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Abstract

Non-equilibrium phenomena with evident spatio-temporal changes in physical quantities
are notably interdisciplinary and encountered in engineering, physics, chemistry, biology and
so on. For example, such phenomena appear in mesoscopic scale fluid flow, shock waves in
the field of high-speed hydrodynamics, ultrasonic waves. In particular, in mesoscopic systems,
the effects of fluctuations become essentially significant. These phenomena have been studied
from the view point of thermodynamics.

For strongly non-equilibrium phenomena, I. Miiller, T. Ruggeri and I. S. Liu proposed,
developed and applied the extended thermodynamics (ET) theory. ET can be used to describe
phenomena beyond the applicable range of well-known theory, that is, thermodynamics of irre-
versible processes (TIP) proposed by L. Onsager, C. Eckart, J. Meixner and I. Prigogine. For
phenomena with fluctuations, the Landau-Lifshitz (LL) theory, a fluctuating hydrodynamics
theory based on TIP has shown scope for future study. However, ET and LL have the following

problems:
1. ET is presently limited to rarefied monatomic gases.

2. No theory can simultaneously describe fluctuations and strongly non-equilibrium phe-

nomena.

In this thesis, the applicable range of ET is extended to rarefied polyatomic, dense monatomic
and dense polyatomic gases. For rarefied polyatomic gases, the validity of this theory is shown
by studying the dispersion relation of sound and comparing it with experimental data. The fea-
tures of the new theory are discussed by paying attention to the process of energy transfer from
the molecular translational mode to internal modes. Furthermore a fluctuating hydrodynamics
approach based on ET is proposed.

The thesis is organized as follows:

In Chapter 1, the background and the purpose of the present study is discussed. Previous
studies regarding non-equilibrium phenomena are briefly introduced by focusing on TIP, kinetic
theory and LL. In addition, the recent developed non-equilibrium thermodynamic theory, that
is, ET is introduced. In particular, the basic concepts and mathematical structure of ET are
discussed.

In Chapter 2, we discuss the ET of dense gases by adopting a system of field equations
with a different hierarchical structure than that found in previous works. It is the theory of
14 fields; mass density, velocity, temperature, viscous stress, dynamic pressure and heat flux.
As a result, most of the constitutive equations can be explicitly determined by the caloric and

thermal equations of state. The proposed theory includes rarefied polyatomic gases, and it is



shown that the rarefied-gas limit is consistent with the kinetic theory of gases. We also use the
general theory developed in this chapter to analyze three physically important systems: (1) a
gas that can be described with virial equations of state, (2) a hard-sphere system and (3) a
van der Waals fluid.

In Chapter 3, we discuss the dispersion relation of sound in rarefied polyatomic gases
(hydrogen, deuterium and hydrogen deuteride gases) based on the ET approach for dense
gases proposed in Chapter 2. In addition, we compare experimental and theoretical results.
The latter were based on the classical Navier-Stokes Fourier (NSF) theory. The applicable
frequency-range of the ET approach proved much wider than that of the NSF theory. We
also evaluated the bulk viscosity and relaxation times of non-equilibrium processes. The relax-
ation time related to the dynamic pressure has a possibility to become much larger than the
relaxation times related to shear stress and heat flux.

In Chapter 4, using the ET approach for dense gases, we discuss the thermodynamic theory
of gases with the energy transfer from the molecular translational mode to the internal modes
as an extension of Meixner’s theory. We also focus our attention on the simplest case with
only one dissipative process due to the dynamic pressure. The derived dispersion relation of
sound is compared with that derived with Meixner’s theory. The kinetic theoretical basis of
the present approach is also discussed.

In Chapter 5, we expand on the fluctuating hydrodynamics based on ET by using a 13-
variable theory for a rarefied monatomic gases as an example. After analyzing the relationship
between the proposed theory and the LL theory, we discuss the hierarchical structure of the
hydrodynamic fluctuations.

In Chapter 6, we summarize all the results, present the conclusions and suggest directions

for future investigations.
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CONTENTS

Notations
time tij:  stress
position (i = 1,2, 3) S;ij:  shear stress
velocity of a molecule I (= —5S;i/3) : dynamic pressure
volume Q- heat flux
oV: surface W shear viscosity
independent fields v bulk viscosity
mass of a molecule K: heat conductivity
kp: Boltzmann constant Tg:  relaxation time related to shear viscosity
degrees of freedom ;. relaxation time related to bulk viscosity
specific entropy per unit volume T4:  relaxation time related to heat flux
specific entropy per unit mass ¢y:  specific heat
non-convective entropy flux co:  sound velocity at a equilibrium
entropy production w: frequency
mass density k: complex wave number
temperature w:  constant amplitude vector
specific internal energy per unit mass | vp,: phase velocity
pressure a: attenuation factor
velocity of a system

e A dot on a generic quantity v represents the material time derivative:

Lo O
V= T ligy

e Parentheses around a set of N indices represent the symmetrization with respect to
these indices, that is, the sum over all N! permutations of the indices divided by N!. For

example,
1
a(zb) = a(aib]‘ + ajbi),

1
a(ibjck) = 30 [ai(bjck + bij) + aj(bkcz- + bick) + ak(biCj + bjcz-)] .

e Angular brackets denote the symmetric traceless part with respect to these indices (de-
viatoric part). For example,

1
Afij) = a(ij) = 5 kkDij-

v



Chapter 1

Introduction

1.1 Background

1.1.1 What are the theory requirements in modern science and engineering?

The real world is full of complex and different non-equilibrium phenomena, such as the flow of
air, the temperature change in the coffee, sound propagation and so on, which tend to approach
equilibrium with high probability. Such phenomena attract our genuine curiosity, and draw our
attention as they are intimately-connected with our life. Our recognition of nature starts with
the recognition of macroscopic materials; we know that such phenomena can be treated well
as the time evolution of macroscopic variables, which are a continuum with respect to time
and space. In other words, non-equilibrium phenomena can be described by the dynamics
of a continuum body without the microscopic details. Thus, the continuum dynamics that
include thermodynamics and fluid dynamics were developed. On the other hand, materials are
made of molecules, which consist of atoms, and atoms consist of elementary particles. This
fact indicates that macroscopic phenomena are caused by the motion of microscopic particles.
Thus, statistical mechanics and kinetic theory were developed.

The abovementioned descriptions indicate that we recognize, in nature, a hierarchical struc-
ture that depends on scale. Governing equations were proposed for each hierarchical level. For
example, in the case of the dynamics of gases, the hierarchical structure and corresponding
typical equations are shown in Table 1.1. To understand a macroscopic system, the links
among hierarchical levels should be considered.

In modern science and engineering, mesoscopic scale phenomena are noteworthy. As an ex-
ample, one can consider thermal and hydrodynamic phenomena in the field of micro-fabrication
technology, ultrasonic waves, shock waves in high-speed hydrodynamics, chemical reactions
within the body and so on. To consider mesoscopic scale phenomena, we need to describe the

evident spatio-temporal changes in physical quantities. Moreover, in the spatially mesoscopic
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Table 1.1: Hierarchical structure

Hierarchy level Typical equation

Microscopic scale description | Liouville equation

Mesoscopic scale description | Boltzmann equation

Macroscopic scale description | Navier-Stokes Fourier

scale, the effect of “fluctuation”.

In this thesis, we have paid attention to phenomena related to fluids. The Boltzmann equa-
tion in Table 1.1 gives good results for gas-related phenomena; however, its applicability range
is mainly limited to rarefied gases. To construct a general theory that describes mesoscopic
phenomena, with or without fluctuation, a phenomenological approach, i.e., thermodynamical
approach is needed. This is our purpose in this thesis. After the formulation of non-equilibrium
thermodynamics, the way for statistical mechanical description will be paved as equilibrium

thermodynamics guided equilibrium statistical mechanics.

1.1.2 Applications

As already mentioned, the need to understand of the non-equilibrium phenomena is interdis-

ciplinary. Some examples are given below.

Ultrasonic waves: An ultrasonic wave is a high-frequency sound wave in which physical
quantities undergo evident changes temporally. Ultrasonic waves are used in non-destructive
inspection of construction works, biomedical ultrasound, ultrasonic diagnosis and ultrasonic
motor technology. Studies of ultrasonic waces have used ultrasonic wave’s characteristics such

as dispersion, absorption, reflection, inflection and interference.

Shock waves: A shock wave is characterized by steep and rapid changes in physical quan-
tities at the shock front. For example, shock waves appear around a spacecraft entering the
Farth’s atmosphere. Therefore, to design better and safer spacecrafts, the effect of shock
waves must be considered. The structure of a shock wave can be studied by non-equilibrium

thermodynamics.

Thermal and hydrodynamic phenomena with fluctuations in fluids at the meso-
scopic scale: The rapid development of nanotechnology involves nano-particles and mi-
crofabrication method for manufacturing nanodevices such as micro electro mechanical sys-

tems(MEMS); hence, more accurate control of fluids in the meso or nano scale is required. In
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these technologies, the effect of fluctuations cannot be ignored, especially in flow channels of
small width and objects of small size. For example, to cntrol the shape of nanojet ejection or

the breakdown of a fluid to droplets, the effect of fluctuations has to be studied [1].

1.2 Brief summary of non-equilibrium physics

In this section, we have summarized some of the most notable achievements in the field of non-
equilibrium physics, especially fluid physics. In particular, we concentrated on the historical
development of the new non-equilibrium thermodynamics. Therefore, we give a brief summary
of non-equilibrium physics from the point of view of (i) continuum dynamics, (ii) kinetic theory
and (iii) theory of fluctuations. We do not discuss the topic in detail despite the many good

examples from the non-equilibrium statistical mechanics literature.

1.2.1 Continuum dynamics

First, we consider the theory that treats the dynamics of a continuum body, the so-called
continuum dynamics. This approach proved extremely fruitful when applied to describe equi-
librium and non-equilibrium state of matter. Several particularly important theories were

based on this approach.

Equilibrium thermodynamics

We first review the equilibrium thermodynamics, because of its importance in science and
engineering. Equilibrium thermodynamics describes the relations between equilibrium states
as the name suggests. The definition of equilibrium is that “The system is spatio-temporally
uniform at rest.” The system is completely characterized by state variables such as tempera-
ture, pressure and density. This theory is systematized based on the law of the conservation
of energy (first law of thermodynamics) by Julius Robert von Mayer, James Prescott Joule
and Hermann von Helmholtz, and the entropy inequality (second law of thermodynamics) by
Rudolf Clausius and William Thomson (Lord Kelvin).

Irreversibility and phenomenological laws

The entropy inequality introduces the concept of irreversibility, which indicates the time evolu-
tion of the system, that is, the existence of irreversible processes from a non-equilibrium state
to an equilibrium state. Examples of irreversible processes are heat conduction, diffusion, shear
flow and electrical conduction. They are caused by the spatio-temporal non-uniformity of a
system. Phenomenological relations were proposed and applied to describe the irreversible

processes and various non-uniformities of system (Table 1.2).

3



CHAPTER 1. INTRODUCTION

Table 1.2: The phenomenological relations between irreversible processes and various non-

uniformities of system.

Irreversible process Phenomenological law

Heat conduction Fourier’s law : heat flux o« temperature gradient

Diffusion Fick’s law : matter flow o< concentration gradient

Shear flow Navier-Stokes law : shear stress o velocity gradient

Electrical conduction | Ohm’s law : electric current o electric potential gradient

Field variables and balance equations

To describe the spatio-temporal changes in a system, we introduce field variables that are
a function of space x and time t. The changes in field variables are caused by the flux,
production and supply from the outside. Therefore, the field variables are governed by the
balance equations, which are satisfied by all materials. On the other hand, the materials
characteristics are reflected in the constitutive equations. The abovementioned concepts can
be summarized as follows: (i) the construction of suitable balance equations for the investigated
system and (ii) the derivation of constitutive equations for the investigated materials.

Let us consider the general form of the balance equations for a one-component fluid. The
shape, size and location of the system change, because the elements of the surface 9V of
volume V' move with velocity u;(x,t)(i = 1,2,3), depend on the position x and time ¢. A
general quantity W of the system can be expressed by the specific value v per mass density p

as follows:

\I/:/prdV. (1.1)

By considering the effects of flux, production and supply, the time evolution of ¥ follows the

equation of balance:

d
— [ pypdV = —/ p(v; — ui)n;dA — pin;dA + /p(Tr +¢)dV. (1.2)
at Jy av ov v

The first term on the right-hand side of Eq. (1.2) represents the convective flux through the
surface, and the second term represents the non-convective flux through an outer unit normal
n; to OV and the third term comprises by the production density pm and supply density pt.
For simplicity, we consider the system at rest. In this case, u; = 0 and V is independent of

time. From Eq. (1.2) and by using Gauss’s theorem, in a regular point where the smoothness

4
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is guaranteed, we obtain the time evolution equation of 4 in the local form

opy n A(ppv; + @)

5t oz, = p(m+1). (1.3)

Based on Eq. (1.3), let us consider the balance equations of mass, momentum and energy, i.e.
the laws of conservation with no productions. The time evolution of the mass density p only
depends on the convective flux. The time evolution of the momentum density pv; depends on
the stress t;; for the non-convective flux and on the external force for the supply. The time
evolution of the energy density pe where ¢ is the specific internal energy, depends on the heat
flux g; for non-convective flux and on the specific value of absorbed heat radiation Z for supply,

where suffixes i, j = 1,2,3. We summarize v, ¢, ™ and ¢ of the conservation laws in Table 1.2.1.

Figure 1.1: The system in the flow.

Table 1.3: The density, non-convective flux, production and supply for conservation laws of

mass density, momentum and energy

N ) 10) T L
Mass 1 0 0 0
Momentum v; —t;j 0 i
Energy €+ % —tijv;+¢q | 0| fivi+ Z

Thermodynamics of irreversible process

The thermodynamics of irreversible process (TIP) [2, 24, 88] by Lars Onsager, Carl Henry
FEckart, Josef Meixner, Ilya Prigogine to describe non-equilibrium phenomena. Linear TIP

theory describes the irreversible processes well and has played a fundamental role in many

5
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engineering and scientific fields fields, for systems not far from equilibrium. Therefore, a
system is characterized by slow variables.
Let us summarize the TIP for a one-component, viscous, heat-conducting fluid, which is

characterized by five fields:

mass density p(xi, t),
velocity vi (4, ), (1.4)
temperature T(xi, t),

(1.5)

The time evolution of each field is governed by the law of conservation of mass, momentum
and energy. We assume that there is not a body force and supply. In this case, by substituting
the elements of Table (1.2.1) with f; = 0 and (=0 into Eq. (1.3), we obtain

8’()]'

—_— O7
p+ paxj

8tij

- =0 :
pU; oz, (1.6)
. 0qj Ov;
- =0

pet 8:1:j " ij ’

where the pressure p and the specific internal energy ¢ depend on p and T, and the stress is
given by t;; = —pd;; +S;; where II = —S;; /3 is the dynamic pressure. To obtain the closed field
equations, we consider the constitutive equations that relate €, S;),1I, ¢; to the independent
fields.

At local equilibrium even though the whole system is not in equilibrium, there are elements
that are in equilibrium. Based on this assumption, the relation between the specific entropy

density s(z,t) and e(x,t), the so-called Gibbs relation, is

s:;G—;o, (1.7)

where the pressure p is a function of p and T. By substituting the laws of conservation in Eq.

(1.6) into this relation, we obtain

0 (@) G or 1 Qv IH(%n

B Bl N . 1.
8332' T N T 81‘n ( 8)

pst T2 Ox; + i 0x;

Equation (1.8) can be interpreted as the balance equation of entropy. Subsequently, the entropy

flux and production can be described with the following equations:

_a

T

g T N 1 dui 1 duy (1.9)
T2 0x; T ) 5 T Ox,

entropy flux: ©;

entropy production: X =
7)
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Table 1.4: Thermodynamic fluxes and thermodynamic forces.

Thermodynamic fluxes Thermodynamic forces
] T
heat flux qi temperature gradient 3
2
. . . . . 3”21‘
traceless part of viscous stress Sy | deviatoric velocity gradient
ng>
v
dynamic pressure II divergence of velocity a—n
T,

Entropy production is expressed as product of the dissipative flux of the conserved quantities
(thermodynamic fluxes) and the gradients of the intensive variables (thermodynamic forces)
in Table 1.4.

For the linear constitutive equations, we assume a linear relationship between the thermo-

dynamic fluxes and thermodynamics forces as follows

T
q; = Ka.Ti’
8’U<Z'
=9 .
Stii) = 2ty (1.10)
vy,
0= e

where the heat conductivity k, shear viscosity p and bulk viscosity v are positive because of
the requirement of the entropy principle in Eq. (1.8). These relations are known as the Navier-
Stokes Fourier law, which we mentioned before. When the heat conductivity, shear viscosity
and bulk viscosity are given, and the thermal and caloric equations of state p = p(p,T') and
e =£&(p,T) are adopted, all the coefficients in the basic equations can be determined.

Finally, we summarize the closed field equations of Eq. (1.6) as
ij
. Qi _y,
p+tp D

. 0
pU; + e [(p +11)6;5 — S(ij)] =0, (1.11)
Lj

86) . 0gj [( 2(85) ) } Ov;
Z) T+ (p=p? (=) +T0) 65— Sup | o = 0.
p(a:r BT P \op) 7720 | g

This set of equations is part of the Navier-Stokes Fourier (NSF) theory which is a well-known
theory of viscous heat-conducting fluids in the framework of TIP.

In the present section, we have summarized the case in which the irreversible processes exist
independently. However, in general, the irreversible processes appear in a coupled form, such
as the Seebeck effect, the Peltier effect and the Soret effect. Such coupled effects are explained

by Onsager’s reciprocal relations, which are derived from considering the fluctuations.

7



CHAPTER 1. INTRODUCTION

The problems of TIP

TIP is a successful theory; however, it has two fundamental problems.

The first problem is that the applicable range of TIP is limited by the assumption of
local equilibrium. Therefore, TIP cannot describe non-equilibrium phenomena with evident
spatio-temporal changes of physical quantities beyond this assumption.

The second problem is that TIP cannot be applied to relativistic phenomena, in principle,
because the propagation speed of information becomes infinite. We demonstrate this specifi-
cally for a one-component fluid with constant mass density at rest. Then, the time evolution

equation of temperature in Eq. (1.11)5 becomes

or

K
= AT (1.12)
ot p(57),

The solution of this equation is

00 —x 2
T(w, t) = W /_Oo T(y, 0)exp (-“’wt)) dy (1.13)

where D = % / g—;. This implies that the temperature at space & and time ¢ is influenced by
the temperature at all spaces and t = 0. This means that the information spreads to space
with infinite speed with regard to temperature. From a theoretical point of view, this is the
problem of infinite speed of disturbances, which is called the paradox of heat conduction, and
it is attributed to the parabolic character of the basic equations that are spatially non-local

constitutive equations [3].

Studies beyond TIP

After the establishment of TIP, many studies were proposed to process much stronger non-

equilibrium phenomena. These studies may be classified into two types:

1. Far from equilibrium and based on the local equilibrium assumption
In a far-from-equilibrium state, non-linearity becomes increasingly essential and generates
diversity. Several approaches were taken based on the foundations of TIP. In this case,
the thermodynamic fluxes are no longer linear functions of the thermodynamic forces [4].
Studies based on the theory of stability are necessary because the violation of stability
causes a system to transform to a dissipative structure. Then, bifurcation phenomena
are obsereved and the knowledge of dynamical systems is introduced. The Belousov-

Zhabotinsky reaction is a well-known example of a dissipative structure.

2. The theory beyond the assumption of local equilibrium

TIP adopts the slow variables as independent variables. To describe the rapid changes in

8



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

physical quantities, studies that adopted the fast variables as well as the slow variables
were developed. For example, some additive equations, which indicate relaxation of
the dissipative variables, are introduced into the laws of conservation in the field of gas
dynamics as in Meixner’s theory [5, 6, 7]. Although there are many theories such as the
extended TIP or extended irreversible thermodynamics, the extended thermodynamics
(ET) theory [8, 9], which is based on symmetric hyperbolic system, has been anticipated

because of its principled systematic structure and many applications of its.

In particular, we paid attention to the latter approach and subsequently discuss the innovative
work of Cattaneo [10]. who wanted to improve the paradox of heat conduction in TIP. He tried
to change the character of the basic equations from parabolic to hyperbolic by introducing the
time derivative of heat flux. Many theoretical approaches were based on Cattaneo’s work, and

the results led to the extended thermodynamics theory.

Cattaneo equation: Let us return to Eq. (1.12), which is derived from the law of the
conservation of energy for a system with constant mass at rest and Fourier’s law, Eq. (1.10),.
The paradox of heat conduction is caused by the fact that Fourier’s law does not include a time
interval for the propagation of heat. Cattaneo proposed that the duration of heat propagation

should be of concern and used the following equation:

oT or
=" (63}- _T(am)) 7 (49

where 7 is the relaxation time. By substituting Eq. (1.14) into the law of the conservation of

energy Eq. (1.11), with a constant mass density at rest, the following equation is obtained

7= (AT . T(A'T)) .
PET
This is still a parabolic equation. To obtain a hyperbolic-type equation, we assume that the

operator T% is small and consider the following expansion
d\ d

1—7— ~1 —.

( Tdt) TTE

oT
K 0z,

Then, Eq. (1.14) is rewritten as

qi +7¢ = (1.15)

This equation is called the Cattaneo equation. From the law of conservation of energy for a

system with a constant mass density at rest, we obtain

T+ T = AT (1.16)
PET
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When 7 > 0, this equation becomes hyperbolic.

The problem with the Cattaneo equation is its lack of mathematical rigor. Many studies
followed Cattaneo’s work. 1. Miiller tried to modify Navier-Stokes Fourier law by adopting
a Cattaneo-like equation, and he introduced the time derivatives of stress and heat flux into
the constitutive equations by considering that the entropy depends on them. However, this
approach has several problems. For example, the material frame indifference is violated, the
hyperbolicity of the system is not certain and there are some determined variables in the field
equations. Such problems are solved by the extended thermodynamics theory, something that

will be discussed below.

1.2.2 Kinetic Theory

Besides the phenomenological approach, the kinetic theoretical approach of molecules plays a
crucial role in the field of non-equilibrium physics. This approach considers microscopic details
such as the collision of molecules. From a historical view point, this approach originated from
the study of Daniel Bernoulli regarding the introduction of equilibrium pressure by considering
the change in momentum before or after the collision of molecules to a wall in the early
18th century. After a long while, this idea was reintroduced by John Herapath in the early
19th century. Karl Kronig re-derived the Boyle-Charle’s law based on kinetic theory. Rudolf
Clausius distiguished gas, liquid and solid states based on molecular motion. In addition,
he introduced the concept of the mean free path. James Clerk Maxwell introduced the idea
of probability distributions and formulated the kinetic theory as we know it today, which
became the basis of statistical mechanics theory. Ludwig Eduard Boltzmann deduced the time
evolution of the distribution function for rarefied monatomic gases, the so-called Boltzmann
equation. Based on the Boltzmann equation, many studies were developed, and the theory is
still useful today.

Many studies followed the publication of the Boltzmann equation. Boltzmann derived
the collision term based on the physically-feasible assumption, the so-called Stofizahlansatz.
To obtain the macroscopic equations based on the Boltzmann equation, Sydney Chapmann,
David Enskog and David Hilbert proposed the closure method, which derived the constitutive
equations, which is consistent with the Navier-Stokes Fourier system. As an extension of the
Chapman-Enskog method to constitutive equations with a second- or third-order term, the
Burnet equation or super Burnet equation was proposed [11]. On the other hand, Harold Grad
also proposed a closure method, which adopted additive moment equations. Moreover, new
closure method recently appeared that is based on the maximum entropy principle (MEP)
[12, 13] which has usefulness not only in the kinetic theory but also in other fields such as

information theory. The details of Grad’s and MEP’s approach will be discussed below.

10



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

Although the kinetic theoretical approach is useful, it is well established only for rarefied
monatomic gases. Due to the complexity of the microscopic details, it seems difficult to extend
the applicable range of kinetic theoretical approach to rarefied polyatomic, dense monatomic
and dense gases. By using a special models, several studies for such gases were appeared.
For example, for rarefied polyatomic gases, there appeared some theories [14, 15, 16] based
on the so-called Borgnakke-Larsen model [16]. In particular, recently, the theory based on
the MEP recently appeared [12, 13]. For dense gases, there are also many studies based on
the Enskog equation or the modified Enskog equation, which consider the hard-sphere effect
on the Boltzmann equation [17, 18]. For example, moment equations based on the Enskog
equation were proposed by Gilberto Medeiros Kremer and E. Rosa [19]. As an extension
of the Grad method, the generalized hydrodynamics is proposed by Byung Chan Eu [20].
Moreover, moment equations based on the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchical structure were developed [21, 22].

