ

)]
µllk,

M⟨ij⟩k =

[
β3 − 4h3

(
ε+

p

ρ

)]
µlli⟨iδj⟩k,

mppik =

[
β1 +

{
β2 − h4

( ∂p
∂T )ρ

ρ( ∂ε
∂T )ρ

}
λll

]
δik + β3λ⟨ik⟩.

(2.44)

It is usually more convenient to take {ρ, T , S⟨ij⟩, Π, qi} as independent variables instead

of {ρ, T , λ⟨ij⟩, λll, µlli}. From Eqs. (2.44)1,2,3 , (2.9) and (2.10), the Lagrange multipliers are

expressed by

λkk =
1

2h2
Π, λ⟨ij⟩ = − 1

2h3
S⟨ij⟩, µlli =

1

h4
qi. (2.45)
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Then we may express the linear constitutive equations as follows:

Miik = 3Lqk,

M⟨ij⟩k = Kq⟨iδj⟩k,

mppik =

[
β1 +

{
h4
2h2

(
L− ( ∂p

∂T
)ρ

ρ( ∂ε
∂T
)ρ

)
+ 2

(
ε+

p

ρ

)}
Π

]
δik −

(
h4
2h3

K + 2

(
ε+

p

ρ

))
S⟨ik⟩,

(2.46)

where the coefficients h2, h3, h4 and β1, β2, β3 are the functions of ρ and T . And instead of β2

and β3, we introduce the coefficients L and K that are the functions of ρ and T defined by

L =
1

h4

[
β2 − 4h2

(
ε+

p

ρ

)]
, K =

1

h4

[
β3 − 4h3

(
ε+

p

ρ

)]
. (2.47)

2.3.6 Entropy density and entropy flux

With Eqs. (2.26), (2.27), (2.30), (2.31) and the constitutive equations (4.5), the entropy density

and the entropy flux are expressed as

h = hE +
1

4h2
Π2 +

1

4h3
S⟨ij⟩S⟨ij⟩ +

1

h4
qiqi, (2.48)

φk =
1

T
qk +

1

2h2

(
L− ( ∂p

∂T
)ρ

ρ( ∂ε
∂T
)ρ

)
Πqk −

K

2h3
qiS⟨ik⟩. (2.49)

2.3.7 Productions

The productions are also expanded with respect to the nonequilibrium variables {λkk, λ⟨ij⟩, µlli}
around an equilibrium state. In the linear approximation, we have

P⟨ij⟩ = σλ⟨ij⟩, Pii = 3ζλkk, Qi = τµlli. (2.50)

Then we obtain

Σ = σλ⟨ij⟩λ⟨ij⟩ + ζλ2kk + τµlliµlli ≧ 0. (2.51)

There are three conditions for the coefficients:

σ > 0, ζ > 0, τ > 0. (2.52)

The constitutive equations (2.50) may also be expressed as

P⟨ij⟩ = − σ

2h3
S⟨ij⟩, Pii =

3ζ

2h2
Π, Qi =

τ

h4
qi. (2.53)
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2.4 Concavity of the entropy density and causality

The system (2.5) must be symmetric hyperbolic so as to ensure the causality. Near equilibrium

this requirement corresponds to the condition of the concavity of the entropy density [8, 60]. 1

As the second derivative of the entropy density h near equilibrium is given by

d2h = d2hE +
1

4h2
(dΠ)2 +

1

4h3
dS⟨ij⟩dS⟨ij⟩ +

1

h4
dqidqi, (2.54)

the condition is satisfied when hE is a concave function with respect to {ρ, mii} and the

following inequalities are fulfilled:

h2 < 0, h3 < 0, h4 < 0. (2.55)

Using the well-known results of thermodynamic stability in equilibrium thermodynamics and

the relations (2.42)2,3 and (2.43)4, the concavity condition is expressed as follows:

p > 0,

(
∂ε

∂T

)
ρ

> 0,

(
∂p

∂ρ

)
T

> 0,

− 5

6
Tp+

ρT

2

(
∂p

∂ρ

)
T

+

T 2

2ρ

(
∂p
∂T

)2
ρ(

∂ε
∂T

)
ρ

< 0,

2T 2

(
ε+

p

ρ

)(
∂p

∂T

)
ρ

− T 2

(
∂β1
∂T

)
ρ

< 0.

(2.56)

1The entropy density used in the mathematical community has usually opposite sign to the present entropy

density. As a consequence, they speak about convexity instead of concavity.
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2.5 Field equations

The closed system of field equations is obtained by substituting the equations (4.5) into the

system (4.4):

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂p

∂xi
+
∂Π

∂xi
−
∂S⟨ij⟩

∂xj
= 0,

ρ

(
∂ε

∂T

)
ρ

Ṫ +

[
p+Π− ρ2

(
∂ε

∂ρ

)
T

]
∂vk
∂xk

− ∂vi
∂xk

S⟨ik⟩ +
∂qk
∂xk

= 0,

Ṡ⟨ij⟩ − 2p
∂v⟨i

∂xj⟩
+ S⟨ij⟩

∂vk
∂xk

− 2Π
∂v⟨i

∂xj⟩
+ 2

∂v⟨i

∂xk
S⟨j⟩k⟩ (2.57)

+ CS1
∂ρ

∂xk
q⟨iδj⟩k + CS2

∂T

∂xk
q⟨iδj⟩k + CS3

∂q⟨i

∂xj⟩
= − 1

τS
S⟨ij⟩,

Π̇ + (CΠ1 + CΠ2Π)
∂vk
∂xk

+ CΠ3

∂v⟨i

∂xk⟩
S⟨ik⟩ + CΠ4qk

∂ρ

∂xk
+ CΠ5qk

∂T

∂xk
+ CΠ6

∂qk
∂xk

= − 1

τΠ
Π,

q̇i + Cq1qi
∂vk
∂xk

+ Cq2qk
∂vk
∂xi

+ Cq3qk
∂vi
∂xk

+ Cq4
∂T

∂xi
+ Cq5

∂Π

∂xi
+ Cq6

∂S⟨ik⟩

∂xk

+Π

(
Cq7

∂ρ

∂xi
+ Cq8

∂T

∂xi
− 1

ρ

∂Π

∂xi
+

1

ρ

∂S⟨ik⟩

∂xk

)
− S⟨ik⟩

(
Cq9

∂ρ

∂xk
+ Cq10

∂T

∂xk
− 1

ρ

∂Π

∂xk
+

1

ρ

∂S⟨jk⟩

∂xj

)
= − 1

τq
qi, (2.58)

where the coefficients CSa(a = 1, 2, 3), CΠb(b = 1, · · · , 6) and Cqc(c = 1, · · · , 10), and the

relaxation times τS , τq, τΠ are the functions of ρ and T . With h2, h3, h4, L and K, these are

expressed as follows:

CS1 = −
(
∂K

∂ρ

)
T

, CS2 = −
(
∂K

∂T

)
ρ

, CS3 = −K,

CΠ1 = −2h2
T
, CΠ2 =

5

3
− 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

, CΠ3 = −2

3
+

1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

,

CΠ4 =
5

6

(
∂K

∂ρ

)
T

, CΠ5 =

(
∂L

∂T

)
ρ

, CΠ6 = L− 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

,

Cq1 = 1 +
K

2
, Cq2 =

K

2
, Cq3 = 1 + L− K

3
, Cq4 = − h4

2T 2
,

Cq5 =
h4
4h2

(
L− 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

)
, Cq6 = − h4

4h3
K,

Cq7 =

(
∂ε

∂ρ

)
T

− p

ρ2
+

(
∂Cq5

∂ρ

)
T

, Cq8 =

(
∂ε

∂T

)
ρ

+

(
∂Cq5

∂T

)
ρ

,

Cq9 =

(
∂ε

∂ρ

)
T

− p

ρ2
−
(
∂Cq6

∂ρ

)
T

, Cq10 =

(
∂ε

∂T

)
ρ

−
(
∂Cq6

∂T

)
ρ

,

(2.59)
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and

τS = −2h3
σ
, τΠ = −2h2

ζ
, τq = −2h4

τ
. (2.60)

2.6 Relationship between ET and Navier-Stokes-Fourier the-

ory

We carry out the Maxwellian iteration [8, 46] in the system (2.57): The first iterates Π(1), S
(1)
⟨ij⟩

and q
(1)
i are obtained by the substitution of the 0th iterates S

(0)
⟨ij⟩ = 0, Π(0) = 0 and q

(0)
i = 0

into the left hand side of (2.57)4,5,6. Then we obtain

S
(1)
⟨ij⟩ = 2pτS

∂v⟨i

∂xj⟩
, Π(1) =

2h2
T
τΠ
∂vk
∂xk

, q
(1)
i =

h4
2T 2

τq
∂T

∂xi
. (2.61)

On the other hand, we have the laws of Navier-Stokes and Fourier expressed by (2.2). The

comparison reveals that

µ = pτS , ν = −2h2
T
τΠ, κ = − h4

2T 2
τq. (2.62)

We can therefore estimate the values of the relaxation times τS , τq and τΠ from the experimental

data of the coefficients µ, ν and κ.

The second iterates are obtained by substituting the first iterates into the left hand side of

(2.57)4,5,6, and higher iterates are obtained in a similar way.

In conclusion, the system can be certainly closed by the universal principles except for

some nonessential constants, provided that we know the thermal and caloric equations of state

and the viscosity and heat conductivity coefficients. This surprising result, which could not be

achieved in previous works on this subject, shows clearly the power of our hierarchy assumption.

2.7 Characteristic Features of the Theory

As shown above, the thermal and caloric equations of state play a crucial role in the ET theory

of dense gases. In general, the equations of state can be expressed as

p = pideal(ρ, T ) + pϕ(ρ, T ), ε = εideal(T ) + εϕ(ρ, T ), (2.63)

where pideal and εideal are, respectively, the pressure and the specific internal energy in a

rarefied gas limit. In a dense gas, as the average distance between the constituent molecules

is finite, the interaction between the molecules also contributes to both the pressure and the

specific internal energy, which are denoted by pϕ and εϕ. Furthermore, εideal can be divided

into two parts:

εideal = εtrans(T ) + εint(T ),
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where εtrans and εint are the specific internal energies due to, respectively, the molecular

translational modes and the internal modes of a molecule such as rotational and vibrational

modes. Between p and ε, there is a relation which comes from the integrability condition of

Gibbs equation (1.149); (
∂ε

∂ρ

)
T

=
1

ρ2

(
p− T

(
∂p

∂T

)
ρ

)
.

Between pideal and εideal, there is a following relation:

3pideal = 2ρεtrans. (2.64)

Owing to the general character of the equations of state mentioned above, we have the

following four disjoint CASEs 1-4:

CASE 1 Rarefied monatomic gases (pϕ = 0, εint = 0, εϕ = 0),

CASE 2 Rarefied polyatomic gases (pϕ = 0, εint ̸= 0, εϕ = 0),

CASE 3 Dense monatomic gases (pϕ ̸= 0, εint = 0 εϕ ̸= 0),

CASE 4 Dense polyatomic gases (pϕ ̸= 0, εint ̸= 0 εϕ ̸= 0).

Any gas belongs to one of the cases. See also Fig.2.1.

An advantage of this classification is that the effect of the internal modes of a molecule on

nonequilibrium phenomena in a gas can be analyzed clearly by comparing the results of CASE

1 and CASE 2 (or of CASE 3 and CASE 4). In a similar way, the effect of the inter-molecular

potential, for example, can be analyzed by comparing the results of CASE 1 and CASE 3 (or

of CASE 2 and CASE 4). CASE 1 has already been fully developed [8], while CASEs 2-4 are

those to be explored by the present ET theory of dense gases.

In this section, we discuss the characteristic features of the present theory in CASEs 1-4

separately.

2.7.1 CASE 1: Rarefied monatomic gases

The equations of state are given by

p = pideal(ρ, T ), ε = εtrans(T ), (2.65)

and there is a relationship between p and ε:

3p = 2ρε.

For classical gases, in particular, we have

p =
kB
m
ρT, ε =

3

2

kB
m
T,
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Rarefied monatomic(CASE 1) Dense monatomic(CASE 3)
Rarefied polyatomic(CASE 2) Dense polyatomic(CASE 4)

Figure 2.1: Any gas belongs to one of the CASEs 1-4. The darker part is an unexplored

territory and is expected to be studied by the present ET theory of dense gases.

where kB and m are, respectively, the Boltzmann constant and the mass of a molecule. We

may utilize these equations of state to obtain the system of field equations in CASE 1.

Let us discuss a subtle point in the system thus obtained. Eq. (2.57)5 is now reduced to

Π = 0 as is expected for rarefied monatomic gases, and it plays no more role. The theory,

therefore, becomes singular because of the change of the system itself, that is, the change

from 14 equations to 13 equations. Furthermore, as Gii is congruent with Fii in this case, the

G-series merges with F -series. As a result we have the following system of field equations:

∂F

∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Fij

∂t
+
∂Fijk

∂xk
= P⟨ij⟩,

∂Fppi

∂t
+
∂Fppik

∂xk
= Pppi,

(2.66)

where Fppik and Pppi are the flux and production of Fppi, respectively. This is exactly the same

as that of ET of rarefied monatomic gases (Chapter 1, Section 3, Eq. (1.117)). In conclusion,

the system of field equations (2.57) for dense gases contains the system of 13 field equations

for rarefied monatomic gases as a special case in a singular way.

2.7.2 CASE 2: Rarefied polyatomic gases

The equations of state, when the temperature is not extremely low, are expressed as

p =
kB
m
ρT, ε =

3

2

kB
m
T + εint(T ). (2.67)
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It may be useful to introduce the specific heat cv = dε/dT , which, in general, depends on the

temperature. Then we obtain the system of field equations for non-polytropic gases.

In this case the coefficients h2, h3, h4, β1, L and K are easily obtained from the raltions

(2.42) and (2.43): as follows

h2 =

(
1

2c∗v
− 1

3

)
, h3 = −kB

m
ρT 2, h4 = −2

(
kB
m

)2

T 3ρ(1 + c∗v),

β1 = 2

(
ε+

kB
m
T

)
kB
m
Tρ, K =

2

1 + c∗v
, L =

5

3

1

1 + c∗v
,

(2.68)

where c∗v = cv
kB/m is the dimensionless specific heat. We assume that the integration constants

in β1, β2, β3 vanish. This assumption is reasonable because of the fact that our results below

are consistent with those of the kinetic theory [15, 13].

