博士論文

場の量子論的手法による 光学格子にトラップされた 極低温原子系の研究 Field-theoretical study on ultra-cold atoms

in an optical lattice

名古屋工業大学大学院博士後期課程 機能工学専攻 片岡 啓介

指導教員:一瀬 郁夫

目 次

概要

i	i	i
T	T	T

第1章	導入と準備	1
1.1	相転移	1
	1.1.1 Ising モデルの相転移	2
	1.1.2 繰り込み群	8
1.2	フラストレーションと秩序の形成	16
	1.2.1 スピン系における様々な秩序	17
	1.2.2 三角格子反強磁性体	22
1.3	フラストレートしたスピン系におけるスピン液体	25
1.4	ボーズ凝縮	26
	1.4.1 レーザー冷却と光学格子	26
	1.4.2 BEC	29
1.5	超流動と秩序	30
	1.5.1 非対角長距離秩序	31
	1.5.2 超流動	32
1.6	論文の構成について	33
第2章	Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析	35
2.1	極低温 fermion 系と Sp(N) Heisenberg モデル	35
2.2	有効場理論の導出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	40
2.3	相構造: $1/N$ 展開	47
	2.3.1 $\gamma \simeq 0$ の場合の相構造	47
	2.3.2 $\gamma \simeq 1$ の場合の相構造	49
2.4	$\gamma = 1$ における対称性の拡大と SU(2) ゲージ理論	54
2.5	第2章のまとめ.................................	55
笛3音	数値計算法による場の理論の解析法とその結果	59
31	エンテカルロ注に上ろ物理量の評価法	59
3.2	有限サイズスケーリング	60
3.3	$S_n(N)$ スピンモデルの有効場理論のモンテカルロ法	61
0.0	331 $c_{0} = 0.0$ の場合の相構造	63
	$3.3.2$ $c_0 = 2.0$ の場合の相構造	66
3.4	ホールドープの効果	69
0.1		71

	$3.4.2$ $c_2 = 2.0$ の場合の相構造の変化	74
3.5	第3章のまとめ	77
第4章	三角格子上の $\mathrm{bosonic}\;t-J$ モデルの解析とその相構造	79
4.1	極低温 boson 系と Bose-Hubbard モデル	79
4.2	bosonic $t - J$ モデルの導出	82
4.3	bosonic $t - J$ モデルの解析とその結果	86
	4.3.1 bosonic $t - J$ モデルの解析とその相構造 I: $t - J_{xy}$ モデル	91
	4.3.2 bosonic $t - J$ モデルの解析とその相構造 II: $t - J_z$ モデル	99
1.1	筆4章のまとめ	101
7.7		101
第5章	2 成分斥力 boson 系の有効場の理論とその相構造	101 103
^{4.4} 第5章 5.1	2 成分斥力 boson 系の有効場の理論とその相構造 bosonic <i>t</i> – <i>J</i> モデルとその有効理論の導出	101 103
第5章 5.1 5.2	2 成分斥力 boson 系の有効場の理論とその相構造 bosonic <i>t</i> – <i>J</i> モデルとその有効理論の導出	101 103 103 105
第5章 5.1 5.2 5.3	2成分斥力 boson 系の有効場の理論とその相構造 bosonic t – J モデルとその有効理論の導出 拡張された量子 XY モデルとその相構造 超流動 Bose 凝縮と擬スピン長距離秩序の有効理論	 101 103 103 105 106
第5章 5.1 5.2 5.3 5.4	2成分斥力 boson 系の有効場の理論とその相構造 bosonic t – J モデルとその有効理論の導出 拡張された量子 XY モデルとその相構造 超流動 Bose 凝縮と擬スピン長距離秩序の有効理論 第5章のまとめ	101 103 103 105 106 108
第5章 5.1 5.2 5.3 5.4 第6章	2成分斥力 boson 系の有効場の理論とその相構造 bosonic t – J モデルとその有効理論の導出 拡張された量子 XY モデルとその相構造 超流動 Bose 凝縮と擬スピン長距離秩序の有効理論 第5章のまとめ 総括と議論	 101 103 105 106 108 111

ii

概要

近年、光学格子系における実験が盛んに研究が行われてる.従来の物質では実現困難とされていたような系に関して実験を行うこともでき、エレクトロニクス等の応用もされている.本論文ではこの光学格子系を想定し、前半の第2章、第3章では大きなスピンを持つfermion系について、後半の第4章、第5章ではフラストレーションのある2成分boson系の相構造を、場の量子論的手法とモンテカルロシミュレーションによって調べた.

第1章では、導入として相転移の基本的な概念について概説する.また、スピン系における 様々な秩序を示し、幾何学的フラストレーションがある場合にどのように秩序を形成使用とす るか具体的なモデルで検討する. Anderson によって考えられた量子的な描像である RVB 状態 についても述べる. boson 系については、極低温系の特徴的な現象である BEC、超流動、超固 体についてまとめる.

第2章では、光学格子に閉じ込められたスピン 3/2の fermion 系を表すモデルである、Sp(N) Heisenberg モデルを扱う. このモデルの絶対零度 T = 0の量子系を記述する有効場理論を導出し、その解析を 1/N 展開によって行なった. その結果得られた各相における秩序状態について分類を行なった.

第3章では、第2章で導出したモデルをモンテカルロシミュレーションによって調べた.比熱 などの各種の物理量を測定することにより相構造決定し、2種類のスピン相関を用いて各相の 特徴を見出した.また、有限温度系への拡張を行いホールの導入することによる各相の影響に ついても調べた.

第4章では、まずBose-Hubbardモデルによって示される超流動-Mott 絶縁体転移の概略を示 し、2成分のBose-Hubbardモデルからbosonic *t* – *J*モデルを導出を行う.このモデルの積層 三角格子における有限温度の相構造をモンテカルロシミュレーションによって決定した.フラ ストレーションによって秩序が競合することで、多彩な相構造が見られそれぞれの相の特徴に ついて調べた.

第5章では、第4章で得られた bosonic t - Jモデルの絶対零度 T = 0の量子系を記述する有効場理論を導出する. Bose 凝縮と擬スピンの長距離秩序が見られる特徴的な相に関して、基底状態からの低エネルギー励起について調べる.

第6章では、以上から得られた結果について総括し議論を行った.

第1章 導入と準備

光学格子と呼ばれる人工の結晶をレーザー光で作る技術が確立し、物質が低温で示す特異な 性質を極低温原子系を使って調べようとする研究が注目を集めている.熱ゆらぎによって引き 起こされる古典的相転移[1]とは異なり、量子ゆらぎによって引き起こされる量子相転移[2]が、 実験技術の向上によって実験的にも観測されるようになった.また、光学格子ではこれまで議 論されていなかった大きなスピンを持つ粒子系も実現されている.

この章では、本論文の基本的な概念となる相転移、スピン系、極低温系の物性についての導入を行う.

1.1 相転移

地球上で目にする物質は、化合物や単体により成り立っている.これらが組み合わさった物 質は、電気的性質、磁気的性質、色、硬さ…とその性質は実に多様である.しかし、それらを構 成している元素は100余りある.さらに、その元素の構成は陽子と中性子からなる原子核とそ の周りを取り囲む電子である.さらに細かくすると陽子や中性子はクォークから出来ていると 考えられている.したがって、還元主義に則れば最下位(最小)の階層にある数種類の要素の振 る舞いが理解できれば、物質の多様性は理解することができるはずである.

しかし、最下位の階層にある数種類の要素が、すべての物質の多様性を説明できるほど、複 雑に機能できるとは考えにくい.つまり、我々が目にする無限とも思える多様性があるのは、要 素が少数の組み合わせでも、数の大きな集団になることで、想像もできないほど異なった性質 を示すと考えるしかない.特に物性の大部分を支配する電子については、量子力学的な性質と してスピンやフェルミオンとしての統計性など、ごく限られた性質の中で区別されるだけであ り、電子間の相互作用はほとんどが電磁的相互作用 (Coulomb 相互作用) によって決定されてし まう.それにも関わらず、要素が集まった「多体系」の示す性質は、個々の単一の要素からの単 純な予想とは全く異なった振る舞いを示す.

実際に我々が目にし、手に取ることができるようなマクロなスケールの物質は、アボガドロ数のオーダーの多数の原子、分子からなっている.一つの原子の振る舞いからアボガドロ数(~6.0×10²³ 個)の振る舞いを知るのは、とても困難なことである.人間の細胞が6×10¹³ 個程からなっていると言われる.一方、地球上の総人口が6×10⁹ 人程である.したがって、極端に言えば一つの原子からマクロなスケールの物質の性質を理解するということは、一つの細胞から地球上の人類の営みを理解するようなものである.ミクロからマクロなスケールへ移ることにより、物質の多様性やそのスケールごとの階層性が現れる.具体的には、マクロな物質になることで示すことができる相転移や、その結果生じる超伝導や磁性、液体、固体などの性質がある.このような最下位の階層にあるミクロな構成要素の性質からは想像できない物質の性質や階層性の発現、形成の解明は物性物理学の中心的な課題である.

マクロな系を特徴づけるのは、温度や圧力などのミクロには定義できない量である.このような熱力学的状態は、「相」という概念によって規定される.相を特徴付ける物理量を秩序変数 (order parameter)という.気体、液体、固体のように状態変化する水のように、ひとつの系は 複数の相を持つことができる.系を支配する熱力学変数(温度など)を変えたときに、ある相から 異なる相への変化が生じる.これを相転移という.それに伴い観測される現象が臨界現象である.

相転移はゆらぎの種類によって、熱ゆらぎに由来する古典的相転移と、量子ゆらぎに起因する量子相転移に分けられる. 熱ゆらぎは、有限温度の相転移に伴い現れるゆらぎのことである. 系の熱力学状態を表す確率密度 $p(E) \propto e^{-\beta E}$ が有限の $\beta = 1/k_{\rm B}T$ のために、特定の熱力学状態に固定されず、適当に $k_{\rm B}T$ の幅を持って分布しているために起こる.一方、量子ゆらぎは熱ゆらぎがなくなる絶対零度で顕著になる.これは温度によらず物理量の非可換性による量子力学的なゆらぎである.また、準安定状態を持つ1次転移と、準安定状態を持たない2次転移に分類することができる.臨界点での比熱や帯磁率などの物理量が、異なった特異性を伴って振る舞うことにより識別される.

この相転移を理論的に記述することが問題となる.実際の物質の系を記述するモデルは極めて複雑である.したがって、本質的な相互作用などを残して簡略化し、抽出したモデルを扱うことを考える.それでも、本質的には多体問題であるため模型を解くことが困難である.そのため様々な近似法によって、解くことになる.これを見るために具体的な磁性体のモデルを例にとって考察する.

1.1.1 Ising モデルの相転移

相転移を起こす典型的なモデルは Z_2 対称性をもつ Ising モデルであるが、ここでは Ising モデルを一般化した磁場中の O(N) スピンモデルについて考える. ハミルトニアンは

$$\mathcal{H} = -\frac{1}{2} \sum_{\langle i,j \rangle} J_{i,j} \vec{S}_i \cdot \vec{S}_j - \vec{H} \cdot \sum_i \vec{S}_i \tag{1.1}$$

である.*J_{i,i}*は最近接相互作用を表す.

$$J_{i,j} = \begin{cases} J & (i,j \, \check{n} \, \& \, \exists \, \mathcal{G} \, \mathcal{G}) \\ 0 & (\mathcal{E} \, \aleph \, \& \, \mathcal{G}) \end{cases}$$
(1.2)

また、 $|\vec{S}_i|^2 = 1$ である.

対称性については、磁場 \vec{H} がなければ O(N) 対称性があるが、磁場の存在によって磁場方向 についての回転対称性 O(N-1) に落ちている.ここで分配関数について考える.

$$Z = \operatorname{Tr} \exp\left[\frac{\beta}{2} \sum_{\langle i,j \rangle} J_{i,j} \vec{S}_i \cdot \vec{S}_j + \beta \vec{H} \cdot \sum_i \vec{S}_i\right]$$
$$= \int \mathcal{D} \vec{S}_i \delta(|\vec{S}_i|^2 - 1) \exp\left[\frac{\beta}{2} \sum_{\langle i,j \rangle} J_{i,j} \vec{S}_i \cdot \vec{S}_j + \beta \vec{H} \cdot \sum_i \vec{S}_i\right]$$
(1.3)

1.1. 相転移

次の Gauss 積分によって与えられる恒等式を用いて、Stratonovich-Hubbard 変換 [3] を施す. これによって、 \vec{s} の2体の相互作用の項を1体にする.

const. =
$$\int \mathcal{D}\vec{\phi}_i \exp\left[-J_{i,j}(J_{i,k}^{-1}(\vec{\phi}_k - \vec{H}) - \vec{S}_k) \cdot (J_{j,l}^{-1}(\vec{\phi}_l - \vec{H}) - \vec{S}_j)\right]$$
(1.4)

を(1.3)に挿入する.

$$Z = \left(\frac{(2\pi)^{N}}{\beta^{N} \det J_{i,j}}\right)^{1/2} \int \mathcal{D}\vec{\phi}_{i} \exp\left[-\frac{\beta}{2} \sum_{\langle i,j \rangle} J_{i,j}^{-1}(\vec{\phi}_{i} - \vec{H}) \cdot (\vec{\phi}_{j} - \vec{H})\right]$$
$$\times \int \mathcal{D}\vec{S}_{i}\delta(|\vec{S}_{i}|^{2} - 1) \exp\left[\beta \sum_{i} \vec{\phi} \cdot \vec{S}_{i}\right]$$
$$= \left(\frac{(2\pi)^{N}}{\beta^{N} \det J_{i,j}}\right)^{1/2} \int \mathcal{D}\vec{\phi}_{i}e^{-\beta S(\vec{\phi}_{i},\vec{H})}$$
(1.5)

ここで $S(\vec{\phi_i}, \vec{H})$ は有効作用となる.

$$S(\vec{\phi}_i, \vec{H}) = \frac{1}{2} \sum_{\langle i,j \rangle} J_{i,j}^{-1}(\vec{\phi}_i - \vec{H}) \cdot (\vec{\phi}_j - \vec{H}) - \frac{1}{\beta} \sum_i \ln\left(\int \mathcal{D}\vec{S}_i \delta(|\vec{S}_i|^2 - 1) \exp\left[\beta \sum_i \vec{\phi} \cdot \vec{S}_i\right]\right)$$
(1.6)

 \ln の中身は \vec{S} を極座標で積分することができる.

$$\int \mathcal{D}\vec{S}_i \delta(|\vec{S}_i|^2 - 1) \exp\left[\beta \sum_i \vec{\phi} \cdot \vec{S}_i\right] \propto \int_0^\pi d\theta \sin^{n-2} \theta e^{\beta|\phi_i|\cos\theta}$$
(1.7)

この右辺はベッセル関数の積分表示の一つである

$$\int_{0}^{\pi} e^{\pm iz \cos \theta} \sin^{2\nu} \theta d\theta = \frac{\sqrt{\pi} \Gamma(\nu + 1/2)}{(z/2)^{\nu}} J_{\nu}(z)$$
(1.8)

を用いて書き換えることができる. [4] スピンが $S_i = \pm 1$ のときは、Ising 変数であり

$$\int \mathcal{D}\vec{S}_i \delta(|\vec{S}_i|^2 - 1) \exp\left[\beta \sum_i \vec{\phi} \cdot \vec{S}_i\right] = \sum_{S=\pm 1} e^{\sum_i \phi_i S} = 2 \cosh\beta\phi_i \tag{1.9}$$

とスピンについての積分を和として計算することができる.このとき有効作用は

$$S(\phi_i, H) = \frac{1}{2} \sum_{\langle i,j \rangle} J_{i,j}^{-1}(\phi_i - H)(\phi_j - H) - \frac{1}{\beta} \sum_i 2 \cosh \beta \phi_i$$
(1.10)

となる.

まずはじめにこれを平均場近似によって相転移を記述する.この停留点を与える $\phi_i = \langle \phi_i \rangle$ を 平均場解とすると

$$\frac{\partial S}{\partial \phi_i}\Big|_{\langle \phi_i \rangle} = \sum_j J_{i,j}^{-1} (\langle \phi_i \rangle - H) - \tanh \beta \langle \phi_i \rangle = 0$$
(1.11)

となり、自己無撞着方程式

$$\langle \phi_i \rangle = H + \sum_j J_{i,j} \tanh \beta \langle \phi_j \rangle$$
 (1.12)

が得られる.これを解くことで $\langle \phi_i \rangle$ を求めることができる. $\phi_i = \langle \phi_i \rangle$ のとき

$$Z = e^{-\beta F} = \int \mathcal{D}\vec{\phi}_i e^{-\beta S(\vec{\phi}_i, \vec{H})} \approx e^{-\beta S(\langle \phi_i \rangle, \vec{H})}$$
(1.13)

と近似することができ、自由エネルギーは磁場の関数として、 $F(H) = S(\langle \phi_i(H) \rangle, \vec{H})$ と表すことができる.

磁化 $M = \sum_i S_i$ については、(1.12) を用いると

$$M = -\frac{dF(H)}{dH} = -\frac{\partial S(\langle \phi_i(H) \rangle, \dot{H})}{\partial H} = \sum_{\langle i,j \rangle} J_{i,j}^{-1}(\langle \phi_i \rangle - H) = \sum_i \tanh \beta \langle \phi_i \rangle$$
(1.14)

(1.12)、(1.14)から磁場と磁化の関係を求めることができる.

$$M = \sum_{i} \tanh \beta \langle \phi_i \rangle \tag{1.15}$$

各サイトの磁化を*m_i*とすると

$$\langle \phi_i \rangle = \frac{1}{\beta} \tanh^{-1} m_i \tag{1.16}$$

となる.(1.12)、(1.16)から磁場と磁化の関係がわかる.

$$H = -\frac{1}{\beta} \sum_{j} J_{i,j} m_j + \frac{1}{\beta} \tanh^{-1} m_i$$
 (1.17)

F(H)に対して Legendre 変換を行い、磁化に対する自由エネルギー $\Gamma(m_i)$ を求める.(1.10)、(1.12)、(1.17) から

$$\Gamma(m_i) = F(H) + H \sum_i m_i \\
= \frac{1}{2} \sum_{\langle i,j \rangle} m_i J_{i,j} m_j - \frac{1}{\beta} \sum_i \ln\left[2(1-m_i)^{-1/2}\right] - \sum_{\langle i,j \rangle} m_i J_{i,j} m_j + \frac{1}{\beta} \sum_i m_i \tanh^{-1} m_i \\
= -\frac{1}{2} \sum_{\langle i,j \rangle} m_i J_{i,j} m_j - \frac{V}{\beta} \ln 2 + \frac{1}{2\beta} \sum_i \{(1+m_i) \ln(1+m_i) + (1-m_i) \ln(1-m_i)\}$$
(1.18)

となる.Vは系全体のサイト数を表しており、 $\cosh(\tanh^{-1} x) = (1-x^2)^{-1/2}$ 、 $\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ という関係を用いている.系全体の磁化を一様であると仮定し $(m_i = m)$ 、 $\Gamma(m)$ をmについて4次まで展開すると次のような形になる.

$$\frac{\Gamma(m)}{V} \approx -k_{\rm B}T\ln 2 + \frac{m^2}{2}(k_{\rm B}T - 2JD) + \frac{k_{\rm B}T}{12}m^4$$
(1.19)

図 1.1: 転移点前後の Γ(m).

このときの自由エネルギー (ポテンシャル) は図 (1.1) のようになる. これより 2 次転移を示すことがわかり、臨界点 T_c は

$$T_c = \frac{2JD}{k_{\rm B}} \tag{1.20}$$

となる.一方、磁場は

$$H = \frac{d\Gamma(m)}{dm} = m(T - T_c) + \frac{T}{3}m^3 \quad (T < T_c)$$
(1.21)

となり、磁場がないときの自発磁化は

$$m = \pm \sqrt{\frac{3}{T}} (T_c - T)^{1/2} \quad (T < T_c)$$
(1.22)

と求めることができる. これは臨界指数が $\beta = 1/2$ であることを表している. しかし、実際の Ising モデルでは、2 次元では $\beta = 1/8$ 、3 次元では $\beta \approx 0.328$ となる. 臨界点直上での磁場と磁 化との関係は

$$H = \frac{T_c}{3}m^3 \tag{1.23}$$

となっており、臨界指数 $\delta = 3$ であることを示している.こちらは2次元では $\beta = 15$ 、3次元で は $\beta \approx 4.78$ となる.これらのように平均場近似により求められた臨界指数は、実際の系におけ る指数とは異なっている.この違いは、平均場からのゆらぎを無視したために現れたものある.

一般に2次転移では臨界点に近づくにつれて、様々な物理量が臨界点からのずれを指定している変数に対して、発散など特異的な振る舞いを見せる.多くの場合は、これらの物理量の発散などは冪的な振る舞いを示す.臨界点近傍において、物理量が臨界点からのずれに関してどのように冪的な振る舞いを示すかを定量的に表すための指数を臨界指数という.

物質が臨界現象を示すとき、臨界点や物理量は物質によって異なるが、臨界指数は系の詳細 によらずに対称性や次元によって決まることが知られている.この性質をユニバーサリティとい う.このことにより2次転移は臨界指数の値によっていくつかのユニバーサリティクラスに分類 することができる.このため、臨界現象は個別の物質に依存しない普遍的な物理現象として興 味が持たれている.

次にスピンの相関関数について考える.相関関数によって、スピンの秩序の具合を知ること ができる.まずはじめに2つの自由エネルギー $F(H) \ge G(M)$ の関係について整理しておく. F(H)は自由エネルギーの定義から

$$Z = e^{-\beta F(H)} = \operatorname{Tr} \exp\left[\frac{\beta}{2} \sum_{\langle i,j \rangle} J_{i,j} \vec{S}_i \cdot \vec{S}_j + \beta \vec{H} \cdot \sum_i \vec{S}_i\right]$$
(1.24)

によって、

$$F(H) = -\frac{1}{\beta} \ln \left(\operatorname{Tr} \exp \left[\frac{\beta}{2} \sum_{\langle i,j \rangle} J_{i,j} \vec{S}_i \cdot \vec{S}_j + \beta \vec{H} \cdot \sum_i \vec{S}_i \right] \right)$$
(1.25)

と表すことができ、

$$\frac{\partial F(H)}{\partial H} = -M \tag{1.26}$$

と磁化を求めることができる. その Legendre 変換した Gibbs の自由エネルギーの変数依存性は (??) から

$$d\Gamma(M) = dF(H) + MdH + HdM$$

= $\frac{\partial F}{\partial T}dT + \left(\frac{\partial F(H)}{\partial H} + M\right)dH + HdM$
= $-SdT + HdM$ (1.27)

となる.途中で F(H) の温度依存性と (1.26) の関係を用いている.したがって、

$$H = \frac{\partial \Gamma(M)}{\partial M} \tag{1.28}$$

となる. (1.26)、(1.28)は磁場と磁化の関係が入れ替わっていることに相当している. つまり、(1.26)では磁化は磁場の関数として与えられており、磁化と共役な外部磁場を与えたときの磁化の振る舞いを表している. 一方で(1.28)は、逆に磁場が磁化の関数として与えられている. 系がある特定の磁化をもっているときに、そのような磁化を持つために必要な磁場を表している.

相関関数は以上の熱力学関数から求めることができる.ここでは磁場 H は一様ではなく、サイトごとに異なっているとする.

$$-\frac{1}{\beta}\frac{\partial^2 F(H_i)}{\partial H_i \partial H_j} = \frac{1}{\beta}\frac{\partial m_j}{\partial H_i} = \frac{1}{\beta}\frac{\partial}{\partial H_i}\frac{\operatorname{Tr}\left(S_j e^{-\beta F(H_i)}\right)}{\operatorname{Tr}\left(e^{-\beta F(H_i)}\right)}$$
$$= \langle S_i S_j \rangle - \langle S_i \rangle \langle S_j \rangle \equiv G(r_i - r_j)$$
(1.29)

となっている. $G(r_i - r_j)$ はスピンの相関 $\langle S_i S_j \rangle$ というより、そのゆらぎを表している.つまり、 $T < T_c$ では $\langle S_i \rangle = m$ となっているから

$$\langle S_i S_j \rangle = \langle S_i \rangle \langle S_j \rangle + G(r_i - r_j) = m^2 + G(r_i - r_j), \qquad (1.30)$$

 $T < T_c$ では $\langle S_i \rangle = 0$ となっているから

$$\langle S_i S_j \rangle = \langle S_i \rangle \langle S_j \rangle + G(r_i - r_j) = G(r_i - r_j)$$
(1.31)

となる.この $G(r_i - r_j)$ によって帯磁率を与えることができる.この臨界点近傍での振る舞いについて考える.

また、これは Gibbs の自由エネルギー $\Gamma(m_i)$ からも与えることができる.

$$\delta_{ij} = \frac{\partial m_i}{\partial m_j} = \frac{\partial m_i}{\partial H_k} \frac{\partial H_k}{\partial m_j} = \frac{\partial^2 F}{\partial H_i \partial H_k} \frac{\partial^2 \Gamma}{\partial m_k \partial m_j}$$
(1.32)

最後の変形で、(1.26)、(1.28)を用いている.したがって、

$$G(r_i - r_j) = -\frac{1}{\beta} \frac{\partial^2 F(H_i)}{\partial H_i \partial H_j} = \frac{1}{\beta} \left(\frac{\partial^2 \Gamma(m_i)}{\partial m_i \partial m_j} \right)^{-1}$$
(1.33)

 $\Gamma(m_i)$ は(1.18)で既に与えられている.これから

$$(\beta G(r_i - r_j))^{-1} = \frac{\partial^2 \Gamma(m_i)}{\partial m_i \partial m_j} = -J_{i,j} + k_{\rm B} T \delta_{ij} (1 + m_i^2) + O(m^4)$$
(1.34)

となる. 右辺を Fourier 変換する. J_{i,j}のフーリエ変換とその逆変換は次で与えられる.

$$J_{i,j} = J(r_i - r_j) = \sum_k J(k)e^{ik(r_i - r_j)}$$
(1.35)

$$J(k) = a^{D} \sum_{i} J(r_{i} - r_{j}) e^{-ik(r_{i} - r_{j})}$$
(1.36)

格子定数を1としている.J(k)は

$$J(k) = \sum_{i} J(r_i - r_j) e^{-ik(r_i - r_j)} = 2J \sum_{i=1}^{D} \cos k_i$$
$$= 2J \left(D - \frac{a^2}{2}k^2 + O(k^4) \right)$$
(1.37)

となる.したがって、(1.34)の波数表示は

$$(\beta G(k))^{-1} = -2J \sum_{i=1}^{D} \cos k_i + k_{\rm B} T (1+m^2)$$
(1.38)

となり、 $k \rightarrow 0$ とすると

$$\beta G(k) \sim \frac{1}{-2JD + Jk^2 + k_{\rm B}T(1+m^2)}$$
$$= \frac{1}{k_{\rm B}(T-T_c) + Jk^2 + k_{\rm B}Tm^2}$$
(1.39)

となる.(1.20) の臨界点 T_c を用いている. $T > T_c$ では自発磁化は m = 0 であるから、G(k) を Fourier 変換して相関関数の実空間表示を得ることができる.

$$G(r) \equiv G(r_i - r_j) \sim e^{-r\sqrt{(T - T_c)/J}} \quad (T > T_c)$$
(1.40)

これにより相関長 & を決めることができる.

$$\xi = \sqrt{\frac{J}{T - T_c}} \quad (T > T_c) \tag{1.41}$$

この相関長ほどの距離だけ離れたスピン対までが相関していて、秩序を持った集まりとみなす ことができる.

 $T < T_c$ では自発磁化が存在する.(1.22)より、

$$m^2 = \frac{3(T_c - T)}{T} \tag{1.42}$$

となるから、(1.39)より $k \rightarrow 0$ とでは

$$\beta G(k) \sim \frac{1}{2(T_c - T) + Jk^2} \quad (T < T_c)$$
 (1.43)

となり、同様に実空間での相関関数も求めることができる.

$$G(r) \sim e^{-r\sqrt{2(T - T_c)/J}}$$
 (T < T_c) (1.44)

相関長は

$$\xi = \sqrt{\frac{J}{T - T_c}} \quad (T < T_c) \tag{1.45}$$

となる.

臨界点の前後での相関関数は自発磁化に関わらず同じ振る舞いを示す. また臨界点直上では、 $T \approx T_c$ は相関関数は

$$G(r) = \frac{T}{J} \int \frac{dk^D}{(2\pi)^D} \frac{e^{ikr}}{k^2} \propto \frac{1}{r^{D-2}}$$
(1.46)

となり、相関関数は冪で変化していて相関長を定義することができない. つまり、臨界点直上 では相関は無限に伸びている.

以上が平均場近似による議論である.平均場近似では磁化が一様であることを前提にして、相 関関数などの物理量や臨界点、臨界指数を求めることができた.しかし、2次元 Ising モデルの ような厳密解が求められるものと比べると、平均場からのゆらぎを考慮できていないために臨 界指数は異っていることがわかる.

1.1.2 繰り込み群

より正確に臨界指数を求めるために繰り込み群の方法がある.繰り込み群の方法には実空間 繰り込み群と呼ばれる方法がある.[7] スピンを粗視化してブロックとみなす繰り込み変換を行 い、パラメーターの変化を見るものである.この方法は繰り込みのイメージとしては理解しや すいが、一般に繰り込み変換を行うたびに新しい相互作用を考慮する必要がある.全てを扱う のが困難なため、必要に応じて無視する近似を行わなくてはならない.しかし、それらをどの

物理量の定義		Mean field	D=3 Ising	D=2 Ising
$C_H = \frac{\partial U}{\partial T}\Big _H \underset{T \to T_c}{\sim} T - T_c ^{-\alpha} + C$	α	0	0.11	0
$m \underset{T \to T_c}{\sim} T_c - T ^{\beta}$	β	1/2	0.326	1/8
$\chi = \frac{\partial M}{\partial H} \underset{T \to T_c}{\sim} T - T_c ^{-\gamma}$	γ	1	1.24	7/4
$m \underset{H \to H_c}{\sim} H - H_c ^{1/\delta}$	δ	3	4.8	15
$G(r) \sim_{T \to T_c} \frac{e^{-r/\xi}}{r^{D-2+\eta}}$	η	0	0.037	1/4
$\xi \underset{T \to T_c}{\sim} T - T_c ^{-\nu}$	ν	1/2	0.63	1

表 1.1: 臨界指数と物理量の定義. 平均場による臨界指数はD > 4では正しい. D = 3は数値計算によるもの [5] で、D = 2はOnsagerによる厳密解によるもの. [6]

ように無視するかは自明ではなく、その結果の精度は保証されていない.場合によっては、本 来現れるはずの相転移が現れなくなってしまう可能性がある.

平均場近似ではなく、秩序変数がローカルである (サイトに依存する) 場合に拡張し、摂動的 繰り込み群の方法によって臨界現象を議論する. スピンモデル (1.1) に Stratnovich-Hubbard 変 換を行ない、 \vec{S}_i について積分することで ϕ_i についての有効作用が得られることは、(1.6) で見 た. これが ϕ^4 モデルとなることがわかる. ϕ^4 モデルについて摂動的繰り込み群によって、臨界 現象を議論する. [8]

(1.6) で H = 0 とすると

$$S(\vec{\phi}_i) = \frac{1}{2} \sum_{\langle i,j \rangle} J_{i,j}^{-1} \vec{\phi}_i \cdot \vec{\phi}_j - \frac{1}{\beta} \sum_i \ln\left(\int \mathcal{D}\vec{S}_i \delta(|\vec{S}_i|^2 - 1) \exp\left[\beta \sum_i \vec{\phi} \cdot \vec{S}_i\right]\right)$$
(1.47)

となる.

まず第1項はスピン相互作用 J_i, の逆行列について考える. J_i, を次のように変形する.

$$\sum_{\langle i,j\rangle} J_{i,j}\vec{S}_j = \sum_{k=1}^D (J_{i,i+e_k}\vec{S}_{i-e_k} + J_{i,i-e_k}\vec{S}_{i-e_k}) = \sum_{k=1}^D J(\vec{S}_{i-e_k} + \vec{S}_{i-e_k})$$
$$= \sum_{k=1}^D J\left(e^{\frac{\partial}{\partial x_k}} + e^{-\frac{\partial}{\partial x_k}}\right)\vec{S}_i \sim 2JD\left(1 + \frac{\nabla^2}{2D}\right)\vec{S}_i$$
(1.48)

と表すことができる.ekは再近接サイトへの方向ベクトルである.したがって、その逆は

$$J_{i,j}^{-1} \sim \frac{1}{2JD} \left(1 - \frac{\nabla^2}{2D} \right) \tag{1.49}$$

と与えられる.

第2項は \vec{S} について積分する. ϕ の低次を集めることによって ϕ のポテンシャルの形を求める.

まず、O(N) スピンのとき (1.7)、(1.8) から得られる Bessel 関数を展開すると次のようになる. $\int \mathcal{D}\vec{S}_i \delta(|\vec{S}_i|^2 - 1) \exp\left[\beta \vec{\phi} \cdot \vec{S}_i\right]$ $\sim \frac{\sqrt{\pi}\Gamma((n-1)/2)}{(\mp i\beta |\phi_i|/2)^{n/2-1}} J_{n/2-1}(\mp i\beta |\phi_i|) = \frac{\sqrt{\pi}\Gamma((n-1)/2)}{(\mp i\beta |\phi_i|/2)^{n/2-1}} \sum_{m=0} \frac{(-1)^m}{m!\Gamma(m+n/2)} \left(\frac{\mp i\beta |\phi_i|}{2}\right)^{n+2m-1/2}$ $= \frac{\sqrt{\pi}\Gamma((n-1)/2)}{2^{n/2-1}} \sum_{m=0} \frac{(-1)^m}{m!\Gamma(m+n/2)} \left(\frac{\mp i\beta |\phi_i|}{2}\right)^{2m}$ $= A_0 + A_1\beta^2 |\phi_i|^2 + A_2\beta^4 |\phi_i|^4 + \cdots$ (1.50)

 A_0, A_1, \cdots は定数である. 第2項はこのように $|\phi_i|$ の偶数次からなっていることがわかる.

平均場近似と比較するために、 S_i が Ising 変数とする. (1.10) で ln 2 cosh $\beta \phi_i$ を展開する. 第1 項で変形したものと合わせると次のような形になる.

$$\beta S(\phi(x)) \sim \int d^D x \left[-\frac{\beta}{8JD^2} \phi(x) \nabla^2 \phi(x) + \frac{\beta}{2} \left(\frac{1}{2JD} - \beta \right) \phi(x)^2 + \frac{\beta^4}{12} \phi(x)^4 \right]$$
(1.51)

また、連続極限を取ることで ϕ は連続変数に、サイトについての和が積分になっている. 最後 に格子定数をaに戻し、第1項がaに依存しないように $\phi(x) \ge \phi(x) \rightarrow \sqrt{\frac{\beta}{4JD^2a^{D-2}}}\phi(x)$ と変換 すると

$$\beta S(\phi(x)) \sim \int d^D x \left[\frac{1}{2} (\nabla \phi(x))^2 + \frac{r_0}{2} a^{-2} \phi(x)^2 + \frac{u_0}{4!} a^{D-4} \phi(x)^4 \right]$$
(1.52)

となる.r₀, u₀は(??)を用いて

$$r_0 = \frac{k_{\rm B}T_c}{JT}(T - T_c), \quad u_0 = \frac{2k_{\rm B}^2 T_c^4}{J^2 T^2}$$
(1.53)

と表すことができる. こうして ϕ^4 モデルが得られた. (1.52) を Fourier 変換する.

$$\beta S(\phi(x)) = \int \frac{dk^D}{(2\pi)^D} \frac{1}{2} k^2 \phi(k) \phi(-k) + \frac{r_0 a^{-2}}{2} \int \frac{dk^D}{(2\pi)^D} \frac{1}{2} \phi(k) \phi(-k) + \frac{u_0 a^{D-4}}{4!} \int \frac{dk_1^D dk_2^D dk_3^D dk_4^D}{(2\pi)^{3D}} \phi(k_1) \phi(k_2) \phi(k_3) \phi(k_4) \delta(k_1 + k_2 + k_3 + k_4)$$
(1.54)

 $r_0 = u_0 = 0$ のとき、a 依存性がなくなり、スケール変換 $a \rightarrow a' = ba$ に対して、作用は不変 となり変化しない. $r_0 = u_0 = 0$ は固定点と呼ばれる.特に今の場合

$$\beta S(\phi(x)) = \int \frac{dk^D}{(2\pi)^D} \frac{1}{2} k^2 \phi(k) \phi(-k)$$
(1.55)

となる.このモデルは Gauss モデルと呼ばれ、この点は Gauss 固定点と呼ばれる.

繰り込み群の考え方に従って、スケール変換 $a \rightarrow a' = ba$ を行う. k積分を行うときに cut off Λ を導入すると、このスケール変換によって cut off $i \Lambda \rightarrow \Lambda' = \Lambda/b$ と変化する. 逆に考える と (1.54) において本来は Λ までの積分だったものを、 $\Lambda/b(=\Lambda') < k < \Lambda$ の積分区間だけを先 に積分してしまうことによって、スケール変換 $a \rightarrow a' = ba$ を行なったと考えることができる.

1.1. 相転移

 $\Lambda/b(=\Lambda') < k < \Lambda(短波長成分)$ について積分を行なって、積分区間を $0 < k < \Lambda'$ に変形し、(1.54) の第1項が不変になるように $\phi \to \zeta \phi$ の変換を決める.

次のように非摂動項と摂動項に分ける.

$$S_{0} = \int \frac{dk^{D}}{(2\pi)^{D}} \frac{1}{2} (k^{2} + r_{0}a^{-2})\phi(k)\phi(-k)$$

$$(1.56)$$

$$u_{0}a^{D-4} \int dk_{1}^{D} dk_{2}^{D} dk_{3}^{D} dk_{4}^{D} + (l_{1}) + (l_{2}) + (l$$

$$S_1 = \frac{u_0 a}{4!} \int \frac{ak_1 ak_2 ak_3 ak_4}{(2\pi)^{3D}} \phi(k_1)\phi(k_2)\phi(k_3)\phi(k_4)\delta(k_1 + k_2 + k_3 + k_4)$$
(1.57)

系の分配関数は

$$Z = \text{Tr}\left(e^{-S_0 - S_1}\right) = \frac{\text{Tr}\left(e^{-S_0 - S_1}\right)}{\text{Tr}\left(e^{-S_0}\right)} \text{Tr}e^{-S_0} = \text{Tr}\left(e^{-S_0}\right) \langle e^{-S_1} \rangle_0$$
(1.58)

と摂動項について展開できる.また $\langle \cdots \rangle_0 = \operatorname{Tr} \left(e^{-S_0} \cdots \right) / \operatorname{Tr} \left(e^{-S_0} \right)$ である.

$$\langle e^{-S_1} \rangle_0 = e^{\ln \langle \exp(-S_1) \rangle_0} \equiv \exp\left[\sum_{n=1} \frac{1}{n!} \langle (-S_1)^n \rangle_{0c}\right]$$
(1.59)

⟨····⟩_{0c}は、キュムラント展開を行なっていることを表し、

$$\langle S_1 \rangle_{0c} = \langle S_1 \rangle_0$$

$$\langle S_1^2 \rangle_{0c} = \langle S_1^2 \rangle_0 - \langle S_1 \rangle_0^2$$
(1.60)

のように計算できる.