Hereafter, we recall the Boltzmann equation and the macroscopic equations derived by it
to show the usefulness of kinetic theory. Moreover, we introduce the Grad’s moment method

and the maximum entropy principle as the method of the closure.

Boltzmann equation

Let us consider the rarefied monatomic gases. In the kinetic theoretical approach, the state
of the system is characterized by the distribution function on the phase space. In general, the
dynamics of N-body system is governed by the Liouville equation which is the equation for N-
body distribution function, and the Liouville equation is reduced to the Boltzmann equation
for one-body distribution function through the BBGKY-hierarchy structure. The one-body
distribution function f(z;,¢;,t) with the time ¢, position of the i-th particle z; and its velocity
¢;, is defined through the number of particles in the volume element between x; and x; + dx;

with velocities between ¢; and ¢; + de; at t:

N = f(x;, ¢, t)dede. (1.17)
With this the Boltzmann equation without the inertial force is expressed as follows
of of of
— 4=+ =L =5, 1.18
ot " iaw T iae, (1.18)

where the first, second and third term of left-hand-side are the time variation of f in phase space
by time evolution, flux and the effect of external force f;, respectively. S in right-hand-side is
the rate of production and annihilation of the point caused by molecular collisions. Boltzmann

put forward the so-called Stofizahlansatz(moleculer chaos hypothesis), and estimated as follows:

S = /(f’fl’ — ffYogsinhdodedc!, (1.19)

where f/, fll, f, f* are the distribution function with velocity ¢/, ', e, respectively.

11



CHAPTER 1. INTRODUCTION

Moment equations

The macroscopic quantities are defined as the mean value over a representative elementary

volume. In general, the mean value of a function ¥ (x, ¢, t) is defined as

- 1
Y(x, t) = p/md;fdc, (1.20)

where p is the mass density which defined as the mean value of 9y = 1. The time evolution of

1 is obtained upon (1.18) by multiplying m and integration over all c.

ovp g0
ot " om Moo
0 0 1 / ) 1! . /
_p<(;f+ci8:1c/}i> +4m/<¢+¢1—¢’_¢1) (f /! —ff1> ogsinfdfdededd, (1.21)

where the second and third terms on the left-hand-side express flux and the density of supply
of p1), and the right-hand-side expresses the density of production of pi.

Let us express the integration of the case that v is given by the moment of ¢; as follows:

Fi1,i2,~~~,iN = /mcilcb e CiNde. (1.22)

Then the following physical variables are expressed as follows:

mass density F=p,

momentum density F; = pv;, (1.23)
momentum flux Fy; = /pcicjfdc,

flux of momentum flux Fij, = /pcicjckfdc.

In particular, the trace part of Fj; is a value proportional to the energy density. From (1.21)

we obtain the time evolution equation of Fj, i, .. iy,

1171827; JIN + 11,52x,j IN,J NF(z‘l,iz,---iquiN) = Pil,i2,~~~,iN’ (1_24)

where Pj, j, ... i, is the production term expressed by using the right-hand-side term of (1.21).
The balance equation (1.24) indicates that there is a system which the moments satisfy an
infinity hierarchy of balance laws. In such system, there is a noticeable feature that the flux
in an equation becomes the density in the next equation. As a special case, we express the
system truncated the hierarchy at the density with tensor of rank N. When we express the
vectors of moments up to tensorial order N as FV), FZ-(N) and P such system is expressed
as
OF™) n oF™ p)
ot ox; ’

(1.25)
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1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

: . . T
where we ignore the external force. By introducing a vector V) = (1,¢;,,¢i,Cipy -+ 5 CiyCiy =+ Ciny)

FO), Fi(N) and PW) are expressed as follows:

I

FO :m/f<I><N>dc, F) :m/fc,@(N)dc, =100 :m/sq><N>dc. (1.26)

Here, we have the problem of closure because the last flux and the production terms are not in
the list of the densities. To close this system it is necessary to find the constitutive equations.
We will see the closure procedures after introducing the several important variables.

We can also define the intrinsic variables of system by introducing the peculiar Velocity C;
defined by C; = ¢; — v;. As the moment of C;, we define the intrinsic variables Fj, 4, ... iy

corresponding to the moments (1.22) as follows:
Fi iy i /mC’ZlC’Z2 - Cjy fde. (1.27)

It is clear that F' = F = p and F; = 0. Moreover the following conventional physical quantities

are introduced as follows:

Fyi

specific internal energy €= 2— — / mC;C; fde,

stress tij = —pdij + Siij) = —Fij = —/mC’iijdc, (1.28)
Fpi

heat flux g = pp = /mC CpC; fde.

By considering that there is no dynamic pressure p(x,t) in rarefied monatomic gases, the

pressure is defined by the trace part of stress (1.28),.

1 2
p(x, t) = 3 /mCQfdc = gre. (1.29)

From the caloric equation of state € = % BT we may introduce the temperature T as follows:

_m e faet
kpT = 3p/mC’ fdcmT(:c, t). (1.30)

From Egs (1.22) and (1.27), we can realize that there are the relations between two kinds

of moments as follows:

A

F=F=(=p),
F; = FU@ (— pvz) ) (1 31)
Fyj = Fyj + pvivj,

Fijr = Fiji + 3F 3500 + poivju.
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CHAPTER 1. INTRODUCTION

Balance equation of entropy and local equilibrium

The entropy density is obtained as the mean value of

-2 u() )

where the constant 1/y is the smallest element in phase space that can accommodate a position
and a velocity. The reason why we can interpret such mean value as the entropy principle is
clarified when we consider the balance equation of it:

op(—*E2lnf) o kp—: kB~
W 4 (‘)ch [p(_Blnf)vj + (—EBCJ' lnf)]
I

= — ffl (f fll ffl)ga sin 8dfdedctde. (1.33)

The production of this balance equation is non-negative. This fact indicates that the balance

equation (1.33) can be interpreted as the entropy inequality:
Ips 0

>
5 T 9a. oz, - (psvj + ;) =X 20, (1.34)

where s, ; and 3 are the specific entropy density, non-convective entropy flux and entropy

production. Therefore s, ; and X are defined as follows

ps = —kp /ln (‘Z}; - 1> fde, (1.35)
pi = _kB/Ci In (f - 1) fde, (1.36)

i
Ff1

The local equilibrium is defined as the state that entropy production ¥ is minimum 0. This

Y= In

(f’fll — ffYgosinfdfdedctde. (1.37)

result restrict the form of the equilibrium distribution function fg. By substituting fg into
the moments (1.22), we obtain only p, pv; and € at local equilibrium state. This means that
fE can be expressed by these variables, and the explicit expression of it is as follows

3
— 4 m 2kaC2 1
fE m <27T]<:BT> [§] B . ( 38)

This distribution function is called Maxwell distribution.

By using fr the entropy density sg is also expressed

o= B3y bp m_\° (1.39)
E=m |2 orkpT ' '

The first derivation of it is
k 1
dsg = -2 (dT - dp) :
m p
The Gibbs relation which is well-known in the equilibrium thermodynamics is reconstructed.

14



1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

Closure by Grad’s 13 moment method

By introducing the Grad’s moment method [23], we consider the closure problem of balance
equations (1.25). This method adopts more fields as independent variables than that of NSF
theory. Let us consider that the system is characterized by 13 fields F, F;, F;;, Fpp;. The balance
equations of these without body force and supply are expressed by Eq. (1.25) as follows:

o or,_,
ot &Tz ’

OF, OF;

8t 8.’13]' :0’ 1.40
o8, o, (1.40)
ot Oxy, ()
OFi | OFppi _

ot ox, PV

where first two equations and trace part of third equation denote the conservation laws of mass,

momentum and energy, respectively. The production terms P;; and Ppp; are estimated when

i)
the special model for molecular interaction are assumed. For example, for maxwell molecules
we have
Piijy = —gPB(F@j) = PV,
(1.41)
Piij = —pB(Fiij — 3F;vj) — poiv?),

where B is the positive constant which depends on the length of interaction. By substituting

(1.28) and (1.31) into (1.40), we can obtain the time evolution equations for p, v;, e, Sy, ¢i-

dp | Opv;
E + 6:152 a 07
8pvi

0
50t o (pvivs +pdij — Suzy) = 0,
o) £y2

8t 856]' (1 42)
. a'l}n 3F<l]>n (’*)v@ 8Uj> 3 ’
San TS g T Tog, P oz, + 23n(i) .- = ~3B%u)
4 + ¢ oz, + 9 oz - ;(_p(szk + S(zk)) e
3 p O(—=pdin + Siiny) ov; = j
5 n Fnz i 5 — i
+ 2p oxy, ta oxy, + fnij oz, PBa

The system (1.42) (or Eq. (1.40)) is not closed by p,vi, €, Syj), ¢ (or F, Fy, Fij, Fypi). To
close the system we assume the following constitutive equations

A~

Fijie = Fijr(p, vi, Ty Siijys @0)-
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CHAPTER 1. INTRODUCTION

To obtain the constitutive equations, Grad proposed to expand the distribution function
f around fg, that is, the distribution function at the local equilibrium state, by the Hermit

polynomial. Then f is expressed as

f= a+a.i+a..872+a,.873+... f (1.44)
N *Oc; Y dc;0c; ik dc;0cjocy, Es '

where a, a;, a;j, --- are the function of z;, and t. By using (1.38), we can rewrite this distri-

bution function as follows

m m \? kT
f=17e (CL - aiik:BTCi + ay <kBT> <CiCj - 5z‘j>

3
m kT
— a (kBT> (CZ-CjCk R (0:5Cx + 0;1Ci + (5kiCj)> + - ) (1.45)
By using this distribution function, the average of a function ¢ (x, ¢, t) around local equilibrium

is obtained as

E E

,lz) — a,(LE _ ai@ + a’ij 02¢ " 8311}

oc; dc;0cj ik dc;0cjOcy, T (1.46)

where the notation E denotes the integration by the Maxwell distribution /¥ = % [ ¥ fede. By
putting ¢ = 1, ¢;, —pC;Cj, p%CQCi in Eq. (1.46), we obtain the expression of the coefficients
a, a;, aij, a;i; as the functions of p, v;, T, Sy;;), q; as follows:
1 1
a=1,a;=0,0a;=0,a; = —%5@), Gikk = ~ 3 (1.47)
To close the system within 13-moment we ignore a;) and the higher order tensors in
the expansion of the distribution function. Then we obtain the following distribution function
from Egs. (1.45) and (1.47).

1 m 1 m 1 mC?
fa=TE <1 - %S@j) <M0i0j - 5@'1') - 5]@7%@ <1 ~F kBT>) ; (1.48)

where fg is called Grad distribution function. When we exploit the Grad distribution function

instead of the original one in (1.22), we can express constitutive quantities (1.43) with 13-

moment. Then we obtain

~ 2 2

Fajie =5 <Qi5jk: + q;0ik — 3Qk5ij> ; (1.49)
. kgT 7

Fyjr = 5p%5jk ~ 5 50a) (8;00kq + 0jqOkp) - (1.50)
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1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

By using these constitutive equations we obtain the closed field equations.

Op  Opvi 0
ot a:L'Z S
dpv; 0
or gy (P T PO = Sp) =0,
Ot 8%) 0 1 L p,
T + 87% [(pa + 57) ) v; + (p(sij — S<ij>)v,~ + q]‘] =0,
Stigy + S<ij>8Tcn T 50m, (gndij + ¢idjn + qj0in) — 2178%) + 25(ni) By —5/’35@3)7 (1.51)
) ov, 1 0 kgT 7 kT
qi + G; oz, + 58-7771 (5p m Oin — §S<pq>7 (5in5pq + 5ip5nq + 6np52q)) )
1 8(_p5kn =+ S(kn)) 3p a(_p(sin + S(zn))
- ;(_pfszk + Siky) o, T3, 0z,
+ avl_ﬁ_%%_Fé 8U(if_8.
n Ox, 5% Ox, 5 Oy - PP

In a similar way, the entropy density s and entropy flux ¢; are also expressed by using the

Grad distribution function.

ko T3/? _SunSuy i

=—In— 1.52

Tmh p + 4ppT 5p2T"’ (1.52)
g 2

pi=pt 5p7TS<ij)‘Ij~ (1.53)

Thus we obtain the closed field equations and also the expression of entropy density by

adopting the closure by the Grad moment method.

Maximum entropy principle

Instead of the Grad moment method, we introduce the another closure which is based on
maximum entropy principle. This method has shown its usefulness not only kinetic theory but
also other fields such as information theory.

The maximum entropy principle states that the actual distribution function f is the one
which maximizes the entropy under the system characterized by N-fields F(Y) with balance
equation (1.26);. We consider the case that the entropy density (h = ps) is expressed by the

following general form;

h= /w(f)dc, (1.54)

instead of the expression (1.32). This requirement is expressed as the condition that the

following function is maximum

L(f,AY) = /w(f)dc+A(N) : <F<N> —m/cafdc> , (1.55)
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where A® is the Lagrange multipliers and A(Y) is the vector composed of A®. Therefore first

variation of £ with respect to f must be 0, then we obtain

d
/ (;jj _mA®) .q><N>> 5fde =0, (1.56)

and this indicates
dy
7 —mAWN) ) 1.57
Tem (157)
Moreover, from this, we conclude that f is a function of
x =mAWM . W), (1.58)

and 1(f) has the form

v(f)=xf—- /fdx- (1.59)

In particular, in the case that the entropy is expressed by (1.32), i.e, vy = —kpf <1n£ — 1),

we obtain the distribution function
1 -
f=yexp <—A . <I’> , (1.60)
kp

where A = A — Ap. The distribution function f is expanded in the neighborhood of local

equilibrium, then it can be approximated as

f=1re <1 - 1f\°‘wa> ; (1.61)

kp

where fr denotes the Maxwell distribution function (1.38). By substituting Eqs.(1.61) into
(1.26), we obtain the Lagrange multipliers

F(N) — FE(IN) — /fE(l‘i,Ci,t) < A )dc (162)
B

Inserting the Lagrange multipliers which are the solutions of (1.61) and (1.62) into (1.26), 5,

we obtain the constitutive equations by

Fi(N) = m/cl-{) (1 — kﬁfx . @) frdc,
s (12 o) 1)

Here, we have seen the case of rarefied monatomic gases. Recently this method exploited

(1.63)

in the case of rarefied polyatomic gases [13].
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1.2. BRIEF SUMMARY OF NON-EQUILIBRIUM PHYSICS

1.2.3 Fluctuation
The brief history of fluctuating hydrodynamics

In 1827 the botanist Robert Brown observed the random motion of small pollen grains of the
plant suspended in the water, the so-called Brownian motion. This is the starting point of the
study of fluctuation. The theoretical study of fluctuation starts from consideration of Brownian
motion by Albert Einstein in 1905 and Marian Smoluchowski in 1906. These studies and the
experimental study which checked these theories by Jean Baptiste Perrin in 1909 showed the
existence of atoms. Moreover, in 1908, Paul Langevin made up a phenomenological governing
equation of a Brownian particle.

In the field of non-equilibrium thermodynamics, Onsager derived the reciprocal relation
based on the principle of microscopic reversibility and regression hypothesis. As we mentioned
before this relation is the fundamental of TIP. Based on TIP, Lev Davidovich Landau and
Evgeny Mikhailovich Lifshitz developed fluctuating-hydrodynamic theory for viscous, heat-
conducting fluids with Navier-Stokes Fourier laws in 1950’s [86, 24, 87]. In order to incorporate
thermal fluctuations into hydrodynamics, they introduced additional stochastic flux terms into
the constitutive equations for the viscous stress and heat flux by applying the fluctuation-
dissipation theorem by Melville Saul Green, Fujio Nakano and Ryogo Kubo [25, 26, 27, 28|,
which determine the speed of relaxation from the fluctuation of equilibrium state. See also
reviews [29, 30, 31].

Nowadays the Landau-Lifshitz (LL) theory attracts much attention, especially, as the ba-
sic theory for microflows and nanoflows, which may play an important role, for example, in
the fields of nano-technology [32, 33] and molecular biology [34, 35]. Numerical analysis of
the fluctuations by using the theory have been made extensively [36, 37, 38, 39, 40, 41, 42].
The fluctuating-hydrodynamic approach can also contribute to the study of fluctuations in

nonequilibrium states [31, 43, 44].

Landau-Lifshitz theory

Here we summarize the Landau-Lifshitz(LL) theory [86, 24, 87].
Let us consider the general case, that is, the case that the entropy production X is given
by

Y= i, X, (1.64)

where x, is the variables which characterize the system and X, is the coefficients corresponding

to 4. We assume the linear constitutive equations

iq = CapXo, (1.65)
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where Cp is the phenomenological coefficients.

We introduce the Gaussian white noise f, into the constitutive equation in such a way that
Tg = — abXb + fa- (166)
The average and the correlations of f, are given by

(falz, 1)) =0,

(1.67)
(fa(z,t) fo(x', 1)) = kp(Cup + Cra)d(x — x")o(t — '),

where the brackets ( ) in the left-hand side stand for the statistical average at the reference
equilibrium state.

Let us return to the NSF theory, and recall (1.9). In this case we have

1 821(1 1 0T
b =15i5,4}, Xi=—m=5 79 1.68
The random forces are introduced as follows:
511(@' Ovy, oT
Sy =2u—— o I=v—0 iy Qi = — iy 1.69
(15) Ma$j> +f<z])a V8$n +.f q Ha ; +g ( )

and

(fie(,t) fim (2’ 1)) = 2T <,Uf((51'l(skm + OimOp1) + <u - gu) 5ik51m> §(x —x')5(t —t'), (1.70)

(gi(z, t)g; (', 1)) = 26T26;;6(x — x')o(t — ). (1.71)

We obtained the method how to introduce the random forces into the continuum dynamics
and clarified the its properties. However the present procedure is based on TIP. Therefore the

present theory cannot be applied to strongly non-equilibrium.

1.3 Extended thermodynamics

In the previous section, we have briefly summarized the non-equilibrium physics, in particular,
TIP, kinetic theory based on Boltzmann equation and LL, and made clear the problems of
each approaches. To overcome these problems, through the many studies for non-equilibrium
thermodynamics theory, there appeared the new theory; extended thermodynamics (ET) [8, 9]
from the view point of continuum dynamics by Ingo Miiller. ET is a phenomenological field
theory capable for description of non-equilibrium phenomena with steep gradients and rapid
changes of physical variables. Therefore this theory may be suitable for the out of local
equilibrium, while TIP relies essentially on the assumption of local equilibrium. In this respect,

the validity range of ET is wider than that of TIP. Moreover, ET can predict finite speeds
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of disturbances as its basic system of equations is hyperbolic. On the contrary, TIP predicts
infinite speeds of disturbances because of its parabolic character.

In the early stage of ET, a theory for rarefied monatomic gases was developed [8, 45]. For
example, the ET theory of rarefied monatomic gases with 13 fields is a theory of 13 independent
fields; mass density, momentum density, momentum flux, and energy flux. By the use of the
proper constitutive equations compatible with the universal physical principles, a closed system
of field equations is obtained. A remarkable point is that the constitutive equations can be
explicitly determined from the equilibrium caloric and thermal equations of state. It is shown
that the NSF theory comes out as a limiting case of ET through carrying out the Maxwellian
iteration [46]. The closed system of field equations is totally consistent with the counterpart
system of the moments in the kinetic theory which we have already seen in Chapter 1, Section
2.2.

In the following part we explain the formal structure of ET of rarefied monatomic gases

described above, and as a typical case, we will see the 13 fields case.

1.3.1 Independent variables and balance equations

Let us consider a one-component fluid. In the NSF theory the system is characterized by 5
slow variables; the mass density, velocity and temperature. On the other hand, ET adopts fast
variables in addition to slow variables as independent fields. Here we consider N independent
fields u case. The closed field equations are based on the balance equations for N densities;
F = (F,Fy, - ,Fiky k, ). Corresponding to Eq. (1.3), we symbolize the non-convective
fluxes and productions as I = (0, Lig,, ", Likyko. kn, -+ ) and P = (0,0, , Pkky. k"),

respectively. We can summarize these symbols in Table 1.5 corresponding to Table 1.2.1.

Table 1.5: The density, non-convective flux and production for the balance equations of ET.

v pv (density) | ¢ (non-convective flux) | pm (production)
Mass F=p 0 0

Momentum Fy, = pv; Lik, 0

Second order tensor || F, i, Lik ko P<Z-]->

N—th order tensor Fkle'”kn Iiklkg...kn Pklkz...k:n
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When we put the elements of Table 1.5 on (1.3), the balance equation for each densities are

obtained as follows:

oF oF
Ot 89@ o
OF:,  OFw _,
6t 6:51 -
OFiky  OFip i
8; T 8951 * = Plaka)

OF k1 koks n OF ik koks
8t 8931

= Prikoks, (1.72)

OF g ko kn n OFik kg kn
ot 6301

= Priko.. kps

where Fik k. k, = Flyiko.. kUi + Likiky.. k, 1S the flux of Fi k, k,. The first two equations and
the trace part of the third equation represent the conservation laws of mass, momentum and
energy, respectively. It is noticeable that there are the hierarchy structure of the system with
the following two features; (i) the tensorial rank of the equations increases one by one starting
from the mass balance equation, and (i) the flux in one equation becomes the density in
the next equation. Such hierarchy is dictated by the moment equations (1.25) in the kinetic
theory of monatomic gases. Moreover there is no dynamics pressure, and as a consequence
Fyi(= pv? + 3p) is, except for a factor 1/2, equal to the energy density, pv?/2 + pe, and
therefore 3p = 2pe, where v;, € and p are the velocity, specific internal energy density and
pressure, respectively. Therefore ET with this hierarchy structure is valid only for rarefied

monatomic gases.

1.3.2 Constitutive theory of ET

For convenience, we write the balance equations (1.72) as the vector form:

OF OF, _
81& 8:61 N

P, (1.73)

where the components of F' is composed of densities and F; and P are the corresponding fluxes
and productions.

When the hierarchy of the basic equations are truncated at some hierarchy level, we need,
as a closure procedure, constitutive equations for the quantities that are not independent field

variables. In ET, we assume that such quantities depend locally on the densities:

F =F(u), F,=F,(u), P=Pu). (1.74)
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The constitutive theory of ET can be summarized that the functional forms of constitutive

equations are severely restricted by the universal physical principles;
e Entropy principle
e Material frame indifference principle
In particular the entropy principle is composed of the following two requirements:

1. The entropy inequality
This inequality means that

oh , Ohi _
ot 8:5‘2 N

% >0, (1.75)

where h, h; and ¥ are the entropy density entropy flux and entropy production, respec-
tively. We require this inequality to hold for all thermodynamic processes. Here h, h;

and ¥ are constitutive quantities

h =h(u), h;=hi(u), ¥ =3%(u). (1.76)

2. The convexity of entropy density

This requirement can be expressed that

9%h
oudu

is negative definite. (1.77)

Most of the constitutive equations are fully prescribed by the equilibrium properties of

gases [8, 45]. We study the details of each requirement in following subsubsections.

Entropy inequality The requirement that the entropy inequality hold for all solutions of
the balance equations can be expressed by the following in equality with Lagrange multipliers
A:

Oh  Ohi _ (OF OF,
ot 8$Z ot (‘)xl

- P> > 0. (1.78)

By considering the constitutive equations (1.74) and (1.76), Eq. (1.78) are written as follows:

<8h A 8F> ou n <6hi A 6E> ou

ou  ou) ot ou ou /) 0x;

+A-P>0. (1.79)

This inequality must be hold for all %—? and %, therefore the coefficients of these must be 0.
This means that there must be exist the following relation:

h_\ OF o, oF
ou ou’ Ou ou’

(1.80)
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These relations can be written as
dh=A-dF, dh; =A-dF,. (1.81)
Then, the residual entropy inequality is expressed as follows:
Y=A-P>0 (1.82)

Without loss of generality we can choose u = F, and then, Eqgs.(1.80) are rewritten as

follows:
oh
— =A. 1.83
5 (1.83)
This indicates that a%; = g—ﬁ, therefore ‘g—ﬁ is symmetric and negative definite from the

requirement convexity of entropy density (1.77). Then we can invert the independent variables
from u to A is locally and globally, and we can take A as independent variables.