The linear constitutive equations are given by

Miik =
5

c∗v + 1
qk,

M⟨ij⟩k =
2

c∗v + 1
q⟨iδj⟩k,

mppik = 2
kB
m
T [(c∗v + 1)p+ (c∗v + 2)Π] δik − 2

kB
m
T (c∗v + 2)S⟨ik⟩,

Pii = − 9c∗vζ

(2c∗v − 3)kBm ρT 2
Π,

P⟨ij⟩ =
σ

2kB
m ρT 2

S⟨ij⟩,

Qi = − τ

2(c∗v + 1)
(
kB
m

)2
ρT 3

qi.

(2.69)

The coefficients of field equations are expressed as

CS1 = 0, CS2 =
2c∗v

′

(1 + c∗v)
2 , CS3 = − 2

1 + c∗v
,

CΠ1 =

(
2

3
− 1

c∗v

)
kB
m
ρT, CΠ2 =

5

3
− 1

c∗v
, CΠ3 =

1

c∗v
− 2

3
,

CΠ4 = 0, CΠ5 = −5

3

c∗v
′

(1 + c∗v)
2 , CΠ6 =

2c∗v − 3

3c∗v(1 + c∗v)
,

Cq1 =
2 + c∗v
1 + c∗v

, Cq2 =
1

1 + c∗v
, Cq3 =

2 + c∗v
1 + c∗v

, Cq4 =

(
kB
m

)2

Tρ(1 + c∗v),

Cq5 =
kB
m
T, Cq6 = −kB

m
T, Cq7 = −kB

m

T

ρ
, Cq8 =

kB
m

(1 + c∗v),

Cq9 = −kB
m

aT

ρ
, Cq10 =

kB
m

(1 + c∗v).

(2.70)
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The relaxation times τS , τq and τΠ are given by

τS =
2pT

σ
, τΠ =

(2c∗v − 3)pT

3c∗vζ
, τq =

4(c∗v + 1)
(
kB
m

)2
ρT 3

τ
. (2.71)

These are related to the shear and bulk viscosities and the heat conductivity:

µ = pτS , ν =
2c∗v − 3

3c∗v
pτΠ, κ = (c∗v + 1)

p2

ρT
τq. (2.72)

The entropy density and the entropy flux are expressed as

h = hE − 3c∗v

2(2c∗v − 3)kBm ρT 2
Π2 − 1

4kB
m ρT 2

S⟨ij⟩S⟨ij⟩ −
1

2(c∗v + 1)
(
kB
m

)2
ρT 3

qiqi +O(3),

(2.73)

φk =
1

T
qk −

2c∗v
2 + 6c∗v − 6

(2c∗v − 3)(c∗v + 1)kBm ρT 2
Πqk +

1

(c∗v + 1)kBm ρT 2
qiS⟨ik⟩ +O(3). (2.74)

The requirement of the concavity of the entropy density are expressed as

p > 0,

(
∂ε

∂T

)
ρ

> 0,

(
∂p

∂ρ

)
T

> 0,

2c∗v − 3

c∗v

kB
m
ρT 2 > 0, 2(c∗v + 1)

(
kB
m

)2

ρT 3 > 0.

(2.75)

It is easy to see that all inequalities are identically satisfied for classical polyatomic gases with

c∗v > 3/2.

It can be proved that the system of field equations in CASE 2 is fully consistent with the

system derived from a kinetic model for diatomic gases [15] and from the kinetic theory with

the maximum entropy principle [14, 61, 48, 12] for polyatomic gases [13]. This consistency is,

of course, vitally important for the validity test of the theory of dense gases itself as a necessary

condition. The detailed study of such an interrelationship between ET and the kinetic theory

must be a promising new direction in the future research.

We remark the case that c∗v = 3/2. In this case, we notice a subtle point in these expression

and also Eq. (2.69)4 for the case of rarefied monatomic gases where c∗v = 3/2. This subtle

point comes from the fact that h2 = 0 when c∗v = 3/2. Therefore, as we mentioned in the

previous subsection, we need to treat this case as CASE 1.

2.7.3 CASE 3: Dense monatomic gases

The CASE 3 has been little explored by ET up to now, but is the case that is highly expected to

be studied by the present ET theory. Such a study must be challenging not only theoretically

but also practically.
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The equations of state are expressed as

p =
kB
m
ρT + pϕ(ρ, T ), ε =

3

2

kB
m
T + εϕ(ρ, T ). (2.76)

The explicit forms of pϕ and εϕ may be given in the virial expansion form. Up to the first

correction with respect to ρ, with the help of the integrability condition of Gibbs equation

(1.149), we have the following expression:

pϕ =
kB
m
TB2(T )ρ

2 +O(ρ3), εϕ = −kB
m
T 2B′

2(T )ρ+O(ρ2), (2.77)

where the second virial coefficient B2 is the function of the temperature T , and a prime means

a derivative with respect to T .

Using the equations of state (2.76) and (2.77), we can obtain the explicit expressions of

the coefficients in the constitutive equations in the following way: We obtain h2, h3, h5, · · · , h9
except for h4 from (2.42). Integrating (2.43)1 with respect to ρ, we obtain β1 as follows:

β1 =

∫ ρ

ρ0

2

(
ε(ρ̄, T ) +

p(ρ̄, T )

ρ̄

)(
∂p(ρ̄, T )

∂ρ̄

)
T

dρ̄+ C1(ρ0, T, T0),

= 5

(
kB
m

)2

T 2ρ+

(
kB
m

)2 (
6B2 − TB′

2

)
T 2ρ2 +O

(
ρ3
)
+ C2(ρ0, T, T0),

where C1,2(ρ0, T, T0) are integration functions, and ρ0 and T0 are, respectively, the mass density

and temperature in a reference state. As β1 at an arbitrary value of T must asymptotically

approaches 5
(
kB
m

)2
T 2ρ in the rarefied-gas limit, we obtain C2(ρ0, T, T0) = 0. Now β1 has

been determined within the approximation adopted here, we get the explicit form of h4 from

(2.43)4. β2 and β3 can be determined in a similar way. We can easily check the consistency

that β2 and β3 obtained in this way satisfy the remaining relations (2.43)5,6. Then we can

obtain a relation between L and K as follows: L = 5
6K.

Substituting the equations of state (2.76) with (2.77) into (2.42) and (2.43), we obtain the

first correction of h2, h3, h4 and K with respect to ρ:

h2 =
kB
m
T 2ρ

(
15B2 + 20TB′

2 + 4T 2B′′
2

18
ρ+O(ρ2)

)
,

h3 = −kB
m
T 2ρ(1 +B2ρ+O(ρ2)),

h4 = −
(
kB
m

)2

T 3ρ
(
5 +

(
5B2 − T 2B′′

2

)
ρ+O

(
ρ2
))
,

K =
4

5
+

10TB′
2 + 4T 2B′′

2

25
ρ+O

(
ρ2
)
.

(2.78)

We here make only one remark. When we analyze the concavity condition (2.56), we find

that there is a subtle point such that the condition is not always satisfied. As we will see in

the next section, the hard-sphere system with constant B2 is probably the most extreme case
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in the sense that the condition is not satisfied for any ρ as far as we adopt the equations of

state above. This fact is intimately related to the singularity of the system of field equations

mentioned in CASE 1 where the dynamic pressure Π vanishes. Detailed study of such a delicate

point will soon be reported elsewhere.

2.7.4 CASE 4: Dense polyatomic gases

The equations of state are expressed as

p =
kB
m
ρT + pϕ(ρ, T ), ε =

3

2

kB
m
T + εint(T ) + εϕ(ρ, T ). (2.79)

For later convenience, we introduce

c∗videal(T ) =
dεideal(T )

dT

/kB
m

=
3

2
+

dεint(T )

dT

/kB
m
. (2.80)

In the same manner with CASE 3, we can determine the integration functions of β1, β2 and

β3 as 0. In addition, we can also obtain the relation L = 5
6K. Then, with the virial expansion

form (2.77), we have the first correction of h2, h3, h4 and K with respect to ρ:

h2 =
kB
m
T 2ρ

[
3− 2c∗videal
6c∗videal

+
(c∗videal

2 + 6c∗videal)B2 + 6(1 + c∗videal)TB
′
2 + 3T 2B′′

2

6c∗videal
2 ρ+O

(
ρ2
) ]
,

h3 = −kB
m
T 2ρ(1 +B2ρ+O(ρ2)),

h4 = −2

(
kB
m

)2

T 3ρ

[
1 + c∗videal +

(
(1 + c∗videal)B2 −

1

2
T 2B′′

2

)
ρ+O

(
ρ2
)]
,

K =
2

c∗videal + 1
+

(c∗videal + 1)TB′
2 + T 2B′′

2

(c∗videal + 1)2
ρ+O

(
ρ2
)
.

(2.81)

The CASE 4 has been totally unexplored by ET until now. This case is also highly expected

to be studied by the present ET theory.

2.8 Application to special systems

In the previous sections (Section 7.3 and Section 7.4), we have seen only the features of dense

gases by the application to the system with the virial equations of state. In the present section

the general theory is applied to two physically important systems: (i) a hard-sphere system, and

(ii) a van der Waals fluid. The analysis of the first system shows explicitly the corrections to

the results in rarefied gas system when the system is no more dilute enough. As a hard-sphere

system plays an important role in the perturbation theory in liquid-state physics [62, 63, 64],

65



CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

it seems to be interesting for the researchers in this field to understand ET of the system. A

van der Waals fluid is the well-known simple model that can describe real-gas effects including

gas-liquid phase transitions.

2.8.1 Hard-sphere system

The thermal and caloric equations of state are given by

p =
kB
ω
TηΓ(η),

ε =
D

2

kB
m
T,

(2.82)

where η is the packing fraction related to the mass density ρ by

η =
ρω

m
, (2.83)

and Γ(η) is a function of η determined explicitly by computer experiments [62]. Here ω is

the volume of a hard sphere. In this subsection, we use η instead of ρ. Throughout the

present section, the specific heat is assumed to be constant, that is, only polytropic fluids are

studied. Therefore the caloric equation of state (2.82) is expressed by the degrees of freedom of

a molecule D(D = 3+ f where 3 corresponds to the translational motion in the 3-dimensional

space and f is the internal degrees of freedom).

Using the expressions of the coefficients in the constitutive equations derived in the same

way as above, we obtain the constitutive equations:

Miik =
10
∫ η
0 Γ2(η̄)dη̄

DηΓ + 2
∫ η
0 Γ2(η̄)dη̄

qk,

M⟨ij⟩k =
4
∫ η
0 Γ2(η̄)dη̄

DηΓ + 2
∫ η
0 Γ2(η̄)dη̄

q⟨iδj⟩k,

mppik =
kB
m
T

[
kB
ω
ηT

(
DΓ + Γ2 +

1

η

∫ η

0
Γ2(η̄)dη̄

)
+

{
D + 2Γ−

6DΓ2 + 2
η (−5D + 6Γ)

∫ η
0 Γ2(η̄)dη̄

2DΓ− 6Γ2 − 3DηΓ′

}
Π

]
δik

− kB
m
T

(
D + 2Γ +

2

ηΓ

∫ η

0
Γ2(η̄)dη̄

)
S⟨ik⟩,

Pii = − 9Dζ
kB
ω ηT

2 (2DΓ− 6Γ2 − 3DηΓ′)
Π,

P⟨ij⟩ =
σ

2kB
ω ηT

2Γ
S⟨ij⟩,

Qi = − τ(
kB
m

)2
m
ω ηT

3
(
DΓ + 2

η

∫ η
0 Γ2(η̄)dη̄

)qi,

(2.84)

where Γ′ = dΓ(η)/dη.
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The closed system of field equations can be obtained by using above constitutive equations.

We omit its expression for simplicity. The relaxation times are related to the shear and bulk

viscosities and the heat conductivity:

µ = pτS ,

ν =
1

3D

kB
ω
ηT
(
2DΓ− 6Γ2 − 3DηΓ′) τΠ,

κ =

(
kB
m

)2 m

ω
η
T

2

(
DΓ +

2

η

∫ η

0
Γ2(η̄)dη̄

)
τq.

(2.85)

The concavity condition of the entropy density in this case can be expressed by only one

inequality:

−Γ

3
+

Γ2

D
+
ηΓ′

2
< 0. (2.86)

Then we find that there is a critical packing fraction ηC such that the above condition is

satisfied in the region 0 < η < ηC . In the case of D = 5, for example, we can estimate

ηC = 0.0447 by adopting the following functional form of Γ [65]:

Γ(η) =
1 + η + η2 − η3

(1− η)3
. (2.87)

The dependence of ηC on D is shown in Fig. 1. It is remarkable that ηC = 0 in the case of

D = 3.

3�2 10 20 30 40 50
0.00
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0.10

0.15

D

Η
C

Figure 2.2: Dependence of the critical packing fraction ηC on the degrees of freedom D.

2.8.2 van der Waals fluid

The thermal and caloric equations of state are given by

p =
kB
m

Tρ

1− bρ
− aρ2,

ε =
D

2

kB
m
T − aρ,

(2.88)
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where the material-dependent constants a and b represent, respectively, a measure of the

attraction between the constituent molecules and the effective volume (or exclusion volume)

of a molecule.

The constitutive equations are obtained by using the same procedure as above:

Miik = 10

kB
m T + a

b2ρ
(1− bρ)(bρ+ log(1− bρ))

(D + 2)kBm T −D(1− bρ)aρ
qk,

M⟨ij⟩k = 4

kB
m T + a

b2ρ
(1− bρ)(bρ+ log(1− bρ))

(D + 2)kBm T −D(1− bρ)aρ
q⟨iδj⟩k,

mppik =
kB
m
T
[
(D + 2)p+

kB
m
T

bρ2

(1− bρ)2
− 2aρ2

1 + bρ

1− bρ
+

8

3

a2ρ3

kB
m T

+
{kB
m
T
2(D − 3)(D + 4)− (7D2 + 18D − 12)bρ+ 5D(D + 2)b2ρ2

1− bρ

+
a

b

(
D(1− bρ)2(10 +Dbρ) + 12bρ(2 +Dbρ)

)
− 4D

a2ρ2

kB
m T

(1− bρ)2

+ 10D
a

b2ρ
(1− bρ)2 log(1− bρ)

}
Π/{kB

m
T (2(D − 3)− 5Dbρ) +Daρ(1− bρ)2

}]
δik

− kB
m
T
{kB
m
T
D + 4− (D + 2)bρ

1− bρ
+
a

b
(2− (D + 8)bρ+Db2ρ2)

+ 4
a2ρ2

kB
m T

(1− bρ) + 2
a

b2ρ
(1− bρ) log(1− bρ)

}
S⟨ik⟩/{kB

m
T − aρ(1− bρ)

}
,

Pii = − 9D(1− bρ)2

kB
m ρT 2 (2(D − 3)− 5Dbρ) +Daρ2T (1− bρ)2

ζΠ,

P⟨ij⟩ =
1− bρ

2kB
m ρT 2 − 2aρ2T (1− bρ)

σS⟨ij⟩,

Qi = − (1− bρ)(
kB
m

)2
(D + 2)ρT 3 − kB

m Dρ2T 2a(1− bρ)
τqi.

