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Abstract i

Abstract 

Silicon and polysilicon are the most common structural materials for micro 

electro-mechanical systems (MEMS). Since the end of the last century, many 

evidences have been found that they are susceptible to fatigue. The strength of 

structures made of silicon has also been found to be strongly dependent on the 

fabrication process of structures such as etching. Designing MEMS with 

quantitatively evaluated long-term mechanical reliability is indeed one of the most 

important and urgent issues in order to push them through further development for 

future applications requiring higher levels of reliability. This thesis describes the 

development of evaluation and design scheme for the strength and fatigue lifetime of 

silicon and polysilicon materials in MEMS. 

Firstly, from a statistical point of view, polysilicon thin films were examined 

whether their fatigue behavior can be formulated uniquely on the basis of initial 

defects which determine their strength distribution. The fatigue process determining 

the lifetime is modeled with the well-known Paris law as the fatigue crack extension 

process from the initial defects, whose equivalent crack lengths were evaluated from 

the initial strength distribution described by the Weibull distribution. The parameters 

in Paris’ law were fit to the results of tensile fatigue tests with constant stress 

amplitudes performed on three groups of polysilicon thin film specimens patterned 

using different etching conditions leading to different etching damage. The results 

support a possibility that the fatigue behavior is independent of etching condition and 

that therefore the fatigue lifetimes can be practically predicted from their strength 

distributions by using the same values of the parameters in Paris’ law. 

The above theory was then extended to evaluate the strength distribution and 

fatigue behaviors of polysilicon thin film specimens patterned by etching into 

arbitrary shapes. The results show that the fracture and fatigue behaviors of the 

specimens can be described on the basis of local characteristics determined again by 

using the same set of parameters despite the different stress distribution. This means 

that the local characteristics of etching damage and the subsequent damage 

accumulation under fatigue loading were independent also of the shapes and the stress 

distributions. Therefore, the theory enables prediction for fracture strength and fatigue 

lifetime and thus designing silicon thin film structures. 
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Abstract ii

For the case of very long fatigue lifetime, by the way, experiment may have to 

be stopped before failure when the number of cycles exceeds an affordable time limit. 

To overcome this hurdle, a new experimental method was proposed in order to 

estimate the fatigue behavior of polysilicon thin films by using cyclic loading with 

gradually increasing stress amplitude. The results show that the parameter values are 

the same as those obtained from the fatigue tests with constant stress amplitude, and 

that the new experimental method can be used to predict the fatigue lifetime in a more 

efficient manner. 

Finally, a scheme for predicting the strength of thick structures patterned into 

arbitrary shapes by deep reactive ion etching of silicon wafer was also proposed. The 

scheme is based on the inhomogeneous defect distribution on the etched surfaces. 

Distributions of the fracture strength were described using two-parameter Weibull 

statistics, where the two parameters are defined as functions of the etching depth 

representing the inhomogeneity of the damage on the etched surface in the etching 

direction. The results showed that the fracture strength of arbitrarily-shaped structures 

can be predicted with statistical significance on the basis of the information obtained 

from a set of reference specimens, by taking into account the characteristics of etched 

surface, i.e., the inhomogeneous damage. 

After accumulating these new findings, the fracture strength and fatigue 

lifetime of silicon structures in MEMS becomes predictable, and therefore they enable 

designing silicon MEMS structures with a specified level of mechanical reliability. 

This will help to save the time and expenses in the development of MEMS structures.
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1.1. Background 

Microelectromechanical systems (MEMS) are devices with highly 

miniaturized mechanical components fabricated using batch processing techniques 

inspired by integrated circuit (IC) technologies, which have been among the fastest 

growing technologies, opening new frontiers of microtechnology [1,2]. They have 

already been applied to various fields such as medical treatment and aerospace 

equipment where the reliability of MEMS structures is of serious concern. The 

mechanical reliability of MEMS has recently been attracting more and more interest.  

Silicon is a popular structural material in MEMS. Silicon structures are 

commonly patterned into a broad variety of shapes by etching processes. It was 

reported that the damage induced by etching steps during fabrication of silicon 

structures determines the static strength [3,4] which is the maximum stress on the 

structures at the moment of fracture under monotonically increasing load. Their static 

strength distributions are well described using the two-parameter Weibull distribution 

[5,6,7-13]. On the other hand, silicon is typically brittle but was found to be 

susceptible to fatigue [7,14-17]. Many MEMS devices are often operated at high 

frequencies and relatively large stress levels, so that the fatigue lifetime of MEMS 

structures is a most serious concern for their long-term reliability. The mechanical 

properties of silicon such as its fracture strength and fatigue lifetime have been 

extensively reported [3-27]. Many studies surveyed the fracture and fatigue properties 

of silicon by using specimen shapes and loading configurations resulting in non-

uniform stress distributions in the specimens [6,15,18,19,22-24,27]. However, stress 

distribution as well as damage distribution on the etched surfaces has not yet been 

included in the predictions of the strength and fatigue lifetime of silicon structures. 

From the view point of engineering, fatigue lifetime prediction is important 

issue, but lifetime of silicon is at the moment hardly predictable. Lifetime prediction 

should stand on fatigue damage mechanisms of materials, and of course, the methods 

of prediction will be different corresponding to the viewpoint of the fatigue 

mechanisms. Up to now, the most commonly accepted model of fatigue process has 

been the reaction layer model [16,28,29], where the surface oxide layer is thickened 

with cyclic stress and subjected to corrosion cracking. Owing to the development of 

resonating structures to be used as specimens for fatigue tests at high frequencies 
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[15,28,30], a considerable amount of data was successfully accumulated. Most of 

them were operated with the stress ratio R = 1 [16,31-36], which is the ratio of 

minimum to maximum stress. Oxide layers as thick as several tens of nanometer were 

eventually observed on the test structures where oxidation may occur due to localized 

large stresses along the sidewalls [36]. This model was also supported by an evidence 

that fatigue lifetime was markedly extended in less humid environments [31-33]. 

However, this theory could not explain for the case of low-cycle fatigue [34,36], 

where the time was not enough for oxygen to diffuse into silicon. In contrast, however, 

it was also claimed that the thickening of a surface oxide layer due to cyclic stress was 

not observed until fatigue fracture on polysilicon devices with 3 nm thin native oxide 

[37] showing a counter evidence against the reaction layer model. 

One advantage of resonating structures is that their resonating frequencies are 

sensitive to damage accumulation [14,16]. By monitoring the change in resonating 

frequency, it was found in an early study [14] that damage accumulation rate was 

insensitive to the applied stress level and thus the stress intensity factor at the tip of 

fatigue crack. The authors speculated that the fatigue process was controlled possibly 

by time dependent process such as oxygen diffusion. The influence of the testing 

frequency was also surveyed; it was recently reported that the fatigue lifetime in 

number of cycles increased when the frequency was increased from 4 kHz to 40 kHz 

[34]. However, for the case of the low frequency range, no distinct frequency effect on 

fatigue cycles from 50 Hz to 6000 Hz was observed [35]. 

Besides that, the effect of stress ratios other than R = 1 was also investigated 

[30,27,38]; it was commonly found that compressive stress accumulates the damage 

more efficiently. For example, the fatigue lifetime of polysilicon films tested under 

stress ratios ranging from 0.33 to 0.26 was much shorter than that under R = 0 [30]. 

It was recently observed that damage accumulation starts being considerable only 

after about 105 to 106 cycles during the fatigue tests with the stress ratio in a range 

from 0.5 to 0.4 [39], where the accumulation of damage was surveyed through the 

change of stiffness of the test structure which, of course, leads to the change in 

resonance frequency. Such a behavior was not observed in the previous studies 

[28,29,34] where the damage accumulation was observed through the change of 

resonance frequencies in the fatigue tests with the stress ratio R = 1. The experiment 

where no distinctive effect of frequency was found [35] as mentioned above was 
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performed with R = 0. These facts may also suggest that a time dependent reaction is 

not always dominant depending on the mechanical conditions [34]. A simple 

subcritical cracking model was also proposed to explain such results, where fatigue 

crack extends with wedging effects of asperities on the crack surfaces [27,38,40]. As 

briefly summarized above, the current state of discussion around the fatigue issues in 

silicon and polysilicon is still controversial despite many researchers’ intensive efforts. 

One possible explanation of fatigue which has not been considered among the 

recent arguments on fatigue mechanisms is dislocations. Dislocations may not be a 

candidate of fatigue failure mechanisms for glasses and untoughened ceramics which 

are expected to be immune to cyclic stress fatigue [41,42]. Plasticity of silicon was 

studied in the beginning of 1950s, and bulk silicon was reported to be ductile above 

the brittle-ductile transition temperature of about 700 C [43-45]. In the past, 

dislocations were believed to emanate in silicon only at high temperature where they 

were observed in the bulk silicon material at temperature above the brittle-ductile 

transition temperature [45-58]. However, many recently reported results have 

suggested that dislocations would move even at room temperature especially in small 

scale structures [59-66]. For example, steps approximately 5 nm in height indicating 

dislocation slip lines were observed on the surface of 200 nm wide doubly supported 

beams made of single crystal silicon when bent with an atomic force microscope at 

373 K [59]. Ductile behavior of nano-scale silicon at room temperature was also 

observed in other studies [60,61,66]. The fracture toughness of single crystal silicon 

films with 4 μm thickness was also reported to sharply increase above 70 °C from 1.3 

to 2.5 MPam1/2 [63]. In other words, the increase of fracture toughness of single 

crystal silicon films at room temperature corresponds to the decrease of specimen 

thickness. This suggested that the increase in the dislocation mobility is related to the 

thickness reduction [64]. Dislocations emitted from the fracture surface created at 

room temperature in 1-m-thick specimen were also directly observed with a 

transmission electron microscope [64]. The change of fracture toughness of 1-m-

thick silicon film was observed recently to be between 20C and 50C [65]. These 

studies suggest that the behavior of silicon changed from brittle to ductile at room 

temperature might be because of the decrement of the specimen size. In other words, 

the brittle-ductile transition temperature decreases with the decrement of size-scale of 

silicon structures. Micro-scale silicon samples could be at the transition between 
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brittle and ductile properties, which would lead to an ambiguity in the fatigue 

mechanism of silicon.  

Dislocations created at high temperature were deeply surveyed but they are 

something different from those may be created at far lower temperature. There are 

glide-set and shuffle-set dislocations known in silicon. At a temperature higher than 

the brittle-ductile transition (BDT) temperature, glide-set dislocations were always 

observed. At a lower temperature, however, shuffle-set dislocations would be 

activated [67]. Those at room temperature should be shuffle set which is far less 

surveyed and different from glide set which was far more deeply surveyed. In addition, 

it was recently calculated that the activation energy for shuffle-set dislocation 

emission could be considerably decreased even by 2 eV with compressive stress 

applied in addition to shear stress [67]. This fact may clearly explain the effect of 

compressive stress shortening the fatigue lifetime [30] as mentioned above. Since 

dislocations are observed in specimens with the dimensions from nano- to 

micrometer-scale under static load [59-66], they can be expected to also emanate in 

micro-scale specimens under cyclic load. Very recently, fatigue tests with 

monotonically increased stress amplitude, which is a novel fatigue test method 

developed in this thesis, were performed in inert nitrogen gas environment and they 

showed that silicon thin film specimens were fractured at the stress level smaller than 

their static strength [68]. It was suggested that fatigue damage was introduced by 

repeated loading even under an inert environment, and that fatigue was induced by 

dislocation activities. This conclusion is supported by observations of dislocations 

generated by fatigue at room temperature in silicon [69]. 

When dislocations are considered as the source of damage accumulation 

during fatigue cycles in micro-scale silicon, it is naturally expected that the process 

can be modeled with the well-known Paris law which controls a fatigue crack 

extension law commonly applied to metallic materials [70-73]. The fatigue lifetime of 

silicon under different stress levels was already reported to follow the trend expected 

from Paris’ law [74]. In addition, silicon MEMS structures are usually patterned by 

etching processes, whereupon damage is introduced into the material, considerably 

reducing the initial strength even before cyclic stress is applied. The fatigue lifetime is 

then understood as the time it takes for the equivalent initial cracks, which determine 

the strength under the static stress, to extend to the critical length under the cyclic 
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applied stress. From this point of view, the fatigue lifetime distribution of polysilicon 

thin films was surveyed recently [75] in correlation to their static strength distribution 

by formulating the equivalent crack extension process to be controlled by Paris’ law. 

However, this survey was performed with only one group of specimens. Due to a 

large scatter observed in both the static strength and fatigue lifetime, however, a 

further careful study was needed to determine whether the fatigue lifetime can be 

commonly described by Paris’ law with a unique set of parameters inherent to the 

material when exposed to a given environment. 

Furthermore, in industry, because of the mentioned characteristics, the fracture 

strength as well as fatigue lifetime must receive particular attention starting from the 

designing process in order to ensure the reliability of fabricated structures. However, 

since shapes and scales of MEMS structures are so diverse [1], it can be prohibitively 

costly and time-consuming to perform tests with all the different structures. Therefore, 

it seems preferable to establish a method to predict the fracture strength and fatigue 

lifetime of silicon structures in advance, before the actual fabrication of structures and 

without performing additional experiments for each new structure type.  

 

1.2. Overview of the thesis 

By considering the current situation of researches stated above, the goal of this 

study was set on the statistical characterization of the strength and fatigue lifetime for 

silicon and polysilicon structures in MEMS. This would supply fundamental 

knowledge to apply in design of MEMS structures. This thesis is constructed with 6 

chapters and two appendices as follows: 

Chapter 1: Introduction 

This chapter describes the background and the overview of the thesis. 

Chapter 2: Statistical characterization of fatigue lifetime of polysilicon thin films 

with uniform stress distribution 

From a statistical point of view, polysilicon thin films were examined in this 

chapter whether their fatigue behavior can be formulated uniquely on the basis of 

initial defects which determine their strength distribution. This was not able to be 
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statistically confirmed with only one group of specimens obtained in the previous 

study [75]. The fatigue process determining the lifetime is modeled with the well-

known Paris law as the fatigue crack extension process from the initial defects whose 

equivalent crack lengths were evaluated from the initial strength distribution. The 

parameters in the Paris’ law were here fit to the results of tensile fatigue tests 

performed on three groups of specimens patterned using three different conditions 

leading to different etching damage. The results showed that the calculated behaviors 

using the same values of the parameters described well the distributions of the 

experimental data in spite of the difference of initial strength levels. They support a 

possibility that the fatigue fracture is caused by the accumulation of defects and that 

therefore the fatigue lifetimes can be practically predicted from their strength 

distributions by using the same values of the parameters in Paris’ law. 

Chapter 3: Estimation of fracture strength and fatigue lifetime of arbitrarily-

shaped polysilicon thin films  

The theory of statistical characterization in Chapter II is extended in this 

chapter for the silicon structures with arbitrary stress distributions. It is applied to 

evaluate strength distribution and fatigue behavior of polycrystalline silicon thin film 

specimens patterned into arbitrary shapes by etching. The static strength distribution 

of specimens is described by a two-parameter Weibull distribution applied to local 

points along the etched surface. The fatigue lifetime is formulated by applying Paris’ 

law in the same way as a crack extension process presented in Chapter II, but for 

every local portions along the etched surfaces of the specimens. The parameters in the 

Weibull distribution and in Paris’ law were fit to the results of tensile static strength 

and fatigue tests performed on the specimens with different shapes fabricated under 

not only the same conditions but also the different conditions. Parameter distribution 

ranges were analyzed to see how they are close to each other. The results show that 

the fracture and fatigue behaviors of the specimens can be described by using a 

unique set of parameters despite the different stress distribution. This means that the 

local characteristics of etching damage and subsequent damage accumulation under 

fatigue loading was independent of the stress distributions and thus of the shapes of 

specimens.  

Chapter 4: A novel fatigue test with ramping stress amplitude to evaluate fatigue 
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behavior of polysilicon thin films 

This chapter presents a new experimental method to estimate the fatigue 

behavior of polysilicon thin films by using cyclic loading with gradually increasing 

stress amplitude, which is here called ramping fatigue test. This method solves 

fundamental problems of conventional fatigue experiments with constant amplitude, 

which is here called normal fatigue test. Because of a large scatter in strength, it was 

difficult to evaluate fatigue behavior with the normal fatigue test when specimens 

broke before reaching the target stress amplitude. Furthermore, experiment may have 

to be stopped before failure when the number of cycles exceeds an affordable time 

limit. In the ramping fatigue test, the small stress amplitude in the beginning gives 

fatigue degradation of strength and the large stress at the final stage breaks all the 

specimens. The fatigue crack extension process determining fatigue lifetime was 

estimated by the well-known Paris law with two unknown parameters. These were fit 

to the results of two methods performed on specimens with two different situations of 

etching damage. It is shown that the new experimental method can be used to predict 

the fatigue lifetime in a more efficient manner. 

Chapter 5: A prediction scheme of static fracture strength of thick single-crystal 

silicon structures based on the characterization of damage distribution on 

processed surface 

Since bulk micromachining creates thicker structures than those thin film 

structures discussed up to the previous chapters, this chapter presents a scheme for 

predicting the strength of thick silicon structures patterned into arbitrary shapes by 

deep reactive ion etching. In this etching progress, distribution of the defects induced 

on the etched surfaces was not homogeneous in the direction perpendicular to the 

wafer surface and led to the change of local strength. Therefore, the scheme is based 

on the inhomogeneous defect distribution on the etched surfaces. Single-crystal 

silicon specimens with different shapes were subjected to four-point bending tests 

with monotonically increasing load. Distributions of the fracture strength were 

described using two-parameter Weibull statistics, where the two parameters are 

defined as functions of the etching depth. In order to estimate the distribution of the 

local strength determined by the damage, the etched surfaces of specimens without 

notch were tested in three different bending directions corresponding to three different 
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weight functions of the applied stress. The estimated values of the parameters were 

used to predict the fracture strength of four types of notched specimens with different 

notch tip radii. The results of comparison between the distributions of predicted 

strengths and experimental data showed that the fracture strength of arbitrarily shaped 

structures was predictable with statistical significance on the basis of the information 

obtained from specimens without notch, by taking into account the characteristics of 

etched surface, i.e., the inhomogeneous damage. 

Chapter 6: Conclusions 

This chapter summarizes all the results, conclusions and application scheme 

for engineering in the thesis. 

Appendix 1: Fractographic analysis for polysilicon thin films 

This appendix presents a fractographic study for the initial cracks and fatigue 

crack extension process in zero-tension cyclic stress test of polysilicon film specimens 

with notches. The initial cracks and their fatigue extension were speculated on the 

fracture surfaces observed in a scanning electron microscope. The fatigue crack 

extension process was quantitatively analyzed in detail using Paris’ law on the basis of 

the parameters evaluated from static and fatigue test data. The observed and estimated 

crack lengths were compared to each other. The results suggest that the fatigue crack 

extend into the silicon itself but not in oxide layer. Therefore, they support the theory 

of lifetime estimation with Paris’ law in this thesis. 