主要な項について計算を行う.まず表記を以下のように簡略化する.φについて、積分する短 波長成分とそれ以外に分ける.

. . .

$$\phi(k)^{<} = \begin{cases} \phi(k) & (0 < k < \Lambda') \\ 0 & (\mathcal{E} \hbar \mathcal{U} \mathcal{H}) \end{cases} , \quad \phi(k)^{>} = \begin{cases} \phi(k) & (\Lambda' < k < \Lambda) \\ 0 & (\mathcal{E} \hbar \mathcal{U} \mathcal{H}) \end{cases}$$
(1.61)

 $\phi(k)^{>}$ について先に積分してしまうことが、スケール変換をすることに相当する.また積分については以下のように表す.

$$\int_{k}^{<} = \int_{0 < k < \Lambda'} \frac{dk^{D}}{(2\pi)^{D}}, \qquad \int_{k}^{>} = \int_{\Lambda' < k < \Lambda} \frac{dk^{D}}{(2\pi)^{D}}$$
(1.62)

Tr(···) = $\int \mathcal{D}\phi(\cdots)$ を表し、短波長成分を先に積分を行う. $S_0 = S_0^< + S_>$ 、 $S_0 = S_1^< + S_1^> \geq \phi(k)^<$ のみで表される作用 $S_0^<$ 、 $S_1^<$ とそれ以外からなる作用 $S_0^>$ 、 $S_1^>$ に分ける. このとき、

$$Tre^{-S_{0}-S_{1}} = \int \mathcal{D}\phi(k)e^{-S_{0}-S_{1}} = \int \mathcal{D}\phi^{<}(k)\int \mathcal{D}\phi^{>}(k)e^{-S_{0}^{<}-S_{1}^{<}-S_{0}^{>}-S_{1}^{>}} \\ = \int \mathcal{D}\phi^{<}(k)e^{-S_{0}^{<}-S_{1}^{<}}\int \mathcal{D}\phi^{>}(k)e^{-S_{0}^{>}-S_{1}^{>}} \\ = \int \mathcal{D}\phi^{<}(k)e^{-S_{0}^{<}-S_{1}^{<}}Z_{0}^{>}\langle e^{-S_{1}^{>}}\rangle_{0}^{>} \\ = \int \mathcal{D}\phi^{<}(k)\exp\left(-S_{0}^{<}-S_{1}^{<}+\ln Z_{0}^{>}+\ln\langle e^{-S_{1}^{>}}\rangle_{0}^{>}\right) \\ = \int \mathcal{D}\phi^{<}(k)\exp\left(-S_{0}^{<}-S_{1}^{<}+\ln Z_{0}^{>}+\sum_{n=1}^{\infty}\frac{1}{n!}\langle(-S_{1}^{>})^{n}\rangle_{0c}^{>}\right)$$
(1.63)

ここで $Z_0^> = \int \mathcal{D}\phi^>(k)e^{-S_0^>}$ 、 $\langle \cdots \rangle_0^> = \int \mathcal{D}\phi^> e^{-S_0^>}(\cdots)/Z_0^>$ である. また、最後の変形でキュムラント展開になっている.

短波長成分の積分(トレース)を先に行うことで、作用は

$$S' = S_0^{<} + S_1^{<} - \ln Z_0^{>} - \sum_{n=1}^{\infty} \frac{1}{n!} \langle (-S_1^{>})^n \rangle_{0c}^{>}$$

= $S^{<} - \ln Z_0^{>} - \sum_{n=1}^{\infty} \frac{1}{n!} \langle (-S_1^{>})^n \rangle_{0c}^{>}$ (1.64)

と変更される. 短波長成分を含まない作用 $S^<$ に加え、短波長成分の積分の効果 $(\ln Z_0^> \ge S_1^>$ の キュムラント) が含まれていることがわかる.

まず、

$$S_{0} = \int \frac{d^{D}k}{(2\pi)^{D}} \frac{1}{2} (k^{2} + r_{0}a^{-2})\phi(k)^{>}\phi(-k)^{>}$$
$$= \int_{k}^{>} \frac{1}{2} (k^{2} + r_{0}a^{-2})\phi(k)^{>}\phi(-k)^{>}$$
(1.65)

なので、波数空間における ϕ の相関関数 $\langle \phi(k)^{>} \phi(p)^{>} \rangle_{0}^{>}$ を求めることができる.

$$\langle \phi(k)^{>}\phi(p)^{>} \rangle_{0}^{>} = \frac{(2\pi)^{D}}{k^{2} + r_{0}a^{-2}}\delta(k+p) = (2\pi)^{D}G(k)\delta(k+p)$$
 (1.66)

となる. $G(k) = 1/(k^2 + r_0 a^{-2})$ とした.また、この計算は次のような積分から与えられる.

$$\frac{\int dx x^2 e^{-ax^2}}{\int dx e^{-ax^2}} = -\frac{d}{da} \ln \int dx e^{-ax^2} = \frac{1}{2a}$$
(1.67)

 $S_1^>$ で波数空間の積分は短波長成分とそれ以外が混ざり合っている. ダイアグラムで表すと図 (1.2) のようになる.

図 1.2: ϕ^4 の相互作用

$$S_{1}^{>} = \frac{u_{0}a^{D-4}}{4!} \int \frac{dk_{1}^{D}dk_{2}^{D}dk_{3}^{D}dk_{4}^{D}}{(2\pi)^{3D}} \bigg[4\phi^{<}(k_{1})\phi^{<}(k_{2})\phi^{<}(k_{3})\phi^{>}(k_{4}) + 6\phi^{<}(k_{1})\phi^{<}(k_{2})\phi^{>}(k_{3})\phi^{>}(k_{4}) + 4\phi^{<}(k_{1})\phi^{>}(k_{2})\phi^{>}(k_{3})\phi^{>}(k_{4}) + \phi^{>}(k_{1})\phi^{>}(k_{2})\phi^{>}(k_{3})\phi^{>}(k_{4}) \bigg] \delta(k_{1} + k_{2} + k_{3} + k_{4})$$
(1.68)

1.1. 相転移

となる.このキュムラントを求める.1次は、

$$\langle S_1^{>} \rangle_{0c}^{>} = \langle S_1^{>} \rangle_0^{>}$$

$$= \frac{u_0 a^{D-4}}{4!} \int \frac{dk_1^D dk_2^D dk_3^D dk_4^D}{(2\pi)^{3D}} \Big[6\phi^{<}(k_1)\phi^{<}(k_2)\langle\phi^{>}(k_3)\phi^{>}(k_4)\rangle_0^{>} \Big]$$

$$+ \langle \phi^{>}(k_1)\phi^{>}(k_2)\phi^{>}(k_3)\phi^{>}(k_4)\rangle_0^{>} \Big] \delta(k_1 + k_2 + k_3 + k_4)$$

$$= \frac{u_0 a^{D-4}}{4} \int \frac{dk^D}{(2\pi)^D} \phi^{<}(k)\phi^{<}(-k) \int_{k'}^{>} G^{>}(k') + \text{const.}$$

$$= \frac{u_0 a^{D-4} I_1}{4} \int \frac{dk^D}{(2\pi)^D} \phi^{<}(k)\phi^{<}(-k) + \text{const.}$$

$$(1.69)$$

となる. $\phi^>$ の期待値を取ることで $\phi^<$ 、 $\phi^>$ の奇数次は現れない.

$$I_1 = \int_k^s G^s(k)$$
 (1.70)

同様に 2 次のキュムラントを求める. この中からダイアグラム (1.3) で表される ($\phi^{<}$)⁴ の寄与が現れる. 内線、外線の取り方は $_4C_2 \times _4C_2 \times 2 = 72$ 通りあるので

図 1.3: ϕ^4 の積の相互作用

$$\langle (S_1^{>})^2 \rangle_{0c}^{>} = 72 \times \frac{u_0^2 a^{2(D-4)}}{2(4!)^2} \int_{k_1}^{<} \int_{k_2}^{<} \int_{k_3}^{<} \phi^{<}(k_1) \phi^{<}(k_2) \phi^{<}(k_3) \phi^{<}(-k_1 - k_2 - k_3)$$

$$\times \int \frac{dk'^D}{(2\pi)^D} G(k') G(k' + k_1 + k_2)$$

$$= \frac{3u_0^2 a^{2(D-4)} I_2}{2(4!)} \int_{k_1}^{<} \int_{k_2}^{<} \int_{k_3}^{<} \phi^{<}(k_1) \phi^{<}(k_2) \phi^{<}(k_3) \phi^{<}(-k_1 - k_2 - k_3)$$
(1.71)

となる. I_2 は $\phi^<$ に影響を与えないはずなので、 $k_1 + k_2 = 0$ になっている.

$$I_2 = \int_k^s G^s(k)G^s(k+k_1+k_2) \approx \int_k^s (G^s(k))^2$$
(1.72)

以上から、短波長成分を積分すると

$$S' = S^{<} - \frac{u_{0}a^{D-4}I_{1}}{4} \int \frac{dk^{D}}{(2\pi)^{D}} \phi^{<}(k)\phi^{<}(-k) + \frac{3u_{0}^{2}a^{2(D-4)}I_{2}}{2(4!)} \int_{k_{1}}^{<} \int_{k_{2}}^{<} \int_{k_{3}}^{<} \phi^{<}(k_{1})\phi^{<}(k_{2})\phi^{<}(k_{3})\phi^{<}(-k_{1}-k_{2}-k_{3}) = \int_{k}^{<} \frac{1}{2} \left(k^{2} + r_{0}a^{-2} + \frac{u_{0}a^{D-4}I_{1}}{2}\right)\phi^{<}(k)\phi^{<}(-k) + \frac{u_{0}a^{D-4}}{4!} \int_{k_{1}}^{<} \int_{k_{2}}^{<} \int_{k_{3}}^{<} \left(1 - \frac{3u_{0}a^{D-4}I_{2}}{2}\right)\phi^{<}(k_{1})\phi^{<}(k_{2})\phi^{<}(k_{3})\phi^{<}(-k_{1}-k_{2}-k_{3})$$

$$(1.73)$$

が得られる.(1.56)、(1.57)と(1.74)を比べると、r₀、u₀はこの繰り込み群変換によって

$$r'_{0} = r_{0} + \frac{u_{0}a^{D-2}I_{1}}{2}$$
$$u'_{0} = u_{0} \left(1 - \frac{3u_{0}a^{D-2}I_{2}}{2}\right)$$
(1.74)

と変更されていることがわかる. *I*1は

$$I_{1} = \int_{k}^{>} G^{>}(k) = \int_{\Lambda/b < k < \Lambda} d^{D}k \frac{1}{k^{2} + r_{0}a^{-2}} = a^{-D+2}S_{D} \int_{a\Lambda/b}^{a\Lambda} dk \frac{k^{D-1}}{k^{2} + r_{0}}$$
$$\sim a^{-D+2}S_{D} \int_{a\Lambda/b}^{a\Lambda} dk k^{D-3} = a^{-D+2}S_{D} \int_{1/b}^{1} dk k^{D-3} = \frac{a^{-D+2}(1-b^{2-D})S_{D}}{D-2}$$
$$\equiv a^{-D+2}I_{1}'$$
(1.75)

 $\Lambda \sim 1/a$ とし、Gauss 固定点近傍を考えているため $r_0 \sim 0$ とできることを用いている. S_D はD 次元球の単位体積を表す. 同様に I_2 は

$$I_2 = a^{-D+2} I_2' \tag{1.76}$$

とできる.

$$I_{2}' = \begin{cases} a^{-D+2}S_{D}\ln b & (D=4) \\ \frac{a^{-D+2}S_{D}(1-b^{4-D})}{D-4} & (D\neq4) \end{cases}$$
(1.77)

したがって

$$r'_{0} = r_{0} + \frac{u_{0}I'_{1}}{2}$$
$$u'_{0} = u_{0} \left(1 - \frac{3u_{0}I'_{2}}{2}\right)$$
(1.78)

となる.(1.73) は積分区間が $0 < k < \Lambda/b$ なので、これを $k \to k' = k/b$ と変数変換して $0 < k' < \Lambda$ にする. このうちの $\int d^D k k^2 \phi(k) \phi(-k)$ がこの変換によって不変になるように ϕ のスケール変換 $\phi \to \zeta \phi$ を定義すると

$$\int_{0}^{\Lambda/b} \frac{d^{D}k}{(2\pi)^{D}} k^{2} \phi(k) \phi(-k) = b^{-(D+2)} \zeta^{2} \int_{0}^{\Lambda} \frac{d^{D}k'}{(2\pi)^{D}} k'^{2} \phi(k') \phi(-k')$$
(1.79)

これより、 $\zeta = b^{(D+2)/2}$ となる. ϕ のスケール変換を考慮すると (1.79) は

$$r'_{0} = b^{2} \left(r_{0} + \frac{u_{0}I'_{1}}{2} \right)$$
$$u'_{0} = b^{4-D}u_{0} \left(1 - \frac{3u_{0}I'_{2}}{2} \right)$$
(1.80)

となる. これは繰り込み変換によるパラメータの変化を与える繰り込み群方程式になっている. r_0 を見るとb > 1なので、この変換を続けていくと r_0 は大きくなる. このようなパラメータを relevant な変数という. 一方、 u_0 はD > 4のときは変換を続けていくと0になる. このような パラメータを irrevant な変数という.

次に、この繰り込み群変換に対する固定点 (u^*, r^*) を求める. 固定点では、繰り込み群変換に 対してパラメータは不変 $(u'_0 = u_0 = u^*, r'_0 = r_0 = r^*)$ である. $D = 4 - \epsilon(\epsilon > 0)$ とすると

$$b^{4-D} = b^{\epsilon} \sim 1 + \epsilon \ln b \tag{1.81}$$

となる.パラメータの変化は

$$r'_{0} = b^{2} \left(r_{0} + \frac{u_{0}}{32\pi^{2}} (1 - b^{-2}) - \frac{r_{0}u_{0}}{16\pi^{2}} \ln b \right)$$

$$u'_{0} = u_{0} \left(1 + \epsilon \ln b - \frac{3u_{0}}{16\pi^{2}} \ln b \right)$$
(1.82)

となる. Gauss 固定点 $(t^*, u^*) = (0, 0)$ は自明だが、非自明な Wilson-Fisher 固定点を求める. [9] $u'_0 = u_0 = u^* \neq 0, r'_0 = r_0 = r^* \neq 0$ とおくと

$$(r^*, u^*) = \left(-\frac{1}{6}\epsilon, \frac{16\pi^2}{3}\epsilon\right) \tag{1.83}$$

が求められる. $\epsilon > 0$ のときu > 0となる.D > 4ではポテンシャルの4次の項は正となり物理的にな固定点であるといえる.

繰り込みの流れを表す行列 M は以下で与えられる.

$$M = \begin{pmatrix} \frac{\partial r'_0}{\partial r_0} & \frac{\partial r'_0}{\partial u_0} \\ \frac{\partial u'_0}{\partial r_0} & \frac{\partial u'_0}{\partial u_0} \end{pmatrix} = \begin{pmatrix} b^2 & (b^2 - 1)/(32\pi^2) - (r_0b^2\ln b)/16\pi^2 \\ 0 & 1 + (\epsilon\ln b - (3u_0)/(8\pi^2)\ln b) \end{pmatrix}$$
(1.84)

この行列によって、パラメータの変化を追うことができる.また、新たなパラメータ K₁, K₂

$$\begin{pmatrix} K_1 \\ K_2 \end{pmatrix} = \begin{pmatrix} c_1 & c_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} r_0 \\ u_0 \end{pmatrix}$$
(1.85)

によって行列 M を対角化する.

繰り込み群変換は Gauss 固定点近傍で

$$\delta K_1' = b^2 \delta K_1$$

$$\delta K_2' = b^\epsilon \delta K_2 \tag{1.86}$$

	$O(\epsilon)$	$O(\epsilon^2)$	高温展開	MC
α	0.167	0.077	0.106	0.113
β	0.333	0.340	0.328	0.326
γ	1.167	1.244	1.239	1.239
δ	4	4.46	4.78	4.80
η	0	0.019	0.038	0.030
ν	0.583	0.627	0.6315	0.6289

表 1.2: φ⁴ モデルの Wilson-Fisher 固定点の臨界指数. 高温展開 [10] 、モンテカルロシミュレー ションの結果から、有限サイズスケーリングを用いて求めた臨界指数を示した. [11]

となり、パラメータのスケーリング次元 (繰り込み群固有値) はそれぞれ 2, ϵ であり、D < 4の ときはどちらも繰り込み群変換によって0 にならない relevant な変数である.

一方、Wilson-Fisher 固定点では

$$\delta K_1' = b^{2-\epsilon/3} \delta K_1$$

$$\delta K_2' = b^{-\epsilon} \delta K_2 \tag{1.87}$$

となり、

表 (1.2) のようになる. パラメータのスケーリング次元はそれぞれ $2 - \epsilon/3, -\epsilon$ となり、後者は D < 4 のとき irrevant になる. r_0 のスケーリング次元 $2 - \epsilon/3$ とスケーリング関係式

$$\nu = \frac{1}{y_r} \tag{1.88}$$

によって、臨界指数 $\nu = 1/(2 - \epsilon/3)$ と求められる. (y_r は r_0 のスケーリング次元.) スケーリン グ関係式を用いることで、その他の臨界指数も求めることができて表 (1.2) のようになる.

Gauss モデルでは4次の項は本質的ではない.常磁性を与えるポテンシャルは下に凸になっているだけで、4次の項はなくても2次の項だけあれば十分だった.Gauss モデルは常磁性を表すモデルになっている.強磁性を与えるポテンシャルは4次の項が必要で正になる必要があるためGauss モデルでは表すことができない.

1.2 フラストレーションと秩序の形成

スピン系において相互作用の競合が強く働き、フラストレーションが強い系について述べる. フラストレーションの生じ方は一通りではない.スピン間に長距離相互作用が働く場合のフラ ストレーションは、次近接相互作用をもつ *J*₁ – *J*₂ モデルなどに見られる.一方、最近接の相互 作用しかない場合もフラストレーションは生じ、三角格子上の最近接相互作用を持つ反強磁性 Heisenberg モデルなどに見られる.これは幾何学的構造のために相互作用に競合が起こるもの に見ることができる.特に後者のような格子の幾何学的構造を反映して、相互作用の競合が起 こる場合を幾何学的フラストレーションという.

平均場理論では、スピンを古典的なベクトルとみなしたとき、エネルギーを最小にするスピン配置をもつ状態が基底状態である.しかし、フラストレーションが強い場合は最小のエネル

1.2. フラストレーションと秩序の形成

ギーを与えるスピンは位置が多数存在するため基底状態が一つに決まらないことがある.また、 基底状態が一意に存在したとしても、基底状態とほぼ等しい励起状態が多く存在することにな れば、その基底状態は安定であるとは言えない.したがって、フラストレーションの強い系で は古典的な基底状態の不安定さのため量子効果が強く働くと考えられる.フラストレーション の強いスピン系の基底状態がどのようなものか、どのような基底状態を取りうるかという問題 はまだ十分に理解されているとは言えない.

Ising モデルを扱ったときに強磁性状態や自発磁化は既に用いているが、スピン系における秩 序相の典型的なものについて示す.その後に三角格子反強磁性体について、スピンを古典的に 扱うことで Ising モデル、XY モデル、Heisenberg モデルの構造について概略する.

1.2.1 スピン系における様々な秩序

強磁性相

強磁性とは図(1.4)のようにスピンが同じ方向に整列し自発磁化を秩序変数としている. Fe,Co,Ni など 3d 遷移元素が強磁性を示すことがよく知られているが、これらの強磁性は伝導電子によっ て引き起こされる. 絶縁体には CrO₂,EuO などが知られている. 磁石になるような絶縁体には 強磁性体は少なく、フェリ磁性体図(1.5)が多い.

反強磁性相

反強磁性体は図 (1.6) スピンが交互に反対方向に整列し、系全体としては磁化はない秩序で あり、絶縁体に多い.秩序変数はスタッガード磁化であり、一般には次のように表す.

$$\vec{M} = \frac{1}{N} \sum_{i} e^{i\vec{Q}\cdot\vec{r_i}} \langle \vec{S_i} \rangle \tag{1.89}$$

 \vec{Q} はスピンがどのように空間的に配置されているかを表す.格子定数を*a*とすると、2次元正 方格子では $\vec{Q} = (\pi/a, \pi/a)$ である.

図 1.6: 反強磁性秩序.

スパイラル相

一般にスパイラル状態では、スピンが回転するらせん面は任意に取ることができる. 例えば xy 面内で回転する場合は図 (1.7)、

$$\langle S_i^x \rangle = S \cos(\vec{Q} \cdot \vec{r}_i + \alpha) \langle S_i^y \rangle = S \sin(\vec{Q} \cdot \vec{r}_i + \alpha) \langle S_i^z \rangle = 0$$
 (1.90)

 $\vec{Q} = (\pi/a, \pi/a, 0)$ とするとスピン空間の xy 面内で反強磁性状態、 $\vec{Q} = (0, 0, 0)$ とすると強磁性状態になる.

図 1.7: スパイラル磁性.

スパイラル秩序が実現される物質として、希土類金属 Tb,Dy,Ho や絶縁体 CsCuCl₃,Cs₂CuCl₄ が知られている.

以上の状態は、 $\langle S_i \rangle \neq 0$ である.このような状態は一般に磁気秩序があると表現される.その 逆に $\langle S_i \rangle \neq 0$ の状態でも常磁性の無秩序状態ではない場合がある.以下にその例を示す.

ダイマー相

ダイマー相とは図 (1.8) のように2個ずつシングレット対を作っている状態のことである. 完 全なシングレット対ではなくても、2個からなる対が規則的に配列し、非磁気的な状態をつくっ ている相をダイマー相という.これは反強磁性相互作用を持つ系に、強い量子効果が働くときに 実現する.ダイマー相では基底状態と励起状態の間にエネルギーギャップが存在する.このため に絶対零度ではダイマー相に磁場をかけても、磁場によるエネルギーがこのエネルギーギャッ プを超えるまでは磁化は現れない.秩序変数は単一のスピンに対して与えることはできず

$$D_{\vec{Q}} = \frac{1}{zN} \sum_{\langle i,j \rangle} e^{i\vec{Q}\cdot\vec{r_i}} \langle \vec{S_i} \cdot \vec{S_j} \rangle \tag{1.91}$$

と表される.z はあるサイトに対して対を作る数で、一般には最近接にあるスピン同士で対を作ることが多い.1次元(擬1次元でもよい)ではこのような秩序が格子のひずみを誘起して実現する状態をスピン・パイエルス相という.

図 1.8: ダイマー秩序. 楕円内のスピンが1重項的に強く相互作用する.

これよりも一般的に2個のついではなく、3個以上のスピンが非磁気的なクラスターをつくる秩序も可能である.2次元的な格子を作る CaV_4O_9 では図(1.9)のように4つのスピンがシングレットの対ではなく、クラスターを作っている.非磁気的な対をはじめとしてクラスターなども含めて、規則的に配列している状態をVBC(valence bond crystal)状態とよぶ.

図 1.9: CaV₄O₉の V⁴⁺の配列. 円内のスピンが 1 重項的に強く相互作用する.

カイラル秩序相

図 1.10: スピンは必ずしも共面的ではない.r_t はこの三角形の中心を表す.

カイラル秩序相には、共線構造を反映するベクトルカイラリティと共面構造を反映するスカ ラーカイラリティがある. 図 (1.10) のように三角形の頂点にあるスピン $\vec{S}_1, \vec{S}_2, \vec{S}_3$ に対して、カ イラルベクトル \vec{V} を次のように定義する.

$$\vec{V}_t = \vec{S}_1 \times \vec{S}_2 + \vec{S}_2 \times \vec{S}_3 + \vec{S}_3 \times \vec{S}_1 \tag{1.92}$$

これによって、ベクトルカイラル秩序相の秩序変数は

$$\vec{V}_{\vec{Q}} = \frac{1}{N} \sum_{t} e^{i\vec{Q}\cdot\vec{r}_{t}} \langle \vec{V}_{t} \rangle \tag{1.93}$$

 $\vec{r_t}$ は三角格子の逆格子の格子点への位置ベクトルを表す.この秩序が存在する状態では空間の反対称性は破れている.また、スピンが(反)平行で一直線に向いているときは0になる.

一方、スカラーカイラリティは

$$\chi_t = \vec{S}_1 \cdot (\vec{S}_2 \times \vec{S}_3) \tag{1.94}$$

と定義される.スカラーカイラル秩序相の秩序変数は

$$\chi_{\vec{Q}} = \frac{1}{N} \sum_{t} e^{i\vec{Q}\cdot\vec{r}_{t}} \langle \chi_{t} \rangle \tag{1.95}$$

である.この秩序が存在する状態では、時間・空間反対称性がともに破れている.カイラル秩序 はスピンそのものではなくその積なので、非磁気的な状態でも存在できる.

スピンネマティック相

スピンネマティック相は磁気秩序は存在しないが、スピン空間において回転対称性が破れている場合である.ネマティックとは液晶の一種の状態で、図 (1.11) のように正負の向きはないが配向性を持つ配向子 (director)の秩序状態を表す.これはスピンを正負の方向を持つ二重極子とみなした場合の、四重極子になっている.図 (1.11)のようにスピンが z 方向に秩序化しているが、正負どちらかに秩序化する必要がない状態に対応している.その結果、 $\langle S_i^z \rangle = 0$ になっている.この秩序変数は四重極子テンソル

$$Q^{\alpha\beta} = \frac{1}{N} \sum_{i} \left\langle S_{i}^{\alpha} S_{i}^{\beta} - \frac{1}{3} \delta_{\alpha\beta} S(S+1) \right\rangle$$
(1.96)

によって表される.スピンの1次ではなく、2次によって表されている秩序変数である.

図 1.11: スピンネマティック相. S_z の全体の平均は $\langle S_z \rangle = 0$ になっているが、 $\langle S_z^2 \rangle \neq 0$ になる.

Haldane 相

Haldane 相は、スピンの大きさが整数*S* = 1,2,...の1次元反強磁性体において、量子効果に よって実現する. 基底状態は非磁気的なシングレット対が並んだ状態の重ね合わせになってお り、1次元でVBCをなしていると考えられる. 基底状態と励起状態との間にエネルギーギャッ プが存在する. これはエネルギーギャップを持たないスピンの大きさが半整数である1次元反 強磁性体と比べると大きな違いがある. これは Berry 位相が本質的な役割を果たしているため と考えられる.

CP¹変数 z を用いて、1 次元反強磁性 Heisenberg モデルの有効作用を表すと

$$A = \frac{1}{g} \int d^2x |(\partial_\mu + iA_\mu)z|^2 + iS \int d^2x (\partial_\tau A_x - \partial_x A_\tau)$$
(1.97)

となる. 第2項が Berry 位相項で U(1) ゲージ場 A_µ に対して

$$iS \int d^2x (\partial_\tau A_x - \partial_x A_\tau) = S \int d^2x E_x \tag{1.98}$$

のように電場 Ex の存在を表す. 従って、作用は

$$A = \frac{1}{g} \int d^2x |(\partial_\mu + iA_\mu)z|^2 + iS \int d^2x E_x$$
(1.99)

となる.この系は系の端に±Sの電荷が存在して、zで表される粒子が運動している系を表している.zの電荷は1なので、電荷Sが整数のときはzによって遮蔽されてしまうため、電場が存在しないことになってしまう.端の電荷が遮蔽されている状態で、zの対生成を行なった場合にz粒子間に距離に比例した線形のポテンシャルが生じ、閉じ込めが起こっていることになる.zは独立な粒子としては存在することができず、整数スピンとして閉じ込められている.これがHaldane相に対応している.

一方、電荷*S*が半整数のときは、*z*によって完全に完全に遮蔽することはできず、系の両端の電荷はかならず±1/2になってしまう.この状態で*z*の対生成を行なうと両端の電荷を $-1/2 \rightarrow +1/2$ から $+1/2 \rightarrow -1/2$ (またはその逆)のように変更するだけで、この端の状態はエネルギー的に等しく、2重に縮退している.(図(1.12))つまり、*S*が半整数のときは*z*の対生成によって、系

のエネルギーは変わらず、zは線形のポテンシャルによって閉じ込められることなくS = 1/2の独立した粒子(スピノン)として振る舞う.

図 1.12: S = 1では、電場は z によって完全に遮蔽される.z の新たな対生成をすると電場が伴うため閉じ込められる.S = 3/2では、z で電場を完全に遮蔽することができない.新たに対生成をしても、電場の向きを変えるだけでエネルギー的には変化がない.

Haldane 相は非磁気的な状態であり、何の秩序もないように見えるため量子無秩序状態とも よばれることがあり、スピンやスピン相関から秩序を見出すことはできないが、次のようなス トリング秩序という (1.100) の相関で表される隠れた秩序を持っているため、純粋な無秩序状 態とはいえない.

$$O_{i,j} = \left\langle S_i^z \exp\left(i\pi \sum_{k=i+1}^{j-1} S_k^z\right) S_j^z\right\rangle$$
(1.100)

1.2.2 三角格子反強磁性体

ここまでスピン系の秩序状態について整理した.次に以下のように具体的な三角格子反強磁 性体の磁気秩序について、その性質を見る.

三角格子反強磁性 Ising モデル

三角格子 Ising モデルは、フラストレーションを示すスピン系としては歴史が古くよく知られている. この系は図 (1.13) のように 3 個の最近接格子点がつくるすべての三角形に、up スピンスと down スピンが共存すれば、最低のエネルギー状態が得られる. しかし、この系は絶対零度でも残留エントロピーを持ってしまう. この値は $S = 0.323k_{\rm B}$ と求められている. [13] 基底状態において、系全体のサイト数が N のとき、最低のエネルギー状態が $N^{0.323}$ に比例することを意味している. 高温の無秩序状態では、1 サイトあたりのエントロピーは $S = k_{\rm B} \log 2 \approx 0.693k_{\rm B}$ である. 絶対零度になったとしても、高温の約 50 %ほどのエントロピーが存在してしまうため、有限温度では秩序化することができず相転移を示さない. また、絶対零度の状態ではスピン相関がスピン間の距離が r のとき、 $r^{-1/2}$ に比例して減衰することが示されている.

図 1.13: 三角格子 Ising モデル. どちらも同じエネルギーを与える.

三角格子反強磁性 XY モデル

三角格子上の反強磁性 XY モデルで、スピンを古典的なベクトルと考えると、図 (1.14) に示 すように格子を3個の副格子に分け、異なる副格子状のスピンが互いに 120° をなすように配置 すれば、すべての三角格子でエネルギーが最小になる.このスピン状態を 120° 構造や 120° Néel 状態という.この系の基底状態には Ising モデルのようなマクロな基底状態の縮退は見られない. しかし、スピン空間の z 軸 (S^z 軸) 周りの一様な回転する対称操作図 (1.14) による縮退があり、 連続対称性を持っている.

図 (1.14) の三角形上のスピンを時計回りに見ていくとスピンの向きが、 $0^{\circ} \rightarrow 120^{\circ} \rightarrow 240^{\circ}$ と時計周りに1周する. 一方、図 (1.15) ではスピンの向きが、 $0^{\circ} \rightarrow 240^{\circ} \rightarrow 120^{\circ}$ と反時計周りに 1周する. このことはベクトルカイラリティ \vec{V} によって区別される.

図 1.14: 三角格子 XY モデル. このときの ベクトルカイラリティ*V*4 は紙面手前向き.

図 1.15: 三角格子 XY モデル. このときの ベクトルカイラリティ \vec{V}_t は紙面奥向き.

ベクトルカイラリティは、図 (1.14) のように $+S_z$ 方向を向き、図 (1.15) では、 $-S_z$ 方向を向 く. ベクトルカイラリティの $+S_z$ と $-S_z$ を変換する操作は S^z 軸周りの一様な回転する対称操 作では得られない. このベクトルカイラリティによる縮退は離散的なものとなる. つまり、こ のモデルは連続対称性と離散対称性を持っていることになる.

2次元の三角格子反強磁性 XY モデルは、S^z 軸周りの連続対称性のため副格子磁化が有限の

値を持つ秩序状態は、有限温度では存在しない.これは、「連続対称性を持つ1,2次元系では、 対称性が自発的に破れた秩序状態は有限温度では存在しない」という Mermin-Wagner の定理 によって言うことができる.しかし、副格子磁化が有限の値を持つ秩序状態への転移ではない KT 転移は存在しても良い.また、ベクトルカイラリティの離散的な2重縮退があるから、有限 温度でカイラル秩序(ベクトル(スカラー)カイラリティが有限の値を持つ秩序状態)への転移も 存在すると考えられる.この KT 転移とカイラリティ転移の転移点が異なるか否かは自明な問 題ではないが、モンテカルロ・シミュレーションによってカイラリティ秩序が先に出来て、そ れより低温で KT 転移が起きることがわかっている.

三角格子反強磁性 Heisenberg モデル

三角格子反強磁性 Heisenberg モデルも、スピンを古典的なベクトルとみなせば基底状態は 120°状態である. XY モデルとの違いは、XY モデルでは先に述べたようにベクトルカイラリ ティは S_z 成分しかないが、Heisenberg モデルでは、ベクトルカイラリティはスピン空間の任意 の方向を向くことができる. したがって、ベクトルカイラリティも連続対称性を持つことになっ てしまうので、有限温度では磁気秩序もカイラリティ秩序も存在せず、秩序相は実現しないと 考えられる. しかし、この場合も KT 転移における渦が発生するようにトポロジカルな相への 転移があると指摘されている. 今の場合は Z₂ 渦というもので、トポロジカル不変量 (渦の巻数) が0または1の2種類しか存在しないというもので、言い換えれば渦が「ある」、「ない」の2 通りしか存在しない渦である. 通常の KT 転移では、スピンベクトル自体が渦を作っているが、 Z₂ 渦の場合はスピンベクトルではなく、ベクトルカイラリティによる渦である.(図 (1.16)) この 渦のエネルギーは2次元 XY モデルにおける渦と同様にサイズと共に対数発散しており、2個 できる渦は束縛状態をつくる. これにより渦の対の結合・解離に伴ってトポロジカルな転移を 示す. このようにスピンを古典的にみなした場合もフラストレーション系は様々な秩序を取り うることがわかる.

図 1.16: 三角格子 Heisenberg モデルの Z₂ 渦. 三角形の頂点のスピンを中心に表したもので、黒 丸は紙面手前向きのスピンを表す. この3つのスピンによって表されるベクトルカイラリティが 渦になる.

1.3 フラストレートしたスピン系におけるスピン液体

前節では、三角格子の系について古典的なスピンベクトルについて考えたが、フラストレー ションが強い系の場合は量子性が強く働くと考えられる.その量子性を反映させる描像として、 Anderson によって導入されたのが RVB(resonating valence bond) である. [16]

三角格子反強磁性 Heisenberg モデルでは、120° 構造を取ることは触れた.これはある三角形上のS = 1/2のスピンに対するハミルトニアン

$$\mathcal{H} = J(\vec{S}_1 \cdot \vec{S}_2 + \vec{S}_2 \cdot \vec{S}_3 + \vec{S}_3 \cdot \vec{S}_1) \tag{1.101}$$

から

$$\mathcal{H} = J |\vec{S}_1 + \vec{S}_2 + \vec{S}_3|^2 - \frac{3J}{2} |\vec{S}|^2 \tag{1.102}$$

となる. $\vec{S}_1 + \vec{S}_2 + \vec{S}_3 = 0$ のときにエネルギーが最小になり、古典的には $\vec{S}_1, \vec{S}_2, \vec{S}_3$ がそれぞれ120° を向いた120°構造が基底になり、スピン1つ当たりのエネルギーは、スピンの大きさS = 1/2を 用いて、 $-3J|\vec{S}|^2/2 = -3J/8$ と表される.S = 1/2の量子スピンを考えると $|\vec{S}_1 + \vec{S}_2 + \vec{S}_3| = 1/2$ のときが基底状態を与える.S = 1/2スピンが3つあったとき、全状態数は2×2×2=8通り あり、 $|S, S_2\rangle = |3/2, S_2\rangle, |1/2, S_2\rangle$ の状態がそれぞれ4つずつある.

この4つの状態を具体的に示すと

$$|1/2, 1/2\rangle = |\uparrow_A, \uparrow_B, \downarrow_C\rangle - |\uparrow_A, \downarrow_B, \uparrow_C\rangle, |\uparrow_A, \uparrow_B, \downarrow_C\rangle - |\downarrow_A, \uparrow_B, \uparrow_C\rangle$$

$$|1/2, -1/2\rangle = |\downarrow_A, \uparrow_B, \downarrow_C\rangle - |\downarrow_A, \downarrow_B, \uparrow_C\rangle, |\uparrow_A, \downarrow_B, \downarrow_C\rangle - |\downarrow_A, \downarrow_B, \uparrow_C\rangle$$
(1.103)

となる.(*A*, *B*, *C* は副格子を表す.) これは三角形の3個のスピンのうち2つはシングレット対を つくり、残りは自由な状態とそれらの状態の重ね合わせになっている.このことよりサイト上に あるスピンについて考えるより、リンクを単位にして考えることによって状態を考えることが できる.シングレット対のエネルギーは-3J/4であるから、すべての格子点がいずれかのシン グレット対に含まれるようにシングレット対を格子上に敷き詰めたとすると、スピン1つ当た りのエネルギーは $-3J/4 \times 1/2 = -3J/8$ となり、基底状態のエネルギーは120°構造のときと 同じになる.しかし、このシングレット対の敷き詰め方は無数にあり、基底状態はこれらの適当 な線形結合によって表すことができ、重ね合わせた状態のコヒーレンスによりエネルギーを下 げることができる.これが Anderson によって提案された RVB 状態である.

Anderson は、三角格子の基底状態は RVB 状態が実現していて、120°構造の秩序は存在して いないと主張した.最近接シングレット対だけではなく、遠く離れたスピンについてもシング レット対を取り入れると、さらに近似は精度が上がり変分計算により、スピン1つ当たりのエ ネルギーは、-0.484Jと求められている.しかし、すべての可能なシングレット対の配置を基 底状態として取り入れてしまうと、その配列全体はS = 0の空間の重複を含む基底となり、系 全体がS = 0の状態であることだけを意味するに過ぎない.これはシングレット対を敷き詰め たという RVB の描像とは違うものになってしまう.

RVBとスピン液体の定義は厳密に定められていないようであるが、次のようものが一般的である.

1. S = 0.

2. いかなる長距離秩序を持たない.

3. すべての相関関数が有限の相関長を持った短距離相関である.