(2.89)

The relaxation times are related to the shear and bulk viscosities and the heat conductivity:

µ = pτS ,

ν =

(
kB
m

ρT

3D(1− bρ)2
(2(D − 3)− 5Dbρ) +

aρ2

3

)
τΠ,

κ =
1

2

((
kB
m

)2 D + 2

1− bρ
ρT − kB

m
Daρ2

)
τq.

(2.90)

We now study the concavity condition of the entropy density (2.56). For later convenience,
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we introduce the dimensionless variables:

p̂ =
p

pcr
, ρ̂ =

ρ

ρcr
, T̂ =

T

Tcr
, (2.91)

where ρcr = 1/(3b), pcr = a/(27b2) and Tcr = 8a/(27kB
m b) are, respectively, the mass density,

the pressure and the temperature at the critical point. Then the thermal and caloric equations

of state are rewritten in terms of the dimensionless quantities as

p̂ =
8T̂ ρ̂

3− ρ̂
− 3ρ̂2, ε̂ =

ρcr
pcr

ε =
4DT̂

3
− 3ρ̂. (2.92)

As the inequality (2.56)2 is always satisfied, the concavity condition is now expressed as

8T̂ ρ̂

3− ρ̂
− 3ρ̂2 > 0,

8T̂

(3− ρ̂)2
− 2ρ̂ > 0,

18 +D(5ρ̂− 6)

D(ρ̂− 3)2
T̂ 2ρ̂− 3

8
T̂ ρ̂2 < 0,

8(D + 2)T̂ + 3D(ρ̂− 3)ρ̂

(ρ̂− 3)
T̂ 2ρ̂ < 0.

(2.93)

The condition is satisfied in the shaded regions in Fig. 2 for several values of D.

Figure 2.3: The concavity condition (2.93) is satisfied in the shaded region. The degrees of

freedom: D = 5, 8 and 100. The curve represents the coexistence curve.

2.9 Concluding remarks

In conclusion we make the following two remarks:

(i) We have proposed and explained a possible phenomenological model of ET of dense

gases. The model has been constructed with no reference to microscopic details of the system

such as the internal motion of molecules, i.e., molecular rotation and vibration. In this respect,

the standpoint of the present work is purely phenomenological and is quite different from that

of the previous works dealing with so-called molecular ET [50, 51, 52].

(ii) As discussed in the previous sections, we have understood a subtle point in the present

theory in the case of monatomic gases with c∗v = 3/2. This point seems to be interesting from

both physical and mathematical viewpoints, and is worthy of further study. This will be the

future subject.
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Chapter 3

Linear Waves in Rarefied

Polyatomic Gases Based on

Extended Thermodynamics

Based on the extended thermodynamics for dense gases, the dispersion relation for sound in

rarefied polyatomic gases is studied. Through the comparison with experimental data and

Navier-Stokes Fourier theory, the validity of extended thermodynamics for dense gases is clar-

ified. Moreover the estimations of the bulk viscosity and relaxation times are studied.

3.1 Introduction

ET of dense gases are proposed and discussed in Chapter 2. This is the theory of 14 fields of

mass density, velocity, temperature, viscous stress, dynamic pressure, and heat flux with two

parallel hierarchical series of field equations of balance type. The constitutive equations are

determined explicitly by the thermal and caloric equations of state. As we have already seen,

the theory includes naturally the theory of rarefied polyatomic gases as a special case. Now,

owing to the establishment of the theory, both the class of gases and the conditions for gases

to which ET is applicable have been enlarged enormously.

The purpose of the present chapter is to understand explicitly the validity and the features

of the new theory through studying the dispersion relation for sound. We firstly derive the

dispersion relation, and secondly compare the results with those obtained in experiments and

by the classical Navier-Stokes Fourier (NSF) theory based on the local equilibrium assumption.

We will, however, confine our analysis within the sound in some rarefied diatomic gases because

suitable experimental data are scarce and are mainly restricted to rarefied gases. The study

of the dispersion relation for sound in general dense gases with and without internal degrees
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of freedom is, therefore, remained to be a future work.

The organization of the present chapter is as follows: In Section 2, we summarize the basic

equations necessary for the present analysis. In Section 3, the dispersion relation is derived

and its high-frequency limit is studied. In Section 4, the dispersion relations in hydrogen,

deuterium and hydrogen deuteride gases are compared with both experimental data and those

derived from the NSF theory. We also evaluate the relaxation times and the bulk viscosity.

The last section is devoted to the summary and concluding remarks.

3.2 Basic equations

In this section, we summarize the basic equations for the present analysis. We assume

that a nonequilibrium state can be characterized by the 14 independent field variables u ≡
(ρ, vi, T, S⟨ij⟩,Π, qi) where vi, S⟨ij⟩, Π(= −Sii/3) and qi are, respectively, the velocity, symmet-

ric traceless part of the viscous stress, dynamic pressure and heat flux. In Chapter 2, we have

already obtained the closed filed equations of these.

We concentrate our attention to rarefied polyatomic gases (Chapter 2, Section 7.2), that

is, in the case that the thermal and caloric equations of state are given by (2.67):

p =
kB
m
ρT and ε = ε(T ), (3.1)

where p, ρ, T and ε are the pressure, mass density, absolute temperature and specific internal

energy, respectively, and kB and m being the Boltzmann constant and the mass of a molecule.

Note that gases are, in general, non-polytropic, that is, the specific heat at constant volume

cv =
dε

dT
(3.2)

is, in general, not constant but depends on the temperature.

Let u0 ≡ (ρ0, 0, T0, 0, 0, 0) be a constant equilibrium state, then the linearized system in
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the neighborhood of u0 for the perturbed field u reads:

ρ̇+ ρ0
∂vk
∂xk

= 0,

ρ0v̇i +
kB
m
T0

∂ρ

∂xi
+
kB
m
ρ0
∂T

∂xi
−
∂S⟨ij⟩

∂xj
+
∂Π

∂xi
= 0,

kB
m
ρ0c

∗
vṪ +

kB
m
ρ0T0

∂vk
∂xk

+
∂qk
∂xk

= 0,

Ṡ⟨ij⟩ − 2
kB
m
ρ0T0

∂v⟨i

∂xj⟩
− 2

1 + c∗v

∂q⟨i

∂xj⟩
= − 1

τS
S⟨ij⟩,

Π̇ +

(
2

3
− 1

c∗v

)
kB
m
ρ0T0

∂vk
∂xk

+
2c∗v − 3

3c∗v(1 + c∗v)

∂qk
∂xk

= − 1

τΠ
Π,

q̇i + (1 + c∗v)

(
kB
m

)2

ρ0T0
∂T

∂xi
− kB
m
T0
∂S⟨ik⟩

∂xk
+
kB
m
T0
∂Π

∂xi
= − 1

τq
qi,

(3.3)

where a dot on a quantity indicates the material time derivative, and c∗v is the dimensionless

specific heat at the reference equilibrium state:

c∗v =
(cv)T=T0

kB/m
. (3.4)

The relaxation times τS , τΠ and τq in Eq. (3.3) are also evaluated at the reference equilibrium

state.

By the Maxwellian iteration [8, 66, 67, 46], we obtain the relations between the relaxation

times and the shear viscosity µ, bulk viscosity ν and heat conductivity κ:

µ =
kB
m
ρ0T0τS , ν =

(
2

3
− 1

c∗v

)
kB
m
ρ0T0τΠ, κ = (1 + c∗v)

(
kB
m

)2

ρ0T0τq. (3.5)

Let us consider a one-dimensional problem and assume:

vi ≡


v

0

0

 , S⟨ij⟩ ≡


S 0 0

0 −1
2S 0

0 0 −1
2S

 , qi ≡


q

0

0

 . (3.6)

Then, from Eq. (3.3), the linearized basic field equations are neatly written as

∂u

∂t
+A0

∂u

∂x
= B0u, (3.7)
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where A0 and B0 are given by

A0 =



0 ρ0 0 0 0 0
kB
m

T0
ρ0

0 kB
m − 1

ρ0

1

ρ0
0

0
T0
c∗v

0 0 0
1

kB
m c∗vρ0

0 −4

3

kB
m
ρ0T0 0 0 0 − 4

3(1 + c∗v)

0

(
2

3
− 1

c∗v

)
kB
m
ρ0T0 0 0 0

2c∗v − 3

3c∗v(1 + c∗v)

0 0 (1 + c∗v)

(
kB
m

)2

ρ0T0 −kB
m T0

kB
m T0 0



,

(3.8)

B0 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 − 1

τS
0 0

0 0 0 0 − 1

τΠ
0

0 0 0 0 0 − 1

τq


. (3.9)

3.3 Dispersion relation for sound

In this section, we deduce the dispersion relation, and then obtain the high-frequency limit of

the phase velocity and the attenuation factor.

3.3.1 Dispersion relation, phase velocity and attenuation factor

We study a plane harmonic wave propagating in the positive x-direction with the frequency ω

and the complex wave number k = kr + iki (kr = ℜ(k), ki = ℑ(k)) such that

u = wei(ωt−kx), (3.10)

where w is a constant amplitude vector. From Eq. (3.7), the dispersion relation is expressed

by [68]:

det

(
I − zA0 +

i

ω
B0

)
= 0, (3.11)
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where z ≡ k/ω and I is the unit matrix. Then the phase velocity vph and the attenuation

factor α are calculated as the functions of the frequency ω:

vph(ω) =
ω

ℜ(k)
=

1

ℜ(z)
, (3.12)

α(ω) = −ℑ(k) = −ωℑ(z). (3.13)

By introducing the dimensionless parameters defined by

Ω = τSω, τqs =
τq
τS
, τps =

τΠ
τS
, (3.14)

the dispersion relation (4.8) is shown explicitly as

c∗v(c0z)
4

3Ω2 (1 + c∗v)
2 τps

(
−3(1 + c∗v)− iΩ(3 + 7c∗v + 5c∗vτps) + 9Ω2c∗vτps

)
+

(c0z)
2

3Ω3(1 + c∗v)
2τqsτps

[
− 3i (1 + c∗v)

2 +Ω(1 + c∗v) (3 + 7c∗v + 5c∗vτps + 6 (1 + c∗v) τqs)

+ iΩ2
(
2
(
3 + 10c∗v + 5c∗v

2
)
τqs + 9c∗v (1 + c∗v) τps + c∗v (13 + 8c∗v) τqsτps

)
− 3Ω3c∗v (7 + 4c∗v) τpsτqs

]

+
(Ω− i)(τpsΩ− i)(τqsΩ− i)

Ω3τpsτqs
= 0

(3.15)

with c0 being the sound velocity in equilibrium:

c0 =

√√√√√(∂p
∂ρ

)
0

+
T0

(
∂p
∂T

)2
0

ρ20
(
∂ε
∂T

)
0

=

√
aT0

(
1 +

1

c∗v

)
, (3.16)

where the suffix 0 indicates the values at the reference equilibrium state. Therefore, for given

c∗v, τqs and τps, the quantity c0z(= c0k/ω) is calculated from Eq. (3.15) as the function of Ω

(= τSω). Hereafter in the present chapter, we will confine our study within the fastest sound

wave because the experiments discussed in Section 4 give us the data on this wave.

3.3.2 High frequency limit of the phase velocity and the attenuation factor

From the general theory [8, 68], we have the relations:

v
(∞)
ph ≡ lim

ω→∞
vph(ω) = λ0, (3.17)

α(∞)λ0 ≡ lim
ω→∞

α(ω)λ0 = −l0 ·B0 · d0, (3.18)
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where the characteristic velocity λ0 is the largest eigenvalue of A0, and l0 and d0 are the

corresponding left and right eigenvectors of A0. Then we obtain the limits in the present case:

v
(∞)
ph =

√
aT0(4c∗v + 7 + F )

2(1 + c∗v)
, (3.19)

α(∞) =

√
2(1 + c∗v)

3
(
F (4 + c∗v)− 22− 11c∗v + 2c∗v

2
)

9c∗vτS
√
aT0
√
7 + 4c∗v + F (7 + 4c∗v − F )2 F

(
4c∗v +

3c∗v (8 + 2c∗v − F )

τqs
+

−3 + 2c∗v
τps

)
,

(3.20)

where F is given by

F =
√

37 + 32c∗v + 4c∗v
2. (3.21)

The dependence of the phase velocity v
(∞)
ph on c∗v is shown in Fig. 3.1. In a rarefied

monatomic gas with c∗v = 3/2, the phase velocity v
(∞)
ph is given by 2.13051

√
aT0 [8]. For

large c∗v, it approaches
√
3aT0. On the other hand, the attenuation factor α(∞) depends not

3
2
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¥
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0

Figure 3.1: Dependence of the phase velocity in the high frequency limit v
(∞)
ph on the dimen-

sionless specific heat c∗v. Rarefied monatomic gases correspond to the case with c∗v = 3/2. The

dotted line is the asymptote.

only on c∗v but also on the relaxation times. In a rarefied monatomic gas, the attenuation

factor α(∞) is given by (0.0951852 + 0.0931368/τqs) /(τS
√
aT0) [8]. For large c

∗
v, it approaches

(1 + 2τps)/(9
√
3τpsτS

√
aT0).

3.4 Comparison with experimental data

The dispersion relation obtained above, in particular, the phase velocity vph and the attenuation

factor α as the functions of the frequency ω are compared with the experimental data on normal

hydrogen (n-H2), para hydrogen (p-H2), normal deuterium (n-D2), ortho deuterium (o-D2)

and hydrogen deuteride (HD) gases at temperatures 77.3K, 90.2K and the room temperatures

[69, 70]. The comparison is also made with the predictions by the classical NSF theory.
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Before discussing the subject, we need to make preliminary calculations for determining

the values of c∗v, τqs and τps defined in (3.4) and (3.14) at the reference equilibrium state.