Appendix 2: EBIC observation of defect growth inside silicon under fatigue 

loading 

In order to support the theory on evaluation of fatigue lifetime estimated in 

this thesis, which was on the basis of Paris’ law, this appendix presents the prelimilary 

results of a trial to observe the defect growth inside silicon under fatigue loading. 

Fatigue test was performed on single crystal silicon in an environmental scanning 

electron microscope. While the specimen was repeatedly subjected to compressive 

stress, electron beam induced current (EBIC) images were obtained to visualize 

damage evolution. The changes were successfully observed at the notch tip, which 

remained the same through the hydrofluoric acid treatment after the experiment. 

These facts suggest that damage evolved inside silicon crystal during the fatigue 



Nagoya Institute of Technology   Vu Le Huy 
 

Chapter I 
10

loading process and that the contrast change was not due to an oxide layer thickened 

on the surface. 
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2.1. Introduction 

According to the background stated in Chapter I, statistical characteristics of 

polysilicon thin films were newly surveyed in this chapter with the data of fatigue 

tests in addition to those already presented previously [75]. The experimental data 

were obtained from three groups of polysilicon specimens where those from two 

groups had been obtained in a previous study [76] and those from a third group were 

newly obtained here. The three groups had experienced different etching conditions 

and therefore had different strength levels. On the basis of the experimental results of 

a total of three different specimen groups, the distributions and confidence ranges of 

the parameters of Paris’ law are examined. To perform these calculations, two 

parameter estimation methods are compared. One is the least squares method (LSM) 

minimizing the sum of squared deviations between the experimental lifetime 

observation and the lifetime distribution calculated using estimated parameters. This 

is the same method as was utilized in the previous studies [75,76]. The second method 

is the maximum likelihood method (MLM) in which the chi-square distribution helps 

to evaluate the confidence intervals of estimated parameters [77-79]. 

After clarifying the statistical characteristics of the parameters, practical 

differences in fatigue lifetime estimated with different sets of the parameters are 

investigated. The aim of this chapter is to demonstrate the applicability of Paris’ law 

and to find statistically whether there is a unique set of the parameters controlling the 

fatigue process, which would then suggest accumulation of defects from the initial 

surface damage. As a consequence, the fatigue lifetime of polysilicon thin film 

structures fabricated under different etching conditions could then be predicted on the 

basis of their strength distributions alone by applying parameters inherent to the 

material and appropriate for the used conditions under which the structure is operated. 

 

2.2. Specimens and experiment  

The tensile test structure [80] shown in Fig. 2.1 was utilized for the 

experiment. It consists of a stationary outer frame and a movable inner frame 

connected by parallel springs. They were fabricated out of single-crystal silicon 

wafers. The springs are oriented along a <110> crystal direction. Each spring is 
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designed to have a width and length of 100 µm and 2000 µm, respectively. The outer 

and inner frames are separated by gaps of 400 µm and bridged by four specimens. 

Specimens were loaded when the inner frame was pushed by an actuator, as shown in 

Fig. 2.1.  

Figure 2.2 illustrates briefly the fabrication process of the test structures. 

Specimens on the structures were made of a polysilicon thin film, which was 

deposited on silicon wafers by low-pressure chemical vapor deposition at a 

temperature of 625C and then annealed at 1050C for 1 hour. The film was patterned 

into the specimens after the annealing and the wafer was through-etched from the rear 

to produce the gaps. The details of the fabrication process have been reported in the 

referred paper [80].  

Three groups of polysilicon thin film specimens were named Groups A, B and 

C with different strength levels due to different etching conditions: the specimens of 

Group A were etched by a reactive ion etching (RIE) process, while specimens of 

Groups B and C were structured using the same Bosch process for the deep reactive 

ion etching of silicon. The recipes of these etching processes are shown in Table 2.1. 

Groups B and C were fabricated at different times. Therefore the etching conditions 

were not exactly identical even though the same etching recipe was applied. As a 

consequence the strength levels of Groups B and C appeared as slightly different, as 

discussed below. The former two groups were tested in previous studies [75,76], while 

the experiment on the last group was newly performed in this study. All the specimens  

 

 

Fig. 2.1  The test structure and specimens. 
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Fig. 2.2  Fabrication process of test structure. (a) Deposition of oxide and polysilicon, 

and subsequent annealing; (b) polysilicon patterning on the front and removal from 

the rear; (c) deposition of thick oxide layer and patterning of oxide layers on the rear; 

(d) Silicon deep etching by Bosch process; (f) Buffered hydrofluoric acid etching. 

 

here are designed to have the same parallel-sided shape shown in Fig. 2.1. Figure 2.3 

shows the scanning electron microscope (SEM) pictures of a specimen used in the 

experiment and the micro texture of the polysilicon film taken from a specimen of 

Group C. Specimens are flat thin films with a width of 50 m and a length of 400 m. 

The average thicknesses of specimens in Groups A, B and C were 920 nm, 959 nm 

and 996 nm, respectively. The grain size of the films was observed to be in a range 

from 70 nm to 300 nm. The average roughness, i.e., the average height of the bumps 

on a surface, of the etching surfaces of the specimens of Groups A, B and C were 

measured to be about 130 nm, 60 nm and 90 nm, respectively. Figure 2 shows a 

scanning electron micrograph of the micro texture of the polysilicon film. The valleys 

on the etched surface act like mirco notches and should be the cause for fracture as 

etching damages. Since the specimens were long enough in the tensile stress direction 

and were designed with a stress concentration factor of 1.01, the stress field where the 

specimens were expected to break was assumed as uniform.  
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Figure 2.4 shows the entire and close-up view of the experimental setup. The 

test structure was maintained by a holder and actuated by a piezo-positioner (PI P-

841.20, travel: 30 μm, resolution: 0.6 nm). The applied load was recorded by the load 

cell mounted on the tip of the actuator. The load cell used for the tests of specimens of 

Groups A and B had been of the type Kistler 9215 (resolution: 1 mN, sensitivity: 81 

pC/N, maximum capacity: 200 N, stiffness: 140 N/μm). For Group C, it was the cell 

PCB Piezotronics 209C2 (resolution: 0.09 mN, average sensitivity: 538.9 mV/N, 

maximum capacity: 48.9 N, stiffness: 350 N/μm). A laser displacement sensor 

(Anritsu, KL1300B, resolution: 5 nm, sampling frequency: 64 kHz) was placed on the 

 

Table 2.1. Recipes of etching process used to fabricate the specimens 

Parameters RIE process Bosch process 

Process pressure [mTorr] 5 5 

SF6 [sccm] 130 130 

O2 [sccm] 20 13 

ICP power [W] 650 600 

RIE power [W] 16 12 

Etching 

Time [s] 60 9 

C4F8 [sccm] - 85 

ICP power [W] - 600 

RIE power [W] - 0.2 

Passivation 

Time [s] - 6 

Etching rate [m/min] 2 2 

Number of cycles - 3 
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(a)         (b) 

Fig. 2.3  SEM pictures of  (a) a specimen used in the experiment and (b) a micro 

texture of the polysilicon film of Group C specimens. 

 

  

Fig. 2.4  Experimental setup. 

 

opposite side of the test structure to measure the displacement of the inner frame at its 

bottom edge. This setup was located in an environmental chamber (ETAC TH441HA) 

with temperature and humidity controlled within ±0.1°C and ±1%, respectively. All 

the equipment was driven from outside the chamber by a computer-controlled system 

which also logged all the data. 

Etched surface 

Grains of polysilicon film 
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The static strength tests were performed with monotonically increasing load 

under lab-air conditions. Figure 2.5 shows an example of the load-displacement 

behavior of a static test, where the load drops correspond to the load applied to the 

specimens just before fracture. The static strength of a specimen was evaluated by 

dividing the applied load by the cross-sectional area of the specimen. If two or three 

specimens break at the same time, the load applied to one specimen was calculated by 

dividing the load drop by the number of these specimens. When two specimens break 

simultaneously in fatigue test, it is ambiguous whether the fracture of the second 

specimen occurred due to fatigue by coincidence at exactly the same number of cycle 

or simply due to overloading to the surviving specimens caused by the loss of a 

specimen. However, the frequency of this situation was around 10% in static test and 

was not observed in the fatigues test. With the high stiffness load cells used in this 

study, the uncertainly in the determination of the actual load applied to the specimens 

when fractured simultaneously was about 0.1%. It was therefore small enough to be 

ignored. A more detailed discussion of this situation can be found in previous papers 

[75,80]. 

The fatigue experiments were performed at 22°C and 80% of relative humidity.   

 

 

Fig. 2.5  Load-displacement behavior in a static strength test. 
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This was to accelerate the experiments, knowing that fatigue lifetime of silicon is 

markedly shortened by humidity in the atmosphere [31,32,34,36,81] although the 

responsible mechanism has not yet been directly clarified, as discussed in the 

Introduction. All the specimens were cyclically loaded between a common minimum 

of zero and maximum stress levels varied on purpose from test chip to test chip. The 

common minimum implies that the stress ratio was zero for all the specimens. Figure 

2.6 shows a typical load record applied to a structure in the fatigue tests, where the 

load drop corresponds to the amplitude of the load applied to one specimen. The 

applied stress amplitude was calculated by dividing the load drop by the cross-

sectional area of the specimen. Specimens of Groups A, B and C were loaded with 

different frequencies of 100, 250 and 500 Hz, respectively. Because the effect of 

frequency on fatigue behavior was reported to be unmarked within the range from 50 

to 6000 Hz [35], the frequency of the tests in this study was increased with the aim to 

speed up the experiments and thus increasing the number of data points. The effect is 

discussed in Section 2.4.2 based on the actual data. The number of fatigue test data of 

Groups A, B and C is 10, 22 and 37, respectively. 

 

 

Fig. 2.6  Load drop observed when a specimen broke on a test structure in a fatigue 

test. 
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2.3. Statistical analysis  

2.3.1. Static strength test 

It is known that the strength of brittle materials such as silicon shows large 

scatters, which is well described using the Weibull distribution [7,8,82,83]. In the two-

parameter Weibull distribution [8], the cumulative fracture probability F of the 

specimens is defined as 






















m

F
0

exp1



,     (2.1) 

where m, 0 and  denote the Weibull modulus, the scale parameter and the fracture 

stress, respectively. The Weibull modulus, also termed shape parameter, represents the 

data scatter, while 0 is related to the average strength.  

On the other hand, the cumulative fracture probability F of experimental data 

was evaluated by the mean rank method as 

1


I

i
F ,       (2.2) 

where i is the number of a specimen among its group ranked by fracture stress and I is 

the total number of tested specimens of the group. Static test data were ranked here 

from the weakest to the strongest sample in each group.  

Symbols in Fig. 2.7 show the static strength test results of the three groups, 

where the abscissa and ordinate indicate the fracture stress  and the cumulative 

fracture probability F, respectively. Optimum values of the parameters 0 and m were 

obtained by applying the LSM minimizing the sum of Fi
2, where Fi denotes the 

deviation between the cumulative fracture probabilities from experiment and model. 

Thus, the optimum values of 0 and m listed in Table 2.2 for each group of specimens 

were obtained. The curvilinear lines in Fig. 2.7 indicate the results of fitting. Figure 

2.7 clearly shows the different levels of static strength of the three groups depending 

on their state of damage due to the different etching processes. As has been suggested, 

the static strength of thin film MEMS structures under monotonically increasing load 

may be completely determined by the initial damage induced by the fabrication 

process, especially the damage on the side walls due to the etching process to pattern  
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Fig. 2.7  Static strength test results. The solid symbols show the experimental data and 

the curvilinear lines show the fit of Weibull distribution. 

 

Table 2.2. The optimum values of 0 and m 

Parameters Group A Group B Group C 

0 [GPa] 1.600.05 2.380.06 1.860.04 

m 12.13.9 11.62.8 10.72.3 

 

the films; the static strength is thus quite sensitive to the etching conditions in the 

fabrication process [3-5,18,21,83].  

 

2.3.2. Fatigue test 

The raw fatigue test data distributions of three groups of specimens are shown 

in Fig. 2.8 with different symbols for the three specimen groups. Each symbol shows 

the applied stress amplitude and fatigue lifetime in terms of cycles of a specimen. 

There were 6 specimens fractured at the first cycle during the first increment of 

applied stress before the intended stress amplitude value was reached. In this case, the 

fracture event corresponds to the static fracture test. However, the data obtained from 
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these specimens did not fully reflect the static strength distribution, because the 

applied load level was limited within the range of the stress amplitude applied in the 

fatigue test. Therefore, they were excluded from the analysis. Since the static strength 

distribution was already obtained by static tests and fully characterized by the 

parameters m and 0, this exclusion does not bias any statistical properties. The 

dashed lines show the regions within which the tested data of the groups lie. They 

help to distinguish the experimental data distributions of the groups. 

 

 

Fig. 2.8  Raw data distribution of fatigue tests performed at 22C and 80%RH. 

 

 

Fig. 2.9  Fatigue extension of equivalent cracks starting from initial defects. 
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As has been suggested [75], not only the static strength but also fatigue 

lifetime as well may be correlated to the same initial damage. The defects introduced 

by the etching process were modeled as equivalent cracks on the etched side walls of 

specimens as illustrated in Fig. 2.9, which extend with microscopic dislocation slip at 

the crack tip as discussed in the Introduction. For the case of the fatigue tests, the 

applied loads were sinusoidal with stress amplitudes smaller than the specimen 

strengths. Therefore the specimens broke not immediately, but after individual 

numbers of load cycles. During this period, equivalent cracks propagate from their 

initial lengths a0 to critical length ac. The crack extension rate per cycle da/dN was 

formulated by Paris’ law [82,84] in the form normalized by the fracture toughness KIc 

as 

n

K

K
C

dN

da










Ic

,      (2.3) 

where C and n are two material parameters, and K is either the maximum stress 

intensity factor Kmax or the amplitude of the stress intensity factor K. Considering 

again the possible movement of dislocations in micro-scale silicon structures, the 

stress intensity factor amplitude K is expected to play a preponderant role in fatigue 

crack growth similarly to metallic materials. The fatigue process in both ceramic and 

metallic materials could be modeled with Paris’ law [73]. Fatigue crack extension in 

metals still obeys Paris’ law even at temperature as low as 125C [85]. The results in 

[85], where the fatigue tests were performed with different positive load ratios, show 

that both the maximum stress intensity factor Kmax and ∆K control the fatigue process. 

It has also been suggested that the maximum stress intensity factor Kmax rather than 

∆K plays the preponderant role in ceramic materials [42]. No matter whether Kmax or 

∆K plays the preponderant role in micro-scale silicon, since the stress ratio R = 0 was 

applied in this study, the use of either Kmax or K does not affect any result 

subsequently obtained. The stress intensity factor amplitude K was used in Paris’ law 

in the previous studies [75,76], and is used again in this thesis. The factor K in Eq. 

(2.3) is then defined as 

aKK  ,      (2.4) 

where a is the crack length at cycle number N, β denotes a dimensionless correction 

factor reflecting the geometry of both the crack and the specimen, and  is the 
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amplitude of the applied cyclic stress. In this study, KIc and β were taken as 1.1 

MPam1/2 [75,23] and 1.12 [75,82], respectively. As reported in the previous study [75], 

different values of KIc and β do not affect the parameter n, so far as they are kept to be 

constant throughout the crack extension process. The possible error range due to the 

variation of KIc and β will be discussed in Section 2.4.2 with the results of evaluation. 

When a specimen breaks, the stress intensity factor at the tip of the largest crack is 

expected to be equal to the toughness KIc. By integrating Eq. (2.3) with respect to the 

crack length from the initial crack length a0 to aN which represents the crack length 

after N cycles of load, aN is obtained as 

)2/(2
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This equation expresses the extension of the initial crack as a function of the applied 

stress amplitude  and number of load cycles N. 

On the other hand, when a specimen breaks, the stress intensity factor at the 

tip of the largest crack is expected to be equal to the toughness KIc. Therefore the 

strength of the material is formulated in terms of the equivalent crack length a as 

a

K


 Ic .       (2.6)  

Since the distribution of initial crack lengths can be evaluated from static strength 

distribution by substituting Eq. (2.6) into Eq. (2.1), the cumulative probability F is 

formulated in the terms of crack length as 






















 2/

0

0exp1
m

a

a
F



,     (2.7) 

with 0a = (KIc/β01/2)2. Equation (2.7) represents the cumulative probability of 

specimens to bear cracks with maximum length longer than a0. By applying Eqs. (2.5) 

and (2.7), the calculated crack extension behavior is illustrated in Fig. 2.10 in relation 

to the distribution of the initial crack length a0 and the resulting fatigue lifetime 

distribution in terms of the number of cycles N. Here the parameters 0, m, C and n 

obtained in the previous study [64] were used as an example, i.e., 1.60 GPa, 12.1, 

1.431013 m/cycle and 26.9, respectively. Figure 2.10 (a) shows that 80% of  



Nagoya Institute of Technology   Vu Le Huy 
 

Chapter II 
24

 

Fig. 2.10  Crack extension versus fatigue lifetime. 

 

equivalent initial crack length a0 was in a range from 105 to 175 nm. It was however 

difficult to directly identify the initial cracks on the specimens because of the 

roughness of etched surface and the length of specimen. In addition, unfortunately, the 

specimen broke away into pieces, which makes it also difficult to survey the fracture 

surface.  

Starting from the initial crack length distribution as shown in Fig. 2.10 (a), the 

crack length extension was calculated with the applied amplitude of stress  = 0.80 

as an example and plotted in Fig. 2.10 (b). Three lines were plotted with three 

different values of the cumulative probability F corresponding to three different initial 

crack lengths a0. The crack length increases with the number of cycles N and the 

specimen breaks when a crack reaches the critical crack length ac = (KIc/β1/2)2, i.e., 

the stress intensity factor at the crack tip reaches the toughness. The crack extension 

behavior in Fig. 2.10 (b) may not be similar to those observed with the stress ratio R = 

1 in the literature [29,32,34,36], where change in resonance frequency was attributed 

(a) (b)

(c)
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to fatigue crack extension and the rate of change did not increase sharply towards the 

end of lifetime. On the other hand, in the case of damage accumulation evaluated in 

terms of stiffness decrease, it was reported that the change became considerable only 

after about 105 and 106 cycles [39]. Taking the effect of compressive stress discussed 

in the Introduction [30,27,38] also into account, the apparent fatigue behavior under 

the stress condition without compression could be considerably different from that 

already reported with compressive stress. The cumulative fracture probability F 

corresponding to the intersection of critical crack length ac and the lines of crack 

extension in Fig. 2.10 (b) was plotted in Fig. 2.10 (c).  

The fracture probability for a specimen to break after N cycles under loads up 

to  is now given a mathematical form. By substituting aN with ac in Eq. (2.5), the 

initial crack length leading to fracture after N cycles is obtained as a function of the 

applied stress: 

)2/(22

Ic

2

Ic
0 2

)2(
1

n

N
K

nCK
a




































.  (2.8) 

By substituting a0 in Eq. (2.7) with Eq. (2.8), the cumulative fracture probability F is 

obtained as 
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When the number of cycles N is 0, Eq. (2.9) becomes identical to Eq. (2.1) showing 

the static strength distribution. From this equation, distributions of fatigue lifetime can 

be estimated at arbitrary applied stress levels. 