For the simple calculation we introduce the new potentials
hW=A-F—h, h=A-F,—h,. (1.84)

I is the Legendre transform of h because of the fact that h is a concave function of F' and Eq.
(1.83). The relations (1.81) between h and F or h; and F; are converted to the relations with
respect to A/, h; and A.

dh' = F -dA, dh, =F,-dA. (1.85)

Therefore F' and F; are expressed as follows

on' . ol

From the integrability of h’ we can find that
OF .
T symmetric. (1.87)

Furthermore, by considering Eq. (1.86), the entropy density and entropy flux are expressed

as the function of A.

on' o,
h=A- o =W, hi=A-2d

— R, (1.88)

Convexity of entropy principle By using Eq. (1.86) the balance equations (1.73) can be
written with the Lagrange multipliers as

o0n’ OA N O’h,  OA

OANOAN Ot  OAOAN Ox;

(1.89)
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1.3. EXTENDED THERMODYNAMICS

This system is symmetric which obtained by choosing the Lagrange multipliers as the inde-
pendent fileds. In this sense, the Lagrange multipliers show their importance, and these are
called main fields [47].

This system is symmetric hyperbolic when 51273;& is definite, and this is satisfied by the
requirement of entropy inequality. In other words, the system is symmetric hyperbolic if the

following inequality is satisfied

o%n/ 0%h

dudu < 0. (1.90)

The symmetric hyperbolic system has good mathematical properties, that is, the well-posedness
of Cauchy problems, i.e. the existence, uniqueness and continuous dependence of the solutions

on the data.

Main subsystem

We split the main fields (n-vector) A into m-vector L and (n — m)-vector I. Then the system

(1.89) is split into the two systems, that is,
O*W(L,l) OL 0?hi(L,l) OL

OLOL Ot OLOL  Ox;
O°W(L,1) ol  O*hi(L,1) ol

ool ot ool Ox;

R(L,1), (1.91)

= r(L,1), (1.92)

where R and r are the corresponding productions to L and I, respectively. Let us consider
the case that I = I* = const !. Then the remaining system is determined by (1.91),, that is,

O*n'(L,1*) 0L 9*ni(L,1*) OL

A i A bt iy » T A AW 1.93

JLOL ot | oLoL om b (1.93)

This system is called main subsystem of the system (1.89). The solutions of the main subsystem

satisfy a balance equation of subentropy:
o o,
ot 8952

=3, (1.94)

where subentropy h(A,1*), subentropy flux h;(A,1*) and subentropy production ¥(A,l*) are
related to the restrictions of the entropy h(A,1*), entropy flux h;(A,1*) and entropy production
Y (A, 1) of the full system through

- (AL

h(A, 1) = h(AT7) = 1" - On(A,1) ,

ol 1=l
_ hi (A,
hi(AT7) = hi(ATF) =17 - (8 i(A, )) ; (1.95)
ol 11+
Y(AI*) =L -P(A1Y).

'The constraint for I is generalized to the case that I depends on t and x; in [48].
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These relations are come from Eq. (1.91) and the definition of A and h;:
Oh' (A, 1%)
OL
1.96
Oh (A, 1) (1.96)
oL

h(A,1*) = —h' (A1) + L
hi(A1*) = —hL(A1*) + L

These definition of subentropy density, subentropy flux and subentropy production are equiv-
alent to the relation (1.88) and (1.82) for the full system, respectively. The subentropy is
convex, therefore the main subsystem is symmetric hyperbolic.

Moreover it has been proved that the there are the following relations between characteristic

speeds of full system A and of subsystem A:

’ (1.97)
)\min(Aal*’ﬁ) < Amln(Avl*uﬁ)’
where A\pnax = max )\(k), Amax =  max 5\(’“), Amin = in )\(k), Amin = min AR
k=1,2,....n k=1,2,....m k=1,2,....,n k=1,2,....m

and 7 is a unit normal of front.

Galilean invariance

We require that the constitutive functions do not changed by the change of frame. Such
invariance makes clear the velocity independence of constitutive quantities.

In non-relativistic case, there are three types of transformation of frame:

Rotation transformation: x; = Ojjx;j, t* =1,
Galilean transformation: z; = Oz + ¢it, tr=t, (1.98)
Euclidean transformation: z; = O45(t)z; + bi(t), t* =t.

If a quantity which the relation between before and after Galilean or Euclidean transformation

of its are given by
Tivig.ia = Oi1j10i2j2 s OiAjAleJé---jA’ (1~99)

such quantity is called Galilean or objective tensor, respectively. The velocity is transformed

according to the rules:

Rotation transformation: v; = O;5v5,
Galilean transformation: v; = 05 + ¢, (1.100)
Euclidean transformation: vf = O (t)v; + O (t)v; + bi(t).

Therefore the velocity is not Galilean or objective tensor.

26



1.3. EXTENDED THERMODYNAMICS

In general the fields w may be composed by the velocity v; and remaining (N — 3) vector

w which are assumed to be Galilean tensors. Then we may write

F =F(v,w), F;,=F;(v,w), P=Pv,w), (1.101)
h = h(v,w), h;=hi(v,w), ¥ =X(v,w). (1.102)

We can split the fluxes F and h; into convective and non-convective flux
F,=Fuv;,+ I;, h=hv;+ p;, (1103)

where I and ¢; are the non-convective flux and entropy flux, respectively, and the functions
of v, w.

Let us summarize the result of the requirement of the Galilean invariance for the system
(1.73) and the entropy inequality (1.75) (see details in [49]). From the Galilean invariance for

entropy inequality (1.75), we can eliminate the velocity dependence from h, ¢; and ¥, therefore

On the other hand, the Galilean invariance for the system (1.73) shows that there exist the

following relations
F=XwF(w), I,=XwIiw), P=X{)P(w), (1.105)

where F', I; and P are the Galilean tensor and called intrinsic variables. X (v) is a matrix
composed of only v. From the general theory we can proof that X (v) has the following

properties:
X (W +v?) = X (o) X (@) = X ()X (vV), X(0) = 1. (1.106)

And these properties imply that the differential of X (v) are expressed by using constant

matrices A" as follows:

X
gv (v)=A"X(v) = X(v)A", (1.107)
where
A" = ZX (0), A"A°=A°A". (1.108)
Uy

Then we can conclude that X (v) is an exponential function of the components v, with constant

matrices A" as coefficients:

. |
X(v) =" =1+ Ao, + JATA s (1.109)
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Therefore, when A" are known, we can obtain the explicit form of X (v).
By using Eq.(1.105), the balance equations (1.73) are written with intrinsic variables as

follows:

dF L ov; oL, ., [ adv. . Ov, A
X{dt+F8$i +8xi +A {F i +IZ%}—P} = 0. (1.110)

The fact that h, ¢; and ¥ are the Galilean tensor restrict the entropy principle. With Egs.
(1.81) and (1.105), we obtain

dh=A-dF, dp'=A.dI', A-P=X>0, (1.111)
and constraints
A-AF=0 A-AF' =—-}/6;, (1.112)
where A is the matrices composed of Galilean tensor and defined with A as follows
A =TAX ' ='AX(—v). (1.113)

From Egs. (1.105) and (1.113), we can find that the potentials " and ¢} (:the non-
convective part of b defined h = h'v; + ¢}) are also the Galilean invariant, and expressed
W=A-F—h o,=A T —¢,. (1.114)
Instead of (1.85) we obtain

dn' = F-dA, dgj=1'"-dA,
R r / (1.115)

and B0 9%

A OA

By using (1.115)(or (1.111)) and (1.112), we can determine the constitutive equations.

Finally we consider the explicit form of X. We require that both the system and its
subsystem (with respect to F') are Galilean invariant. Then, we can find that X (v) is lower
triangular matrix. With (1.108), (1.109) this property, the Galilean invariance of balance
equations (1.73) determine the elements of A and X by taking several steps of rescaling F', I;
and P [49]. Here we show only the result.

1 0 0 0 0 0
Ok it 0 0 0 0
h
Vky Vg 26“31 Ukg) 0 0 0 0
Vg1 Vo Vks 35h1v(klvk2vk3) 6211 52225:33 0 0 0
Vky Vko Vkn " * "V (T)6M v, vy shigha. . ghn 0 0
k1 Vk2Vk3 kn 1 (k1 Vk2 kn) k1 kg kn
N N\ chi ch hn hi1 chy ch h
Uk Vko Uk " "Vky ( 1 )5h1 U(kyVko " "Vky) 7" (n)5k115k22 ’ '6kn Ylkny1 " "Vkn) 0 6k11 6k11 6k22' ’ '51%
(1.116)
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1.3.3 13 fields case

As a typical example, we show ET of rarefied monatomic gases with 13 independent fields
(8, 45] ;

mass density F(=p),
momentum density F;,
momentum flux Fij,
energy flux Foppi-

By adopting the balance equations (Section 3.1) and the constitutive theory (Section 3.2), we

obtain the closed field equations.

Balance equation

The system of field equations is of balance type such that

OF  OF,
ot oz Y
F; EF;
aat +88 - =0,
Tk (1.117)
OF;; n OFijk _
ot | oz, Wb
OF, ppi OF, ppik
ot " o, lwi

where Fij, and Fpp;, are the fluxes of Fy; and Fyp;, respectively, and P;;y and Ppp; are the pro-
ductions with respect to Fj; and Fyp;, respectively. Here P;;) is a symmetric traceless tensor.
The first two equations and the trace part of the third equation represent the conservation
laws of mass, momentum and energy, respectively.

In order to close the system (1.117), we need constitutive equations for
F(ij)ka Fppika P(ij)v Pppi- (1118)

In ET the constitutive quantities F;jyx, Fppik, Pij) and Ppp; are assumed to depend on F, Fy, Fij, Fp)y;
locally and instantaneously.

Fije = Fuj(F, Fiy Fij, Fppi),

Fppik = Fypir (F; Fiy Fij, Fypi)

Piijy = Py (F, Fi, Fij, Fppi),

Popi = Pypi (F, Fy, Fij, Fypi) -

(1.119)
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Entropy inequality

We recall the entropy inequality (1.75)

oh , Ohi _
8t 6:@ N

> 0.

This inequality is held for all thermodynamics processes, and h and h; are also constitutive

quantities.
h = h(F, F;, Fij, Fppi), hi = hi(F, F;, Fyj, Fppi). (1.120)

The requirement of the entropy inequality can be expressed by introducing the Lagrange
multipliers A = T(A, A;, Aij, Appi) as Eq. (1.78). Following the general theory, we obtain follow-
ing relationship between the independent variables and Lagrange multipliers. Corresponding

to Eq. (1.80), we obtain

oh oh oh oh

ar =N ar =M an, T gn,, = T (1.121)
O oh; ohi on .

an S 8Tzk o aF‘lmz B Alm7 8F’ppli B Appl' (1122)

Then the derivatives of the entropy density and flux are expressed as

dh = AdF + AidF; + AjdFyj + Appid Fypi,
dh; = AdF; + Apd Fyi + Ny d Fini + Appid Fygus.

(1.123)

The residual inequality is that

% = M) Fligy + AppiFaqi = 0. (1.124)

Galilean invariance

The system (1.117) should be Galilean invariant. By Eqs (1.105) and (1.116), the velocity
T(pv 07 mij, mppi)7

I = T(O,mij,mijk,mppik) and P = T(O,O,P<ip>,Pi). Then we obtain the relations between

dependence of the quantities is made clear with the intrinsic tensors F =

original variables and intrinsic variables as follows:

Fij = mgj + pvivy,

Fiji = myji + 3m; vk + poivjug,
Y Y (%) P , (1.125)

Fopij = mppij + 4mipvp) + 6mpupvy) + pv-oivj,

Pppz' =P+ 2P(ip>vp7
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where mij, mijk, Mppij, Pyjy and P; are the Galilean tensors. With Eq.(1.125) the balance

equations (1.117) can be expressed as

Ovy,
)+ pa—r =0,
Pt

0
poi+ 2 =,

Ozj (1.126)

. Qv Omy, Ovg P '
e e LU (O
. ovr,  Omypik ov ov; . .
Thopi + Mypi g+ = ;’ZZ +2 ax: Mypik, + —&C; Moppk: + 2Mpi0p + Myppt; = P

The first, second and trace part of third equations represent the conservation laws of mass,

momentum and energy, respectively, m;;y, mii, mpp; have the following conventional meaning:

stress tij (: —pdij + S(Z’j)) = TMig)s
1

specific internal energy €= 5 M, (1.127)
p
1

heat flux @i = 5Mppis

where p and S;;y are the pressure and viscous stress, respectively. Therefore m;; is symmetric
because we deal with non-polar materials. As we mentioned before we consider the rarefied
monatomic gases, therefore the dynamic pressure is 0, and there is the relation 3p = 2pe.

From the Galilena invariance of entropy inequality, we can remove the velocity from h and

©i-
h = h(p, mij, Mppi);  Pr = (P, Mij, Mppi)- (1.128)

We have a one-by-one correspondence between constitutive equations F, F;, Fyj, Fijk, Fppik, b, h;
and intrinsic variables p, vi, m;j, Mijk, Mppik, I, @i. Therefore the constitutive equations (1.119)

and (1.120) for ¥ = {m;jyk, Maijk, Plijy, Pis hy @i} are rewritten as follows:
¥ = (p, Mg, M) (1.129)

We can also make clear the velocity dependence of the Lagrange multipliers A. By Eq.

~

(1.113) we obtain the relation between A = T(A,A;, Aij, Appi) and Galilean tensors A =
Tx N, Xij, Appi) as follows:
A=A + Aivi + Aijvﬂ)]’ + Appivzvi,
N = A + 20505 + Ay (02655 + 20;05),
3V + Appj (V7035 5) (1.130)
Aij = Nij + Appidv(idij),

)‘pm' = Appi-
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Then we obtain the derivatives of h and ¢; from (1.111) as follows:
dh = Adp + Aijdmi; + Ajdmy;, (1.131)
der = Nidmy 4+ Aijdmgji + Xjdmgip, (1.132)
and the constraints (1.112) are expressed as
Aip + Ximpg + 2 pemi; = 0, (1.133)
— (h = Xp = Arsmirs — Aemuiy)Gie + 2Xir Myt 4+ AppiMiprke + 2Apprmiri; = 0. (1.134)
The residual inequality (1.124) is also rewritten as the form without velocity

Equilibrium
The equilibrium is defined as the case that the productions Pj;;y and P; are 0:

E _ E _
Plajy =0, B~ =0,

where the symbol E means the value at equilibrium. In the equilibrium the entropy production

have minimum value 0, and its necesarily condition is d¥¥ = 0:
A% = A7 dPj| e + ApdPi| g = 0.
Therefore we obtain

E _ E
Ny =0, A =0 (1.136)

PpL

From this, we may interpret A(;;, and Apy; as the variables which characterize a nonequilibrium
state.
By considering m;; = 2pe, the derivation of entropy density at an equilibrium state has the

following expression from (1.131)
2
dn® = \Fdp + gxfkd(ps). (1.137)
At an equilibrium state there is the following relation so-called Gibbs relation:
dh® = —9dp+ Zd(pe) (1.138)
T T ’

where g(= € + p/p — T's) is the chemical potential and T is the absolute temperature. The
comparison between Eq.(1.137) and the Gibbs relation (1.138) gives us the following relations:

E g E 3
A T Ak 5T (1.139)

In this way ET introduce the temperature through the Lagrange multipliers.
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Constitutive equations

By introducing the new potentials A" and ¢, as (1.84) we adopt {\, Xij, \ppi} as independent
variable instead of {p, m;j, Mpp;}-
B = Xp+ Xiimi; + Appimgai — h
ijMij + AppiTliqqi (1.140)
O = Nk + XijMijk + AppiMaqik — Pk

Then we obtain

dh' = pd\ + m;dN;; + mggidAppi,
ij AL qqi A Appi (1.141)
d(p% = mid\; + mijkd/\ij + mqqikd/\ppi.
Let us consider the representation of A’ and ¢}.. These are expressed as the expansion near
equilibrium, that is, the polynominal in Ay, Appi because the new potentials h' and ¢ are
isotropic functions of {\, Aij, Appi}. Up to second order near equilibrium state {\, A;;}, h’ and

¢} are represented as follows

W' = 0" 4+ hadip gy + hadppiAagi + B3N (i) Aniy Mgy + P (i) AppiAgai + O(3), (1.142)
Ok = B1Appk + B2 kjy Appi + O(3),

where the coefficients h'?, hy, ho, ha, ha, B1, B2 and B3 are the function of A, \;;. From Eqs.(1.137)
and (1.140), we have

h/E _ PE

T
From Eq.(1.142) we obtain
dn’ = dn'F + Ay Mgy A1 4 AppiAppidha + Ay Aniy A gy As + A(ij) AppiAggidha
+ (2112 + 3hs Ay Amy)) i)

+ (2h2)\ppi + 2h4)\(ij)>\qu) d/\pm', +O(3) (1.143)
dey, = AppkdB1 + Ay Appid B2
+ ,81d)\ppk + ﬁg)\(ki>d)\ppi + ﬁgAppid)\<ki) + O(3). (1.144)

We compare the two expressions of %@\' 7 68;\12;’ 8§Z;> and ég\};;i from Egs.(1.141) and (1.143) .

Then we obtain

6]11 8h2
P=pE+ 5 Mij) M) + 53 Awidppi + O(3),
8h1 6h2
=2 TN A+ 3 A :
mii = 2pper + 355 MigpAs) + 355 Amidei + O(3) (1.145)

M) = 2hA i) + 3haA (i) Amyj) + hadpp(id g + O(3),
Mppi = 2h2)\ppi + 2h4/\<ik>>\ppk-
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Within the linear constitutive equations, we may interpret p = pg and € = eg. Henceforth we
ignore the notation F for p and e.
. Oyt Byl Oy 0y
In the same way we compare the two expressions of i, 5+ Z’“Z '3 /\<Z ; and 5 /\p’; from Eqs.(1.141)

and (1.144). Then we obtain
0

= —5pT
a)\ p 9y
082 p Ohy
T 1) Vet VAN &
B Op gy AT
9B _ 2hy  25p°T
O 33 p (1.146)

9% _2hi  10pom 2, T
o 3 p O\ 3 p]

Mrs\k = <62 - 10h11;> )‘pp(r(ss)k + 0(2),
Mypik = P10ik + B2 Ajixy + 0(2).

Taking into account that m,..) = O(2), we can obtain the following relation from (1.145),

and (1.146);.

4
By = —hy +10Cn,. (1.147)
b p
By substituting (1.140), (1.145) and (1.146) into (1.134), we obtain the following relation
4 18
hi = =pT, hy = pT*, ha=——hT. (1.148)

For convenience, we take {p, T} as independent variables instead of {A, \;;}. Then, the
relations (1.145) and (1.146) are rewritten in terms of {p,T}. To consider the equations of

state, we recall the Gibbs relation. As the integrability condition of Gibbs relation, we have

), 56-7(3)

Furthermore we introduce z = p/ T3/2 instead of p. Then we obtain the thermal equation of

state from (1.149) as follows
p=TF(z), (1.150)

which is come out from the integrability condition of Gibbs relation (1.149) and 3p = 2pe. This
form of pressure can express both the classical and quantum ideal gases. From Eqs. (1.147),

(1.148) and first four relation in (1.146), we obtain the explicit form of 51 and fa:

/
By =5T"/? (/Wdz+c) +C,
z

FF
By = —14T°/ </ Ay c> ,
z
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where ¢ and C are the integration constants. With these we can calculate the coefficients of A/
hy = —T"?F(z),

25 F2 FF’
h2:T9/2[5—35(/ dz—i—c)],
2 =z 2 z

hs = §T9/2F(z),

F? FF'
hy = T'/? [—45+63 (/ dz—l—c)].
z z

Therefor we determined all coefficients of the representaion of A’ and ¢ by the equilibrium

(1.152)

properties, that is, T and z.

The stability of entropy production

Let us consider the representation of production terms P;; and Py in the same manner as

the representaion of A’ and ..

(1.153)
Py = 1A +0(2),
where o and 7 are the function of A and ;.
From the entropy inequality (1.135) we obtain
2 = 0N Aig) + TAppiAggi + O(3) 2 0. (1.154)

The entropy production must be the minimum 0 in equilibrium, therefore ¢ and 7 must be

satisfy the following inequalities

o>0, 7>0. (1.155)

Linear constitutive equations as function of {p, T, S, ¢}

We obtained the linear constitutive equations (1.146),, (1.146), and (1.153) with the relations
(1.151) and (1.152) as the function of {p,T, Ay, Appi}. By inverting Egs. (1.145); and
(1.145) 4, we can obtain the linear constitutive equations as the function of {p, v, T, S, g;}-
The viscous stress Si;; and heat flux ¢; are related to m
ij) = =5

terms with respect to non-equilibrium variables as follows:

i) and myp; from (1.127)) as

m i) and mypy; = 2q; , therefore (1.145); and (1.145), are expressed within first-order
qj = h2Appi + O(2).

(1.156)

35



CHAPTER 1. INTRODUCTION

Therefore the Lagrange multipliers A;;y and A,p; are expressed by Si;;y and ¢; as follows:

1
Aij) = —57-5ug) + 0(2),
) ! (1.157)
2
Then the constitutive equations are written as
(5 1op> L i+ O(2)
Mgk = — U=} 404 )
(ij)k 2 o) ha Ui%)k
Mppik = B10ik — &S@'m +0(2),
2hy (1.158)
o
Py =——S5u+ 0(2),
(i) = g, S +O2)
P="g+0(2
ho

Entropy density and entropy flux

From (1.140) we obtain the entropy density and entropy flux as the function of {p, T', m;;y, Mypp; }-

3 F' 5F M35y M () MoppiMaai

T
2J \z 32 ATTREG) 10172 R () [Tt (f FEdz + ) — 577
1 2 1

P g T 0TI () ) e
(1.159)

Convexity near equilibrium

The requirement of convexity of entropy density with respect to {p, v;, T, Sijys ¢;} near equi-

librium is fulfilled when the following inequalities are satisfied: in equilibrium state

FF’ F?
F(z)>0, 7 (/ dz —|—c) —5— >0, (1.160)
z z
5F
0< Fl'< ——. 1.161
35 ( )

For classical ideal gases all inequalities are satisfied. For quantum ideal gases all inequalities
are also satisfied except for the strongly degenerate Fermi gases and strongly degenerate Bose

gases which have the relation F’ = g% and F’ = 0, respectively.
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1.3.4 Field equations

The closed field equations with the equation of state for ideal gases p = T%/2F (2) (z = W)

are obtained

p+pm— =0,
8$Z’
(S — T2F(2)5;5)
pU; — — Y,
al'j
3(,F)Y , 04 5/2 v
5 (T . > + Dz, (Sw T F(z)(szj) 9z, 0,
S(zk) Sl(z 8’Uk> 4 8q<z 1
2 - =——375;
P [( P ) + p Oxy 5 Oy, TSSZ’C’ (1.162)
cji qr 8’UZ‘ 10 T 7/2 / FF/
1 ir _Z o — 5T/,
P[(p + paxk] 2 . |:(7F(Z)S<”> 5 (53 o dz+c

200, 4 Ova _ (Suy) = TF(2)05) 9 (Syw — T2 F(2)3;1)

5 Oy, + 5k Ozy,) B P Oz
3T5/2F(2) 0 (Suxy — T°/*F(2)6x) 1

+5 =——,
2 p oxy, Tq

where the relaxation time 7g and 7, are as follows:

2T72F (2)
TS=
g
, 1.163
S92 [7 ([ £z + ¢) — 52] (1.163)
Tq = .

T

In particular in the case of classical ideal gases, the equation of state has following form
k
p=p—T, (1.164)
m
therefore, we have

F(z) = —=z. (1.165)

k
m
By using the equation of state (1.164)(or (1.165)) we obtain the closed field equations for
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classical ideal gases.

8%

P+ Pow; 0,
O(S(i5y — poij
iy — 25t — %) o )y,
J

3k . 0Og; ov;

ity o Bk R o — PO ) —e =
P2 m + al'j (S(z]> b J)a:Uj 0, ( )

1.166

. ;) v, 4 0qy vy 1
S ¥ 23 g ¥ O gy, T 58, Por, T om0

, O, T Ov 4 Ovy  k,_ 0Su

i =i = - —T—"
q +Qk6$k + 5q oxy, 5Qk8$k) m  Ox;

Sy 0S¢5 7k oT  Sun 0 5k 0T 1
_SunOm _Tkg O SuyOp 5k OT 1
p Oxyg 2m Ox;j p Ox;  2m” Ox; Tq
In this case the relaxation times are written as
TS = 2R ;
om
(1.167)

Comparison with kinetic theory

The closed system of field equations is totally consistent with the system of the moments in

the kinetic theory as the counterpart. Therefore we may conclude that ¢ = 0.

1.3.5 Maxwellian iteration

The NSF theory comes out as a limiting case of ET through carrying out the so-called
Maxwellian iteration [46]. In this respect, NSF can be seen as an approximation of ET
where the relaxation times of dissipative fluxes (viscous stress and heat flux) are negligible
(Navier-Stokes Fourier limit).

We carry out the Maxwellian iteration in the field equations by the following procedures:

1. The Oth iterates; Sé% and qz(o)
The viscous stress and heat flux have it equilibrium values, therefore Sé% = 0 and

qZ(O) =0.