3.4.1 Preliminary calculations

Specific heat

We calculate the specific heat c∗v of hydrogen, deuterium and hydrogen deuteride gases on the

basis of statistical mechanics [71, 72]. As we may safely neglect the contribution of internal

vibrational modes in a molecule to the specific heat in the temperature range under consider-

ation, we take only the translational and rotational modes into account. We assume also that

the translational mode satisfies the equipartition law of energy. Then c∗v is expressed as

c∗v =
3

2
+ c∗v,rot, c∗v,rot = β2

∂2 logZrot

∂β2
,

(
β ≡ 1

kBT

)
(3.22)

where c∗v,rot and Zrot are the specific heat and the partition function due to the rotational

modes.

For gases composed of heteronuclear diatomic molecules (HD), the partition function is

given by

Zrot =

∞∑
l=0

(2l + 1) exp [−βBl(l + 1)] , (3.23)

where l is the quantum number of the orbital angular momentum and B = ℏ2/2I with I and ℏ
being the moment of inertia of a molecule and the Planck constant divided by 2π, respectively.

While, for gases composed of diatomic homonuclear molecules (H2 and D2), the partition

function is given by

Zrot = Z
gg
g Z

gu
u ,

Zg =
∑

l=even

(2l + 1) exp [−βBl(l + 1)] ,

Zu =
∑
l=odd

(2l + 1) exp [−βBl(l + 1)] ,

(3.24)

where gg and gu are defined by

H2

{
normal−H2 : gu = 3/4, gg = 1/4

para−H2 : gu = 0, gg = 1
, D2

{
normal−D2 : gu = 1/3, gg = 2/3

ortho−D2 : gu = 0, gg = 1
.

(3.25)

Numerically calculated values of c∗v are shown in Table 3.1 and in Fig. 3.2. The values of

B of H2, D2 and HD adopted are 12.09 × 10−22 [J], 6.047 × 10−22 [J] and 9.068 × 10−22 [J],

respectively [73].
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Figure 3.2: Dependence of the dimensionless specific heat c∗v for n-H2 and p-H2 (left), n-D2

and o-D2 (center), and HD (right) on the temperature T .

Relaxation times

From (3.5), we have the following relations for the ratios τqs and τps:

τqs = (1 + c∗v)
−1 κ

kB
m µ

, (3.26)

τps =

(
2

3
− 1

c∗v

)−1 ν

µ
. (3.27)

Therefore, in principle, with the help of the experimental data on µ, κ and ν, we can estimate

the values of τqs and τps. However, at present, as we have the reliable data only on µ and κ

[70], we adopt, in the analysis below, an adjustable parameter:

φ =
ν

µ
. (3.28)

We summarize the adopted values of c∗v, c0, µ, κ, τqs and the evaluated values of φ and τps in

Table 3.1, details of which will be discussed in the next subsection.

3.4.2 Experimental data and theoretical predictions for the dispersion re-

lation

Hydrogen gases: n-H2 and p-H2

For n-H2, the dimensionless phase velocity, vph/c0, and the dimensionless attenuation factor,

c0τSα, are shown as the functions of the dimensionless frequency Ω in Fig. 3.3. We see the

experimental data on the phase velocity at T0 = 273.5, 296.8K by Rhodes [69] and on the

attenuation factor at T0 = 293K by Sluijter et al. [70] accompanied by the theoretical results

at T0 = 293K predicted by the ET theory and the NSF theory.

Noticeable points from Fig. 3.3 are summarized as follows: (i) In the region with small Ω,

as is expected, the predictions by the two theories coincide with each other. The value of the

parameter φ is determined to be 37 as the best fit with the experimental data in this region.
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Table 3.1: Values of the temperature T0, dimensionless specific heat c∗v, sound speed in equilib-

rium c0, shear viscosity µ [70], heat conductivity κ [70] and the ratio of the relaxation times of

the heat flux and the deviatoric part of the viscous stress τqs adopted in the present analysis.

And the values of the parameter φ, bulk viscosity ν, and the ratio of the relaxation times of

the bulk viscosity and the deviatoric part of the viscous stress τps evaluated by the present

analysis.

Gas T0 [K] c∗v c0 [ms ] µ [µPa · s] κ
[
mW
m·K
]

τqs φ ν [µPa · s] τps

n−H2 77·3 1·57 723 3·50 49·8 1·34 28 98·0 988

293 2·45 1300 8·82 182 1·46 37 326 144

p−H2 77·3 1·76 707 3·50 52·7 1·33 76 266 783

90·2 1·99 748 3·97 63·6 1·30 76 302 465

293 2·61 1290 8·82 192 1·46 31 273 109

n−D2 77·3 2·54 472 4·82 45·6 1·30 36 174 132

293 2·50 920 12·3 131 1·47 22 271 82·5
o−D2 77·3 2·93 463 4·82 49·4 1·26 44 212 135

90·2 2·96 499 5·50 55·6 1·24 33 182 100

293 2·50 920 12·3 131 1·47 22 271 82·5

HD 77·3 2·55 544 4·21 51·9 1·26 1·4 5·89 5·11
293 2·50 1060 10·8 149 1·43 2·4 25·9 8·99
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This procedure of determining φ will be adopted throughout the present chapter. (ii) When

we go into the ultrasonic frequency region with larger Ω, the prediction by the ET theory is

evidently superior to that by the NSF theory. The difference between the two theories emerges

around Ω = ωτs = 10−3. We will evaluate τs, which depends on T0 and p0, later. (iii) The ET

theory seems to be valid at least up to the experimental data with the maximum dimensionless

frequency Ω = 10−1. (iv) The large value of φ means that ν ≫ µ. We will discuss its physical

meaning below.
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Figure 3.3: Dependence of the dimensionless phase velocity vph/c0 (left) and the attenuation

factor c0τSα (right) on the dimensionless frequency Ω for n-H2. The squares and triangles in

the left figure are the experimental data at T0 = 273.5 and 296.8K, respectively, by Rhodes

[69], and the circles in the right figure are those at T0 = 293K by Sluijter et al. [70]. The solid

and dashed lines are predictions at 293K by the ET and NSF theories, respectively. The black

circle on the right vertical line in the right figure corresponds to α(∞). We adopt φ = 37.

For p-H2, we compare the theoretical predictions with the experimental data on the phase

velocity at T0 = 273.8, 298.4K by Rhodes [69] and on the attenuation factor at T0 = 293K by

Sluijter et al. [70]. We have a similar result as shown in Fig. 3.4, where the selected value of

the parameter φ is 31. Remarkable points in this case are qualitatively the same as in the case

of n-H2 above.

Hereafter we focus our discussion only on the attenuation factor because of the lack of the

experimental data on the phase velocity for the purpose of the present study. In Fig. 3.5, the

attenuation factors for n-H2 at T0 = 77.3K and for p-H2 at T0 = 77.3, 90.2K are shown. We

see again that the present theory can describe the experimental data very well. The values of

the parameter φ are selected to be 28, 76 and 76, respectively. These values are again very

large.

80



3.4. COMPARISON WITH EXPERIMENTAL DATA

ááá
áá

á
á

á

á

á

á

óóó
óó
ó

ó

ó

ó

ó

p-H2

ETH293 KL

NSFH293 KL

ó

á RhodesH273.8 KL

RhodesH298.4 KL

10-4 10-3 10-2 10-1

1.00

1.04

1.08

1.12

W

v p
h
�

c 0

ç
ç
ç
ç
ç
çç
ç
çç
çç
ççç
ç

p-H2

Sluijter et al.H293 KL

ETH293 KL

NSFH293 KL

ç

10-4 10-3 10-2 10-1 100 101

10-6

10-5

10-4

10-3

10-2

10-1

100

W

c 0
Τ

S
Α

Figure 3.4: Dependence of the dimensionless phase velocity vph/c0 (left) and the attenuation

factor c0τSα (right) on the dimensionless frequency Ω for p-H2. The squares and triangles in

the left figure are the experimental data at T0 = 273.8 and 298.4K, respectively, by Rhodes

[69], and the circles in the right figure are those at T0 = 293K by Sluijter et al. [70]. The solid

and dashed lines are predictions at 293K by the ET and NSF theories, respectively. The black

circle on the right vertical line in the right figure corresponds to α(∞). We adopt φ = 31.
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Figure 3.5: Dependence of the dimensionless attenuation factor c0τSα on the dimensionless

frequency Ω for n-H2 at T0 = 77.3K (left), and for p-H2 at T0 = 77.3K (center) and 90.2K

(right). The circles are the experimental data by Sluijter et al. [70]. The solid and dashed

lines are predictions by the ET and NSF theories, respectively. The black circle on the right

vertical line in each figure corresponds to α(∞). We adopt φ=28, 76 and 76 from left to right.

Deuterium gases: n-D2 and o-D2

Comparisons are also made for n-D2 at T0 = 77.3 and 293K with φ=36 and 22 in Fig. 3.6, and

for o-D2 at T0 = 77.3, 90.2 and 293K with φ=44, 33 and 22 in Fig. 3.7. From these figures,

we have qualitatively the same observations as those in the case of hydrogen gases.
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Figure 3.6: Dependence of the dimensionless attenuation factor c0τSα on the dimensionless

frequency Ω for n-D2 at T0=77.3K (left) and 293K (right). The circles are the experimental

data by Sluijter et al. [70]. The solid and dashed lines are predictions by the ET and NSF

theories, respectively. The black circle on the right vertical line in each figure corresponds to

α(∞). We adopt φ=36 (left) and 22 (right).
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Figure 3.7: Dependence of the dimensionless attenuation factor c0τSα on the dimensionless

frequency Ω for o-D2 at T0 = 77.3K (left), 90.2K (center) and 293K (right). The circles are

the experimental data by Sluijter et al. [70]. The solid and dashed lines are predictions by the

ET and NSF theories, respectively. The black circle on the right vertical line in each figure

corresponds to α(∞). We adopt φ = 44, 33 and 22 from left to right.

Hydrogen deuteride gases: HD

Lastly we show the results of HD gases at T0 = 77.3 and 293K in Fig. 3.8. We notice

the following points: (i) The difference between the two theories is small and the theoretical

predictions are consistent with the experimental data in the range: Ω ≤ 10−1. This means

that the local equilibrium assumption holds well up to Ω ≒ 10−1, while for the other gases

analyzed above the assumption holds until Ω ≒ 10−3. (ii) The values of φ adopted here are

1.4 and 2.4. These values are O(1), that is, ν ∼ µ, and are very small compared with those
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obtained for the other gases discussed above. We will discuss this interesting fact below.
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Figure 3.8: Dependence of the dimensionless attenuation factor c0τSα on the dimensionless

frequency Ω for HD at T0=77.3K (left) and 293K (right). The circles are the experimental

data by Sluijter et al. [70]. The solid and dashed lines are predictions by the ET and NSF

theories, respectively. The black circle on the right vertical line in each figure corresponds to

α(∞). We adopt φ = 1.4 (left) and 2.4 (right).

3.4.3 Remarks

Three remarks (A)-(C) are made below.

(A) We have seen clearly that the present theory of ET is consistent with the experimental

data even in the high frequency range where the local equilibrium assumption is no more valid.

Although the comparisons with the experimental data have been made only for the rarefied

diatomic gases, the consistency gives us a strong confidence that the ET theory for dense gases

[66, 67] deserves further studies. There are potentially many research fields where the ET

theory may play a crucial role, for example, fields of acoustics [74] and gas dynamics [7].

(B) From the values of the ratios τqs and τps in Table 3.1, we have noticed an interesting

fact that, except for HD gases, τΠ is much larger than τS , while τS and τq are comparable with

each other. This fact was reported also in some kinetic theoretical studies [75, 76]. By using

the result summarized in Table 3.2, the relaxation times for given T0 and p0 can be estimated.

For example, the relaxation times in a n-H2 gas at p0 = 103 [Pa] and T0 = 77.3 [K] can be

calculated: τS = 3.50× 10−9 [s], τΠ = 3.46× 10−6 [s] and τq = 4.70× 10−9 [s].

In the next chapter, it was pointed out that the relaxation time τΠ is in the same order of

magnitude as the relaxation time of the energy exchange between the molecular translational

mode and the internal modes, which, in the present case, are the rotational modes. The

results obtained above suggest that the sharp temperature change of the specific heat due to

the rotational modes c∗v,rot depicted in Fig. 3.2 is somehow related to the emergence of the large
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value of τΠ. The detailed study of this subject is, however, beyond the scope of the present

phenomenological study, and its statistical-mechanical or kinetic-theoretical study by taking

into account the realistic collision processes between the constituent molecules is required.

Table 3.2: Relaxation times of the deviatoric part of the viscous stress τS , dynamic pressure

τΠ and heat flux τq multiplied by the pressure p0 for several values of T0 in H2, D2 and HD

gases.

Gas T0 [K] τSp0 [s · µPa] τΠp0 [s · µPa] τqp0 [s · µPa]

n−H2 77·3 3·50 3460 4·70
293 8·82 1270 12·8

p−H2 77·3 3·50 2740 4·64
90·2 3·97 1850 5·16
293 8·82 962 12·9

n−D2 77·3 4·82 637 6·25
293 12·3 1010 18·1

o−D2 77·3 4·82 652 6·09
90·2 5·50 552 6·81
293 12·3 1010 18·1

HD 77·3 4·21 21·5 5·32
293 10·8 97·1 15·5

(C) From the values of φ in Table 3.1, we have also noticed a similar fact that, except

for HD gases, the bulk viscosity ν is much larger than the shear viscosity µ. The similarity is

natural because there are relations between the viscosities and the relaxation times as shown in

Eq. (3.5). A point to be emphasized here is that, as the direct experiments to measure the bulk

viscosity are usually difficult, the method for the evaluation of the bulk viscosity utilized here

through analyzing the dispersion relation on the basis of the ET theory is quite useful. The

values of ν thus evaluated are summarized in Table 3.1. We hope that present thermodynamic

approach contributes to the recent studies of the bulk viscosity [77, 78, 79, 80, 81].

3.5 Summary and concluding remarks

To sum up, we have studied the dispersion relations in rarefied polyatomic gases, that is,

hydrogen, deuterium and hydrogen deuteride gases, basing on the ET theory of dense gases.

We have properly taken the temperature dependence of the specific heats, cv, of these gases into
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the dispersion relations. The comparison of the theoretical predictions with experimental data

on the phase velocity and the attenuation factor has revealed that the ET theory is valid even

in nonequilibrium states out of local equilibrium. We have also evaluated the bulk viscosity

and the relaxation times.