この3つの条件を満たす状態が RVB 状態、特にスピン液体という場合は、2の意味で使われるこ とが多い.この場合は相関関数が冪で減少するものも含まれている.1次元S = 1/2Heisenberg モデルは、基底状態で相関関数が冪で減少するのでスピン液体状態が実現されていると考えら れる.一方、1次元S = 1Heisenberg モデルは、基底状態で相関関数が短距離相関であるが、 string 秩序を持つために、2の条件は満たさずスピン液体ではなく、(1.2.1)節で述べたように VBC 状態である.相関長 ξ とエネルギーギャップ Δ との関係は、 $\Delta \sim 1/\xi$ と表される.そのた め相関関数が冪で減少するスピン液体は、相関長が $\xi \sim \infty$ となっていて、その逆数であるエネ ルギーギャップを持たないのでギャップレス状態のスピン液体という.一方、相関関数が指数関 数 exp で減少するものは、相関長が有限でありエネルギーギャップをもつ.これをギャップフル 状態のスピン液体という.シングレット対を壊して、トリプレットになるときには、励起エネ ルギーとして2J が必要でエネルギーギャップが存在する.したがって、スピン液体はギャップ フル状態になりそうであるが、実験的にはギャップレス状態のスピン液体も見つかっている.

2次元三角格子を有する κ-BEDT-TTF₂Cu₂CN₃ では、ギャップレス状態のスピン液体が観 測されたと考えられている.この系では非常に低温まで長距離秩序は存在せず、かつ比熱などで エネルギーギャップが観測されていない.

実際には、Anderson が言うように三角格子では RVB 状態が基底状態ではなく、 $S = \infty$ な古 典的な場合だけではなく、S = 1/2の量子的な場合も 120°構造が半古典的な基底状態であると 言われている. 他の格子についてはまだ十分な結論には至っていないが、RVB 状態が実現する 有力な候補としては、フラストレーションのある正方格子やカゴメ格子が挙げられている.

このように Anderson の提案はスピン系においては、そのままの形で受け入れられていない. しかし、高温超伝導体において、反強磁性状態にある物質にホールをドープすることで、超伝 導状態に変化すると考えられている. その状態は RVB 状態の拡張になっている.

1.4 ボーズ凝縮

1995年に⁸⁷Rb、²³Naのアルカリ原子気体において、ボース・アインシュタイン凝縮 (Bose-Einstein condensataion;BEC) が報告された. [17] [18] フェルミオンについても 1999年に⁴⁰Kのフェルミ縮退が実現された. [19] これらの成果をはじめとして、極低温原子系は理想的な量子多体系を実現することに成功し、盛んに研究が行われている. 以下では、どのようにして極低温原子系を実現するのか、そして BEC の概要について述べる. [20]

1.4.1 レーザー冷却と光学格子

極低温原子系における量子多体系の研究が盛んになった理由の一つに、系に対する高い操作 性を挙げることができる.Feshbach 共鳴を用いた粒子間相互作用の制御は、極低温で散乱長に よって行われる.Feshbach 共鳴とは、散乱長が外場によって変化し共鳴点の両側で散乱長が発散 する現象で、原子核物理の分野において理論的に予測され、冷却原子系では、1998 年、²³Na の BEC において観測が報告された. [21] それ以外にも様々な原子や異種原子混合系で Feshbach 共鳴の存在が確認されている. Feshbach 共鳴は、2原子が散乱の際に分子の振動準位と結合し、2原子を束縛状態に置くことができる. このことを用いて、2003 年には⁴⁰K₂のフェルミオン原子対の BEC が観測された. [22] その他にも Feshbach 共鳴の共鳴準位の両側での BEC-BCS crossover の研究など、相互作用を広い領域で制御できる利点を生かして様々な研究が行われている.

また、極低温原子系の操作性の高さは、外部ポテンシャルの生成を自由に行いやすい点にも 現れている. 原子を外部電場 *Ē*の中に置いたとき、電気双極子モーメント *d*が発生し、

$$\langle \vec{d} \rangle = \alpha \vec{E} \tag{1.104}$$

の関係がある.原子内の電子による電場と外部電場が同程度 $E \sim e/4\pi\epsilon a_0^2$ である. a_0 は Bohr 半径である. これによって分極率 α は

$$\alpha \sim \frac{ea_0}{e/4\pi\epsilon a_0^2} \tag{1.105}$$

と与えられる.一方、電気双極子と外部電場との相互作用

$$\mathcal{H}' = -\vec{d} \cdot \vec{E} \tag{1.106}$$

を摂動とみなす.この相互作用によって原子を制御することができる.

電場の周波数 ω であるとすると $\vec{E}(r,t) = \vec{E}(\omega)e^{-i\omega t} + \vec{E}(-\omega)e^{i\omega t}$ と表すことができる. $(\vec{E}(-\omega) = \vec{E}(\omega))$ この電場と相互作用することによりエネルギー $\hbar\omega$ を持つ光子の吸収・放出をする.したがって、電場と相互作用したときのエネルギーは2次摂動によって

$$\Delta E = -\sum_{e} \frac{|\langle e|\mathcal{H}'|g\rangle|^2}{E_e - E_g} \tag{1.107}$$

と表される. $|e\rangle$, $|g\rangle$ はそれぞれ励起状態と基底状態、同様に E_e, E_g はそれぞれ励起状態と基底状態のエネルギーを表している.

$$\Delta E = \sum_{e} \langle e | \vec{d} \cdot \vec{E}(\omega) | g \rangle \frac{1}{E_e - E_g + \hbar\omega} \langle e | \vec{d} \cdot \vec{E}(-\omega) | g \rangle$$

$$+ \sum_{e} \langle e | \vec{d} \cdot \vec{E}(-\omega) | g \rangle \frac{1}{E_e - E_g - \hbar\omega} \langle e | \vec{d} \cdot \vec{E}(\omega) | g \rangle$$

$$= \sum_{e} |\langle e | \vec{d} \cdot \vec{e} | g \rangle|^2 \left(\frac{1}{E_e - E_g + \hbar\omega} + \frac{1}{E_e - E_g - \hbar\omega} \right) E(\omega)^2$$

$$= -\alpha(\omega) E(\omega)^2 = -\frac{1}{2} \langle E(r, t)^2 \rangle_t$$
(1.108)

 $\langle \cdots \rangle_t$ は時間平均、 \vec{e} は電場の単位ベクトルを表す. $\alpha(\omega)$ は動的分極率

$$\alpha(\omega) = \sum_{e} \frac{2(E_e - E_g) |\langle e|\vec{d} \cdot \vec{e}|g\rangle|^2}{(E_e - E_g)^2 - (\hbar\omega)^2}$$
(1.109)

である. 基底状態からの励起は光子の吸収によって行われるので、 $E_e - E_g \sim \hbar \omega$ となることを 考慮すると

$$\alpha(\omega) \sim \sum_{e} \frac{|\langle e|\vec{d} \cdot \vec{e}|g\rangle|^2}{E_e - E_g - \hbar\omega}$$
(1.110)

となる. さらに励起状態がある寿命 (lifetime)2/ Γ_e を持つとする. このとき励起状態は、 $|e\rangle \sim \exp(-i(E_e - i\Gamma_e/2)t)$ で減衰することになる. $E_e \to E_e - i\Gamma_e/2$ と置き換えることで

$$\alpha(\omega) \sim \sum_{e} \frac{|\langle e|d \cdot \vec{e}|g \rangle|^2}{E_e - \Gamma_e/2 - E_g - \hbar\omega}$$
(1.111)

と複素数になる.

$$\operatorname{Re}(\alpha(\omega)) \sim \sum_{e} \frac{(E_e - E_g - \hbar\omega) |\langle e|\vec{d} \cdot \vec{e}|g\rangle|^2}{(E_e - E_g - \hbar\omega)^2 - (\Gamma_e/2)^2}$$
$$\operatorname{Im}(\alpha(\omega)) \sim \sum_{e} \frac{\Gamma_e/2 |\langle e|\vec{d} \cdot \vec{e}|g\rangle|^2}{(E_e - E_g - \hbar\omega)^2 - (\Gamma_e/2)^2}$$
(1.112)

 $\Delta E = V_g - i\Gamma_g/2$ とすると電場と電気双極子による相互作用エネルギー V_g と基底状態の減衰率 Γ_g がわかる.

$$V_g = \frac{1}{2} \operatorname{Re}(\alpha(\omega)) \langle E(r,t)^2 \rangle_t$$

$$\Gamma_g = -2 \operatorname{Im} \Delta E = \operatorname{Im}(\alpha(\omega)) \langle E(r,t)^2 \rangle_t \qquad (1.113)$$

 V_g のポテンシャルによって、原子を閉じ込めることができる. 様々な方向へ向かう電場の重ね合わせ

$$\vec{E} = \sum_{i} \vec{E}_{i} \cos(\vec{q}_{i} \cdot \vec{r} - \omega t) \tag{1.114}$$

から、 V_q を表すことができる. 例えば、x, y, z方向へ向かうレーザーからは

 $V(x, y, z) \sim \cos 2qx + \cos 2qy + \cos 2qz \tag{1.115}$

のようなポテンシャル構成できる. 互いに 120° なすようなレーザーからは三角格子を作ること ができる.

一方、 Γ_g を用いてドップラー効果によって原子を冷却することができる.レーザーによる原子の光子の吸収率 $\frac{dN_{\text{ph}}}{dt}$ が高いと基底状態は減衰してしまうので、 Γ_g との関係は次のようになる.

$$\frac{dN_{\rm ph}}{dt} \sim \Gamma_g(\omega) \tag{1.116}$$

原子がある速度 v で運動しているとき、左右から対向するレーザーの振動数はドップラー効果 によって $\omega - vq$ 、 $\omega + vq$ と感じられる. $(q = \omega/c)$ 仮に原子が右向きに運動しているとき、左右 のレーザーによる光子の吸収率は

$$\frac{dN_{\text{right}}}{dt} \sim \Gamma_g(\omega - vq)$$
$$\frac{dN_{\text{left}}}{dt} \sim \Gamma_g(\omega + vq)$$
(1.117)

となる.したがって、原子の運動量*p*は左右のレーザーからの光子の吸収によって、次のように 抑制される.

$$\frac{dp}{dt} = \hbar q \left(\frac{dN_{\text{right}}}{dt} - \frac{dN_{\text{left}}}{dt} \right) \\
\sim \frac{\hbar q}{v} (\Gamma_g(\omega - vq) - \Gamma_g(\omega + vq))v \\
= -\hbar q^2 \frac{d\Gamma_g(\omega)}{d\omega} v$$
(1.118)

こうして、レーザーによって原子気体を冷却しトラップすることができる.

以上のように原子気体をレーザー光を用いてトラップする双極子トラップの技術により、原 子を様々な形状のポテンシャルへ閉じ込めることが可能になった.また、対向するレーザーによ る定在波を用いて周期ポテンシャル中へ原子を閉じ込めることで光学格子系を実現できる.

1.4.2 BEC

BECの理論は1925年にEinsteinが理論的に予言した現象で、実験的に観測されるまでに70 年程かかることになった.BECはBose統計に従う粒子の集団において、ある温度以下で系の全 粒子数に匹敵するマクロな粒子数が、最低エネルギー準位の状態に落ち込む現象である.高温 で原子は粒子性をもってランダムに運動しているが、低温になると以下で表される物質波の熱 的 de Broglie 波長が伸びることで量子効果が顕著になる.

$$\lambda = \frac{h}{\sqrt{3mk_{\rm B}T}} \tag{1.119}$$

Heなどのように軽い原子の場合、1[K] 程度まで冷却すると de Broglie 波長は平均原子間の距離 以上になる.しかし、一般に低温ではそれぞれの粒子の物質波が乱れて存在しているに過ぎな い.ところが、ある温度以下になるとそれぞれの粒子の物質波がそろって、系全体がマクロな 波動として振舞うようになる.このとき、系に存在する粒子の描像は成立しなくなってしまう. このマクロな波動は、レーザー光のように位相の揃ったコヒーレントな状態になっている.

ボソン系は、Bose-Einstein 統計に従い Bose 分布関数に従って分布している.

$$f(\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)} - 1} \tag{1.120}$$

このボソン系を調和振動子型の3次元ポテンシャルV(r)にトラップしたとする.

$$V(r) = \frac{1}{2}m(\omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2)$$
(1.121)

粒子間の相互作用がない自由粒子系では、エネルギー準位は次のように与えられる.

$$\epsilon(n_x, n_y, n_z) = \left(n_x + \frac{1}{2}\right)\hbar\omega_x + \left(n_y + \frac{1}{2}\right)\hbar\omega_y + \left(n_z + \frac{1}{2}\right)\hbar\omega_z \tag{1.122}$$

エネルギー ϵ で与えられる状態数 $G(\epsilon)$ から状態密度 $g(\epsilon)$ を求められる.

$$G(\epsilon) = \frac{1}{\hbar^3 \omega_x \omega_y \omega_z} \int_0^{\epsilon} d\epsilon_x \int_0^{\epsilon - \epsilon_x} d\epsilon_y \int_0^{\epsilon - \epsilon_x - \epsilon_y} d\epsilon_z = \frac{\epsilon^3}{6\hbar^3 \omega_x \omega_y \omega_z}$$
(1.123)

$$g(\epsilon) = \frac{dG(\epsilon)}{d\epsilon} = \frac{\epsilon^2}{2\hbar^3 \omega_x \omega_y \omega_z}$$
(1.124)

これはD次元では

$$g(\epsilon) = \frac{\epsilon^{D-1}}{(D-1)! \prod_i \hbar \omega_i} \equiv C_D \epsilon^{D-1}$$
(1.125)

となる.分布関数と状態密度によって、励起状態にある粒子数 Ne は

$$N_e = \int_0^\infty d\epsilon g(\epsilon) f(\epsilon) \tag{1.126}$$

となる.

BEC が起きている粒子数を N_0 、その密度を ρ_0 とすると

$$\rho_0 = \frac{1}{V} \frac{1}{e^{-\beta\mu} - 1} \tag{1.127}$$

から、BEC が起きる転移点では ρ_0 が有限に残るので $\mu = 0$ でなければならない. 転移点 T_c は

$$N = N_e(T_c) = \int_0^\infty d\epsilon g(\epsilon) \frac{1}{e^{\epsilon/k_{\mathrm{B}T_c}} - 1}$$
(1.128)

によって求めることができる.

$$\int_0^\infty dx \frac{x^{\alpha - 1}}{e^x - 1} = \Gamma(\alpha)\zeta(\alpha) \tag{1.129}$$

の積分の公式によって、

$$k_{\rm B}T_c = \frac{N^{1/D}}{(C_D \Gamma(D)\zeta(D))^{1/D}}$$
(1.130)

と臨界点を求めることができる.

また、 $T < T_c$ の励起状態にある粒子数は

$$N_e(T) = C_D \int_0^\infty d\epsilon \epsilon^{D-1} \frac{1}{e^{\epsilon/k_{\rm B}T} - 1} = C_D \Gamma(D) \zeta(D) (k_{\rm B}T)^D = N \left(\frac{T}{T_c}\right)^\alpha \tag{1.131}$$

と表すことができ、凝縮している粒子数は

$$N_0 = N \left[1 - \left(\frac{T}{T_c}\right)^D \right] \tag{1.132}$$

と表すことができ、これを秩序変数として考えることができる.BECはこのように相互作用の ない自由粒子にも関わらず、1粒子状態に凝縮してしまう.粒子間の引力などの相互作用なし で起こるため、純粋に量子統計的な相転移であるといえる.

1.5 超流動と秩序

BEC を特徴付ける量に非対角長距離秩序というものがある. 固体の結晶のような秩序ではな く、マクロに広がった流体としての秩序を表している. 固体秩序は対角長距離秩序によって、超 流動は非対角長距離秩序によって表される. この両方の秩序を持った超固体という状態も実現 する. これらの秩序と⁴He を念頭に超流動の現象と理論について概説する.
1.5.1 非対角長距離秩序

BEC を特徴付ける秩序に非対角長距離秩序 (off-diagonal long range order;ODLRO) がある. [23] $\hat{\psi}^{\dagger}(x), \hat{\psi}(x)$ をボソンの生成消滅演算子とし、

$$\hat{\psi}^{\dagger}(x) = \frac{1}{\sqrt{V}} \sum_{k} \hat{a}_{k}^{\dagger} e^{ikx}$$
$$\hat{\psi}(x) = \frac{1}{\sqrt{V}} \sum_{k} \hat{a}_{k} e^{ikx}$$
(1.133)

と Fourier 変換できるものとする. 次のような1粒子密度行列を考え、

$$\rho_1(x,y) = \langle \hat{\psi}^{\dagger}(x)\hat{\psi}(x)\rangle \tag{1.134}$$

(1.133)を代入すると

$$\rho(x,y) = \frac{1}{V} \sum_{k} \langle \hat{a}_{k}^{\dagger} \hat{a}_{k} \rangle e^{-ik(x-y)} = \frac{1}{V} \langle \hat{n}_{0} \rangle + \int \frac{dk^{3}}{(2\pi)^{3}} \langle \hat{n}_{k} \rangle e^{-ik(x-y)}$$
(1.135)

となる. $\hat{n}_k = \hat{a}_k^{\dagger} \hat{a}_k$ である. $|x - y| \rightarrow \infty$ を考えると (1.135) の第2項は位相部分が振動するため Riemann-Legesque の定理により0になる. したがって、

$$\lim_{|x-y|\to\infty} \rho(x,y) = \frac{1}{V} \langle \hat{n}_0 \rangle \tag{1.136}$$

となる. これは BEC が起きているとき、 $N, V \to \infty$ とする熱力学極限をとっても0にならない. 密度行列の非対角要素 $(x \neq y)$ も有限に残るため、この秩序を非対角長距離秩序という. y で粒 子を消滅させて x に粒子を生成させても、系が元と同じ量子状態になる確率振幅を与える. こ のように粒子を移動させても系の状態を変えないことが、超流動との関係を示唆している.

また、対角長距離秩序 (diagonal long range order; DLRO) というものも存在する. 密度行列 の対角要素

$$\rho(x,x) = \langle \hat{\psi}^{\dagger}(x)\hat{\psi}(x)\rangle = \langle \hat{n}(x)\rangle \tag{1.137}$$

が長距離相関を持つ場合のことを対角長距離秩序を持つという.系が結晶のようにパターンを 持っていることを表す.

非対角長距離秩序と対角長距離秩序の両方を有する状態を超固体という. 超固体状態を引き 起こすメカニズムとして、Andreev と Lifshitsz は次のようなシナリオを考えた. [24] 各格子点 に整数個粒子が詰まっている完全結晶に余分に粒子をドーピング、または格子欠陥 (ホール) を ドーピングする. それらが固体秩序中で BEC を起こすというもので、固体秩序を残しつつ、超 流動性を示すことができる. 理論的には 1970 年代に議論されていたものであるが、2004 年に Kim と Chan によって実験的に観測された. [25] [26]

⁴Heをナノスケールの小さな穴がスポンジ状に存在するガラス (バイコール) 中に染み込ませ、 加圧しながら冷却することで固体にすることができる.このガラス自体が、ねじれ振り子の付い たドーナツ上の容器に入っていて、高振動数でねじることができる.このとき、バイコール中 の⁴Heが通常の固体であれば、バイコールと共にねじれ振動をするので、回転の完成モーメン トは大きいままである.一方、⁴He が超流動性を示すなら、バイコールがねじれ振動しても、内 部で摩擦なく⁴He が滑ることになり慣性モーメントは小さくなるはずである.このようにして 実験を行なった結果、固体⁴He においても低温で慣性モーメントの現象を見出すことができた.

さらに近年、超固体において、冷却時に高速振動させていた場合とそうでない場合に超流動 成分の量が異なることが報告された.冷却時における振動速度を変えながら、観測を行うと超 固体には3つの相が存在していることがわかった. [27]

一つは、あまり系を動かさずに冷却した場合に中温域に現れる相A、もう一つは系を動かし て冷却した際に中温域に現れる相B、そして最後が両者のより低温域に現れる相Cである.測 定結果から、A は格子面の不整合などの結晶の欠陥がある程度自由に動き回っている相、B は それらが移動している間にトラップされた緩やかにピン留めされた相、そして最低温で現れる C は欠陥の移動が凍結した相と考えられる.超伝導体における自由な渦糸-ピン止めされた渦糸-凍結した渦糸との類似性を述べている.超固体に関しては、このように実験的に存在すること は示されているが、その発現機構、原因となっている欠陥はどのような種類なのか、など未だ に十分に理解されていない.

1.5.2 超流動

超流動の特徴、性質について概説する.⁴He は絶対零度になっても零点振動の効果により液体のまま存在する. $T_c = 2.18$ [K]以下になると、超流動状態を示す.⁴He を自由理想 Bose 気体とみなして、超流動の転移点を BEC の転移点として計算をすると、その転移点は 3.13[K] となる.これは実験観測値に近い値である.値とのずれの原因は、⁴He はあくまで液体であって「理想気体」ではないということ、原子間の斥力が強く働くため「自由」ではないことなどが挙げられる.

通常の流体が、流体を構成している原子と容器の壁に衝突し抵抗を受けることで、エネルギー が散逸してしまい流れが止まってしまう.しかし、超流動状態ではこのエネルギーの散逸がない.これがどのようにして起こるかを見るために一様な速度 *v* で流れる流体を考える.容器と 流体との相互作用がないものとし、極低温の条件の下でこの系の全エネルギーは

$$E_g^v = E_g + \frac{1}{2}Mv^2 \tag{1.138}$$

で表される.E_qは基底状態のエネルギー、Mは流体の全質量である.

この量子流体の励起エネルギーを考える.この流体は、容器との間でフォノンを媒介とするような相互作用をすると仮定する.ハミルトニアンは

$$\mathcal{H} = E_g + \sum_k \hbar \omega(k) n_k \tag{1.139}$$

となる. $\omega(k)$ は線形の分散関係を仮定する.

一方、容器から見た系において、流体は運動量 $\vec{p} = M\vec{v} + \hbar k$ を持っているように見える.この系の全エネルギーは

$$E_g^v = E_g + \hbar\omega(k) + \frac{1}{2M}p^2 = E_g^v + \hbar\omega(k) + \vec{v} \cdot \hbar\vec{k} + \frac{(\hbar k)^2}{2M}$$
$$\sim E_g^v + \hbar\omega(k) + \vec{v} \cdot \hbar\vec{k}$$
(1.140)

となる.Mが非常に大きく、大きなエネルギーを持つ励起は考えていないので $\frac{(\hbar k)^2}{2M}$ は無視できる.したがって、常に

$$\hbar\omega(k) + \vec{v} \cdot \hbar \vec{k} = 0 \tag{1.141}$$

を満たさなければならない.これは流体の励起エネルギー $\hbar\omega(k)$ が、運動量 $\hbar k$ を持つフォノン と流体の相互作用 $\vec{v} \cdot \hbar \vec{k}$ によって打ち消されることを意味する. $\omega(k) = \alpha k$ とすると

$$\alpha k + vk\cos\theta = 0$$

$$k(\alpha + v\cos\theta) = 0$$
(1.142)

となるので、 $\alpha + v \cos \theta \neq 0$ 、すなわち $\alpha < v$ であれば、k = 0となりフォノンを媒介とした相 互作用は存在せず、超流動が起きる.

一方、自由粒子のとき励起エネルギーは

$$\hbar\omega(k) = \frac{(\hbar k)^2}{2m} \tag{1.143}$$

と表される.mは流体内の原子の質量である.このとき

$$\frac{(\hbar k)^2}{2m} + vk\cos\theta = 0 \tag{1.144}$$

となり、 $k \neq 0$ となるkも許す.これはフォノンが存在し相互作用していることを意味する.したがって、流体からのエネルギーの散逸を許し超流動は起こらない.自由理想ボース気体において、BEC は起きるが超流動は起こらないことになる.BEC は超流動が起こるための必要条件であり、十分条件ではない.

1.6 論文の構成について

本論文の構成について述べる.

第2、3章ではスピン自由度が大きい高スピン fermion 系を扱う.光学格子を用いることで、 大きなスピンを持つ fermion を光学格子にトラップし、各格子点に粒子が1個ある系を考える ことができる.この系は一般に SU(N) 対称性など高い対称性を実現すると考えられていて、高 スピン fermion 系は実験的にも実現されようとしている.今までS = 3/2の系の理論的な研究 では、平均場近似による磁性状態と非磁性状態間の相転移などの典型的な現象を調べるにとど まっている.また、各格子点にS = 3/2 の fermion が1 個ずつ詰まった系は、実験的にはまだ 十分に調べられていない.有効場理論を導出し、1/N 展開による今までの研究で見られなかっ た系統的な方法で、広いパラメータ領域についても扱うことができるようになった.モンテカ ルロ法よって実際に有効場理論を実際にシミュレーションすることで、1/N 展開による結果と 比較しその正当性を確かめることができた.

第4章では幾何学的フラストレーションのある2成分 boson 系を扱う.2成分 Bose-Hubbard モデルから bosonic *t* – *J*モデルを導き、幾何学的フラストレーションのある積層三角格子上 における相構造について議論する.bosonの複数成分による影響と幾何学的フラストレーショ ンによる影響を含めることで新奇な現象が期待できる.従来の研究では、格子点に対して、粒 子、またはホール数が整合な場合については、超流動-Mott 絶縁体転移などが調べられている が、非整合な場合についてはよく調べられていない. bosonic *t* – *J*モデルのスレーブ粒子表示 を用いることで、化学ポテンシャルの調節では得ることが難しかった格子点に対して非整合な 粒子、またはホール数について、カノニカルアンサンブルを用いたモンテカルロ法によって計 算を行った.

第5章では bosonic *t* – *J*のスレーブ粒子表示を行い、絶対零度の量子系における各粒子や ホールの位相についての有効場理論を導いた.幾何学的フラストレーションのある系における その基底状態や低エネルギー励起を調べた.今までの研究では、電子系で見られるような*t* – *J* モデルのスレーブ粒子表示による平均場理論を用いた解析が主だった.それによらない有効場 理論の導出は従来の研究では、ほとんど見られていない.第4章で扱った積層三角格子を(2+1) 次元系と考え、2次元量子系と対応について検討を行った.

第2章 Sp(N)スピンモデルの有効場の理論 とその相構造:場の量子論的手法によ る解析

これまで大きなスピンSを有する固体の系は、候補となっている物質はいくつかあるものの実現することが困難だった.導入で扱った光学格子を用いることで、このような大きなスピンを持つ原子による系も実現できるようになってきている.光学格子上に大きなスピンを持つfermionをトラップし、各格子点に粒子が1個ある系を考えることができる.

この章では、はじめに極低温 fermion 系について概説する. そのうちの1つであるスピン S = 3/2を持つ系を扱う. 各格子点にS = 3/2の fermion が1個ずつ詰まった系は、Sp(4)Heisenberg モデル¹によって磁性を記述することができる. この有効理論を導出し、1/N 展開 による解析を行う. [28] 今までS = 3/2の系の理論的な研究では、平均場近似による反強磁性 状態と非磁性状態間の相転移は扱われていた. それ以外の現象については十分に調べられてい ない. しかし、有効場理論を扱うことにより、それ以外の転移についても扱うことができるよ うになった. 1/N 展開による系統的な扱いによって、より広いパラメータ領域に対して相構造 を調べることができた. 各格子点にS = 3/2の fermion が1個ずつ詰まった系は、実験的には まだ十分に調べられていないが、有効場理論により起こりうる現象の予言を行う.

2.1 極低温 fermion 系と Sp(N) Heisenberg モデル

極低温原子系、特にその高スピン系は固体物理系では見られない性質がある. スピンS = 1/2を格子上に持つ物質は、Huntの規則によって各格子点に粒子1個の制限が付いてしまう. 一方、各格子点にS > 1/2の粒子が存在する高スピンの系を考えれば、格子点上に高スピンの多重項を考えることができる.

一般にSが大きい場合は、その量子揺らぎが抑えられて、S=1/2の系より古典的な系と考 えることができ、スピンをベクトルとして扱うことで平均場理論などの近似法が適用できる.し かし、冷却原子で作られる高スピン系はこのようなことは起こらず、隠れた高い対称性や強い 量子揺らぎを示す.これは光学格子で系のパラメータを制御することで、Sが大きい場合に取り 扱われる平均場近似を適用できないようなパラメータ領域が可能となる.各スピン間の相互作 用が弱くすることで、あるスピンの近傍にある複数のスピンをスピン間の相互作用によって、 特定の方向を向かないようにさせることができる.このような状態では平均場近似は有効では ない.

¹一般に N に拡張することができる. ただし、N は偶数である.

実際に高スピン系は実に多様な対称性を持つことが報告されている [29] ²³Na、⁸⁷Rb 原子の スピン1の系では、極性-強磁性転移やそれに関連する集団モードの研究が Ho [30] と大見 [31] によってされた.スピノールの凝縮体において、U(1) 対称性を持つ電荷と SU(2) 対称性を持つ スピンの相互作用が、Z₂ ゲージ対称性によって分類されるというものである.更に、Zhou は光 学格子上のスピン一重項状態とスピンネマティック状態について研究した. [32] 様々なスピノー ルの凝縮やスピンが秩序をもった Mott 絶縁体が、その系がもつ対称性によって分類されてい る.しかし、これらはいずれも boson 系についての研究であった.

一方、fermion 系では比較的少ないものの興味深い現象や性質を示すことが報告されている. Yipや Hoなどによる Fermi 液体の様々な集団モードの構造や Cooper pair が形成されるパターンの研究がをはじめとして、[33] さらに最近では Wu によって、S = 3/2の系の対称性に関する研究 [34] がされており、これは実際に¹³²Cs、⁹Be、¹³⁵Ba、¹³⁷Ba、²⁰¹Hg のような物質群によって実現されている. これらは通常のスピンがもっている SU(2) 対称性に加え、SO(5)、またはそれと準同型な Sp(4) 対称性を持っている. また、パラメータの調節によって SU(4) 対称性まで 高めることが可能である. S = 5/2の系も¹⁷³Yb も光学格子系で実現することができる. [35] この系は SU(6) 対称性を持つ. このように高スピン系では、高い対称性に伴い多彩な相構造が期待できる. 以下では S = 3/2 の fermion 系について見ていく.

まず次のようなS = 3/2を持つ fermion に対して、以下のような Hubbard モデルを考える.

$$\mathcal{H} = -\sum_{\langle i,j \rangle} \sum_{\sigma=\pm 3/2,\pm 1/2} t_{ij} (\psi_{\sigma,i}^{\dagger} \psi_{\sigma,j} + \text{h.c.}) + \sum_{i} \sum_{S=0}^{4} U_S \sum_{m=-S}^{S} P_{S,m,i}^{\dagger} P_{S,m,i}$$
(2.1)

 $\psi_{\sigma,i}^{\dagger}, \psi_{\sigma,i}(\sigma = \pm 3/2, \pm 1/2)$ は $S = \sigma$ の fermion の生成消滅演算子で、 t_{ij} は格子点i, j間のホッ ピングを表す. U_S は同一格子点に fermion があるときの斥力を表し、それらの合成スピンが $S_{\text{tot}} = S$ の状態に対応した散乱長に比例する. $t_{ij} \ll U_S$ の下では、同一格子点に 3 つ以上の fermion は存在することができない. また、 $P_{S,m,i}$ は Clebsch-Gordon 係数を用いて、 $P_{S,m,i} = \sum_{\sigma,\sigma'} \langle S, m | 3/2\sigma, 3/2\sigma' \rangle \psi_{\sigma,i} \psi_{\sigma',i}$ と表すことができる.

同一格子点に fermion が 2 つあった場合、多重項を作ることができる. 2 つの S = 3/2 のス ピンの合成によって、4 × 4 = 16 の状態が得られる. この状態は、 $S_{tot} = 3$ の septet(7 重項)、 $S_{tot} = 2$ の quintet(5 重項)、 $S_{tot} = 1$ の tripet(3 重項)、 $S_{tot} = 0$ の singlet(1 重項) として表すこ とができ、それぞれ 7,5,3,1 の状態をとることができる.

$$4 \otimes 4 = 7 \oplus 5 \oplus 3 \oplus 1 \tag{2.2}$$

fermion間の相互作用は、合成スピンが $S_{tot} = 1,3$ のときはp波散乱長に比例し、 $S_{tot} = 0,2$ のときはs波散乱長に比例する.低エネルギーの散乱ではs波散乱が支配的であることとPauliの排他律から、fermionが持つスピンの波動関数は反対称でなければならない.したがって、同一格子点での多重項として $S_{tot} = 3,1$ の septet、triplet は現れず、次のような $S_{tot} = 0,2$ の singlet と quintet の状態が現れることになる.

singlet

$$|0,0\rangle = \frac{1}{\sqrt{2}} (\psi_{3/2}^{\dagger} \psi_{-3/2}^{\dagger} - \psi_{1/2}^{\dagger} \psi_{-1/2}^{\dagger})|0\rangle$$
(2.3)

quintet

$$|2,2\rangle = \frac{1}{\sqrt{2}} (\psi_{3/2}^{\dagger} \psi_{1/2}^{\dagger} - \psi_{1/2}^{\dagger} \psi_{3/2}^{\dagger}) |0\rangle$$

$$|2,1\rangle = \frac{1}{\sqrt{2}} (\psi_{3/2}^{\dagger} \psi_{-1/2}^{\dagger} - \psi_{-1/2}^{\dagger} \psi_{3/2}^{\dagger}) |0\rangle$$

$$|2,0\rangle = \frac{1}{\sqrt{2}} (\psi_{3/2}^{\dagger} \psi_{-3/2}^{\dagger} + \psi_{1/2}^{\dagger} \psi_{-1/2}^{\dagger}) |0\rangle$$

$$|2,-1\rangle = \frac{1}{\sqrt{2}} (\psi_{-3/2}^{\dagger} \psi_{1/2}^{\dagger} - \psi_{1/2}^{\dagger} \psi_{-3/2}^{\dagger}) |0\rangle$$

$$|2,-2\rangle = \frac{1}{\sqrt{2}} (\psi_{-3/2}^{\dagger} \psi_{-1/2}^{\dagger} - \psi_{-1/2}^{\dagger} \psi_{-3/2}^{\dagger}) |0\rangle$$

以上から、S = 3/2の fermion に対する Hubbard モデルを表すことができる.

$$\mathcal{H} = -\sum_{\langle i,j \rangle} \sum_{\sigma=\pm 3/2,\pm 1/2} t_{ij} (\psi_{\sigma,i}^{\dagger} \psi_{\sigma,j} + \text{h.c.}) + \sum_{i} \sum_{S=0,2} U_S \sum_{m=-S}^{S} P_{S,m,i}^{\dagger} P_{S,m,i}$$
(2.5)

 $P_{S,m,i} = \sum_{\sigma,\sigma'} \langle S, m | 3/2\sigma, 3/2\sigma' \rangle \psi_{\sigma,i} \psi_{\sigma',i}$ は具体的に

$$P_{0,0,i} = \frac{1}{\sqrt{2}} (\psi_{-3/2,i}\psi_{3/2,i} - \psi_{-1/2,i}\psi_{1/2,i})$$

$$P_{2,2,i} = \sqrt{2}\psi_{1/2,i}\psi_{3/2,i}$$

$$P_{2,1,i} = \sqrt{2}\psi_{-1/2,i}\psi_{3/2,i}$$

$$P_{2,0,i} = \frac{1}{\sqrt{2}} (\psi_{-3/2,i}\psi_{3/2,i} + \psi_{-1/2,i}\psi_{1/2,i})$$

$$P_{2,-1,i} = -\sqrt{2}\psi_{-1/2,i}\psi_{3/2,i}$$

$$P_{2,-2,i} = -\sqrt{2}\psi_{-1/2,i}\psi_{-3/2,i}$$
(2.6)

と表すことができる. Pauliの排他律とs波散乱近似を用いることで同一格子点にある fermion 間の斥力が、 U_0, U_2 だけに制限される.

 $t_{ij} \ll U_0, U_2$ では、 t_{ij} に関する2次摂動によって、Sp(4) Heisenberg モデルが得られる.

$$\mathcal{H} = \sum_{\langle i,j \rangle} \{ J_1^{i,j} \hat{\Gamma}_i^{ab} \hat{\Gamma}_j^{ab} - J_2^{i,j} \hat{\Gamma}_i^a \hat{\Gamma}_j^a \}$$
(2.7)

 $\hat{\Gamma}^{a} = \psi^{\dagger}\Gamma^{a}\psi, \ \hat{\Gamma}^{ab} = \psi^{\dagger}\Gamma^{ab}\psi$ はと表される. ただし、 $\psi = (\psi_{3/2}, \psi_{1/2}, \psi_{-1/2}, \psi_{-3/2})^{t}$ は Fermi 演算 子である.また、 $J_{1}^{i,j} = \frac{1}{4}(t_{ij}^{2}/U_{0} + t_{ij}^{2}/U_{2}), \ J_{2}^{i,j} = \frac{1}{4}(t_{ij}^{2}/U_{0} - 3t_{ij}^{2}/U_{2})$ である. Γ^{a}, Γ^{ab} は SU(4)群の Lie 環 su(4) になっている. 次からは Sp(4) Heisenberg モデルを表すのに必要な代数 Γ^{a}, Γ^{ab} について整理する.

まずはじめに、S = 1/2の Heisenberg モデルについて簡単にまとめておく. この系はSU(2)対称性を持つことが知られている. スピン演算子 \hat{S}^{α} は、Pauli 行列 σ^{α} と電子の演算子 $c = (\hat{c}_{\uparrow}, \hat{c}_{\downarrow})^t$ を用いて

$$\hat{S}^{\alpha} = \hat{c}^{\dagger} S^{\alpha} \hat{c} \tag{2.8}$$

38 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析 と表すことができる.*S^α* は

$$S^{\alpha} = \frac{1}{2}\sigma^{\alpha} \tag{2.9}$$

で *SU*(2) 群の Lie 環 *su*(2) になっている. このとき Ŝ は 3 次元のベクトルとなる. これを 5 次元へ拡張する. まず 5 次元空間を表現するために (2.9) に相当する次の行列

$$\Gamma_a = \sigma_a \otimes \mu_3, \ i = 1, 2, 3 \quad \Gamma_4 = 1 \otimes \mu_1, \Gamma_5 = 1 \otimes \mu_2 \tag{2.10}$$

を導入する. σ_a 、 μ_a は Pauli 行列である. 具体的な表式は次のようになる.

$$\Gamma_{1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \Gamma_{2} = \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i \\ i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix}, \Gamma_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \Gamma_{4} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \Gamma_{5} = \begin{pmatrix} 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \end{pmatrix}$$

$$(2.11)$$

 4×4 の反対称行列 $\mathcal{J} = i\sigma_2 \otimes \mu_1$ を定義する.

$$\mathcal{J}^t = -\mathcal{J}, \mathcal{J}^2 = -1 \tag{2.12}$$

この \mathcal{J} によって、 Γ_a は次のような変換を示す.

$$\mathcal{J}\Gamma_a \mathcal{J} = -\Gamma_a^t \tag{2.13}$$

また、 Γ_a は次のような反交換関係

$$\{\Gamma_a, \Gamma_b\} = 2\delta_{a,b} \tag{2.14}$$

を持つ.このことによってベクトルのノルムは保存され、Γ_aを行列の基底とする5次元ベクトルを構成することができる.したがって、この5次元ベクトルの回転を引き起こすユニタリー変換は4×4行列でなされる.5次元空間の回転を与える生成子は5次元空間にできる平面が10個あることから、10種類の無限小回転を持つ.無限小回転の生成子は次のような交換子を用いて与えられる.

$$\Gamma_{ab} = \frac{1}{2i} [\Gamma_a, \Gamma_b] \tag{2.15}$$

この生成子の交換関係は次で与えられ、構造定数 f^{ab}_{ijkl} によって決定される.

$$[\Gamma_{ij}, \Gamma_{kl}] = i f^{ab}_{ij,kl} \Gamma_{ab} \tag{2.16}$$

$$f_{ij,kl}^{ab} = -\delta_{jk}\delta_{ia}\delta_{lb} + \delta_{ik}\delta_{ja}\delta_{lb} + \delta_{jl}\delta_{ia}\delta_{kb} - \delta_{il}\delta_{ja}\delta_{kb}$$
(2.17)

ここで表われた生成子は次のような性質を持っている.

$$\mathcal{J}\Gamma_{ab}\mathcal{J} = \Gamma^t_{ab}, \ \ \Gamma_{ab} = -\Gamma_{ba} \tag{2.18}$$

これは Γ_{ab} が Sp(4) 群の Lie 環 sp(4) であることを示している. Lie 環 Γ_{ab} を生成子として、 Γ_i は 5 次元空間を回転する. このような行列 Γ_a と Fermi 演算子 ψ を用いて表した $\hat{\Gamma}_a$ を Sp(4) 群の ベクトル表現と呼ぶ.