The two parameters C and n are determined by fitting Eq. (2.9) to 

experimental data. When the LSM is applied as in the previous studies [75,76], the 

sum of the squared deviations between the cumulative fracture probability calculated 

with Eq. (2.9) and the experimental set of data was minimized by varying C and n. In 

this calculation, the fatigue test data of each group were ranked in descending order of 

the initial crack length a0 calculated with Eq. (2.8), and then the cumulative fracture 

probability F of the fatigue test data was obtained by using Eq. (2.2). When the MLM 

is applied, the probability density function (PDF) is derived as 
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since the applied cyclic stress is from 0 to the maximum stress and the number of 

cycles starts from 0. It is understood that f corresponds to a static test in Eq. (2.9) 

when a specimen breaks at N = 0, i.e., the specimen breaking during the first 

monotonic load increase is unable to complete the first load cycle. In this case, the 

cumulative fracture probability depends only on the applied stress . Therefore the 

PDF f is simply defined by taking the derivative of the cumulative fracture probability 

with respect to . However, if the specimen survives the first cycle, it goes into the 

fatigue test regime. Because the applied stress amplitude is constant, the cumulative 

fracture probability of the specimen depends only on the number of load cycles. 

Therefore f is defined by taking the derivative of the cumulative fracture probability 

with respect to N. An example of such a PDF is plotted as a dashed curve in Fig. 2.10 

(c). The likelihood of obtaining a set of observations {,N} with probability density 

function f(,NC,n) is the product of the PDF values of all the observations as [77-79], 

i.e.,  
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In practice it is often more convenient to work with the logarithm of the likelihood 

function, i.e., the log-likelihood lnL defined as 
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The MLM estimates the parameters C and n by finding their set of values maximizing 

L or, equivalently, lnL. This so-called best estimates of C and n simultaneously 

satisfies 
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Best MLM estimates of the two parameters C and n were thus obtained by solving Eq. 

(2.12). 
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2.4. Calculation and discussion  

2.4.1. Estimation of optimum parameters in Paris’ law 

First, the optimization of C and n was performed by the LSM. In addition to 

optimal parameters for individual specimen groups, combined optimal parameter 

values were obtained by pooling data of two groups and fitting their results with 

common values of C and n. Similarly, common optimal values were obtained by 

pooling the data of all three groups. Results are shown in Table 2.3 (a). The combined 

optima are close to each other and close to the common optimum despite the spread of 

individual optima. The values of n evaluated here appear to be fairly large in 

comparison to those commonly obtained with metallic materials, but lie within the 

range of those reported for mono-crystalline silicon and polysilicon extending roughly 

from 10 to 50 [86]. High values of the crack growth exponent were also obtained with 

A533 B steel at low temperature [87], i.e., the crack growth rate data obtained at 77K 

indicated a value of n as high as 48. In the case of pearlitic steel tested with load ratio 

R = 0.7 at temperature of 125C, n was found to be up to 38 [85]. In summary, the 

exponent n of silicon as well as metal could assume values in a wide range. In the 

previous study [76], the values of C and n were presented as 9.301014 m/cycle and 

26.9, respectively, for Group A and correspondingly 1.831013 m/cycle and 25.8 for 

Group B. The values of C in this study appear different because C depends on the 

value of KIc [75]. A different estimate of KIc was used in the previous study [76]. The 

value of n of Group A was the same as that obtained in this study while n of Group B 

was different from this study because it has recently been found that the calculation 

for Group B in the previous study had not yet correctly converged to the true optimum.  

In Table 2.3 (a), no pair of number matches exactly. However, this may not 

necessarily mean that the fatigue behavior of three groups is completely different. 

Figure 2.11 presents the distribution of the cumulative fracture probability versus the 

applied stress  and number of cycles N calculated for each group with respective m 

and 0 but with common optima of C and n. The larger and smaller dots show the 

experimental fatigue data and their projections onto the calculated surface, 

respectively. The cumulative fracture probability F of an experimental data point was 

calculated by Eq. (2.2). Despite the difference between common and individual 

optima, calculation results excellently follow the trends of experimental data for all 
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the three groups. This suggests that those differences are physically not marked and 

that they are within a scatter range observed among different samples from a common 

mother group. In order to give a quantitative insight into this point, possible 

distribution ranges of the parameters C and n were statistically estimated as follows. 

 

Table 2.3. The optimum values of power parameters C and n 

(a) Least squares method 

Parameters C [m/cycle] n 

Group A 1.4310-13 26.9 

Group B 1.8610-13 18.0 Individual optima 

Group C 1.5510-12 34.3 

Groups A and B 8.5110-13 32.7 

Groups B and C 9.5510-13 30.4 Combined optima 

Groups C and A 1.3210-12 36.9 

Common optimum 

(obtained with all three groups) 
1.6210-12 36.2 

(b) Maximum likelihood method 

Parameters C [m/cycle] n 

Group A 1.8210-14 31.3 

Group B 2.4510-13 22.2 Individual optima 

Group C 1.4510-12 38.3 

Groups A and B 1.7410-13 34.3 

Groups B and C 8.7110-13 34.1 Combined optima 

Groups C and A 5.2510-13 40.6 

Common optimum 

(obtained with all three groups) 
5.0110-13 37.1 
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(a) Group A 

 

(b) Group B 

 

(c) Group C 

Fig. 2.11  Three-dimensional plots of the fatigue behavior of the three specimen 

groups using common values of C and n. 
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The difference between the two cumulative fracture probabilities obtained by 

experiment and calculation with the optimized parameters is here called deviation. 

The root mean square (RMS) deviation is defined as 


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1

21
.      (2.13) 

Figure 2.12 shows optimum regions and points in the C-n space. The optimum C-n 

points, shown as symbols, are those parameter combinations where FRMS attains its 

minimum value FRMSmin listed in Table 2.4. The contours show loci of C-n 

combinations with RMS deviations from the experimental data larger than FRMSmin 

by 0.03. The increment of 0.03 was selected so as to give bounds of parameters 

comparable to the 90% MLM confidence bounds evaluated below. The contours 

indicate that the increment of the RMS deviation is not marked when the values of C 

and n lie in a direction into which the contours extend. It means that the parameter 

values within these ranges are likely to be obtained from a single mother group of 

fatigue behavior and that they are consequently sensitive to small changes of the RMS 

deviation, i.e., sensitive to individual data shifts. It explains why the optimum values 

of the parameters scatter in a large range, especially when the number of experimental 

data is small. Therefore, even if the optimum values between the three groups seem to 

be different, they can represent a unique fatigue behavior and the most likely optimum 

values, i.e. the common optimum can be used for all the groups with a small value of 

the RMS deviation FRMS. 

On the other hand, optimum values of the two parameters C and n obtained 

with MLM by solving Eq. (2.12) are shown in Table 2.3 (b). Ratios of the likelihood 

functions were used to draw confidence bounds appropriately called likelihood ratio 

confidence bounds. Likelihood ratio confidence bounds are based on the equation 

[88,89] 

2
,

2

1ln2 kL

L
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


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


 ,      (2.14) 

where L1 is the likelihood function for the unknown parameters lying on the 

confidence bound, L2 is the likelihood function for the best estimates obtained by the 

MLM, and 2
,k is the chi-square distribution with the confidence level  and the  
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Fig. 2.12  Contours of RMS deviations and optimum points of C and n obtained by 

the least squares method with the individual and combined groups. 

 

Table 2.4. The value of root mean square deviation for the best fits 

 Individual optimum Combined optimum 

Groups A B C A and B B and C A and C Common

FRMSmin 0.128 0.059 0.075 0.126 0.077 0.118 0.113 

 

number of estimated parameters k.  

The confidence bounds of parameters of C and n were drawn at a level of 90% 

in Fig. 2.13 as the black contours for individual groups and the common analysis. 

These contours indicate the area in which 90% of C-n combinations obtained with 

data samples out of a mother group are expected to lie. The solid symbols show the 

optimum values of C and n obtained by the MLM as the best estimates where the 

likelihood function is maximized. For convenient comparison, the contours and the 

optimum points obtained by the LSM were also included as corresponding types of 
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Fig. 2.13  Comparison the optimum results of C and n obtained by the least squares 

method and the maximum likelihood method. 

 

gray contours and open symbols. This plot therefore shows that most of the optimum 

values of C and n obtained by the LSM lie within the confidence bounds estimated by 

the MLM. 

The fact that the estimated values lie within the confidence bound of the 

common case and all the contours overlap with each other for all the cases especially 

in Fig. 2.12 suggests that their optimum values of parameters can all be obtained from 

a mother group with unique characteristics, i.e., their fatigue characteristics is the 

same in terms of C and n despite the marked differences in static strength levels. On 

the other hand, the results of Group A obtained with the LSM and MLM do not match 

each other in Fig. 2.13 while those of other groups and common calculation matched 

relatively well. It was indicated in the literature [90] that the MLM estimation is 

biased and depends much on the sample size. Therefore the large difference between 

the results of Group A obtained by the two methods might be caused by the small 

number of data. Another possible reason could be that the etching recipe of specimens 

of Group A was different from that of the other two groups. Therefore it remains still 
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ambiguous whether the two parameters C and n are independent of the etching recipe 

or inherent to the material. However, Fig. 2.11 indicates that the fatigue test data of 

the three groups are described well by a unique set of parameters C and n. Then, from 

a practical point of view, it is interesting to know the expected error levels when 

representative values of C and n are applied for the prediction of lifetime distribution. 

For this purpose, the discussion is focused in the next section on the fatigue lifetime 

prediction with the common values of C and n in Table 2.3 and its deviation from the 

fatigue lifetime distribution estimated with a set of parameters deviating from the 

common values.  

 

2.4.2. Fatigue lifetime distribution 

The fatigue lifetime, denoted by the number of cycles N under an applied 

stress amplitude  with cumulative fracture probability F being given, can be 

explicitly calculated with optimized parameters by rewriting Eq. (2.9) as  
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Because the fatigue lifetime N is larger than 0, Eq. (2.15) is true when the condition 

F1exp[(/0)
m] is satisfied. Stress-lifetime (S-N) curves calculated by applying 

Eq. (2.15) are shown in Figs. 2.14 (a)-(c) for the three groups. The solid and dashed 

curves in these figures present the S-N curves when using the common and individual 

optimum values of C and n obtained by LSM, respectively. The S-N curves were 

plotted with the values 0.1, 0.5 and 0.9 of F starting from the static strength 

distribution. The symbols in Fig. 2.14 show fatigue test data. Although the scatter 

ranges are large, it appears that all the groups roughly follow a unique fatigue 

behavior indicated by the solid lines drawn with the common set of parameters C and 

n. 

To see the possible effect of testing frequency, the S-N curves with F = 0.5 and 

the experimental data of the three groups shown in Figs. 2.14 (a)-(c) were re-

composed into Fig. 2.14 (d) in a normalized fashion with respect to 0. Due also to the 

large scatter in lifetime, it is difficult to clearly see the effect of testing frequency on 

the fatigue lifetime. When the curves are compared, however, the lifetimes of Groups  
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Fig. 2.14  S-N curves of the three groups using the values of C and n obtained by the 

least squares method. 
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A and B appear longest and shortest, respectively, while the frequencies in the fatigue 

tests of Groups A and C were lowest and highest. This trend observed here looks 

different from what was reported in the literature where a higher frequency (40 kHz in 

comparison to 4 kHz) resulted in a longer lifetime distribution [34] in terms of 

numbers of cycles. In contrast, the effect of the testing frequency was also reported to 

be negligible when tested within the lower range of frequency (from 50 Hz to 6000 

Hz) [35]. Judging from the frequencies in this study ranging from 100 Hz to 500 Hz, 

the results with little frequency effect shown in Fig. 2.14(d) is consistent with the 

reported situation. 

The origin of data scatter in Fig. 2.14 was considered in the analysis above as 

the distribution of initial crack lengths determining the static strength. However, 

especially for the case of polysilicon, there is also a possibility where random grain 

orientation causes the scatter through different values of fracture toughness KIc. The 

geometry factor β may also change. So far as KIc and β are constant during the crack 

extension process as assumed in the analysis, the value of n estimated with Eq. (2.9) 

does not change even if different values of KIc and β are applied. However, their 

change during the crack extension causes the change of both C and n. In both the 

cases, the changes in KIc and β lead to an error range in the analysis. The toughness 

was reported to vary from 0.84 MPam1/2 to 1.24 MPam1/2, which was attributed to the 

local cleavage anisotropy and relative orientation of the grains [91]. When a crack 

changes its shape from a semi-circular crack to a through-the-thickness two-

dimensional crack, the value of β for the largest stress intensity factor changes from 

0.71 to 1.12. To evaluate the consequences of these uncertainties, changes in lifetime 

distributions due to the change in these parameters were calculated, and plotted in Fig. 

2.14 (d) as the solid and dashed small horizontal bars. They indicate the calculated 

ranges of fatigue lifetime change corresponding to the ranges between those two sets 

of extreme values of KIc and β mentioned above. Although they are plotted at 

particular positions, their length, i.e., the calculated ranges of change in logarithmic 

scale, were constants for all the positions along the S-N curves. They are indeed far 

shorter than the ranges of actual data scatters. Therefore, the large scatter of the 

fatigue lifetime is most likely caused by the scatter of initial crack length as analyzed 

above. 

 Another point to be mentioned concerning the scatter is that the S-N curve 
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with F = 0.9 appears to leave more than 10% of the data on the outside, especially in 

Fig. 2.14(c). Since the cumulative fracture probability F of the experimental data was 

calculated with Eq. (2.2), the data distribution may have been distorted when it was 

transferred from the lifetime to the cumulative fracture probability. As a comparison, 

Fig. 2.15 shows the S-N curves of Group C calculated by using the estimated values 

of n and C obtained by MLM where the experimental data were not ranked. The 

number of data lying out of the S-N curve with F = 0.9 was then reduced. It means 

that the calculated distribution with the optimum values may also slightly change 

depending on the methods of statistical analysis. 

The curves in Figs. 2.14 (a)-(c) also show that the calculated lifetimes are 

indeed different between the cases when the individual and common values of C and 

n are applied with the same applied stress. The difference in lifetime calculated with 

common values and those deviating from common values are evaluated here in 

logarithmic scale as 

 
nCnC

NNN
,**,

logloglog  ,    (2.16) 

where N is the calculated number of cycles from Eq. (2.15), C and n are here the 

common optimum values as the representative reference, C* and n* are values 

deviating from C and n. The function log stands for the logarithm to the base 10. By 

substituting Eq. (2.15) into Eq. (2.16), logN is written as 

 

 

Fig. 2.15  S-N curves of Group C using the values of C and n obtained by the 

maximum likelihood method. 
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Fig. 2.16  Error distribution in lifetime when the estimated parameters deviate from 

the optimum values of C and n. 
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where N0 is the stress value which yields a determined value of F in the static 

strength test. The values of N0 corresponding to the different values of F, i.e., 0.1, 0.5 

and 0.9, of the groups are shown in Figs. 2.14 (a)-(c), where the arrows indicate that 

the stress value of the S-N curves converge to N0 when N decreases to 0. The ratio of 

 to N0 is called as relative stress level. It represents a relative value of applied stress 

on an S-N curve and takes values from 0 to 1. As indicated in Eq. (2.17), logN 

depends only on the relative stress level /N0. Therefore, the distribution of the 

difference in predicted lifetime can be examined using a single analysis for arbitrary 

values of the cumulative fracture probability F.  

The distributions of logN were calculated and are plotted in Fig. 2.16 with 

the different values of C* and n* assuming the individual optimum values for the 

three groups in Table 2.3 (a). Figure 2.16 compactly summarizes the difference in 

lifetime when estimated with a set of parameters C* and n* deviated from the 

representative values of C and n. The results show that the absolute value of logN is 

smaller than 1 which corresponds to a factor of 10 in terms of N when the relative 

stress level /N0 is larger than 0.8, i.e., the applied stress is larger than 0.8N0. This 
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fact suggests that we may predict the lifetime on the basis of the static strength 

distribution with the common optima in accordance with specified values of F within 

a factor 10 so far as the low cycle range is concerned. The deviation seems to be a 

rather large, but it helps to limit the range of fatigue lifetime prediction at this moment. 

When the relative stress level is small, however, it is difficult to give a reliable 

prediction, which is probably because our experimental data is limited to a cycle 

range smaller than 109 cycles. Further fatigue tests to be performed with smaller 

applied stress amplitude would improve the prediction in the higher cycle range, 

which is made difficultly at the moment by the limited testing frequency of 500 Hz. 

 

2.5. Conclusion  

The fatigue process determining the lifetime was formulated by using Paris’ 

law. In order to find whether the same two parameters C and n of Paris’ law can be 

used to predict the fatigue lifetime of polysilicon thin films through the equivalent 

crack extension model to represent the damage accumulation process, experimental 

data of the static strength and fatigue lifetime were examined for three groups of 

specimens with different static strength levels. Optimum values of C and n for 

individual groups and for all the groups were obtained by two methods, namely the 

LSM and the MLM, in order to investigate the validity of evaluated parameters. All 

the optimum sets of parameter values were indeed different from each other. By 

surveying the confidence bounds and the distributions of the RMS deviation between 

the experimental data and calculation, it was found that they scatter over a range, 

which led to the ambiguity of concluding whether they are inherent to the material. 

The remaining ambiguity is further examined from a bit different aspect in the next 

chapter. However, the fatigue lifetime distribution was found to be reasonably well 

predicted by using a unique set of parameters C and n despite marked differences in 

static strength levels among those groups of specimens. These findings suggest that 

fatigue lifetime estimation on the basis of static strength distribution is possible, 

which may also indirectly suggest the possibility that defect accumulation causes 

fatigue fracture in polysilicon. 
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3.1. Introduction 

In Chapter II, the fatigue lifetime distribution of polysilicon thin films was 

surveyed and formulated using Paris’ law as a fatigue crack extension process starting 

from equivalent initial cracks whose lengths were determined from the distribution of 

the initial static strength [92]. It showed that the lifetime can be predicted on the basis 

of the static strength by using the same values of the parameters of Paris’ law, 

regardless of different levels of static strength. However, the large range of the 

parameter values led the ambiguity of conclusion whether they are unique. Besides, 

all the used specimens had the same shape and the stress distribution in the specimens 

was assumed to be uniform.  

On the other hand, many reports concerning the strength and fatigue behavior 

of silicon used notched specimens [15,16,23,27-29,31-34,37,74,81,86,93,94] with 

non-uniform stress distributions. Although the strength and fatigue behaviors were so 

far understood for those specifically shaped specimens, the obtained information 

could not be used to estimate the behavior of structures with other shapes. Since 

shapes and sizes of structures in MEMS vary widely among applications, it is difficult 

to perform the tests with all those structures. Therefore, from the view point of 

engineering, a method to evaluate the fracture strength and fatigue lifetime of 

arbitrarily-shaped structures from the experimental results of a specific structure type 

is necessary in order to design MEMS structures. 