(1)

)

2. The 1st iterates; Sgilj.)> and ¢
S<(ilj)) and q(l) are obtained by substituting the Oth iterates S<(i0j)> and qgo) into the left-

)
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hand-side of the field equations. Then we obtain

v,
SEZ% = 2T5/2F(z)fsaﬂ,
x .
5 F? ’ FF’ or (1.168)
1) _ 5/2
o =—=T — - d .
% 4 [5 z 7/ z Z} Tqaxi
On the other hand, we have the laws of Navier-Stokes and Fourier (1.10).
S iy =2 T = )
@) M6$j> i /{8]}1’

where @ and k are the shear viscosity and heat conductivity, respectively. The comparison

reveals that

p="TF(2)rs,

)= ——T5/? 5—7/ dz| 74.
4 z z
In particular, for classical ideal gases, we obtain
k
n= 7BPT7—57
m

(1.170)

We can therefore estimate the values of the relaxation times 7¢ and 7, from the experi-
mental data of the coefficients p and «.

(2) (2)

The second iterates and higher iterates are obtained in a similar way. S (i) and ¢;”’ are
obtained which include the second order term with respect to 7¢ and 7.
. oT
5(2) — 9prg 81)(1 . 2pTs 61)(1 4dpTg Bv<z 81)@ B éTSa (HTQZ)T(Z>
(i) 0z p 0z p Oxgy Oxg 5 Oxjy
. i  FF
©_ 4 0T, b, 0T\ , br, OT O o117/ 2rg 52 [ FEa|
N = —U7,—— T 1 P S T
qz qaxi PTa 1% aﬂfz P 8:% al‘k 1 856]-
(]
2, ,0T v, 4, 50T Oy P v 9 <2pTS Dy, )
20 2 Yk iy 2 Y o )
* 5 Ox; Oxp, 5 Ta Oxy, Oy, + quTSaxj> Oy,
Qv v
_9P. Ovi 0p _p 8<2p753%>) 3p a<p532k>)
p ! Ox; dx;  p Oz, 2p 1 Ox, ’
where
F? FF'
0= ng’/? [5 — 7/ dz] (1.171)
z z

For further order iteration, we may estimate that the form include the n-th order term
with respect to 7¢ and 7, in n-th order iteration. This means that this iteration scheme is the

expansion with respect to the relaxation time.

39



CHAPTER 1. INTRODUCTION

1.3.6 The after the establishment of ET for rarefied monatomic gases

After the establishment of ET for rarefied monatomic gases, this theory has been applied
successfully to various nonequilibrium phenomena such as light scattering, sound waves, heat
waves (second sound), structure of shock waves [8]. Besides, there appeared many studies of
ET for rarefied polyatomic gases [50, 51, 52] and also for dense gases [53, 54, 55, 56, 57]. In
contrast to ET for rarefied monatomic gases, in these theories, there exists a fatal difficulty that
the constitutive equations cannot be determined in a fully explicit way from the caloric and
thermal equations of state. There remain many phenomenological constants in the constitutive
equations that are impossible to be evaluated experimentally or theoretically.

On the other hand, from the view point of fluctuating hydrodynamics, the development of
ET open new field, that is, the theory which is applicable to the state with evident spatio-

temporal changes of physical quantities where LL cannot be applied is much-expected.

1.4 Purpose and organization of this thesis

Up to this point, we have seen the present state of non-equilibrium physics, and these problems.
Then our course is decided, that is, the purpose of the present thesis is to construct the following

two theories beyond the applicable range of previous works:
1. ET of rarefied polyatomic gases, dense monatomic gases and dense polyatomic gases
2. Fluctuating hydrodynamics based on ET.

Moreover, responding to the construction of these new theories, we should show the validity
and features of these. In the present thesis, we show the recent achievement about these
studies.

The organization of this thesis can be summarized as follows:

In Chapter 1, the background and purpose of the present study was summarized. The
previous studies for non-equilibrium phenomena are briefly summarized by focusing around
TIP, kinetic theory and LL. Moreover the recent developed non-equilibrium thermodynamics,
i.e., ET was introduced. In particular the basic concepts and mathematical structures of ET
were discussed.

In Chapter 2, we study ET of dense gases by adopting the system of field equations with
a different hierarchy structure to that adopted in the previous works. It is the theory of 14
fields of mass density, velocity, temperature, viscous stress, dynamic pressure and heat flux.
As a result, most of the constitutive equations can be determined explicitly by the caloric and
thermal equations of state. This theory includes rarefied polyatomic gases, and it is shown

that the rarefied-gas limit of the theory is consistent with the kinetic theory of gases. We also
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analyze two physically important systems, that is, a hard-sphere system and a van der Waals
fluid, by using the general theory developed in the former part of the present chapter.

In Chapter 3, we study the dispersion relation for sound in rarefied polyatomic gases
(hydrogen, deuterium and hydrogen deuteride gases) based on the ET approach proposed in
Chapter 2. We compare the relation with those obtained in experiments and by the classical
NSF theory. The applicable frequency-range of the ET theory is proved to be much wider than
that of the NSF theory. We evaluate the values of the bulk viscosity and the relaxation times
involved in nonequilibrium processes. The relaxation time related to the dynamic pressure has
a possibility to become much larger than the other relaxation times related to the shear stress
and the heat flux.

In Chapter 4, based on ET, we study a thermodynamic theory of gases with the en-
ergy transfer from the molecular translational mode to the internal modes as an extension of
Meixner’s theory. We focus our attention on the simplest case with only one dissipative process
due to the dynamic pressure. The dispersion relation for sound derived from the present the-
ory is compared with that from Meixner’s theory. The kinetic theoretical basis of the present
approach is also discussed.

In Chapter 5, we develop a theory of fluctuating hydrodynamics based on extended ther-
modynamics through studying the 13-variable theory for a rarefied monatomic gases as a
representative case. After analyzing the relationship between the present theory and the LL
theory, we discuss the hierarchy structure of the hydrodynamic fluctuations.

In Chapter 6, summary and concluding remarks of this thesis will be shown.
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Kinetic Theory TIP i
(Chap. 1-2) (Chap. 1-2) Chap. 1-2: LL i

]
L

Figure 1.2: Flow chart of this thesis. ET: Extended Thermodynamics, TIP: Thermodynamics
of irreversible process, LL: Landau-Lifthitz theory.
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Chapter 2

Extended thermodynamics of dense

gases

In this chapter the applicable range of extended thermodynamics theory is extended to rarefied
polyatomic gases, dense monatomic gases and dense polyatomic gases. The basic ideas of
constitutive theory are the same with that shown in Chap 1. The essential difference from the
previous theories stems from the hierarchy structure of balance equations. The obtained closed
field equations are discussed in the following four cases separately: (i) Rarefied monatomic
gases, (ii) rarefied polyatomic gases, (iii) dense monatomic gases, and (iv) dense polyatomic
gases. Moreover, the applications for the physically important systems (a hard-sphere system

and a van der Waals fluid) are discussed.

2.1 Introduction

Extended thermodynamics (ET) is applicable to highly nonequilibrium phenomena with steep
gradients in space and rapid changes in time out of local equilibrium by adopting dissipa-
tive fluxes as independent fields and the spatio-temporally local constitutive equations. Such
constitutive equations are severely restricted by imposing the universal physical principles; En-
tropy principle, Causality, and Objectivity. As we have seen in Chap. 1, for rarefied monatomic
gases ET is totally consistent with the Grad’s procedure in the kinetic theory based on the
Boltzmann equation.

The Navier-Stokes Fourier (NSF') theory comes out as a limiting case of ET through carrying
out Maxwellian iteration [46] which neglects the relaxation times of dissipative fluxes. However,
within its validity range, the classical Navier-Stokes Fourier theory is applicable to any fluids
that are not necessarily limited to rarefied gases nor to monatomic gases. Therefore, after the

successful establishment of ET for rarefied monatomic gases, there appeared many studies of
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CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

ET for rarefied polyatomic gases [50, 51, 52] and also for real gases (or dense gases) [53, 54,
55, 56, 57].

In dense gases, no relationship between the pressure p and the specific internal energy &
exists, and moreover the dynamic pressure II (trace of the viscous stress) does not vanish.
Taking these two facts into account, the previous authors tried to establish ET by postulating
a similar hierarchy structure to ET of rarefied monatomic gases(Eq. (1.72)), but with 14
densities including a fourth-rank tensorial density [55, 57]. However, the other feature that
a flux in a equation becomes a density in the next equation was abandoned. Because of this
generality, the constitutive equations could not be fully determined from the knowledge of
the equilibrium properties of gases. Moreover, as we expect, when the Maxwellian iteration
procedure is applied, we have to obtain the Navier-Stokes Fourier constitutive equations. The
postulation of the fourth-rank tensorial density seems to be not well justified because, as can be
seen in the next section, it does not have any straightforward counterpart in the Navier-Stokes

Fourier limit.

The objective of the present chapter is to propose an ET theory of dense gases by adopting
the system of field equations with a different hierarchy structure to (1.72). We will show that
most of the constitutive equations can be determined explicitly by the caloric and thermal
equations of state. We will also analyze the theory in the following four cases separately: (i)
Rarefied monatomic gases, (ii) rarefied polyatomic gases, (iii) dense monatomic gases, and (iv)
dense polyatomic gases. In addition, the two physically important systems, that is, a hard-
sphere system and a van der Waals gas, by using the general theory developed in the present

chapter.

2.2 Model of dense gases

2.2.1 Heuristic viewpoint

In order to grasp the structure of the basic system appropriate for ET of dense gases, first
of all, let us reconsider the structure of the Navier-Stokes Fourier system (Chapter 1, Section

2.1). In addition to the usual conservation laws of mass, momentum, and energy:

op 0 B
a + T(ka) =0,
ot (PUZ) (P'Uzvk tix) = 0, (2-1)

9’”’+ b (2 ) oty + ] =0
at IO 8xk 2 10 Uk k?]U] qk_’
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2.2. MODEL OF DENSE GASES

we have the constitutive equations:

8112- 8’Uk oT

where ¢;; is the stress expressed by
tij = —pdij + Sij = — (p +11) 65 + Sy (2.3)

with S;; being the viscous stress and II(= —5;;/3) the dynamic pressure, and g; is the heat flux.
The coefficients p, v and k are the shear viscosity, the bulk viscosity and the heat conductivity,

respectively. Here we observe that the equation (2.2) can be rewritten in the form:

aik (viéjk + vl — gvkéij> _ SZJ>7

Oup _ 11 (2.4)
Ozy, v’

oT . qk

or, K

The system composed of equations (2.1) and (2.4) can be seen as a system of 14 equations for

the 14 unknown variables: p, v; , €, ¢i, S(;;) and II. Its mathematical structure is in the form

i)
of balance type, but, in eq. (2.4), we have no term with time derivative. Therefore the system
is not hyperbolic but parabolic.

It is, therefore, natural to assume that the mathematical structure of balance laws in ET

of dense gases must be of the following type:

OF  OF,
ot Vom Y
F; i
0 n OF;, _0,
ot Oxy, (2.5)
O0F;; n OFr p. oGy 0Gur 0 '
ot 8a:k S ot 8$k -
i, it _
8t 8xk ppe>

where I is the mass density, F; is the momentum density, Gj; is the energy density, Fj; is
the momentum flux, and Gpy; is the energy flux. And Fjj;, and G are the fluxes of Fj;
and Gppi, respectively, and Pj; and Q) are the productions with respect to Fj; and Gpp,
respectively. To justify this structure, we observe that equations (2.1) correspond to (2.5)17273
with the condition that Fj; is different from G;; because, as mentioned before, no relation
exists between the pressure and the internal energy in dense gases. The equation (2.5), can
be splitted into the deviatoric and trace parts that have the mathematical structure of (2.4), ,
when the terms with time derivatives are neglected. While equation (2.5), in the steady case

have the mathematical structure of the type of the Fourier’s law (2.4).
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We observe also that the structure of (2.5) is much more restrictive than that adopted in
the previous works, and moreover the system does not have the fourth-rank tensor in the set

of densities.

To sum up, the hierarchy structure of the system (2.5) is composed of two parallel series:
The one is the series starting from the mass and momentum balance equations (F-series)
and the other is from the energy balance equation (G-series). In each series, the flux in
one equation becomes the density in the next equation. Such a structure is also completely
consistent with the structure of the set of balance equations derived from the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of many-body distribution functions [22] in
statistical mechanics, which is valid not only for rarefied gases but also for dense gases and

liquids.

2.2.2 Statement of the model of dense gases

We can now definitely formulate the thermodynamic model for ET of dense gases as follows:
The basic system of field equations is of balance type given by (2.5) with 14 independent field

variables,

mass density: F (= p),

momentum density: F; (= pv;),

energy density: G, (2.6)
momentum flux: Fj,
energy flux: Gppi-

2.2.3 Galilean invariance

We decompose F; r and Gj, ...,k into the convective and non-convective parts:

1°0n

Fi ik = Fiy i v + Hip i ks
Giyoink = Giy iUk + Jiy i ke

In particular, the quantities Fjj;, and Gppr are decomposed as follows: Fjjp = Fijvp + Hyjy
and Gppik = Gppﬂ)k + Jppik-
As the balance equations (2.5) should be invariant under the Galilean transformation, from

the general theory [49], the dependence of the quantities on the velocity can be expressed as
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follows:
Gii = puivi + M,
Fij = pvjvj + M;j,
Gppi = pUpUpVi + Mppvi + 2Mpivp + Myppi, (2.7)
Hiji = 20 My, + Mgy,
Jppik = 3vpUp Mk + 20p Myt + Vitpple + Myppik
Qppi = Qi + 2vp Py,
where my;, M;j, mppi, M;jr and mppr do not depend on the velocity, and the productions Pj;
and @; are also independent of the velocity.

With Eq. (2.7), the balance equations (2.5) can be rewritten as

vy,
s O
p+ Pamk )
OMU
. _0
pYi + 8xj ’
9 O O
g + Mg g+ T 9 TN =0,
c%:k 8xk 8$k (2 8)
. ov OM;; ov; '
My + My + % 42— My, = Py,
. o, aM(zg)k 8v<2
Mgy + My -+ g, 250, i = Py
. ov OMoyike ov ov; . .
Mppi + Mppi 81’: + 8;;? * 283:2 Mpir + Tmimppk + 2MpiUp + mppv; = Q.

As the first three equations represent the conservation laws of mass, momentum and energy,

the quantities M;;, m;; and my,; have the following conventional meanings:

stress tensor: tij = —M;j (= — (p+ 1) 0ij + Siizy ), (2.9)
1

specific internal energy: €= 5 Mis, (2.10)
p
1

heat flux: G = 5Mppiy (2.11)

where the pressure p depends only on p and m;;. We will see in Section 3.3 that the decompo-
sition in Eq. (2.9) is consistent in the present theory. M;; is symmetric because we deal with
non-polar materials. Therefore P;; is symmetric and M;;; is symmetric only with respect to
the first two indices.

We may adopt {p, v;, ms, II, My, Mppi} as a set of independent variables instead of
{F, F;, Gy, F;, Fij, Gppi}- The balance equation of M;; (Eq.(4.4),) is then rewritten as follows:

. 5 0 0 0 5 0 0
H+<p—pa];—(mrr+2p) p) Uk+<_2 p>Hvk

3 Omgq ) Oz, 3 Omgq) Oz
1 ap 8U7~ 1 aMrrk: 819 8m7’rk Py
21 - — — - — = —. 2.12
* <3 amqq> dxy TR * 3 Oz Omgq Oxy, 3 (2.12)
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2.3 Constitutive equations

We need the constitutive equations in order to set up the closed system of field equations. We
assume that the constitutive quantities at one point and time depend on the independent fields

at that point and time, i.e., local and instantaneous, therefore we have
U= \i](pv myg, H) M(z])a mppi)a (213)

where W is one of the constitutive quantities {M;jr, mppir, Pij, Qi}-

We apply to the present case the constitutive theory established in ET [8] where we impose

the following universal physical principles on the constitutive equations:

o Material frame indifference principle:
The proper constitutive equations are independent of an observer. The material frame
indifference principle together with the requirement of the Galilean invariance of balance

laws constitute the so-called objectivity principle (the principle of relativity).

o FEntropy principle:
All solutions of the system of field equations must satisfy the entropy balance with a

non-negative entropy production:

oh a(hvk + (pk) . 8’Uk a(pk
— T > & +h—+ = =n> 2.14
ot Oxy, =0 " hal"k Oz, =0 @14)

where h is the entropy density, hy is the entropy flux (hy = hvg + @p: @ is the non-
convective entropy flux), and ¥ is the entropy production. Here h and ¢y, are constitutive

quantities:

h = h(pv Mg, Ha M(zg)a mppi)a (2 15)

Pk = @k(% myi, H7 M<7,3>7 mppi)'

o Causality:
This requires the concavity of the entropy density and guarantees the hyperbolicity of
the system of field equations. This also ensures the well-posedness (local in time) of a

Cauchy problem and the finiteness of the propagation speeds of disturbances.
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2.3.1 Relations derived from the entropy principle

The entropy principle can be expressed that the following inequality with Lagrange multipliers

A, Aiy g, Aij and pyy; must be satisfied for all fields, p through my,; [58]:

v Oy, ., O o OMy;
h+haxk+ak {p%—paxk} i [pv,—k oz,

— B |:mzz + my; ka + aﬂfk + 281‘k Mzk:|
. 5 dp dp \ Ovg 5 op Oy,
— i |11 —p—p=— — (Myp + 2 —_— - —2 II—
[ i (3p p@p (mer +2p) 8mqq> Oxy, * (3 8mqq> Oxy,

1 ap 87}7’ 1 aMrrk ap amrrk: Prr
2 (= = -
+ (3 8mqq> Oz (TR + 3 Oz 8mqq Oxy, 3 ]

. oy, 8M(ij)k; 81)@
— Aij) [M<ij> T Mij e T an, T 2am, Mk~ P

. ov OMyppik ov Ov;
— Hiis |:mppi + Mppi al‘Z + a;?’iz + 26$ZM ik T Oz kmppk + 2M2pvp + mppvz - Qz

2> 0.

Using the expressions (4.2.2) and (2.15) and taking into account the fact that the following

derivatives,

dp  Ov; Omy O OMyy Omyy

) .iy 7 ) ﬁv Mz %9 3 ) ) ) 3 2.16
P> Vi T (i) Mppi Oxy,’ Oxp’ Oz Oxi’ Oz oxy, (2.16)
can have any values, we obtain the relations:
dh = Adp + pydmy; + A dII + )‘(ij>dM(ij> + pgdmpp, (2.17)
0
der, = Apdp + AgdIl + Nid My + <,uzz - )\zza b ) dmyik
Mgq
)\
4 3 WMt + Atigy dMign + fnidmppir, (2.18)
and
1
Ai = = (pimpgr + 2pa Mij) (2.19)
5 Jdp dp
h—MXp— ss +2p) — 2upll — Ay | =p — p=— — (mss + 2
[ p — pui(mss + 2p) — 2y I <3P &y (s + p)a W)
5 Op
— )\”H <3 — 26m7«r> — A(rs)MO’s) — ullimSST] 5zk
op 2
— 2up Mgy + 28mw My Au — Zpaai Mgy — 5 puiMppr
2
= Huimppk = 240 Mgy — g My — 22y (p +11) = 0. (2.20)
The residual inequality is given by
1
Y= 5)‘”13” + A(ij)P@j) + w1 Qi > 0. (2.21)
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2.3.2 Equilibrium

Equilibrium is defined as a process in which the productions Fj;, P and @; vanish. The
entropy production ¥ becomes minimum and vanishes in equilibrium, and then we obtain the

necessary conditions:
E E E
Aii =0, )\(m =0, py; =0, (2.22)

where index E denotes equilibrium. Therefore the Lagrange multipliers A;;, A(;;) and py; play a
role of characterizing nonequilibrium phenomena, and will be called nonequilibrium variables.

From Eq. (2.17) and m;; = 2pe, we have the relation:
dn? = XPdp + 2uF d(pe). (2.23)

On the other hand, taking into account that h¥ = ps where s is the entropy density and that
Tds = de — (p/p?)dp (the Gibbs equation), we have

1
dhE = —%dp + =d(pe), (2.24)

where g (= e+ p/p—T's) is the chemical potential and T" the abosolute temperature. Now, by

comparison, we conclude that

1

AE =Y uf = 7 (2.25)

We observe that the trace part of Eq. (2.20) in equilibrium becomes an identity.

2.3.3 Derivation of the constitutive equations

In order to transform the independent variables from {p , mi;, IL, My, mppi} to {\, pu, Ais

; A(ijy> Mui}, we introduce the new potentials h' and ¢ as follows:

B = Xp + prmii 4 XU+ iy Mgy =+ paimyppi — b, (2.26)
1
Ok = HuMigk + g)\lle'z'k + Mgy Miigye + paamppik — k- (2.27)
Then we have
dn’ =pd\ + my;dpg + HdA; + M(ij)d)\(ij> + mppid s, (2.28)
0
dg), = — A (dp + dIT) — \id My + 5 b Andmyppy,
M4
1
+ mypprdp + gMiikd)\ll + MijydA gy + mppird - (2.29)
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By using the representation theorem that ensures the principle of objectivity, the poten-
tials &' and ), are expanded around an equilibrium state with respect to the nonequilibrium

variables { gk, Agijy, i} as follows:

W =hE + hiApr + hz)\%k + hg)\@j))\@-j) + h4,uppi,uqq,; + h5)‘%k + hﬁ)‘kk’)‘(ij))\(ij)
+ ha A iy Ainy Anj)y + P8 Nk tppitiaqi + RotppittaaiA gy + O(4), (2.30)
@l = (Bt + Badu) bppi + B3\ iy i + O(3), (2.31)
where the coefficients hy,---,hg and f1, 52, 83 are the functions of A and py. From Egs.

(2.25)-(2.26), we have the relation:

E
WE =XEp 4 ulimy — hP = —%. (2.32)

From Egs. (2.30) and (2.31), we obtain

dh’ = dh'F + Nedhy + Apgdha + Ay Ajijydhs + popittagidha + Agpdhs
+ kA Ay dh6 + Aij) Afin) Anj) 407 + Mk tippitiqgidhs + tippifiqeiAij) dho
+ (h1 4 2ho e + 3hs A3y, + heA i) Aiij) + Pstippittaqi) A
+ (2h3A i) + Bh7 A iy Mgy + 2h6MkkA (i) + Pottppi(ittsygq) dNig)

+ (2hapus + 2hg M it + 2ho Xy i) dpippi + O(4), (2.33)
A = puid By + NupippidBa + A iy psd B3 + (81 + Badin)dpappi
+ B3 iy dptppi + Baptppid i + BapuridA sy + O(3). (2.34)

Comparing two expressions of gTh;l derived from Egs. (2.28) and (2.33) with each other, we

obtain
IT = hy + 2ho Ak + 3hs A3y, + heAijy Aij) + hstippitiqqi + O(3). (2.35)

As II vanishes in equilibrium, h; = 0. In a similar way, we compare two expressions of 2 a)\,

ngIl’ 8?2]_) and % derived from Egs. (2.28) and (2.33) with each other, then we obtain

Oha 5 Ohs Ohy Ohs | 5 Ohg
p=p"+ a/\kk LY =1 M) Ay T I Hopittagi T 5 =N+ B\ v AkkA (i) Ai)
8h7 ahg 8hQ
+ ﬁ)‘(z]))‘( ())\< jyn) + WAkk,U'ppi,U'qqi + ﬁﬂppi,uqin@j) + 0(4)
oh 8h‘ oh oh oh
e O 3 4 5 6
it = mii” + 5 Ak + 2 Ay Mgy + 5 Hppitlagi + 5 AR Ak A (i) A(ij
M = Ak g M) T g Beeitlasi g A g ARk ) i)
8h7 ahS

Ohg
+ %)\<1J)A<TL<Z>>\<J>7L> + 8/1,” Akkuppzﬂqqz %/’Lm)luqqg)\(zﬂ + 0(4)7

My = 2hsA gy + 3haXn(y AGyny + 2heMekAigy + hotyp(ittj)gq + O3),

(2.36)

Myppi = 2hapui + 2hs N puri + 2ho A iy s + O(3),
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where pF = pP(, uy) and mii® = miZ(\, ) = 205 (N, pun)eZ (A, ). From Egs. (2.36), 5,

we can represent the pressure p as follows:

opP dha op” Ohy
, m) = pP(p¥, mu®) + <) <> + ( A
p(p, mii) =p~(p ) pF ) NOX ) \omu® ) \ o ) -
Op~ Ohs op¥ Ohs
" <<apE)m” (a)‘>ltzz i <8m”E p a'ull A )\<U>)\<7’]>

opP dhy op® Ohy
* <<0PE)ml ( oA >Ml - <5mu‘E o \Ouu /) Hppitigai + O(3) (2.37)

From equations (2.36)172 and (2.37), we notice an important point that we have a nonequilib-

rium density p and an equilibrium density p, and that the difference p — p¥ is in the second
order of magnitude with respect to the nonequilibrium variables. This justifies the equality,
p = p¥, as far as the linear theory with respect to the nonequilibrium variables is concerned.
The same is true for the quantities m;; and p. This point will play a crucial role in the next

subsection.