SU(4) 群の Lie 環 su(4) は 2 種類に分けることができる. すなわち、(2.10) で表される $\Gamma_a(a = 1, 2 \cdots 5)$ と (2.15) で表される $\Gamma_{ab}(a, b = 1, 2 \cdots 5)$ である. このうち Lie 環 sp(4) であるのは Γ_{ab} の方であり、 Γ_a は su(4)/sp(4) を表す.sp(4) は部分環をなすが、定義から明らかなように su(4)/sp(4) は部分環をなさない. また、当然ながら $SU(4) \supset Sp(4)$ である. $\hat{\Gamma}_a = \psi^{\dagger}\Gamma_a\psi$ は、 Sp(4) 群のベクトル表現を構成する. 一方で、 $\hat{\Gamma}_{ab} = \psi^{\dagger}\Gamma_{ab}\psi$ は Sp(4) 群の随伴表現² となって いる.

第2項の Γ_a の項はSp(4)群の変換に関して対称だから、その交換子からなる Γ_{ab} の項も同様に対称である.したがって、このハミルトニアンはSp(4)群の変換に関して対称なことがわかる.(2.7)は、 $J_1^{i,j} = \pm J_2^{i,j}$ のときはSp(4)対称性よりも高いSU(4)対称性を持つことも明らかである[37][38][39].

元のS = 3/2のスピンと Γ_a 、 Γ_{ab} の関係を見ておく. [40] S = 3/2のスピン S_x 、 S_y 、 S_z は次のような行列で与えられる.

$$S_{x} = \begin{pmatrix} 0 & \frac{\sqrt{3}}{2} & 0 & 0 \\ \frac{\sqrt{3}}{2} & 0 & 1 & 0 \\ 0 & 1 & 0 & \frac{\sqrt{3}}{2} \\ 0 & 0 & \frac{\sqrt{3}}{2} & 0 \end{pmatrix}, S_{y} = \begin{pmatrix} 0 & -\frac{\sqrt{3}}{2}i & 0 & 0 \\ -\frac{\sqrt{3}}{2}i & 0 & -i & 0 \\ 0 & i & 0 & -\frac{\sqrt{3}}{2}i \\ 0 & 0 & \frac{\sqrt{3}}{2}i & 0 \end{pmatrix},$$
$$S_{z} = \begin{pmatrix} \frac{3}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & 0 \\ 0 & 0 & 0 & -\frac{3}{2} \end{pmatrix}$$
(2.19)

またこれらを直接計算することで次のような関係が与えられる.

$$(S_x)^2 = \frac{\sqrt{3}}{2}\sigma_x \otimes 1 - \frac{1}{2}\sigma_z \otimes \sigma_z + \frac{5}{4}$$
(2.20)

$$(S_y)^2 = -\frac{\sqrt{3}}{2}\sigma_x \otimes 1 - \frac{1}{2}\sigma_z \otimes \sigma_z + \frac{5}{4}$$

$$(2.21)$$

$$(S_z)^2 = \sigma_z \otimes \sigma_z + \frac{5}{4} \tag{2.22}$$

$$S_x S_y + S_y S_x = \sqrt{3\sigma_y \otimes 1} \tag{2.23}$$

$$S_y S_z + S_z S_y = \sqrt{3\sigma_z \otimes \sigma_y} \tag{2.24}$$

$$S_z S_x + S_x S_z = \sqrt{3}\sigma_z \otimes \sigma_x \tag{2.25}$$

²群の随伴表現 Ad は以下で与えられる.これは一種の回転を与える1次変換になっている.

$$(\mathrm{Ad}g)(X) = gXg^{-1}$$

gはある群 Gの元であり、Xはその Lie 環の元である. 今の場合 G = Sp(4) であり $Sp(4) \cong SO(5)$ であるため、 その随伴表現は 5 次元空間の回転を表すことになる. この回転を表す生成子は、行列を基底とする 10 成分を持つ 表現となる. これを Sp(4) 群の随伴表現とよんでいる.

40 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析
 (2.20)~(2.25) によって、Γ_i は

$$\Gamma_1 = \sigma_x \otimes \sigma_z = \frac{1}{\sqrt{3}} (S_z S_x + S_x S_z) \tag{2.26}$$

$$\Gamma_2 = \sigma_y \otimes \sigma_z = \frac{1}{\sqrt{3}} (S_y S_z + S_z S_y) \tag{2.27}$$

$$\Gamma_3 = \sigma_z \otimes \sigma_z = (S_z)^2 - \frac{5}{4} \tag{2.28}$$

$$\Gamma_4 = 1 \otimes \sigma_x = \frac{1}{\sqrt{3}} \{ (S_x)^2 - (S_y)^2 \}$$
(2.29)

$$\Gamma_5 = 1 \otimes \sigma_y = \frac{1}{\sqrt{3}} (S_x S_y + S_y S_x) \tag{2.30}$$

となる.(2.10) で与えられる Γ_i は (2.26)~(2.30) をユニタリー変換したものに過ぎない. これら は S_i の 2 次になっていることから、スピンネマティック行列とよばれる. [29] これらから得ら れる Γ_{ab} を用いると S_x 、 S_y 、 S_z は

$$S_x = \frac{\sqrt{3}}{2} 1 \otimes \sigma_x + \frac{1}{2} (\sigma_x \otimes \sigma_x + \sigma_y \otimes \sigma_y) = \frac{\sqrt{3}}{2} \Gamma_{15} - \frac{1}{2} (\Gamma_{23} - \Gamma_{14})$$
(2.31)

$$S_{y} = \frac{\sqrt{3}}{2} 1 \otimes \sigma_{y} + \frac{1}{2} (-\sigma_{x} \otimes \sigma_{y} + \sigma_{y} \otimes \sigma_{x}) = -\frac{\sqrt{3}}{2} \Gamma_{25} + \frac{1}{2} (\Gamma_{13} + \Gamma_{24})$$
(2.32)

$$S_z = \sigma_z \otimes 1 + \frac{1}{2} 1 \otimes \sigma_z = -\Gamma_{34} - \frac{1}{2} \Gamma_{12}$$

$$(2.33)$$

となり、 Γ_{ab} は S_x 、 S_y 、 S_z の1次結合になっていることがわかる.

それに加えて、 $\Gamma_a \ge \Gamma_{ab}$ の違いは次のようにして見出される. Fermi 演算子 ψ に対して、 $\psi_{\alpha} \rightarrow \mathcal{J}_{\alpha\beta}\psi_{\beta}$ のような変換を考える. この変換によって、 Γ_i は符号を変えないのに対して、 Γ_{ij} は符号を変える. これは時間反転に対する対称性の有無を示す.

また、(2.7)は(2.26)~(2.33)によって、

$$\mathcal{H} = \sum_{\langle i,j \rangle} \left[a \vec{S}_i \cdot \vec{S}_j + b (\vec{S}_i \cdot \vec{S}_j)^2 + c (\vec{S}_i \cdot \vec{S}_j)^3 \right]$$
(2.34)

と表すこともできる.ただし、 $a = -(31c_0 + 23c_2)/96$, $a = (5c_0 + 17c_2)/72$, $c = (c_0 + c_2)/18$ である.ここで、 $c_0 = 4t_{ij}^2/U_0$, $c_2 = 4t_{ij}^2/U_2$ は2次摂動から得られる交換エネルギーである.この形からスピンが持つSU(2)対称性を有していることがわかる.

2.2 有効場理論の導出

Sp(4) Heisenberg モデルの有効場理論を考える. この理論は、長波長、低エネルギーの限られた領域についてその有効性を示す. したがって、エネルギー励起のエネルギーギャップがあるか調べることができ、モデルの相構造を調べるには有効である. [41] まず Schwinger boson を導入する. このときスピン代数は、一般に $\hat{S}_a = b^{\dagger}_{i,\alpha}S^a_{\alpha\beta}b_{i,\beta}$ と表される. ただし、拘束条件 $\sum_{\alpha=1}^{4} b^{\dagger}_{i,\alpha}b_{i,\beta} = 1$ を伴っている.

Schwinger boson 演算子 \hat{b}_{α} を用いると、 $\hat{\Gamma}_{i}^{ab} = \hat{b}_{i,\alpha}^{\dagger}\Gamma_{\alpha\beta}^{ab}\hat{b}_{i,\beta}$ 、 $\hat{\Gamma}_{i}^{a} = \hat{b}_{i,\alpha}^{\dagger}\Gamma_{\alpha\beta}^{a}\hat{b}_{i,\beta}$ となり、

$$\Gamma^{ab}_{\alpha\beta}\Gamma^{ab}_{\gamma\sigma} = 2\delta_{\alpha\sigma}\delta_{\beta\gamma} - 2\mathcal{J}_{\alpha\gamma}\mathcal{J}_{\beta\sigma}$$
(2.35)

$$\Gamma^{a}_{\alpha\beta}\Gamma^{a}_{\gamma\sigma} = 2\delta_{\alpha\sigma}\delta_{\beta\gamma} + 2\mathcal{J}_{\alpha\gamma}\mathcal{J}_{\beta\sigma} - \delta_{\alpha\beta}\delta_{\gamma\sigma}$$
(2.36)

の関係 [42] を用いると

$$\mathcal{H} = \sum_{\langle i,j \rangle} \{ 2(J_1^{i,j} - J_2^{i,j}) \hat{K}_{ij}^{\dagger} \hat{K}_{ij} - 2(J_1^{i,j} + J_2^{i,j}) \hat{Q}_{ij}^{\dagger} \hat{Q}_{ij} \}$$
(2.37)

ただし、 $\hat{Q}_{i,j} = \mathcal{J}_{\alpha\beta}\hat{b}_{\alpha,i}\hat{b}_{\beta,j}$ 、 $\hat{K}_{i,j} = \hat{b}^{\dagger}_{\alpha,i}\hat{b}_{\alpha,j}$ を導入しする. $\hat{Q}_{i,j}$ はスピンの pairing を表し、 $\hat{K}_{i,j}$ は hopping を表す. pairing は反強磁性、hopping は強磁性の効果がある. $J_{i,j} = 2(J_1^{i,j} + J_2^{i,j})$ 、 $J'_{i,j} = 2(J_1^{i,j} - J_2^{i,j})$ とすると

$$\mathcal{H} = \sum_{\langle i,j \rangle} \{ J_{i,j}' \hat{K}_{ij}^{\dagger} \hat{K}_{ij} - J_{i,j} \hat{Q}_{ij}^{\dagger} \hat{Q}_{ij} \}$$
(2.38)

となる.

(2.37)の有効作用を導出する. coherent 状態での経路積分では $\hat{b}_{i\alpha} \rightarrow z_{i\alpha}, \hat{b}^{\dagger}_{i\alpha} \rightarrow \bar{z}_{i\alpha}$ とすることができるので分配関数は

$$Z = \int \mathcal{D}\bar{z}\mathcal{D}z\delta(\bar{z}z-1)\exp\left[\int_{0}^{\beta}d\tau A(\tau)\right]$$
$$A(\tau) = -\sum_{i}\bar{z}_{i}\dot{z}_{i} - \mathcal{H}(z,\bar{z})$$
(2.39)

となる.

ここでのスピン変数は*CP³ 変数である z* で

$$z = (z_1, z_2, z_3, z_4)^t$$
$$|z_1|^2 + |z_2|^2 + |z_3|^2 + |z_4|^2 = 1$$

である. この z を正規直交系 { $w_0 = z, w_1 = \mathcal{J}\bar{z}, w_2, w_3$ } を用いて表す. 図 (2.1) のような 2 つの 副格子である odd と even について考えるので、直交する w_0 と w_1 だけに具体的な表式を与え ればよい. w_3 と w_4 は他と直交する正規直交系つくるベクトルである. これから

$$z = \sum_{i=0}^{3} p_i w_i \qquad \sum_{i=0}^{3} |p_i|^2 = 1$$
(2.40)

と表すことができる.

系はほぼ反強磁性状態にあるとする. これは2つの副格子の odd と even にある *z_i* をそれぞれ 次のようにすることによって実現する.

$$z_i \approx w_0 \quad (i \in \text{even}), \quad z_j \approx w_1 \quad (j \in \text{odd})$$
 (2.41)

これによって、

図 2.1: odd site と even site. これに反強磁性秩序が既にあると仮定する.

odd site 上では、 $z_j \approx w_1 (j \in \text{odd})$ なので、 $p_0, p_2. p_3 \ll 1$ となっている. これから p_1 は次の ように近似できる.

$$p_{1} = U(1 - |p_{0}|^{2} - |p_{2}|^{2} - |p_{3}|^{2})^{1/2}$$

$$\approx U - \frac{1}{2}U(|p_{0}|^{2} + |p_{2}|^{2} + |p_{3}|^{2})$$
(2.42)

(2.42) により $z_j \approx w_1 (j \in \text{odd})$ は、次のように even site における完全系 $\{w_i\}$ によって、表 すことができる.

$$z_j \approx \sum_{i \neq 1} p_i w_i + U\left(1 - \frac{1}{2} \sum_{i \neq 1} |p_i|^2\right) w_1$$
(2.43)

これを用いると (2.39) で与えられる作用は次のようになる.

$$A(\tau) = \sum_{\text{odd}} (A_0 + \bar{\mathbf{p}} \cdot \mathbf{k} + \bar{\mathbf{l}} \cdot \mathbf{p} - \bar{\mathbf{p}} \mathbf{M} \mathbf{p})$$
(2.44)

と整理することができる.

$$\mathbf{M}' = \begin{pmatrix} -4J_{oi} - 4J'_{o,i} & 0 & 0\\ 0 & -4J_{o,i} & 0\\ 0 & 0 & -4J_{o,i} \end{pmatrix}$$
(2.45)

$$\mathbf{k} = \begin{pmatrix} -U(\bar{w}_{0}\dot{w}_{1}) - \sum_{i} J_{o,i}(\bar{z}_{i}\mathcal{J}\bar{w}_{0})(z_{i}\mathcal{J}w_{1})U - \sum_{i} J_{o,i}'(\bar{w}_{0}z_{i})(\bar{z}_{i}w_{1})U \\ -U(\bar{w}_{2}\dot{w}_{1}) - \sum_{i} J_{o,i}(\bar{z}_{i}\mathcal{J}\bar{w}_{2})(z_{i}\mathcal{J}w_{1})U - \sum_{i} J_{o,i}'(\bar{w}_{2}z_{i})(\bar{z}_{i}w_{1})U \\ -U(\bar{w}_{3}\dot{w}_{1}) - \sum_{i} J_{o,i}(\bar{z}_{i}\mathcal{J}\bar{w}_{3})(z_{i}\mathcal{J}w_{1})U - \sum_{i} J_{o,i}'(\bar{w}_{3}z_{i})(\bar{z}_{i}w_{1})U \end{pmatrix}$$
(2.46)

$$\bar{\mathbf{I}} = \begin{pmatrix} -\bar{U}(\bar{w}_{1}\dot{w}_{0}) - \sum_{i} J_{o,i}(z_{i}\mathcal{J}w_{0})(\bar{z}_{i}\mathcal{J}\bar{w}_{1})\bar{U} - \sum_{i} J_{o,i}'(\bar{z}_{i}w_{0})(\bar{w}z_{i})\bar{U} \\ -\bar{U}(\bar{w}_{1}\dot{w}_{2}) - \sum_{i} J_{o,i}(z_{i}\mathcal{J}w_{2})(\bar{z}_{i}\mathcal{J}\bar{w}_{1})\bar{U} - \sum_{i} J_{o,i}'(\bar{z}_{i}w_{2})(\bar{w}z_{i})\bar{U} \\ -\bar{U}(\bar{w}_{1}\dot{w}_{3}) - \sum_{i} J_{o,i}(z_{i}\mathcal{J}w_{3})(\bar{z}_{i}\mathcal{J}\bar{w}_{1})\bar{U} - \sum_{i} J_{o,i}'(\bar{z}_{i}w_{3})(\bar{w}z_{i})\bar{U} \end{pmatrix}$$
(2.47)

$$A_{0} = -\sum_{i} J_{o,i}(\bar{z}_{i}\mathcal{J}\bar{w}_{1})(z_{i}\mathcal{J}w_{1}) - \sum_{i} J_{o,i}'(\bar{w}z_{i})(\bar{z}_{i}w_{1})$$
(2.48)

$$\bar{\mathbf{p}} = \begin{pmatrix} \bar{p}_0 \\ \bar{p}_2 \\ \bar{p}_3 \end{pmatrix}^t, \quad \mathbf{p} = \begin{pmatrix} p_0 \\ p_2 \\ p_3 \end{pmatrix}$$
(2.49)

このようにすると分配関数 Z はp で積分できる. このpは odd site の変数 z_j を even site での 完全系 { w_i } で展開したときに現れた反強磁性状態からのゆらぎを表している. p で積分するこ とは、even site の反強磁性状態からのゆらぎで積分することになる. ゆらぎを考えない平均場 近似では、このような項の影響は取り入れることができない. ゆらぎを積分によって足し合わ せることでゆらぎの効果を含めた現象を記述することができる.

$$Z = \int \mathcal{D}\bar{z}\mathcal{D}z\delta(\bar{z}z-1)\exp\left[\int_{0}^{\beta}d\tau A(\tau)\right]$$
$$= \int \mathcal{D}\bar{\mathbf{p}}\mathcal{D}\mathbf{p}\exp\left[\int_{0}^{\beta}d\tau A(\tau)\right]$$
$$\approx \exp\left[\int_{0}^{\beta}d\tau A_{z}(\tau)\right]$$
(2.50)

 $A_z(\tau)$ は p で積分後の作用である. この作用の中に残っている変数は、even site 上の変数のみ になっている.

$$A_z(\tau) = \sum_{\text{odd}} \bar{\mathbf{l}}(\tau) \mathbf{M}^{-1}(\tau) \mathbf{k}(\tau) + \sum_{\text{odd}} A_0(\tau)$$
(2.51)

 \mathbf{M} の逆行列は $J'_{o,i} \ll J_{oi}$ であるとき、次のように近似できる.

$$\mathbf{M}^{-1} = \begin{pmatrix} -(4J_{o,i} + 4J'_{o,i})^{-1} & 0 & 0\\ 0 & -(4J_{o,i})^{-1} & 0\\ 0 & 0 & -(4J_{o,i})^{-1} \end{pmatrix}$$
$$\approx \begin{pmatrix} -\frac{1}{4J_{o,i}} + \frac{J'_{o,i}}{4J^2_{o,i}} & 0 & 0\\ 0 & -\frac{1}{4J_{o,i}} & 0\\ 0 & 0 & -\frac{1}{4J_{o,i}} \end{pmatrix}$$
(2.52)

44 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析
 (2.46)~(2.48)、(2.51)より、A_z(τ)は次のようになる.

$$A_{z}(\tau) = \sum_{\text{odd}} \left[-\sum_{k} '\frac{1}{2J_{k}} (\bar{w}_{k} \dot{w}_{1}) (\bar{w}_{1} \dot{w}_{k}) - J_{o,i} \sum_{k} '\frac{1}{2J_{k}} \sum_{i} \{ (\bar{z}_{i} \mathcal{J} \bar{w}_{k}) (z_{i} \mathcal{J} w_{1}) (\bar{w}_{1} \dot{w}_{k}) + (z_{i} \mathcal{J} w_{k}) (\bar{z}_{i} \mathcal{J} \bar{w}_{1}) (\bar{w}_{k} \dot{w}_{1}) \} - J_{o,i}^{2} \sum_{k} '\frac{1}{2J_{k}} \sum_{i,j} (\bar{z}_{i} \mathcal{J} \bar{w}_{k}) (z_{i} \mathcal{J} w_{1}) (z_{j} \mathcal{J} w_{k}) (\bar{z}_{j} \mathcal{J} \bar{w}_{1}) - J_{o,i}' \sum_{k} '\frac{1}{2J_{k}} \sum_{i,j} \{ (\bar{w}_{k} z_{i}) (\bar{z}_{i} w_{1}) (\bar{w}_{1} \dot{w}_{k}) + (\bar{z}_{i} \bar{w}_{k}) (\bar{w}_{1} z_{i}) (\bar{w}_{k} \dot{w}_{1}) \} - J_{o,i} \sum_{k} '\frac{1}{2J_{k}} \sum_{i,j} \{ (\bar{z}_{i} \mathcal{J} \bar{w}_{k}) (z_{i} \mathcal{J} w_{1}) (\bar{z}_{j} w_{k}) (\bar{w}_{1} z_{j}) + (z_{i} \mathcal{J} w_{k}) (\bar{z}_{i} \mathcal{J} \bar{w}_{1}) (\bar{w}_{k} z_{j}) (\bar{z}_{j} w_{1}) \} - J_{o,i}' \sum_{k} '\frac{1}{2J_{k}} \sum_{i,j} (\bar{w}_{k} z_{i}) (\bar{z}_{i} w_{1}) (\bar{z}_{j} w_{k}) (\bar{w}_{1} z_{j}) + (z_{i} \mathcal{J} w_{k}) (\bar{z}_{i} \mathcal{J} \bar{w}_{1}) (\bar{z}_{i} w_{1}) (\bar{z}_{j} w_{k}) (\bar{w}_{1} z_{j}) - J_{o,i}' \sum_{k} '\frac{1}{2J_{k}} \sum_{i,j} (\bar{w}_{k} z_{i}) (\bar{z}_{i} w_{1}) (\bar{z}_{j} w_{k}) (\bar{w}_{1} z_{j}) - J_{o,i}' \sum_{k} (\bar{z}_{i} \mathcal{J} \bar{w}_{1}) (z_{i} \mathcal{J} w_{1}) - J_{o,i}' \sum_{i} (\bar{w}_{i} z_{i}) (\bar{z}_{i} w_{1}) (\bar{z}_{i} w_{1}) (\bar{z}_{i} w_{1}) (\bar{z}_{i} w_{1})]$$

$$(2.53)$$

 \sum' はk = 0, 2, 3の和であり、この中で $J_0 \approx 4J_{o,i} + 4J'_{o,i}$ 、 $J_2 = J_3 = 4J_{o,i}$ である. 更に共変微分を用いた関係式

$$(\bar{z}_i z_j) = (\bar{z}_i z)(\bar{z} z_j) + a^2 (\bar{D}_i \bar{z} D_j z)$$
 (2.54)

$$D_{\mu} = \partial_{\mu} + iA_{\mu}, \quad A_{\mu} = i\bar{z}\partial_{\mu}z \tag{2.55}$$

 $(a は格子間隔) や <math>\{w_i\}$ の完全性

$$\sum_{k=0}^{3} w_{k\alpha} \bar{w}_{k\beta} = \delta_{\alpha\beta} \tag{2.56}$$

によって、(2.53)は

$$A_{z}(\tau) = \sum_{\text{odd}} \left[\frac{1}{2Jd} \bar{D}_{\tau} \bar{z} D_{\tau} z - \frac{Ja^{2}}{2d} \sum_{i,j} \bar{D}_{i} \bar{z} D_{j} z \right]$$

$$- \frac{a}{2d} \sum_{i} (\bar{D}_{\tau} \bar{z} D_{i} z - \bar{D}_{i} \bar{z} D_{\tau} z) + Ja^{2} \sum_{i} \bar{D}_{i} \bar{z} D_{i} z - 2Jd$$

$$- \frac{J'}{2J^{2}d} (\bar{z} \mathcal{J} \bar{D}_{\tau} \bar{z}) (z \mathcal{J} D_{\tau} z) + \frac{J'a^{2}}{2d} \sum_{i,j} (\bar{z} \mathcal{J} \bar{D}_{i} \bar{z}) (z \mathcal{J} D_{j} z)$$

$$- J'a^{2} \sum_{i} (\bar{z} \mathcal{J} \bar{D}_{i} \bar{z}) (z \mathcal{J} D_{\tau} z) - (\bar{z} \mathcal{J} \bar{D}_{\tau} \bar{z}) (z \mathcal{J} D_{i} z)$$

$$- \frac{J'}{2Jd} \sum_{i} \{ (\bar{z} \mathcal{J} \bar{D}_{i} \bar{z}) (z \mathcal{J} D_{\tau} z) - (\bar{z} \mathcal{J} \bar{D}_{\tau} \bar{z}) (z \mathcal{J} D_{i} z) \}$$

$$+ \frac{J'}{2Jd} \sum_{i} (\bar{z} \mathcal{J} \bar{D}_{i} \bar{z}) (z_{i} \mathcal{J} D_{\tau} z) - (z \mathcal{J} D_{i} z) (\bar{z}_{i} \mathcal{J} \bar{D}_{\tau} \bar{z}) \}$$

$$(2.57)$$

図 2.2: 任意の odd site 回りの even site の和をとる.

となる.

 $\sum_{i(j)}$ はある odd site の最近接 even site に関する和だから、図 (2.2) のような方向を考え、

$$\begin{cases} D_1 = D_x + D_y \\ D_2 = 2D_x \\ D_3 = D_x - D_y \end{cases}$$
(2.58)

として和をとったものである. 有効作用*S*を

$$S = \int_0^\beta d\tau A_z(\tau) \tag{2.59}$$

とすると、(2.57)~(2.59)により、

$$S = \int_{0}^{\beta} d\tau \left[\frac{1}{4J} \bar{D}_{\tau} \bar{z} D_{\tau} z + 2J a^{2} \sum_{\mu=x,y} \bar{D}_{\mu} \bar{z} D_{\mu} z - a (\bar{D}_{\tau} \bar{z} D_{x} z - \bar{D}_{x} \bar{z} D_{\tau} z) - 4J - \frac{J'}{4J^{2}} (\bar{z} \mathcal{J} \bar{D}_{\tau} \bar{z}) (z \mathcal{J} D_{\tau} z) - 2J' a^{2} \sum_{\mu=x,y} (\bar{z} \mathcal{J} \bar{D}_{\mu} \bar{z}) (z \mathcal{J} D_{\mu} z) - \frac{J'}{J} ((\bar{z} \mathcal{J} \bar{D}_{x} \bar{z}) (z \mathcal{J} D_{\tau} z) - (\bar{z} \mathcal{J} \bar{D}_{\tau} \bar{z}) (z \mathcal{J} D_{x} z)) + \frac{J'}{4J} \sum_{i} \{ (\bar{z} \mathcal{J} \bar{D}_{i} \bar{z}) (z_{i} \mathcal{J} D_{\tau} z) - (z \mathcal{J} D_{i} z) (\bar{z}_{i} \mathcal{J} \bar{D}_{\tau} \bar{z}) \} \right]$$

$$(2.60)$$

最後に次のように変形する.まず $\beta \to \infty$ とし、 $\sum_{\text{odd}} = \frac{1}{2a^2} \int dx \int dy$ とする.(1/2はodd site のみの和をとったことによる.)異方性を示すパラメータ λ を用いて coupling を次のように表す.

$$J_x = J_0, \ J_y = \lambda J_0, \ J'_x = J'_0, \ J'_y = \lambda J'_0$$
 (2.61)

46 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析 更に

$$\begin{cases} \tau \to \sqrt{2}(1+\lambda)J_0 a\tau = c\tau \\ x \to \sqrt{\frac{1+\lambda}{2}}x \\ y \to \sqrt{\frac{1+\lambda}{2\lambda}}y \end{cases}$$
(2.62)

と変数変換する.cはスピン波の速度を表している.最終的な有効作用は

$$S = \frac{\sqrt{2\lambda}}{2a(1+\lambda)} \int d^3x \left[\sum_{\mu=\tau,x,y} \bar{D}_{\mu} \bar{z} D_{\mu} z - \sqrt{1+\lambda} (\bar{D}_{\tau} \bar{z} D_x z - \bar{D}_x \bar{z} D_{\tau} z) - \frac{J_0'}{J_0} \sum_{\mu=\tau,x,y} (\bar{z} \mathcal{J} \bar{D}_{\mu} \bar{z}) (z \mathcal{J} D_{\mu} z) - \frac{J_0'}{J_0} \sqrt{1+\lambda} (\bar{D}_x \bar{z} D_{\tau} z - \bar{D}_{\tau} \bar{z} D_x z) + \sum_i \frac{J_i'}{4J_0} \sqrt{1+\lambda} \{ (\bar{z} \mathcal{J} \bar{D}_i \bar{z}) (z_i \mathcal{J} D_{\tau} z) - (z \mathcal{J} D_i z) (\bar{z}_i \mathcal{J} \bar{D}_{\tau} \bar{z}) \} \right]$$
(2.63)

となる.

(2.63)の最後の項を

$$\sum_{i} \frac{J_{i}'}{4J_{0}} \sqrt{1 + \lambda} \{ (\bar{z}\mathcal{J}\bar{D}_{i}\bar{z})(z_{i}\mathcal{J}D_{\tau}z) - (z\mathcal{J}D_{i}z)(\bar{z}_{i}\mathcal{J}\bar{D}_{\tau}\bar{z}) \}$$

$$\rightarrow \sum_{i} \frac{J_{i}'}{4J_{0}} \sqrt{1 + \lambda} \{ (\bar{z}\mathcal{J}\bar{D}_{i}\bar{z})(z\mathcal{J}D_{\tau}z) - (z\mathcal{J}D_{i}z)(\bar{z}\mathcal{J}\bar{D}_{\tau}\bar{z}) \}$$

$$= \frac{J_{0}'}{J_{0}} \sqrt{1 + \lambda} (\bar{D}_{x}\bar{z}D_{\tau}z - \bar{D}_{\tau}\bar{z}D_{x}z) \qquad (2.64)$$

と近似すると、(2.60)の作用 S は

$$S = \frac{\sqrt{2\lambda}}{2a(1+\lambda)} \int d^3x \left[\sum_{\mu=\tau,x,y} \bar{D}_{\mu} \bar{z} D_{\mu} z - \frac{J_0'}{J_0} \sum_{\mu=\tau,x,y} (\bar{z} \mathcal{J} \bar{D}_{\mu} \bar{z}) (z \mathcal{J} D_{\mu} z) \right] + S_B$$
(2.65)

 S_B はBerry 位相を表し、

$$S_B = -\frac{1}{2a} \sqrt{\frac{2\lambda}{1+\lambda}} \int d^3x (\bar{D}_\tau \bar{z} D_x z - \bar{D}_x \bar{z} D_\tau z)$$
(2.66)

となる.

このモデルの結合定数は

$$g = \frac{1+\lambda}{\sqrt{2\lambda}}a\tag{2.67}$$

となる.この結合定数 g が最小のとき $\lambda = 1$ であり、系が等方的であることを意味している.結合定数がそれよりも大きいときは、系に異方性があることになる.

また、 $\gamma = J'_0/J_0$ とすると、これは系が持ち得る SU(4) 対称性からのずれを表すことになる. こうして最終的に得られる有効作用は、

$$S = \frac{1}{2g} \int d^3x \left\{ D_\mu \bar{z} D_\mu z - \gamma (\bar{z} \mathcal{J} D_\mu \bar{z}) (z \mathcal{J} D_\mu z) + \sigma (|z|^2 - 1) \right\}$$
(2.68)

となる. σ は CP^{N-1} 変数 $z \sigma |z|^2 = 1$ 制限を課すためのLagrange 未定定数である.

また、(2.66) は Berry 位相で y 方向の偶数鎖、奇数鎖によって微分 D_x の符号が変化する. こ れを考慮すると次のように表せる.

$$S_B = \sqrt{\frac{2\lambda}{1+\lambda}} \int d^3x \epsilon_{\mu\nu\rho} D_\mu (\bar{D}_\nu \bar{z} D_\rho z)$$
(2.69)

こうして、Sp(4) Heisenberg モデルは、ベリー位相を持った CP^3 モデルになることがわかった. これは一般の Sp(N) Heisenberg モデルについても同様の計算により、 CP^{N-1} モデルとなることがわかる. 次節では、1/N 展開による解析を行い相構造を決定する. 対称性を決めるパ ラメータ $\gamma \in Sp(N)$ 対称な $\gamma \simeq 0$ の場合とほぼ SU(4) 対称な $\gamma \simeq 1$ の場合に注目する. Sp(4) Heisenberg モデルでは N = 4 だが、以下では一般の大きな N について行う. また、ベリー位相の影響は無視している.

2.3 相構造:1/N展開

2.3.1 $\gamma \simeq 0$ の場合の相構造

次に1/N展開法によって、臨界点を調べる. 有効作用 (2.68) によって、分配関数は次のよう に与えられる.

$$Z = \int \mathcal{D}z \mathcal{D}\bar{z} \mathcal{D}\sigma \exp\left(-\frac{N}{2g} \int dx^3 [D_\mu \bar{z} D_\mu z - \gamma(\bar{z} \mathcal{J} D_\mu \bar{z})(z \mathcal{J} D_\mu z) + \sigma(|z|^2 - 1)]\right)$$
(2.70)

ただし、

$$g = \frac{1+\lambda}{\sqrt{2\lambda}}a, \quad \gamma = \frac{J_0'}{J_0}$$

である.

zの停留点を次のように置く. [43]

$$z = z_0 + u + iv (2.71)$$

ただし、 $z_0 = (n_0, 0, \dots, 0)^t$, $u = (0, u_2, \dots, u_N)^t$, $v = (0, v_2, \dots, v_N)^t$ の実ベクトルとする. $v_0 = 0$ として、ゲージの自由度を固定している. n_0 は反強磁性秩序を表す秩序変数になっている. また、規格化条件 $n_0^2 + u^2 + v^2 = 1$ は満たしているものとする.

この展開を用いて、*u*,*v*の2次までをとる.

$$|D_{\mu}z|^{2} = |\partial_{\mu}z|^{2} - |\bar{z}\partial_{\mu}z|^{2}$$
$$= (\partial_{\mu}u)^{2} + (\partial_{\mu})^{2} + O(u, v \mathcal{O} 2 次以上)$$
$$|z\mathcal{J}\partial_{\mu}z|^{2} = |(z_{0} + u + iv)\mathcal{J}(\partial_{\mu}u + i\partial_{\mu}v)|^{2}$$
$$= |(u + iv)\mathcal{J}(\partial_{\mu}u + i\partial_{\mu}v)|^{2}$$
$$= O(u, v \mathcal{O} 4 次以上)$$

 γ の項は $\gamma \ll 1$ なので、u、vの高次の項は効いてこない.

48 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析 Nの主要項のみを考えることにする. (2.71) を (2.70) に代入して、u、v について積分する.

$$Z = \int \mathcal{D}n_0 \mathcal{D}\sigma \mathcal{D}u \mathcal{D}v \exp\left[-\frac{N}{2g} \int d^3x \{(\partial_\mu u)^2 + (\partial_\mu v)^2 + \sigma(n_0^2 + u^2 + v^2 - 1)\}\right]$$

=
$$\int \mathcal{D}n_0 \mathcal{D}\sigma \exp\left[-(N-1) \operatorname{Tr}\log(-\partial_\mu^2 + \sigma) - \frac{1}{2g} \int d^3\sigma(n_0^2 - 1)\right]$$

=
$$\int \mathcal{D}n_0 \mathcal{D}\sigma \exp(-S_{\text{eff}}(n_0, \sigma))$$
(2.72)

ここで $S_{\text{eff}}(n_0,\sigma)$ は

$$S_{\text{eff}}(n_0, \sigma) = (N-1) \text{Tr} \log(-\partial_{\mu}^2 + \sigma) + \frac{N}{2g} \int d^3x \sigma(n_0^2 - 1)$$
(2.73)

である.

この $S_{\text{eff}}(n_0,\sigma)$ によって、停留点を求める. ギャップ方程式は次のようになる.

$$\frac{\delta S_{\text{eff}}(n_0,\sigma)}{\delta\sigma} = (N-1) \int \frac{d^3k}{(2\pi)^3} \frac{1}{k^2 + \sigma} + \frac{N}{2g}(n_0^2 - 1) = 0$$
(2.74)

$$\frac{\delta S_{\text{eff}}(n_0,\sigma)}{\delta n_0} = \frac{N}{g}\sigma n_0 = 0 \tag{2.75}$$

 $n_0 = 0$ のとき、(2.74)を Pauli-Villarsの方法で計算すると

$$\sqrt{\sigma} = \frac{2\pi}{N} \left(\frac{1}{g_c} - \frac{1}{g} \right) \tag{2.76}$$

$$\frac{1}{g_c} = \frac{N}{2\pi} \sqrt{\Lambda} \tag{2.77}$$

 g_c は臨界点である. $g > g_c$ のとき、

$$n_0, \ \langle \sigma \rangle = \sigma_0 \tag{2.78}$$

ただし、 $\sqrt{\sigma_0} = \frac{2\pi}{N}(1/g_c - 1/g)$ である. 一方、 $g < g_c$ のとき、

$$n_0^2 = 1 - \frac{g}{g_c}, \ \langle \sigma \rangle = 0$$
 (2.79)

となる.

2次元系では Mermin-Wagner の定理より有限温度の相転移はない.絶対零度 T = 0では、温度以外のパラメータによって起こる量子相転移が見られる. $g > g_c$ 、すなわち系に異方性がある場合は反強磁性秩序を示す秩序変数 n_0 が 0 になり、系は Sp(N) 対称性を持つ無秩序な状態となる. $g < g_c$ 、すなわち系が等方的な場合は、反強磁性秩序が発生しその対称性は破られることになる. この事情は S = 1/2 Heisenberg モデルの SU(2) 対称性に関しても同じであり、対称性を持つとき、SU(2) singlet でできる VBS 状態を形成している. 今の場合はこれを Sp(N) singlet で形成された VBS 状態に拡張したものになっている. このようにして (2.77) により、1/N 展開 法によって求められる臨界点 g_c は γ に依存しないことがわかった.