In this chapter, firstly, the theory presented in Chapter II is extended to 

polysilicon thin films with arbitrary shapes or non-uniform stress distributions. It is 

applied to evaluate the static strength and fatigue behaviors of three types of 

specimens with different shapes fabricated under the same conditions as applied for 

Group C in Chapter II. The first type here is the specimens of Group C with the shape 

and experimental data already presented in Chapter II. They are flat specimens, i.e., 

without notch. The other two types are designed with notches of two different shapes. 

Since the specimens were etched under the same etching condition, their etching 

damage is assumed to be identical regardless of the shapes of specimens. Then, the 

strength and fatigue behavior should have the same local characteristics at any 

position on the patterned surface in view of the initial damage and equivalent crack 

extension process. By taking the stress distribution on etched surfaces of specimens 
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into account, the theory is refined to obtain the parameters in the Weibull distribution 

and Paris’ law which determine such local characteristics of static strength and fatigue 

behavior. The parameters are evaluated using the maximum likelihood method 

(MLM) [77-79]. The likelihood ratio test is applied to estimate the confidence bounds 

of estimated parameters on the basis of the results of the MLM and the chi-square 

distribution [88,89]. By analyzing the confidence bounds, the parameters describing 

local characteristics of the polysilicon thin films are investigated in order to see 

whether the obtained parameters are the same regardless of the shapes of specimens. 

The large scatter of the estimated values of the parameters obtained from the 

specimens without a notch presented in Chapter II left an ambiguity in the conclusion 

of fatigue behavior of polysilicon thin films fabricated under different etching 

condition. In order to confirm the conclusion of Chapter II, next, two groups of 

specimens are newly designed and fabricated under the different etching conditions. 

They are also subjected to static and fatigue tensile tests. The estimated parameters in 

Paris’ law estimated from the new two groups and those obtained from the previous 

group are also compared to each other. The confidence bounds are analyzed in order 

to confirm whether the fatigue process in polysilicon thin films has the same 

characteristics despite the stress distributions and initial damage distribution on the 

specimens. 

 

3.2. Statistical analysis 

3.2.1. Static strength test 

It is known that the strength of brittle materials such as silicon shows large 

scatter which is well described by the Weibull distribution [8,84]. In this chapter, only 

the etched surfaces of specimens were considered as the location for the initiation of 

fracture. Therefore, when the stress distribution in a specimen is not uniform, the 

cumulative fracture probability F of the entire etched surface of a specimen is defined 

in general form as [95,96] 
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where m denotes the Weibull modulus or shape parameter representing the data scatter, 
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0 denotes the scale parameter related to the average strength of the infinitesimal area 

dA, and a is the applied stress. The symbol A indicates the area of the entire etched 

surface of specimens.  

Equation (3.1) can be applied to any specimens with arbitrary shape if the 

distribution of the applied stress a is known. For the actual calculation, Eq. (3.1) can 

be rewritten in the discretized form as 
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where Ae and e are the area and the average stress of the surface element, 

respectively, as described in Fig. 3.1. One basically imagines the etched surface of a 

specimen to be composed of many small elements and the stress e in each element to 

be uniform. Under the assumption of linear elastic deformation, the stress e of each 

element is correlated to the maximum stress  in the specimen by the ratio of e to , 

which is notated as ke = e/. Equation (3.2) is then rewritten as a function of a 

variable  by 




















 

e

m
e

m

kF 



0

exp1 ,    (3.3) 

where  is the ratio of the area of the surface element Ae to the area A0.  

 

 

Fig. 3.1  Schematic of the fatigue extension of equivalent cracks starting from initial 

defects. 
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A probability density function (PDF) is derived from Eq. (3.3) as 
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In the MLM [77-79], the likelihood function of obtaining a set of observations {} 

with the PDF denoted by fs(0,m) is the product of the PDFs of all the observations, 

i.e.,  
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where I denotes the number of tested specimens of each data group. The likelihood 

function can be presented in the form of natural logarithm as 
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The MLM estimates the parameters 0 and m by finding their values maximizing Ls or 

lnLs. These so-called the best estimators simultaneously satisfy 
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The best MLM estimators of the parameters 0 and m are thus obtained by solving Eq. 

(3.7). 

 

3.2.2. Fatigue test 

It has been suggested that not only the static strength but also the fatigue 

lifetime is correlated to the same initial damage [75]. The defects caused by the 

etching process were modeled as equivalent cracks on the etched surfaces of the 

specimens as illustrated in Fig. 3.1. In the fatigue tests, the applied loads were 

sinusoidal with the stress amplitude smaller than the specimen’s strength. Therefore 

the specimens broke not immediately but after a number of load cycles N  1 which is 

here called as the specimen’s fatigue lifetime. During this period, equivalent cracks in 

an element propagate from their initial length a0e to the critical length ac. The 
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extension rate of the equivalent crack under cyclic loading, named the crack growth 

rate da/dN, is formulated by Paris’ law [82,84] in the form normalized by fracture 

toughness KIc as 
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where C and n and K denote the two parameters of Paris’ law yet to be determined 

and the amplitude of the stress intensity factor. Since the stress ratio was zero in this 

study, the amplitude of the stress intensity factor for the element is defined as 

ee aK  ,      (3.9) 

where ae denotes the equivalent crack length at the cycle N. The constant β denotes a 

dimensionless correction factor reflecting the geometry of both the cracks and the 

structures. In this chapter, β and KIc were set to be the same to Chapter II, i.e., 1.12 

[23,75] and 1.1 MPam1/2 [75,82], respectively. When a specimen breaks, the stress 

intensity factor at the tip of the critical crack is expected to be equal to the toughness 

KIc. The equivalent critical crack length is ac = (KIc/β1/2)2. By substituting K in Eq. 

(3.8) with Eq. (3.9) and then integrating Eq. (3.8) with respect to the crack length 

from a0e to ac, the number of cycles N required for the extension of cracks to the 

critical crack length can be obtained. From this calculation, the initial crack length a0e 

is obtained as 
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Since the distribution of initial crack lengths can be evaluated from static strength 

distribution by modifying Eq. (3.2) with the correlation of stress to crack length  = 

KIc/β(a)1/2, the cumulative probability F to contain an initial crack longer than 0σa  is 

formulated in terms of crack length as 
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where 0σa  = (KIc/β01/2)2 is a constant. Therefore, the cumulative fracture probability 

F of the entire etched surfaces is formulated as a function of both the maximum stress 
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 in the specimen and the number of cycle N as 
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When the number of cycles N is 0 then Eq. (3.12) becomes identical to Eq. (3.3) 

showing the static strength distribution. From this equation, fatigue behavior of the 

specimens with arbitrary shapes can be estimated at arbitrary applied load levels.  

The PDF corresponding to the cumulative fracture probability of Eq. (3.12) 

can be derived similarly in Chapter II as 


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    (3.13) 

It corresponds to a static test in Eq. (3.12) when a specimen breaks at N = 0, i.e., the 

specimen breaks while the applied load is monotonically increasing for the first load 

cycle. In this case, the cumulative fracture probability depends only on the applied 

stress . Therefore, the PDF is simply defined by taking the derivative of the 

cumulative fracture probability with respect to . If the specimen still survives after 

the applied stress has reached to the stress amplitude then it should also survive until 

the end of the first cycle. This means that the specimen is not broken by the static load 

and enters the fatigue test regime. Because the applied stress amplitude is constant, 

the cumulative fracture probability of the specimen depends only on the number of 

load cycles. Therefore the PDF is defined by taking the derivative of the cumulative 

fracture probability with respect to N. The likelihood function of a set of observations 

{,N} obtained from fatigue tests is presented in the form of natural logarithm as   
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In the MLM, the best estimators of C and n satisfy the simultaneous equations 
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and are thus found by solving these equations. 
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3.3. Evaluation of the strength and fatigue behaviors of specimens 

fabricated under the same conditions 

3.3.1. Specimens and experiment 

The tensile test structure presented in Chapter II was utilized for the 

experiments in this chapter. For this study, three types of specimens with different 

shapes as shown in Fig. 3.2 were fabricated from polysilicon thin films under exactly 

the same etching condition, which was used to fabricate the specimens of Group C in 

Chapter II. Therefore, their etching damage distributions are expected to be similar. 

The films were patterned into parallel-sided specimens with and without notches, with 

the stress concentration factors 1.0, 3.3 and 10, respectively, in order to establish 

different stress distributions on the specimens. The three specimen geometries are 

named Types C1.0, C3.3 and C10, where the capital letter C indicates the specimens 

were fabricated exactly in the same conditions of Group C in Chapter II, subscripts 

present the designed stress concentration factor of the specimen types. From here, 

“Group” indicates all the specimens fabricated under the same conditions, while 

“Type” indicates a specific shape of the specimens in a group. The specimen Type C1.0 

was designed without notch; its shape is similar to that of the specimens in the 

previous studies [75,92]. Types C3.3 and C10 were designed with a notch located in the 

middle of the specimens. The tensile stress along the etched surfaces of the specimens 

is shown in Fig. 3.3. The abscissa shows the distance from the middle points indicated 

in Fig. 3.2 toward both ends along the etched surfaces 1 and 2. Stress values are 

normalized by the average stress over a cross-section with 50 m width and 1 m 

thickness. These stress distributions were calculated using a finite element method 

(FEM) with the elements on the etched surfaces set to be squares with an area of 1 

m2. The total area of the two etched surfaces of specimen Type C1.0 indicated in Fig. 

3.2(a) is set for the area A0. 

Figure 3.4 shows the experimental setup which was used for both the static 

fracture tests and the fatigue tests. The setup was located in an environmental chamber 

(ETAC TH441HA, accuracy: ±0.1°C and ±1%) with controlled temperature and 

humidity. The test structure was fixed to the holder and actuated by a piezo-positioner 

(PI P-841.20, travel: 30 μm, resolution: 0.6 nm). The applied load was recorded by a 

load cell PCB 209C2 (resolution: 0.09 mN, sensitivity: 538.9 mV/N, maximum  
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(a) Type C1 

 

 

(b) Type C3.3 

 

 

(c) Type C10 

 

Fig. 3.2  Scanning electron micrograph of specimens. 
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(a) Type A 

 

(b) Type B 

 

(c) Type C 

Fig. 3.3  Estimated stress distribution on the etched surfaces. 
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capacity: 48.9 N, stiffness: 350 N/μm), which was mounted on the tip of the actuator. 

The displacement of the inner frame was recorded by a laser displacement sensor 

(Anritsu, KL1300B, resolution: 5 nm, sampling frequency: 64 kHz) facing the test 

structure. The test structure was observed through a microscope during the tests. All 

equipment was driven from outside the chamber by a computer which also recorded 

the data from the actuator, load cell and laser displacement sensor. The overall view of 

the experimental system was similar to that presented in Fig. 2.4 of Chapter II. 

The static strength tests were performed with monotonically increasing load 

under lab-air condition. The strain rate in the static tests was 0.15 µm/s. The results of 

static tests of three types of specimens are plotted in Fig. 3.5. The abscissa indicates 

the ranked number of the static test data from the weakest to the strongest sample in 

each type, and the ordinate indicates the maximum stress value along the distribution 

in Fig. 3.3 when the specimen broke.  

The fatigue experiments were performed at 22°C and relative humidity of 80%. 

All the specimens were cyclically loaded between the common minimum of zero and 

maximum stress which was kept at a different constant value for each individual 

specimen. Therefore, the ratio of the minimum to the maximum stress (stress ratio) in 

the loading cycle was zero for all the specimens. The loading frequency was 500 Hz.  

 

 

Fig. 3.4  Experimental setup. 

Piezo actuator Laser displacement sensor Holder 

Microscope Load cell Test structure 
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Fig. 3.5  Static strength of three specimen types. 

 

 

Fig. 3.6  Results of fatigue tests performed at 22C and 80%RH. 

 

Further details of the methods to obtain static and fatigue test data were described in 

the previous papers [75,80]. Figure 3.6 shows the experimental results of the fatigue 

tests of the three types of specimens with the symbols. Each symbol presents the 

maximum stress applied to a specimen and fatigue lifetime in terms of the number of 

cycles at which fracture of the specimen occurred in the fatigue experiments. The 
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number of fatigue test data of Types C1.0, C3.3 and C10 is 37, 26 and 28, respectively. 

 

3.3.2. Estimation of parameters 

3.3.2.1. Static test 

By applying Eq. (3.7) to the static test data and solving it, the best estimators 

of the two parameters 0 and m were obtained for the individual types of the 

specimens as listed in Table 3.1. They are shown as the open symbols in Fig. 3.7. On 

the basis of the likelihood function, the likelihood ratio test was applied to estimate 

confidence bounds. They are calculated as [88,89] 

 

Table 3.1. The best estimators of 0 and m 

Parameters Type C1.0 Type C3.3 Type C10 

0 [GPa] 1.84 2.05 2.00 

m 12.15 11.72 10.92 

 

 

Fig. 3.7  The best estimators and 90% confidence bounds of 0 and m. 
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where L1 is the likelihood function for the parameter values on the confidence bound, 

L2 is the value of likelihood function with the parameter values estimated by the 

MLM. The right hand side 2
,k  denotes the chi-square statistic with confidence level 

 and degrees of freedom k, where k equals to the number of estimated parameters. 

The confidence bounds of the parameters 0 and m of the three specimen types were 

drawn at a confidence level of 90% in Fig. 3.7 as the dashed contours. The 

distributions of 0 and m of Types C3.3 and C10 in Fig. 3.7 are almost identical while 

that of Type C1.0 lies in a different region. This means that the distribution of the local 

strength along the etched surfaces is expected to be statistically unique at least for 

Types C3.3 and C10. It also strongly suggests that the optimum values of 0 and m of 

Types C3.3 and C10 are not markedly different despite the different shapes. In contrast, 

the local strength distribution obtained with Type C1.0 specimens might be 

inconsistent with that of the other two types. 

 

3.3.2.2. Fatigue test 

The values of C and n were estimated similarly by solving Eq. (3.15) applied 

to the fatigue test data. The values estimated with the individual types of specimens 

were obtained as listed in Table 3.2 and are shown in Fig. 3.8 as the open symbols. 

The best estimators of n are consistent with the reported range of 40 to 50 for 

polysilicon films [86]. The dashed contours show the 90% confidence bounds of the 

parameters C and n estimated by the likelihood ratio test with Eq. (3.16). The results 

show that most of the distribution ranges of C and n obtained with Types C3.3 and C10 

overlap with each other. In contrast, only a small portion of the distribution range of C 

and n obtained with Type C1.0 lies within the 90% confidence bounds of Types C3.3 

and C10 and vice versa. This means that the local characteristics of the etched surface 

is unique at least of Types C3.3 and C10 also for the case of the fatigue behavior; the 

optimum values of C and n of Types C3.3 and C10 are not markedly different. In 

contrast, those of Type C1.0 might again be inconsistent with the other two types. 

The fatigue test data plotted in Fig. 3.6 show a wide scatter of lifetime, and  
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Table 3.2. The best estimators of the Paris law parameters C and n  

Parameters Type C1.0 Type C3.3 Type C10 

C [m/cycle] 1.9110-12 2.4210-13 3.9410-13 

n 41.63 39.48 43.09 

 

 

Fig. 3.8  The best estimators and 90% confidence bounds of C and n. 

 

thus the correlation between the applied stress and fatigue lifetime is not clear. The 

large scatter of fatigue lifetime was explained in Chapter II where it was caused by the 

large scatter of initial crack lengths [92]. The difference in static strength was enlarged 

into the huge scatter in fatigue lifetime, which was well described by the model 

proposed in the previous chapter [92]. By using the parameter values in Table 3.2, 

stress-lifetime curves could be calculated by using Eq. (3.12). The stress-lifetime 

curves of the three specimen types with cumulative fracture probability F = 0.5 

plotted in Fig. 3.6 trace the trends of the correlation between the applied stress and 

fatigue lifetime for the three specimen types. 
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As mentioned in the Introduction however, since the three types of specimens 

were fabricated in the same conditions, the four parameters 0, m, C and n were 

expected to be independent of the shapes of specimens. In the next section, inferential 

statistics will be used to evaluate how markedly the parameter values extracted from 

the three specimen types are different. 

 

3.3.3. Discussion  

Firstly, a hypothesis test was performed using inferential statistics to see how 

markedly the parameters 0, m, C and n of the three types differ. When the confidence 

bounds of the parameters start to overlap with each other with the same value of the 

confidence level, that confidence level is called the statistical difference level [89,97-

99]. The statistical difference level could take a value ranging from 0 to 100%. If the 

statistical difference level is small, it can be concluded that there is no marked 

difference. In contrast, if the statistical difference level is large, one can conclude that 

there is a marked difference. The statistical difference levels of the parameters {0,m} 

in the static tests and {C,n} in the fatigue tests of the three types are shown in Table 

3.3. For the cases of the pair of Types C1.0 and C3.3, and the pair of Types C1.0 and C10, 

since the statistical difference levels of the parameters {0,m} and {C,n} are close to 

50%, it is difficult to draw any conclusion. For the case of Types C3.3 and C10, since 

the statistical difference levels are smaller than 10%, it is concluded that the estimated 

values of the parameters of Types C3.3 and C10 are not markedly different. 

To survey the origin of this discrepancy seamingly setting Type C1.0 apart from 

Types C3.3 and C10, stress distributions in the test specimens were further investigated 

in detail. The gap between the outer and inner frames in a structure was designed with 

a nominal width of 400 m. The length of the specimens was originally designed to 

precisely fit this gap. However, it was difficult to fabricate the gap with exactly the 

designed dimension. This was because the slight taper of the etched surface implying 

the progressive widening of the gap as the substrate is being etched through from the 

rear. Figure 3.9 presents the tested specimens of the three types. In Fig. 3.9(a) the 

dashed lines indicate the specimen shape of the type C1.0 specimens before the test. 

The distance from the edge of the gap to the edge of the anchor part of a specimen is 

called the overetch distance. For these specimens, this distance was observed to lie in  
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Table 3.3. The statistical difference levels of the parameters between the three 

specimen types 

Parameters Types C1.0 and C3.3 Types C1.0 and C10 Types C3.3 and C10 

{0, m} 54.8% 50.1% 3.4% 

{C, n} 53.7% 51.4% 6.9% 

 

 

Fig. 3.9  Optical micrographs of the broken specimens after the tests, where the 

specimens of (a) Type C1.0 broken close to the specimen suspensions due to 

overetching during their fabrication, while specimens of (b) Type C3.3 and (c) Type 

C10 broken at the notches. 

 

the range from 20 µm to 60 µm. The overetching was taken into account in the FEM 

calculation to analyse its impact on the stress distribution on the specimen Type C1.0. 

Results are shown in Fig. 3.10. Figure 3.10(a) shows the stress distribution on the 

etched surface normalized by the nominal stress when the overetch distance was set as 

0 m and 40 m. Figure 3.10(b) shows the stress concentration factor calculated as a 

function of overetch distance from 0 m to 60 m. They clearly show that the 

maximum value in the stress distribution increases when overetching increases. From 

this result, the actual stress concentration factor of specimens of Type C1.0 was 

expected to range from 1.2 to 1.6 in view of the range of the observed overetch 

distances. Besides, the position of maximum stress was found to be different with 

different values of overetching. When overetching was 0 m, the position of  
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(a) 

 

(b) 

Fig. 3.10  Effect of overetching on the stress distribution on specimens of Type C1.0. 