Finally some concluding remarks are made:

(i) There is a phenomenological theory of the dispersion relation for sound, the basic equa-

tions of which are composed of the relaxation equations for some nonequilibrium parameters

and the Euler (or NSF) equations for the conservation laws [2, 82]. One crucial point is that

the theory is based on the local equilibrium assumption. In this respect, this may be regarded

as a theory in the framework of thermodynamics of irreversible processes [2]. Because of this,

in the present chapter, we have compared the ET theory only with the NSF theory as a repre-

sentative one. In Ref. [83], the relationship between the simplified ET theory and the theory

with one relaxation equation was studied in detail.

(ii) We have analyzed the experimental data on rarefied hydrogen, deuterium and hydrogen

deuteride gases in the temperature range where the rotational modes in a molecule play an

important role. The ET theory can be applied to many other rarefied polyatomic gases in a

wider temperature range where the rotational and/or vibrational modes in a molecule play a

role. Comprehensive study of this must be a promising future work.

(iii) As is mentioned in the first section, it is interesting to study the dispersion relation for

sound in dense gases. As a first step, we are now studying it in a gas prescribed by the virial

equations of state.

(iv) In order to study the effect of the large value of the relaxation time τΠ on various

nonequilibrium phenomena such as shock wave phenomena, it seems to be appropriate to

adopt a simpler model than the one adopted here. The theory with only 6 independent field

variables (ρ, vi, T,Π) developed in the next chapter [83] may play an important role in such

studies.
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Chapter 4

Extended Thermodynamics of

Dense Gases with 6 Fields: An

extension of Meixner ’s theory

In the previous chapter, we have seen the case that the relaxation time related to bulk viscosity

is much larger than othe relaxation times. To study such phenomenon, it is useful to consider

the simplest theory in the framework of ET of dense gases, that is, ET with 6 fields; mass

density, velocity, temperature and dynamic pressure. Such ET theory plays a role as an

extension of Meixner’s theory, that is, the thermodynamic theory with energy transfer from

molecular translational mode to internal modes.

4.1 Introduction

Energy transfer from molecular translational mode to internal modes, such as rotational and

vibrational modes, affects the propagation speed and attenuation of a sound in a gas composed

of polyatomic molecules. Especially when the frequency ω of the sound is in the same order of

magnitude as the inverse of the relaxation time of the energy transfer, 1/τ , the effect on the

sound is prominent. Such non-equilibrium phenomena are usually observed in the ultrasonic

frequency range.

The thermodynamic theory with non-equilibrium parameters governed by the relaxation

equations [5, 6, 2] has been utilized to describe the phenomena for many years. In order to grasp

the essence of the theory, let us consider the simplest case where only one relaxation equation

for a non-equilibrium parameter ξ is present in addition to the system of Euler equations for a

gas that expresses the mass, momentum and energy conservation laws. That is, we neglect all

dissipative processes but we take into account the relaxation process. The relaxation equation
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is introduced in such a way that

ξ̇ = −βA, (4.1)

where a dot on ξ represents the material time derivative, β is a positive coefficient, and A is

the affinity of the relaxation process of the energy transfer that depends not only on ξ but

also on other thermodynamic quantities, say, the mass density and the entropy density. When

ωτ ≪ 1, it was proved that the relaxation process may be interpreted in terms of the dynamic

pressure Π, which is related to the gas velocity v as

Π = −νeffdiv v

with νeff being the effective bulk viscosity.

Although Meixner’s theory mentioned above seems to be natural, there remain some prob-

lems that should be overcome: (i) In Meixner’s theory, the relaxation equation (4.1) is not

fully congruous with the Euler equations. It has not been introduced on the same ground

of the Euler equations as one of the general thermodynamic basic field equations. In fact,

in a rarefied gas limit, the relaxation equation is not consistent with its counterpart of the

moment equations derived from the kinetic theory of gases [52]. See also section 4.4.2 below.

(ii) Meixner’s theory is formulated within the framework of thermodynamics of irreversible

processes [2]. The local equilibrium assumption is premised from the beginning. However, in

such phenomena as ultrasonic wave propagation where temporal and spatial changes are rapid

and steep, this assumption is not well-satisfied (see Chapter 3 and [84]).

In this chapter, we propose a fully-consistent thermodynamic theory of the sound propaga-

tion in a gas with the energy transfer where the local equilibrium assumption is not necessarily

valid, and thereby try to extend Meixner’s theory. We adopt the theory of extended thermody-

namics (ET) (Chapter 2 and [66, 67]). As before, the essence of our theory can be most clearly

shown by studying the simplest case where only one dissipative process due to the dynamic

pressure exists. In section 2, we derive the closed system of field equations for gases. In section

3, we study the dispersion relation for sound and compare it with that derived from Meixner’s

theory. The last section is devoted to concluding remarks with the discussions of subsystems

and the kinetic theoretical basis of the present theory.

4.2 Extended thermodynamics of real gases with 6 fields

As we have seen in Chap. 2, ET of dense gases has been constructed based on balance

equations with binary hierarchy structure by using only general principles such as the Galilean

invariance and the entropy principle, we proved that the system of field equations can be closed

with respect to the independent field variables and the constitutive functions are determined

explicitly by the equilibrium thermal and caloric equations of state.

88



4.2. EXTENDED THERMODYNAMICS OF REAL GASES WITH 6 FIELDS

In this section, we restrict our study within the simplest case of 6 independent field vari-

ables, that is,

mass density: F (= ρ),

momentum density: Fi (= ρvi),

energy density: Gii

trace part of momentum flux: Fii.

4.2.1 Binary hierarchy of the differential equations

We adopt the following binary hierarchy (F-series and G-series, see also section 4.4.2.) of the

balance equations [66, 67]:

∂F

∂t
+
∂Fk

∂xk
= 0,

∂Fi

∂t
+
∂Fik

∂xk
= 0,

∂Gii

∂t
+
∂Giik

∂xk
= 0, (4.2)

∂Fii

∂t
+
∂Fiik

∂xk
= Pii

where Fik is the momentum flux, Fiik is the flux of Fii, Giik is the energy flux, and Pii is the

production with respect to Fii. The equations with no production term represent the mass,

momentum and energy conservation laws.

As the balance equations (4.2) should be invariant under the Galilean transformation, the

dependence of the quantities on the velocity can be expressed as follows [49]:

Fij = ρvivj +Mij ,

Gii = ρvivi +mii,

Fiik = ρvivivk + 3M(ikvi) +Miik,

Giik = ρvivivk +miivk + 2Mikvi +miik,

(4.3)

where Mij , mii, Miik and miik do not depend on the velocity. Parentheses around a set of

indices represent the symmetrization with respect to the indices. The production Pii is also

independent of the velocity.
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With Eq. (4.3), the balance equations (4.2) can be rewritten as

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂Mij

∂xj
= 0,

ṁii +mii
∂vk
∂xk

+
∂miik

∂xk
+ 2

∂vi
∂xk

Mik = 0,

Ṁii +Mii
∂vk
∂xk

+
∂Miik

∂xk
+ 2

∂vi
∂xk

Mik = Pii.

(4.4)

We notice that the quantities Mij , mii and mppi have the following conventional meanings:

stress: tij = −Mij (= − (p+Π) δij +M⟨ij⟩),

specific internal energy: ε =
1

2ρ
mii,

heat flux: qi =
1

2
mppi,

where the pressure p depends only on ρ and mii, Π is the dynamic pressure, and angular

brackets denote the symmetric traceless part.

We may now adopt {ρ, vi, mii, Π} as a set of independent variables instead of {F , Fi, Gii,

Fii}. The balance equation of Mii (Eq. (4.4)4) is then rewritten as

Π̇ +

(
5

3
p− ρ

(
∂p

∂ρ

)
mii

− (mrr + 2p)

(
∂p

∂mqq

)
ρ

)
∂vk
∂xk

+

(
5

3
− 2

(
∂p

∂mqq

)
ρ

)
Π
∂vk
∂xk

+ 2

(
1

3
−
(

∂p

∂mqq

)
ρ

)
∂vr
∂xk

M⟨rk⟩

+
1

3

∂Mrrk

∂xk
−
(

∂p

∂mqq

)
ρ

∂mrrk

∂xk
=
Prr

3
.

4.2.2 Constitutive equations

We need the constitutive equations in order to set up the closed system of field equations.

We assume that the constitutive equations at one point and time depend on the independent

fields at that point and time. Therefore the constitutive quantities {M⟨ij⟩, Miik, miik, Pii} are

expressed as functions of

(ρ, mii, Π).

We apply the constitutive theory of ET [8] where the following universal physical principles

(A)-(C) are imposed on the constitutive equations: (A) Material frame indifference principle:

This requires that constitutive equations are independent of an observer. This principle and

the Galilean invariance for the balance laws constitute the objectivity principle (the principle
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of relativity). (B) Entropy principle: All solutions of the system of field equations must satisfy

the entropy balance law:

∂h

∂t
+
∂(hvk + φk)

∂xk
= Σ ≧ 0 ⇔ ḣ+ h

∂vk
∂xk

+
∂φk

∂xk
= Σ ≧ 0

where h is the entropy density, hk is the entropy flux (hk = hvk +φk: φk is the non-convective

entropy flux), and Σ is the entropy production. Here h and φk are constitutive quantities:

h ≡ ĥ(ρ, mii, Π), φk ≡ φ̂k(ρ, mii, Π).

(C) Causality : This requires the concavity of the entropy density and guarantees the hyper-

bolicity of the system of field equations. This also ensures the well-posedness (local in time)

of a Cauchy problem and the finiteness of the propagation speeds of disturbances.

As the result of the universal principles, in the neighborhood of equilibrium, we obtain the

constitutive equations:

M⟨ij⟩ = 0, Miik = 0, miik = 0, Pii = − 3ζ

Ta1
Π, (4.5)

where ζ is a positive function of the density ρ and the temperature T , and a1 is given by

[66, 67]

a1 =
5

3
p− ρ

(
∂p

∂ρ

)
T

− T

ρ

(
∂p

∂T

)2

ρ

(
∂ε

∂T

)−1

ρ

.

The entropy density and entropy flux are given by

h = hE − 1

2Ta1
Π2, φk = 0, (4.6)

where hE is the entropy density in equilibrium. From (4.6), we obtain the concavity conditions

at an equilibrium state: (
∂ε

∂T

)
ρ

> 0,

(
∂p

∂ρ

)
T

> 0, a1 > 0.

4.2.3 Field equations

The closed system of field equations is obtained by substituting the constitutive equations (4.5)

into the system (4.4):

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂p

∂xi
+
∂Π

∂xi
= 0,

ρ

(
∂ε

∂T

)
ρ

Ṫ +

[
p+Π− ρ2

(
∂ε

∂ρ

)
T

]
∂vk
∂xk

= 0,

Π̇ + (a1 + a2Π)
∂vk
∂xk

= − 1

τΠ
Π,

(4.7)
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where the relaxation time τΠ and a2 are given by

τΠ =
Ta1
ζ
, a2 =

5

3
− 1

ρ

(
∂p

∂T

)
ρ

(
∂ε

∂T

)−1

ρ

.

The evolution equation (4.7)4 for Π is now obtained consistently, which may be seen as the

counterpart of the relaxation equation in Meixner’s theory.

If we apply the Maxwellian iteration [8, 46] to the system (4.7), the first iterate Π(1) is

obtained by the substitution of the 0th iterate Π(0) = 0 into the left hand side of (4.7)4:

Π(1) = −a1τΠ
∂vk
∂xk

,

from which the bulk viscosity ν is given by

ν = a1τΠ =
Ta21
ζ
.

Therefore we can calculate ζ from the experimental data of ν.

4.3 Dispersion relation for sound: comparison with Meixner’s

theory

In this section, we study a linear plane harmonic wave and obtain its dispersion relation. The

result obtained is compared with that from Meixner’s theory.

Without loss of generality, we may study the wave in the following form:

u = u0 + ū

where u = (ρ, v, T,Π)T is a state vector with v being the x-component of the velocity v ,

u0 = (ρ0, 0, T0, 0)
T is a state vector at a reference equilibrium state, and ū = (ρ̄, v̄, T̄ , Π̄)T is

the deviation from u0 expressed as

ū = wei(ωt−kx).

Here w is the amplitude, ω is the frequency, and k is the complex wave number such that

k = kr + iki (kr = ℜ(k), ki = ℑ(k)).
From the linearized system of field equations, which is obtained by linearizing (4.7) with

respect to ū, we can easily obtain the dispersion relation [8]:

det

(
I − zA0 +

i

ω
B0

)
= 0, (4.8)
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where z = k/ω, I is the unit matrix, and

A0 =



0 ρ 0 0

1

ρ

(
∂p

∂ρ

)
T

0
1

ρ

(
∂p

∂T

)
ρ

1

ρ

0

p− ρ2
(
∂ε

∂ρ

)
T

ρ

(
∂ε

∂T

)
ρ

0 0

0 a1 0 0


0

, B0 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 − 1

τΠ


0

.

The index 0 indicates the values at the reference state.

From the dispersion relation, the phase velocity vph and the attenuation factor α are ob-

tained as the functions of ω:

vph =
ω

ℜ(k)
=

1

ℜ(z)
, α = −ℑ(k) = −ωℑ(z).

By the requirement of the linear stability, α must be positive (negative) for the waves traveling

to the x-positive (negative) direction.

The high-frequency limits of vph and α are given by [8, 68] :

lim
ω→∞

vph(ω) = λ0 =

√
5p0
3ρ0

, lim
ω→∞

α(ω)λ0 = −l0 ·B0 · d0, (4.9)

where the characteristic velocity λ0 is the non-zero eigenvalue of A0, and l0 and d0 are the left

and right eigenvectors of A0, respectively. It is remarkable that, even for polyatomic gases, the

high frequency limit vph(∞) does not depend on the internal degrees of freedom in a rarefied

gas limit. The attenuation factor is given by

α(∞) = ± 1

2τΠ

√
3ρ0
5p0

(
1− 3

5
c20
ρ0
p0

)
,

where c0 is the sound velocity in the reference state:

c20 =

(∂p
∂ρ

)
T

+

(
∂p
∂T

)2
ρ
T(

∂ε
∂T

)
ρ
ρ2


0

.

Finally let us compare the dispersion relation (4.8) with that of Meixner’s theory. The

relation (4.8) can be rewritten as

(c0z)
2

(
− 5p0
3c20ρ0

+
i

τΠω

)
+ 1− i

τΠω
= 0.

While the dispersion relation derived from Meixner’s theory is given by [2]

(c0z)
2

(
−
vph(∞)2

c20
+

i

τω

)
+ 1− i

τω
= 0.