2.3.2 $\gamma \simeq 1$ の場合の相構造

次に $\gamma \simeq 1$ のときについて考える. この場合は (2.68) に表われる 4 体項は無視できなくなる. これを 2 体にするために補助場 ω_{μ} を導入する. (Stratonovich-Hubbard 変換) 規格化定数 Z_1, Z_2 を用いると

$$1 = Z_1 \int \mathcal{D}\bar{\omega} D\omega \exp\left[-\frac{\gamma}{2g} \int dx^3 |\omega_{\mu} - z\mathcal{J}D_{\mu}z|^2\right]$$
(2.80)

となる.また、

$$z\mathcal{J}D_{\mu}z = z\mathcal{J}(\partial_{\mu} + iA_{\mu})z = z\mathcal{J}\partial_{\mu}z + iA_{\mu}z\mathcal{J}z = z\mathcal{J}\partial_{\mu}z$$

であることを用いると、(2.70)、(2.80)より

$$Z = Z_{1} \int \mathcal{D}z \mathcal{D}\bar{z} \mathcal{D}\sigma \mathcal{D}A_{\mu} \mathcal{D}\bar{\omega}_{\mu} \mathcal{D}\omega_{\mu} \exp\left(-\frac{1}{2g} \int dx^{3} [\bar{z}(-\partial_{\mu}^{2} + iA_{\mu}\overleftrightarrow{\partial}_{\mu} + \sigma)z - z(\gamma\bar{\omega}_{\mu}\mathcal{J}\partial_{\mu})z - \bar{z}(\gamma\omega_{\mu}\mathcal{J}\partial_{\mu})\bar{z} + A_{\mu}^{2} + \gamma|\omega_{\mu}|^{2} - \sigma]\right)$$
$$= Z_{1} \int \mathcal{D}z \mathcal{D}\bar{z} \mathcal{D}\sigma \mathcal{D}A_{\mu} \mathcal{D}\bar{\omega}_{\mu} \mathcal{D}\omega_{\mu} \exp\left(-\frac{1}{2g} \int dx^{3} [\bar{z}(-\partial_{\mu}^{2} + iA_{\mu}\overleftrightarrow{\partial}_{\mu} + A_{\mu}^{2} + \gamma|\omega_{\mu}|^{2} + \sigma)z - z(\gamma\bar{\omega}_{\mu}\mathcal{J}\partial_{\mu})z - \bar{z}(\gamma\omega_{\mu}\mathcal{J}\partial_{\mu})\bar{z} - \sigma]\right)$$
(2.81)

最後の行では $\bar{z}z = 1$ を用いて、 A^2_{μ} 、 $|\omega_{\mu}|^2$ を $A^2_{\mu}\bar{z}z$ 、 $|\omega_{\mu}|^2\bar{z}z$ とした. ここで (2.71) で $z_0 = 0$ とするとz = u + ivとなる. $B = \gamma \omega_{\mu} \mathcal{J} \partial_{\mu}$ 、 $\bar{B} = \gamma \bar{\omega}_{\mu} \mathcal{J} \partial_{\mu}$ とすると

$$Z = Z_1 \int \mathcal{D}z \mathcal{D}\bar{z} \mathcal{D}\sigma \mathcal{D}A_\mu \mathcal{D}\bar{\omega}_\mu \mathcal{D}\omega_\mu \exp\left(-\frac{1}{2g} \int dx^3 [u(-\partial_\mu^2 + A_\mu^2) + \sigma + \gamma |\omega_\mu|^2 + B + \bar{B})u + u\{-A_\mu \overleftrightarrow{\partial}_\mu + i(\bar{B} - B)\}v + v\{A_\mu \overleftrightarrow{\partial}_\mu + i(\bar{B} - B)\}u + v\{-\partial_\mu^2 + A_\mu^2 + \sigma + \gamma |\omega_\mu|^2 - (B + \bar{B})\}v]\right)$$
(2.82)

(2.82)を積分するために exp の中身

$$\begin{bmatrix} -\partial_{\mu}^{2} + \sigma + A_{\mu}^{2} + \gamma |\omega_{\mu}|^{2} + B + \bar{B} & -A_{\mu} \overleftrightarrow{\partial}_{\mu} + i(\bar{B} - B) \\ A_{\mu} \overleftrightarrow{\partial}_{\mu} + i(\bar{B} - B) & -\partial_{\mu}^{2} + \sigma + A_{\mu}^{2} + \gamma |\omega_{\mu}|^{2} - (B + \bar{B}) \end{bmatrix}$$

を対角化する.この行列は $2(N-2) \times 2(N-2)$ の大きさである. 固有値は

$$x = \alpha \pm i\beta$$

$$\alpha = -\partial_{\mu}^{2} + A_{\mu}^{2} + \gamma |\omega_{\mu}|^{2} + \sigma, \quad \beta = \sqrt{(A_{\mu} \overleftrightarrow{\partial}_{\mu})^{2} + \gamma^{2} |\omega_{\mu} \overleftrightarrow{\partial}_{\mu}|^{2}}$$

ここで ω にかかる微分を $\partial \rightarrow \frac{1}{2} \overleftrightarrow{\partial}$ に置き換えた. これを用いて積分を実行していくと

$$\begin{split} Z &= \int \mathcal{D}y_1 \mathcal{D}y_2 \mathcal{D}\sigma \mathcal{D}A_\mu \mathcal{D}\bar{\omega}_\mu \mathcal{D}\omega_\mu \exp\left(-\frac{1}{2g}\int dx^3 [y_1(\alpha+i\beta)y_1+y_2(\alpha-i\beta)y_2-\sigma]\right) \\ &= \int \mathcal{D}\sigma \mathcal{D}A_\mu \mathcal{D}\bar{\omega}_\mu \mathcal{D}\omega_\mu \left(\frac{2\pi g}{\det(\alpha+i\beta)}\right)^{(N-2)/2} \left(\frac{2\pi g}{\det(\alpha-i\beta)}\right)^{(N-2)/2} \exp\left(\frac{1}{2g}\int dx^3\sigma\right) \\ &= \int \mathcal{D}\sigma \mathcal{D}A_\mu \mathcal{D}\bar{\omega}_\mu \mathcal{D}\omega_\mu \exp\left[-\frac{N-2}{2}\operatorname{Tr}\log(\alpha+i\beta)-\frac{N-2}{2}\operatorname{Tr}\log(\alpha-i\beta)+\frac{1}{2g}\int dx^3\sigma\right] \\ &= \int \mathcal{D}\sigma \mathcal{D}A_\mu \mathcal{D}\bar{\omega}_\mu \mathcal{D}\omega_\mu \exp\left[-\frac{N-2}{2}\operatorname{Tr}\log(\alpha^2+\beta^2)+\frac{1}{2g}\int dx^3\sigma\right] \end{split}$$

定数 *Z*₁*Z*₂ は無視している. ここで

 $\log(\alpha^2 + \beta^2) = \log\left\{ (-\partial_\mu^2 + A_\mu^2 + \gamma |\omega_\mu|^2 + \sigma)^2 + (A_\mu \overleftrightarrow{\partial}_\mu)^2 + \gamma^2 |\omega_\mu \overleftrightarrow{\partial}_\mu|^2 \right\}$

とすることができる.

この $\log o p + g \ge A_{\mu}, \omega_{\mu} o 2$ 次までをとると次のように表される.

$$-\frac{N-2}{2}\log(\alpha^{2}+\beta^{2}) = -(N-2)\log(-\partial_{\mu}^{2}+\sigma)$$
$$-\frac{N-2}{2}\operatorname{Tr}\left[\frac{2}{-\partial_{\mu}^{2}+\sigma}A_{\mu}^{2} + \frac{1}{(-\partial_{\mu}^{2}+\sigma)^{2}}(A_{\mu}\overleftrightarrow{\partial}_{\mu})^{2}\right]$$
$$-\frac{N-2}{2}\operatorname{Tr}\left[\frac{2\gamma}{-\partial_{\mu}^{2}+\sigma}|\omega_{\mu}|^{2} + \frac{\gamma^{2}}{(-\partial_{\mu}^{2}+\sigma)^{2}}|\omega_{\mu}\overleftrightarrow{\partial}_{\mu}|^{2}\right]$$
(2.83)

ここで

$$\operatorname{Tr}\left[\frac{2}{-\partial_{\mu}^{2}+\sigma}A_{\mu}^{2}+\frac{1}{(-\partial_{\mu}^{2}+\sigma)^{2}}(A_{\mu}\overleftrightarrow{\partial}_{\mu})^{2}\right] = \int \frac{dp^{3}}{(2\pi)^{3}}A_{\mu}(p)\Pi_{\mu\nu}(p)A_{\nu}(-p)$$
(2.84)

$$\operatorname{Tr}\left[\frac{2\gamma}{-\partial_{\mu}^{2}+\sigma}|\omega_{\mu}|^{2}\right] = \gamma \int \frac{dp^{3}}{(2\pi)^{3}}\bar{\omega}_{\mu}(p)\Omega_{\mu\nu}^{(1)}\omega_{\nu}(p)$$
(2.85)

$$\operatorname{Tr}\left[\frac{\gamma^2}{(-\partial_{\mu}^2 + \sigma)^2}|\omega_{\mu}\overleftrightarrow{\partial}_{\mu}|^2\right] = \gamma^2 \int \frac{dp^3}{(2\pi)^3}\bar{\omega}_{\mu}(p)\Omega^{(2)}_{\mu\nu}(p)\omega_{\nu}(p) \tag{2.86}$$

とおく.

ただし

$$\Pi_{\mu\nu}(p) = \int \frac{dq^3}{(2\pi)^3} \left[\frac{\delta_{\mu\nu}}{q^2 + \sigma} - \frac{(p+2q)_{\mu}(p+2q)_{\nu}}{2((p+q)^2 + \sigma)(q^2 + \sigma)} \right] \\ = \left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^2} \right) \Pi(p)$$
(2.87)

$$\Xi \Xi \mathfrak{T} \Pi(p) = \frac{1}{2} (p^2 + 4\sigma) \Sigma(p) - \frac{\sqrt{\sigma}}{4\pi}, \qquad \Sigma(p) = \frac{1}{4\pi |p|} \tan^{-1} \sqrt{\frac{p^2}{4\sigma}}$$

$$\Omega_{\mu\nu}^{(1)} = \int \frac{aq}{(2\pi)^3} \frac{\sigma_{\mu\nu}}{q^2 + \sigma}$$
(2.88)
$$\int dq^3 - (m + 2q) (m + 2q)$$

$$\Omega_{\mu\nu}^{(2)}(p) = -\int \frac{dq^3}{(2\pi)^3} \frac{(p+2q)_{\mu}(p+2q)_{\nu}}{2((p+q)^2+\sigma)(q^2+\sigma)}$$
(2.89)

としている.

これより Z の
$$A_{\mu}, \omega_{\mu}$$
 の 2 次までの表式は次のようになる.

$$Z = \int \mathcal{D}\sigma \mathcal{D}A_{\mu} \mathcal{D}\bar{\omega}_{\mu} \mathcal{D}\omega_{\mu} \exp\left[-(N-2)\int \frac{dp^{3}}{(2\pi)^{3}} A_{\mu}(p)\Pi_{\mu\nu}(p)A_{\nu}(-p) - (N-2)\gamma \int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega_{\mu\nu}^{(2)}(p)\omega_{\nu}(p) + \frac{N-2}{g}\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega_{\mu\nu}^{(1)}\omega_{\nu}(p) - (N-2)\gamma^{2}\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega_{\mu\nu}^{(2)}(p)\omega_{\nu}(p) = -N\gamma \int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega_{\mu\nu}^{(1)}\omega_{\nu}(p) - (N-2)\gamma^{2}\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega_{\mu\nu}^{(2)}(p)\omega_{\nu}(p) = -(N-2)\gamma^{2}\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega^{(1)} + \Omega^{(2)}(p))\omega_{\nu}(p) = -(N-2)\gamma(1-\gamma)\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega^{(1)}\omega_{\nu}(p) = -(N-2)\gamma(1-\gamma)\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega^{(1)}\omega_{\nu}(p) = -(N-2)\gamma(1-\gamma)\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p)\Omega^{(1)}\omega_{\nu}(p)$$

$$(2.90)$$

 $p \ll 1 \mathcal{O} \mathcal{E}$ き

$$\Sigma(p) \approx \frac{1}{4\pi p} \sqrt{\frac{p^2}{4\sigma}}$$
(2.91)

$$\Pi(p) \approx \frac{1}{2}(p^2 + 4\sigma)\frac{1}{8\pi\sqrt{\sigma}} - \frac{\sqrt{\sigma}}{4\pi} = \frac{p^2}{16\pi\sqrt{\sigma}}$$
(2.92)

$$\Pi_{\mu\nu}(p) \approx \frac{1}{16\pi\sqrt{\sigma}} (p^2 \delta_{\mu\nu} - p_\mu p_\nu)$$
(2.93)

(2.86) は

$$-\int \frac{dp^3}{(2\pi)^3} \bar{\omega}_{\mu}(p) \left[\frac{(N-2)\gamma^2}{16\pi\sqrt{\sigma}} (p^2 \delta_{\mu\nu} - p_{\mu} p_{\nu}) + (N-2)\gamma(1-\gamma)\Omega^{(1)} \delta_{\mu\nu} \right] \omega_{\nu}(p)$$
(2.94)

52 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析 となる.

ここで次のゲージ固定を採用する.

$$\partial_{\mu}\omega_{\mu} = 0 \to p_{\mu}\omega_{\mu}(p) = 0 \tag{2.95}$$

(2.94)、(2.95)より

$$-\int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p) \left[\frac{(N-2)\gamma^{2}}{16\pi\sqrt{\sigma}} p^{2} \delta_{\mu\nu} + (N-2)\gamma(1-\gamma)\Omega^{(1)} \delta_{\mu\nu} \right] \omega_{\nu}(p) \\ = -\frac{(N-2)\gamma^{2}}{16\pi\sqrt{\sigma}} \int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p) \left[p^{2} + \frac{16\pi\sqrt{\sigma}(1-\gamma)}{\gamma} \Omega^{(1)} \right] \omega_{\mu}(p) \\ = -\frac{(N-2)\gamma^{2}}{16\pi\sqrt{\sigma}} \int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p) \left[p^{2} + \frac{16\pi\sqrt{\sigma}(1-\gamma)}{\gamma} \Omega^{(1)} \right] \omega_{\mu}(p) \\ = -\frac{(N-2)\gamma^{2}}{16\pi\sqrt{\sigma}} \int \frac{dp^{3}}{(2\pi)^{3}} \bar{\omega}_{\mu}(p) (p^{2} + p_{s}^{2}) \omega_{\mu}(p)$$
(2.96)

ここで $p_s^2 = 16\pi \sqrt{\sigma}(1-\gamma)\Omega^{(1)}/\gamma$ である. これは ω_{μ} の質量になっていて [44]、 $\gamma = 1$ を境に して、 ω_{μ} は massless のベクトル場になる. $\gamma > 1$ のときは massless のベクトル場となり、一種 のゲージ場とみなすことができる. γ に対する臨界点 $\gamma_c > 1$ に対して $\gamma > \gamma_c$ のとき、 $\langle \omega_{\mu} \rangle \neq 0$ になると考えられる. また、 $A_{\mu} = 0$ とすると (2.70) の作用は、

$$S = \frac{1}{2g} \int d^3x \left[-\bar{z}\partial^2_\mu z - \gamma\omega_\mu (\bar{z}\mathcal{J}\partial_\mu \bar{z}) - \gamma\bar{\omega}_\mu (\bar{z}\mathcal{J}\partial_\mu \bar{z}) + \gamma|\omega_\mu|^2 + \sigma(\bar{z}z-1) \right]$$
(2.97)

となる.

この作用から与えられる zの運動方程式の解は次のようになる.

$$z = \frac{1}{\sqrt{2}} \{ e^{-i\gamma\omega x} \xi + e^{i\gamma\omega x} (i\mathcal{J}\bar{\xi}) \}$$
(2.98)

ただし、 $\langle \omega_x \rangle = \omega$ としてある.これによって、一般性は失われない.

(2.70)、(2.98)により、 & によって表される作用は、

$$S = \frac{1}{2g} \int d^3x \{ \bar{\xi} (-\partial_{\mu}^2 + \gamma (1-\gamma)\omega^2) \xi + \sigma(\bar{\xi}\xi - 1) \}$$
(2.99)

となる.

もともとのスピン変数 z の質量は σ であるが、新しいスピン変数 ξ の質量は ω_{μ} との相互作用 によって、新しい質量 $\sigma' = \sigma + \gamma(1 - \gamma)\omega^2$ となる.

 ξ による作用 (2.99) から、鞍点法によってギャップ方程式を導くことができる. 今は $n_0 = 0$ 、 すあわち z が order していない場合を考えている. z のときと同様に ξ について積分する. ξ の質量 σ' を用いると、

$$S'_{\rm eff}(\sigma') = (N-2) \operatorname{Tr} \log(-\partial_{\mu}^{2} + \sigma') - \frac{1}{2g} \int d^{3}x \{\sigma' - \gamma(1-\gamma)\omega^{2}\}$$
(2.100)

となる.

(2.100)から与えられるギャップ方程式は

$$\frac{S_{\text{eff}}'(\sigma')}{\delta\sigma'} = (N-2) \int \frac{d^3k}{(2\pi)^3} \frac{1}{k^2 + \sigma'} - \frac{1}{2g} = 0$$
(2.101)

これより

$$\sqrt{\sigma'} = \frac{2\pi}{N-2} \left(\frac{1}{g_c} - \frac{1}{g}\right) \tag{2.102}$$

$$\frac{1}{g_c} = \frac{N-2}{2\pi}\sqrt{\Lambda} \tag{2.103}$$

となる. これは *z* が与える質量ギャップ (2.102) と臨界点 (2.103) と同じものを与えることがわ かる.

次に弱結合領域について考える.まず $z = z_0 + \tilde{z}$ とおく. $z_0 = (z_1, 0, \dots, 0, z_N)$ 、 $\tilde{z} = (0, z_2, \dots, z_{N-1}, 0)$ である.また、 σ は、 $\sigma_c = 0$ からのゆらぎをあらわすものとする.このように停留点を設定したのは、Sp(N)対称性が破れるとき N は偶数なので、Sp(N-2)対称性に落ちることを反映させるためである.

このとき、(2.97)で与えられる作用は、

$$S = \frac{1}{2g} \int d^3x [\bar{z}(-\partial^2_{\mu} + \lambda^2_{\mu} + \gamma |\omega_{\mu}|^2 + \sigma)z + i\lambda_{\mu}\bar{z}\overleftrightarrow{\partial}_{\mu}z - \bar{\omega}z\mathcal{J}\partial_{\mu}z - \omega\bar{z}\mathcal{J}\partial_{\mu}\bar{z} - \sigma]$$

= $\tilde{S} + S_0$ (2.104)

と表すことができる.ただし、 \tilde{S} 、 S_0 は次のように与えられる.

$$\tilde{S} = \frac{1}{2g} \int d^3x [\bar{\tilde{z}}(-\partial_\mu^2 + \lambda_\mu^2 + \gamma |\omega_\mu|^2 + \sigma)\tilde{z} + i\lambda_\mu \bar{\tilde{z}}\overleftrightarrow{\partial}_\mu \tilde{z} - \bar{\omega}\tilde{z}\mathcal{J}\partial_\mu \tilde{z} - \omega\bar{\tilde{z}}\mathcal{J}\partial_\mu \bar{\tilde{z}} - \sigma] \qquad (2.105)$$

$$S_0 = \frac{1}{2g} \int d^3x [\bar{z}_0(-\partial^2_\mu + \lambda^2_\mu + \gamma |\omega_\mu|^2 + \sigma) z_0 + i\lambda_\mu \bar{z}_0 \overleftrightarrow{\partial}_\mu z_0 - \bar{\omega} z_0 \mathcal{J} \partial_\mu z_0 - \omega \bar{z}_0 \mathcal{J} \partial_\mu \bar{z}_0] \quad (2.106)$$

 \tilde{S} については前節と同様に \tilde{z} で積分することができる.

$$\int \mathcal{D}\bar{\tilde{z}}\mathcal{D}\tilde{z}\exp(-\tilde{S}) = \exp\left[-\frac{N-4}{2}\left\{(-\partial_{\mu}^{2} + \lambda_{\mu}^{2} + \gamma|\omega_{\mu}|^{2} + \sigma)^{2} + (\lambda_{\mu}\overleftrightarrow{\partial}_{\mu})^{2} + \gamma^{2}|\omega_{\mu}\partial_{\mu}|^{2}\right\} + \frac{1}{2g}\int d^{3}x\sigma\right]$$
(2.107)

 S_0 については、 z_0 をゆらぎz'を含めてあらわす.

$$z_0 = N_0 + z' \tag{2.108}$$

 N_0 、 z' は、 $N_0 = (\frac{1}{\sqrt{2}}n_0, 0, \cdots, 0, \frac{1}{\sqrt{2}}n_0)$ 、 z' = (z₁, 0, …, 0, z_N) で与えられる. (2.108) を用いると (2.106) は、

$$S_0 = \int d^3x [\bar{z}'(-\partial^2_\mu + \lambda^2_\mu + \gamma |\omega_\mu|^2 + \sigma)z' + i\lambda_\mu \bar{z}'\overleftrightarrow{\partial}_\mu z' - \bar{\omega}z'\mathcal{J}\partial_\mu z' - \omega\bar{z}'\mathcal{J}\partial_\mu \bar{z}'] + S_{\rm int}$$

$$(2.109)$$

54 第2章 Sp(N) スピンモデルの有効場の理論とその相構造:場の量子論的手法による解析 となる. S_{int} は N_0 とz'との相互作用を表す項で、前節と同じようにして積分することはできない.

$$S_{\rm int} = \int d^3x [(\lambda_\mu^2 + \gamma |\omega_\mu|^2 + \sigma) \{N_0^2 + N_0(\bar{z}' + z')\} + i\lambda_\mu N_0 \partial_\mu (z' - \bar{z}') - \gamma \bar{\omega}_\mu N_0 \mathcal{J} \partial_\mu z' - \gamma \omega_\mu N_0 \mathcal{J} \partial_\mu \bar{z}']$$
(2.110)

これを $\gamma \simeq 0$ の弱結合領域の扱いと同様に、相互作用項から λ_{μ} 、 ω_{μ} 、 σ の2次の項に繰り込まれる.*z* で積分された分配関数は次のようになる.

$$Z = \int \mathcal{D}\lambda_{\mu} \mathcal{D}\sigma \mathcal{D}\omega_{\mu}^{R} \mathcal{D}\omega_{\mu}^{I} \exp\left[-N\lambda_{\mu}\left\{\Pi_{\mu\nu} + n_{0}^{2}\left(\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}\right)\right\}\lambda_{\mu} - N\gamma^{2}\omega_{\mu}^{R}\left\{\Pi_{\mu\nu} + n_{0}^{2}\left(\frac{1}{\gamma}\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}\right) + \frac{1-\gamma}{\gamma}\Omega_{\mu\nu}^{(1)}\right\}\omega_{\mu}^{R} - N\gamma^{2}\omega_{\mu}^{I}\left\{\Pi_{\mu\nu} + n_{0}^{2}\left(\frac{1}{\gamma}\delta_{\mu\nu} - \frac{p_{\mu}p_{\nu}}{p^{2}}\right) + \frac{1-\gamma}{\gamma}\Omega_{\mu\nu}^{(1)}\right\}\omega_{\mu}^{I} - N\sigma\left(\frac{1}{2}\Sigma(p) + n_{0}^{2}\right)\sigma + \frac{1}{2g}\int d^{3}x\sigma\right]$$
(2.111)

 $\Box \Box \breve{\tau} \, \omega_{\mu} = \omega_{\mu}^{R} + i \omega_{\mu}^{I} \, \mathcal{E} \, \mathsf{LTVS}.$

また、前小節の (2.95) と同様に $\omega_{\mu}^{R(I)}$ が横波の成分しか持たないとする.

こうして ω_{μ} の2次の項は、

$$Z \sim \int \mathcal{D}\omega_{\mu}^{R} \mathcal{D}\omega_{\mu}^{I} \exp\left[-N\gamma^{2}\omega_{\mu}^{R}(p)\left\{\Pi_{\mu\nu} + \frac{n_{0}^{2} + (1-\gamma)\Omega^{(1)}}{\gamma}\right\}\omega_{\mu}^{R}(p) - N\gamma^{2}\omega_{\mu}^{R}(p)\left\{\Pi_{\mu\nu} + \frac{n_{0}^{2} + (1-\gamma)\Omega^{(1)}}{\gamma}\right\}\omega_{\mu}^{R}(p)\right]$$
(2.112)

となる. ω_{μ} の質量 $p_s^2 = \{n_0^2 + (1 - \gamma)\Omega^{(1)}\}/\gamma$ であり、強結合のときと異なることがわかる. この ため $\gamma > \gamma_c \rightarrow 1 + n_0^2(g)/\Omega^{(1)}$ のとき、 ω の凝縮が起こる. $(\langle \omega \rangle \neq 0)$ そのためスピンの運動は、 z ではなく ξ として振る舞うと考えられる.

2.4 $\gamma = 1$ における対称性の拡大とSU(2) ゲージ理論

前節において、 $\gamma = 1$ のとき 3 成分のベクトル場 $\tilde{A}_{\mu} = (\tilde{A}^{1}_{\mu}, \tilde{A}^{2}_{\mu}, \tilde{A}^{3}_{\mu}) \equiv (A_{\mu}, \omega^{R}_{\mu}, \omega^{I}_{\mu})$ が SU(2) ゲージ場を構成することを次のようにして示すことができる.

もともとの CP³ モデルのラグラジアンは

$$\mathcal{L} = -\frac{N}{2g} \int d^3x \left[\bar{z} (-\partial_\mu^2 + iA_\mu \overleftrightarrow{\partial}_\mu + A_\mu^2 + |\omega_\mu|^2 + \sigma) z - z(\bar{\omega}_\mu \mathcal{J}\partial_\mu) z - \bar{z}(\omega_\mu \mathcal{J}\partial_\mu) \bar{z} \right] \quad (2.113)$$

であった.ここで $\gamma = 1$ のとき、基底を次のように入れ替える.

$$(z_1, z_2, z_3, z_4) \to Z \equiv (z_1, z_2, \bar{z}_4, -\bar{z}_3)$$
 (2.114)

まず、これによって

$$\bar{z}\overleftrightarrow{\partial}_{\mu}z = \bar{Z}\Sigma_{3}\overleftrightarrow{\partial}_{\mu}Z \tag{2.115}$$

が導かれる.ただし、

$$\Sigma_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
(2.116)

である.また、次のような行列を導入する.

$$\mathcal{J} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}, \Sigma_1 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \Sigma_2 = \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & i \\ -i & 0 & 0 & 0 \\ 0 & -i & 0 & 0 \end{pmatrix}$$
(2.117)

これらによって、

$$\bar{\omega}_{\mu}(z\mathcal{J}\partial_{\mu})z + \bar{\omega}_{\mu}(\bar{z}\mathcal{J}\partial_{\mu})\bar{z} = i\omega_{\mu}^{R}(\bar{Z}\Sigma_{2}\overleftrightarrow{\partial}_{\mu}Z) + i\omega_{\mu}^{I}(\bar{Z}\Sigma_{2}\overleftrightarrow{\partial}_{\mu}Z)$$
(2.118)

が同様に導かれる.また Σ_1 、 Σ_2 、 Σ_3 は SU(2)の Lie 環になっていることから、 $\tilde{A}_{\mu} = (\tilde{A}^1_{\mu}, \tilde{A}^2_{\mu}, \tilde{A}^3_{\mu})$ は SU(2) ゲージ場となっていることがわかる.このときのラグランジアンは

$$\mathcal{L} = -\frac{N}{2g} \int d^3x \left[|(\partial_\mu + i\Sigma_i \tilde{A}^i_\mu)Z| + \sigma |Z|^2 - \sigma \right]$$
(2.119)

となる. 通常の CP^{N-1} モデルはスピンを表す場 z が U(1) ゲージ場と相互作用していて、これによって相転移を記述することができた. これに対して今の場合は SU(2) ゲージ場と相互作用していて、これが U(1) ゲージ場のときよりもスピンの揺らぎが大きくなり、臨界点 g_c を押し下げると考えることができる.

2.5 第2章のまとめ

Sp(N)Heisenberg モデルの相構造を場の理論を用いて調べた. このモデルの連続体近似が CP^{N-1} モデルであることを示し、 CP^{N-1} モデル((2+1)次元)の1/N 展開法による解析によっ て、2 次転移であることがわかった. 前章の結果から Sp(N) Heisenberg モデルの相図は図 (2.3) のようになることが予想される.

1/N展開の主要項による解析の結果、臨界点 g_c は γ に依存しないことがわかった.しかし、 (2.46) で J'/J^2 の高次の項を考慮に入れると、 g_c は下がることになる.

弱結合領域 $(g < g_c)$ において、 γ_c は $1 + n_0^2/\Omega^{(1)}$ を境界として z はその振る舞いを変える. このとき z は

$$z = \frac{1}{\sqrt{2}} \{ e^{-i\gamma\langle\omega\rangle x} \xi + e^{i\gamma\langle\omega\rangle x} (i\mathcal{J}\bar{\xi}) \}$$
(2.120)

のように一定の波数 $\langle \omega \rangle$ を持ったまま基底状態をとると考えることができる. この状態は三角 格子の系ではあるが、S = 1/2 SU(2) Heisenberg モデルで doubled U(1) Chern-Simons 理論に よって存在することが指摘されている. [45] [46]

図 2.3: Sp(N) Heisenberg モデルの 1/N 展開の主要項による相図.

- 得られた4相は次のように特徴付けることができる.すなわち、
- (I) $\langle z \rangle = 0, \langle \omega_{\mu} \rangle = 0 \mathcal{O} \geq \mathfrak{E},$

Sp(N) singlet で構成される通常の VBS 状態となる. 図 (2.4)

- (II) $\langle \xi \rangle = 0, \langle \omega_{\mu} \rangle \neq 0$ のとき、 Sp(N) singlet で構成されるが、 $\langle \omega_{\mu} \rangle$ により乱れた VBS 状態となる. 図 (2.5)
- (III) $\langle z \rangle \neq 0, \langle \omega_{\mu} \rangle = 0$ のとき、 長距離秩序を持つ反強磁性相となる. 図 (2.6)
- (IV) $\langle \xi \rangle \neq 0, \langle \omega_{\mu} \rangle \neq 0$ 長距離秩序を持つが、一定の波数 $\langle \omega_{\mu} \rangle$ を持った反強磁性状態 (spiral order) となる. 図 (2.7)

また強結合領域で $\gamma = 1$ のとき、 A_{μ} 、 ω_{μ}^{R} 、 ω_{μ}^{I} がSU(2)対称性を持つゲージ場となることがわかった. これはSp(N) Heisenberg モデルが別の「隠れた」対称性を持つということを意味する.

このように場の量子論を用いることで、基底状態をその対称性で相構造を識別することができる.しかし、1/N展開において、実際のSp(4)対称性を持つ物質のスピンはS = 3/2でN = 4であり、この扱いがどれだけ適切かはわからない.

次章では、この(2+1)次元連続場理論のモデルに対する3次元格子場のモデルを導入し、モンテカルロ・シミュレーションを行い比較する.

第3章 数値計算法による場の理論の解析法 とその結果

前章で *Sp*(4) Heisenberg モデルの有効場理論として、(2+1) 次元連続体理論を扱った.この 章ではこの連続体モデルを格子で離散化した格子モデルを導入し、モンテカルロ法による計算 の結果を示す.[28] 第2章で導出したモデルの解析結果と数値計算との比較を行い、その正当 性について検討する.

はじめにモンテカルロ法による物理量の評価と有限サイズスケーリングの方法について概説 する. その後に格子モデルを導入し、そのシミュレーション結果を示す. 有限温度系へ拡張し、 ホールドープの効果を取り入れた計算も行ったのでその結果も示す. [49]

3.1 モンテカルロ法による物理量の評価法

まず、簡単にモンテカルロ法の一般論について示す. [48] 系が時刻 t において離散的な状態 i にある確率を $P_i(t)(i = 1, 2, \dots, N)$ とする. この確率は

$$\sum_{i}^{N} P_i(t) = 1 \tag{3.1}$$

と規格化されている.

 $P_i(t)$ の時間発展を考える.

$$P_{i}(t + \Delta t) - P_{i}(t) = \sum_{j \neq i} w_{j \rightarrow i} P_{j}(t) \Delta t - \sum_{j \neq i} w_{i \rightarrow j} P_{j}(t) \Delta t$$
$$P_{i}(t + \Delta t) = P_{i}(t) + \sum_{j \neq i} w_{j \rightarrow i} P_{j}(t) \Delta t - \sum_{j \neq i} w_{i \rightarrow j} P_{j}(t) \Delta t \qquad (3.2)$$

 $w_{i \to i}$ は、状態 $j \to i$ の単位時間当たりの遷移確率である. (3.2)を確率行列 Lを用いて表すと

$$P_i(t + \Delta t) = L_{ij}P_j(t) \tag{3.3}$$

となる.したがって、この確率遷移をnステップ行うと

$$\vec{P}(t+n\Delta t) = L^n \vec{P}(t) \tag{3.4}$$

となる.このような確率過程は Markov 過程と呼ばれる.モンテカルロ法に必要な確率過程は、 ある定常分布に収束していく定常マルコフ過程で

$$\vec{P}^{\rm eq} = \lim_{n \to \infty} L^n \vec{P}(t) \tag{3.5}$$

となる.

モンテカルロ法が正しく適用できるためには、確率行列Lがエルゴード性を満たす必要がある. Perron-Frobeniusの定理により、ある値よりも大きいnに対して、確率行列Lⁿの行列要素はすべて正になることが示される. 任意の状態から任意の状態への遷移が有限回のステップで実現することができることを意味し、エルゴード性を示す.

確率分布 $p_i(i = 1, 2, \cdots, N)$ に従う変数 A_i の平均は

$$\langle A \rangle = \sum_{i}^{N} p_{i} A_{i} \tag{3.6}$$

で求めることができる.N が非常に大きいときは計算が困難である.これをランダムに状態 i を 発生させて、以下のようなサンプリングを行う方法を用いる.

$$\langle A \rangle_{MC} = \sum_{i}^{M} {}^{\prime}A_{i} \tag{3.7}$$

はM 個の状態を確率分布 p_i に従って、発生させて和を取ることを意味する. \sum_{i}^{M} / 初期の確率から定常 Markov を出発し、定常分布に十分収束した後にM 個の状態をサンプリングして $\langle A \rangle_{MC}$ を求めることができる.

3.2 有限サイズスケーリング

数値シミュレーションを用いたモデルの解析は、実験、理論とともに相転移・臨界現象を理解するために重要な手法である.2次転移では相関長の発散を示す熱力学極限 $(N/V \rightarrow \infty)$ に対し、数値シミュレーションでは、有限系を扱うことしかできない.そこで、有限系のデータから無限系の臨界現象の情報を得る方法として有限サイズスケーリングを用いる.

臨界点近傍での物理量の特異性は、相関長 ξ が $\xi \sim |c - c_c|^{-\nu}$ のように発散することに由来 する.(cはパラメータで、 c_c は臨界点)臨界点直上では、系のサイズを特徴づける長さ(相関長) がなくなってしまい系をどのスケールから見ても同じになってしまう.有限系では、はじめか ら系のサイズが長さのスケールとして存在している.そこで、異なるサイズ L_1, L_2 の系をがあ り、それぞれの相関長を ξ_1, ξ_2 とする.

$$\frac{L_1}{\xi_1} = \frac{L_2}{\xi_2} \tag{3.8}$$

が成り立つとすると、2つの系はスケールが異なるだけで同じ状態の系を表すことになる.

したがって、この仮説が成り立つならば、サイズLの有限系の臨界点近傍での振る舞いは、 L/ξ_{∞} で特徴づけることができる. ξ_{∞} は臨界点近傍での無限系の相関長であり、有限系の相関 長と区別がなくなるはずである.

パラメータ*c*は臨界点近傍について考えるため直接扱わず、を用いて次のように無次元化した ε を導入する.

$$\varepsilon \equiv \frac{c - c_c}{c_c} \tag{3.9}$$

この仮説は Cを比熱等の物理量として

$$\frac{C_L}{C_\infty} = f\left[\frac{L}{\xi_\infty}\right] \tag{3.10}$$

が成り立つことを意味している. C_L は系のサイズ Lの物理量、 C_∞ は無限系の物理量、fは C_L/C_∞ を特徴づける関数である. 相関長や比熱は転移点で発散するため、 $\nu や x_A$ を用いて

$$\xi_{\infty} \propto \varepsilon^{-\nu}, \quad C_{\infty} \propto \varepsilon^{-x_A}$$
 (3.11)

と表すことができる. (3.11) を用いるとスケーリング仮説 (3.10) によって臨界点近傍の物理量 $C_L(\varepsilon)$ は次のように定式化できる.

$$C_L(\varepsilon) = \varepsilon^{-x_A} f(L\varepsilon^{\nu}) \tag{3.12}$$

 $L\varepsilon^{\nu} = (L^{1/\nu}\varepsilon)^{\nu}$ なので、スケーリング関数を $L^{1/\nu}\varepsilon$ についての関数とみなすことができる.また 有限系の振る舞いを特徴づける $L/\xi_{\infty} = L\varepsilon^{\nu}$ は無次元なので、 $\varepsilon \sim L^{-1/\nu}$ の関係が成り立つ.こ れらにより次が得られる.

$$C_L(\varepsilon) = L^{x_A/\nu} F(L^{1/\nu}\varepsilon) \tag{3.13}$$

Fはスケーリング関数である.この式は比熱ピークの高さは $L^{x_A/\nu}$ に、位置は $L^{-1/\nu}$ に、幅は $L^{-1/\nu}$ 比例して変わることを示している.「サイズ L の有限系の振る舞いはある比 L/ξ_{∞} で特 徴づけられる」というスケーリング仮説が成り立っているならば、臨界指数 x_A, ν と臨界点 c_c の値を適切に与えてやることで、異なる L の比熱の値も全て同じ曲線の上に乗る.図(3.1)は、 スピン系の転移の比熱を実際にスケーリングしたものである.サイズの異なる比熱のグラフで フィッテングが出来ているので、2次の転移であることが分かる.

図 3.1: 相転移の比熱 (a) とそのスケーリング (b) の例. 4 つの異なるサイズのグラフが、広範 囲にわたって同一曲線で表されている. $\phi(x)$ はスケーリング関数である. [?]