. Al Op) vl O} ). .
Next we compare two expressions of i, B’ T Ty and B derived from Egs. (2.29)

and (2.34) with each other, then we obtain

_ |96 ,0p p .
0= [m “on (”pﬂ“w

OBy 4haOp _, Op Oha _,Oha( . p\|,\
N p ON  “Omy On  OA o) | eri

B3 h3dp _Ohs p ,
+ |:a)\ 4/) a 2(9)\ 8+p Nppz)‘(zk)+0(3)v

op Ip p
0= [al —2hy =25 <a+>] [hppi

K i p
9P 4hy Op Op Ohy _0Ohy ( p)]
[auu 8 P Ouy Omg; Ouy ALy P 1 Hpp (2.38)
9ps hs Op Ohs < p>:|
+ 5 =2k —4— o =22 (e = ) | i) + O(3),
[3% ? p O Opun 0 HeppiA(ik) 3)

M, =3 [ﬁz — 4hg <E + i)] tppi + O(2),

Mz = {63 4 <€ " iﬂ tuidgy, + O(2),

B+ {ﬂz — 2hy (aap > })\zz
Mpp /

We now derive the relations among the coefficients ho, - - - , hg and B1, 82, f3. By substitut-

Mppik =

dik, + B3 A ik + O(2).

02



2.3. CONSTITUTIVE EQUATIONS

ing Eqgs. (2.36), (2.38)3 4 and (2.30) into Eq.(2.20), we have

1 5 apP op¥ ) < op¥ >
by 1+ (.2 &, (0P B (9P E o (9P )
27 gy ( 3¥ * <3PE>m5 o <8m5 PP et om; pEp

E
p
hy =L
’ 24y
o= (2(np), 5 s (), (56),, 5 (o)L ()
; omf) w6 ) 3uu 3\0p7) e \OX ), 3\omE) o \opu),’
1 E E E
he =15 7PE—(ng> PE_<apE> mfr—4<8pE> p ),
dpy \ 3 P~/ mE omi; J e omg; ) e (2.39)
E
p
hy = 2,
3M121
1 |5 1 /10
hg = ——— | = — —( ="hs+2h B4 opP
8 S [3ﬁ3+52 pE<3 3+ 2) (my; +2p )}

o (o) (), omg)., (5
- 7h4 —\ 5. E ay — M E )
G = ) e \ O J 4, Omy; ) o \Opu ) 5

hg=—— |24+ B2 — —5 | — +2hg | (m}; +2 —
? ] [6 P PP \ 3 2) P’) i

From Egs. (2.38); 5, we have the relations:

E E
%:2% <5E+pE>7
p

o\ o\

E E E
0 _amopF L (OFN o oh (P
O\ pE O\ omE oE O\ O\ pE
% — 4@@ + 2% ef 4 Zi
x  pFox o 5 )

(2.40)
% :2h4+2% <€E+pE>
Oy O ot )’
E E E

2 oo+ M2y (J) B (py 2,
Oy p" Oy Omy; ) o Opu — Op p
93 hs Op" _ Ohs ( B pE>
O ohg 442 P 49l (B P
Oy YT 0E Oy o pF

Note that the coefficient hy appears only in (2.39)6,7 and in (2.40)27475.
2.3.4 Definitions of the temperature and the chemical potential in nonequi-
librium

As explained before, from Egs. (2.36); , and (2.37), we notice the following two points: (i)
The density p and the internal energy m;; at a nonequilibrium state with (A, p, Agk, )\<ij>,,u”i)

are equal to the equilibrium quantities p¥ and my% at (A, py) to within second-order terms.
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CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

This means that, as far as the linear constitutive equations are concerned, the values of (A, )
are exactly those of the associated local equilibrium state [59] with the nonequilibrium state.
Therefore we can use the relations (2.25), and can introduce the temperature 7' and the

chemical potential g into the nonequilibrium state through the following relations:

(2.41)

Hereafter we will use 7" and g with this understanding. (ii) The pressure p is also equal to the
local equilibrium quantity p® to within second-order terms. Thus we assure the adequateness

of the decomposition prescribed in Eq. (2.9).

For convenience, we take {p, T'} as independent variables instead of {\, py}. Then the

relations (2.39) are rewritten in terms of {p, T} as follows:

2
0
5 pT (Op T2<%)p
he= =515 \5,) . T 2 (Y
r 20 (3 )p
h3:_Tp7
0 0
(LY (), pT<ah2) +T2<hQ> ®
3\ 6 (G, 3\ e 3 NIT ), 0(5F),
: . o \ (3F)
h :pTQ—pTQ(p> — T2 p+T(p> £,
673 p) s or ), P(gi)p (2.42)
4
hr = 3T°p,

2 10 5 oh Oh
hs = —*Tﬁg — fTﬁg — *Th4 + pT 74 + T2 74
3 9 3 p)r )

8T P 5
et ) (hy- 21
+3<5+p><2 3p>7

T T
hy = ~2TBy — 5 B3 — 2Thy + 4T <5 n 1;) <2h2 - p) .
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2.3. CONSTITUTIVE EQUATIONS

And the relations (2.40) are rewritten as follows:

0B Op

229

=2 (0 (5),

0 9 0 B, (%)

oyt (B (o) (22) (%) W
dp p \9p)p p) N\ )r N0 )rp(5p),

B3 < p) <5p)
B T (427 ) ()
dp P )

I op hy

= 2( + ) <8T) — (2.43)
0Bz 5 Ohy 8 P 4 (Op

T [32 + ﬂ3 + 3Th4 < p > ha ST (8 + p) P (8T>p

p\ |10 Oha
+4(€+p) p*(w
ops 2 B p\(p  ha\ _ 9p

We will show in Sections 7 and 8 that, by using the relations (2.42), (2.43) and the equations

of state (¢ = é(p,T), p = p(p,T)), we can derive uniquely the explicit expressions of these
coefficients except for the integration constants.
2.3.5 Linear constitutive equations
From Egs. (2.36) and (2.38) , 5, the linear constitutive equations are summarized as follows:
II = 2ho Ag,
Miijy = 2hsAij),

Mppi = 2hapu;,

M, = 3 [52 — 4hy ( i)] Wik (2.44)
M(zg)k = |:B3 —4h3 <6 + i>:| Hitii ]

(5%),
Mppik = | B1+ { B2 — ha———— ¢ Au| dir. + B3 A (i)

p(BT)p

It is usually more convenient to take {p, T, Stijys 1L, ¢i} as independent variables instead
of {p, T, Aijy, My puri }- From Eqgs. (2.44); 55, (2.9) and (2.10), the Lagrange multipliers are
expressed by

1 1 1
A = ——11 Ay = —=——5 i = - 2.45
kk oy (i5) 2hs (i5)s 200 h4q ( )
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CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

Then we may express the linear constitutive equations as follows:

M, = 3Lqy,

M = Kqidjr,

o= 3 - 35) 2 ) (o)

(2.46)

where the coefficients hs, hs, hy and (1, B2, B3 are the functions of p and T'. And instead of §s
and (3, we introduce the coefficients L and K that are the functions of p and T defined by

L_}L[@z_zmg (wm K_,H/sg—thg (”Zm (2.47)

2.3.6 Entropy density and entropy flux

With Egs. (2.26), (2.27), (2.30), (2.31) and the constitutive equations (4.5), the entropy density

and the entropy flux are expressed as

1 1

1
_pE 112 S+ —qq; 24
h=h"+ 17y + 4h35<”>8<”> + h4q q;, ( 8)
1 1 (22) K
= —qpn+— (L — 8T”>H — ——qiSir)- 2.49
i ( o(2e), ) ok = g aiSian (2.49)

2.3.7 Productions

The productions are also expanded with respect to the nonequilibrium variables { Ag, Alifys i}

around an equilibrium state. In the linear approximation, we have
Pujy = oAijy, P = 3¢ Akk, Qi = Tpuii- (2.50)
Then we obtain
S = oA Ay + (e + Thaitu 2 0. (2.51)
There are three conditions for the coefficients:
c>0, ¢(>0, 7>0. (2.52)
The constitutive equations (2.50) may also be expressed as
Pujy = —2%135@'), P = 23]521_[, Qi = Wt (2.53)
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2.4. CONCAVITY OF THE ENTROPY DENSITY AND CAUSALITY

2.4 Concavity of the entropy density and causality

The system (2.5) must be symmetric hyperbolic so as to ensure the causality. Near equilibrium

this requirement corresponds to the condition of the concavity of the entropy density [8, 60].

As the second derivative of the entropy density h near equilibrium is given by

1
d*h = d*hF + ——(dI)? +

1 1

dhy

the condition is satisfied when h¥ is a concave function with respect to {p, m;} and the

following inequalities are fulfilled:
ho <0, h3<0, hg<DO. (2.55)

Using the well-known results of thermodynamic stability in equilibrium thermodynamics and

the relations (2.42), 5 and (2.43),, the concavity condition is expressed as follows:

1 (@)2
oT
— —Tp+ P <8p> + y <0, (2.56)
T

!The entropy density used in the mathematical community has usually opposite sign to the present entropy

density. As a consequence, they speak about convexity instead of concavity.
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CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

2.5 Field equations

The closed system of field equations is obtained by substituting the equations (4.5) into the
system (4.4):
vy,
—E —,
prp 8l‘k
o0x; ze Ox;

85 85 8Uk 87)1‘ aqk
T IT - — — —S; = =90
”(a:r) * {“ P (ap> } orr Oz, T gy =
: vy vy, v Ovy
Sti) = Wy T S g, ~ Mg T 25, S0 (2.57)

v + — =0,

dqq; 1
&« =-——358;

0
i%%k + Csa i)

+ Cs1 By

oT
Tm%%k + Cs3 o, -

ovy, vy op oT Oqx, 1

i/ e -1
O, CH38 o Stiky + CH4Qk8 + CHSQka +Cr 45— 0, rtll

oy, ov; oT oIl 0Sy;
oz, + Co3—=— B + Cq48 +Cp5— 2, +Cy 8;3:>
9p iT_}aH 195

ox; a8 oxr; pdx; p Oxg

oT 1 011 n 185@@) 1

+ (Cm + Crppll) —

v,
qz + qu 95—

a + Cq2 qk

. (qﬂ

= ——q;, (258)

Tq

dp
= St (ngaxk a0y om0

where the coefficients Cg,(a = 1,2,3), Crp(b = 1,---,6) and Cye(c = 1,---,10), and the
relaxation times 7g, 74, 711 are the functions of p and T'. With hg, h3, hy, L and K, these are

expressed as follows:

0K 0K
Cs1——<ap>T, CSQ__((?T)p’ Cs3 = —K,
ap\ [0\ 2
(o7), (or), - o =5

5 (0K oL 1 /0p
= — = :L—f _—
o= (o), = (or), om=2-5 (1),

1/ 0p e\ !
to\ar) \ar)
P p p
(%)
oT p ’

K K K hy (2.59)
Cp = =5 Cq3:1+L_§7 Cq4:_ﬁv

2
1/ 0p o\ !  hy
i (05 (50), (7). ) e
(9 p . (9Cg (o 0Cys
C‘ﬂ_(@p)T p2+< dp >T’ Cq8_<3T>p+( oT >p’
Oe _ﬁ 8Cq6 C N % _ vaﬁ
r P op )’ a0 =\ ar ) or ),

o8




2.6. RELATIONSHIP BETWEEN ET AND NAVIER-STOKES-FOURIER THEORY

and

2k 2Dy 2Ny
TS = 7, I = T, Tq = T (260)

2.6 Relationship between ET and Navier-Stokes-Fourier the-

ory

We carry out the Maxwellian iteration [8, 46] in the system (2.57): The first iterates TI(), S<(i1j)>
and ql-(l) are obtained by the substitution of the Oth iterates S<(Z.Oj)> =0, 1 = 0 and ql-(o) =0
into the left hand side of (2.57), 5 5. Then we obtain

v 1 _ 2h2 Ove (1 _ hy 0T

(1) _ — Al
S = WSy, T T Mgy % T Ty, (2:61)
On the other hand, we have the laws of Navier-Stokes and Fourier expressed by (2.2). The

comparison reveals that

2hs hy

= pT7s, V= ——"TII, R=——=Tg-

(2.62)
We can therefore estimate the values of the relaxation times 75, 7, and 711 from the experimental
data of the coefficients u, v and k.

The second iterates are obtained by substituting the first iterates into the left hand side of
(2.57), 56, and higher iterates are obtained in a similar way.

In conclusion, the system can be certainly closed by the universal principles except for
some nonessential constants, provided that we know the thermal and caloric equations of state

and the viscosity and heat conductivity coefficients. This surprising result, which could not be

achieved in previous works on this subject, shows clearly the power of our hierarchy assumption.

2.7 Characteristic Features of the Theory

As shown above, the thermal and caloric equations of state play a crucial role in the ET theory

of dense gases. In general, the equations of state can be expressed as

D= pideal(pa T) + p¢(p, T)’ €= 5ideal(T) + 5¢(P, T)v (263)

where pigear and €;4eq are, respectively, the pressure and the specific internal energy in a
rarefied gas limit. In a dense gas, as the average distance between the constituent molecules
is finite, the interaction between the molecules also contributes to both the pressure and the
specific internal energy, which are denoted by py and 4. Furthermore, €;40; can be divided

into two parts:

Eideal = Etrans (T) + 5int(T)u
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CHAPTER 2. EXTENDED THERMODYNAMICS OF DENSE GASES

where e4.qns and €;,; are the specific internal energies due to, respectively, the molecular
translational modes and the internal modes of a molecule such as rotational and vibrational

modes. Between p and ¢, there is a relation which comes from the integrability condition of

Gibbs equation (1.149);
Oe 1 Jp
i = - T = .
<6P)T P’ <p <6T)P>

Between p;geq; and €;4eq1, there is a following relation:

?’pideal = 2p5t7"ans- (264)

Owing to the general character of the equations of state mentioned above, we have the
following four disjoint CASEs 1-4:

CASE 1 Rarefied monatomic gases (pg =0, eint =0, €4 =0),
CASE 2 Rarefied polyatomic gases (py =0, €int #0, €4 =0),
CASE 3 Dense monatomic gases (pg # 0, €int =0 €4 #0),
CASE 4 Dense polyatomic gases (py # 0, €t #0 €4 # 0).

Any gas belongs to one of the cases. See also Fig.2.1.

An advantage of this classification is that the effect of the internal modes of a molecule on
nonequilibrium phenomena in a gas can be analyzed clearly by comparing the results of CASE
1 and CASE 2 (or of CASE 3 and CASE 4). In a similar way, the effect of the inter-molecular
potential, for example, can be analyzed by comparing the results of CASE 1 and CASE 3 (or
of CASE 2 and CASE 4). CASE 1 has already been fully developed [8], while CASEs 2-4 are
those to be explored by the present ET theory of dense gases.

In this section, we discuss the characteristic features of the present theory in CASEs 1-4

separately.

2.7.1 CASE 1: Rarefied monatomic gases
The equations of state are given by
P = Pideat(p,T), €= €trans(T), (2.65)
and there is a relationship between p and e:
3p = 2pe.
For classical gases, in particular, we have
kp T 3kp

p=—pT, e=;—T,
m m
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p¢=0,8¢=0 p¢750,8¢750

=0

Rarefied monatomic
(CASE 1)

Figure 2.1: Any gas belongs to one of the CASEs 1-4. The darker part is an unexplored
territory and is expected to be studied by the present ET theory of dense gases.

where kg and m are, respectively, the Boltzmann constant and the mass of a molecule. We
may utilize these equations of state to obtain the system of field equations in CASE 1.

Let us discuss a subtle point in the system thus obtained. Eq. (2.57); is now reduced to
II = 0 as is expected for rarefied monatomic gases, and it plays no more role. The theory,
therefore, becomes singular because of the change of the system itself, that is, the change
from 14 equations to 13 equations. Furthermore, as Gj;; is congruent with Fj; in this case, the

G-series merges with F-series. As a result we have the following system of field equations:

OF  OF, _

o " om,
OF; . O0F; -

8t 8xk (2 66)
8F7;j 8ka — P, ’
ot &rk — b
OFppi | ik _

ot " omy lmo

where Fj,,;; and Py, are the flux and production of Fj,;, respectively. This is exactly the same
as that of ET of rarefied monatomic gases (Chapter 1, Section 3, Eq. (1.117)). In conclusion,
the system of field equations (2.57) for dense gases contains the system of 13 field equations

for rarefied monatomic gases as a special case in a singular way.

2.7.2 CASE 2: Rarefied polyatomic gases

The equations of state, when the temperature is not extremely low, are expressed as

kg 3kp
= =2,T =——T+eum(T). 2.67
p="2pT,  e=g5 =T +cim(T) (2.67)
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It may be useful to introduce the specific heat ¢, = de/dT’, which, in general, depends on the
temperature. Then we obtain the system of field equations for non-polytropic gases.

In this case the coefficients hg, h3, hg, 51, L and K are easily obtained from the raltions
(2.42) and (2.43): as follows

11 k ke’
m m

2 *
5 k3 k 2 5 1 (2.68)
B B
=2 —T ) —=Tp, K= L=-
b <5+m )m P 1+¢ 31+¢’
where ¢}, = chym is the dimensionless specific heat. We assume that the integration constants

in 81, B2, B3 vanish. This assumption is reasonable because of the fact that our results below
are consistent with those of the kinetic theory [15, 13].

The linear constitutive equations are given by

)
My, = * dk,
" ch+1
2
Mipe = m%(sj)ka
v

k k
Myppik = QEBT [(ch+1)p+ (c +2)I) 61, — QEBT(CJE + 2)S k)
9¢i¢ (2.69)

(2¢; = 3) 501
g

i

Plij) = St 72 7 S(ijy
T
Qi - - 5 q;.
2(ct +1) (%B) T3

The coefficients of field equations are expressed as

2! 2
C 207 C :71)7 C B E———
S1 52 (1—1—071)2 53 1+
2 1\ k& 5 1 1 2
Om=(5- ) 2ar Cr=G- 2 Cw=i-3
cs) m 3 < ¢ 3
5 ¢ 2¢t — 3
Cns =0, CH5:**%7 Cnﬁzvi*a
3(1+c¢) 3 (14 ¢t) (2.70)
2+ ¢ 1 24+t ki >
Cpn = vt Cp=—— Cu= L o Cu=|—) Tp(1 *
ql 1+C;k]’ q2 1+C;S, q3 1+c;;<)’ q4 <m> p( +cv)7
kg kp kT kg y
Cq5: T, Cq(;:— T, Cq7:_77’ ng— <1+Cv),
m p
kBaT ](IB
Co=—""—, Cyo=—(1 *
49 m o Cawo (I+¢)
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The relaxation times 7g, 74 and 711 are given by

2
* kp 3
ol _(2e = 3)pT o Ay +1) (*m) pT 2.1)
S > II 301;( ; q - . .

These are related to the shear and bulk viscosities and the heat conductivity:

2¢y — 3 . p?
u = prs, vV = gc;‘] pTII, R = (CU + 1)p7TTq. (272)

The entropy density and the entropy flux are expressed as

3ck 1 1
h=ht— v 2 — ————S5,Sui — i + O(3)
% k k (i) (i7) 2 4iq; )
2(2c5 —3)5EpT? 45E T 2(cy+1) (A2) o1
(2.73)
1 2c:2 + 6¢: — 6
Ok = 7k — Hgr, + 4iSiry + O(3). (2.74)
T (2ct = 3)(ct + 1) 55572 (3 + 1)Ez 2700
The requirement of the concavity of the entropy density are expressed as
0 0
p >0, o > 0, op > 0,
orj, op)
(2.75)
2c —3kp o ke\* 4
———pT* >0, 2(cy +1) () pT” > 0.
ck m

It is easy to see that all inequalities are identically satisfied for classical polyatomic gases with
cy > 3/2.

It can be proved that the system of field equations in CASE 2 is fully consistent with the
system derived from a kinetic model for diatomic gases [15] and from the kinetic theory with
the maximum entropy principle [14, 61, 48, 12] for polyatomic gases [13]. This consistency is,
of course, vitally important for the validity test of the theory of dense gases itself as a necessary
condition. The detailed study of such an interrelationship between ET and the kinetic theory
must be a promising new direction in the future research.

We remark the case that ¢}, = 3/2. In this case, we notice a subtle point in these expression
and also Eq. (2.69), for the case of rarefied monatomic gases where ¢ = 3/2. This subtle
point comes from the fact that hy = 0 when ¢} = 3/2. Therefore, as we mentioned in the

previous subsection, we need to treat this case as CASE 1.

2.7.3 CASE 3: Dense monatomic gases

The CASE 3 has been little explored by ET up to now, but is the case that is highly expected to
be studied by the present ET theory. Such a study must be challenging not only theoretically
but also practically.
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The equations of state are expressed as

k‘B 3]433
— YT T — 27 T). 2.
p=-p +pg(p,T), € 5 +eo(p, T) (2.76)

The explicit forms of py and €4 may be given in the virial expansion form. Up to the first
correction with respect to p, with the help of the integrability condition of Gibbs equation

(1.149), we have the following expression:

k k
po="TByT)p* +0(p"), ey =—"T*By(T)p+O0(p%), (2.77)

m

where the second virial coefficient Bs is the function of the temperature T', and a prime means
a derivative with respect to T'.

Using the equations of state (2.76) and (2.77), we can obtain the explicit expressions of
the coefficients in the constitutive equations in the following way: We obtain hs, hs, hs, - , hg

except for hy from (2.42). Integrating (2.43), with respect to p, we obtain f; as follows:

By = /pp2 (e(p,T>+p(’_’f;T)> (8p(§[;T)>po+cl(po,T,To>,

ks 2 ks’
=5 (nf) T?p + <nf> (682 — TBy) T?p* + O (p°) + Ca(po, T, T),

where C1 2(po, T, Tp) are integration functions, and py and T are, respectively, the mass density
and temperature in a reference state. As 7 at an arbitrary value of T" must asymptotically
approaches 5 (%‘)QT 2p in the rarefied-gas limit, we obtain Cs(pg,T,Tp) = 0. Now B; has
been determined within the approximation adopted here, we get the explicit form of hy from
(2.43),. B2 and P35 can be determined in a similar way. We can easily check the consistency
that §o and (3 obtained in this way satisfy the remaining relations (2.43)576. Then we can
obtain a relation between L and K as follows: L = %K .

Substituting the equations of state (2.76) with (2.77) into (2.42) and (2.43), we obtain the

first correction of ho, hs, hy and K with respect to p:

k 15By + 20T B, + 4T?BY
hz—BT2p< : 2 2,0+O(p2)>,

18

k
hs = —EBTQP(l + Bop + O(p?)),
(2.78)

2
= (52) T 6+ 63 39 5 0 (),

10T B} + 4T BY

2
5 p+0(p?).

4
K==
=+

We here make only one remark. When we analyze the concavity condition (2.56), we find
that there is a subtle point such that the condition is not always satisfied. As we will see in

the next section, the hard-sphere system with constant Bs is probably the most extreme case
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in the sense that the condition is not satisfied for any p as far as we adopt the equations of
state above. This fact is intimately related to the singularity of the system of field equations
mentioned in CASE 1 where the dynamic pressure II vanishes. Detailed study of such a delicate

point will soon be reported elsewhere.

2.7.4 CASE 4: Dense polyatomic gases

The equations of state are expressed as

k 3k
p= EB,OT—qus(p,T), €= iﬁBT-FEint(T) +eu(p, T). (2.79)

For later convenience, we introduce

* _ deideal(T) kp 3 demt(T) kp
“aad D)= =97 /=2 "ar [ m’

(2.80)
In the same manner with CASE 3, we can determine the integration functions of 1, 52 and
B3 as 0. In addition, we can also obtain the relation L = %K . Then, with the virial expansion

form (2.77), we have the first correction of ho, hs, hy and K with respect to p:

*
m Videal

h2 — @T2p [3 — 2C;ideal

* 2 * * / 2 R
Cy, +6c;, )Ba+6(1+c;, )I'By+3T°B
+ ( Videal vzdeal) *( 5 'Utdea.l) 2 2 p+ O (p2)

Videal

k
hs = —EBTQp(l + Bap 4 O(p?)),

)

(2.81)

7% 1
hy = —2 (75) T3p [1 +cp o+ <(1 + Cpon ) B2 — 2TQB§/> p+0O (p2)} 7

2 . (¢hnow + 1T By +T*By

ey +1 (¢ +1)2

Videal Videal

K = p+ 0 (p?).