(a) Stress distributions when the overetching was 0 m and 40 m. (b) Stress 

concentration factor versus the overetching of specimen. The line segments are guides 

to the eye. 

 

maximum stress was at about 110 m from the middle points. When overetching was 

40 m, it was at about 190 m from the middle points, i.e., close to the anchor part of 

specimen. Therefore, in the case of large overetching, specimens will likely break 

close to the anchor part as shown in Fig. 3.9(a) for an example with 60 m of 

overetching. When the true value of the stress concentration factor of Type C1.0 was 

not taken into account, i.e., the stress concentration factor was kept to be 1.0, the 
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calculated static strength becomes smaller and the rate of crack extension reflected in 

C becomes larger. This explanation is consistent with the estimated parameters, where 

the value of 0 of Type C1.0 was smaller than those of Types C3.3 and C10, and the 

value of C of Type C1.0 was larger than those of Types C3.3 and C10. Likely the 

observations made here are also applicable to the previous studies [75,92], where the 

specimens had the same shape and size as Type C1.0. This is possibly a reason why the 

estimated values of the parameters C and n in those reports and Chapter II showed a 

broad scatter, i.e., C range from 1.4310-13 m/cycle to 1.4510-12 m/cycle and n 

ranged from 18 to 40 [75,92]. For the cases of Types C3.3 and C10, when overetching 

changed, there also was a change in stress distribution at the flare part of the 

specimens. However, the stress value at the flare part is much smaller than that at the 

notch tip. Therefore the maximum stress value in the notched specimens did not 

change and the position always remained at the peak of the notch. From the 

consideration above, it is expected that the results obtained with the notched 

specimens are not significantly distorted by the overetching and thus are close to their 

true values. Figures 3.9(b) and 3.9(c) show clearly that the specimens of Types C3.3 

and C10 broke at the notches corresponding to the position of the high stress region. 

Note that the actual fracture point would not be exactly at the notch root, because it is 

determined by the probability. Though the specimens tend to break into pieces, the 

fracture origin must be unique and it may bifurcate during extension when 

catastrophic fracture happens. With the high stress concentration at the notch root of 

Type C10 specimens, the crack surfaces were often preserved after the tests and 

therefore fractography analysis can be performed as presented in the next section. 

In order to include the effect of overetching in the evaluation of the parameters 

for Type C1.0, stress distributions of the individual specimens calculated by FEM due 

to their overetchings were carefully taken into account. In this case, since the stress 

distribution of each specimen with its individual overetch length is different, the 

specimens belong to different types with different strength levels; thus the optimum 

values of the Weibull and Paris’ law parameters are estimated using combined 

likelihood functions. The experimental data of Type C1.0 with the corrected stress 

distributions are plotted in Figs. 3.5 and 3.6 with symbols denoted as “Type C1.0 with 

correct individual stress distributions”. The fluctuation width of the static strength of 

the corrected data of Type C1.0 is not much different from that of Types C3.3 and C10. 
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The best estimators of the parameters 0, m, C and n were obtained as 1.95 GPa, 

11.03, 3.311013 m/cycle and 38.81, respectively. These estimated values and their 

90% confidence bounds are shown in Figs. 3.7 and 3.8 as the solid symbols and solid 

contours. The statistical difference levels of the parameters {0,m} and {C,n} between 

Types C1.0 and C3.3, and between Types C1.0 and C10 were estimated again. Results are 

shown in Table 3.4. The statistical difference levels are now much smaller than in 

Table 3.3. This suggests that the estimated values of the parameters of Type C1.0 

structures with correct individual stress distributions are not markedly different from 

those of the other specimen types. It also proves that the wide difference in 0 as well 

as C between Type C1.0 and other types was caused by overetching which led to the 

change of stress distribution on the specimens of Type C1.0 from the initially assumed 

ideal distribution. 

Based on the above observation, when the corrected stress distributions are 

taken into account, one may expect that the parameter values should represent the 

unique local characteristics of the etched surface. The fracture strength and fatigue 

behaviors of each specimen type should therefore be reasonably described with the 

same values of the four parameters. The optimum values of the parameters 0, m, C 

and n were obtained by using simultaneously the experimental data of all the 

specimen types. The best estimators are 2.01 GPa, 11.12, 3.3610-13 m/cycle and 

41.06, respectively. The cumulative fracture probability F in Eq. (3.12) was calculated 

and plotted in Fig. 3.11 for Types C3.3 and C10 as a function of both the applied stress 

and the number of cycles in order to present the full picture of the fatigue behavior. 

The fatigue test data were ranked from the longest to the shortest initial crack lengths  

 

Table 3.4. The statistical difference levels of the parameters with the stress 

distributions of the individual specimens of Type C1.0 taken into account 

Parameters Types C1.0 and C3.3 Types C1.0 and C10 

{0, m} 9.1% 3.8% 

{C, n} 10.4% 22.6% 
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(a) Type C3.3 

 

 

(b) Type C10 

 

Fig. 3.11  Three-dimensional plot of the calculated behavior of (a) Type C3.3 and (b) 

Type C10 using the combined best estimators of m, 0, C and n obtained from Types 

C3.3 and C10. 
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calculated using Eq. (3.10). The calculated surface describes very well the 

distributions of static and fatigue test data with the same values of parameters despite 

the different specimen shapes. This fact suggests that the strength distribution and 

fatigue behavior of structures with arbitrary shapes can be practically estimated on the 

basis of the unique local characteristics of the etched surface represented by these four 

parameters, provided that the conditions of etching, operating stress ratio and 

environment are the same. 

 

3.4. Prediction of fatigue lifetime of specimens fabricated under 

different etching conditions 

3.4.1. Specimens and experiment 

Since the effect of overetching on the stress distribution on the flat specimens 

was found, the shape of specimens was redesigned in order to avoid that effect. Figure 

3.12 presents the newly designed specimens with and without notches, where the 

shape of Type C1.0 specimen is shown by dashed lines in Fig. 3.12(a). The width and 

length of the testing part of the specimens are 50 m and 400 m, respectively. The 

specimens without and with a notch were designed to have stress concentration factor 

of 1.0 and 3.0, respectively. The maximum principal stress distribution on the 

specimen without a notch is shown in Fig. 3.13 when the overetching was 40 m, and 

the applied load was 80 mN. For this case, the maximum stress position still is at the 

middle part of the specimen, where stress concentration factor was 1.02. It means that 

the effect of overetching was negligible and could be avoided. Stress distribution on 

the etched surfaces of these specimens was calculated and plotted in Fig. 3.14, where 

the abscissa shows the distance from the middle points indicated in Fig. 3.12 toward 

both ends along the etched surfaces 1 and 2, and the ordinate shows the normalized 

stress which is the stress values normalized by the average stress over a cross-section 

with 50 m width and 1 m thickness. 

For this study, two groups of specimens were newly fabricated from 

polysilicon thin films by using the two different etching recipes. One group was 

etched with RIE process and named as Group D. One other group was etched with  
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(a) 

 

(b) 

Fig. 3.12  Newly designed specimens (a) without a notch and (b) with a notch. 

 

 

Fig. 3.13  Maximum principal stress distribution on the newly designed specimen  

without a notch when overetching was 40 m. 
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(a) 

 

(b) 

Fig. 3.14  Stress distribution on the etched surfaces of the newly designed specimens 

(a) without a notch and (b) with a notch. 

 

Bosch process and named as Group E. The recipes of these etching processes were the 

same to those presented in Chapter II and shown in Table 2.1. The average thickness 

and the fluctuation range of the thicknesses of these polysilicon films is 9708 nm. 

For each group, the two newly designed specimen types with and without a notch as 

explained before were fabricated. The specimens are then named Types D1.0, D3.0, E1.0 

and E3.0, where capital letter and subscript indicates the group of specimen and stress 

concentration factor, respectively. Table 3.5 summarizes the information of the groups 

and types of the specimens used in this chapter. 
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Table 3.5.  Summarization of the groups and types of the specimens in Chapter III 

Group 
Specimen 

type 

Stress concentration 

factor 

Average 

thickness 

Etching 

process 

Year of 

Fabrication 

C1.0 1.2 ~ 1.6 

C3.3 3.3 C 

C10 10 

996 nm Bosch 2008 

D1.0 1.0 
D 

D3.0 3.0 
966 nm 

standard 

RIE 
2011 

E1.0 1.0 
E 

E3.0 3.0 
970 nm Bosch 2011 

 

Figure 3.15 presents the experimental setups. They were used for both the 

static fracture and the fatigue tests with the newly designed specimens. Overall view 

of the system is shown in Fig. 3.15(a) with the equipments controlling the tests. The 

environmental chamber (ETAC TH441HA, accuracy ±0.1°C and ±1%) with 

controlled temperature and humidity contains the two setups shown in Fig. 3.15(b) 

running in parallel. The two setups were controlled from outside of the chamber by 

the equipments shown in Fig. 3.15(a). By using these two setups, two test structures 

could be examined simultaneously in order to increase the number of experimental 

data as well as reduce the time for experiment. In each setup, a test structure was fixed 

to the holder and actuated by the piezo-positioners PI P-841.10. The two piezo-

positioners in the two setups were controlled by a function generator WF1943A. The 

applied load was recorded by a load cell PCB 219B (sensitivity 10.12 pC/kN, 

maximum capacity 44.5 N, stiffness 350 N/μm) in the setup 1 and a load cell PCB 

209C2 (sensitivity 494.6 mV/kN, maximum capacity 48.9 N, stiffness 350 N/μm) in 

the setup 2. The two laser displacement sensors (Anritsu, KL1300B) were used to 

record the displacement of the inner frames.  

By using these experimental setups, the static strength and fatigue tests of the 

newly designed specimens were performed with the same conditions as those used for 

the previous specimens. The results of static and fatigue tests of three types of the 

specimens of Groups D and E are plotted as the solid and open symbols in Figs. 3.16  
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(a) 

 

(b) 

Fig. 3.15  (a) Overall an (b) close-up views of experimental setups. 

 

 

Fig. 3.16  Static strength test results of the newly designed specimens. 
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and 3.17, respectively. Since the number of specimens was limited, fatigue test was 

not performed with the specimens of Type D3.0. The data numbers of those tests for 

each specimen type are summarized in Table 3.6. 

 

3.4.2. Static strength evaluation 

By applying Eq. (3.7) to the static test data of the newly designed specimens 

and solving it, the best estimators of the two parameters 0 and m of an infinitesimal 

area on the etched surface were obtained for the individual types as listed in Table 3.7. 

The fitting results are presented in Fig. 3.16 as the curvilinear lines. The best 

estimators are plotted as the symbols in Fig. 3.18 together with their 90% confidence  

 

 

Fig. 3.17  Fatigue test data of the newly designed specimens. 

 

Table 3.6.  Summarization of the data number 

 Type D1.0 Type D3.0 Type E1.0 Type E3.0 

Static test 14 9 15 16 

Fatigue test 27  25 27 
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bounds in the space of 0 and m. The distributions of 0 and m show that those of 

each group are close to each other. The statistical difference levels of the parameters 

{0,m} were also calculated for the specimen types in each group. The statistical 

difference level between Types D1.0 and D3.0 and between Types E1.0 and E3.0 is 4.5% 

and 1.6%, respectively. These values show that there is no marked difference of those 

parameters between the specimen types fabricated in the same conditions. The 

difference in 0 between the two groups corresponds to the difference of local 

strength levels, which was induced by different etching conditions. It is confirmed 

again that the values of the parameters 0 and m of the specimens fabricated in the  

 

Table 3.7.  The best estimators of 0 and m of the newly designed specimens 

Parameters Type D1.0 Type D3.0 Type E1.0 Type E3.0 

0 [GPa] 1.31 1.32 1.97 2.02 

m 10.57 9.86 9.67 10.03 

 

 

Fig. 3.18  The best estimators and 90% confidence bounds of 0 and m of the newly 

designed specimens. 
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same conditions are independent of the shapes of the specimens. Therefore, local 

characteristics of the etched surface of polysilicon thin films are unique. 

 

3.4.3. Fatigue lifetime prediction and discussion 

By using the common optimum values the parameters C and n obtained from 

Group C, i.e., 3.3610-13 m/cycle and 41.06, respectively, the cumulative fracture 

probability F under fatigue loading was calculated by Eq. (3.12) and plotted in Fig. 

3.19 for Types D1.0, E1.0 and E3.0 as a function of both the applied stress and the 

number of cycles in comparison to the experimental data. The parameters 0 and m in 

these calculations were taken with the values presented in Section 3.4.2 for the 

individual types. The calculated surface describes very well the distributions of static 

and fatigue test data. This fact suggests that the fatigue behavior of structures with 

arbitrary shapes can be practically estimated on the basis of the unique set of the 

parameters C and n despite the difference in strength levels. 

In order to investigate the accuracy of the prediction, the fitted distribution of fatigue 

test data was performed and then was compared to the predicted distribution. By 

fitting Eq. (3.12) to the fatigue test data of Types D1.0 , E1.0 and E3.0 with the MLM, 

the optimum values of C and n were obtained as shown in Table 3.8. Those optimum 

values are plotted in Fig. 3.20 as the open symbols together with their 90% confidence 

bounds as the dashed contours. In this figure, the optimum values of C and n of Types 

C1.0, C3.3 and C10 are also presented as the gray solid symbols. The common optimum 

values of C and n of Group C, i.e., common of Types C1.0, C3.3 and C10, and its 90% 

confidence bound are shown as the asterisk and solid contour. Figure 3.20 shows 

clearly that all the optimum points are now inside of all the 90% confidence bounds. 

Besides, the statistical difference levels between the distribution of C and n of the 

common case of Group C and those of Types C1.0, C3.3 and C10 were also calculated 

and were obtained as 23.6%, 12.5% and 1.3%, respectively. These results show that 

the values of C and n of Types D1.0 , E1.0 and E3.0  are not markedly different from 

those of Group C. Therefore, it could be concluded that the values of C and n of 

polysilicon thin films are inherent material constants despite the difference of the 

specimen shapes and etching conditions. 

The accuracy of the fatigue lifetime prediction of Types D1.0 , E1.0 and E3.0 
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(a) 

 

(b) 

 

(c) 

Fig. 3.19  Plots of the calculated behavior of (a) Type D1.0, (b) Type E1.0 and (c) Type 

E3.0 using the combined best estimators of C and n obtained from Group C. 
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Table 3.8. The best estimators of C and n obtained from the newly designed specimens 

Parameters Type D1.0 Type E1.0 Type E3.0 

C [m/cycle] 7.4010-13 6.7910-13 3.1810-13 

n 41.25 42.70 39.55 

 

 

Fig. 3.20  The best estimators and 90% confidence bounds of C and n. 

 

when using the common optimum values the parameters C and n obtained from Group 

C is now able to be investigated by comparison to the fatigue lifetime distribution 

when using the individual optimum values of those types. By the same way presented 

in Chapter II, the differences in lifetime in logarithmic scale logN between the cases 

of using the common and individual optimum values of C and n were calculated and 

are plotted in Fig. 3.21 for Types D1.0, E1.0 and E3.0. The results show that the absolute 

value of logN is smaller than 1 which corresponds to a factor of 10 in terms of N 

when the relative stress level /N0 is larger than 0.2, i.e., the applied stress is larger 

than 0.2N0. This factor reduced to be smaller than 2.6 when the relative stress level 

/N0 was larger than 0.5. It means that the fatigue lifetime could be predicted within 

an efficient accuracy on the basis of the static strength distribution with the common 

optima of C and n in accordance with specified values of F. 
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Fig. 3.21  Error distribution in lifetime of Types D1.0 , E1.0 and E3.0 when the estimated 

parameters deviate from the common optimum values of C and n of Group C. 

 

3.5. Conclusion  

In this chapter, a theory describing the static strength and fatigue behavior of 

MEMS structures with arbitrary stress distributions was formulated by extending the 

theory presented in Chapter II where the stress distributions were assumed to be 

uniform. Three groups of polysilicon thin film specimens were fabricated under the 

different etching condition with different types of shapes in each group, and subjected 

to experiment. The experimental data were analyzed by applying the concept of 

inferential statistics in order to estimate the parameters, i.e., 0 and m in the Weibull 

distribution and C and n in Paris’ law, which represent the local characteristics of the 

static strength and fatigue behaviors of the surface damage due to the etching process. 

The analysis results in this chapter showed that the stress distributions on the 

specimens used in Chapter II were affected by overetching of the gaps separating the 

inner and outer frames of the test structures. The change of stress distributions led to 

the parameters scattering on a large range, and therefore left the ambiguity in the 

conclusion of Chapter II. This was overcome by taking the individual stress 

distributions of the previously designed specimens into account, and using the newly 

designed specimens without the effect of overetching in this chapter. It was found that 

the estimated values of the parameters 0 and m in the Weibull distribution were not 
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markedly different for the specimens fabricated under the same condition despite the 

difference of the specimen shapes. The distributions of the parameters C and n in 

Paris’ law were almost identical for all the specimen types fabricated under the 

different conditions. It means that the etched surface of polysilicon thin films has 

unique local characteristics regardless of the shape of specimens. The parameters C 

and n should be the inherent material constants of polysilicon thin films. As a 

consequence, strength and lifetime predictions can be made about structures with 

arbitrary stress distributions by using the unique values of the four parameters 0, m, 

C and n.  

Since the method developed here was examined successfully with the different 

stress distributions of the specimen types, it is suggested that the application range of 

the method can be extended to any stress distribution on specimens of the same 

material with the same planar geometry and structured using the same etching 

technique. Therefore, the fracture strength and fatigue lifetime of the arbitrarily-

shaped polysilicon thin films can be characterized statistically by the described 

method. 
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Chapter IV 

A Novel Fatigue Test with Ramping Stress Amplitude 

to Evaluate Fatigue Behavior of Polysilicon Thin Films 
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4.1. Introduction 

In the previous chapter [75, 6], Paris’ law with two unknown parameters was 

used to predict the fatigue lifetime of polysilicon by using the results of conventional 

fatigue experiment with constant amplitude, which is hereafter called normal fatigue 

test. There the fatigue lifetime was predicted on the basis of static strength under 

monotonically increasing stress. The most inconvenient matter of the normal fatigue 

tests is that the experiment may have to be stopped before failure when the number of 

cycles exceeds an affordable time limit as indicated with Z in Fig. 4.1(a). This was 

usually seen in the previous reports of fatigue tests with constant stress amplitude 

when the applied stress amplitude was small or the fatigue tests were performed under 

low humidity environment [7,17,30,33,86,93,100]. It should impede drawing fully the 

fatigue behavior of silicon. In addition, because of a large scatter in strength, however, 

it was difficult to evaluate fatigue behavior with the normal fatigue test when   

 

 

Fig. 4.1   Actual stress history in (a) the normal fatigue tests with the possible fracture 

events of specimens and (b) the ramping fatigue tests. In (b), the stress amplitude σ 

linearly increases with the number of cycles N and  is the ramping increment per 

cycle. 
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specimens broke before reaching the target stress amplitude as indicated with X or Y. 