3.3 Sp(N)スピンモデルの有効場理論のモンテカルロ法

まず (2.61) によって与えられた連続場のモデルから格子モデルを導出する.

$$S = \frac{1}{2g} \int d^3x \left\{ D_{\mu} \bar{z} D_{\mu} z - \gamma (\bar{z} \mathcal{J} D_{\mu} \bar{z}) (z \mathcal{J} D_{\mu} z) + \sigma (|z|^2 - 1) \right\}$$
(2.61)

 CP^{N-1} 変数 z_x の共変微分 $D_{\mu}z_x$ を離散化するところから行う.

$$D_{\mu}z_{x} = (\partial_{\mu} - \bar{z}\partial_{\mu}z)z_{x} \simeq (z_{x+\mu} - z_{x} - i\theta_{x\mu})z_{x}$$

$$(3.14)$$

 $-2\pi < \theta_{x\mu} < 2\pi$ である $\theta_{x\mu}$ を用いて、ゲージ場 $z\partial_{\mu}z & e^{-i\theta_{x\mu}}$ に置き換えることができる. これ より (2.61) の第1項目は

$$D_{\mu}\bar{z}_{x} \cdot D_{\mu}z = (\bar{z}_{x+\mu} - \bar{z}_{x} + i\theta_{x\mu})\bar{z}_{x} \cdot (z_{x+\mu} - z_{x} - i\theta_{x\mu})z_{x}$$

$$= -[\bar{z}_{x+\mu}(1 - iA_{x\mu})z_{x} + z_{x+\mu}(1 + iA_{x\mu})\bar{z}_{x}]$$

$$= -\bar{z}_{x+\mu}\exp(-iA_{x\mu})z_{x} + c.c.$$

$$= -\bar{z}_{x+\mu}U_{x\mu}z_{x} + c.c.$$
(3.15)

となる. ここで、 $\exp(-iA_{x\mu}) \equiv U_{x\mu}$ とした。途中、定数項が現れるが積分に寄与しないので無 視した. 第2項目も同様に

$$\bar{z}\mathcal{J}\bar{D}_{\mu}\bar{z}\cdot z\mathcal{J}D_{\mu}z = \bar{z}\mathcal{J}(\bar{z}_{x+\mu} - \bar{z}_x + i\theta_{x\mu})\bar{z}_x \cdot z\mathcal{J}(z_{x+\mu} - z_x - i\theta_{x\mu})z_x$$
$$= |z\mathcal{J}z_{x+\mu}|^2 \tag{3.16}$$

となる.更に、(2.83)の第1項に対応するゲージ場の運動エネルギーとして、プラケット形の $U_{x\mu}U_{x+\mu,\nu}\bar{U}_{x+\nu,\mu}\bar{U}_{x\nu}+c.c.$ を加える。式 (2.61)の係数部分を

$$\frac{1}{2g} = c_1 \tag{3.17}$$

$$\frac{\gamma}{2g} = c_3$$

とパラメータとして定義すると、作用Sは以下のようになる.

$$S = -\frac{c_1}{2} \sum_{x,\mu} \bar{z}_{x+\mu} U_{x\mu} z_x - \frac{c_2}{2} \sum_{x,\mu,\nu} U_{x\mu} U_{x+\mu,\nu} \bar{U}_{x+\nu,\mu} \bar{U}_{x\nu} - c_3 \sum_{x,\mu} |z \mathcal{J} z_{x+\mu}|^2 + c.c.$$
(3.18)

 c_1 項と c_3 項の大きさは異方性の強さ λ によって決まり、異方性 λ が大きい時 $c_1, c_3 \propto \lambda^{-\frac{1}{2}}$ となる. る. 異方性が強いと1次元的な相互作用が主体になり、量子揺らぎが大きくなる. c_3 項はSU(4)対称性からのずれも示しており、 $c_3 = 0$ ではSU(4)対称性を持った系となる. c_2 項は、隣り合うzにより作られるゲージ場の運動項に対応する.

実際には CP^3 変数 z_{σ} を、 $A, B, C, D_1, D_2, D_3, D_4$ を実数として

$$z_{1} = \cos A \cos B \cos C \exp(iD_{1})$$

$$z_{2} = \cos A \cos B \sin C \exp(iD_{2})$$

$$z_{3} = \cos A \sin B \exp(iD_{3})$$

$$z_{4} = \sin A \exp(iD_{4})$$
(3.19)

と書く. そのヤコビヤンは $\cos^5 A \sin A \cos^3 B \sin B \cos C \sin C$ となる.

式(2.61)を数値計算するにあたって、モンテカルロ法を取り入れる。作用 A を用いて分配関数 Z は以下のように書ける.

$$Z = \int \mathcal{D}z \mathcal{D}U \mathcal{D}\phi \exp(-S)$$

$$\mathcal{D}z = \prod_{x} dz_{1,x} dz_{2,x} dz_{3,x} dz_{4,x} \delta(|z_{1,x}|^2 + |z_{2,x}|^2 + |z_{3,x}|^2 + |z_{4,x}|^2 - 1)$$

$$\mathcal{D}U = \prod_{x,\mu} dU_{x,\mu} = \prod_{x,\mu} \frac{d\theta_{x,\mu}}{2\pi}$$

$$\mathcal{D}\phi = \prod_{x} d\phi = \prod_{x} \frac{d\phi_x}{2\pi}$$

(3.20)

この分配関数を用いると考える系における内部エネルギーの期待値 (E) は以下のように与えられる.

$$\langle E \rangle = \frac{\int \mathcal{D}z \mathcal{D}U \mathcal{D}\phi S e^{-S}}{Z} \tag{3.21}$$

比熱 C はエネルギーの期待値をとる過程で用いる分散により、次のように得ることができる.

$$\langle C \rangle = \frac{\partial E}{\partial T} = \langle E^2 \rangle - \langle E \rangle^2$$
 (3.22)

このエネルギーや比熱の異常を見ることによって、相転移の有無を決定する. それぞれの相の 状態については、スピンに関する2つの相関

$$G_n(r) \equiv \langle \Gamma_x^a \cdot \Gamma_{x+r\mu}^a \rangle \tag{3.23}$$

$$G_s(r) \equiv \langle \Gamma_x^{ab} \cdot \Gamma_{x+r\mu}^{ab} \rangle \tag{3.24}$$

によって識別した. $G_s(r)$ は通常のスピン相関 $\langle S_x^{\alpha} \cdot S_{x+ra}^{\alpha} \rangle$ に対応し、 $G_n(r)$ はスピンネマティック相関 $\langle (S_x^{\alpha} S_x^{\beta}) (S_{x+ra}^{\alpha} S_{x+ra}^{\beta}) \rangle$ のような量に対応している. r は整数で距離が r、 μ 方向に離れた 点の内積を計算し、その平均を取っている。また、格子点の even、odd でスピン空間の座標を反転させているため、スピン相関を見たとき反強磁性的な状態は強磁性的な状態に対応している.

まず、ゲージ場の運動エネルギーが存在しない $c_2 = 0.0$ と存在する $c_2 = 2.0$ における c_3-1/c_1 の相図と相構造を示す.エネルギーと比熱によって、転移点を決定する.それぞれの相構造は、 主にスピン相関によって定める.また、自由境界条件で測定を行う場合には緩衝領域を設け、系の端の影響を少なくしている.

次節からのモンテカルロ法による計算では、メトロポリスアルゴリズムによる update を行 なっている. sweep 数は100000~200000 回で、様々な初期状態のサンプルに対して計算を行なっ ている. 各変数に対する受け入れ率は、40%としている.

3.3.1 $c_2 = 0.0$ の場合の相構造

 $c_2 = 0.0 \text{ or } c_3 - 1/c_1 \text{ on High ight in the set of th$

を表す. それぞれの転移は、エネルギーの大きなギャップがなく比熱が格子サイズに依存して 大きくなったため、2次転移であると考えられる.

図 3.2: $c_2 = 0.0 \circ c_3 - 1/c_1 \circ d$ 回忆 黒点は転移の位置で、エネルギーと比熱により求めた.実線 は黒点を元に予測した転移の位置である. 相は4つの状態に分けられ、それぞれ i~iv とした.

状態 i~iv を、 Γ_a のスピンネマティック相関 $G_n(r)$ と Γ_{ab} のスピン相関 $G_s(r)$ により詳しく見 た.図 (3.3) は相 i と相 ii のスピン相関である.相 i では $G_n(r)$ と $G_s(r)$ 両方で0 に収束している. 相 i は異方性が強く量子揺らぎが非常に大きい相であり、スピン相関もスピンネマティック相関 も見られない.異方性のため1 次元的になっていて、系はダイマー相になっている.一方相 ii で は、 $G_n(r)$ が有限の値に残る. $G_s(r)$ は0 に収束するが、強磁性的に収束する領域と反強磁性的 に収束する領域が混在している.その混在した領域の境界はエネルギーや比熱の異常が見られ ない、クロスオーバーという変化が起きている.このようにスピンの1 次の相関 $G_s(r)$ がなく て、スピンの2 次の式で表される $G_n(r)$ が有限に残る状態であり、スピンネマティック相になっ ている.図 (3.4) は相 iii と相 iv のスピン相関 $G_s(r)$ とスピンネマティック相関 $G_n(r)$ である.相 iii も相 iv も $G_n(r)$ のrが大きい長距離での値が、それぞれ約 0.5,0.8 と有限である. $G_s(r)$ を見 ると相 iii は反強磁性、相 iv は強磁性であることが分かる.相 iii の反強磁性は異方性が小さく、 相互作用が SU(4)に近い安定的な状態である.SU(4)からの歪みが大きくなると相 ii のように $G_n(r)$ が有限に残り、更に歪みを大きくすると $G_s(r)$ も長距離相関が生じ、強磁性になること が分かった.

図 3.3: 相iと、2つの相iiのスピンネマティック相関 $G_n(r)$ とスピン相関 $G_s(r)$. iは $c_1 = 3.5, c_3 = 1.0 \sigma$ 、ii-a は $c_1 = 3.5, c_3 = 3.7 \sigma$ 、ii-b は $c_1 = 7.0, c_3 = 4.0 \sigma$ 点において測定. $G_s(r)$ の右上には、ii-aの短距離の相関を拡大した. 距離が伸びるにつれて0に収束するが、強磁性的に収束することが分かる.L = 12

図 3.4: 相 iii と、相 iv のスピンネマティック相関 $G_n(r)$ とスピン相関 $G_s(r)$. iii は $c_1 = 7.0, c_3 = 2.0$ の、iv は $c_1 = 7.0, c_3 = 8.0$ の点において測定.L = 12.

3.3.2 $c_2 = 2.0$ の場合の相構造

図 3.5: $c_2 = 2.0 \text{ or } c_3 - 1/c_1 \text{ or } n$ 相図. 相は6つの状態に分けられそれぞれ I~VI とした.

次にゲージ場の運動エネルギーを含んだ $c_2 = 2.0$ の相図は図 (3.5) のようになった。こちら もそれぞれの転移は、エネルギーの大きなギャップがなく比熱が格子サイズ *L* に依存して大き くなったため、2 次転移であると考えられる.

各種の相関を見ることで各相の特徴を見ていく. 図 (3.6)の相関から相 I と相 II は両方とも揺らぎの大きいダイマー相であるが、 $G_s(r)$ の収束の様子が強磁性的か反強磁性的かで異なる。

図 (3.7)の相関から相 III と相 IV のスピン相関 $G_s(r)$ の収束の様子が強磁性的か反強磁性的 かで異なる.相 I と相 II、相 III と相 IV の間にエネルギーや比熱による差異は見られなかった. SU(4)からのズレがある程度大きい領域では、 $c_2 = 0$ の相図では確認されたスピンネマティッ ク相が消えている代わりに、相 II や相 IV のような強磁性的な相が生じている.図 (3.8)の相関 から SU(4)からの歪みを更に大きくした相 V と相 VI の強磁性秩序は、スピン相関による差異 は見られなかったが、比熱によるピークは見えた.ゲージ場のゆらぎの指標となるインスタン トンによる違いも確認でき、相 V の方がトポロジー的な歪みの大きい相であることが分かる. 相 III~VI までの比熱、インスタントン密度の様子をそれぞれ図 (3.9)、図 (3.10) に示す.

図 3.6: 相 I と相 II のスピンネマティック相関 $G_n(r)$ とスピン相関 $G_s(r)$. I は $c_1 = 2.0, c_3 = 0.2$ の、II は $c_1 = 2.0, c_3 = 2.7$ の点において測定した. $G_s(r)$ の右上には、II の短距離の相関を拡大した.距離が伸びるにつれて0に収束するが、強磁性的に収束することが分かる.L = 18.

図 3.7: 相 III と相 IV のスピンネマティック相関 $G_n(r)$ とスピン相関 $G_s(r)$. I は $c_1 = 3.0, c_3 = 0.3$ の、II は $c_1 = 3.0, c_3 = 4.5$ の点において測定した. $G_s(r)$ の右上には、IV の短距離の相関を拡大した. rが大きくても有限の値に残るが、強磁性的に残ることが分かる.L = 18

図 3.8: 相 V と相 VI のスピンネマティック相関 $G_n(r)$ とスピン相関 $G_s(r)$. I は $c_1 = 2.3, c_3 = 4.5$ の、II は $c_1 = 3.0, c_3 = 4.5$ の点において測定した.L = 18.

図 3.9: $c_1 = 3.0, c_2 = 2.0$ と固定して c_3 を変化させた場合の比熱. c_3 が大きくなるにつれて、相 が III→IV→VI→V と移り変わる. c_3 が4付近の大きなピークは相 IV と相 VI の転移を、 c_3 が5 付近の小さなピークは相 VI と相 V の転移を示す. ところが、相 III と相 IV の間に比熱の異常 は見られなかった.L = 18.

図 3.10: $c_1 = 3.0, c_2 = 2.0$ と固定して c_3 を変化させた場合のインスタントン密度. c_3 が小さい 反強磁性相では0に近かったのが、相 VI で急激に上昇し相 V では落ち着いている.L = 18.

3.4 ホールドープの効果

CP³変数で記述されたt - Jモデルを例に用いて、ホールを導入する.t - Jモデルのハミルトニアン \mathcal{H} は次で与えられる.

$$\mathcal{H} = -t \sum_{x,\mu,\sigma} (\tilde{C}_{x+\mu,\sigma}^{\dagger} \tilde{C}_{x,\sigma} + \text{h.c.}) + J \sum_{x,\mu} \hat{\mathbf{S}}_{x+\mu} \cdot \hat{\mathbf{S}}_{x}$$
$$\tilde{C}_{x,\sigma} \equiv (1 - C_{x\bar{\sigma}^{\dagger}} C_{x\bar{\sigma}}) C_{x\sigma}$$
$$\hat{\mathbf{S}}_{x} \equiv \frac{1}{2} C_{x}^{\dagger} \sigma C_{x}$$
(3.25)

ここで $C_{x\sigma}$ は、スピン 3/2の fermion に対応する Fermi 演算子で反交換関係を満たす. t 項はス ピンの方向を変えずに隣り合う粒子のホッピング (跳び) を意味している. そのため、tが大き いと強磁性的な要素が強くなる. 第2項目の J は、最近接粒子の反強磁性的な相互作用である. 強いクーロン相互作用のために格子点の2重占有 (例えば、 $C_{x,3/2}^{\dagger}C_{x,1/2}^{\dagger}|0\rangle$ のような状態) を禁 止する条件を、(3.25)の $\tilde{C}_{x,\sigma}$ では課している。演算子 $C_{x,\sigma}$ には slave-fermion 表現により次の ように分解できる形を採用する.

$$C_{x\sigma} = \psi_x^{\dagger} a_{x\sigma} \tag{3.26}$$

 ψ_x は電荷 e でスピンを運ばない fermion のホールの消滅演算子である. $a_{x\sigma}$ は電荷がなく、Sp(4)スピン自由度を持つ boson の消滅演算子である. slave-fermion 表現では、(3.25) のハミルトニアンは

$$\mathcal{H} = -t \sum_{x,\pm\mu} \psi_x^{\dagger} a_{x\pm\mu}^{\dagger} a_x \psi_{x\pm\mu} + \frac{J}{4} \sum_{x,\mu} (a^{\dagger} \sigma a)_{x+\mu} \cdot (a^{\dagger} \sigma a)_x$$
(3.27)

となる. この slave-fermion 表現で、t - Jモデルを経路積分形式の分配関数 $Z = \text{Tr} \exp(-\beta H)$ に載せる. 虚時間を $\tau \in [0, \beta \equiv (k_{\beta}T)^{-1}]$ として、 $a_{x\sigma}(\tau)$ を複素数で、 $\psi_x(\tau)$ をGrassmann数で

ある.

$$\sum_{\sigma} \bar{z}_{x\sigma} z_{x\sigma} = 1$$

$$a_{x\sigma} = (1 - \bar{\psi}_x \psi_x)^{1/2} z_{x\sigma}$$
(3.28)

そして、経路積分で表現される分配関数を得るには CP^3 変数の $z_{x\sigma}(\tau)$ と Grassmann 数 $\psi_x(\tau)$ を積分する. Grassmann 数を直接計算することは難しいために、ここでは ψ_x を U(1) 変数の boson で表される ϕ_x を用いて近似する.

$$\psi_x = \sqrt{\delta\phi_x} , \quad \phi_x = \exp(i\varphi_x)$$
(3.29)

δはホールの濃度に比例するパラメータである.

まず有限温度*T*を考える。この場合、ゼロモードのみが残ることになり、 τ 方向の変数 $z_{x\sigma}$, ϕ_x は無視できる. (このことは4章で詳しく扱う.) $z_{x\sigma}$, ϕ_x の運動項が含む $\bar{z}_{x\sigma}\partial z_x/\partial \tau$, $\bar{\phi}_{x\sigma}\partial \phi_x/\partial \tau$ が消え、温度依存性は経路積分の全体にかかる β のみになる。そのため、虚時間方向の積分を 実行する必要が無い. 経路積分の作用は

$$S_h = -\frac{c_t}{2} \left[\sum_{x \in even,\mu} \mathcal{J}\bar{z}_{x+\mu}\bar{z}_x \bar{\phi}_{x+\mu} \phi_x + \sum_{x \in odd,\mu} \mathcal{J}\bar{z}_x \bar{z}_{x+\mu} \phi_{x+\mu} \bar{\phi}_x \right] + \text{c.c.}$$
(3.30)

となる. odd サイトと even サイトの z は以前のモデルと同様に \mathcal{J} の違いがある。(3.27) と (3.30) では、t - Jモデルとパラメータ c_t の間に $c_t \sim t\delta\beta$ という関係が成り立つ。また、作用のゲージ不変性を保つために、U(1) ゲージ変換は

$$z_{x\sigma} \to \exp(i\lambda_x) z_{x\sigma} \quad ,$$

$$\phi_x \to \exp(i\epsilon_x \lambda_x) \phi_x \qquad (3.31)$$

となる. ここで現れる ϵ は、odd サイトと even サイトを区別するもので、odd サイトでは $\epsilon = -1$ 、 even サイトでは $\epsilon = 1$ である. また、ホールの状態はt - Jモデルでいう電子の演算子 $B_{x\sigma}$

$$B_{x\sigma} = \phi_x^{\dagger} \times \begin{cases} z_{x\sigma} & x \in \text{even} \\ \mathcal{J}\bar{z}_{x\sigma} & x \in \text{odd} \end{cases}$$
(3.32)

を通して現れることになる.

ホールを考慮した作用は (3.19) に Sh 項を追加して

$$S = -\frac{c_1}{2} \sum_{x,\mu} \bar{z}_{x+\mu} U_{x\mu} z_x - \frac{c_2}{2} \sum_{x,\mu,\nu} U_{x\mu} U_{x+\mu,\nu} \bar{U}_{x+\nu,\mu} \bar{U}_{x\nu} - c_3 \sum_{x,\mu} |z \mathcal{J} z_{x+\mu}|^2 - \frac{c_t}{2} \left[\sum_{x \in even,\mu} \mathcal{J} \bar{z}_{x+\mu} \bar{z}_x \bar{\phi}_{x+\mu} \phi_x + \sum_{x \in odd,\mu} \mathcal{J} \bar{z}_x \bar{z}_{x+\mu} \phi_{x+\mu} \bar{\phi}_x \right] + \text{c.c.}$$
(3.33)

となる。*c*_tはホール濃度に比例している。また、ホールをドープしたモデルは3次元の有限温度モデルであり、*c*₁項や*c*₃項が小さい時は温度が高い状態となる。

ホールをドープしたモデルについては、

$$G_b(r) = \langle B_{x\sigma}^{\dagger} B_{x+r\mu\sigma} \rangle \tag{3.34}$$

によってホールが凝縮しているかを判断する.この相関を*t*-Jモデルの電子演算子による相関 になっているため電子相関とよぶことにする.

前節で得られたそれぞれの相に、(3.30)のホール項を入れ、ホールをドープしたモデルをシ ミュレーションの結果を示すホールのドープは S_h を通して行われ、各相を指定する c_1, c_3 を固 定して、 c_h を変化させることで各相への影響を見る.先ほどのモデルと違うのは、3次元系で 有限温度となるところである.ここでもゲージ場の運動エネルギーについて、 $c_2 = 0.0$ のとき と $c_2 = 2.0$ のときに分けて計算を行っている.

3.4.1 $c_2 = 0.0$ の場合の相構造の変化

まずは $c_2 = 0$ についての結果を示す.各相に対応する c_1, c_3 を指定し、 c_4 を変化させることで 相への影響を見る.相i、相ii、相ivにそれぞれホールをドープした場合、比熱は図(3.11)のよ うになった.それぞれ2次の転移が一つで、定性的には同じ結果を示す.相iiiに比熱をドープ した場合は図(3.12(a))のようになり、転移が2つ見える.1つ目の転移は分かりにくいが、図 (3.12(b))のように c_1 項と c_4 項の比熱に分けて見ると、 c_4 項の比熱が $c_4 = 1$ で不連続点を持っ ていることが分かる.

図 3.11: 相 i、相 ii、相 iv にホールをドープした場合の比熱. 相 i: $c_1 = 3.5, c_3 = 0.5$ 。相 ii: $c_1 = 3.5, c_3 = 3.3$. 相 iv: $c_1 = 3.5, c_3 = 6.0$. L = 12.

それぞれの相構造を調べるためにスピン相関 $G_s(r)$ 、スピンネマティック相関 $G_n(r)$ を見る. 相 i、相 ii、相 iv の転移前と相 iv の転移後のスピン相関とスピンネマティック相関を図 (3.13) に、電子相関を図 (3.14) に示す.スピン相関から、転移によって強磁性状態になることがわか る. fermion の運動を表す電子相関が、転移後に長距離の秩序を保持していることから、一種の 金属状態であると考えられる.また、低温の原子が自由に動くことにより、原子同士の物質波 が重なり BEC を形成する.相 i、相 ii の転移後の両相関は、相 iv の転移後のそれと定性的に等 しかった.

図 3.12: (a) は相 iii にホールをドープしたときの比熱. (b) は c_1 項と c_t 項の比熱. 相 iii: $c_1 = 6.0, c_3 = 0.5.L = 12$.

図 3.13: 相 i、相 ii、相 ivにホールをドープした場合の各相関. (a) はスピン相関 $G_s(r)$ 、(b) はスピンネマティック相関 $G_n(r)$.相 i: $c_1 = 3.5, c_3 = 0.5$ 。相 ii: $c_1 = 3.5, c_3 = 3.3$ 。相 iv: $c_1 = 3.5, c_3 = 6.0$ 。緩衝領域 6 の自由境界条件で計測した.L = 8.

図 3.14: 相 i、相 ii、相 iv にホールをドープした場合の電子相関 $G_B(r)$. 条件は図 (3.13) と同じ である.

相 iii のスピン・電子相関をそれぞれ図 (3.15) と図 (3.16) に示す. 最初の転移後の $c_t = 1.4$ の スピン相関を見ると、反強磁性状態を保持しているが、 $G_s(r)$ の相関が僅かだが振動している ため、強磁性的な要素も出始めている. 電子相関も僅かだが振動が見られ、長距離でも有限の 値に収束する. これらのことから、反強磁性と BEC 両方の状態が現れている相であると考えら れる. 2回目の転移後の $c_t = 2.0$ では、先ほど見た強磁性の BEC 相とほとんど同じである. た だ、こちらは $G_s(r)$ の強磁性の短距離相関になっている.

図 3.15: 相 iii にホールをドープした場合の各相関. (a) はスピン相関 $G_s(r)$ 、(b) はスピンネマ ティック相関 $G_n(r)$. 相 iii: $c_1 = 6.0, c_3 = 0.5$ 。緩衝領域 6 の自由境界条件で計測した.L = 8.

図 3.16: 相 iii にホールをドープした場合の電子相関 G_B(r). 条件は図 (3.15) と同じである.

3.4.2 *c*₂ = 2.0 の場合の相構造の変化

次に $c_2 = 2.0$ の相にホール項を入れ、ホールをドープしたモデルをシミュレーションの結果 を示す.相I、相II、相V、相VIについての比熱は図 (3.17)のようになった。これは $c_2 = 0.0$ の 場合と同じく、2次の転移点が一つあるだけであった。更に、転移後の相のスピン (ネマティッ ク)相関・電子相関も $c_2 = 0$ のそれと定性的に等しく、強磁性的 BEC 相であった.一つ異なる のは、相II は図 3.18 のようにエネルギーのダブルピークが確認でき、1 次転移であった.

図 3.17: 相 I、相 II、相 V、相 VI にホールをドープした場合の比熱. 相 I: $c_1 = 2.0, c_3 = 0.5$. 相 II: $c_1 = 2.0, c_3 = 2.5$. 相 V: $c_1 = 2.0, c_3 = 5.0$. 相 VI: $c_1 = 3.0, c_3 = 5.0$. L = 12.

図 3.18: 相II でのエネルギーEの分布. $c_t = 0.481$ でエネルギーのダブルピークが見える. L = 12.

反強磁性相である相 III と相 IV の比熱を図 (3.19) に示す.また、相 III のスピン相関と電子 相関を図 (3.20) に、相 IV のそれを図 (3.21) に示す.相 III、相 IV ともに相 iii に比べて、比熱 のピークがはっきりと2つ見える.1つ目の転移後の相は、相 III と相 iii が同じ性質でスピン相 関 $G_s(r)$ と電子相関が振動し、強磁性的と BEC の混合状態であった.相 IV は1つ目の比熱の ピークが大きいが、 $G_s(r)$ を確認してみると、そのピークの後では既に強磁性となっている.し かし、相 iii や相 III で見られた電子相関の振動は見られなかった.2つ目のピーク後は相 III も 相 IV も、他の相と同じく強磁性と BEC の共存が見られた.

図 3.19: 相 III、相 IV にホールをドープした場合の比熱. 相 III: $c_1 = 3.0, c_3 = 0.5$. 相 IV: $c_1 = 3.0, c_3 = 2.5$. L = 12.

図 3.20: 相 III にホールをドープした場合のスピン相関 $G_s(r)$ (a)、スピンネマティック相関 $G_n(r)$ (b) と電子相関 $G_B(r)$ (c). 緩衝領域 6 の自由境界条件で計測した.L = 8.

図 3.21: 相 IV にホールをドープした場合のスピン相関 $G_s(r)$ (a)、スピンネマティック相関 $G_n(r)$ (b) と電子相関 $G_B(r)$ (c). 緩衝領域 6 の自由境界条件で計測した.L = 8.

このように、ホールをドープすると強磁性的な効果が強くなり、相転移を伴って反強磁性か

ら強磁性状態と移り変わる. その理由としては、ホールが動く時に生じるエネルギーギャップが、反強磁性より強磁性の方が小さいからだと考えられる.

3.5 第3章のまとめ

2章で得られた相図 (2.3) と3章3節で得られたゲージ場の運動エネルギーが存在する場合の 相図 (3.5) を比較する.

連続理論から得られた相図 (2.3) の (I),(II),(III),(IV) の各相は相図 (3.5) の I,II,III,IV に対応 していて、スパイラル磁性状態も広義の反強磁性状態と考えると定性的には対応していると考 えられる. V,VI の相が連続理論には現れなかった. また、相 I,II と相 III,IV の間には相転移は なく、クロスオーバーが存在するだけだった. 連続理論では、 $\gamma(c_3)$ が大きい場合を導出の段階 で排除しているので、これらの相は現れないと考えられる.

以上は (2+1) 次元の格子モデルの結果である.ホールドープの効果については有限温度の3 次元の格子モデルである. U(1) 変数によって表されるホールを導入した結果、いずれの相も結果的には強磁性の BEC(超流動) 状態に落ち着くことがわかった.反強磁性相である相図 (3.2) の iii 相に対するホールドープの効果は、中間状態の反強磁性的な BEC から強磁性的な BEC へ変 化するもので他の相の結果とは異なっている.

第4章 三角格子上のbosonic *t – J* モデル の解析とその相構造

導入で扱ったように光学格子を用いることで、ほとんど任意の格子形状を構成することがで き、モデルのパラメーターの調整が可能で、広いパラメーター領域で系の状態を調べることが できる.まず極低温 boson 系を記述する基本的なモデルである1成分 Bose-Hubbard モデルで起 きる超流動-Mott 絶縁体転移の概要を示す.その後に2成分 Bose-Hubbard モデルから bosonic *t*-*J*モデルを導き、積層三角格子上における相構造について議論する.[50] boson の複数成分 による影響と幾何学的フラストレーションによる影響を含めることで新奇な現象が期待できる. また、従来の研究では、格子点に対して、粒子、またはホール数が整合な場合については、超 流動-Mott 絶縁体転移などが調べられているが、非整合な場合についてはよく調べられていな い.bosonic *t*-*J*モデルのスレーブ表示を用いることで、化学ポテンシャルの調節では得るこ とが難しい格子点に対して非整合な粒子、またはホール数について、カノニカルアンサンブル を用いたモンテカルロ法によって計算を行った.

4.1 極低温 boson 系と Bose-Hubbard モデル

相互作用する Bose 系の例として、以下のような Bose-Hubbard model を考える.

$$\mathcal{H} = -\frac{1}{2} \sum_{\langle i,j \rangle} t_{i,j} (b_i^{\dagger} b_j + b_j^{\dagger} b_i) - \sum_i \mu_i n_i + \frac{U}{2} \sum_i n_i (n_i - 1)$$
(4.1)

 b_i, b_i^{\dagger} は boson の生成消滅演算子であり、 $n_i = b_i^{\dagger} b_i$ である.第1項はホッピング、第2項は化学 ポテンシャル (各サイトで異なる)、第3項は on site の斥力相互作用を表す. $b_i \rightarrow b_i e^{i\theta}$ と全体 の位相をずらしても、ハミルトニアンが不変であることから、global なU(1) 対称性を持ってい ることがわかる. $N = \sum_i b_i^{\dagger} b_i$ がハミルトニアンと交換することから、全粒子数は保存量になっ ている.

 $t/U \rightarrow 0$ の場合、ハミルトニアンは

$$\mathcal{H} = -\sum_{i} \mu_{i} n_{i} + \frac{U}{2} \sum_{i} n_{i} (n_{i} - 1)$$
(4.2)

となり、各サイト i でのエネルギーは

$$E_i = -\mu_i n_i + \frac{U}{2} n_i (n_i - 1)$$
(4.3)

である. これを最小にする n_i の値を $n_{0,i}$ とすると $n_{0,i} = 1/2 + \mu/U$ となり、 $n_{0,i}$ は $1/2 + \mu_i/U$ を超える最大の整数となる. 各格子点に $n_{0,i}$ 個ずつ粒子が占有している状態になっており、系は Mott 絶縁体相になっている.

-方、 $t/U \rightarrow \infty$ の場合は、ハミルトニアンは

$$\mathcal{H} = -\frac{1}{2} \sum_{\langle i,j \rangle} t_{i,j} (b_i^{\dagger} b_j + b_j^{\dagger} b_i) - \sum_i \mu_i n_i$$
(4.4)

となる. これは Fourier 変換によって対角化できる. 簡単のため $t_{i,j} = t$ 、 $\mu_i = \mu$ とすると

$$\mathcal{H} = -\sum_{p} \left(\frac{1}{2}tK(p) + \mu\right) n_p \tag{4.5}$$

となる. $K(p) = \sum_{k=1}^{D} \cos p_k$ である. これより基底状態はp = 0の状態となる. T = 0では系は超流動相になっている. したがって、あるt/Uで超流動-Mott 絶縁体転移があると考えられる.

このモデルに対して超流動の秩序変数を設定し、それに対する有効作用を考える.

$$\mathcal{H}_0 = -\sum_i \mu_i n_i + \frac{U}{2} \sum_i n_i (n_i - 1)$$
(4.6)

$$\mathcal{H}_1 = -\frac{1}{2} \sum_{\langle i,j \rangle} t_{i,j} (b_i^{\dagger} b_j + b_j^{\dagger} b_i)$$
(4.7)

とする.分配関数は

$$Z = \operatorname{Tr} e^{-\beta \mathcal{H}} = \operatorname{Tr} \left(e^{-\beta \mathcal{H}_0} U(\beta) \right) = Z_0 \operatorname{Tr} \left(e^{-\beta \mathcal{H}_0} U(\beta) \right) / Z_0 = Z_0 \langle U(\beta) \rangle_0$$

$$(4.8)$$

でとなる.
$$U(\beta) = e^{\beta \mathcal{H}_0} e^{-\beta \mathcal{H}}$$
であり、 $\langle \cdots \rangle_0 = \operatorname{Tr}(e^{-\beta \mathcal{H}_0} \cdots) / Z_0$ である. $U(\beta)$ に関しては、

$$\frac{\partial U(\beta)}{\partial \beta} = -e^{\beta \mathcal{H}_0} \mathcal{H}_1 e^{-\beta \mathcal{H}_0} U(\beta)$$
$$= -\mathcal{H}_1(\beta) U(\beta) \tag{4.9}$$

となる. ただし、 $\mathcal{H}_1(\beta) = e^{\beta \mathcal{H}_0} \mathcal{H}_1 e^{-\beta \mathcal{H}_0}$ である.(4.9)の形式解は

$$U(\beta) = T_{\tau} \left[\exp\left(-\int_{0}^{\beta} d\tau \mathcal{H}_{1}(\tau)\right) \right]$$
(4.10)

と与えられる.T_τは虚時間に対しての時間順序積である.したがって、

$$Z = Z_0 \left\langle T_\tau \left[\exp\left(\int_0^\beta d\tau \sum_{\langle i,j \rangle} \frac{1}{2} t_{i,j} (b_i^\dagger(\tau) b_j(\tau) + b_j^\dagger(\tau) b_i(\tau)) \right) \right] \right\rangle_0$$
(4.11)

と表すことができる. $(b_i(\tau) = e^{\beta \mathcal{H}_0} b_i e^{-\beta \mathcal{H}_0}, b_i^{\dagger}(\tau) = e^{\beta \mathcal{H}_0} b_i^{\dagger} e^{-\beta \mathcal{H}_0}$ である.) 演算子 b, b^{\dagger} の 2 体の 項を 1 体にさせるために次のような Gauss 積分を考える. [51] [52]

$$\operatorname{const.} = \int \mathcal{D}\phi_{i}(\tau)\mathcal{D}\bar{\phi}_{i}(\tau) \exp\left[-\int_{0}^{\beta} d\tau \sum_{\langle i,j \rangle} (\bar{\phi}_{i}(\tau) - t_{i,k}b_{k}^{\dagger}(\tau))t_{i,j}^{-1}(\phi_{j}(\tau) - t_{j,l}b_{l}(\tau))\right]$$
$$= \int \mathcal{D}\phi_{i}(\tau)\mathcal{D}\bar{\phi}_{i}(\tau) \exp\left[\int_{0}^{\beta} d\tau \sum_{\langle i,j \rangle} \left\{-t_{i,j}^{-1}\bar{\phi}_{i}(\tau)\phi_{j}(\tau) + \bar{\phi}_{i}(\tau)b_{i}(\tau) + \phi_{i}(\tau)b_{i}^{\dagger}(\tau) - t_{i,j}b_{i}^{\dagger}(\tau)b_{j}(\tau)\right\}\right]$$
$$= \int \mathcal{D}\phi_{i}(\tau)\mathcal{D}\bar{\phi}_{i}(\tau) \exp\left[\int_{0}^{\beta} d\tau \sum_{\langle i,j \rangle} \left\{-t_{i,j}^{-1}\bar{\phi}_{i}(\tau)\phi_{j}(\tau) + \bar{\phi}_{i}(\tau)b_{i}(\tau) + \phi_{i}(\tau)b_{i}^{\dagger}(\tau) - t_{i,j}b_{i}^{\dagger}(\tau)b_{j}(\tau)\right]\right\}$$
$$-\frac{1}{2}t_{i,j}(b_{i}^{\dagger}(\tau)b_{j}(\tau) + b_{j}^{\dagger}(\tau)b_{i}(\tau))\right\}\right]$$
(4.12)

これにより $\langle \phi_i(\tau) \rangle = \sum_j t_{i,j} \langle b_j(\tau) \rangle$ という関係が得られ、 $\langle \phi_i(\tau) \rangle$ は、超流動の秩序変数と考えることができる. (4.12) を (4.11) に挿入すると

$$Z = Z_0 \left\langle T_{\tau} \left[\exp\left(-\int_0^\beta d\tau \sum_{\langle i,j \rangle} \left\{ t_{i,j}^{-1} \bar{\phi}_i(\tau) \phi_j(\tau) - \bar{\phi}_i(\tau) b_i(\tau) - \phi_i(\tau) b_i^{\dagger}(\tau) \right\} \right) \right] \right\rangle_0$$
(4.13)

が得られる. ϕ_i はc-数なので、

$$Z = Z_0 \exp\left[-\int_0^\beta \sum_{\langle i,j\rangle} t_{i,j}^{-1} \bar{\phi}_i(\tau) \phi_j(\tau) + \sum_i \ln\left\langle \mathcal{T}_\tau \exp\left[\int_0^\beta d\tau (\phi_i(\tau) b_i^{\dagger}(\tau) + \bar{\phi}_i(\tau) b_i(\tau))\right]\right\rangle_0\right]$$
(4.14)

となる. したがって、φに対する有効作用として

$$S(\phi) = -\int_0^\beta \sum_{\langle i,j \rangle} t_{i,j}^{-1} \bar{\phi}_i(\tau) \phi_j(\tau) + \sum_i \ln \left\langle \mathcal{T}_\tau \exp\left[\int_0^\beta d\tau (\phi_i(\tau) b_i^{\dagger}(\tau) + \bar{\phi}_i(\tau) b_i(\tau))\right] \right\rangle_0 \quad (4.15)$$

が得られる. 第1項は (1.49) によって計算できる. 第2項はキュムラント展開になっていて、1 次はなくなる. キュムラントの2次から

$$S(\phi) \sim -\beta \sum_{\langle i,j \rangle} \frac{\beta}{4tD^2} \bar{\phi}_i(\tau) \nabla^2 \phi_j(\tau) + \sum_i \int_0^\beta d\tau \int_0^\beta d\tau' [\bar{\phi}_i(\tau)\phi_i(\tau')G_i(\tau-\tau')\bar{\phi}_i(\tau)\phi_i(\tau')\bar{G}_i(\tau'-\tau)]$$

$$(4.16)$$

と展開することができる. ただし G_i はGreen 関数

$$G_i(\tau - \tau') = \langle b_i^{\dagger}(\tau) b_i(\tau') \rangle_0 \tag{4.17}$$

である.Green 関数をωについて展開すると

$$\int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' [\bar{\phi}_{i}(\tau)\phi_{i}(\tau')G_{i}(\tau-\tau')\bar{\phi}_{i}(\tau)\phi_{i}(\tau')\bar{G}_{i}(\tau'-\tau)]$$

$$= \int d\omega [\bar{\phi}_{i}(\omega)\phi_{i}(\omega)G_{i}(\omega) + \bar{\phi}_{i}(\omega)\phi_{i}(\omega)\bar{G}_{i}(-\omega)]$$

$$\sim \int d\omega (r_{i} + i\omega g_{i} + \omega^{2}u_{i})\bar{\phi}_{i}(\omega)\phi_{i}(\omega)$$
(4.18)

が得られる. 定数項を整理すると

$$S = \frac{1}{2} \int_{k,\omega} (k^2 + \omega^2) |\phi(k,\omega)|^2 + \frac{1}{2} \sum_i r_i |\phi_i(\tau)|^2 + g \int_{k,\omega} i\omega |\phi(k,\omega)|^2 + u \int_0^\tau |\phi|^4$$
(4.19)

となる. $\phi O i, \tau O$ 依存性をなくし、 ϕ で展開する. $\langle m|b^{\dagger}|n \rangle = \delta_{n+1,m} \langle m|b|n \rangle = \delta_{n-1,m}$ である ことにを用いると (4.14) より

$$S_{\rm MF} = -\left(\mu + \frac{U}{2}\right)n + \frac{U}{2}n^2 + r|\phi|^2 + u|\phi|^2 + O(|\phi|^6)$$
(4.20)

となり平均場近似に帰着する. ここで

$$r = -t \left[1 + t \left(\frac{n_0 + 1}{\mu - Un_0} + \frac{n_0}{Un_0 - \mu} \right) \right]$$

$$u = t^4 \left[\frac{n_0(n_0 - 1)}{((U(n_0 - 1) - \mu)^2((U(2n_0 - 3) - 2\mu))} - \frac{(n_0 + 1)(n_0 + 2)}{(Un_0 - \mu)^2(U(2n_0 + 1) - 2\mu))} - \left(\frac{n_0}{U(n_0 - 1) - \mu} - \frac{n_0 + 1}{Un_0 - \mu} \right) \left(\frac{n_0}{(U(n_0 - 1) - \mu)^2} - \frac{n_0 + 1}{(Un_0 - \mu)^2} \right) \right]$$
(4.21)

と求めることができる.これより転移点ではr = 0なので μ/U について解くと

$$\frac{\mu}{U} = \frac{1}{2} \left((2n_0 - 1) - \frac{t}{U} \right) \pm \sqrt{\left(\frac{t}{U}\right)^2 - \frac{2t(2n_0 + 1)}{U} + 1}$$
(4.22)

となる.これより相図(4.1)が得られる.