The CASE 4 has been totally unexplored by ET until now. This case is also highly expected
to be studied by the present ET theory.

2.8 Application to special systems

In the previous sections (Section 7.3 and Section 7.4), we have seen only the features of dense
gases by the application to the system with the virial equations of state. In the present section
the general theory is applied to two physically important systems: (i) a hard-sphere system, and
(ii) a van der Waals fluid. The analysis of the first system shows explicitly the corrections to
the results in rarefied gas system when the system is no more dilute enough. As a hard-sphere

system plays an important role in the perturbation theory in liquid-state physics [62, 63, 64],
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it seems to be interesting for the researchers in this field to understand ET of the system. A
van der Waals fluid is the well-known simple model that can describe real-gas effects including

gas-liquid phase transitions.

2.8.1 Hard-sphere system

The thermal and caloric equations of state are given by

p="BTqr()

Dk—BT
2 m

(2.82)

)

where 7 is the packing fraction related to the mass density p by

_

— (2.83)

and I'(n) is a function of 7 determined explicitly by computer experiments [62]. Here w is
the volume of a hard sphere. In this subsection, we use 1 instead of p. Throughout the
present section, the specific heat is assumed to be constant, that is, only polytropic fluids are
studied. Therefore the caloric equation of state (2.82) is expressed by the degrees of freedom of
a molecule D(D = 3+ f where 3 corresponds to the translational motion in the 3-dimensional
space and f is the internal degrees of freedom).

Using the expressions of the coefficients in the constitutive equations derived in the same

way as above, we obtain the constitutive equations:

\ 10 [/ T2(7
itk — D77F+2fn F2 d_QkH
4 [7T%(7
M ;s 0 o
(i)k = Dnr_|_2f0 F2 )d7 495 k>

kg, [k 1"
Mppik = —2T —BnT DT +T%+ = [ T%(7)d
m nJo

6DI? + 2(=5D + 6I') [/ I*(77)d7 s
2DI — 6I'2 — 3Dy’ i

+{D+2F—

. (2.84)

2 n
— 2T (D+2T +— [ T%*@)dq) S,
- ( + +77T/o (1) 77) (ik)
b 9D¢
" Repr2(9pr - 602 - 3DyIY)
ag
2%37;T2FS<”>’
-
Qi =— @,
(%B) w3 (DT + 2 [1T2(5)di)

)

Pig) =

where IV = dI'(n) /dn.
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The closed system of field equations can be obtained by using above constitutive equations.
We omit its expression for simplicity. The relaxation times are related to the shear and bulk

viscosities and the heat conductivity:

1= PTs,
V= iki‘nT (2DI — 6I'? — 3DnI") Ty
3D w ’ (2.85)

2
T 9
K= (kf’) m.z (DF+/ F2(n)dn> T
m w2 1 Jo

The concavity condition of the entropy density in this case can be expressed by only one

inequality:
-+ =+ <0. (2.86)

Then we find that there is a critical packing fraction no such that the above condition is
satisfied in the region 0 < 7 < nc. In the case of D = 5, for example, we can estimate
nc = 0.0447 by adopting the following functional form of I" [65]:
rp - L4

- 1)
The dependence of no on D is shown in Fig. 1. It is remarkable that nc = 0 in the case of
D =3.

(2.87)

0.15—

nc

0.10~

0.05—

0.00— | I | I | I |

Figure 2.2: Dependence of the critical packing fraction n¢ on the degrees of freedom D.

2.8.2 van der Waals fluid

The thermal and caloric equations of state are given by

_ks Tp 2
T mil-tp
m p (2.88)

— ZMBp_
T om “w;
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where the material-dependent constants a and b represent, respectively, a measure of the
attraction between the constituent molecules and the effective volume (or exclusion volume)

of a molecule.

The constitutive equations are obtained by using the same procedure as above:
k
T+ 555 (1 = bp)(bp + log(1 — bp))

(D + 2)%37’ — D(1—bp)ap
4%3T + 55 (1 — bp) (bp + log(1 — bp))

M;ix =10

ak,

Mipe = 195)ks
ik (D+2)" T — D1 —bp)ap 0k
kp kp bp? o 1+bp  8a?p3
= —T|(D+2)p+ —T—"— —2 2
Mewik = " {( +2p+ m - (1 —0bp)? aw 1—bp 3%9T
kp,..2(D —3)(D+4) — (TD? + 18D — 12)bp + 5D (D + 2)b*p?
+{7T 1—-0bp

a a2p2
+ (D(1 = bp)*(10 + Dbp) + 12bp(2 + Dbp)) — 4DE(1 — bp)?

m

+10D 5~ (1 — bp)*log(1 — bp)}n

b*p
k
/ {EBT (2(D — 3) — 5Dbp) + Dap(1 — bp)2H Sit (2.89)
_SBpliByp ~(2—(D D
Er{= o, @ (D8t DY)
a’p? a
4 (1= bp) + 245 (1~ bp) log(1 - bp)}S<Z-k>
/{%BT —ap(l - bﬂ)},
1— 2
Pae 9D(1 — bp) L
"B pT?(2(D — 3) — 5Dbp) + Dap*T'(1 — bp)?
1—0bp
Pyjy = a5ij),
i) 2%3pT2 —2ap?*T(1 — bp) )
1—b
0 — - (1—"bp) -

2
k k
(ﬁ) (D +2)pT3 — £ Dp2T2a(1 — bp)
The relaxation times are related to the shear and bulk viscosities and the heat conductivity:
n=pTs,

kp pT ap?
— (B PL_(9(D—3)—5Dbp) + -
g <m3D(1—bp)2(( 8) = 5Dbp) + == |

1 kB 2D+2 kB 2
= = - - ;7 ] _7D ; .
" 2<<m> l—bpp m aw 1

We now study the concavity condition of the entropy density (2.56). For later convenience,

(2.90)
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we introduce the dimensionless variables:
N P 5T
p=— p=— T=—, 2.91
pC”" pCT TC’/‘ ( )
where pe, = 1/(3b), per = a/(270%) and T,, = 8a/ (27%‘36) are, respectively, the mass density,
the pressure and the temperature at the critical point. Then the thermal and caloric equations

of state are rewritten in terms of the dimensionless quantities as

8Tp ADT
p=—al i e=loe 22 g (2.92)
3—p Der 3
As the inequality (2.56), is always satisfied, the concavity condition is now expressed as
8Tp 8T
P 3250, —— —2)>0,
3-p (3—5) (2.93)
184+ D(5p—06) a3, 8(D +2)T +3D(p—3)p +p .
- T°p—=Tp" <0, - T°p < 0.
D(p —3)? 8 (h—3)
The condition is satisfied in the shaded regions in Fig. 2 for several values of D.
1.2 T T T 1.2 T T T T 1.2 T T T
. a a
1.of D=5 - 1.0f D=8 - Lof D=100
0.8 , 0.8F 1 0.8) i
0.6/Gas / Coexistence \ Liquid | 0.¢/Gas /Coexistence \ Liquid | 0.6/Gas/ Coexistence \ Liquid |
0.4 E 0.4+ 4 0.4
0.2+ 4 0.2 il 021
0.0 : : : : 0.0 : : : : 0.0 : : : :
0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 15 2.0 25 0.0 0.5 1.0 1.5 2.0 2.5
o p p

Figure 2.3: The concavity condition (2.93) is satisfied in the shaded region. The degrees of

freedom: D = 5, 8 and 100. The curve represents the coexistence curve.

2.9 Concluding remarks

In conclusion we make the following two remarks:

(i) We have proposed and explained a possible phenomenological model of ET of dense
gases. The model has been constructed with no reference to microscopic details of the system
such as the internal motion of molecules, i.e., molecular rotation and vibration. In this respect,
the standpoint of the present work is purely phenomenological and is quite different from that
of the previous works dealing with so-called molecular ET [50, 51, 52].

(ii) As discussed in the previous sections, we have understood a subtle point in the present
theory in the case of monatomic gases with ¢}, = 3/2. This point seems to be interesting from
both physical and mathematical viewpoints, and is worthy of further study. This will be the

future subject.
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Chapter 3

Linear Waves in Rarefied
Polyatomic Gases Based on

Extended Thermodynamics

Based on the extended thermodynamics for dense gases, the dispersion relation for sound in
rarefied polyatomic gases is studied. Through the comparison with experimental data and
Navier-Stokes Fourier theory, the validity of extended thermodynamics for dense gases is clar-

ified. Moreover the estimations of the bulk viscosity and relaxation times are studied.

3.1 Introduction

ET of dense gases are proposed and discussed in Chapter 2. This is the theory of 14 fields of
mass density, velocity, temperature, viscous stress, dynamic pressure, and heat flux with two
parallel hierarchical series of field equations of balance type. The constitutive equations are
determined explicitly by the thermal and caloric equations of state. As we have already seen,
the theory includes naturally the theory of rarefied polyatomic gases as a special case. Now,
owing to the establishment of the theory, both the class of gases and the conditions for gases
to which ET is applicable have been enlarged enormously.

The purpose of the present chapter is to understand explicitly the validity and the features
of the new theory through studying the dispersion relation for sound. We firstly derive the
dispersion relation, and secondly compare the results with those obtained in experiments and
by the classical Navier-Stokes Fourier (NSF) theory based on the local equilibrium assumption.
We will, however, confine our analysis within the sound in some rarefied diatomic gases because
suitable experimental data are scarce and are mainly restricted to rarefied gases. The study

of the dispersion relation for sound in general dense gases with and without internal degrees
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of freedom is, therefore, remained to be a future work.

The organization of the present chapter is as follows: In Section 2, we summarize the basic
equations necessary for the present analysis. In Section 3, the dispersion relation is derived
and its high-frequency limit is studied. In Section 4, the dispersion relations in hydrogen,
deuterium and hydrogen deuteride gases are compared with both experimental data and those
derived from the NSF theory. We also evaluate the relaxation times and the bulk viscosity.

The last section is devoted to the summary and concluding remarks.

3.2 Basic equations

In this section, we summarize the basic equations for the present analysis. We assume
that a nonequilibrium state can be characterized by the 14 independent field variables u =
(p,vi, T, S5y, I, qi) where v, S5y, Il(= —S;;/3) and ¢; are, respectively, the velocity, symmet-
ric traceless part of the viscous stress, dynamic pressure and heat flux. In Chapter 2, we have

already obtained the closed filed equations of these.

We concentrate our attention to rarefied polyatomic gases (Chapter 2, Section 7.2), that

is, in the case that the thermal and caloric equations of state are given by (2.67):

k
p= EB,OT and e = ¢(T), (3.1)

where p, p, T and ¢ are the pressure, mass density, absolute temperature and specific internal
energy, respectively, and kp and m being the Boltzmann constant and the mass of a molecule.

Note that gases are, in general, non-polytropic, that is, the specific heat at constant volume
Cy = — (3.2)
is, in general, not constant but depends on the temperature.

Let up = (po,0,7p,0,0,0) be a constant equilibrium state, then the linearized system in
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the neighborhood of ug for the perturbed field u reads:

oy,
p+pos— By =0,
kg, Op kg OT 0Su;y Oll
i+ 2Tyl + Zpya— — W 2=,
povi + Oaxz + mpoaxi Ox; + ox; 0
k kg 0 0
7BPOC*T + 7P0TO Tk Sk,
Bxk aitk
(i) m O 08$j> 1+ ¢, 0z 1g (@)
II - — = T = ——1II
+<3 ) mP Oa HEETT R

kg2 oT kg 0S; kg . Ol 1
+(1+¢) =5 poTo - B, LA 1 = ——q,
m or; m oxp m - 0x; Tq

where a dot on a quantity indicates the material time derivative, and ¢}, is the dimensionless

specific heat at the reference equilibrium state:

* (CU)T=T0

cy = kp/m (3.4)

The relaxation times 7g, 71 and 74 in Eq. (3.3) are also evaluated at the reference equilibrium

state.

By the Maxwellian iteration [8, 66, 67, 46], we obtain the relations between the relaxation

times and the shear viscosity u, bulk viscosity v and heat conductivity :

ke T 2 ke T (1+¢) kp)* T (3.5)
- — T UV = _ = — —_— T K = C i T .
H mpO 07S, 3 C;‘; mpO 071l v m POL0Tq

Let us consider a one-dimensional problem and assume:

v S 0 0 q
Vi = 0 s S(zg) = 0 —%S 0 , Qi = 0 . (36)
_lg

Then, from Eq. (3.3), the linearized basic field equations are neatly written as

ou ou

At B .
8t+ 081’ ou, (37)
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where Ay and By are given by

0 0 0 0 0 0
kg T 1 1
~5 20 0 kn - — 0
m po Po Po
To 1
0 - 0 0 0 .
Cy T2 po
A = 4 kg 4
0 0BT 0 0 ) —
3 m P00 3(1+c)
2 1\ kp 2c; — 3
0 - — — | —poTi 0 0 0 —r
<3 cjj) m P00 ) k(1 +ct)
0 0 (1+¢) <B> poTo —%TO '%BT 0
(3.8)
0 0 0 0 0
0 0 0 0 0
0 00 O 0 0
1
Bo=[000 -— 0 0 (3.9)
TS .
0 00 0 - 0
™ .
0 0 0 0 0 ——
Tq

3.3 Dispersion relation for sound

In this section, we deduce the dispersion relation, and then obtain the high-frequency limit of

the phase velocity and the attenuation factor.

3.3.1 Dispersion relation, phase velocity and attenuation factor

We study a plane harmonic wave propagating in the positive z-direction with the frequency w

and the complex wave number k = k, + ik; (k, = R(k), k; = S(k)) such that
u = wel@ k), (3.10)

where w is a constant amplitude vector. From Eq. (3.7), the dispersion relation is expressed
by [68]:

det (I — 2 A+ ;BO> —0, (3.11)
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where z = k/w and I is the unit matrix. Then the phase velocity vy, and the attenuation

factor « are calculated as the functions of the frequency w:

1
3.12
Uph( ) %(k) %(2’)7 ( )
a(w) = =S(k) = —wS(2). (3.13)
By introducing the dimensionless parameters defined by
T T
0= s = 1 s = —, 14
TSW, Tq p— Tp s (3.14)

the dispersion relation (4.8) is shown explicitly as

cq’j(coz)4

302 (14 ¢)? 7ps

(=3(1+¢) —iQ (34 Tc) + 5ciTps) + 9Q%ChTps)

(coz)?

33 (1 + ¢)274sTps

+ [ — (L) + QL+ (B4 T¢ + 5 Tps + 6 (14 1) 74s)

102 (2(3 4 106] + 53 ) s + 965 (14 €5) Ty + € (13 4+ 865) TasTys ) = 3% (7 + 463) sy

(Q —4) (s — 1) (7452 — 9)

_|_
Q37ps7ys

=0

(3.15)

with cg being the sound velocity in equilibrium:

co = (81)) —I—TO()z: aTO<1+1) (3.16)
ap/, P%( ct

)o =

where the suffix 0 indicates the values at the reference equilibrium state. Therefore, for given

SRS S

cy, Tgs and Ty, the quantity coz(= cok/w) is calculated from Eq. (3.15) as the function of €
(= Tsw). Hereafter in the present chapter, we will confine our study within the fastest sound

wave because the experiments discussed in Section 4 give us the data on this wave.

3.3.2 High frequency limit of the phase velocity and the attenuation factor

From the general theory [8, 68], we have the relations:

(c0)

Up, :wlggovph( w) = Ao, (3.17)
@)\ = lim a(w)Ao = —~lo - Bo - do, (3.18)
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where the characteristic velocity Ag is the largest eigenvalue of Ay, and lyp and dy are the

corresponding left and right eigenvectors of Ag. Then we obtain the limits in the present case:

Uph \/ °o1+c) (3.19)
(00) _ 2(1+c5)3 (F (4+ct) — 22— 11c; + 2¢5?) < - 3¢y (8+2¢, — F) N -3+ 202?)
9cxTsv/aTo\/T+ 4ct + F (T+4c, — F)*F " Tys Tps ’
(3.20)
where F' is given by
F= \/37 + 32¢k + 4ci?. (3.21)

The dependence of the phase velocity vl()zo) on c; is shown in Fig. 3.1. In a rarefied

monatomic gas with ¢ = 3/2, the phase velocity vz()zo) is given by 2.13051v/aTy [8]. For
large cj, it approaches v/3a1y. On the other hand, the attenuation factor () depends not

E
©

2.5

g
&
=

Figure 3.1: Dependence of the phase velocity in the high frequency limit U;ZO) on the dimen-

sionless specific heat ¢}. Rarefied monatomic gases correspond to the case with ¢ = 3/2. The

dotted line is the asymptote.

only on ¢ but also on the relaxation times. In a rarefied monatomic gas, the attenuation
factor a(>®) is given by (0.0951852 + 0.0931368/7,s) /(Tsv/aTp) [8]. For large c%, it approaches
(14 275)/(9V37psTsv/aTp).

3.4 Comparison with experimental data

The dispersion relation obtained above, in particular, the phase velocity v, and the attenuation
factor « as the functions of the frequency w are compared with the experimental data on normal
hydrogen (n-Hg), para hydrogen (p-Hz), normal deuterium (n-Dj), ortho deuterium (o-Dg)
and hydrogen deuteride (HD) gases at temperatures 77.3K, 90.2K and the room temperatures
[69, 70]. The comparison is also made with the predictions by the classical NSF theory.
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Before discussing the subject, we need to make preliminary calculations for determining

the values of ¢}, 745 and 7, defined in (3.4) and (3.14) at the reference equilibrium state.

3.4.1 Preliminary calculations
Specific heat

We calculate the specific heat ¢, of hydrogen, deuterium and hydrogen deuteride gases on the
basis of statistical mechanics [71, 72]. As we may safely neglect the contribution of internal
vibrational modes in a molecule to the specific heat in the temperature range under consider-
ation, we take only the translational and rotational modes into account. We assume also that

the translational mode satisfies the equipartition law of energy. Then ¢, is expressed as

. 3 . 02 log Zrot 1
Cy = 5 + Corotr  Courot = 52T2r0’ </8 = k‘BT> (3‘22)

where ¢, and Zyo are the specific heat and the partition function due to the rotational
modes.

For gases composed of heteronuclear diatomic molecules (HD), the partition function is
given by

o0

Zoot = » (21 + 1) exp [-BBI(I + 1], (3.23)

=0
where [ is the quantum number of the orbital angular momentum and B = h?/2I with I and h
being the moment of inertia of a molecule and the Planck constant divided by 27, respectively.
While, for gases composed of diatomic homonuclear molecules (Hy and Ds), the partition

function is given by
Zrot = Zggzguy
Zy= Y (2l+1)exp[-BBI(I+1)],

l=even

Zy= > (2+1)exp[-BBI(I+1)],
l=odd

(3.24)

where g, and g, are defined by

q normal — Hy : gu:?,/ll7 gg:]_/4 D normal — Dy : gu:]_/?), gg:2/3
2 ) 2 )
para — H, : gu = 0, gg =1 ortho —Da: g, =0, gg =1

(3.25)

Numerically calculated values of ¢ are shown in Table 3.1 and in Fig. 3.2. The values of
B of Hy, Dy and HD adopted are 12.09 x 10722 [J], 6.047 x 10722 [J] and 9.068 x 10722 []],
respectively [73].
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Figure 3.2: Dependence of the dimensionless specific heat ¢ for n-Hy and p-Ha (left), n-Do
and 0-Dy (center), and HD (right) on the temperature 7.

Relaxation times

From (3.5), we have the following relations for the ratios 7,5 and 7:

Tgs = (L+¢})7" k: , (3.26)
m M
2 1\ 'u
=(2-=) = 3.27
” (3 625> m (3.27)

Therefore, in principle, with the help of the experimental data on u, x and v, we can estimate
the values of 745 and 7,,. However, at present, as we have the reliable data only on p and &

[70], we adopt, in the analysis below, an adjustable parameter:

14

o= . (3.28)

We summarize the adopted values of ¢}, co, u, K, 745 and the evaluated values of ¢ and 7, in

Table 3.1, details of which will be discussed in the next subsection.

3.4.2 Experimental data and theoretical predictions for the dispersion re-

lation
Hydrogen gases: n-Hs and p-H»

For n-Hy, the dimensionless phase velocity, vp,/co, and the dimensionless attenuation factor,
coTsa, are shown as the functions of the dimensionless frequency €2 in Fig. 3.3. We see the
experimental data on the phase velocity at Ty = 273.5, 296.8K by Rhodes [69] and on the
attenuation factor at Ty = 293K by Sluijter et al. [70] accompanied by the theoretical results
at Ty = 293K predicted by the ET theory and the NSF theory.

Noticeable points from Fig. 3.3 are summarized as follows: (i) In the region with small €,
as is expected, the predictions by the two theories coincide with each other. The value of the

parameter ¢ is determined to be 37 as the best fit with the experimental data in this region.
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Table 3.1: Values of the temperature 7j, dimensionless specific heat ¢}, sound speed in equilib-
rium c¢o, shear viscosity u [70], heat conductivity x [70] and the ratio of the relaxation times of
the heat flux and the deviatoric part of the viscous stress 7, adopted in the present analysis.
And the values of the parameter ¢, bulk viscosity v, and the ratio of the relaxation times of
the bulk viscosity and the deviatoric part of the viscous stress 7,, evaluated by the present

analysis.

Gas Ty [K] ch o oco[Z] plpPa-s] s [2W] 7 ¢ vpPa-s] T
n — Ho 773 1.57 723 3-50 49-.8 1.34 28 98-0 988
293 2-45 1300 8-82 182 1-46 37 326 144
p—H, 73 176 707 3-50 5927 133 76 266 783
902 199 748 3-97 636 1.30| 76 302 465
293 2-61 1290 8-82 192 1.46 31 273 109
n — Do 773 254 472 4.82 45-6 1-30 36 174 132
293 250 920 12-3 131 1.47 22 271 82-5
o—Dy 773 293 463 4.82 49-4  1-26 44 212 135
90-2 296 499 5-50 556 1.24 33 182 100
293 250 920 12-3 131 1.47 22 271 82:5
HD 77-3 255 H44 4.21 519 1.26 14 5-89 5-11
293 2-50 1060 10-8 149 1-43 24 259 8-99
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This procedure of determining ¢ will be adopted throughout the present chapter. (ii) When
we go into the ultrasonic frequency region with larger €2, the prediction by the ET theory is
evidently superior to that by the NSF theory. The difference between the two theories emerges
around Q = w7, = 1073, We will evaluate 7,, which depends on Ty and pg, later. (iii) The ET
theory seems to be valid at least up to the experimental data with the maximum dimensionless
frequency © = 1071, (iv) The large value of ¢ means that v > p. We will discuss its physical

meaning below.

112 ; . 100
g :n—Hz ! é?lo—lin_HZ —
£ | —ET(293K) ! S
-~ NSF(293 K) : of
1.08- [ Rhodes(273.5 K) 10 3
| ARhodes(296.8 K) 10_3;
104 10
I 10-50 — ETQ93 K)
] -y --- NSF(293 K) F
1.00 ,-A-‘-‘__-gd _ 10—6;, QO Sluijter et al.(293 K),;
T T T EA vl vl vl il
10+ 108 102 107t 10 10° 102 10! 10° 10t
Q (9}

Figure 3.3: Dependence of the dimensionless phase velocity vy, /co (left) and the attenuation
factor coTga (right) on the dimensionless frequency €2 for n-Hs. The squares and triangles in
the left figure are the experimental data at Ty = 273.5 and 296.8K, respectively, by Rhodes
[69], and the circles in the right figure are those at T = 293K by Sluijter et al. [70]. The solid
and dashed lines are predictions at 293K by the ET and NSF theories, respectively. The black
circle on the right vertical line in the right figure corresponds to a(>). We adopt p = 3T7.

For p-Hs, we compare the theoretical predictions with the experimental data on the phase
velocity at Ty = 273.8, 298.4K by Rhodes [69] and on the attenuation factor at Ty = 293K by
Sluijter et al. [70]. We have a similar result as shown in Fig. 3.4, where the selected value of
the parameter ¢ is 31. Remarkable points in this case are qualitatively the same as in the case

of n-Hs above.