In this chapter, the possibility of a new experimental method to estimate the 

fatigue behavior of polysilicon thin films is studied by using cyclic loading with 

gradually increasing stress amplitude as shown in Fig. 4.1(b), which is here called 

ramping fatigue test. This method has none of the fundamental problems of normal 

fatigue test in Fig. 4.1(a), because the small stress amplitude in the beginning gives 

fatigue degradation of strength and the large stress at the final stage breaks all the 

specimens. Therefore the effect of fatigue is seen as reduced fracture stress levels 

which depend on the fatigue damage. Later on, further increase of stress level breaks 

all the specimens in a planned period of time. With the success of formulating the 

normal fatigue test in terms of Paris’ law [75,76], the ramping fatigue test is 

formulated also by Paris’ law and the parameters optimized to the experiment were 

compared in both the fatigue tests. The method is applied to both the cases of the 

specimens with uniform and arbitrary stress distributions. 

 

4.2. Uniform stress distribution 

4.2.1. Statistical analysis 

The extension rate of the equivalent crack under cyclic loading is formulated 

by Paris’ law as Eq. (2.3) and is rewritten here as 

n

K

K
C

dN

da




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

 


Ic

,      (4.1) 

where the stress intensity factor K is defined by Eq. (2.4) for the normal fatigue test. 

For the case of ramping test as described in Fig. 4.1(b), the value of applied stress  at 

the cycle number N was  = N. Therefore  

 aNaK   .     (4.2) 

In Eq. (4.2), β denotes a dimensionless correction factor reflecting the geometry of 

both the cracks and the structures, a is the crack length at the cycle N. In this study, 

KIc and β were taken as the values used in the previous chapters, i.e., 1.1 MPam1/2 and 

1.12, respectively. By substituting K in Eq. (4.1) by Eq. (4.2) and then integrating Eq. 

(4.1) with respect to the crack length from the initial crack length a0 to the critical 
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length ac = (KIc/β1/2)2 where the specimen was broken, i.e., the number of cycles 

needed to go from 0 to N, the initial crack length is obtained as 

)2/(2
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Since the distribution of initial crack lengths can be evaluated from static strength 

distribution by combining Eqs. (2.7) and (4.3), the cumulative fracture probability F 

for the increasing maximum stress  in ramping fatigue tests is formulated as  
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When the ramping increment  comes to infinity, then Eq. (4.4) becomes identical to 

Eq. (2.1) showing the static strength distribution. 

 

4.2.2. Specimens and experiment 

The tensile test structure with the specimens of Groups B and C introduced in 

Chapter II were utilized for the ramping fatigue tests here. These specimens are 

parallel-sided specimens, where stress concentration factor was designed to be 1.0 and 

the stress distribution was assumed to be uniform as it presented in Chapter II. 

By using the experimental setup as in Chapter II, the ramping fatigue tests 

were performed under cyclic loading at a frequency of 100 Hz and gradually 

increasing stress amplitude as shown in Fig. 1(b). The environment of these tests was 

the same to the normal fatigue tests, i.e., temperature of 22°C and relative humidity of 

80%. The specimens were loaded between zero and the gradually increasing 

maximum stress, i.e., the stress ratio R was kept to be zero also here. For each group, 

a number of different increase rates of stress amplitude per cycle , which is here 

called the ramping increment, are applied. The ramping fatigue test data of Groups B 

and C are shown in Fig. 4.2, where the stress amplitude and number of cycles are 

plotted along the ordinate and abscissa, respectively. In this figure, each symbol 

indicates the fracture event of a specimen. The solid and open symbols present the 

experimental data of Groups B and C, respectively. The lines indicate the planned 
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Fig. 4.2   Ramping test data of both the groups with different ramping increments  

[Pa/cycle]. Symbols indicate the fracture events of specimens. 

 

stress histories with the ramping increments . The data symbols might appear at 

positions deviating from the lines. This is caused by the fact that the four specimens 

on each structure were loaded using the actuator under displacement control, i.e., it is 

difficult to give exactly the same load under displacement control condition to the 

specimens on different structures with slightly different gap width depending on the 

situation of backside deep etching. 

 

4.2.3. Results and discussion 

In order to compare the results of ramping fatigue tests to the normal fatigue 

tests, the two parameters in Paris' law for normal fatigue test results evaluated as 

described previously [75,76,92] are used here. The optimized values of the two 

parameters n and C of Group B and C obtained in Chapter II are listed again in the 

upper half of Table 4.1. The values in the column titled with “common” are the 

optima of n and C obtained by fitting Eq. (2.9) to the fatigue test data of Groups B and 

C simultaneously. 

For the case of ramping test, the cumulative fracture probability F of the 

specimens was evaluated by F = i/(I+1), where i is the ranked number of the data and 

I is the number of tested specimens for the individual ramping increments . It 
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means that, for a value of ramping increment  of each group, each specimen was 

ranked as i from 1 to I from the weakest to the strongest as shown by the symbols in 

Fig. 4.3. By using n and C obtained from the normal fatigue tests, the cumulative 

fracture probability F of ramping tests was predicted by using Eq. (4.4) as plotted in 

Fig. 4.3 with curvilinear lines, which agrees well with the experimental data shown by 

the symbols. In Fig. 4.3, each symbol type shows the data of experiment with a 

different intended value of ramping increment  shown in Fig. 4.2 and the 

corresponding curvilinear line was calculated by using that value of . There is no 

marked difference between Figs. 4.3 (a) and (b) for Group B, and Figs. 4.3 (c) and (d) 

for Group B, where the individual optima (Figs. 4.3 (a) and (c)) and the common 

optima (Figs. 4.3 (b) and (d)) of n and C were used for prediction.  

When Eq. (4.4) was fitted to the ramping fatigue experimental data by the least 

squares method, the optimal values of n and C shown in the lower half of Table 4.1 

were extracted. In Table 4.1, “common” means that Eq. (4.4) was fitted to the 

ramping test data of both the groups with the same values of n and C. In order to show 

visually the calculated results of the parameters n and C, Fig. 4.4 shows optimum 

regions and points in the C-n space. The optimum C-n points, shown as symbols, are 

those parameter combinations where FRMS attains its miminum value FRMSmin. The  

 

Table 4.1.  Optimum values of n and C in Paris’ law 

Normal fatigue tests 

Parameters Group A Group B Common 

n 17.98 34.31 30.41 

C [m/cycle] 1.8610-13 1.5510-12 9.6210-13 

Ramping fatigue tests 

Parameters Group A Group B Common 

n 27.42 31.45 30.15 

C [m/cycle] 1.1710-12 7.9610-13 9.2410-13 
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   (a)     (b) 

 

(c)     (d) 

Fig. 4.3  Prediction results of ramping tests using the individual (a,c) and common 

(b,d) optimum values of n and C obtained from normal fatigue tests for both groups of 

test structures. 

 

contours show loci of C-n combinations with RMS deviations from the experimental 

data larger than FRMSmin by 0.01. The solid and dashed contours present the RMS 

deviations in the normal and ramping fatigue tests, respectively. The contours indicate 

that the increment of the RMS deviation is not marked when the values of C and n lie 

in a direction into which the contours extend. It means that the parameter values 

within these ranges are likely to be obtained from a single mother group of fatigue 
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behavior and that they are consequently sensitive to small changes of the RMS 

deviation. In addition, although the individual optimized values of the two fatigue test 

methods for each group are different, the common values are almost identical. As 

suggested in Chapter II, although the common values are different from the individual 

optima, the fatigue lifetime could be well predicted with the common values of n and 

C [92]. It means that the common optimum values of n and C obtained from ramping 

tests could be used to predict the fatigue lifetime in the normal fatigue tests. 

The optimum n and C values obtained from the ramping fatigue tests were 

applied backward to predict the normal fatigue behavior in order to confirm that they 

can be equivalent to those obtained from the normal fatigue test. Figure 4.5 shows the 

predicted results of fatigue lifetime in comparison to the normal fatigue test data. The 

predicted surfaces indicated by curvilinear lines were calculated by using Eq. (2.9) in 

Chapter II. As shown in Fig. 4.5, the experimental data of normal fatigue tests 

appeared in good agreement with prediction. Figures 4.5 (a) and (b) show the results 

of fatigue behavior for Group B, while Figs. 4.5 (c) and (d) show those for Group C, 

both by using the results of n and C from the ramping fatigue tests were used. The 

larger solid points show the normal fatigue experimental data and the smaller solid  

 

 

Fig. 4.4  Contours of RMS deviations and optimum points of C and n obtained by the 

least squares method with the individual and combined groups. Solid and dashed 

contours show the RMS deviations of C and n obtained from the normal fatigue test 

data and the ramping fatigue test data, respectively. 
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Fig. 4.5  Three-dimensional plot of predicted fatigue lifetime distribution of Group B 

(a,b) and Group C (c,d) when using the individual (a,c) and common (b,d) optima of n 

and C obtained from ramping fatigue tests. 

 

the values of n and C of Groups B and C are different between individual and 

common optima obtained from ramping fatigue tests, error levels of predicted results 

in Fig. 4.5 do not differ markedly. 

 

4.3. Arbitrary stress distribution 

4.3.1. Statistical analysis 

Starting from Paris’ law as Eq. (4.1), by the same way of implementation for 

the normal tests with arbitrary stress distribution presented in Chapter III, the 

cumulative fracture probability F for the entire etched surfaces of a specimen is 
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formulated as 
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where  is the maximum stress in the specimen, ke is the ratio of the stress e in each 

element to , and  is the ramping increment =/N. When the ramping increment 

 comes to infinity, then Eq. (4.5) becomes identical to Eq. (3.3) showing the static 

strength distribution of the specimens with arbitrary stress distribution. 

 

4.3.2. Specimens and experiment 

For the trial of the ramping fatigue tests on the specimens with arbitrary stress 

distributions, the specimens of Types E1.0 and E3.0 introduced in Chapter III were 

utilized for the ramping fatigue tests here. The ramping fatigue tests on these 

specimens were also performed under the same conditions to the previous ramping 

tests. The ramping fatigue test data of Types E1.0 and E3.0 are shown in Fig. 4.6, where 

the specimens of Type E1.0 were tested with 4 ramping increments and are shown by 

the open symbols, while those of Type E3.0 were tested with only one ramping 

increment and are shown by the solid symbols. The experimental data follow well the  

 

 

Fig. 4.6   Ramping test data of Types E1.0 and E3.0 with different ramping increments 

 [Pa/cycle]. Symbols indicate the fracture events of specimens. 
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planned stress histories. This might be a consequence of overetching effect to be 

avoided by using the newly designed specimens. 

 

4.3.3. Results and discussion 

The cumulative fracture probability F of the specimens was evaluated by and 

is plotted versus the applied stress amplitude at fracture event in Fig. 4.7 as the open  

 

 

(a) Type E1.0 

 

(b) Type E3.0 

Fig. 4.7  Prediction results of ramping tests of (a) Type E1.0 and (b) Type E3.0 using the 

common optimum values of n and C obtained from normal fatigue tests of Group C. 
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symbols for Type E1.0 and the solid rectangular symbols for Type E3.0. The static test 

data and its fitted distribution are also shown in Fig. 4.7 by the solid circular symbols 

and solid curvilinear line, respectively, as a comparison of fracture strength. By using 

the common values of n and C obtained from the normal fatigue tests of Types C1.0, 

C3.3 ad C10 presented in Chapter III, the cumulative fracture probability F of ramping 

tests was predicted by using Eq. (4.5) as plotted in Fig. 4.73 with the dashed 

curvilinear lines. The predictions describe well the distributions of ramping test data 

of Type E1.0 with the ramping increments of 16 Pa/cycle, 40 Pa/cycle, 110 Pa/cycle, 

and that of Type E3.0 with the ramping increments of 110 Pa/cycle.  

In order to see whether the experimental data follow well predictions, the 

average fracture strengths of the predictions and the experimental results was potted 

in Fig. 4.8, where the abscissa and ordinate show the ramping increment and the 

applied stress on the specimens at fracture event, respectively. The average strength in 

the prediction is shown in Fig. 4.8 by the solid curvilinear line, which was calculated 

by Eq. (4.5) with the cumulative fracture probability F of 0.5. When the ramping 

increment comes to infinity, it presents the static strength. The average strengths of 

the ramping fatigue test and static test data are shown by the solid circular symbols. In   

 

 

Fig. 4.8  Comparison of the average strength of the experimental data and the 

predicted average strength for Type E1.0 specimens.  
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additions, the 90% confidence bound of the average strength and the 90% distribution 

ranges of the experimental data were presented by the open rectangles and the error 

bars, respectively. For the case of  = 670 Pa/cycle, it shows that the average 

strength of the experimental data was higher than the prediction. This might be 

because of small number of data as 4 specimens tested at that ramping increment or 

strengthening effect as reported in the other studies used this experimental method 

[68,101]. However, since the predicted average strengths lay in the 90% confidence 

bound of the average strength of the experimental data, the average fracture strengths 

agree rather well among predictions and experimental results. This fact suggests that 

the ramping test method could also apply to the specimens with arbitrary shapes to 

evaluate the fatigue behavior of silicon thin films. 

This test method could also be applied to other studies about properties of 

silicon rather than the use in this thesis. For example, it was used to survey the effect 

of environment to the strength and fatigue lifetime of silicon and polysilicon thin 

films [68,101], which were performed by the members in the same laboratory of the 

author of this thesis. 

 

4.4. Conclusion 

A novel ramping fatigue test method with increasing stress amplitude was 

developed to circumvent the problems of the normal fatigue test with constant stress 

amplitude. Especially, it ensures that experimental data is always obtained in an 

intended time limit. This method was successfully formulated with Paris’ law to 

predict the fatigue behavior as well as its experimental data to be predicted in 

connection with the static strength distribution. The values of optimum parameters in 

Paris' law were quite close in the two fatigue test methods. It was proved that the 

fatigue behavior of polysilicon under constant stress amplitude can be appropriately 

and efficiently predicted by applying the new method.  
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5.1. Introduction 

As introduced in Chapter I and used in the previous chapters, the two-

parameter Weibull distribution function [4,6,7,9-13,92,102] was used well to describe 

the fracture strength distributions of the silicon structures. This is because the Weibull 

distribution function builds on the weakest link assumption [8] which has been known 

to fit to the characteristics of brittle materials [8,84]. A number of studies on static 

strength prediction attempts for silicon MEMS structures were reported [9-13,102], 

where the parameters of the Weibull distribution were estimated from a reference type 

of specimens. The extracted parameters were then used to predict the fracture strength 

distribution of specimens of other shapes, assuming that the local strength of the 

etched surface is identical regardless of specimen shape. Finite element (FE) analysis 

was used to evaluate the stress distribution on specimens and, in the next step, their 

fracture strength distribution. Such a prediction scheme appeared successful at least 

for the case of thin film specimens [9-11,102]. However, for the case of thick 

specimens [12,13], the prediction was not always fully convincing. 

MEMS structures are often patterned by plasma etching. To fabricate thick 

structures with high aspect ratios, the so-called Bosch process using inductively 

coupled plasma reactive ion etching (ICP-RIE) is much appreciated because of its 

capability to realize close to vertical sidewalls. However, it also inevitably introduces 

manufacturing damage on the etched surface which determines the fracture strength of 

the structures [3,4,18,103]. By doing fractography analysis, nano-grooves on the 

etched surfaces induced by the etching process were observed to be the main source 

of fracture [34,104]. The relationship of the roughness of etched surface to strength 

was reported [103], where high surface roughness always indicated low fracture 

strength, and lower surface roughness resulted in a wider scatter of strength. As the 

etching progresses deeper and deeper into the wafer, the change of some factors of 

etching process such as microloading effects, etch lag, gas conductance, etc. 

[103,104,106] led to the two distinctive features. One is a slight taper of the gap, i.e., 

inclination of the etched sidewalls. Another aspect is the inhomogeneous distribution 

of the surface structure and thus of surface defects as a function of the coordinate 

perpendicular to the wafer [26]. It is expected resulting in a variation of the local 

strength of the etched surface along that coordinate axis. In the case of thin film 

structures [9-21,102], the effect of these features on fracture strength may be 
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negligible. However, especially in the case of thick structures [12,13], it may be the 

reason for an erroneous fracture strength prediction if it is not appropriately 

considered. Specifically, the wall inclination was taken into account in one study [12] 

where the stress distribution was evaluated using FE analysis. However, the stress 

distribution on the etched surface was not consistently taken into account as required 

by the weakest link assumption; only the maximum stress was retained for the 

calculation of fracture probability. To my knowledge, inhomogeneous damage has not 

yet been taken into account in the literature on strength prediction. 

In view of these considerations, the main challenge in this chapter is to 

establish an advanced method to predict the fracture strength of single-crystal silicon 

structures, which is able to cope with the inclination of etched sidewalls and the 

inhomogeneous damage distribution in the etching direction. These characteristics of 

etched surfaces are fully taken into account in the analysis, aiming at a more robust 

and accurate fracture strength prediction. Specimens designed without notch were 

fabricated from a wafer and are used as a reference to estimate the damage 

distribution on the etched surfaces by applying different stress distributions to the 

etched surface in the strength tests. Further experiments are planned to systematically 

examine the applicability of the method, where specimens with notches of different 

tip radii are subjected to four-point bending test. On the other hand, the fracture 

strength of the notched specimens is calculated using the distribution of local strength 

estimated from the reference specimens. The assumptions, namely that the damage 

induced by the etching process, the surface inclination and the local strength 

distribution is identical regardless of the shape of specimens, are examined. The effect 

of these individual factors on the calculation results is assessed separately. The 

calculated fracture strengths are then compared to the experimental data. 

 

5.2. Specimens  

Specimens in this study were designed with and without notches, as shown in 

Fig. 5.1. They are named in this study standard specimen (Fig. 5.1(a)) and notched 

specimens (Fig. 1(b)). Their overall length l, height h and thickness t are 16 mm, 

1.5 mm and 0.38 mm, respectively. The notched specimens were designed with four 

different notch tip radii as shown in Fig. 5.1(b), where the notches are located in the  
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(a) 

 

(b) 

Fig. 5.1  Specimen designs used in this study, with the shapes of (a) the standard 

specimens and (b) the notched specimens. 

 

Fig. 5.2  Optical micrographs of manufacturing damage distribution on the etched 

surface caused by the Bosch process. 
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middle of the specimens. The radii R are 0.1 mm, 0.2 mm, 0.4 mm, and 0.8 mm. The 

depth of all notches is 0.5 mm. 

All the specimens were fabricated with identical process conditions from 380-

m-thick (100)-oriented silicon wafers. The wafers were patterned into the specimens 

by a Bosch process with identical process parameters. As mentioned earlier, the 

resulting walls show a small taper depending on the process parameters. As a result, 

the cross-section of the specimens in this study was not perfectly rectangular, but 

rather trapezoidal as schematically shown in Fig. 5.1(a). The average inclination angle 

 of the etched surface was measured to be 4, a value common to all specimen types 

because the trench separating the specimens from the surrounding wafer was designed 

with a constant width of 200 m as indicated in Fig. 5.1(b). Since the height h 

decreases in the etching direction, this also induces a non-uniform stress distribution 

on the etched surface in the direction perpendicular to the wafer.  