 $\phi = 0$ では各格子点に n_0 個ずつ粒子がつまり Mott 絶縁体相と、 $\phi \neq 0$ の超流動相が現れる.

図 4.1: Bose-Hubbard モデルの平均場相図. [53]

4.2 bosonic t - Jモデルの導出

2成分原子系を考える.この2つの原子をa原子、b原子と名付ける.これらの原子は、レー ザーによってできる光学格子にトラップされているものとする.レーザーは様々な形状(正方格 子、三角格子…)の格子を作ることができる.極低温ではトラップポテンシャルが十分深けれ ば、荷電励起は起こらず、原子は最低エネルギーバンドに拘束されることになる.一般的に2 成分の Bose-Hubbard モデルのハミルトニアンは次のように与えられる. [54]

$$\mathcal{H} = -\sum_{\langle i,j \rangle} t_a(a_i^{\dagger}a_j + a_j^{\dagger}a_i) - \sum_{\langle i,j \rangle} t_b(b_i^{\dagger}b_j + b_j^{\dagger}b_i) + U\sum_i \left(n_{a,i} - \frac{1}{2}\right) \left(n_{b,i} - \frac{1}{2}\right) + \frac{1}{2}\sum_{i,\alpha=a,b} V_{\alpha}n_{\alpha,i}(n_{\alpha,i} - 1) - \sum_{i,\alpha} \mu_{\alpha}n_{\alpha,i}$$
(4.23)

 $\langle i, j \rangle$ は最近接サイトの組みを表し、 a_i, b_i は格子点 *i*における 2 成分それぞれの boson の消滅 演算子、で $n_{i,a} = a_i^{\dagger} a_i, b_{i,a} = b_i^{\dagger} b_i$ である.

立方格子では、レーザーによるポテンシャルの最小点を2次で近似するとホッピング $t_{a(b)}$ は $t_{a(b)} \simeq \pi^2 v_{a(b)}/4 \exp[-(\pi^2/4)(v_{a(b)}/E_R)^{1/2}]$ となる. 異種粒子間相互作用*U*は、 $U \simeq (8/\pi)^{1/2}(ka_{ab})$ $(E_R \bar{v}_{ab}^3)^{1/4}$ と表すことができる. $v_{a(b)}$ はa、b粒子が拘束されるポテンシャルの深さで、 $\bar{v}_{ab} = 4v_a v_b/(v_a^{1/2} + v_b^{1/2})^2$ はその平均的なポテンシャルの深さ、 $E_R = \hbar^2 k^2/2m$ は原子の運動エネル ギー、 a_{ab} はa、b原子間の散乱長を表す. 同種粒子間相互作用 $V_{a(b)}$ は、 $V_{a(b)} \simeq (8/\pi)^{1/2}(ka_{a(b)})$ $(E_R v_{a(b)}^3)^{1/4}$ と表される. a_{ab} はa、b原子の散乱長を表す.

粒子間相互作用 U、 $V_{a(b)}$ の調整は、 $U/V_{a(b)}$ を固定して格子間隔を調整することによって行う ことできる. $t_{a(b)}$ は、原子のポテンシャルの深さ $v_{a(b)}$ をレーザーの強さを変えることで調整で きる. ここでは、原子はそれぞれ異なった化学ポテンシャル $\mu_a \neq \mu_b$ を持つとする. 原子の成分 をスピンの成分と見立てた場合、化学ポテンシャルは磁場に対応している.

2 成分 Bose-Hubbard モデルの有効モデルとして、2 成分 bosonic t - Jモデルを導出する. $U, V_{a(b)} \to \infty$ の極限において、状態を2つの部分空間に分けることで導く. 部分空間に分ける ことが本質的に可能であれば、t - Jモデルに限らず適用することができる. $U, V_{a(b)} \to \infty$ で $t_{a(b)}$ を無視すれば、各格子点に粒子が1 個ずつ詰まった整合な Mott 絶縁体ができる. この状態 を含めた各格子点の2 重占有を許さない状態の部分空間を Pとする.Q は格子点の2 重占有を 許した状態に対応している. 全体の空間を張る状態ベクトルを $|\Psi\rangle$ とすると

$$|\Psi\rangle = |\Psi_P\rangle + |\Psi_Q\rangle \tag{4.24}$$

となる. $|\Psi_P\rangle = \mathcal{P}|\Psi\rangle$ 、 $|\Psi_Q\rangle = \mathcal{Q}|\Psi\rangle$ である.空間 $P \sim 0$ 射影演算子 \mathcal{P} は、 $\mathcal{P} = \prod_i (1 - \hat{n}_a \hat{n}_b)$ と表すことができる. $\mathcal{P} + \mathcal{Q} = 1$ 、 $\mathcal{P}\mathcal{Q} = \mathcal{Q}\mathcal{P} = 0$ がそれぞれ成り立つ.Schrödinger 方程式 $\mathcal{H}|\Psi\rangle = E|\Psi\rangle$ に $\mathcal{P} \geq \mathcal{Q}$ に乗じると、2つの部分空間に対応する状態ベクトルが次のように混成される.

$$(E - \mathcal{H}_{PP})|\Psi_P\rangle = \mathcal{H}_{PQ}|\Psi_Q\rangle \tag{4.25}$$

$$(E - \mathcal{H}_{QQ})|\Psi_Q\rangle = \mathcal{H}_{QP}|\Psi_P\rangle \tag{4.26}$$

 $\mathcal{H}_{PP} = \mathcal{PHP}, \mathcal{H}_{QQ} = \mathcal{QHQ}, \mathcal{H}_{PQ} = \mathcal{PHQ}, \mathcal{H}_{QP} = \mathcal{QHP}$ である. $\mathcal{H}_{PP}, \mathcal{H}_{QQ}$ はそれぞれ部 分空間 P, Qにおけるハミルトニアンである. $\mathcal{H}_{PQ} \geq \mathcal{H}_{QP}$ は2つの部分空間を混成する.(4.26) の形式解は

$$|\Psi_Q\rangle = \frac{1}{E - \mathcal{H}_{QQ}} \mathcal{H}_{QP} |\Psi_P\rangle \tag{4.27}$$

となる.これを(4.25)に代入すると、部分空間 P での有効ハミルトニアンは

$$(E - \mathcal{H}_{PP})|\Psi_{P}\rangle = \mathcal{H}_{PQ}|\Psi_{Q}\rangle$$

$$(E - \mathcal{H}_{PP})|\Psi_{P}\rangle = \mathcal{H}_{PQ}\frac{1}{E - \mathcal{H}_{QQ}}\mathcal{H}_{QP}|\Psi_{P}\rangle$$

$$\mathcal{H}_{PP}|\Psi_{P}\rangle + \mathcal{H}_{PQ}\frac{1}{E - \mathcal{H}_{QQ}}\mathcal{H}_{QP}|\Psi_{P}\rangle = E|\Psi_{P}\rangle$$

$$(4.28)$$

となる.第1項は非摂動項、第2項は2次摂動項になっている.相互作用によって部分空間Qへ 遷移したものが、さらにもう相互作用することで、部分空間Pに戻ってくることを表している. ハミルトニアンを次のように分ける.

$$\mathcal{H}_{t} = -\sum_{\langle i,j \rangle} t_{a}(a_{i}^{\dagger}a_{j} + a_{j}^{\dagger}a_{i}) - \sum_{\langle i,j \rangle} t_{b}(b_{i}^{\dagger}b_{j} + b_{j}^{\dagger}b_{i})$$

$$\mathcal{H}_{UV} = U\sum_{i} \left(n_{a,i} - \frac{1}{2}\right) \left(n_{b,i} - \frac{1}{2}\right) + \frac{1}{2}\sum_{i,\alpha=a,b} V_{\alpha}n_{\alpha,i}(n_{\alpha,i} - 1) - \sum_{i,\alpha} \mu_{\alpha}n_{\alpha,i}$$

$$\mathcal{H}_{\mu} = -\sum_{i,\alpha} \mu_{\alpha}n_{\alpha,i} \qquad (4.29)$$

 \mathcal{H}_{PP} は部分空間 Pの中で閉じているので、

$$\mathcal{H}_{PP} = \mathcal{P}\mathcal{H}\mathcal{P} = \mathcal{P}(\mathcal{H}_t + \mathcal{H}_\mu)\mathcal{P}$$

= $-\sum_{\langle i,j \rangle} t_a \mathcal{P}(a_i^{\dagger}a_j + a_j^{\dagger}a_i)\mathcal{P} - \sum_{\langle i,j \rangle} t_b \mathcal{P}(b_i^{\dagger}b_j + b_j^{\dagger}b_i)\mathcal{P} - \sum_{i,\alpha} \mu_{\alpha} \mathcal{P}n_{\alpha,i}\mathcal{P}$ (4.30)

一方、(4.28)の第2項は部分空間 Pから部分空間 Qへ行って戻ってくる過程を表すので、

$$\mathcal{H}_{2} \equiv \mathcal{H}_{PQ} \frac{1}{E - \mathcal{H}_{QQ}} \mathcal{H}_{QP} = \mathcal{P} \mathcal{H} \mathcal{Q} \frac{1}{E - \mathcal{H}_{QQ}} \mathcal{Q} \mathcal{H} \mathcal{P}$$
$$= \mathcal{P} \mathcal{H}_{t} \frac{1}{E - \mathcal{H}_{UV}} \mathcal{H}_{t} \mathcal{P}$$
(4.31)

と変形することができる.

隣接する2つの格子点に注目して考えると $|\Psi_P\rangle$ は次の4つの状態からなっている.

$$|a,a\rangle, |a,b\rangle, |b,a\rangle, |a,a\rangle,$$
 (4.32)

 $|a,a\rangle$ 、 $|a,a\rangle$ は、a原子またはb原子が隣り合っている状態、 $|a,b\rangle$ はある格子点にa原子、その隣にb原子が存在している状態 $|b,a\rangle$ は $|a,b\rangle$ と原子の位置が入れ替わった状態を表わしている.

以下では $\mu = \mu_a = -\mu_b$ とする. \mathcal{H}_{PP} は各格子点の粒子数が1の状態に作用して状態を変えない項になっている. 化学ポテンシャルの項 \mathcal{H}_{μ} を行列で表すと

$$\mathcal{H}_{\mu} = \begin{pmatrix} -2\mu + E_0 & 0 & 0 & 0 \\ 0 & E_0 & 0 & 0 \\ 0 & 0 & E_0 & 0 \\ 0 & 0 & 0 & 2\mu + E_0 \end{pmatrix} \begin{vmatrix} a, a \rangle \\ |a, b \rangle \\ |b, a \rangle \\ |b, b \rangle$$

$$(4.33)$$

となる.ただし、エネルギーを E_0 だけシフトしている. \mathcal{H}_2 は図 (4.2) の過程を経て次のようになる.

図 4.2: 2次のプロセス

$$\mathcal{H}_{2} = \begin{pmatrix} -4t_{a}^{2}/V_{a} & 0 & 0 & 0\\ 0 & -2(t_{a}^{2}+t_{b}^{2})/U & -2t_{a}t_{b}/U & 0\\ 0 & -2t_{a}t_{b}/U & -2(t_{a}^{2}+t_{b}^{2})/U & 0\\ 0 & 0 & 0 & -4t_{b}^{2}/V_{b} \end{pmatrix} \begin{vmatrix} a,a \rangle \\ |a,b \rangle \\ |b,a \rangle \\ |b,b \rangle$$
(4.34)

化学ポテンシャルと合わせると

$$\begin{pmatrix}
-\frac{4t_a^2}{V_a} - 2\mu + E_0 & 0 & 0 & 0 \\
0 & -\frac{2(t_a^2 + t_b^2)}{U} + E_0 & -\frac{2t_a t_b}{U} & 0 \\
0 & -\frac{2t_a t_b}{U} & -\frac{2(t_a^2 + t_b^2)}{U} + E_0 & 0 \\
0 & 0 & 0 & -\frac{4t_b^2}{V_b} + 2\mu + E_0
\end{pmatrix}
\begin{vmatrix}
a, a \\
|a, a \rangle \\
|b, a \rangle \\
|b, b \rangle$$
(4.35)

となる. これと磁場中の Heisenberg モデルとの対応を考える. 磁場中の Heisenberg モデルは

$$\mathcal{H}_{spin} = J_{xy} (S_i^x S_j^x + S_i^y S_j^y) + J_z S_i^z S_j^z - h(S_i^z + S_j^z)$$

$$= \frac{J_{xy}}{2} (S_i^+ S_j^- + S_i^- S_j^+) + J_z S_i^z S_j^z - h(S_i^z + S_j^z)$$

$$= \frac{J_{xy}}{8} (\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+) + \frac{J_z}{4} \sigma_i^z \sigma_j^z - \frac{h}{2} (\sigma_i^z + \sigma_j^z)$$
(4.36)

と表される. $S_i^{\pm} = S_i^x \pm S_i^y$ 、 $S_i^{\alpha} = \sigma_i^{\alpha}/2$ である. a 原子を up スピン、b 原子を down スピンに対応させる. このスピンのことを擬スピン (pseudo spin) という. この Heisenberg モデルのハミルトニアンは

$$\mathcal{H}_{\rm spin} = \begin{pmatrix} J_z/4 - h & 0 & 0 & 0 \\ 0 & -J_z/4 & J_{xy}/8 & 0 \\ 0 & J_{xy}/8 & -J_z/4 & 0 \\ 0 & 0 & 0 & J_z/4 + h \end{pmatrix} \begin{vmatrix} \uparrow, \uparrow \rangle \\ |\downarrow, \downarrow \rangle$$
(4.37)

となる.したがって、(4.35),(4.37)より

$$-\frac{4t_a^2}{V_a} - 2\mu + E_0 = \frac{J_z}{4} - h$$

$$-\frac{4t_b^2}{V_b} + 2\mu + E_0 = \frac{J_z}{4} + h$$

$$-\frac{2(t_a^2 + t_b^2)}{U} + E_0 = -\frac{J_z}{4}$$

$$-\frac{2t_a t_b}{U} = \frac{J_{xy}}{8}$$
 (4.38)

これより、

$$J_{xy} = -\frac{16t_a t_b}{U}$$

$$J_z = \frac{4(t_a^2 + t_b^2)}{U} - 4\left(\frac{t_a^2}{V_a} + \frac{t_b^2}{V_b}\right)$$

$$h = 2\left(\frac{t_a^2}{V_a} - \frac{t_b^2}{V_b}\right) + 4\mu$$
(4.39)

が得られる.

まとめると bosonic t - Jモデルは次のようになる.

$$\mathcal{H}_{t-J} = -\sum_{\langle i,j \rangle} t_a \mathcal{P}(a_i^{\dagger} a_j + a_j^{\dagger} a_i) \mathcal{P} - \sum_{\langle i,j \rangle} t_b \mathcal{P}(b_i^{\dagger} b_j + b_j^{\dagger} b_i) \mathcal{P} + \sum_{\langle i,j \rangle} \mathcal{P}\{J_{xy}(S_i^x S_j^x + S_i^y S_j^y) + J_z S_i^z S_j^z\} \mathcal{P} - \sum_i h \mathcal{P} S_i^z \mathcal{P}$$
(4.40)

(4.39) より、 $t_a = t_b$ 、 $V = V_a = V_b$ とすると擬スピンの相互作用はU、Vによって調整できる ことがわかる. 化学ポテンシャルは磁場に対応する.Bose-Hubbard モデルから bosonic t - Jモ デルを導出するとき、 $J_{xy} < 0$ になっている.

スピンは擬スピンであり、以下のようにa、b原子の演算子と対応している.

$$S_i^{\alpha} = \frac{1}{2} B_i^{\dagger} \sigma^{\alpha} B_i \tag{4.41}$$

ただし、 $B_i = (a_i, b_i)^t$ である.

4.3 bosonic t - Jモデルの解析とその結果

前節において導かれた bosonic t - Jモデルを図 (4.3) のような積層三角格子を想定し、有限 温度での相構造をモンテカルロ法によって得る. 一般には、 $J_{xy} < 0$ となっているが、 J_{xy} 、 J_z を自由なパラメーターとして扱う. これによって、 J_{xy} 、 $J_z > 0$ のフラストレーションした場合 についても考えることができる.

図 4.3: 積層三角格子. スナップショットで三角格子は、正方形に対角線を入れることにより表している.

t-Jモデルでは、格子点の2重占有を禁止しているため

$$a_i^{\dagger} a_i + b_i^{\dagger} b_i \le 1 \tag{4.42}$$

の制限がついている.そこでスレーブ粒子表現を用いて、この制限を表現する.

$$a_i = \phi_i^{\dagger} \varphi_{1i}, \quad b_i = \phi_i^{\dagger} \varphi_{2i}, \tag{4.43}$$

このとき

$$(\phi_i^{\dagger}\phi_i + \varphi_{1i}^{\dagger}\varphi_{1i} + \varphi_{2i}^{\dagger}\varphi_{2i})|\text{phys}\rangle = |\text{phys}\rangle$$
(4.44)

となる. ϕ_i は格子点*i*におけるホールの演算子、 $\varphi_{\sigma i}(\sigma = 1, 2)$ は擬スピンの自由度を表す演算子になっている.|phys)はスレーブ粒子表現によって表された状態空間である.状態をこの空間をすることによって、2重占有を禁止する部分空間 *P*への射影演算子*P*を考慮する必要はなくなる. ϕ_i は hard core boson 演算子の交換関係を満たし、 $\varphi_{\sigma i}$ は通常の boson 演算子の交換関係を満たす. 普通の boson は1 つの格子点にいくらでも詰まることができるが、hard core boson は1 個しか詰まらないため、同じ格子点での交換関係は fermion のように反交換関係を用いて表される.

$$[\phi_i, \phi_i^{\dagger}]_+ = 1, \quad [\phi_i, \phi_i]_+ = 1,$$
(4.45)

 $i \neq j$ では boson の交換関係と同じになる.

$$[\phi_i, \phi_j^{\dagger}] = 0, \quad [\phi_i, \phi_j] = 0, \quad [\phi_i^{\dagger}, \phi_j^{\dagger}] = 0$$
(4.46)

擬スピンの演算子もbosonと同じである.

$$[\varphi_{\sigma i}, \varphi_{\sigma' j}^{\dagger}] = \delta_{ij} \delta_{\sigma \sigma'}$$
$$[\varphi_{\sigma i}, \varphi_{\sigma' j}] = 0, \quad [\varphi_{\sigma i}^{\dagger}, \varphi_{\sigma' j}^{\dagger}] = 0$$
(4.47)

温度 $T(\beta = k_{\rm B}T)$ における分配関数は

$$Z = \int \mathcal{D}\phi \mathcal{D}\phi_1 \mathcal{D}\varphi_2 e^{-\beta \mathcal{H}_{t-J}}$$
(4.48)

となる. コヒーレント状態の経路積分では虚時間の1階微分 $\bar{a}_i(\tau)\partial_{\tau}a_i(\tau)$ のような項が現れる. $a_i(\tau)$ は boson 演算子 a_i に対応する場になっている. 松原振動数 $\omega_n = 2\pi n/\beta$ を用いて

$$a_i(\tau) = \sum_n e^{i\omega_n \tau} a_i(\omega_n) \tag{4.49}$$

と Fourier 級数で展開すると、虚時間微分の項は

$$\int_{0}^{\beta} d\tau \bar{a}_{i}(\tau) \partial_{\tau} a_{i}(\tau) = \sum_{n} 2\pi n i \bar{a}_{i}(\omega_{n}) a_{i}(\omega_{n})$$
$$= \sum_{n \neq 0} 2\pi n i \bar{a}_{i}(\omega_{n}) a_{i}(\omega_{n})$$
(4.50)

となる.このことから経路積分上の作用はゼロモード $(a_i(\omega_0))$ の虚時間依存性はなくなる.また、ハミルトニアンは、ゼロモードどうしの相互作用と、ゼロモードと非ゼロモードの相互作用、非ゼロモードどうしの相互作用に分けることができる.この非ゼロモードを積分することによって、虚時間に依存しないゼロモードのみを含んだ作用を得ることができる.非ゼロモードの相関 $\langle \bar{a}_i(\omega_{n\neq0})a_j(\omega_{n\neq0}) \rangle$ は、 $\exp(-\alpha|i-j|)$ のように減少する関数になっているため、元々の作用と積分によって非ゼロモードの効果が繰り込まれたゼロモードのみの作用との間に本質的な違いはないと考えられる.

よって経路積分における作用 A は

$$A = \beta \mathcal{H}_{t-J}$$

$$= -\beta t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) - \beta t \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + b_j^{\dagger} b_i)$$

$$+ \sum_{\langle i,j \rangle} \{\beta J_{xy} (S_i^x S_j^x + S_i^y S_j^y) + \beta J_z S_i^z S_j^z\} \mathcal{P}_{\text{hole},i} \mathcal{P}_{\text{hole},j} - \beta \mu \sum_i \phi_i^{\dagger} \phi_i \qquad (4.51)$$

と表すことができる. $t = t_a = t_b$ としている.また、前節では化学ポテンシャルは a、b 原子に対して与えられていたが、ホールに対しての化学ポテンシャルになっている. $\mathcal{P}_{\text{hole},i} = 1 - \phi_i^{\dagger} \phi_i$ はホールを導入したことによって現れる射影演算子で、ホールがあると $\mathcal{P}_{\text{hole},i} = 0$ になり、ホールがないときの擬スピンの相互作用を表すことができる.

コヒーレント状態の経路積分においては、演算子は複素数とすることができる. ホールに対しては、ホールの生成消滅演算子 $\phi_i^{\dagger}, \bar{\phi}_i$ を Schwinger boson $w_i = (w_{1i}, w_{2i})^t$ によって表すことができる. この Schwinger boson はスピン 1/2 の演算子 T を表すことができる.

$$T_i = \frac{1}{2} w_i^{\dagger} \sigma w_i \tag{4.52}$$

このスピンを up させる、または down させる演算子 T_i^{\pm} は

$$T_i^{\pm} = T_i^x \pm i T_i^y \tag{4.53}$$

と表すことができる.これをホールの生成消滅に対応させて、

$$\phi_{i}^{\dagger} = T_{i}^{x} + iT_{i}^{y} = w_{1i}^{\dagger}w_{2i}$$

$$\phi_{i} = T_{i}^{x} - iT_{i}^{y} = w_{2i}^{\dagger}w_{1i}$$
(4.54)

と表すことができる.この時点で

$$\phi_i^{\dagger}\phi_i = (T_i^x + iT_i^y)(T_i^x - iT_i^y) = (T_i^x)^2 + (T_i^y)^2 - i[T_i^x, T_i^y]$$

= $\frac{1}{2} + T_i^z$ (4.55)

を得ることができる.ここで

$$(T_i^{\pm})^2 = 0 \tag{4.56}$$

$$(T_i^x)^2 = \left\{\frac{1}{2}(T_i^+ + T_i^-)\right\}^2 = \frac{1}{4}(T_i^+ T_i^- + T_i^- T_i^+) = \frac{1}{4}$$
(4.57)

の関係を用いている.また、射影演算子 $\mathcal{P}_{hole,i}$ は

$$\mathcal{P}_{\text{hole},i} = \frac{1}{2} (1 - \bar{\phi}_i \phi_i) = \frac{1}{2} - T_i^z \tag{4.58}$$

となる.

次にこの複素数による表示を与える. $w_i = (w_{1i}, w_{2i})^t$ に対して、次のような CP^1 変数の極座 標表示を与える.

$$\begin{pmatrix} w_{1i} \\ w_{2i} \end{pmatrix} = \begin{pmatrix} \cos \psi_i e^{i\lambda_{1i}} \\ \sin \psi_i e^{i\lambda_{2i}} \end{pmatrix}$$
(4.59)

したがって、

$$\bar{\phi}_{i} = \frac{1}{2} \sin 2\psi_{i} e^{i(\lambda_{1i} - \lambda_{2i})}, \quad \phi_{i} = \frac{1}{2} \sin 2\psi_{i} e^{-i(\lambda_{1i} - \lambda_{2i})}$$
$$\bar{\phi}_{i} \phi_{i} = \frac{1 + \cos 2\psi_{i}}{2}, \quad \mathcal{P}_{\text{hole},i} = \frac{1 - \cos 2\psi_{i}}{2} \tag{4.60}$$

となる.

次に、擬スピンの演算子 $\varphi_{\sigma i}$ については、まず

$$\varphi_{1i}^{\dagger}\varphi_{1i} + \varphi_{2i}^{\dagger}\varphi_{2i} = 1 - \phi_i^{\dagger}\phi_i \tag{4.61}$$

と表すことができる. ϕ_i が hard core bosonの交換関係を満たすことを考慮すると

$$\varphi_{1i} = (1 - \phi_i^{\dagger} \phi_i) z_{1i}, \quad \varphi_{2i} = (1 - \phi_i^{\dagger} \phi_i) z_{2i}
\varphi_{1i}^{\dagger} = z_{1i}^{\dagger} (1 - \phi_i^{\dagger} \phi_i), \quad \varphi_{2i}^{\dagger} = z_{2i}^{\dagger} (1 - \phi_i^{\dagger} \phi_i)$$
(4.62)

と表すことができる.このことからt項は

$$-\beta t \sum_{\langle i,j \rangle} (a_i^{\dagger} a_j + a_j^{\dagger} a_i) - \beta t \sum_{\langle i,j \rangle} (b_i^{\dagger} b_j + b_j^{\dagger} b_i)$$

$$= -\beta t \sum_{\langle i,j \rangle} (\varphi_{1i}^{\dagger} \phi_i \phi_j^{\dagger} \varphi_{1j} + \varphi_{1j}^{\dagger} \phi_j \phi_i^{\dagger} \varphi_{1i}) - \beta t \sum_{\langle i,j \rangle} (\varphi_{2i}^{\dagger} \phi_i \phi_j^{\dagger} \varphi_{2j} + \varphi_{2j}^{\dagger} \phi_j \phi_i^{\dagger} \varphi_{2i})$$

$$= -\beta t \sum_{\langle i,j \rangle} (\phi_i \phi_j^{\dagger} z_{1i}^{\dagger} z_{1j} + \phi_j \phi_i^{\dagger} z_{1j}^{\dagger} z_{1i}) - \beta t \sum_{\langle i,j \rangle} (\phi_i \phi_j^{\dagger} z_{2i}^{\dagger} z_{2j} + \phi_j \phi_i^{\dagger} z_{2j}^{\dagger} z_{2i})$$

$$(4.63)$$

と表すことができる.最後の変形で

$$(1 - \phi_i^{\dagger} \phi_i) \phi_i = \phi_i$$

$$\phi_i^{\dagger} (1 - \phi_i^{\dagger} \phi_i) = \phi_i^{\dagger}$$
(4.64)

の関係を用いている.

 $z_i = (z_{1i}, z_{2i})^t$ は、先程と w_i 同様にスピン1/2の演算子を構成することができる. z_i に対して、 CP^1 変数の極座標表示

$$\begin{pmatrix} z_{1i} \\ z_{2i} \end{pmatrix} = \begin{pmatrix} \cos \phi_i e^{i\gamma_{1i}} \\ \sin \phi_i e^{i\gamma_{2i}} \end{pmatrix}$$
(4.65)

を与える.

これら以上から作用を書き下すと

$$A = \beta \mathcal{H}_{t-J}$$

$$= -c_t \sum_{\langle i,j \rangle} \frac{1}{2} \sin 2\psi_i \sin 2\psi_j \Big(\cos \kappa_i \cos \kappa_j \cos \left[\gamma_{1i} - \gamma_{1j} - (\lambda_{1i} - \lambda_{2i}) + (\lambda_{1j} - \lambda_{2j}) \right]$$

$$+ \sin \kappa_i \sin \kappa_j \cos \left[\gamma_{2i} - \gamma_{2j} - (\lambda_{1i} - \lambda_{2i}) + (\lambda_{1j} - \lambda_{2j}) \right] \Big)$$

$$+ \sum_{\langle i,j \rangle} \{ c_{J_{xy}} \sin 2\kappa_i \sin 2\kappa_j \cos[(\gamma_{1i} - \gamma_{2i}) - (\gamma_{1j} - \gamma_{2j})] + c_{J_{zz}} \cos 2\kappa_i \cos 2\kappa_j \}$$

$$\times \frac{1 - \cos 2\psi_i}{2} \frac{1 - \cos 2\psi_j}{2} - \beta \mu \sum_i \frac{1 + \cos 2\psi_i}{2}$$

$$(4.66)$$

となる. パラメーターは、 $c_t = \beta t$ 、 $c_{J_{xy}} = \beta J_{xy}$ 、 $c_{J_z} = \beta J_z$ 、である. これらのパラメーターに よって、どのような相構造を与えるのか探っていく.

なお計算を物理量は内部エネルギーEと比熱Cとホール密度 ρ

$$E = \frac{1}{N} \langle A \rangle, \quad C = \frac{1}{N} \langle (A - E)^2 \rangle, \quad \rho = \frac{1}{N} \langle \phi_i^{\dagger} \phi_i \rangle$$
(4.67)

と以下で定義されるスピン相関 $G_S(i,i+r), G_{xy}(i,i+r), G_z(i,i+r)$ と boson 相関 $G_B(i,i+r)$

$$G_S(i,i+r) = \langle \vec{S}_i \cdot \vec{S}_{i+r} \rangle \tag{4.68}$$

$$G_{xy}(i,i+r) = \langle S_i^x S_j^x + S_i^y S_j^y \rangle$$
(4.69)

$$G_z(i,i+r) = \langle S_i^z S_j^z \rangle \tag{4.70}$$

$$G_B(i,i+r) = \langle B_i^{\dagger} B_{i+r} + B_{i+r}^{\dagger} B_i \rangle$$
(4.71)

である. スピンの大きさ S は本来 1/2 であるが、1 になるように定義し直している. boson 相関 によって超流動の有無を調べることができる. また

$$G_B(i, i+r) = \langle a_i^{\dagger} a_{i+r} + b_i^{\dagger} b_{i+r} + \text{h.c} \rangle \propto \sqrt{\frac{\rho_i \rho_{i+r} (1-\rho_i)(1-\rho_{i+r})(1+\vec{S}_i \cdot \vec{S}_{i+r})}{2}} \cos \alpha_{i,i+r}$$
(4.72)

となっていて、スピンの構造を反映する量にもなっている. $\alpha_{i,i+r}$ は \vec{S}_i, \vec{S}_{i+r} が作る立体角とホールの位相差を含む量になっている. スピンが共面構造を取るとき、立体角は0になりホールの位相差のみに依存する.

次節からのモンテカルロ法による計算では、メトロポリスアルゴリズムによる update を行 なっている. sweep 数は 50000~100000 回で、様々な初期状態のサンプルに対して計算を行なっ ている. 各変数に対する受け入れ率は、40 %としている.

4.3.1 bosonic t - Jモデルの解析とその相構造 I: $t - J_{xy}$ モデル

(4.3.2) で $J_{xy} > 0, J_z = 0$ となっている $t - J_{xy}$ モデルについて計算を行った. Anderson の RVB 理論では、ホールをドープした反強磁性体において重要なのはスピン自体ではなく、シングレッ ト対が重要な役割を果たすと考えられている.特に三角格子反強磁性体では、フラストレーショ ンのために量子的な振る舞いが期待できる.

グランドカノニカルアンサンブルにおいて、図 (4.4) のような相図を得た. $c_{J_{xy}} = 6.0$ として、 c_t 、 $\beta\mu$ を変化させた. $c_t = \beta\mu = 0$ のときは 120° 構造になっている.

図 4.4: $t - J_{xy}$ モデルの相図. $c_{J_{xy}} = 6.0$

 c_t が小さいとき、図 (4.5) のように $\beta\mu$ を変化させると 2 回の 1 次転移を示し 3 つの相がある ことが分かった.

図 4.5: $c_t = 2.0$ と固定して、 $\beta \mu$ を変化さ せたときのエネルギー.

図 4.6: $c_t = 2.0$ と固定し、 $\beta \mu$ を変化させたときのホール密度.

ホール密度 $\rho = \langle \phi_i^{\dagger} \phi \rangle$ は図 (4.6) のように $\rho \approx 0 \rightarrow \approx 1/3 \rightarrow \approx 1$ と変化している. それぞれの 相の原子、ホール密度のスナップショットは図 (4.7) のようになっている.

図 4.7: $c_t = 2.0$ と固定したときの $\beta \mu = 12, 14, 15$ の原子、ホール密度.

図 4.8: $c_t = 2.0, \beta \mu = 12.0$ のスピン相関 $G_S(i, i+r).$

図 4.9: $c_t = 2.0, \beta \mu = 12.0$ のスピンのス ナップショット.

図 4.10: $c_t = 2.0, \beta \mu = 14.0$ のスピン相関 $G_S(i, i + r).$

図 4.11: $c_t = 2.0, \beta \mu = 14.0$ のスピンのス ナップショット.

 $\beta \mu < 13.6 \text{ obs}$ 、ホール密度は低く、2種類の原子のみが存在している. 図 (4.8) のスピン 相関、図 (4.9) のスナップショットから、系は 120° 構造を取ることがわかる. この状態を原子 で表現すると、a 原子とb 原子が各格子点に半分ずつ混ざった状態で詰まっている状態になる. 13.6 < $\beta \mu < 14.7$ のときは、ホールが 1/3 の格子点を占めており、残りの 2/3 の格子点に a 原子 とb原子が各格子点に半分ずつ混ざった状態で詰まっている.図(4.10)のスピン相関、図(4.11) のスナップショットからスピンは反強磁性的に配置していることが分かる.

以上は $_{c_t}$ が小さく、その影響がないときの相である.次は $_{c_t}$ が大きい場合を考える.図(4.4)の相図から、 $_{c_t}$ を大きくすると、前述の3つの相はすべてホール密度が $\rho \sim 0.5 - 0.7$ の相へと転移している.

この相のスピン相関と boson 相関をそれぞれ図 (4.12)、(4.12) に示す.

図 4.12: $c_t = 12.0, \beta \mu = 11.0$ のスピン相関 $G_S(i, i + r).$

図 4.13: $c_t = 12.0, \beta \mu = 11.0 \mathcal{O}$ boson 相関 $G_B(i, i + r)$.

図 (4.12) のスピン相関から、z成分だけが強磁性の相関を示していることがわかる.また、図 (4.12) から boson 相関が有限となっていて超流動状態になっていることがわかる. c_t の項は強磁性的な相互作用を表している.一方、 S_x 、 S_y は反強磁性相互作用をするため、反強磁性の影響を受けないz成分の強磁性が現れる.

グランドカノニカルアンサンブルでは、任意の化学ポテンシャルに対して、最も安定な状態 がそれぞれ整合なホール密度を伴って現れる.1次転移が起きる相境界近傍ではホール密度が 急激に変化するので、化学ポテンシャルを調節して任意のホール密度を得ることは難しい.そ こでグランドカノニカルアンサンブルではなく、系の平均ホール密度を一定に保つようなカノ ニカルアンサンブルにより相の変化を調べる.非整合なホール密度40%に対してtを大きくし たとき、どのような変化が起こるかを調べた.

図 4.14: $c_{J_{xy}} = 10.0, \rho = 0.4$ のときのエネルギーと $c_t \simeq 13.2$ のときのエネルギーのヒストグラム.

図 (4.14) のように $c_t \simeq 13.2$ のとき、エネルギーが不連続に変化している. この点での $Z = \int dEN(E) \exp(-\beta E)$ によって与えられる N(E) から、ダブルピークを持つヒストグラムが得られ、1 次転移が起きていることがわかる. そこで、非整合なホール密度が系にどのような影響を与えるのかを調べるために、1 次転移前後での相の様子をスナップショットを通して見ていく.

まず 1 次転移前の原子、ホール密度 ($c_t = 10.0$) とスピンのスナップショット ($c_t = 5.0$) をそれぞれ図 (4.15)、図 (4.16) に示す.

図 4.15: $c_t = 10.0, \rho = 0.4$ の原子、ホールのスナップショット.

図 4.16: $c_t = 5.0, \rho = 0.4$ のスピンのスナップショット. 矢印の長さはスピンの大きさを表す.

図 (4.15) から 1/3 の格子点をホールを占めている状態が多くを占めているが、局所的に原子 は存在せずにホールが局在する領域が存在する.また、図 (4.16)から、 $\rho = 1/3$ の領域ではスピンは反強磁性的に配置していて、スピンがほとんどない領域が存在する.

次に1次転移後の原子、ホール密度 ($c_t = 14.0$) とスピンのスナップショット ($c_t = 15.0$) をそれぞれ図 (4.17)、図 (4.18) に示す.

図 4.17: $c_t = 14.0, \rho = 0.4$ の原子、ホールのスナップショット.

図 4.18: $c_t = 15.0, \rho = 0.4$ のスピンのスナップショット.(a) はスピンを xy 平面に射影したもの、(b) は斜めから見たスナップショット.

図 (4.17) から、a 原子とホールが半分ずつ混ざった領域と a 原子と b 原子が半分ずつ混ざっ た領域に分かれて存在している.また、図 (4.18) から前者の領域は z 成分の強磁性、後者の領 域は 120° 構造になっている.図 (4.18(a)) の赤、緑それぞれの線に沿って、相関を計算したもの を図 (4.19) に示す.これから強磁性の領域は超流動状態を示すが、120° 構造の領域は超流動に なっていないことがわかる.

図 4.19: 図 (4.18,b) の赤、緑それぞれの線についての boson 相関 G_B(i,i+r)

図 (4.15)、図 (4.16) は結晶の構造の中にホールが局在し、結晶の欠陥のようになっているこ とを表している.Andreev と Lifshitz の考えでは、この欠陥が抵抗なく結晶中の構造の中を流れ るというものだった.しかし、 c_t を大きくしていくと、図 (4.17)、図 (4.18) のように相分離を 起こしてしまった. c_t を大きくすることで、系は強磁性的になろうとするが、元々のスピンの 反強磁性相互作用があるため競合してしまう.このために両者が両立することができず、相分 離を起こしてそれぞれの領域を作ってしまう.