By taking the relation (4.9)1 into account, it is easy to show that, if τΠ = τ , both dispersion

relations coincide with each other.
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4.4 Subsystems and kinetic theory

We have shown in the above that, through studying the simplest case, a fully-consistent ther-

modynamic theory of sounds in a gas with the energy transfer can be established on the basis

of ET. This is valid even in the region beyond the local equilibrium assumption. The rela-

tionship between the present theory with 6 independent variables and Meixner’s theory is also

shown. It is found that, as far as the dispersion relation for a weak sound propagating in an

equilibrium state is concerned, both theories predict the same expression of the relation.

Lastly we make four concluding remarks 4.4.1-4.4.4:

4.4.1 ET of 14 fields and the concept of subsystems

The extended thermodynamic theory of dense gases that takes into account not only the

dynamic pressure but also the shear stress and heat flux has already been proposed in Chap.

2 and in [66, 67]. This is the theory of real gases with 14 field variables. In this respect, it is

important to recognize that the theory with 6 variables presented above is a main subsystem of

the 14-variable theory according to the definition which we have seen in Chapter 1, Section 3.2

(and see Boillat and Ruggeri [48]). We may, therefore, assert that the 6-variable theory is the

simplest variant among dissipative systems from the non-dissipative Euler system. In contrast

to the well-known Navier-Stokes-Fourier model that is of parabolic type, the present variant

is of hyperbolic type. To sum up, the present 6-variable system is the simplest non-trivial

hyperbolic one next to the system of Euler equations.

4.4.2 Consistency with the kinetic theory of polyatomic gases

Let us study the system (4.7) in the rarefied gas limit, and adopt the thermal and caloric

equations of state:

p =
kB
m
ρT, ε =

D

2

kB
m
T, (4.10)

where kB and m are the Boltzmann constant and the mass of a molecule, and the constant D

is the degrees of freedom of a molecule, i.e., D = 3+f where 3 corresponds to the translational

motion and f is the internal degrees of freedom. The system of field equations is expressed as

ρ̇+ ρ
∂vk
∂xk

= 0,

ρv̇i +
∂p

∂xi
+
∂Π

∂xi
= 0,

Ṫ +
2

D kB
m ρ

(p+Π)
∂vk
∂xk

= 0,

Π̇ +
2(D − 3)

3D
p
∂vk
∂xk

+
5D − 6

3D
Π
∂vk
∂xk

= − 1

τΠ
Π.

(4.11)
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The relaxation time τΠ and the bulk viscosity ν are given by

τΠ =
2(D − 3)pT

3Dζ
, ν =

2(D − 3)

3D
pτΠ.

For monatomic gases (D = 3), as is expected, ν vanishes and the evolution equation (4.11)4

for Π has now no role.

In this subsection, we show that above results are fully consistent with the kinetic theory.

That is, the balance equations for rarefied polyatomic gases (4.11) can be obtained via the

kinetic theory [14] in which the internal energy of a molecule I is taken into account. Physical

quantities are expressed as the moments of a one-body distribution function f(xi, ci, t, I) with

ci being the velocity of a molecule. The mass density ρ and the momentum density ρvi are

expressed as

ρ =

∫
mf(xi, ci, t, I)φ(I)dIdc1dc2dc3,

ρvi =

∫
mcif(xi, ci, t, I)φ(I)dIdc1dc2dc3,

(4.12)

where φ(I)dI is a nonnegative measure. We adopt φ(I) = Iσ [14], where σ will be related to

the degrees of freedom D below. The integration range is taken as [0,∞) for I and (−∞,∞)

for c1, c2 and c3. By using the peculiar velocity Ci defined by

Ci ≡ ci − vi,

the internal energy ε, and the sum of the pressure p and the dynamic pressure Π are expressed

as

2ρε =

∫
(mC2 + 2I)f(xi, ci, t, I)φ(I)dIdc1dc2dc3,

3(p+Π) =

∫
mC2f(xi, ci, t, I)φ(I)dIdc1dc2dc3,

(4.13)

where C2 = CiCi. It is noticeable that there exist two kinds of second order moments: the

energy density and the momentum flux, which appear in the binary structure introduced in

section 2. Therefore, as proposed in [13], the moments of the F-series and G-series can be

obtained at the kinetic level:

Fi1i2···in =

∫
mci1ci2 · · · cinf(xi, ci, t, I)φ(I)dIdc1dc2dc3,

Gi1i2···inll =

∫
(mc2 + 2I)ci1ci2 · · · cinf(xi, ci, t, I)φ(I)dIdc1dc2dc3,

where c2 = cici.

We adopt the Bhatnagar-Gross-Krook (BGK) equation [85] as the basic equation in the

kinetic approach:
∂f

∂t
+ ci

∂f

∂xi
= −f − fE

τ ′
,
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where τ ′ is the relaxation time and fE is the local equilibrium distribution function given by

[14]

fE =
n

q(T )

(
m

2πkBT

)3/2

e
− 1

kBT (
m
2
C2+I)

(4.14)

with n being the number density (n = ρ/m) and q(T ) the normalization function defined by

q(T ) =

∫
φ(I)e

− I
kBT dI.

Inserting (4.14) into (4.13), we have the relation σ = (D−5)/2 due to the consistency between

(4.13) and (4.10).

Multiplying the BGK equation by mΦ(ci, I) ≡ m
(
1, ci, (c

2 + 2I/m), c2
)
and integrating

over the whole space, we have the balance equations of 6 moments u ≡ (F, Fi, Gii, Fii), which

are certainly the same as (4.2) with the collision term:

Pii = −(1/τ ′)

∫
mc2 (f − fE)φ(I)dIdc1dc2dc3.

Concerning the closure at the kinetic level, we adopt the maximum entropy principle (MEP)

that we have seen in Chapter 1, Section 2.2 (see also for rarefied monatomic gases [61, 8] and

for polyatomic ones [13]). Under MEP, the distribution function is calculated by maximizing

the entropy, which is a functional of f , under the constraints of fixed values for the moments.

In the neighborhood of equilibrium the distribution function is given by [48, 12]

f = fE

(
1− m

kB
Λ̃ ·Φ(ci, I)

)
, (4.15)

where Λ̃ is the non-equilibrium part of Lagrange multiplier. The non-equilibrium part of u is

thus given by

u− uE = −m
2

kB

∫
fE Λ̃ ·Φ(ci, I) Φ(ci, I)φ(I)dIdc1dc2dc3,

where uE is the equilibrium part. On the other hand, from the definitions of (4.12) and (4.13),

we know that u − uE ≡ (0, 0, 0, 3Π). Therefore we obtain Λ̃ in terms of the independent

variables. By using the distribution function (4.15) with this Λ̃, all moments are expressed in

closed forms. These are the same, if τ ′ = τΠ, as the constitutive equations used in (4.11).

In this way, we have confirmed in the case of rarefied polyatomic gases that our macroscopic

thermodynamic theory is perfectly in agreement with the kinetic theory and also in this case

the entropy principle gives the same results of the MEP as in the case of monatomic gases

[48]. The compatibility between two different approaches supports the validity of the present

macroscopic ET theory for any real gases given by the general system (4.7).

Finally we recall that the basic system of differential equations can be written in a sym-

metric form by using the main field Λ that, in the case of rarefied polyatomic gases, coincides
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with the Lagrange multiplier vector Λ̃+ΛE (see [48] and references therein):

ΛE ≡ 1

T

(
−g + v2

2
, −vi,

1

2
, 0

)
(4.16)

Λ̃ ≡ m

kBρT 2
Π

(
−v

2

2
, vi,

3

2(D − 3)
, − D

2(D − 3)

)
with g being the chemical potential.

4.4.3 Characteristic velocities and hyperbolic region

In a general non-equilibrium state, the characteristic velocities are given by

λ = vn (multiplicity 4), λ = vn ±

√
5

3

p+Π

ρ

where vn = v ·n with n being the unit normal of the wave front. The condition of hyperbolicity

is then expressed by Π > −p.
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Chapter 5

Fluctuating hydrodynamics based

on ET

Based on ET, the fluctuating hydrodynamics theory, which can be applied to beyond the

assumption of local equilibrium, is proposed. In particular, ET for rarefied monatomic gases

with 13 fields (mass density, velocity, temperature, viscous stress and heat flux) are studied.

The hierarchy structure of hydrodynamic fluctuations are discussed, in particular, the relation

between ET and Navier-Stokes Fourier theory is considered.

5.1 Introduction

Landau and Lifshitz developed the theory of fluctuating hydrodynamics for viscous, heat-

conducting fluids with constitutive equations of Navier-Stokes and Fourier type [86, 24, 87]

basing on thermodynamics of irreversible processes (TIP). They introduced additional stochas-

tic flux terms (generalized random forces) into the constitutive equations of the viscous stress

and the heat flux by applying the fluctuation-dissipation theorem [25, 26, 27, 28]. As we

have seen in Chapter 1, the Landau-Lifshitz (LL) theory has been applied to nano-technology

[32, 33] and molecular biology [34, 35]. In addition, the fluctuating-hydrodynamic approach

plays an effective role in the field of non-equilibrium statistical mechanics [31, 43, 44].

However, as TIP rests essentially on the local equilibrium assumption that is valid for

nonequilibrium phenomena near equilibrium, it is highly probable that TIP may no longer

be valid for highly nonequilibrium cases such as the cases where nanoflows are involved, or

the cases where rarefied gases play a role. As for the discussion on the validity criterion of

the assumption, see, for example, Ref. [89]. Extended thermodynamics (ET) is a generalized

theory being applicable to such cases.

The purpose of the present chapter is to develop a theory of fluctuating hydrodynamics
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based on ET. In particular we study for ET with the 13-fields of rarefied monatomic gases (ET-

13) shown in Chapter 1, Section 3, as a representative case. After establishing the relationship

between the present theory and the LL theory, the hierarchy structure of the hydrodynamic

fluctuations will be discussed.

5.2 Theory of fluctuating hydrodynamics based on ET

The basic equations in the present study are the linearized equations of ET-13 for a monatomic

rarefied gas around an equilibrium state. The independent variables are the mass density ρ,

velocity vi, temperature T , shear stress S⟨ij⟩ , and heat flux qi. Note that the dynamic pressure

vanishes identically in this case.

∂ρ

∂t
+ ρ0

∂vi
∂xi

= 0,

∂vi
∂t

+
aT0
ρ0

∂ρ

∂xi
+ a

∂T

∂xi
− 1

ρ0

∂S⟨ij⟩

∂xj
= 0,

a
∂T

∂t
+

2

3
aT0

∂vk
∂xk

+
2

3ρ0

∂qk
∂xk

= 0,

∂S⟨ij⟩

∂t
− 4

5

∂q⟨i

∂xj⟩
− 2aρ0T0

∂v⟨i

∂xj⟩
= −P⟨ij⟩,

∂qi
∂t

− aT0
∂S⟨ij⟩

∂xj
+

5

2
a2ρ0T0

∂T

∂xi
=
Pi

2
,

(5.1)

where a ≡ kB/m with kB being the Boltzmann constant and m the mass of a molecule, and

P⟨ij⟩ and Pi are the source terms. The quantities with and without the suffix 0 are, respectively,

the quantities at the equilibrium state and the deviations from the equilibrium state. The first

three equations represent, respectively, the mass, momentum and energy conservation laws,

and the last two are the equations of balance type for the irreversible fluxes S⟨ij⟩ and qi. Owing

to the presence of the second part that have been neglected in the traditional hydrodynamic

analysis, the rapidly changing (deterministic) modes can be taken into account. We may call

these modes fast modes. The specific entropy production Σ is obtained as follows:

Σ = λ⟨ij⟩P⟨ij⟩ + λppiPqqi ≥ 0, (5.2)

where λ⟨ij⟩ and λppi are Lagrange multipliers (see (1.135)).

Within the linear constitutive equations, we have

P⟨ij⟩ = σλ⟨ij⟩, Pi = τλppi, (5.3)

where σ and τ are positive coefficients and evaluated at the reference equilibrium state. Fur-

thermore we have already known the relations between the lagrange multipliers and original

fields (Eqs. (1.157)) :

λ⟨ij⟩ =
1

2aρ0T 2
0

S⟨ij⟩, λppi = − 1

5a2ρ0T 3
0

qi. (5.4)
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Let us now try to introduce the random forces into ET in a similar way in Chapter 1. Section

2.3. We recall the generic fluctuation-dissipation theorem. The specific entropy production is

given by Eq. (1.64):

Σ = −ẋaXa (5.5)

and where we assume the linear constitutive equation between ẋa and Xa with the phenomeno-

logical coefficient Cab, we can introduce the Gaussian white random force fa into the constitu-

tive equation in such a way that

ẋa = −CabXb + fa, (5.6)

where the mean of fa vanishes and its correlation is given by⟨
fa(x, t)fb(x

′, t′)
⟩
= kB(Cab + Cba)δ(x− x′)δ(t− t′). (5.7)

Now we easily notice the following correspondence relationship between the generic case

above and the present case:

ẋa → {P⟨ij⟩, Pi}, Xa → {−λ⟨ij⟩, −λppi}. (5.8)

And we can introduce the Gaussian white random forces r⟨ij⟩ and si into Eq. (5.3) as follows:

P⟨ij⟩ = σλ⟨ij⟩ + r⟨ij⟩, Pi = τλppi + si, (5.9)

where the means of r⟨ij⟩ and si vanish, and their correlations are given by

⟨r⟨ij⟩(x, t)r⟨mn⟩(x
′, t′)⟩ = kBσ(δimδjn + δinδjm − 2

3δijδmn)δ(x− x′)δ(t− t′),

⟨si(x, t)sj(x′, t′)⟩ = 2kBτδijδ(x− x′)δ(t− t′),

⟨r⟨ij⟩(x, t)sm(x′, t′)⟩ = 0.

(5.10)

We obtain the expressions for P⟨ij⟩ and Pi in terms of S⟨ij⟩, qi and the random forces r⟨ij⟩,

si:

P⟨ij⟩ =
1

τS
S⟨ij⟩ + r⟨ij⟩,

Pi = − 2

τq
qi + si,

(5.11)

where τS and τq are the relaxation times at a reference equilibrium state corresponding to

(1.167):

τS =
2aρ0T

2
0

σ
, τq =

10a2ρ0T
3
0

τ
. (5.12)

The means of the random forces r⟨ij⟩ and si vanish. And their correlations are given by

⟨r⟨ij⟩(x, t)r⟨mn⟩(x
′, t′)⟩ = kB

2aρ0T
2
0

τS
(δimδjn + δinδjm − 2

3
δijδmn)δ(x− x′)δ(t− t′),

⟨si(x, t)sj(x′, t′)⟩ = kB
20a2ρ0T

3
0

τq
δijδ(x− x′)δ(t− t′),

⟨r⟨ij⟩(x, t)sm(x′, t′)⟩ = 0,

(5.13)
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where the brackets ⟨ ⟩ in the left-hand side stand for the statistical average at the reference

equilibrium state.