The etched surface of the specimens was interpreted using an optical 

microscope. Micrographs are shown in Fig. 5.2, where  indicates the position along 

the etching direction, taking values from 0 to 1 corresponding to the start and end 

positions of the etching process, i.e., to the top and bottom surfaces of the wafer. The 

pictures clearly show the difference of the damage close to the start, middle and finish 

portions on the etched surface. This is expected to induce a variation of the local 

strength as a function of . In contrast, there is no marked difference in the in-plane 

direction perpendicular to the etching direction. This is consistent with the previous 

study [102], where the etched surface of 1-m-thick polysilicon thin films was 

suggested to have unique local characteristics and therefore the etching damage to be 

homogeneous. 

 

5.3. Experiment  

In order to estimate the local strength distribution along the etching direction, 

which is determined by the inhomogeneous defect distribution, the standard 

specimens were subjected to four-point bending tests as schematically shown in Fig. 

5.3. As shown in Fig. 5.2, the optical appearance of the damage does not change 

linearly with  but rather shows three distinct characteristics in the three portions. 
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Therefore, in order to figure out the distribution of corresponding local strength, three 

different stress distribution patterns were applied by bending the specimens in three 

different directions. The corresponding mechanical situations are termed 

configurations A, B and C. The three bending configurations correspond to three 

different weight functions of the applied stress. They enable us to model the -

dependence of the local strength distribution, by solving an inverse problem on the 

basis of the fracture load of specimen measured in the three bending configurations.  

On the other hand, the notched specimens were subjected to the four-point 

bending tests only in configuration A with the notches placed at the center, facing 

downward, and thus being loaded in tension. The data obtained with the notched 

specimens were compared with the predictions derived from the standard specimen 

data, as discussed in detail in the next section.  

The loading equipment shown in Fig. 5.4 was used for all the tests. A 

specimen is pushed from above by two upper pins indicated in Fig. 5.4 as push pin. 

The distance between them is 6 mm. They are attached to the loading part of 

experimental setup in Fig. 5.4. The loading part is connected to the moving stage by a 

universal join made of a metal ball with 11 mm diameter. The join ensures that the 

pins are in contact with the inclined etched surfaces of the specimen along lines 

experiencing uniform pressure. The moving stage is controlled by a stepper motor in 

the downward direction at a constant displacement speed of 2 µm/s. On the opposite 

side, the specimen is supported by two support pins fixed to the stationary stage, as 

shown in Fig. 5.4. The distance between the two support pins is 13 mm. All the pins 

are made of stainless steel and have a diameter of 2 mm. The applied load is measured 

by a load cell LMA-O-50N (from Kyowa Electronic Instruments Co. Ltd.) for a 

maximum load of 50 N, incorporated in the stationary stage as indicated by the circle 

in Fig. 5.4. In the experiment, the load is increased monotonically until specimen 

fracture occurs at the maximum load, after which the load unstably drops to zero.  

The stress distribution over the etched surface of each sample type, which is 

taken here as the distribution of the maximum principle stress, was calculated using 

FE analysis. Applying the fracture load of each individual specimen gave the 

maximum stress of each specimen and thus its fracture strength. For example, Fig. 5.5 

shows the FE model used to calculate the stress distribution on the notched specimens, 

which was also used for the standard specimens with configuration A, and the detail 
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of the maximum principal stress distributions on the notches with different radii. In 

order to avoid the effect of element size in the prediction [107], the elements on the 

specimens in all the FE analyses in this study were set with the same area as 0.004 

mm2. The stress values on the notches shown in Fig. 5 were calculated with an 

applied load of 5 N for one push pin. The peak stress appeared on the notches was 

indicated by the contour numbered as 1. It shows that the peak stress position and 

stress distribution were changed with the change of notch size. Therefore, stress 

distribution should be included in the strength prediction due to the change of local 

strength levels. The maximum amount of deformations on the symmetric plane in X 

direction relative to Y direction was in a range from 0.24 to 0.34 corresponding to the  

 

 

Fig. 5.3  Three different bending configurations of the four-point bending tests 

applied to the standard specimens. 

  

Fig. 5.4   Experimental setup for the four-point bending tests. 
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Fig. 5.5   (a) FE model used to calculate the stress distribution on the notched specimens and 

the maximum principal stress distributions on the notches of the specimens with (b) R = 0.1 

mm, (c) R = 0.2 mm, (d) R = 0.3 mm and (e) R = 0.8 mm when the applied load F was 5 N. 

 

 

Fig. 5.6  Cumulative fracture probabilities F of the standard specimens as a function 

of their fracture strength  for the three configurations of the four-point bending test. 

The experimental data, shown as solid symbols, are fitted with Weibull distributions. 
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Fig. 5.7   Cumulative fracture probabilities F of the four types of notched specimens 

as a function of their fracture strength . The experimental data are shown as open 

symbols. The black and gray curvilinear lines are the fracture strength distributions 

predicted with and without the inhomogeneity of etching damage taken into account, 

respectively. 

 

notched specimen with R = 0.8 and the standard specimen. Besides that, single crystal 

silicon is known to be anisotropic, and its failure usually occurs along (111) cleavage 

planes [108]. This means that strength may be anisotropic. The effect of anisotropy 

was also examined here in comparison to the isotropic case. The difference of the 

maximum stress between the anisotropy and isotropic cases was 3.4%. The error is 

small enough even if either anisotropy or isotropic material properties are used as 

concluded in the previous report [109]. 

The experiment was performed under lab-air conditions. For the case of the 

standard specimens, fractography on the fracture surface could help identifying the 

fracture origins corresponding to the three bending configurations. Unfortunately, the 

specimens broke away into pieces, which make it also difficult to identify and survey 

the fracture surface. Therefore, the fracture origins were not able to be identified in 

this study. The fracture strengths of the standard specimens loaded in the three 

different bending configurations are plotted in Fig. 5.6, while those of the notched 
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specimens are shown in Fig. 5.7. Note that the fracture strengths were evaluated here 

taking into account the taper of etched surfaces in the FE analysis. The cumulative 

fracture probabilities F were calculated for each type of specimens and bending 

configuration, as F = i/(I+1) where i is the ranked number of the data and I is the 

number of tested specimens of each category. Here the data were ranked from the 

weakest to the strongest specimen. 

 

5.4. Statistical analysis 

5.4.1. Weibull analysis of the fracture strengths 

As a brittle material, silicon shows a wide scatter in strength. Weibull statistics 

is commonly applied to describe such strength distributions [8,84]. Based on the 

weakest link assumption, the cumulative fracture probability F of the entire etched 

surface of a specimen with non-uniform stress distribution is generally defined as 

presented in the previous chapters [95,96], and rewritten here 
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where m is the Weibull modulus representing data scatter, 0 is the scale parameter 

related to the average strength of a unit area A0, and a is the local applied stress. The 

unit area A0 is set as 1 mm2 in this study. The symbol A indicates the area of the entire 

etched surface of the specimens. Equation (5.1) is rewritten in the discretized form for 

numerical calculation as 




























 

e

m
ee

A

A
F

00

exp1



,    (5.2) 

where Ae and e denote the areas and the average stress values, respectively, of the 

surface elements covering the etched specimen surface subjected to tensile stress, 

from which fracture is expected to originate. The values of Ae and e were obtained 

from the FE analysis. Assuming linear elastic deformation, the stress e of each 

element is related to the maximum stress  in the specimen by the ratio ke = e/. 

Equation (5.2) is then rewritten as a function of the variable  by 
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If the damage distribution on the etched surface is homogeneous, the parameters m 

and 0 are constants. Based on these simple assumptions, Eq. (5.3) was fitted to the 

experimental data of the standard specimens as shown in Fig. 5.6 with the curvilinear 

lines. The fitting procedure was performed with the least square method, i.e., the sum 

of squared deviations between the values of F of the experimental data and the values 

calculated by Eq. (5.3) was minimized. The optimum values of the parameters m and 

0 are listed in Table 5.1 together with their 90% confidence bounds estimated by 

likelihood ratio test [8,88]. 

According to the results in Chapter III [102], it is possible to think that the 

fracture strength of the notched specimens can be predicted by using Eq. (5.3) with 

the parameters m and 0 obtained from the standard specimens. The method has 

already been applied to predict the strength of polysilicon thin films, where the 

damage distribution along etching direction on the etched surface could be assumed to 

be homogeneous and the inclination of the etched surface could be ignored in view of 

the small specimen thickness. However, as mentioned in Section 1, the inclination of 

the etched surface and variations of the damage distribution may result in 

questionable strength prediction for thicker specimens [12,13]. In order to assess 

whether the previous method [102] is able to predict fracture strength of the notched 

specimens in this study, predictions were first made without taking the inclination of 

the etched surface and the possible damage inhomogeneity into account. 

The stress distributions of all the specimens were thus first calculated by FE 

modeling with etched surfaces implemented to be vertical. In this case, the values of 

m and 0 of the standard specimens fractured in bending configuration A were 

estimated as 3.448 and 0.112 GPa, respectively. By using these values, the maximum 

stress values  on the notched specimens and their predicted distributions were 

obtained. They are plotted in Fig. 5.8 as the symbols and curvilinear lines, 

respectively. The discrepancy between the predictions and experimental data is 

evident. In other words, the prediction failed. Besides, the maximum stresses on the 

tested specimens in Fig. 5.8 are smaller than those in Fig. 5.7 where the taper of the 

etched surface was included in the FE models. This means that the maximum stress 
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without wall inclination taken into account did not present the true fracture strength of 

the specimens.  

In the next step, the prediction was made by calculating the stress distribution 

on the specimens with the inclination of the etched surface included in FE models but 

the damage still assumed to be homogeneous. By using Eq. (5.3) and the values of m 

and 0 in Table 5.1 estimated from bending configuration A, the fracture strength  

 

Table 5.1. Estimated values of m and 0 of the standard specimens with different 

bending configurations in the four-point bending tests. 

Bending configuration A B C 

Number of data 8 7 7 

m 3.448 3.400 4.062 

90% confidence bound of m 2.675~6.218 2.126~4.920 2.891~6.787

0 [GPa] 0.137 0.079 0.100 

90% confidence bound of 0 [GPa] 0.109~0.154 0.069~0.101 0.091~0.116 

 

 

Fig. 5.8  Fracture strength of the notched specimens when the inclination of the 

etched surfaces is not taken into account in the calculation and the damage 

distribution is assumed as homogeneous. 
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distributions of the notched specimens were calculated and plotted in Fig. 5.7 as the 

gray curvilinear lines together with the actual experimental data. The discrepancy 

between the predictions and experimental data clearly shows. Again the fracture 

strength prediction for the notched specimens still fails. The only assumption that is 

still being made is that the damage is homogeneous. The next section is dedicated to 

relaxing this assumption and obtaining consistent strength predictions for all samples. 

 

5.4.2. Advanced method of strength prediction with inhomogeneous 

local strength 

Both the damage distribution and the inclination on the etched surface are 

included in the following calculations. As evidenced by Fig. 5.2, the damage 

distribution changed as a function of the perpendicular coordinate  on the etched 

surface. Therefore, the parameters m and 0 are taken be the functions of , and 

denoted as m() and 0(). They are assumed here to be second-order polynomials  
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whose coefficients m0, m1, m2, 00, 01 and 02 will be estimated from the three 

experimental data sets of the standard specimens. By replacing m and 0 in Eq. (5.3) 

with m() and 0() in Eq. (5.4), the cumulative fracture probability F of the entire 

etched surface is fully written as 
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Values of the parameters m0, m1, m2, 00, 01 and 02 were estimated by fitting Eq. 

(5.5) to all the experimental data of the standard specimens from the three bending 

configurations simultaneously. Their estimated values are shown in Table 5.2. Using 

these values, the cumulative fracture probability F of the unit area A0 was plotted in 

Fig. 5.9 as a function of both the fracture strength  and the perpendicular coordinate 

. The plot shows that the local strength on the etched surface became lower and 

lower with increasing . This trend is consistent with the observation in Fig. 5.2, 

where the damage is seen to be more and more severe along the etching direction 
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Table 5.2. Estimated values of the parameters determining the variation of 0() and 

m() along the etching direction. 

Parameter m0 m1 m2 00 [GPa] 01 [GPa] 02 [GPa]

Estimated value 13.538 −10.868 −0.666 0.074 −0.121 0.053 

 

 

Fig. 5.9   Estimated fracture strength distribution along the etching direction. 

 

from the top to the bottom surface of the wafer. For the case of thicker specimens 

etched under the same DRIE condition, the extrapolation of the local fracture strength 

to deeper position may give incorrect results and should not be attempted uncritically. 

Whether the methodology can on the other hand be applied to structures in thinner 

wafers is likely worth considering in another study. 

 

5.5. Strength prediction and discussion 

By using the estimated parameters in Table 5.2 for Eq. (5.5), the fracture 

behavior of the notched specimens was estimated with the stress distribution on the 

etched surface given by the FE analysis. These estimations provided fracture strength 

predictions for the notched specimens. The results are plotted in Fig. 5.7 as the black 

curvilinear lines. They are much closer to the experimental data than the grey curves 

based on the homogeneous damage assumptions. 
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In order to see how close the predictions are to the experimental data, the 

probability density functions (PDFs) of the fracture strength distributions are 

estimated. The PDF is the derivative of the cumulative distribution function (CDF) of 

the fracture probability. For the case of the prediction, since the fracture strength is 

calculated by Eq. (5.5), the CDF is defined by Eq. (5.5). For the case of the 

experimental results, because the data are being dealt here with points, they were 

replaced by continuous distributions, namely best fitting Weibull distributions. Since 

the experimental data of the notched specimens were obtained with only the bending 

configuration A, there is insufficient information to evaluate the continuous 

distributions using Eq. (5.5). For this reason, the CDFs of the experimental results 

were taken as those defined by Eq. (5.3). By fitting Eq. (5.3) to the experimental data 

of the notched specimens, the estimated values of the parameters m and 0 and 90% 

confidence bounds were obtained as listed in Table 5.3. Fig. 5.10 presents a 

comparison of the PDFs of the predictions and the experimental results with the 

average fracture strengths shown by the symbols and 90% distribution ranges 

indicated by the error bars. The 90% confidence bound of the average strength of the 

experimental data was also presented in Fig. 5.10. Since the predicted average fracture 

strengths lay in the 90% confidence bound of the average strength of the experimental 

data, the average fracture strengths agree rather well among predictions and 

experimental results. However, their scatters differ, except for the case of the 

specimens with R = 0.8 mm. It is difficult to conclude whether the predicted 

distributions are consistent with the experimental results. 

The consistency between the predicted distributions and the experimental 

results can be checked by applying the Kolmogorov-Smirnov test [110,111] under the 

hypotheses defined as 

H0: Fpre = Fexp,  H1: Fpre  Fexp   (5.6) 

where Fpre and Fexp denote the CDFs of the prediction and experimental results, 

respectively. The Kolmogorov-Smirnov test statistic D is the maximum deviation 

between Fpre and Fexp as   
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The decision is made by the rule 
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Table 5.3. Estimated values of m and 0 used for the PDFs of the notched specimens. 

Notch tip radius R [mm] 0.1 0.2 0.4 0.8 

Number of data 13 12 14 12 

m 3.057 3.156 8.816 4.259 

90% confidence bound of m 2.593~3.751 2.691~3.864 5.698~9.369 3.537~5.172

0 [GPa] 0.153 0.160 0.211 0.172 

90% confidence bound of 0 [GPa] 0.138~0.181 0.144~0.192 0.195~0.224 0.158~0.198

 

 

Fig. 5.10  Comparison of the average strength and 90% distribution range of the 

prediction and experimental data of the notched specimens. The error bars show the 

90% ranges in the scatter of the strength distributions. The solid rectangles show 90% 

confidence bound of the average strength of the experimental data. 
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     (5.8) 

where D is the critical value for the test at significance  and is obtained from the 

appropriate table in text books [110]. The values of D and D with =0.05 were 

obtained for the distributions of the notched specimens as shown in Table 5.4. Since D 

was smaller than D for all the notched specimens, the hypothesis H0 is accepted, i.e.,  
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Table 5.4. Obtained values of D and D with =0.05 in Kolmogorov-Smirnov test 

Notch tip radius R [mm] 0.1 0.2 0.4 0.8 

D 0.232 0.180 0.174 0.120 

D 0.361 0.375 0.349 0.375 

 

 

Fig. 5.11   Scanning electron micrographs of the etched surfaces (a) on the standard 

specimen and (b, c) on the notch of the notched specimens with (b) R = 0.4 mm and 

(c) R = 0.1 mm. 

 

the predicted distributions are consistent with the experimental results. The results of 

comparison of the average fracture strengths and the Kolmogorov-Smirnov test 

evidence that the fracture strength of the notched specimens was successfully 

predicted. 

Figure 5.10 also shows that the strength of the actual specimens was slightly 

higher than the prediction when the notch tip radius is small. This behavior can be 
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explained by the state of damage on the specimens. Figure 5.11 presents the etched 

surfaces on a standard specimen and at the tips of the notches of specimens with 

R = 0.4 mm and R = 0.1 mm. The difference of the damage distributions are shown 

clearly in the regions indicated by the dashed rectangles. It is obvious that the etching 

damage on the notch of the specimen with R = 0.4 mm differs little from that on the 

standard specimen, while the damage on the specimen with R = 0.1 mm appears to be 

less pronounced. The lower roughness of the etched surface on that latter specimen 

suggests that the fracture strength of this specimen type should be stronger than the 

prediction. Besides that, the scatter of the strength distribution of the specimen with R 

= 0.1 mm was larger than that of the specimen with R = 0.4 mm while the roughness 

of the etched surface of the specimen with R = 0.1 mm was lower than that of the 

specimen with R = 0.4 mm. This is consistent with the reported correlation between 

etched surface roughness and strength that specimens with better surface quality have 

a wider distribution in strength [103]. The observation suggests that the etching 

conditions changed in extremely narrow trenches as compared to the standard trench. 

Such geometry related effects are well-known in deep reactive ion etching [105,106]. 

Therefore, it should be noted that the strength prediction method yields accurate 

results as long as the local etching conditions on the walls of complex specimens 

remain the same as on the straight walls of the reference specimens. 

These results also suggested that considerable changes in the width of trenches 

separating the etched walls would lead to the change of defect distribution on the 

etched surface along the trenches. Therefore a design rule can be drawn that the width 

of trenches should be constant to ensure identical distribution of inhomogeneous 

etching damage and thus to enable accurate prediction of strength for different 

curvatures. In other words, it is recommended to implement a standard trench width in 

the design guideline so that the same inhomogeneous defect distribution as on the flat 

surface is obtained. 