Hereafter we focus our discussion only on the attenuation factor because of the lack of the
experimental data on the phase velocity for the purpose of the present study. In Fig. 3.5, the
attenuation factors for n-He at Ty = 77.3K and for p-Hs at Ty = 77.3, 90.2K are shown. We
see again that the present theory can describe the experimental data very well. The values of
the parameter ¢ are selected to be 28, 76 and 76, respectively. These values are again very

large.
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Figure 3.4: Dependence of the dimensionless phase velocity v,y /co (left) and the attenuation
factor coTga (right) on the dimensionless frequency 2 for p-Ha. The squares and triangles in
the left figure are the experimental data at Ty = 273.8 and 298.4K, respectively, by Rhodes
[69], and the circles in the right figure are those at Ty = 293K by Sluijter et al. [70]. The solid
and dashed lines are predictions at 293K by the ET and NSF theories, respectively. The black
circle on the right vertical line in the right figure corresponds to a(°). We adopt ¢ = 31.

100 T T T 100 T T B
S} -=3 3 F ;'
& 101 & 101L P~ H2 )
S F 773K & E
1072k 102
103 10%¢
1074 104
1075 — ET 10-%: —ET : L — ET
F --- NSF E P === NSF E F ~~ NSF E
10°5L O Sluijteretal. 4 1061 O Sluijteretal. 4 10°5L O Sluijteretal. -
E ool md vl il ol il vl il AT AT R ST RS UTIT T |
104 10° 102 10! 10° 10t 104 10 102 10! 10° 10! 104 10° 102 10! 10° 10t
QO Q QO

Figure 3.5: Dependence of the dimensionless attenuation factor co7ga on the dimensionless
frequency € for n-Hy at Ty = 77.3K (left), and for p-Hs at Ty = 77.3K (center) and 90.2K
(right). The circles are the experimental data by Sluijter et al. [70]. The solid and dashed
lines are predictions by the ET and NSF theories, respectively. The black circle on the right
vertical line in each figure corresponds to a(>). We adopt =28, 76 and 76 from left to right.

Deuterium gases: n-D, and o-D»

Comparisons are also made for n-Dq at Ty = 77.3 and 293K with ¢=36 and 22 in Fig. 3.6, and
for 0-Do at Ty = 77.3, 90.2 and 293K with =44, 33 and 22 in Fig. 3.7. From these figures,

we have qualitatively the same observations as those in the case of hydrogen gases.
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Figure 3.6: Dependence of the dimensionless attenuation factor cp7ga on the dimensionless
frequency Q for n-Do at Tp=77.3K (left) and 293K (right). The circles are the experimental
data by Sluijter et al. [70]. The solid and dashed lines are predictions by the ET and NSF
theories, respectively. The black circle on the right vertical line in each figure corresponds to
(). We adopt =36 (left) and 22 (right).
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Figure 3.7: Dependence of the dimensionless attenuation factor coTsa on the dimensionless
frequency Q for o-Do at Ty = 77.3K (left), 90.2K (center) and 293K (right). The circles are
the experimental data by Sluijter et al. [70]. The solid and dashed lines are predictions by the
ET and NSF theories, respectively. The black circle on the right vertical line in each figure
corresponds to a(®). We adopt o = 44,33 and 22 from left to right.

Hydrogen deuteride gases: HD

Lastly we show the results of HD gases at Ty = 77.3 and 293K in Fig. 3.8. We notice
the following points: (i) The difference between the two theories is small and the theoretical
predictions are consistent with the experimental data in the range: Q < 10~!. This means
that the local equilibrium assumption holds well up to © = 107!, while for the other gases
analyzed above the assumption holds until = 1073. (ii) The values of ¢ adopted here are

1.4 and 2.4. These values are O(1), that is, v ~ pu, and are very small compared with those
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obtained for the other gases discussed above. We will discuss this interesting fact below.
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Figure 3.8: Dependence of the dimensionless attenuation factor cp7ga on the dimensionless
frequency 2 for HD at Tp=77.3K (left) and 293K (right). The circles are the experimental
data by Sluijter et al. [70]. The solid and dashed lines are predictions by the ET and NSF
theories, respectively. The black circle on the right vertical line in each figure corresponds to
a(®). We adopt ¢ = 1.4 (left) and 2.4 (right).

3.4.3 Remarks

Three remarks (A)-(C) are made below.

(A) We have seen clearly that the present theory of ET is consistent with the experimental
data even in the high frequency range where the local equilibrium assumption is no more valid.
Although the comparisons with the experimental data have been made only for the rarefied
diatomic gases, the consistency gives us a strong confidence that the ET theory for dense gases
[66, 67] deserves further studies. There are potentially many research fields where the ET
theory may play a crucial role, for example, fields of acoustics [74] and gas dynamics [7].

(B) From the values of the ratios 745 and 7, in Table 3.1, we have noticed an interesting
fact that, except for HD gases, 7q7 is much larger than 7g, while 7¢ and 7, are comparable with
each other. This fact was reported also in some kinetic theoretical studies [75, 76]. By using
the result summarized in Table 3.2, the relaxation times for given Ty and pg can be estimated.
For example, the relaxation times in a n-Hy gas at py = 10% [Pa] and Ty = 77.3 [K] can be
calculated: 75 = 3.50 x 1079 [s], 71 = 3.46 x 1076 [s] and 7, = 4.70 x 1079 [s].

In the next chapter, it was pointed out that the relaxation time 77 is in the same order of
magnitude as the relaxation time of the energy exchange between the molecular translational
mode and the internal modes, which, in the present case, are the rotational modes. The
results obtained above suggest that the sharp temperature change of the specific heat due to

the rotational modes cj, ., depicted in Fig. 3.2 is somehow related to the emergence of the large
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value of 711. The detailed study of this subject is, however, beyond the scope of the present
phenomenological study, and its statistical-mechanical or kinetic-theoretical study by taking

into account the realistic collision processes between the constituent molecules is required.

Table 3.2: Relaxation times of the deviatoric part of the viscous stress 7g, dynamic pressure
i1 and heat flux 7, multiplied by the pressure py for several values of Ty in Hy, Dy and HD

gases.

Gas To [K] Tspo [s - pPal Tipo [s - pPa] T4P0 [s - pPal

n—Hy 773 3-50 3460 4-70
293 8-82 1270 12-8

p—H, 773 3-50 2740 4-64

90-2 3-97 1850 5-16
293 8-82 962 12-9

n — Do e 4-82 637 6-25
293 12-3 1010 181

o—Dy 77-3 4-82 652 6-09

90-2 5-50 552 6-81
293 12-3 1010 181

HD 77-3 421 21-5 532
293 10-8 97-1 15-5

(C) From the values of ¢ in Table 3.1, we have also noticed a similar fact that, except
for HD gases, the bulk viscosity v is much larger than the shear viscosity p. The similarity is
natural because there are relations between the viscosities and the relaxation times as shown in
Eq. (3.5). A point to be emphasized here is that, as the direct experiments to measure the bulk
viscosity are usually difficult, the method for the evaluation of the bulk viscosity utilized here
through analyzing the dispersion relation on the basis of the ET theory is quite useful. The
values of v thus evaluated are summarized in Table 3.1. We hope that present thermodynamic

approach contributes to the recent studies of the bulk viscosity [77, 78, 79, 80, 81].

3.5 Summary and concluding remarks

To sum up, we have studied the dispersion relations in rarefied polyatomic gases, that is,
hydrogen, deuterium and hydrogen deuteride gases, basing on the ET theory of dense gases.

We have properly taken the temperature dependence of the specific heats, c¢,, of these gases into
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the dispersion relations. The comparison of the theoretical predictions with experimental data
on the phase velocity and the attenuation factor has revealed that the ET theory is valid even
in nonequilibrium states out of local equilibrium. We have also evaluated the bulk viscosity
and the relaxation times.

Finally some concluding remarks are made:

(i) There is a phenomenological theory of the dispersion relation for sound, the basic equa-
tions of which are composed of the relaxation equations for some nonequilibrium parameters
and the Euler (or NSF) equations for the conservation laws [2, 82]. One crucial point is that
the theory is based on the local equilibrium assumption. In this respect, this may be regarded
as a theory in the framework of thermodynamics of irreversible processes [2]. Because of this,
in the present chapter, we have compared the ET theory only with the NSF theory as a repre-
sentative one. In Ref. [83], the relationship between the simplified ET theory and the theory
with one relaxation equation was studied in detail.

(ii) We have analyzed the experimental data on rarefied hydrogen, deuterium and hydrogen
deuteride gases in the temperature range where the rotational modes in a molecule play an
important role. The ET theory can be applied to many other rarefied polyatomic gases in a
wider temperature range where the rotational and/or vibrational modes in a molecule play a
role. Comprehensive study of this must be a promising future work.

(iii) As is mentioned in the first section, it is interesting to study the dispersion relation for
sound in dense gases. As a first step, we are now studying it in a gas prescribed by the virial
equations of state.

(iv) In order to study the effect of the large value of the relaxation time 7y; on various
nonequilibrium phenomena such as shock wave phenomena, it seems to be appropriate to
adopt a simpler model than the one adopted here. The theory with only 6 independent field
variables (p,v;, T,II) developed in the next chapter [83] may play an important role in such

studies.
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Chapter 4

Extended Thermodynamics of
Dense Gases with 6 Fields: An

extension of Meixner ' s theory

In the previous chapter, we have seen the case that the relaxation time related to bulk viscosity
is much larger than othe relaxation times. To study such phenomenon, it is useful to consider
the simplest theory in the framework of ET of dense gases, that is, ET with 6 fields; mass
density, velocity, temperature and dynamic pressure. Such ET theory plays a role as an
extension of Meixner’s theory, that is, the thermodynamic theory with energy transfer from

molecular translational mode to internal modes.

4.1 Introduction

Energy transfer from molecular translational mode to internal modes, such as rotational and
vibrational modes, affects the propagation speed and attenuation of a sound in a gas composed
of polyatomic molecules. Especially when the frequency w of the sound is in the same order of
magnitude as the inverse of the relaxation time of the energy transfer, 1/7, the effect on the
sound is prominent. Such non-equilibrium phenomena are usually observed in the ultrasonic
frequency range.

The thermodynamic theory with non-equilibrium parameters governed by the relaxation
equations [5, 6, 2] has been utilized to describe the phenomena for many years. In order to grasp
the essence of the theory, let us consider the simplest case where only one relaxation equation
for a non-equilibrium parameter £ is present in addition to the system of Euler equations for a
gas that expresses the mass, momentum and energy conservation laws. That is, we neglect all

dissipative processes but we take into account the relaxation process. The relaxation equation
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is introduced in such a way that

§ = —PA4, (4.1)
where a dot on £ represents the material time derivative, 5 is a positive coefficient, and A is
the affinity of the relaxation process of the energy transfer that depends not only on & but
also on other thermodynamic quantities, say, the mass density and the entropy density. When
wT K 1, it was proved that the relaxation process may be interpreted in terms of the dynamic

pressure II, which is related to the gas velocity v as
1 = —fdiv v

with v°f being the effective bulk viscosity.

Although Meixner’s theory mentioned above seems to be natural, there remain some prob-
lems that should be overcome: (i) In Meixner’s theory, the relaxation equation (4.1) is not
fully congruous with the Euler equations. It has not been introduced on the same ground
of the Euler equations as one of the general thermodynamic basic field equations. In fact,
in a rarefied gas limit, the relaxation equation is not consistent with its counterpart of the
moment equations derived from the kinetic theory of gases [52]. See also section 4.4.2 below.
(ii) Meixner’s theory is formulated within the framework of thermodynamics of irreversible
processes [2]. The local equilibrium assumption is premised from the beginning. However, in
such phenomena as ultrasonic wave propagation where temporal and spatial changes are rapid
and steep, this assumption is not well-satisfied (see Chapter 3 and [84]).

In this chapter, we propose a fully-consistent thermodynamic theory of the sound propaga-
tion in a gas with the energy transfer where the local equilibrium assumption is not necessarily
valid, and thereby try to extend Meixner’s theory. We adopt the theory of extended thermody-
namics (ET) (Chapter 2 and [66, 67]). As before, the essence of our theory can be most clearly
shown by studying the simplest case where only one dissipative process due to the dynamic
pressure exists. In section 2, we derive the closed system of field equations for gases. In section
3, we study the dispersion relation for sound and compare it with that derived from Meixner’s
theory. The last section is devoted to concluding remarks with the discussions of subsystems

and the kinetic theoretical basis of the present theory.

4.2 Extended thermodynamics of real gases with 6 fields

As we have seen in Chap. 2, ET of dense gases has been constructed based on balance
equations with binary hierarchy structure by using only general principles such as the Galilean
invariance and the entropy principle, we proved that the system of field equations can be closed
with respect to the independent field variables and the constitutive functions are determined

explicitly by the equilibrium thermal and caloric equations of state.
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In this section, we restrict our study within the simplest case of 6 independent field vari-
ables, that is,

mass density: F (=p),
momentum density: F; (= pvy),
energy density: Gii

trace part of momentum flux: Fj;.

4.2.1 Binary hierarchy of the differential equations

We adopt the following binary hierarchy (F-series and G-series, see also section 4.4.2.) of the
balance equations [66, 67]:

F  OF,
aa? - %ZZ: =0

ag;,-,- aac; k’“ =0, (4.2)
85‘; ' aaif =l

where Fjj, is the momentum flux, Fj;; is the flux of Fj;, G is the energy flux, and Pj; is the
production with respect to F;;. The equations with no production term represent the mass,

momentum and energy conservation laws.

As the balance equations (4.2) should be invariant under the Galilean transformation, the

dependence of the quantities on the velocity can be expressed as follows [49]:

Fij = pvivj + Mij,
Gii = pviv; + mi,
Fir = pvivivy, + 3M i) + My,

Giir = pvivivg + myvy + 2Miv; + myir,

where M;j;, my;, My, and my;;, do not depend on the velocity. Parentheses around a set of
indices represent the symmetrization with respect to the indices. The production P;; is also

independent of the velocity.
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With Eq. (4.3), the balance equations (4.2) can be rewritten as

ﬁvk
) 9% _
p+ Pawk )
OM. -
J 4.4
s + g OO Ok g 0% .
i % al‘k 8$k 8$k ik — Y,
. v OM;; v,
Mii + Myo— + —"% 4 2 —L My, = P;;.

We notice that the quantities M;;, m;; and m,,; have the following conventional meanings:

stress: ti; = —Mij (Z — (p + H) (51']' + M(ij>))
s 1
specific internal energy: €= Q—mii,
p
1
heat flux: % = 5Mppi,

where the pressure p depends only on p and m;;, Il is the dynamic pressure, and angular

brackets denote the symmetric traceless part.

We may now adopt {p, v;, ms;, II} as a set of independent variables instead of {F, F;, Gy,
Fii}. The balance equation of M;; (Eq. (4.4),) is then rewritten as

_ 5 op op vy,
H o - a - rr 2 a._
" <3p g <8P>m,—i (mire + 29) (amqq>p) Oy,
5 Op vy 1 Op vy
- —2 m—+2(=-- M
* <3 <8mqq>p> Oy, * (3 <6mqq>p> dxy H)

n 18Mm _ 8]3 OMypri; o Py
3 Oxp Imyq ) drr 3

4.2.2 Constitutive equations

We need the constitutive equations in order to set up the closed system of field equations.
We assume that the constitutive equations at one point and time depend on the independent
fields at that point and time. Therefore the constitutive quantities {M;;,, Mik, mi, Py} are

expressed as functions of
(p, my, II).

We apply the constitutive theory of ET [8] where the following universal physical principles
(A)-(C) are imposed on the constitutive equations: (A) Material frame indifference principle:
This requires that constitutive equations are independent of an observer. This principle and

the Galilean invariance for the balance laws constitute the objectivity principle (the principle
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of relativity). (B) Entropy principle: All solutions of the system of field equations must satisfy
the entropy balance law:
(%k 890k o

Oh  O(hvg + vi) :
—_—t T =N 2> — =3
ot oxy —O®h+hé)xk + oxy

where h is the entropy density, hy is the entropy flux (hy = hvg + pg: @k is the non-convective

0

1\

entropy flux), and ¥ is the entropy production. Here h and ¢ are constitutive quantities:

h= }Al(pv Mg, H)7 P = @k‘(p7 Mg, H)

(C) Causality: This requires the concavity of the entropy density and guarantees the hyper-
bolicity of the system of field equations. This also ensures the well-posedness (local in time)
of a Cauchy problem and the finiteness of the propagation speeds of disturbances.

As the result of the universal principles, in the neighborhood of equilibrium, we obtain the

constitutive equations:

Myj =0, Mk =0, myu =0, Py=——"1II, (4.5)

Ta1

where ( is a positive function of the density p and the temperature 7', and a; is given by

(66, 67]
_5 (o) _ T (op\* [0\
a1—3ppapT p@TpGTp'

The entropy density and entropy flux are given by

1
2Ta1

tj

h = hP 1%, ¢p =0, (4.6)

where h¥ is the entropy density in equilibrium. From (4.6), we obtain the concavity conditions

Oe dp
<8T‘>p >0, ((%)T >0, a3 >0.

4.2.3 Field equations

at an equilibrium state:

The closed system of field equations is obtained by substituting the constitutive equations (4.5)
into the system (4.4):

ﬁ+pg§;]’z=0,
it o+ o =,

4.7
o(5) 1 oo (), 3 h
fI+(a1+a2H)§Zi = —Tlnﬂ,
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where the relaxation time 7y and ao are given by
Ta; 5 1(dp de\
T = — ay == — — — —_ —_ .
T s pl\ar) \or),

The evolution equation (4.7), for II is now obtained consistently, which may be seen as the
counterpart of the relaxation equation in Meixner’s theory.

If we apply the Maxwellian iteration [8, 46] to the system (4.7), the first iterate IT() is
obtained by the substitution of the Oth iterate II(’) = 0 into the left hand side of (4.7),:

W = gy 2%
Oxy,

from which the bulk viscosity v is given by

Ta3
V=T = —.

¢

Therefore we can calculate ¢ from the experimental data of v.

4.3 Dispersion relation for sound: comparison with Meixner’s

theory

In this section, we study a linear plane harmonic wave and obtain its dispersion relation. The
result obtained is compared with that from Meixner’s theory.

Without loss of generality, we may study the wave in the following form:
U=uy+u

where u = (p,v,T, H)T is a state vector with v being the x-component of the velocity v,
ug = (po,0,Tp,0)7is a state vector at a reference equilibrium state, and @ = (p, v, T, II)7 is

the deviation from wug expressed as

i = ,wel(wtka) )

Here w is the amplitude, w is the frequency, and k is the complex wave number such that
k =k, +ik; (k. = R(k), ki = S(k)).
From the linearized system of field equations, which is obtained by linearizing (4.7) with

respect to u, we can easily obtain the dispersion relation [8]:
det (I A+ 1BO> —0, (4.8)
w
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THEORY
where z = k/w, I is the unit matrix, and
0 o 0 0
1/0 1/0 1
B0 b e
p\op)r p\OT ), p
2<ag> 000
0 0 0
0c 000
ol = =
or), T/ o
0 ay 0 0

The index 0 indicates the values at the reference state.
From the dispersion relation, the phase velocity vy, and the attenuation factor o are ob-
tained as the functions of w:

1
Uph = — = a=-3k)=—-wS(2).

R(k)  R(z)’
By the requirement of the linear stability, o must be positive (negative) for the waves traveling
to the z-positive (negative) direction.

The high-frequency limits of vy, and « are given by [8, 68] :

WILH;O Vph(w) = Ao = @, wlgrgo a(w)rg = —lp - By - dy, (4.9)
where the characteristic velocity Ag is the non-zero eigenvalue of Ay, and ly and dy are the left
and right eigenvectors of Ag, respectively. It is remarkable that, even for polyatomic gases, the
high frequency limit vpn(00) does not depend on the internal degrees of freedom in a rarefied

gas limit. The attenuation factor is given by

1 /3po 3 2P0
=+ 20 (12222
() ==\ o ( YA

where ¢g is the sound velocity in the reference state:
2
)T
P

(@),

),P?

BE
(i)

S~

0
Finally let us compare the dispersion relation (4.8) with that of Meixner’s theory. The

relation (4.8) can be rewritten as

. : :
(coz)2< 7o +1>+1—1:0.

3cgp0 TIw W

While the dispersion relation derived from Meixner’s theory is given by [2]
2 . .
Vph (00 i i
(coz)? (—ph(Q) + ) +1—-——=0.
ch TW TW
By taking the relation (4.9), into account, it is easy to show that, if 71 = 7, both dispersion

relations coincide with each other.
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4.4 Subsystems and kinetic theory

We have shown in the above that, through studying the simplest case, a fully-consistent ther-
modynamic theory of sounds in a gas with the energy transfer can be established on the basis
of ET. This is valid even in the region beyond the local equilibrium assumption. The rela-
tionship between the present theory with 6 independent variables and Meixner’s theory is also
shown. It is found that, as far as the dispersion relation for a weak sound propagating in an
equilibrium state is concerned, both theories predict the same expression of the relation.

Lastly we make four concluding remarks 4.4.1-4.4.4:

4.4.1 ET of 14 fields and the concept of subsystems

The extended thermodynamic theory of dense gases that takes into account not only the
dynamic pressure but also the shear stress and heat flux has already been proposed in Chap.
2 and in [66, 67]. This is the theory of real gases with 14 field variables. In this respect, it is
important to recognize that the theory with 6 variables presented above is a main subsystem of
the 14-variable theory according to the definition which we have seen in Chapter 1, Section 3.2
(and see Boillat and Ruggeri [48]). We may, therefore, assert that the 6-variable theory is the
simplest variant among dissipative systems from the non-dissipative Euler system. In contrast
to the well-known Navier-Stokes-Fourier model that is of parabolic type, the present variant
is of hyperbolic type. To sum up, the present 6-variable system is the simplest non-trivial

hyperbolic one next to the system of Euler equations.

4.4.2 Consistency with the kinetic theory of polyatomic gases

Let us study the system (4.7) in the rarefied gas limit, and adopt the thermal and caloric
equations of state:
b _Dhn

p=—pT, € T, (4.10)
m

2m
where kg and m are the Boltzmann constant and the mass of a molecule, and the constant D
is the degrees of freedom of a molecule, i.e., D = 3+ f where 3 corresponds to the translational

motion and f is the internal degrees of freedom. The system of field equations is expressed as

(%k
. 9% _,
P“‘Paxk
op Ol
. -0
pYi + 8351 + 8$Z ’ ( )
4.11
. 2 0
T+T3(p+n>8ﬂ:0’
- 2(D— D — 1
T+ ( 3) Oy n 5 6H0vk __ 14

3D p@mk 3D oxy, an!
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The relaxation time 71 and the bulk viscosity v are given by

_2AD-3pT 2D -3)

T“ 3DC 3D

pTII-

For monatomic gases (D = 3), as is expected, v vanishes and the evolution equation (4.11),
for IT has now no role.

In this subsection, we show that above results are fully consistent with the kinetic theory.
That is, the balance equations for rarefied polyatomic gases (4.11) can be obtained via the
kinetic theory [14] in which the internal energy of a molecule I is taken into account. Physical
quantities are expressed as the moments of a one-body distribution function f(z;,¢;,t,I) with
¢; being the velocity of a molecule. The mass density p and the momentum density pv; are

expressed as

p= /mf(l'z‘,Ci,t,])@([)d[dCldCQdC?,,
(4.12)

pu; = /mcz-f(fﬂi,C¢,t,1)¢(1)d1d01d62d03»

where ¢(I)d] is a nonnegative measure. We adopt ¢(I) = 17 [14], where o will be related to
the degrees of freedom D below. The integration range is taken as [0, 00) for I and (—o0, c0)

for ¢1, ¢ and c3. By using the peculiar velocity C; defined by
C; = ¢ — v,

the internal energy e, and the sum of the pressure p and the dynamic pressure II are expressed
as
2pe = / (mC? + 2I) f (x4, ci, t, Ip(I)dIdeydeades,

(4.13)
3(p+1I) = /mCQf(:EZ-, i t, D(I)dIdeideades,

where C? = C;C;. It is noticeable that there exist two kinds of second order moments: the
energy density and the momentum flux, which appear in the binary structure introduced in
section 2. Therefore, as proposed in [13], the moments of the F-series and G-series can be

obtained at the kinetic level:
Filig---in = /mcz-lch s Cinf(.’Ei, Ci, t, I)@(I)d[dcldCQdC;g,

Gi1i2---inll = /(m62 + 2[)6,‘16@'2 s cinf(xi, Ci, t, I)@(I)d[dcldCQdC;g,

where ¢ = ¢;¢;.

We adopt the Bhatnagar-Gross-Krook (BGK) equation [85] as the basic equation in the

kinetic approach:
of , of _ f—fo
ot ¢ 81‘Z T’ ’
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where 7/ is the relaxation time and fg is the local equilibrium distribution function given by
[14]

3/2 N
= ity (o) @7 (414)
q TKB

with n being the number density (n = p/m) and ¢(7") the normalization function defined by

ot) = [ e mra

Inserting (4.14) into (4.13), we have the relation o = (D —5)/2 due to the consistency between
(4.13) and (4.10).