Equations (5.1) with (5.11) and (5.13) constitute the basic system of equations for

fluctuating hydrodynamics based on ET (ET-13).

The relaxation times τS and τq can be evaluated by experiments or kinetic-theoretical

analyses. For gases with Maxwellian interatomic potential, in particular, we have the relation

3τS = 2τq [8]. Other realistic monatomic gases satisfy this relation approximately.

5.3 Two subsystems of the stochastic field equations

The basic system of equations obtained above may be decomposed into two uncoupled subsys-

tems, that is, the subsystem composed of longitudinal modes (System-L) and the subsystem

of transverse modes (System-T).

System-L

The relevant quantities of the system are given by

ρ, T, ψ

(
≡ ∂vi
∂xi

)
, ξ

(
≡
∂2S⟨ij⟩

∂xi∂xj

)
, φ

(
≡ ∂qi
∂xi

)
,

v

(
≡ −

∂2r⟨ij⟩

∂xi∂xj

)
, and w

(
≡ 1

2

∂si
∂xi

)
.

(5.14)

The spatial Fourier transform of the system is the system of the rate-type differential

equations in the space of the wave number k and time t (kt-representation) as follows:

∂ρ(k, t)

∂t
+ ρ0ψ(k, t) = 0,

∂ψ(k, t)

∂t
− aT0k

2

ρ0
ρ(k, t)− ak2T (k, t)− 1

ρ0
ξ(k, t) = 0,

a
∂T (k, t)

∂t
+

2

3
aT0ψ(k, t) +

2

3ρ0
φ(k, t) = 0,

∂ξ(k, t)

∂t
+

8

15
k2φ(k, t) +

4

3
aρ0T0k

2ψ(k, t) = − 1

τS
ξ(k, t) + v(k, t),

∂φ(k, t)

∂t
− aT0ξ(k, t)−

5

2
a2ρ0T0k

2T (k, t) = − 1

τq
φ(k, t) +w(k, t),

(5.15)

where ρ(k, t) is the spatial Fourier transform of ρ(x, t) defined as

ρ(k, t) ≡ 1

(2π)3

∫
ρ(x, t) exp(−ik · x)dx, (5.16)

and the other quantities are similarly defined.

From Eq. (5.13), the quantities v(k, t) and w(k, t) are the Gaussian white random forces
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with null means and correlations:

⟨v(k, t)v(k′, t′)⟩ = kB
aρ0T

2
0

3π3τS
k4δ(k + k′)δ(t− t′),

⟨w(k, t)w(k′, t′)⟩ = kB
5a2ρ0T

3
0

8π3τq
k2δ(k + k′)δ(t− t′),

⟨v(k, t)w(k′, t′)⟩ = 0.

(5.17)

System-T

The relevant quantities of the system are given by

ωi (≡ (curlv)i) , σi

(
≡ ϵijk

∂2S⟨kn⟩

∂xj∂xn

)
, πi(≡ (curlq)i),

xi

(
≡ −ϵijk

∂2r⟨kn⟩

∂xj∂xn

)
, and yi

(
≡ 1

2
(curls)i

)
.

(5.18)

The field equations in the kt-representation are as follows:

∂ωi(k, t)

∂t
− 1

ρ0
σi(k, t) = 0,

∂σi(k, t)

∂t
+

2

5
k2πi(k, t) + aρ0T0k

2ωi(k, t) = − 1

τS
σi(k, t) + xi(k, t),

∂πi(k, t)

∂t
− aT0σi(k, t) = − 1

τq
πi(k, t) + yi(k, t).

(5.19)

Note that, for given xi and yi, the equations for the set of variables (ωi, σi, πi) with the same

suffix i can be solved separately from those with the different suffix j(̸= i). In view of Eq.

(5.13), xi and yi are the Gaussian white random forces with null means and correlations:

⟨xi(k, t)xm(k′, t′)⟩ = kB
aρ0T

2
0

4π3τS
k4
(
δim − kikm

k2

)
δ(k + k′)δ(t− t′),

⟨yi(k, t)ym(k′, t′)⟩ = kB
5a2ρ0T

3
0

8π3τq
k2
(
δim − kikm

k2

)
δ(k + k′)δ(t− t′),

⟨xi(k, t)ym(k′, t′)⟩ = 0.

(5.20)

5.4 Elimination of the fast modes

Let us express the shear stress and the heat flux in terms of the other quantities so as to

eliminate the fast modes in the basic system of equations. We solve the last two equations of

(5.15) and (5.19) with respect to (ξ, φ) and (σi, πi), respectively, assuming, for the moment,

that the other 3 variables in the case of Eq. (5.15) (or 1 variable in the case of Eq. (5.19)) are

some given functions of k and t.

The solutions can be expressed in a generic way because the last two equations of both the

systems can be written in the following matrix form:

dy(k, t)

dt
+M(k) · y(k, t) = d(k, t) + a(k, t), (5.21)
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where y(k, t), M(k), d(k, t) and a(k, t) are given explicitly in Eq. (5.32) or (5.35) below. The

quantity a(k, t) is a Gaussian white random force vector with two components. It is important

to notice that the matrix M(k) satisfies the relation: M(−k) = M(k).

The solution of (5.21) is given by

y(k, t) = exp[−(t− t0)M(k)] · y(k, t0)

+

∫ t

t0

dθ exp[−(t− θ)M(k)] · d(k, θ)

+

∫ t

t0

dθ exp[−(t− θ)M(k)] · a(k, θ), (5.22)

where t0 is an initial time. The third term on the right-hand side may be regarded as a

Gaussian random force, which is denoted by b, i.e.,

b(k, t) ≡
∫ t

t0

dθ exp[−(t− θ)M(k)] · a(k, θ). (5.23)

The random force b is, in general, not white.

The correlation matrix χ̂(k2,k1, t2, t1) (t2 > t1) of the random force b is given by

χ̂ij(k2,k1, t2, t1)

≡ ⟨bi(k2, t2)bj(k1, t1)⟩

=

∫ t2

t0

dθ2

∫ t1

t0

dθ1 (exp[−(t2 − θ2)M(k2)])il ⟨al(k2, θ2)ak(k1, θ1)⟩ (exp[−(t1 − θ1)M(k1)])jk ,

(5.24)

where the correlation matrix of the random force a is given in the following form:

⟨al(k2, θ2)ak(k1, θ1)⟩ = Clk(k1)δ(k2 + k1)δ(θ2 − θ1) (5.25)

with a matrix C. See the relations (5.17) and (5.20).

After some calculations, we may summarize the solution compactly as follows [90]: The

solution y is expressed by

y(k, t) =

∫ t

−∞
dθΦ(k, t− θ) · d(k, θ) + b(k, t) (5.26)

with the memory function given by

Φ(k, t) = exp[−tM(k)]. (5.27)

Here we have neglected the transient effect that depends on an initial condition by taking the

limit: t0 → −∞. The mean of the random force b vanishes. And its correlation matrix is

expressed by

χ(k1, t2 − t1) = Φ(k1, t2 − t1)χ
0(k1), (5.28)
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where the quantity χ is introduced by the relation:

χ̂(k2,k1, t2, t1) = χ(k1, t2 − t1)δ(k2 + k1), (5.29)

and

χ0(k1) = χ(k1, 0). (5.30)

Finally the relation between χ0 and C is given by

M(k)χ0(k) + χ0(k)M(k)T = C(k). (5.31)

We summarize some noticeable points:

(i) We may regard the relation (5.26) as a constitutive relation between y and d with the

random force b. The quantity y is the functional of the history of the quantity d. It should be

emphasized that the constitutive relation has been obtained from the dynamic equations of the

fast modes by neglecting the dependence on the initial condition. Such constitutive relations

have been proposed in the theory of so-called generalized hydrodynamics where the transport

coefficients, in general, take into account the effect of non-locality in space and time.

(ii) As we pointed out above, we notice clearly, from Eq. (5.28), that the random force

b is the Gaussian non-white (or colored) random force. And, in accordance with the general

considerations [27, 28] on such a case, the memory function Φ defined in Eq. (5.27) plays an

essential role in both Eq. (5.26) for the constitutive equation and Eq. (5.28) for the correlation

of the random force. In other words, if we adopt some approximation in the form of the memory

function, both the constitutive equation and the correlation of the random force are affected

by the approximation simultaneously in order to keep the consistency in the theory. See also

the remark (iv) below.

(iii) The relation (5.31) is the one that connects the random force b and the random force

a. This is the key relation in the following analysis of the hierarchy structure of the random

forces in different levels of description in fluctuating hydrodynamics.

(iv) In comparison with the characteristic relaxation times for the conserved quatities such

as mass, momentum and energy, the fast modes have much smaller relaxation times, and

decay quickly. If we describe hydrodynamic phenomena in such a way that the relaxation

times τS and τq for the fast modes are sufficiently small, the memory function can be well

approximated by the Dirac’s delta function with a suitable proportional constant. See Refs.

[91, 92, 93, 94] for such a coarse graining approximation. At the same time, the random force

b in this approximation becomes to be a white random force. This case will be studied in the

next section.
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5.5 Relationship to the Landau-Lifshitz theory

In what follows, we adopt the coarse graining approximation explained above and show explic-

itly the coarse-grained solutions for the System-L and System-T [91]. We will see that these

solutions are just the ones in the LL theory.

System-L

The quantities in Eq. (5.21) are given by

y(k, t) =

[
ξ(k, t)

φ(k, t)

]
, M(k) =


1

τS

8

15
k2

−aT0
1

τq

 ,
d(k, t) =

−4

3
aρ0T0k

2ψ(k, t)

5

2
a2ρ0T0k

2T (k, t)

 , a(k, t) =

[
v(k, t)

w(k, t)

]
.

(5.32)

Denoting b = [g, h]T , we have the following relation up to the leading term with respect

to τS and τq [91]: [
ξ(k, t)

φ(k, t)

]
=

−4

3
aρ0T0k

2τSψ(k, t) + g(k, t)

5

2
a2ρ0T0k

2τqT (k, t) + h(k, t)

 . (5.33)

The Gaussian white random forces g and h have null means and correlations:

⟨
g(k, t)g(k′, t′)

⟩
=

1

3π3
kBaρ0T

2
0 k

4τSδ(k + k′)δ(t− t′),⟨
h(k, t)h(k′, t′)

⟩
=

5

8π3
kBa

2ρ0T
3
0 k

2τqδ(k + k′)δ(t− t′),⟨
g(k, t)h(k′, t′)

⟩
= 0.

(5.34)

System-T

The quantities in Eq. (5.21) are given by

y(k, t) =

[
σi(k, t)

πi(k, t)

]
, M(k) =


1

τS

2

5
k2

−aT0
1

τq

 ,
d(k, t) =

[
−aρ0T0k2ωi(k, t)

0

]
, a(k, t) =

[
xi(k, t)

yi(k, t)

]
.

(5.35)

Denoting b = [ki, li]
T , we obtain the following relations in a similar way as above [91]:[
σi(k, t)

πi(k, t)

]
=

[
−aρ0T0k2τSωi(k, t) + ki(k, t)

li(k, t)

]
. (5.36)
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Note that there is no deterministic part in πi(k, t), therefore, only the random force plays a

role. The correlations between the zero-mean Gaussian white random forces are given by⟨
ki(k, t)km(k′, t′)

⟩
=

1

4π3
kBaρ0T

2
0 k

4τS

(
δim − kikm

k2

)
δ(k + k′)δ(t− t′),⟨

li(k, t)lm(k′, t′)
⟩
=

5

8π3
kBa

2ρ0T
3
0 k

2τq

(
δim − kikm

k2

)
δ(k + k′)δ(t− t′),⟨

ki(k, t)lm(k′, t′)
⟩
= 0.

(5.37)

The relationship between the present theory and the LL theory: We can now

confirm that the expressions in Eqs. (5.33), (5.34), (5.36) and (5.37) are exactly the same as

those derived from the LL theory where the shear viscosity µ and the heat conductivity κ are

identified by the relations (1.170):

µ = aρ0T0τS , κ =
5

2
a2ρ0T0τq. (5.38)

Thus we have proved that the LL theory can be derived from the present theory by using the

coarse graining approximation, and that the LL theory is included in the present theory as a

limiting case.

The present theory and the LL theory belong to the two different levels of description of

fluctuating hydrodynamics. As we analyzed above, the rapidly changing deterministic modes

(fast modes) in ET have been consistently re-normalized into the random forces in the LL the-

ory. Therefore, from a physical point of view, the delta functions appeared in the correlations

have their own validity range depending on the spatio-temporal resolution of their description

level.

5.6 Discussion and concluding remarks

In the present chapter, we have summarized the recent theory of fluctuating hydrodynamics

based on ET. And we have made clear the link between the two levels of description of fluctu-

ating hydrodynamics, that is, the present theory based on ET-13 and the LL theory. This link

has been established through introducing another intermidiate level of description, which is

characterized by the conservation equations with the memory-type constitutive equation and

the colored Gaussian random force. In this way, we notice that there are at least three levels

of description of fluctuating hydrodynamics in the present work. And we notice, in particular,

the explicit hierarchy structure of the random forces.

Generally speaking, there are many such levels. Boillat and Ruggeri [8, 48] found the

hierarchy structure of ET and the important concept called the “main subsystem” of field

equations. Each main subsystem gives us one level of description with different resolution

from each other. And, in a similar way as above, we can develop the corresponding fluctuating

hydrodynamics basing on a given main subsystem (Chapter 1, Section 3).
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Finally we summarize the concluding remarks:

(i) In ET, Navier-Stokes and Fourier constitutive equations are obtained as its limit case by

using an iterative scheme called the Maxwellian iteration [8]. If we apply this scheme formally

to the present basic system with random forces, we can also obtain the results of the LL theory.

(ii) In the present chapter, we have studied a monatomic rarefied gas only. Fluctuating

hydrodynamics can also be established in a similar way by using ET for polyatomic rarefied

gases and for monatomic and polyatomic dense gases proposed in Chapter 2 where the dynamic

pressure exists. We hope that we will soon show their details.