しかし、フラストレートホッピングという $c_t = \beta t < 0$ のホッピングを考えると、ホッピン グの効果も反強磁性的になり、元々のスピン相互作用と競合することはなくなる. これは回転 することによって磁場の効果を得る Bose 気体で実現することができる. $c_t > 0$ のときと同様に $c_t < 0$ の相図も図 (4.20) のように得られる.

図 4.20: $c_t < 0$ の $t - J_z$ モデルの相図. すべての境界で1次転移が起きる. $c_{J_{xy}} = 6.0$

 $\rho \simeq 0, 1/3, 1$ の相は図 (4.4) と同だが、唯一 $\rho \simeq 0.5 - 0.7$ の相は異なっている.図 (4.21)、図 (4.22) に示すように、スピン相関は 120° 構造を示し boson 相関も 3 格子点周期になっていて、両方とも有限に残る.

図 4.21: $c_t = -19.0, \beta \mu = 11.0$ のスピン相 関 $G_S(i, i+r).$

図 4.22: $c_t = -19.0, \beta \mu = 11.0 \mathcal{O}$ boson 相関 $G_B(i, i+r)$.

原子、ホール密度とスピンのスナップショットを図 (4.23)、図 (4.24) に示す. 各格子点で原子 はそれぞれほぼ 25 %、ホールはほぼ 50 %で混在していて、密度は一様になっている. ホール が一様に存在しているため、スピンの大きさは図 (4.9) のほぼ半分になっている. 原子、ホール が一様に分布していて固体ができているとは言えず、この場合も超固体状態にはなることがで きない.

図 4.23: $c_t = -19.0, \beta \mu = 11.0$ の原子、ホールのスナップショット.

図 4.24: $c_t = -19.0, \beta \mu = 11.0$ のスピンのスナップショット

4.3.2 bosonic t - Jモデルの解析とその相構造 II: $t - J_z$ モデル

次に () で $J_{xy} = 0, J_z > 0$ となっている $t - J_z$ モデルについて計算を行った. $J_z > 0$ のとき は異種原子間斥力よりも同種原子間斥力が強く働くことが、Bose-Hubbard モデルからわかる. また、 $c_t = 0$ のときは反強磁性三角格子 Ising モデルに対応し、フラストレーションが強い系に なっている.

前節と同様にして得られた $t - J_z$ モデルの相図を図 (4.25) に示す. 相図の形自体は図 (4.4) と 同様だが、 $t - J_{xy}$ モデルのときと異なり超固体相が現れた.

この相図で $\beta\mu = 5.0$ のとき、 c_t に対するエネルギーとホール密度は図 (4.26)、図 (4.26)のようになった. $c_t \simeq 12.0$ で2次転移が起こり、その後に $c_t \simeq 20.0$ で1次転移が起こる.

図 4.25: $t - J_z$ モデルの相図. $c_{J_z} = 10.0$

図 4.26: $\beta \mu = 5.0$ と固定して、 c_t を変化さ せたときのエネルギー.

図 4.27: $\beta \mu = 5.0$ と固定し、 c_t を変化させたときのホール密度.

超固体相のスピン相関、boson 相関、原子・ホールのスナップショットをそれぞれ図 (4.28)、 図 (4.29)、図 (4.30) に示す. 超固体相では S_x, S_y, S_z のスピン相関が有限に残っており、スナッ プショットから原子、ホールともに秩序が見られる.

図 4.28: $\beta \mu = 5.0, c_t = 17.0$ のスピン相関 $G_S(i, i + r).$

図 4.29: $\beta \mu = 5.0, c_t = 17.0 \mathcal{O}$ boson 相関 $G_B(i, i+r)$.

図 4.30: $\beta \mu = 5.0, c_t = 17.0$ の原子、ホールのスナップショット.

4.4 第4章のまとめ

積層三角格子 bosonic t - Jモデルの相構造を調べた. 多彩な相構造を持つことが $t - J_{xy}$ モデル、 $t - J_z$ モデルの相図から理解できる.

 $t > 0 \text{ ot} - J_{xy}$ モデルでは、粒子のホッピング (強磁性) とスピン相互作用 (反強磁性) が競合 してしまうため、粒子密度が不整合な場合でも超固体相は見られず相分離が起こった. t < 0 ot $t - J_{xy}$ でも相図はt > 0 とほぼ同じになっている.しかし、超流動相の性質が異なっていて、 t > 0 では S_z についての強磁性が共存し、t < 0 では S_x , S_y についての反強磁性 (120° 構造) が 共存することがわかった.

t > 0の $t - J_z$ モデルでは、超固体相が現れた.積層三角格子 hard core boson の Bose-Hubbard モデルも超固体相を取ることができる.この場合の超固体状態は、粒子密度が 1/3 と 2/3 の間 の不整合な粒子密度で実現することができる.例えば、格子に対して粒子数が不整合で、粒子 に対する充填率が 1/3 の状態に加えて余分な粒子があった場合、この余分な粒子が存在する領 域では粒子の充填率は 2/3 になる.ホールにとってこの状態は、充填率が 2/3 の領域に 1/3 の領 域が存在している状態に対応する.hard core boson の Bose-Hubbard モデルでは粒子・ホール 間の対称性が存在しているため、粒子密度が1/3と2/3の状態は本質的に同じである.このため に粒子による結晶のパターンを残しながら余分な粒子、またはホールが超流動状態になること が可能になる.

一方、 $t - J_z$ モデルでは2つの原子間の対称性はあっても、原子・ホール間の対称性はないので、対称性がある整合な原子密度間の超固体は成立しない.原子密度が2/3より大きい図(4.31)のような原子密度分布のときに超固体状態となる.

図 4.31: $\beta \mu = 5.0, c_t = 17.0$ の原子、ホールのスナップショット.

三角格子反強磁性 Ising モデルの基底状態は、3つの副格子すべてを同じ向きのスピンで占めることができない.2つの格子を up、down スピンが占めてしまえば、残りの格子点はどちらの向きのスピンでもエネルギーを変えない.これを原子に対応させると、3つの副格子すべてを同種粒子で占めることができないことを意味する.同種粒子間には斥力が働くため、3つの副格子のうち2つを2種類の原子で占めてしまえば、残りの格子はどちらの原子でも構わないことになる.このフラストレーションによって安定な基底状態は1つに決まることはない.しかし、図 (4.31)のように a 原子とホールが混在し、同種粒子間の斥力を弱めることができる.更にホッピングの効果は、同種粒子とホールの混合状態が隣接した状態を安定させようとする.したがって、 $t - J_z$ モデルではフラストレーションを緩和させることによって超固体状態が現れる.
第5章 2成分斥力boson系の有効場の理論 とその相構造

この章では前章で扱った bosonic t - Jモデルの有効場の理論を導入し解析を行う. はじめに bosonic t - Jモデルの有効場理論の導出を行い、その結果得られる三角格子量子 XY モデルの 相構造を見る. Bose 凝縮と擬スピン長距離秩序が同時に出現する特定の相に対して、有効理論 を検討する. この有効場の理論はT = 0の (2+1) 次元の理論になっていて、前章のモデルは有 限温度の3次元のモデルである. この対応について検討を行う. [55]

5.1 bosonic t - Jモデルとその有効理論の導出

まずは (4.40) の絶対零度 T = 0 においての有効場の理論を導出する. 前章と同様にスレーブ 粒子法を採用して、擬スピンの自由度を表す φ_1, φ_2 とホールを表す ϕ_i によってモデルを表す. bosonic t - J モデルのモンテカルロ法による計算結果によれば、このモデルは超流動相や擬ス ピン秩序など多彩な相構造を持つことがわかっている. そして、空間的に不均一な相分離のよ うな状態でも各格子点における粒子の密度ゆらぎは、それほど大きくないと考えられる. した がって、

$$\mathcal{H}_{V} = \frac{V_{0}}{4} \sum_{i} \left((\varphi_{1i}^{\dagger} \varphi_{1i} - \rho_{1i})^{2} + (\varphi_{2i}^{\dagger} \varphi_{2i} - \rho_{2i})^{2} + (\phi_{i}^{\dagger} \phi_{i} - \rho_{3i})^{2} \right)$$
(5.1)

のようなポテンシャルを想定することができる. $\rho_{1i}, \rho_{2i}, \rho_{3i}$ はそれぞれ a 原子、b 原子、ホールの密度を調整するパラメータであり、 $\sum_{\sigma=1}^{3} \rho_{\sigma i} = 1$ が成り立っている.

*t-J*モデルを拡張した (4.40) に加えたモデルの有効場理論を導出する. 分配関数はコヒーレント状態の経路積分によって、

$$Z = \int \mathcal{D}\phi \mathcal{D}\varphi_{1} \mathcal{D}\varphi_{2} \exp\left[-\int d\tau \left(\bar{\varphi}_{1i}(\tau)\partial_{\tau}\varphi_{1i}(\tau) + \bar{\varphi}_{2i}(\tau)\partial_{\tau}\varphi_{2i}(\tau) + \bar{\phi}_{i}(\tau)\partial_{\tau}\phi_{i}(\tau) + \mathcal{H}_{t-J} + \mathcal{H}_{V}\right)\right]$$
(5.2)

と表すことができる. \mathcal{H}_{t-J} は(4.40)のt - Jモデルのハミルトニアンである.場の変数を位相部分と密度部分に分けて表示する.

$$\varphi_{1i} = \sqrt{\rho_{1i} + \ell_{1i}} \exp(i\omega_{1i})$$

$$\varphi_{2i} = \sqrt{\rho_{2i} + \ell_{2i}} \exp(i\omega_{2i})$$

$$\phi_i = \sqrt{\rho_{3i} + \ell_{3i}} \exp(i\omega_{3i})$$

(5.3)

位相については $\ell_{1i} + \ell_{2i} + \ell_{3i} = 0$ という制限がつく. この制限は Lagrange の未定乗数 $\lambda_i(\tau)$ を 用いて

$$\int d\tau \delta(\ell_{1i} + \ell_{2i} + \ell_{3i}) = \int d\lambda_i e^{i \int d\tau (\ell_{1i} + \ell_{2i} + \ell_{3i})\lambda_i}$$
(5.4)

と表すことができる.したがって、密度のゆらぎについて積分することができる.

$$\int d\lambda_i d\ell_i e^{\int d\tau \sum_{\sigma=1}^3 (-V_0(\ell_{\sigma,i})^2 + i\ell_{\sigma,i}(\partial_\tau \omega_{\sigma,i} + \lambda_i))} = \int d\lambda_i e^{-\frac{1}{4V_0} \int d\tau \sum_{\sigma} (\partial_\tau \omega_{\sigma,i} + \lambda_i)^2}$$
(5.5)

 \mathcal{H}_{t-J} では、 $\varphi_{\sigma i} \rightarrow \sqrt{\rho_{\sigma i}} \exp(i\omega_{\sigma i})$ と近似を行い密度ゆらぎは無視する. (5.2)、(5.5) より拡張された量子 XY モデルが得られる.

$$Z_{qXY} = \int \prod_{\sigma=1,2,3} \mathcal{D}\omega_{\sigma} \exp\left[-A_{\tau} - A(e^{i\Omega_{\sigma}}, e^{-i\Omega_{\sigma}})\right]$$
(5.6)

ただし、

$$A_{\tau} = \frac{1}{4V_0} \int d\tau \sum_{i,\sigma} (\partial_{\tau} \omega_{\sigma i} + \lambda_i)^2$$
(5.7)

$$A(e^{i\Omega_{\sigma}}, e^{-i\Omega_{\sigma}}) = \int d\tau \Big[-\sum_{\langle i,j \rangle} c_h \Big(\cos(\Omega_{2,i} - \Omega_{2,j}) + \cos(\Omega_{3,i} - \Omega_{3,j}) \Big) - c_s \sum_{\langle i,j \rangle} \cos(\Omega_{1,i} - \Omega_{1,j}) \Big]$$

$$(5.8)$$

$$\Omega_{1i} = \omega_{1i} - \omega_{2i}, \ \Omega_{2i} = \omega_{1i} - \omega_{3i}, \ \Omega_{3i} = \omega_{2i} - \omega_{3i}$$
(5.9)

である. c_h, c_s は $\rho_{\sigma i}, t, J$ によって表される定数になっている. また、この数値計算を行うための格子モデル A_{Lxy} を導入する. まず、 A_{τ} に対応する $A_{L\tau}$ は

$$A_{\mathrm{L}\tau} = c_{\tau} \sum_{r} \sum_{\sigma=1}^{3} \cos(\omega_{\sigma,r+\hat{\tau}} - \omega_{\sigma,r} + \lambda_r)$$
(5.10)

となり、Aに対応するA_Lは

$$A_L(e^{i\Omega_{\sigma}}, e^{-i\Omega_{\sigma}}) = -\sum_{\langle r, r' \rangle} C_3 \Big(\cos(\Omega_{2,r} - \Omega_{2,r'}) + \cos(\Omega_{3,r} - \Omega_{3,r'}) \Big) -C_1 \sum_{\langle r, r' \rangle} \cos(\Omega_{1,r} - \Omega_{1,r'})$$
(5.11)

と表すことができる.よって、

$$A_{Lxy} = A_{L\tau} + A_L(e^{i\Omega_\sigma}, e^{-i\Omega_\sigma})$$
(5.12)

と表すことができる. $c_{\tau} = 1/(V_0 \Delta \tau), C_1 = c_s \Delta \tau, C_3 = c_h \Delta \tau$ であり、 $\Delta \tau$ は虚時間方向の格子 間隔である. 次節ではこの拡張された量子 XY モデルについての相構造を見ていく.

5.2 拡張された量子 XY モデルとその相構造

前節で得られた拡張された量子 XY モデルに対して

$$Z = \int \mathcal{D}\omega e^{-A_{\text{Lxy}}}$$
$$E = \langle A_{\text{Lxy}} \rangle / L^3 \qquad (5.13)$$
$$C = \langle (A_{\text{Lxy}} - E)^2 \rangle / L^3$$

をモンテカルロ法により測定することで、三角格子上の相構造を決定する.また、以下によって定義された擬スピン相関 $G_S(r)$ とそれぞれの原子の boson 相関 $G_{a(b)}(r)$

$$G_{S}(r) = \frac{1}{L^{3}} \sum_{i} \langle e^{i\Omega_{1,i}} e^{-i\Omega_{1,i+r}} \rangle$$

$$G_{a}(r) = \frac{1}{L^{3}} \sum_{i} \langle e^{i\Omega_{2,i}} e^{-i\Omega_{2,i+r}} \rangle$$

$$G_{b}(r) = \frac{1}{L^{3}} \sum_{i} \langle e^{i\Omega_{3,i}} e^{-i\Omega_{3,i+r}} \rangle$$
(5.14)

の測定も行う.相図は c_{τ} を固定し、 C_1, C_3 による相の変化を調べる.また、ここでのt - Jモデルは、 $J_z = 0$ とした $t - J_{xy}$ モデルとして扱うこととする.こうして2次元三角格子において、このモデルの相図は図 (5.1)が得られた.

図 5.1: 三角格子上の拡張された量子 XY モデルの相図. 2 種類の原子の密度は ρ = 0.3 と設定 した. 120° は擬スピンの 120° を示す.

C₁が大きく、C₃が小さいときに擬スピンの120°構造が見られた.ホールの密度が各格子点で一様になるように分布しているが、原子の凝縮による超流動状態 (SF) は見られなかった. C₃を大きくしていくと、擬スピンの120°構造を保ったまま、どちらか片方の原子の超流動が始まる.その後に両方の原子の超流動が起こる.最終的に120°構造が壊れて、擬スピンの強磁性(FM)と超流動が共存する状態へと移行する.また、長距離秩序が見られない常磁性状態 (PM)

から、*C*₃を大きくしていくと2種類の原子の超流動が2通りで起こる.1つは、常磁性との共存を経て、強磁性状態に移る場合であり、もう1つはそのまま強磁性との共存してしまう場合である.

以上のように三角格子上の量子 XY モデルは多彩な相構造を持つことが明らかになった.次節では、擬スピンの長距離秩序 (120°、FM) と超流動が共存する相における有効理論を示す.

5.3 超流動 Bose 凝縮と擬スピン長距離秩序の有効理論

はじめに (5.6) が擬スピンによる対称性の破れが起こることを示す. その後に、すべての対称 性が破れた相図 (5.1)の B相 (120°構造と2種類の原子の超流動状態)の基底状態とその低エネ ルギー励起について見ていく.

(5.6) は以下のように書き換えることができる.

$$Z_{qXY} = \int \mathcal{D}\omega \exp\left[-\frac{1}{V_o} \int d\tau \dot{\omega}_{\sigma i}^2 - A(e^{i\Omega_{\sigma i}}, e^{-i\Omega_{\sigma i}})\right]$$

$$= \int \mathcal{D}\omega \exp\left[-\frac{1}{V_o} \int d\tau \sum \dot{\omega}_{\sigma i}^2 - A\left(\frac{\delta}{\delta\eta_{\sigma i}}, \frac{\delta}{\delta\bar{\eta}_{\sigma i}}\right)\right] I(\eta_{\sigma i}, \Omega_{\sigma i})|_{\eta=\bar{\eta}=0}$$

$$I(\eta_{\sigma i}, \Omega_{\sigma i}) = e^{\int d\tau \sum (\eta_{\sigma i} e^{i\Omega_{\sigma i}} + \bar{\eta}_{\sigma i} e^{-i\Omega_{\sigma i}})}$$
(5.15)

これを $\omega_{\sigma i}$ についての積分を行う.

$$\int \mathcal{D}\omega e^{-\frac{1}{V_0}\int d\tau \sum_{\sigma} \dot{\omega}_{\sigma i}^2} I(\eta_{\sigma i}, \Omega_{\sigma i}) = \tilde{I}(\eta_{\sigma i}, \Omega_{\sigma i})$$
(5.16)

 $\omega_{i\sigma i}$ に関する Green 関数

$$\langle e^{i\omega_{\sigma i}(\tau)}e^{-i\omega_{\sigma' i}(\tau')}\rangle \tag{5.17}$$

を用いると、この積分は

$$\tilde{I}(\eta_{\sigma i}, \Omega_{\sigma i}) \sim \exp\left[\int d\tau \int d\tau' \bar{\eta}_{\sigma i}(\tau) e^{-2V_0|\tau - \tau'|} \eta_{\sigma i}(\tau')\right]$$
(5.18)

のようになる. これらから (5.15) は

$$A_{0} = \int d\tau \left[\sum_{\sigma, \langle i,j \rangle} a_{\sigma} \Phi_{\sigma i}^{*} \Phi_{\sigma i}^{*} - \frac{1}{V_{0}^{2}} \sum_{\sigma i} (|\dot{\Phi}_{\sigma i}|^{2} + 4V_{0}^{2}|\Phi_{\sigma i}|^{2}) + g \sum_{i} (\Phi_{1i}^{*} \Phi_{2i} \Phi_{3i}^{*} + \text{c.c.}) \right]$$
(5.19)

と求められる. $e^{-\Omega_{\sigma i}}$ に対応する場を $\Phi_{\sigma i}(\tau)$ としている.また、 $a_1 = a_s, a_2 = a_3 = a_h, g = 3/(2V_0^2)$ となっている.最後にBose 凝縮が起こった状態を記述できるようにするため、 Φ の4次の項を加えて、最終的な有効作用とする.このような過程を経て、

$$A_{\rm eff} = A_0 - \int d\tau \sum_{\sigma i} \lambda_\sigma |\Phi_{\sigma i}|^4 = \int d\tau L_{\rm eff}$$
(5.20)

を得る.

(5.20) で Φ_1 は擬スピンの角度を表している. 三角格子上での基底状態は 120° 構造になって いるため 3 つの副格子 A, B, C を導入し、副格子状の Φ_1 をそれぞれ次のように定義する.

$$\Phi_{1A}(r) = \rho_i
\Phi_{1B}(r) = \rho_i e^{i\frac{2\pi}{3}}
\Phi_{1C}(r) = \rho_i e^{-i\frac{2\pi}{3}}$$
(5.21)

 $\rho_i \neq 0$ のときに 120° 構造が表れ対称性が破れられることになる. これよりハミルトニアンの擬 スピン部分 $\mathcal{H}_{\rm eff}^{\rm spin}$ は

$$H_{\text{eff}}^{\text{spin}} = \sum_{i,\mu} \cos \frac{2\pi}{3} \left(|a_s| \rho_i \rho_{i+\mu} + \text{c.c} \right) + \sum_i \left(4V_0 \rho_i^2 + \lambda_1 \rho_i^4 \right)$$
$$= \frac{|a_s|}{2} \sum_{i,\mu} |\tilde{\nabla}_{\mu} \rho_i|^2 + \sum_i \left(\lambda_1 |\rho_i|^4 - (3|a_s| - V_0)|\rho_i|^2 \right)$$
(5.22)

となる. $\tilde{\nabla}$ は三角格子における差分である. (5.23) より、 $3a_s > V_0$ で ρ_i の凝縮が起こることがわかる. このことは擬スピンの U(1) 対称性が破れたことを意味する.

さらに、相図 (5.1) の B 相の基底状態とその低エネルギー励起を見てみる. (5.20) から

$$L_{\text{eff}} = \sum_{i} \left(-|a_{s}| |\nabla \Phi_{1,i}|^{2} + a_{h} |\nabla \Phi_{2,i}|^{2} + a_{h} |\nabla \Phi_{3,i}|^{2} \right) - \sum_{i} \left(\frac{1}{4V_{0}} |\partial_{\tau} \Phi_{1,i}|^{2} + \frac{1}{4V_{0}} |\partial_{\tau} \Phi_{2,i}|^{2} + \frac{1}{4V_{0}} |\partial_{\tau} \Phi_{3,i}|^{2} \right) + V(\Phi_{i}),$$
(5.23)

となる. ここで $V(\Phi_{\sigma})$ は

$$V(\Phi_{\sigma}) = \sum_{i} \left[V_{0} \left(1 - \frac{2z|a_{s}|}{V_{0}} \right) |\Phi_{1,i}|^{2} + V_{0} \left(1 - \frac{2za_{h}}{V_{0}} \right) |\Phi_{2,i}|^{2} + V_{0} \left(1 - \frac{2za_{h}}{V_{0}} \right) |\Phi_{3,i}|^{2} \right) - g \left(\Phi_{1,i}^{\dagger} \Phi_{2,i} \Phi_{3,i}^{\dagger} + \text{c.c.} \right) + \lambda_{1} |\Phi_{1,i}|^{4} + \lambda_{2} |\Phi_{2,i}|^{4} + \lambda_{2} |\Phi_{3,i}|^{4} \right], \qquad (5.24)$$

である. 基底状態を決定するために副格子 A, B, C に対してそれぞれの場を

$$\Phi_{1,A} = \sqrt{n_0}, \Phi_{1,B} = \sqrt{n_0} e^{i\frac{2\pi}{3}}, \Phi_{1,C} = \sqrt{n_0} e^{-i\frac{2\pi}{3}},$$

$$\Phi_{2,A} = \sqrt{n_1}, \Phi_{2,B} = \sqrt{n_1} e^{i\beta}, \Phi_{2,C} = \sqrt{n_1} e^{-i\beta},$$

$$\Phi_{3,A} = \sqrt{n_1}, \Phi_{3,B} = \sqrt{n_1} e^{-i\beta}, \Phi_{3,C} = \sqrt{n_1} e^{i\beta}.$$
(5.25)

と定義する. n_0, n_1, β は (5.24)の極値を与えるように決定する. これによって基底状態を求める ことができる. また、基底状態からのゆらぎ ϕ, b_1, b_2 によって低エネルギー励起を調べることが できる.

$$\Phi_{1,A} = \sqrt{n_0 + i\phi}, \Phi_{1,B} = \sqrt{n_0 + i\phi}e^{i\frac{2\pi}{3}}, \Phi_{1,C} = \sqrt{n_0 + i\phi}e^{-i\frac{2\pi}{3}},
\Phi_{2,A} = \sqrt{n_1 + ib_1}, \Phi_{2,B} = \sqrt{n_1 + ib_1}e^{i\beta}, \Phi_{2,C} = \sqrt{n_1 + ib_1}e^{-i\beta},
\Phi_{3,A} = \sqrt{n_1 + ib_2}, \Phi_{3,B} = \sqrt{n_1 + ib_2}e^{-i\beta}, \Phi_{3,C} = \sqrt{n_1 + ib_2}e^{i\beta}.$$
(5.26)

これを用いると (5.23) からゆらぎの質量項に相当する V2

$$V_{2}' = (\phi, b_{1}, b_{2}) \begin{pmatrix} g\delta \frac{n_{1}}{\sqrt{n_{0}}} & -g\delta\sqrt{n_{1}} & g\delta\sqrt{n_{1}} \\ -g\delta\sqrt{n_{1}} & g\delta\sqrt{n_{0}} & -g\delta\sqrt{n_{0}} \\ g\delta\sqrt{n_{1}} & -g\delta\sqrt{n_{0}} & g\delta\sqrt{n_{0}} \end{pmatrix} \begin{pmatrix} \phi \\ b_{1} \\ b_{2} \end{pmatrix}$$
$$= (\phi, b_{1}, b_{2})g\delta\mathbf{K}' \begin{pmatrix} \phi \\ b_{1} \\ b_{2} \end{pmatrix}$$
(5.27)

が得られる.ただし、 $\delta = (1 + 2\cos(2\pi/3 - 2\beta))/3$ である.これを対角化すると

$$U^{-1}\mathbf{K}'U = \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \frac{2n_0+n_1}{\sqrt{n_0}} \end{pmatrix}$$
(5.28)

が得られる. 今考えている状態は擬スピンが秩序を持ち2種類の原子が超流動になっている状態だが、(5.28)の結果では2つの南部-Goldstone boson しか存在していない.

5.4 第5章のまとめ

この章で扱ったモデルは、2次元三角格子と虚時間方向を含んだ(2+1)次元のモデルで、絶対零度の量子系を記述するモデルである. 虚時間方向を実空間と対応させると格子形状は3次元の積層三角格子と対応し、有限温度のモデルと対応させることができる.

積層三角格子上のt-Jモデルのハミルトニアン

$$H_{3\text{Dt}-J} = -\sum_{\langle i,j \rangle} t(a_i^{\dagger} a_j + b_i^{\dagger} b_j + \text{h.c.}) - \sum_i t'(a_i^{\dagger} a_{i+\hat{3}} + b_i^{\dagger} b_{i+\hat{3}} + \text{h.c.}) + J \sum_{\langle i,j \rangle} (S_i^x S_j^x + S_i^y S_j^y)$$
(5.29)

で面内の相互作用 t と面間の相互作用 t'を別のパラメータとして扱う. この t' と (2+1) 次元の モデルにおける虚時間方向の相互作用を対応させることができる.本来の2成分原子系では原 子の数が一定に保たれているため、原子の成分とスピンに対応させてしまうとスピンの反転に よって、原子が異なる種類になってしまい、粒子数が保存されなくなってしまう. これを防ぐ ために各原子の密度を一定に保つことによって、前章と同様に (5.29)の相図 (5.2) を得た.

図 5.2: $\rho_a = \rho_b = 0.3, c'_1 = 10.0$ の相図. $c_1 = \beta J_{xy}, c_3 = \beta t, c_\tau = \beta t'$. $\beta = k_B T$ であり、パラ メータには温度 T が含まれている.

各相の擬スピン相関 $G_{SS}(r)$ と boson 相関 $G_B(r)$ 、原子・ホールのスナップショットを (5.4)~ (5.8) に示す. c_3 が小さいときは 1/3 の格子をホールが占める固体の相が得られる. 固体の相で は、boson 相関はなく超流動は示さない. 120°+SF の状態は c_3 が大きくなるにつれ、徐々に相 分離の傾向が見られる. しかし、擬スピンの 120° 構造はある程度保たれていて、超流動を示す boson 相関も見られる. 最後の c_3 が大きい状態では、a 原子の相と b 原子の相に完全分離して しまい、擬スピン相関は S_z が支配的となる.a 原子の相では $S_z = +1$ 、b 原子の相では $S_z = -1$ と各相の中では強磁性の状態を作っていることがわかる.

この中間の相では 120°+SF 状態となっていて、特に固体相に近い領域では、相図 (5.1) の B 相と同じ相関を示すことがわかった.

図 5.3: $c'_1 = 10.0, c'_{\tau} = 10.0, c'_3 = 2.5$ の擬 スピン相関 $G_{SS}(r)$ と boson 相関 $G_B(r)$.

図 5.4: $c'_1 = 10.0, c'_{\tau} = 10.0, c'_3 = 2.5$ のス ナップショット.

図 5.5: $c'_1 = 10.0, c'_{\tau} = 10.0, c'_3 = 15.0$ の擬 スピン相関 $G_{SS}(r)$ と boson 相関 $G_B(r)$.

図 5.6: $c'_1 = 10.0, c'_{\tau} = 10.0, c'_3 = 15.0$ のス ナップショット.

図 5.7: $c'_1 = 10.0, c'_{\tau} = 10.0, c'_3 = 25.0$ の擬 スピン相関 $G_{SS}(r)$ と boson 相関 $G_B(r)$.

図 5.8: $c'_1 = 10.0, c'_{\tau} = 10.0, c'_3 = 25.0$ のス ナップショット.

第6章 総括と議論

一般に D 次元の量子系は虚時間方向を考慮することによって、(D+1) 次元古典系に対応させるさせることができる.このことを利用して、量子系の有効理論をモンテカルロシミュレーションによって確かめることができる.2章と5章では(2+1) 次元を記述する有効理論を扱い、3章と4章はそれぞれに対応する格子化された3次元の(半)古典系を扱った.

2章と3章では、Sp(N) Heisenberg モデルの相構造を扱った.このモデルは高温超伝導体の を記述する t - J モデルのスピン相互作用を表す Heisenberg モデルの拡張になっている.

2章では、絶対零度の2次元量子系の有効場の理論を導出し、 CP^{N-1} モデルと等価であることを示すことができた.この有効場理論に対して、1/N展開を行うことで相構造を決定した.結合定数が系の異方性に依存し、等方的な場合に見られた反強磁性秩序は、異方性を増すことで擬1次元的になり秩序がなくなることを見出すことができた.また、Sp(N)対称性はSU(N)対称性へと対称性を高めることができ、SU(N)対称性から外れていくことによって、反強磁性秩序はスパイラルしていくことがわかった.

3章では、2章で得られた(2+1)次元系のモデルを3次元のモデルと考え、モンテカルロ法に よって相構造を決定した.ゲージ場の運動を考慮すると、2章で得られた相図と定性的に同じ ものが得られた.高温超伝導体ではホールのドープによって超伝導状態が現れる.これを念頭 に置き、2章では行われなかった *Sp*(*N*)反強磁性体に対するホールドープを行い、各相の影響 を調べた.ホールドープの効果は最終的に、強磁性の BEC 状態になってしまうが、特定の相に 対しては反強磁性と BEC の共存状態を示すことが分かった.

4章では、フラストレーションのある積層三角格子の2成分 boson 系の相構造を決定した.スレーブ粒子法により、原子の自由度とホールの自由度を表すことができ高温超伝導体を記述する fermionic t - Jモデルで、電子を boson として考えた場合に対応している. 三角格子による幾何学的フラストレーションと、ホールドープの効果で RVB によるスピンリキッド状態が得られるか調べた結果、RVB のような量子的な描像は得られなかった. ホールが局在することでフラストレーションを緩和し、擬スピンの反強磁性状態が実現された. しかし、フラストレーションと多成分系のため秩序が競合することで様々な相が得られた. $t - J_{xy}$ モデルにおいては、格子に対して非整合なホール数を設定することにより、相分離を見ることができたが超固体状態は見られなかった. 一方で、 $t - J_z$ モデルでは $t - J_{xy}$ よりも擬スピンのフラストレーションが強く働く. このとき、粒子・ホールの対称性がない場合の超固体状態が見られた.

5章では、2成分 boson 系の絶対零度の量子系の有効理論を導出した.三角格子上ではフラス トレーションがあり、やはり秩序が競合することで多彩な相構造が見られた.Bose 凝縮と擬ス ピンの長距離秩序がある相では、基底状態とその低エネルギー励起も調べることができた.こ の相は、4章の半古典的なモデルのシミュレーションによっても得られた.

高温超伝導を記述する fermionic t - Jモデルと bosonic t - Jモデルは、Chern-Simons ゲー

ジ場を導入することで結びつけることができる. [56] [57] このことにより、bosonic *t* – *J*モデルからの高温超伝導現象へのアプローチが可能になると考えられる. 新しい高温超伝導現象へのアプローチとして、今後検討する必要があるだろう.

謝辞

修士課程の2年を含めた5年間、粘り強く指導していただいた一瀬郁夫教授には心より感謝 申し上げます.様々な面で上手くいかないことが多々ありましたが、それでも励ましてくださ いました.また、名古屋工業大学のリサーチアシスタントの機会も提供していただいたことに も感謝致します.

第3章は服部真也氏、第5章は久野義人氏に負うところが多く、両氏がいなければ行えませんでした.現研究のメンバーの小島康輔氏、久野義人氏、小澤秀敏氏、野口剛裕氏、長谷川涼太氏、稲生隼人氏、鈴木啓太氏、牛龍基氏をはじめ、もうすでに卒業された方々も含めてお世話になりました.最後にこれまで支えてくれた妻曜子に感謝します.

References

- L.D.Landau, E.M.Lifshitz, Statistical Physics, Third Edition: Volume 5 (Course of Theoretical Physics, Volume 5) (1984).
- [2] S.Sachdev, Quantum Phase Transition (Cambridge Univ. Press) (1999).
- [3] J.Negele, H.Orland, Quantum Many-particle Systems (Advanced Books Classics) (1998).
- [4] 寺沢寛一, 自然科学者のための数学概論 [増訂版](岩波書店)(1983).
- [5] J.C.Le Guillou and J.Zinn-Justin, J.Physique Lett. 48 19 (1987).
- [6] L.Onsager, Phys.Rev.65 117 (1944).
- [7] 西森秀稔, 相転移・臨界現象の統計物理学 (培風館) (2005).
- [8] M.Peskin and D.Schroeder, An Introduction To Quantum Field Theory (Advanced Books Classics) (1995).
- [9] Wilson and Fisher Phys.Rev.Lett. 28 240 (1972).
- [10] P.Butera and M.Comi, Phys.Rev.B. 56 8212 (1997).
- [11] A.M.Ferrenberg and D.P.Comi, Phys.Rev.B. 44 5081 (1991).
- [12] 永長直人, 電子相関における場の量子論 (岩波書店) (1995).
- [13] G.H.Wannier, Phys.Rev. **79** 357 (1950).
- [14] S.Miyashita and H.Shiba, J.Phys.Soc.Jpn 53, 1145 (1984)
- [15] H.Kawamura and S.Miyashita, J.Phys.Soc.Jpn 53, 4138 (1984)
- [16] P.W.Anderson, Mater. Res. Bull. 8, 153 (1973).
- [17] M.D.Anderson, J.R.Ensher, M.R.Mathew, C.E.Wieman, and E.A.Cornell, Science, 269 198 (1996).
- [18] K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M.Kurn and W.Ketterle, Phys.Rev.Lett. 75 3969 (1995).
- [19] B.DeMarco and D.S.Jin, Science, **285**, 1703 (1999).

- [20] C.J.Pethick and H.Smith, Bose-Einstein Condensation in Dilute Gas (Cambridge Univ. Press) (2001).
- [21] S.Inouye, M.R.Andrews, J.Stenger, H.J.Miesner, D.M.Stamper-Kurn, and W. Ketterle, Nature, 392 151 (1998).
- [22] M.Greiner, C.A.Regal, and D.S.Jin, Nature, **426** 537 (2003).
- [23] C.N.Yang, Rev. Mod. Phys. 34, 694 (1962).
- [24] A.F.Andreev and I.M.Lifshitz, Sov.Phys.JETP 29, 1107 (1969)
- [25] E.Kim and M.H.W.Chan, Nature **427**, 225 (2004)
- [26] E.Kim and M.H.W.Chan, Science **305**, 1941 (2004)
- [27] H.Choi, S.Kwon, D.Y.Kim, E.Kim, Nature Phys. 6, 424 (2010)
- [28] K.Kataoka, S.Hattori, and I.Ichinose, Phys.Rev.B 83, 174449 (2011)
- [29] C.Wu, Mod.Phys.Lett.B. 448, 1707 (2006)
- [30] T.L.Ho, Phys.Rev.Lett **81**, 742 (1998)
- [31] T.Ohmi and K Machida, J.Phys.Soc.Jpn 67, 1822 (1998)
- [32] F.Zhou and M.Snoek, Annals of Physics **308**, 692 (2003)
- [33] S.K.Yip and T.L.Ho, Phys.Rev.A. 59, 4653 (1999)
- [34] C.Wu, J.P.Hu, and S.C.Zhang, Phys.Rev.Lett. 91, 186402 (2003)
- [35] S.Taie, R.Yamazaki, S.Sugawa and Y.Takahashi Nature Phys. 8, 825 (2012)
- [36] Y.Qi and C.Xu, Phys. Rev. B. 78, 014410 (2008)
- [37] C.Wu, J.P.Hu and S.C.Zhang, Phys.Rev.Lett. **91** 186402 (2003)
- [38] C.Wu, Phys.Rev.Lett. **95** 266404 (2005)
- [39] C.Wu, Mod.Phys.Lett. **20** 1707 (2006)
- [40] S.Murakami, N.Nagaosa, and S.C.Zhang, Phys.Rev.B. 69, 235206 (2004)
- [41] I.Ichinose and T.Matsui, Phys.Rev.B. 45 9976 (1992)
- [42] C.Xu, arXiv:0803.0794

- [43] A.Kolezhuk, Phys.Rev.B. 78 144428 (2008)
- [44] B.I.Halperin, T.C.Lubensky and S.K.Ma, Phys.Rev.Lett. 32 292 (1974)
- [45] C.Xu, S.Sachdev, Phys.Rev.B. **79** 064405 (2009)
- [46] S.Sachdev, arXiv:0901.4103
- [47] 服部真也 修士論文 (2011)
- [48] J.M. Thijssen, Computational Physics (Cambridge University Press) (1999)
- [49] 高島俊輔 博士論文 (2006)
- [50] K.Kataoka, Y.Kuno, and I.Ichinose, J.Phys.Soc.Jpn 81, 124502 (2012)
- [51] S.Doniach, Phys.Rev.B 24, 5063 (1981)
- [52] M.P.A.Fisher, G.Grinstein, Phys.Rev.Lett. 38, 208 (1988)
- [53] M.P.A.Fisher, P.B.Weichman, G.Grinstein, and D.S.Fisher, Phys.Rev.B 40, 546 (1989)
- [54] E.Altman, W.Hofstetter, E.Demler and M.D.Lukin, NJ Phys. 5, 113 (2003)
- [55] Y.Kuno, K.Kataoka, and I.Ichinose, arXiv:1210.7910
- [56] Z.Y.Weng, D.N.Sheng, Y.C.Chen, and C.S.Ting, Phys.Rev.B 55, 3894 (1997)
- [57] P.Ye, C.S.Ting, X.L.Qi, and Z.Y.Weng, Phys.Rev.Lett. 106, 147002 (2011)