Multiplying the BGK equation by m®(c;, I) = m (1,ci, (c® + QI/m),CQ) and integrating
over the whole space, we have the balance equations of 6 moments u = (F, F;, G;;, Fj;), which

are certainly the same as (4.2) with the collision term:

Py =—(1/7") /m02 (f — fr) ¢(I)dIdcideades.

Concerning the closure at the kinetic level, we adopt the maximum entropy principle (MEP)
that we have seen in Chapter 1, Section 2.2 (see also for rarefied monatomic gases [61, 8] and
for polyatomic ones [13]). Under MEP, the distribution function is calculated by maximizing
the entropy, which is a functional of f, under the constraints of fixed values for the moments.
In the neighborhood of equilibrium the distribution function is given by [48, 12]

f=fu (1 - %]\ : @(ci,l)> : (4.15)

where A is the non-equilibrium part of Lagrange multiplier. The non-equilibrium part of u is

thus given by

u-—ug= —Zi/fE A - ®(c;, I) ®(c;, Ip(I)dIdeydeades,
where ug is the equilibrium part. On the other hand, from the definitions of (4.12) and (4.13),
we know that u — ug = (0,0,0,3II). Therefore we obtain A in terms of the independent
variables. By using the distribution function (4.15) with this A, all moments are expressed in
closed forms. These are the same, if 7/ = 77, as the constitutive equations used in (4.11).

In this way, we have confirmed in the case of rarefied polyatomic gases that our macroscopic
thermodynamic theory is perfectly in agreement with the kinetic theory and also in this case
the entropy principle gives the same results of the MEP as in the case of monatomic gases
[48]. The compatibility between two different approaches supports the validity of the present
macroscopic ET theory for any real gases given by the general system (4.7).

Finally we recall that the basic system of differential equations can be written in a sym-

metric form by using the main field A that, in the case of rarefied polyatomic gases, coincides
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with the Lagrange multiplier vector A + Ag (see [48] and references therein):

1 v? 1
Ap=—(—g+ %, —u, =
E T< g+ 27 Vi, 2) 0)

(4.16)

g
Il

m_o _vj . 3 D
kppT?2 2’ " 2(D-3) 2(D-3)

with ¢ being the chemical potential.

4.4.3 Characteristic velocities and hyperbolic region

In a general non-equilibrium state, the characteristic velocities are given by

5 II
A = vy, (multiplicity4), A =wv, + 3&
p

where v, = v-n with n being the unit normal of the wave front. The condition of hyperbolicity

is then expressed by II > —p.
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Chapter 5

Fluctuating hydrodynamics based
on ET

Based on ET, the fluctuating hydrodynamics theory, which can be applied to beyond the
assumption of local equilibrium, is proposed. In particular, ET for rarefied monatomic gases
with 13 fields (mass density, velocity, temperature, viscous stress and heat flux) are studied.
The hierarchy structure of hydrodynamic fluctuations are discussed, in particular, the relation

between ET and Navier-Stokes Fourier theory is considered.

5.1 Introduction

Landau and Lifshitz developed the theory of fluctuating hydrodynamics for viscous, heat-
conducting fluids with constitutive equations of Navier-Stokes and Fourier type [86, 24, 87|
basing on thermodynamics of irreversible processes (TIP). They introduced additional stochas-
tic flux terms (generalized random forces) into the constitutive equations of the viscous stress
and the heat flux by applying the fluctuation-dissipation theorem [25, 26, 27, 28]. As we
have seen in Chapter 1, the Landau-Lifshitz (LL) theory has been applied to nano-technology
[32, 33] and molecular biology [34, 35]. In addition, the fluctuating-hydrodynamic approach
plays an effective role in the field of non-equilibrium statistical mechanics [31, 43, 44].

However, as TIP rests essentially on the local equilibrium assumption that is valid for
nonequilibrium phenomena near equilibrium, it is highly probable that TIP may no longer
be valid for highly nonequilibrium cases such as the cases where nanoflows are involved, or
the cases where rarefied gases play a role. As for the discussion on the validity criterion of
the assumption, see, for example, Ref. [89]. Extended thermodynamics (ET) is a generalized
theory being applicable to such cases.

The purpose of the present chapter is to develop a theory of fluctuating hydrodynamics
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based on ET. In particular we study for ET with the 13-fields of rarefied monatomic gases (ET-
13) shown in Chapter 1, Section 3, as a representative case. After establishing the relationship
between the present theory and the LL theory, the hierarchy structure of the hydrodynamic

fluctuations will be discussed.

5.2 Theory of fluctuating hydrodynamics based on ET

The basic equations in the present study are the linearized equations of ET-13 for a monatomic
rarefied gas around an equilibrium state. The independent variables are the mass density p,
velocity v, temperature T', shear stress Sy;;) , and heat flux ¢;. Note that the dynamic pressure
vanishes identically in this case.

ap 37},

=0
ot P, =P
ov; aT() 8/) oT 1 83(1])

ot po Ox; a@xi po Ox;
orT 2 8’Uk 2 8qk

4+ Zaly—= —
“ ot + 6.%'k TS 3p0 aiL‘k 07 (5.1)
85( ) 4 8q< T v vy P
a — ..
ot £0 0817]) (ig)»
Jq; S( hoob o, or b
E_GTO oz; +§a Po Oaxi T2

where a = kg/m with kp being the Boltzmann constant and m the mass of a molecule, and
Plij)

the quantities at the equilibrium state and the deviations from the equilibrium state. The first

and P; are the source terms. The quantities with and without the suffix 0 are, respectively,

three equations represent, respectively, the mass, momentum and energy conservation laws,
and the last two are the equations of balance type for the irreversible fluxes S(;; and g;. Owing
to the presence of the second part that have been neglected in the traditional hydrodynamic
analysis, the rapidly changing (deterministic) modes can be taken into account. We may call

these modes fast modes. The specific entropy production ¥ is obtained as follows:

2 = Mgy Pligy + AppiLagi = 0, (5.2)

where \(;;y and Ay are Lagrange multipliers (see (1.135)).

Within the linear constitutive equations, we have

Pujy = oXijy,  Pi = TAppi, (5.3)

where o and 7 are positive coefficients and evaluated at the reference equilibrium state. Fur-
thermore we have already known the relations between the lagrange multipliers and original
fields (Egs. (1.157)) :

1 1

M) = apere iy Mot = Tpoa, a (5.4)

- 5a2pg
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Let us now try to introduce the random forces into ET in a similar way in Chapter 1. Section
2.3. We recall the generic fluctuation-dissipation theorem. The specific entropy production is
given by Eq. (1.64):

Y= —3,X, (5.5)

and where we assume the linear constitutive equation between &, and X, with the phenomeno-
logical coefficient Cyp, we can introduce the Gaussian white random force f, into the constitu-
tive equation in such a way that

tq = —CopXp + fa, (5.6)

where the mean of §, vanishes and its correlation is given by
<fa(cc, t)fp (2, t’)> = kp(Cop + Cpa)d(x — x')5(t — t'). (5.7)

Now we easily notice the following correspondence relationship between the generic case

above and the present case:
Ta = {Pujy, Bi}s Xo = {-AGjy,  —Appil- (5.8)
And we can introduce the Gaussian white random forces v(;;) and s; into Eq. (5.3) as follows:
Plijy = o) + g, P = TAppi + i, (5.9)
where the means of v(;; and s; vanish, and their correlations are given by

<t(ij)(w7 t)t<mn>(wlv t/)> = kBJ((Sim(Sjn + 5in5jm - %6ZJ6mn>5(w - Ll:/)(5<t - t/)7
(si(@, D) (@ ) = 2hkp76i6(z — )5t — 1), (5.10)
(t(ij) (0, t)sm (', 1)) = 0.

We obtain the expressions for Pj; and P; in terms of S, ¢; and the random forces v,

St 1
Plijy = —-Stp + T
5 (5.11)
Py = ——qi + si,
Tq

where 7¢ and 7, are the relaxation times at a reference equilibrium state corresponding to

(1.167):

2ap0T3 10a?poT3
TS = 29070 y Tg= 0a7p0 0, (5'12)
o T
The means of the random forces t(;;y and s; vanish. And their correlations are given by
2ap0T 2
(i) (@, ) mmy (2, 1)) = ki YO0 (Simbin + Ginjm — §5ij5mn)5(w —x')o(t —t'),
T
20a2poT,
(si(, )55, ) = ks L0 5356 — )t — 1), (5.13)
q

(i) (2, t)sm (@', 1)) = 0,
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where the brackets ( ) in the left-hand side stand for the statistical average at the reference
equilibrium state.

Equations (5.1) with (5.11) and (5.13) constitute the basic system of equations for
fluctuating hydrodynamics based on ET (ET-13).

The relaxation times 75 and 7, can be evaluated by experiments or kinetic-theoretical
analyses. For gases with Maxwellian interatomic potential, in particular, we have the relation

37s = 27, [8]. Other realistic monatomic gases satisfy this relation approximately.

5.3 Two subsystems of the stochastic field equations

The basic system of equations obtained above may be decomposed into two uncoupled subsys-
tems, that is, the subsystem composed of longitudinal modes (System-L) and the subsystem
of transverse modes (System-T).

System-L

The relevant quantities of the system are given by

_ Ov, _ 9S4 _ 94
82t<ij> _10s;

The spatial Fourier transform of the system is the system of the rate-type differential

(5.14)

equations in the space of the wave number k and time ¢ (kt-representation) as follows:

ap(k,t

AL s ot 1) =0,

2

Qulket)  aToR™ e o) ah®T (ke t) — S e(kst) = 0.

AT L 2 7o
a——"—= + =aTpy(k,t) + —p(k,t) =0, (5.15)
sy 8 L 1

E(k, + — K p(k,t) + —apoTok*p(k,t) = ——&(k,t) + v(k, 1),

ot 15 3 s

Op(k,t)

1
90 e, t) — 2a2poTok? Tk, ) = —— (e, ) + ok, 1),
ot 2 Tq

where p(k,t) is the spatial Fourier transform of p(x,t) defined as

ok, ) = (27103 / o, 1) exp(—ik - x)da, (5.16)

and the other quantities are similarly defined.

From Eq. (5.13), the quantities v(k,t) and w(k,t) are the Gaussian white random forces
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with null means and correlations:

T2
o(k, D)o(k', 1)) = kg LO0 345k + KO(E — 1),
3
ST
(o, (!, 1)) = kP00 k255 4 k)i (t — ), (5.17)

837y
(o(k,t)ro(K',t') = 0.

System-T

The relevant quantities of the system are given by

(= (curto)), i [= oot )| m(= (curlg)y)
wil\=(curlv);), 05| = Ezjk@xj&vn , M (= (curlqg);), 5.15)
(o P and 1 :l(cuﬂs). ‘
L= E’J’“axjaa;n ’ i\ = 2 A
The field equations in the kt-representation are as follows:
Ow;(k,t) 1
— 03 kat = 07
Y ~oi(k,t)
i(k,t 2 1
a"ét) + 5k2m(k,t) + apoTok?w;(k,t) = —T—ai(k,t) + 1i(k, 1), (5.19)
S
omi(k,t)

1
o iR, 1) = —— (R, iR, 1)
. aTooi(k,t) ) (k,t) +v(k,t)

Note that, for given r; and v;, the equations for the set of variables (w;, 0;, ;) with the same
suffix ¢ can be solved separately from those with the different suffix j(# 7). In view of Eq.

(5.13), r; and p; are the Gaussian white random forces with null means and correlations:

k2

2, m3 ,
<Ui<k?t)0m(k/,t/)> — kBMkQ <5im _ kzkm> (5(k + k:/)(S(t N tl), (5.20)

837, 2
(vi(k, t)pm (K, 1)) = 0.

apo Ty

(ti(k, )em (K, 1)) = kg K <5im — ) S(k+ K)ot —1),

47319

5.4 Elimination of the fast modes

Let us express the shear stress and the heat flux in terms of the other quantities so as to
eliminate the fast modes in the basic system of equations. We solve the last two equations of
(5.15) and (5.19) with respect to (£, ) and (oy, m;), respectively, assuming, for the moment,
that the other 3 variables in the case of Eq. (5.15) (or 1 variable in the case of Eq. (5.19)) are
some given functions of k and ¢.

The solutions can be expressed in a generic way because the last two equations of both the

systems can be written in the following matrix form:

dyg?t) 4 M(K) - y(k,t) = d(k, t) + a(k, {), (5.21)
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where y(k,t), M (k), d(k,t) and a(k,t) are given explicitly in Eq. (5.32) or (5.35) below. The
quantity a(k,t) is a Gaussian white random force vector with two components. It is important
to notice that the matrix M (k) satisfies the relation: M (—k) = M (k).

The solution of (5.21) is given by

y(k,t) = exp[—(t —to) M (k)] - y(k, to)

+ /t dfexp[—(t — 0)M (k)] - d(k,0)

to

+f 46 expl—(t — 6)M (k)] - a(k,0), (5.22)

to
where tg is an initial time. The third term on the right-hand side may be regarded as a

Gaussian random force, which is denoted by b, i.e.,

b(k,t) = / iy exp|—(t — O)M (k)] - a(k, 0). (5.23)

to
The random force b is, in general, not white.

The correlation matrix x(ke, ki1, t2,t1) (t2 > t1) of the random force b is given by
Xij(Kk2, k1,t2,11)
= <bz‘(k:2, tg)bj(kﬁl, t1)>
to t1
— [t [ a0y expl(t2 — 0)M (k) G B 60) (expl— (1 — 61 (k)]
to to
(5.24)
where the correlation matrix of the random force a is given in the following form:
<al(k2, 92)(7%(’431, 91)) = Clk(k1>5(k2 + k1)5(92 — «91) (5.25)

with a matrix C. See the relations (5.17) and (5.20).
After some calculations, we may summarize the solution compactly as follows [90]: The

solution y is expressed by

Yk, 1) = /t A0 (k, ¢ — ) - d(k, 0) + b(k, 1) (5.26)

—00

with the memory function given by
®(k,t) = exp[—tM (k)] (5.27)

Here we have neglected the transient effect that depends on an initial condition by taking the
limit: t9 — —oo. The mean of the random force b vanishes. And its correlation matrix is

expressed by

xX(k1,ta —t1) = ®(k1,ta — t1)x° (K1), (5.28)
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where the quantity x is introduced by the relation:
X (Ko, k1, t2,t1) = x(k1,t2 — t1)d (k2 + k1), (5.29)
and
x° (k1) = x(k1,0). (5.30)
Finally the relation between x° and C is given by
M (k)x" (k) + x" (k)M (k)" = C(k). (5.31)

We summarize some noticeable points:

(i) We may regard the relation (5.26) as a constitutive relation between y and d with the
random force b. The quantity y is the functional of the history of the quantity d. It should be
emphasized that the constitutive relation has been obtained from the dynamic equations of the
fast modes by neglecting the dependence on the initial condition. Such constitutive relations
have been proposed in the theory of so-called generalized hydrodynamics where the transport
coefficients, in general, take into account the effect of non-locality in space and time.

(ii) As we pointed out above, we notice clearly, from Eq. (5.28), that the random force
b is the Gaussian non-white (or colored) random force. And, in accordance with the general
considerations [27, 28] on such a case, the memory function ® defined in Eq. (5.27) plays an
essential role in both Eq. (5.26) for the constitutive equation and Eq. (5.28) for the correlation
of the random force. In other words, if we adopt some approximation in the form of the memory
function, both the constitutive equation and the correlation of the random force are affected
by the approximation simultaneously in order to keep the consistency in the theory. See also
the remark (iv) below.

(iii) The relation (5.31) is the one that connects the random force b and the random force
a. This is the key relation in the following analysis of the hierarchy structure of the random
forces in different levels of description in fluctuating hydrodynamics.

(iv) In comparison with the characteristic relaxation times for the conserved quatities such
as mass, momentum and energy, the fast modes have much smaller relaxation times, and
decay quickly. If we describe hydrodynamic phenomena in such a way that the relaxation
times 7g and 7, for the fast modes are sufficiently small, the memory function can be well
approximated by the Dirac’s delta function with a suitable proportional constant. See Refs.
[91, 92, 93, 94] for such a coarse graining approximation. At the same time, the random force
b in this approximation becomes to be a white random force. This case will be studied in the

next section.
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5.5 Relationship to the Landau-Lifshitz theory

In what follows, we adopt the coarse graining approximation explained above and show explic-
itly the coarse-grained solutions for the System-L and System-T [91]. We will see that these
solutions are just the ones in the LL theory.

System-L

The quantities in Eq. (5.21) are given by

- Ek?
ylk. 1) = [5( ; )]’ Mg =| ™ B
30( ) ) _aTO -
4 , q (5.32)
(k. 1) = —5§GP0T07<? V(k, 1) alk) = [U(k,t)] _
5a?poTo/-czT(k,t) ro(k,t)

Denoting b = [g, h]T, we have the following relation up to the leading term with respect

to 7¢ and 7, [91]:

ko)) |~ sanoTokrsuk, 1) + ok, 1)
= |59, , . (5.33)
p(k,t) 5@ poTok* T (k. 1) + b(k, 1)

The Gaussian white random forces g and h have null means and correlations:

(o(k, Dok, 1)) = sk papoTak Tk + K)i(t 1),
(h(k,t)h(K ")) = S%kBanngkQqu(k + KNSt —t), (5.34)
(alk, DK, 1)) = 0.

System-T
The quantities in Eq. (5.21) are given by

1 2,
ik, | % 5
y(k’t)_lm(k,w]’ M) = —aTy Ti ’ (5.35)
dlie.t) = —apngk;2wZ-(k:,t)]7 (b, ) = [;i(k,t)].
0 Ui(kvt)

Denoting b = [¢;, ;]7 , we obtain the following relations in a similar way as above [91]:

—apoTok?rswi(k, ) + & (k, t)] (5.36)

l;(k,t)
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Note that there is no deterministic part in m;(k,t), therefore, only the random force plays a

role. The correlations between the zero-mean Gaussian white random forces are given by

1 kikm,
(aull, 8 (W' ) = grgkmomTokins ((z-m B S0+ KA~ 1),
<[i(kat)[m(k/at/)> = 33 kBGQ,O(]Tg)kQTq ((Z-m — ]{72> S(k+K)S(t—1), (5.37)

(ti(k, )l (K, 1)) = 0.

The relationship between the present theory and the LL theory: We can now
confirm that the expressions in Eqs. (5.33), (5.34), (5.36) and (5.37) are exactly the same as
those derived from the LL theory where the shear viscosity u and the heat conductivity x are
identified by the relations (1.170):

uw=apoTots, k= ganoTqu. (5.38)
Thus we have proved that the LL theory can be derived from the present theory by using the
coarse graining approximation, and that the LL theory is included in the present theory as a
limiting case.

The present theory and the LL theory belong to the two different levels of description of
fluctuating hydrodynamics. As we analyzed above, the rapidly changing deterministic modes
(fast modes) in ET have been consistently re-normalized into the random forces in the LL the-
ory. Therefore, from a physical point of view, the delta functions appeared in the correlations
have their own validity range depending on the spatio-temporal resolution of their description

level.

5.6 Discussion and concluding remarks

In the present chapter, we have summarized the recent theory of fluctuating hydrodynamics
based on ET. And we have made clear the link between the two levels of description of fluctu-
ating hydrodynamics, that is, the present theory based on ET-13 and the LL theory. This link
has been established through introducing another intermidiate level of description, which is
characterized by the conservation equations with the memory-type constitutive equation and
the colored Gaussian random force. In this way, we notice that there are at least three levels
of description of fluctuating hydrodynamics in the present work. And we notice, in particular,
the explicit hierarchy structure of the random forces.

Generally speaking, there are many such levels. Boillat and Ruggeri [8, 48] found the
hierarchy structure of ET and the important concept called the “main subsystem” of field
equations. FEach main subsystem gives us one level of description with different resolution
from each other. And, in a similar way as above, we can develop the corresponding fluctuating

hydrodynamics basing on a given main subsystem (Chapter 1, Section 3).
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Finally we summarize the concluding remarks:

(i) In ET, Navier-Stokes and Fourier constitutive equations are obtained as its limit case by
using an iterative scheme called the Maxwellian iteration [8]. If we apply this scheme formally
to the present basic system with random forces, we can also obtain the results of the LL theory.

(ii) In the present chapter, we have studied a monatomic rarefied gas only. Fluctuating
hydrodynamics can also be established in a similar way by using ET for polyatomic rarefied
gases and for monatomic and polyatomic dense gases proposed in Chapter 2 where the dynamic
pressure exists. We hope that we will soon show their details.

(iii) As the basic system of equations in ET is of hyperbolic type, the propagation speed
of information is finite. In this respect, ET is in sharp contrast to the traditional theory of
Navier-Stokes and Fourier type that predicts infinite speeds for the propagation of heat and
shear stress. It is, therefore, quite reasonable to adopt ET in order to develop, in particular,
the relativistic fluctuating hydrodynamics. See the pioneering work by Calzetta [95].

(iv) Numerical analyses based on the present theory in various situations are highly ex-
pected. We can expect qualitatively different effects predicted by the present theory from those

by the LL theory, especially when we study the fluctuations in a small spatio-temporal scale.
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Chapter 6
Summary and concluding remarks

In this thesis, we developed the following two theoretical approaches, which opened a new field

of non-equilibrium thermodynamics:

1. Extended thermodynamics of dense gases

2. Fluctuating hydrodynamics based on extended thermodynamics

The details and the characteristics of the recently developed theory of ET for dense gases
are discussed in Chapter 2. The new approach of ET for dense gases is based on balance
equations with two hierarchy series. The constitutive equations are determined by the entropy
inequality, concavity and material frame indifference. As a result, we extended the applicable
range of ET to rarefied polyatomic gases, dense monatomic gases and dense polyatomic gases,
which were not fully explored. This means that there are potentially many research fields
where this approach may play a crucial role. As typical dense gases, hard-sphere gases and
van der Waals fluids are studied. Moreover, the subtle point with respect to the concavity
condition in the case of monatomic gases became apparent.

The validity of the new approach is tested by studying the dispersion relation of sound in
rarefied polyatomic gases in Chapter 3. The dispersion relation is compared with experimental
data and Navier-Stokes Fourier theory. The results show that ET is valid even in the case
of a non-equilibrium state out of local equilibrium. Moreover, the bulk viscosity and the
relaxation times were evaluated. Hydrogen, deuterium and hydrogen deuteride gas analyses
were performed at several temperatures, and the results strongly suggest that the ET theory
for dense gases deserves further attention.

To clarify the role of dynamic pressure, we studied the ET for dense gases with 6 inde-
pendent fields in Chapter 4. A fully-consistent thermodynamic theory of sound in gases with
energy transfer was established on the basis of ET, valid even in the region where the local
equilibrium assumption does not hold. The relationship between the theory with 6 indepen-

dent fields and Meixner ' s theory was also shown. It was found that, as far as the dispersion
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relation of weak sound propagation in equilibrium state is concerned, both theories predict the
same expression for dispersion.

Obviously, the consistent thermodynamic theory of dense gases that is valid beyond the
local equilibrium assumption is crucially important, for example, in acoustics [74] and gas
dynamics [7], and in their various applications in the fields of engineering, biology and so on.

In Chapter 5, we proposed the fluctuating hydrodynamics approach based on ET. We
clarified the link between the two levels that describe the fluctuating hydrodynamics, that is,
the theory based on the ET for rarefied monatomic gases with 13 independent fields and the
Landau-Lifshitz theory. This link has been established by introducing an intermediate level of
description, which is characterized by conservation equations with memory-type constitutive
equations and the colored Gaussian random force. Consequently, there are at least three levels
that describe the fluctuating hydrodynamics in the present work and, in particular, the explicit
hierarchy structure of the random forces.

The concluding remarks have as follows:

1. We have clearly demonstrated the usefulness and potential of ET for dense gases and
fluctuating hydrodynamics based on ET, and we believe that this new approach will open

new fields in modern science and engineering.

2. We have clarified the subtle point of the ET for dense gases in the case of monatomic
gases. This point is interesting from a physical and mathematical viewpoints; also, it is

worthy of further study and will be considered as the future subject.

3. In ET, Navier-Stokes and Fourier constitutive equations are obtained as the limiting case
by using an iterative scheme called the Maxwellian iteration. By applying this scheme to
the present basic system with random forces, the results of the Landau-Lifshitz theory

can be also obtained.
Lastly we list topics for future work using the developed theoretical approach:
e Analysis of wave propagation phenomena in dense gases.

e Analysis of the propagation of non-linear waves such as acceleration waves and shock

waves.

e Extend the ET-based fluctuating hydrodynamics to rarefied polyatomic gases and dense

gases.

e Extend the applicable range of the ET for dense gases and the fluctuating hydrodynamics

to the relativistic region, and pay particular attention to the effect of dynamic pressure.
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