(iii) As the basic system of equations in ET is of hyperbolic type, the propagation speed

of information is finite. In this respect, ET is in sharp contrast to the traditional theory of

Navier-Stokes and Fourier type that predicts infinite speeds for the propagation of heat and

shear stress. It is, therefore, quite reasonable to adopt ET in order to develop, in particular,

the relativistic fluctuating hydrodynamics. See the pioneering work by Calzetta [95].

(iv) Numerical analyses based on the present theory in various situations are highly ex-

pected. We can expect qualitatively different effects predicted by the present theory from those

by the LL theory, especially when we study the fluctuations in a small spatio-temporal scale.
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Chapter 6

Summary and concluding remarks

In this thesis, we developed the following two theoretical approaches, which opened a new field

of non-equilibrium thermodynamics:

1. Extended thermodynamics of dense gases

2. Fluctuating hydrodynamics based on extended thermodynamics

The details and the characteristics of the recently developed theory of ET for dense gases

are discussed in Chapter 2. The new approach of ET for dense gases is based on balance

equations with two hierarchy series. The constitutive equations are determined by the entropy

inequality, concavity and material frame indifference. As a result, we extended the applicable

range of ET to rarefied polyatomic gases, dense monatomic gases and dense polyatomic gases,

which were not fully explored. This means that there are potentially many research fields

where this approach may play a crucial role. As typical dense gases, hard-sphere gases and

van der Waals fluids are studied. Moreover, the subtle point with respect to the concavity

condition in the case of monatomic gases became apparent.

The validity of the new approach is tested by studying the dispersion relation of sound in

rarefied polyatomic gases in Chapter 3. The dispersion relation is compared with experimental

data and Navier-Stokes Fourier theory. The results show that ET is valid even in the case

of a non-equilibrium state out of local equilibrium. Moreover, the bulk viscosity and the

relaxation times were evaluated. Hydrogen, deuterium and hydrogen deuteride gas analyses

were performed at several temperatures, and the results strongly suggest that the ET theory

for dense gases deserves further attention.

To clarify the role of dynamic pressure, we studied the ET for dense gases with 6 inde-

pendent fields in Chapter 4. A fully-consistent thermodynamic theory of sound in gases with

energy transfer was established on the basis of ET, valid even in the region where the local

equilibrium assumption does not hold. The relationship between the theory with 6 indepen-

dent fields and Meixner ’s theory was also shown. It was found that, as far as the dispersion
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relation of weak sound propagation in equilibrium state is concerned, both theories predict the

same expression for dispersion.

Obviously, the consistent thermodynamic theory of dense gases that is valid beyond the

local equilibrium assumption is crucially important, for example, in acoustics [74] and gas

dynamics [7], and in their various applications in the fields of engineering, biology and so on.

In Chapter 5, we proposed the fluctuating hydrodynamics approach based on ET. We

clarified the link between the two levels that describe the fluctuating hydrodynamics, that is,

the theory based on the ET for rarefied monatomic gases with 13 independent fields and the

Landau-Lifshitz theory. This link has been established by introducing an intermediate level of

description, which is characterized by conservation equations with memory-type constitutive

equations and the colored Gaussian random force. Consequently, there are at least three levels

that describe the fluctuating hydrodynamics in the present work and, in particular, the explicit

hierarchy structure of the random forces.

The concluding remarks have as follows:

1. We have clearly demonstrated the usefulness and potential of ET for dense gases and

fluctuating hydrodynamics based on ET, and we believe that this new approach will open

new fields in modern science and engineering.

2. We have clarified the subtle point of the ET for dense gases in the case of monatomic

gases. This point is interesting from a physical and mathematical viewpoints; also, it is

worthy of further study and will be considered as the future subject.

3. In ET, Navier-Stokes and Fourier constitutive equations are obtained as the limiting case

by using an iterative scheme called the Maxwellian iteration. By applying this scheme to

the present basic system with random forces, the results of the Landau-Lifshitz theory

can be also obtained.

Lastly we list topics for future work using the developed theoretical approach:

• Analysis of wave propagation phenomena in dense gases.

• Analysis of the propagation of non-linear waves such as acceleration waves and shock

waves.

• Extend the ET-based fluctuating hydrodynamics to rarefied polyatomic gases and dense

gases.

• Extend the applicable range of the ET for dense gases and the fluctuating hydrodynamics

to the relativistic region, and pay particular attention to the effect of dynamic pressure.
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Vol. 34, No. 1, pp. 65–84, 1981.

[48] G. Boillat and T. Ruggeri. Hyperbolic principal subsystems: Entropy convexity and

subcharacteristic conditions. Arch. Rational Mech. Anal., Vol. 137, pp. 305–320, 1997.

[49] T. Ruggeri. Galilean invariance and entropy principle for systems of balance laws. Cont.

Mech. Thermodyn., Vol. 1, pp. 3–20, 1989.

[50] H. Engholm Jr. and G. Kremer. Thermodynamics of a diatomic gas with rotational and

vibrational degrees of freedom. Int. J. Engng Sci., Vol. 32, No. 8, pp. 1241 – 1252, 1994.

[51] G. M. Kremer. Extended thermodynamics of molecular ideal gases. Continuum Mechanics

and Thermodynamics, Vol. 1, pp. 21–45, 1989. 10.1007/BF01125884.

[52] G. M. Kremer. Extended thermodynamics and statistical mechanics of a polyatomic ideal

gas. J. Non-Equil. Therm., Vol. 14, pp. 363–374, 1989. 10.1515/jnet.1989.14.4.363.

[53] L. I-Shih. Extended thermodynamics of fluids and virial equations of state. Arch. Rational

Mech. Anal., Vol. 88, pp. 1–23, 1985.

[54] G. M. Kremer. Extended thermodynamics of non-ideal gases. Physica A, Vol. 144, No. 1,

pp. 156–178, 1987.

[55] I.-S. Liu and G. M. Kremer. Hyperbolic system of field equations for viscous fluids. Mat.

Aplic. Comp, Vol. 9, No. 2, pp. 123–135, 1990.

116



Bibliography

[56] I.-S. Liu and J. A. Salvador. Hyperbolic system for viscous fluids and simulation of shock

tube flows. Cont. Mech. Thermodyn., Vol. 2, pp. 179–197, 1990.

[57] G. M. Kremer. On extended thermodynamics of ideal and real gases. In P. S. Stanislaw,

Sieniutycz, editor, Extended Thermodynamic Systems, pp. 140–182. Taylor & Francis,

New York, 1992.

[58] I.-S. Liu. Method of lagrange multipliers for exploitation of the entropy principle. Arch.

Rational Mech. Anal., Vol. 46, pp. 131–148, January 1972.

[59] D. Zubarev. Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York-

London, 1974.

[60] K. O. Friedrichs and P. D. Lax. Systems of conservation equations with a convex extension.

Proc. Nat. Acad. Sci. USA., Vol. 68, No. 8, pp. 1686–1688, 1971.

[61] W. Dreyer. Maximisation of the entropy in non-equilibrium. J. Phys. A., Vol. 20, No. 18,

pp. 6505–6517, 1987.

[62] A. Münster. Statistical Thermodynamics, Volume 2: Theory of Crystals. Theory of Liq-

uids. Springer, Heidelberg, New York, 12 1973.

[63] J. A. Barker and D. Henderson. What is ”liquid”? understanding the states of matter.

Rev. Mod. Phys., Vol. 48, pp. 587–671, Oct 1976.

[64] J. Hansen and I. McDonald. Theory of simple liquids. Academic press, London, 1996.

[65] N. F. Carnahan and K. E. Starling. Equation of state for nonattracting rigid spheres. J.

Chem. Phys., Vol. 51, No. 2, pp. 635–636, 1969.

[66] T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama. Extended thermodynamics of

dense gases. Cont. Mech. Thermodyn., Vol. 24, pp. 271–292, 2012.

[67] T. Arima and M. Sugiyama. Characteristic features of extended thermodynamics of dense

gases. Atti della Accademia Peloritana dei Pericolanti, Vol. 90, pp. 1–15, 2012.

[68] A. Muracchini, T. Ruggeri, and L. Seccia. Dispersion relation in the high frequency limit

and non linear wave stability for hyperbolic dissipative systems. Wave Motion, Vol. 15,

No. 2, pp. 143 – 158, 1992.

[69] J. E. Rhodes. The velocity of sound in hydrogen when rotational degrees of freedom fail

to be excited. Phys. Rev., Vol. 70, pp. 932–938, Dec 1946.

117



Bibliography

[70] C. Sluijter, H. Knaap, and J. Beenakker. Determination of rotational relaxation times

of hydrogen isotopes by sound absorption measurements at low temperatures. i. Physica,

Vol. 30, No. 4, pp. 745 – 762, 1964.

[71] L. D. Landau and E. M. Lifshitz. Statistical Physics. Part 1. Oxford, Pergamon, 3rd

edition, 1980.

[72] L. D. Landau and E. M. Lifshitz. Quantum Mechanics, Non-Relativistic Theory. Course

of theoretical physics. Oxford, Pergamon, 3rd edition, 1977.

[73] A. A. Radzig and B. M. Smirnov. Reference Data on Atoms, Molecules and Ions. Springer

Series in Chemical Physics. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 12

1985.

[74] W. P. M. (ed.). Physical Acoustics, Principles and Methods, Volume II - Part A. Academic

Press, New York, London, 3 1965.

[75] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform Gases: An

Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases.

Cambridge University Press, 3 edition, 1 1991.

[76] B. C. Eu and Y. G. Ohr. Generalized hydrodynamics, bulk viscosity, and sound wave

absorption and dispersion in dilute rigid molecular gases. Phys. Fluids. A, Vol. 13, No. 3,

pp. 744–753, 2001.

[77] G. Emanuel. Bulk viscosity of a dilute polyatomic gas. Phys. Fluids. A, Vol. 2, No. 12,

pp. 2252–2254, 1990.

[78] W. E. Meador, G. A. Miner, and L. W. Townsend. Bulk viscosity as a relaxation param-

eter: Fact or fiction? Phys. Fluids., Vol. 8, No. 1, pp. 258–261, 1996.

[79] G. Emanuel. “bulk viscosity as a relaxation parameter: Fact or fiction?” [phys. fluids

[bold 8], 258 (1996)]. Phys. Fluids., Vol. 8, No. 7, pp. 1984–1984, 1996.

[80] G. Emanuel. Bulk viscosity in the navier-stokes equations. Int. J. Engng Sci., Vol. 36,

No. 11, pp. 1313 – 1323, 1998.

[81] R. Graves and B. Argrow. Bulk viscosity: past to present. J. Thermophys. Heat Transfer,

Vol. 13, No. 3, pp. 337–342, 1999.

[82] H. Bauer. Phenomenological Theory of the Relaxation Phenomena in Gases. Physical

Acoustics II part A. Academic Press, New York, London, 1998.

118



Bibliography

[83] T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama. Extended thermodynamics of real

gases with dynamic pressure: An extension of meixner’s theory. Phys. Lett. A., Vol. 376,

No. 44, pp. 2799 – 2803, 2012.

[84] T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama. Dispersion relation for sound in

rarefied polyatomic gases based on extended thermodynamics. Cont. Mech. Thermodyn.,

2012. DOI:10.1007/s00161-012-0271-8.

[85] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases.

i. small amplitude processes in charged and neutral one-component systems. Phys. Rev.,

Vol. 94, pp. 511–525, May 1954.

[86] E. M. L. L. D. Landau. Hydrodynamic fluctuations. Soviet Phys. JETP, Vol. 5, pp.

512–513, 1957.

[87] E. M. Lifshitz and L. P. Pitaevskii. Statistical Physics. Part 2. Landau and Lifshitz course

of Theoretical physics. Oxford: Pergamon, 3rd edition, 1980.

[88] Y. Demirel. Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical

& Biological Systems. Elsevier Science, 1 edition, 12 2002.

[89] N. Pottier. Nonequilibrium Statistical Physics: Linear Irreversible Processes (Oxford

Graduate Texts), chapter 2. Oxford Univ Pr, Oxford, 12 2010.

[90] T. Arima, S. Taniguchi, and M. Sugiyama. to be submitted.

[91] A. Ikoma, T. Arima, S. Taniguchi, N. Zhao, and M. Sugiyama. Fluctuating hydrodynamics

for a rarefied gas based on extended thermodynamics. Phys. Lett. A., Vol. 375, No. 27,

pp. 2601 – 2605, 2011.

[92] M. Miguel and J. Sancho. A colored-noise approach to brownian motion in position space.

corrections to the smoluchowski equation. J. Stat. Phys., Vol. 22, pp. 605–624, 1980.

[93] J. Sancho, M. Miguel, and D. Dürr. Adiabatic elimination for systems of brownian particles

with nonconstant damping coefficients. J. Stat. Phys., Vol. 28, pp. 291–305, 1982.

[94] K. Sekimoto. Temporal coarse graining for systems of brownian particles with non-

constant temperature. J. Phys. Soc. Jpn., Vol. 68, No. 4, pp. 1448–1449, apr 1999.

[95] E. Calzetta. Relativistic fluctuating hydrodynamics. Class. Quantum Grav., Vol. 15,

No. 3, pp. 653–668, 1998.

119





List of Papers

Chapter 2.

♢ T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama: Extended thermodynamics of

dense gases. Continuum Mechanics and Thermodynamics, 24, pp.271-292 (2012).

♢ T. Arima and M. Sugiyama: CHARACTERISTIC FEATURES OF EXTENDED THER-

MODYNAMICS OF DENSE GASES. Atti della Accademia Peloritana dei Pericolanti,

vol 90, pp. 1-15 (2012).

Chapter 3.

♢ T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama: Dispersion Relation for Sound in

Rarefied Polyatomic Gases Based on Extended Thermodynamics. Continuum Mechanics

and Thermodynamics, DOI 10.1007/s00161-012-0271-8 (2012).

Chapter 4.

♢ T. Arima, S. Taniguchi, T. Ruggeri and M. Sugiyama: Extended thermodynamics of real

gases with dynamic pressure: An extension of Meixner’s theory. Physics Letters A, 376,

pp. 2799-2803 (2012).

Chapter 5.

♢ T. Arima, A. Ikoma, S. Taniguchi, M. Sugiyama and N. Zhao: Fluctuating hydrody-

namics based on extended thermodynamics. Note di Matematica. 32 (1), pp. 227-238

(2012).

♢ A. Ikoma, T. Arima, S. Taniguchi, N. Zhao and M. Sugiyama: Fluctuating Hydrody-

namics for a Rarefied Gas Based on Extended Thermodynamics. Physics Letters A, 375,

pp. 2601-2605 (2011).

121