 

5.6. Conclusion 

A method to predict the static strength of thick structures patterned into 

arbitrary shapes with non-uniform damage distribution on the etched surface was 

proposed. In this method, not only the stress distribution on the etched surface of the 
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structures but also the vertical damage distribution on the etched surface induced by 

the etching process was taken into account. By using the parameters estimated from 

the specimens without a notch, the strength of four different notched specimen types 

was predicted and was compared to their experimental data. The results show that the 

predicted strength distributions and the corresponding strength distributions of the 

experimental data do not differ markedly. In contrast, the predictions omitting the 

damage distribution and the inclination of the etched surface were unsuccessful. It 

means that both these features are necessary to be taken into account. In conclusion, 

the strength of arbitrarily-shaped MEMS structures can be predicted on the basis of (i) 

the stress distribution of the structures calculated with their real shape and (ii) the 

damage distribution and Weibull parameters on the etched surfaces estimated from 

simply shaped reference specimens. 
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6.1. Summary of findings 

6.1.1. Static strength 

Weibull distribution was extended to evaluate the static strength distribution of 

polysilicon thin films patterned by etching into arbitrary shapes. It was applied to 

three groups of the polysilicon thin film specimens with 1 m thickness, where the 

three groups were fabricated under different etching conditions which led to the 

difference of their strength. Different shapes of specimens were prepared in each 

group. The results show that the static strength of the specimens can be described on 

the basis of local characteristics determined by using the same set of parameters in 

Weibull distribution despite the different stress distribution. This means that the local 

characteristics of etching damage were independent also of the shapes and the stress 

distributions.  

Weibull distribution was then also extended to predicting the strength of thick 

structures patterned into arbitrary shapes by deep reactive ion etching of silicon wafer. 

This extension was based on the inhomogeneous defect distribution on the etched 

surfaces, where the two parameters in Weibull distribution were defined as functions 

of the etching depth representing the inhomogeneity of the damage on the etched 

surface in the etching direction. The results showed that the fracture strength of 

arbitrarily-shaped structures can be predicted with a statistical difference on the basis 

of the information obtained from a number of specimens with a reference shape, by 

taking into account the characteristics of etched surface, i.e., the inhomogeneous 

damage. 

Therefore, these theories enable prediction for fracture strength and thus 

designing new silicon structures on the basis of the information obtained from a set of 

reference specimens. 

 

6.1.2. Fatigue behavior 

The fatigue process determining the lifetime of polysilicon thin films was 

modeled with the well-known Paris law as the fatigue crack extension process from 

the initial defects, whose equivalent crack lengths were evaluated from the initial 

strength distribution described by the Weibull distribution. It was also extended to 
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evaluate fatigue behaviors of specimens patterned into arbitrary shapes. The 

parameters in Paris’ law were fit to the results of tensile fatigue tests with constant 

stress amplitudes performed on five groups of polysilicon thin film specimens 

patterned using different etching conditions leading to different etching damage. The 

specimens were designed with different shapes of notches in order to have different 

stress distributions. The results support a possibility that the equivalent extension 

behavior of cracks is independent of etching condition, also of the shapes and the 

stress distributions. Therefore the fatigue lifetimes can be practically predicted from 

their strength distributions by using the same values of the parameters in Paris’ law. 

The stress distributions on the specimens were also found to have an important 

role in estimation of the strength and especially the fatigue behaviors of silicon 

structures. The unexpected change in stress distribution of the polysilicon thin film 

specimens, which was found to be induced by the overetching of the gap on the 

tensile test structures, led to the statistical characteristics of the data to be 

consequently distorted. Therefore, the specimens should be used for the 

characterization of fracture strength and fatigue lifetime only with utmost care and 

definitely only on the basis of a very careful analysis of their geometry including their 

support regions. 

For the case of very long fatigue lifetime, by the way, experiment may have to 

be stopped before failure when the number of cycles exceeds an affordable time limit. 

To overcome this hurdle, a new experimental method was proposed in order to 

estimate the fatigue behavior of polysilicon thin films by using cyclic loading with 

gradually increasing stress amplitude. The results show that the parameter values are 

the same as those obtained from the fatigue tests with constant stress amplitude, and 

that the new experimental method can be used to predict the fatigue lifetime in a more 

efficient manner. 

 

6.1.3. General 

This thesis performed the statistical characterization of the strength and fatigue 

lifetime for silicon and polysilicon structures in MEMS. The results supply 

fundamental knowledge of fracture strength and fatigue behaviors of silicon to apply 

for designing MEMS structures.  
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With the findings above, the fracture strength and fatigue lifetime of silicon 

structures in MEMS becomes predictable, and therefore they enable designing silicon 

MEMS structures with a specified level of mechanical reliability. This will help to 

save the time and expenses in the development of MEMS structures. 

 

6.2. Applications  

6.2.1. Strength and fatigue lifetime prediction 

Prediction procedure of the fracture strength and fatigue lifetime is described 

briefly by the flow chart in Fig. 6.1. In this procedure, the input information is the 

MEMS structures with different shapes. The mission is to estimate their strength and 

fatigue lifetime. To execute this mission, we can not do the static and fatigue tests for 

all the types of those MEMS structures, because it will take time and consume a large 

number of structures for the tests. Instead, a number of structures with the same shape 

are selected as the specimens for the static and fatigue tests. If those structures are too 

complicated for the tests, a set of specimens suitably designed for the tests could be 

prepared by the same fabrication conditions of those structures. The static and fatigue  

 

 

Fig. 6.1   Procedure of static strength and fatigue lifetime predictions 

FE calculation 

Begin

MEMS structures with different shapes

Stress distribution 
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surface of the 
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Fatigue tests 
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test data and the stress distribution on the etched surface of those specimens obtained 

from FE calculation will be used to evaluate the parameters m and 0 in Weibull 

distribution, n and C in Paris’ law. By using those values of the parameters and the 

stress distribution obtained from FE calculation for the others shapes of those MEMS 

structures, their static strength and fatigue lifetime distributions will be estimated by 

using Eqs. (3.3) and (3.12), respectively. It means that the static strength and fatigue 

lifetime of all those MEMS structures would be predicted. In this procedure, the 

fatigue tests could be the normal fatigue test or the ramping fatigue test. 

 

6.2.2. Designing MEMS structures 

By extending the above procedure, a design process of MEMS structures is 

described by the flow chart in Fig. 6.2. In this procedure, the mission is that designing     

 

Fig. 6.2   Procedure for designing MEMS structures by applying the results in this 

thesis 
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MEMS structures with the intended level of reliability. For example, it might be that 

the structures should be designed for 90% of them to break under a static load or 

survive after a number of cycles of cyclic loading. Firstly, specimens for the static and 

fatigue tests will be designed and fabricated. The stress distribution on this specimen 

is also calculated by FEM. The specimens are then tested with the static and fatigue 

tests in order to evaluate the parameters m and 0 in Weibull distribution, and n and C 

in Paris’ law. By using this information, new structures will be designed and their 

strength and fatigue lifetime can be evaluated. If the reliability of the new structures is 

satisfied, they will be fabricated. Otherwise, they will be redesigned and checked 

again. If the reliability of the new structures can not be satisfied by that way, 

fabrication conditions can be changed. This way, the specimens will be newly 

fabricated for the new tests, and the design process is repeated. 

 

6.3. Future works 

This thesis supplied the fundamental understandings in the statistical 

characterization of the strength and fatigue lifetime for silicon and polysilicon 

structures in MEMS. However, the theory of evaluation of fatigue lifetime was 

examined with only 1-m-thick specimens tested in one environment conditions and 

with load ratio R = 0. Besides, fatigue mechanism of silicon is still unclear and there 

are many factors affecting the fatigue behavior as discussed in Chapter I. Therefore, 

further studies are necessary for understanding further the effect of those factors on 

the theory here. The factors, which should be surveyed to see how the parameters C 

and n in Paris’ law change, are listed as follows 

- Specimen thickness 

- Environment: humidity, temperature 

- Cyclic loading properties: frequency, load ratio. 

When their effects are understood, the overview of fatigue behavior of silicon can be 

drawn, and therefore the parameters C and n can be interpolated to predict fatigue 

lifetime of arbitrary structures operating under different conditions of load and 

environment. 

 For the case of thick structures, where damage distribution in etching direction 
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is inhomogeneous, a theory to evaluate their fatigue lifetime can be in principle 

applied by extending the theory in this thesis but was not confirmed. Since the static 

strength of this case was estimated and fatigue process could be modeled with Paris’ 

law on the basis of the initial strength distribution, fatigue lifetime of the thick 

structures is hopefully predictable. However, a further study to examine this case is 

necessary. 
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Fractographic Analysis for Polysilicon Thin Films  
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A1.1. Introduction 

Fractography is the study of fracture surface of materials [113]. It is used to 

investigate the fracture histories of structures. It should help to identify the initial 

crack as well as fatigue crack for polysilicon thin films in this thesis in order to 

support the estimation results. However, when using those parallel-sided specimens, 

the detailed observation of fracture surfaces was not always easy because the sample 

frequently shatter into pieces. By using notched specimens presented in Chapter III, 

this problem is overcome by notches to confine the location of fracture and preserve 

the specimens after fracture. The fracture surfaces are observed in this appendix by a 

scanning electron microscope (SEM) to carry out a fractographic analysis, trying to 

identify initial and fatigue cracks on those surfaces. The initial crack length is 

evaluated from static strength obtained in Chapter III. The fatigue crack extension 

process is estimated by using Paris’ law on the basis of the parameters evaluated from 

the static and fatigue test data. The calculated crack lengths are then compared to the 

crack lengths measured on the fracture surfaces. 

 

A1.2. Overview of fracture site 

By using the notched specimens with the stress concentration factor of 10, i.e., 

the specimens of Type C10 presented in Chapter III, the notches confined the location 

of fracture and preserve the specimens after fracture. Therefore, the fracture surfaces 

could be observed in a scanning electron microscope (SEM) to carry out a 

fractographic analysis. An overview of a crack that started from the notch root, taken 

by SEM after the test, is shown in Fig. A1.1. Both surfaces of the crack are 

successfully preserved after the test. The implementation of a single notch in a 

specimen helps us to identify the origin of the crack. 

 

A1.3. Static fracture  

The crack surfaces of the two specimens of Type C10 tested with the static 

experiments were observed in detail by SEM as shown in Fig. A1.2. They show 

smooth regions indicated by the solid black curves. They appear at the notch root 

from where the crack was expected to originate. Their shape is semi-circular. The  
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Fig. A1.1   SEM picture of a crack at the notch root of a tested specimen. 

 

region beyond the boundary of the smooth region is observed to be rough, which 

corresponds to catastrophic fracture. The aspect of these regions is consistent with the 

initial crack observed by others [32]. These regions are assumed to be the initial 

cracks. The initial crack length measured here is in the range from 50 nm to 110 nm.  

On the other hand, the initial crack length can be evaluated from the static 

strength as a0 = (KIc/β1/2)2. The cumulative probability F of the initial crack length 

is obtained by rewriting Eq. (3.3) as 
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where a0 and a0 are the initial crack length of a specimen and the average initial 

crack length, respectively. The crack length a0 is calculated from 0 as a0 = 

(KIc/β01/2)2. By applying the estimated values of the parameters m and 0 of the 

Type C10 specimen shown in Table 3.1, the distribution of a0 was calculated and 

plotted in Fig. A1.3. The solid and dashed curves show the cumulative probability and 

probability density distributions of the initial crack length fitted to the experimental 

results. The symbols present the calculated crack length of the tested specimens  
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Fig. A1.2  SEM pictures of crack surfaces of the specimens tested with the static 

experiments.  

 

 

Fig. A1.3   Initial crack length distribution. 
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obtained from the static experiments of Type C10. The calculated distribution shows 

that 90% of the initial cracks have lengths in a range from 57.9 nm to 122.0 nm. This 

range is consistent with the initial crack length of the specimens documented in Fig. 

A1.2. 

 

A1.4. Fatigue fracture 

The crack surfaces of two specimens of Type C10 tested with the fatigue 

experiments were also observed in detail by SEM as shown in Fig. A1.4. Based on 

their different roughnesses, the crack surfaces were able be classified into three 

regions corresponding to the initial crack, fatigue crack extension and unstable 

fracture. The initial crack regions have the smallest roughness. It is indicated by the 

solid curves. These regions have shapes similar to those of the initial cracks observed 

in Fig. A1.2. In addition, their size lies in the range of the initial crack length 

discussed in the previous section. The regions of fatigue crack extension are indicated 

by the dashed curves. The roughness of these regions is higher than that of the initial 

crack region but smaller than that of the unstable fracture region. The fatigue cracks 

extended from the initial crack length to the critical length which was measured here 

to be in a range from 100 nm to 180 nm. 

On the other hand, the crack length after N cycles of load is formulated by 

modifying Eq. (3.10) as 
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This equation expresses the extension of initial crack as a function of the applied 

stress amplitude  and number of load cycles N. By using Eq. (A1.1) with the 

estimated values of the parameters C and n of Type C10 shown in Table 3.2, the 

progressive crack length extension during the fatigue process is plotted in Fig. A1.5. 

In this case, as an example, the applied stress was at 80% of the average static 

strength. The crack length extension process was plotted starting from the initial crack 

lengths corresponding to F values of 0.1, 0.5 and 0.9. They show that the crack 

extension becomes prominent after a certain number of cycles and then increases 

quickly to the critical crack, which leads to the relative roughness of the fatigue crack   
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Fig. A1.4   SEM pictures of fatigue crack surfaces of the specimens broken after 107 

cycles. 
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Fig. A1.5   Crack extension versus fatigue lifetime with applied stress amplitude at 

80% of average static strength.  

 

 

Fig. A1.6   Critical crack length distribution of specimens broken at 107 cycles. 

 

region. The slow extension of the crack length in the certain number of cycles could 

be explained as the time needed to accumulate the damage induced by dislocations. 

When sufficient damage has been accumulated, the crack grows quickly to critical 

crack length. When the crack length extends beyond the critical crack length, unstable 

fracture occurs. The critical crack length ac was calculated with the stress amplitude 

range applied to the specimens of Type C10 in the fatigue tests, i.e., from 2.39 GPa to 

3.06 GPa, to be in a range from 81.6 nm to 133.8 nm. Besides that, since the 
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observation was performed on the specimens broken at 107 cycles, critical crack 

length distribution for this case was also calculated as shown in Fig. A1.6. It shows 

that 90% of the critical cracks have lengths in a range from 83.9 nm to 170.7 nm. This 

range was in a good agreement with the measured critical length, i.e., from 100 nm to 

180 nm. The traces of such large cracks found on the fracture surfaces are indeed far 

longer than the thickness of oxide layer, where the thickness of native oxide layer is 

usually known as thin as 2 nm or 3 nm. Even in the case of the thickness of thickened 

oxidation layer up to 50 nm [32], the crack lengths here are still far longer than the 

oxide thickness. It suggests that the fatigue crack process extended into the silicon 

itself. 

   

A1.5. Conclusion  

The crack surfaces of the polysilicon thin film specimens with notches tested 

with monotonically increasing and cyclic loads were observed by SEM. By 

performing fractographic analysis, the initial cracks and the fatigue cracks extended to 

a critical length were speculated as the regions with different roughnesses on the crack 

surfaces. The fractography were supported by the initial crack length and critical 

crack length estimated with the optimum values of the parameters in Weibull 

distribution and Paris’ law. The results suggest that the crack lengths were far longer 

than a reasonable oxide layer thickness, and therefore the fatigue cracks might extend 

into the silicon itself. They support the use of Paris’ law for the theory of lifetime 

estimation in this thesis. 
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A2.1. Introduction 

Fatigue mechanism of silicon is not yet clear enough and is just speculated 

from the results of fatigue tests without direct evidences. As introduced in Chapter I, 

although dislocations have not yet been observed directly during fatigue process, they 

could be a candidate to explain the fatigue mechanism of silicon. In order to support 

the theory on evaluation of fatigue lifetime estimated in this thesis, which was on the 

basis of Paris’ law, electron beam induced current (EBIC) observation [113,114] is 

used to see whether the defects such as dislocations grow inside silicon under fatigue 

loading. EBIC measures the current generated by the electron beam through a junction 

potential near the surface. Therefore it was expected to figure out defects in silicon in 

terms of contrast change on its image. Since it is also expected [67] that compressive 

stress accumulates the damage more efficiently, the observation in this study is 

performed with single crystalline silicon specimen tested with cyclic compressive 

stress. 

 

A2.2. Specimen and experimental setup 

 Figure A2.1 shows the design of specimen used in EBIC observation 

experiment. It was designed with a small test section in the upper part as a horizontal 

beam which is supported at both the ends by the two vertical arms connected to the 

base plate in the lower part. Specimens were fabricated out of a n- type single crystal 

silicon wafer (thickness 380 μm, dopant Sb, conductivity 0.1 Ωcm) by applying a 

deep reactive ion etching (DRIE) process. The etched side surface has an inclination 

of 3 degrees, because of the characteristics of DRIE, which was mentioned in the 

previous chapters. 

 Boron was ion-implanted on the upper etched surface of the test section to 

compose a p+ layer, with the accelerating voltage of 5kV and dosage of 1.0×1015 cm-2. 

The junction underneath the p+ layer was utilized for the EBIC observation to explore 

the damage. For an ohmic contact to the n- type area, Au-0.5%Sb was deposited on 

the lower part of the specimen. The specimen was then annealed for 5 minutes in 

nitrogen at 900˚C for the activation of dopants. Finally, two notches with 15 μm tip 

radius were created with a dicing saw, which were tilted by +45 and -45 degrees to the 

surface. 
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Fig. A2.1   Specimen. 

 

 The experimental setup was designed as shown in Fig. A2.2. An 

environmental scanning electron microscope (ESEM) shown in Fig. A2.2(a) was used 

to perform EBIC observation. Specimen was kept by a state mounted on the holder 

inside the chamber of the ESEM as shown in Fig. A2.2(b). A piezo-positioner actuator 

(PI P-841.20, travel: 30 μm, resolution: 0.6 nm) was used to drive the setup. The 

applied load was measured by a load-cell LUR-A-100NSA1 manufactured by Kyowa 

Electronic Instruments Co., LTD. with a rated capacity 100 N. They were controlled 

by the equipments from outside of the chamber as shown in Fig. A2.2(a). The 

horizontal actuation given by the actuator was converted into the vertical stroke of 

loading rods via an elastic torsion spring indicated in Fig. A2.2(c). These rods pushed 

downward the upper surface of the test section at the two points indicated in Fig. A2.1 

because of the inclination of the etched surface. The specimen was fixed to stand up 

vertically as shown in Fig. A2.2(d). By this way, the upper etched surface of the test 

section was facing to the electron beam while being subjected to a compressive stress.  

The stress distribution on the EBIC observation region was analyzed by FEM. 

In design, maximum compressive stress on the EBIC observation region was 75.6 

MPa when the load applied to the specimen was 1 N. The distance between the two  
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Fig. A2.2   Experimental setup for fatigue test in ESEM. 

(a) 

(b) 

(c) 

(d) 

ESEM chamber
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notches was designed as 0.01 mm, but it was not able to be fabricated exactly. 

Therefore, FE analysis was performed individually for each specimen with the actual 

size of notches measured after creating the notches in order to obtain the exact value 

of the applied stress. 

 

A2.3. Results and discussion 

In this study, two specimens were tested by applying the cyclic loading with 

frequency of 50 Hz. The fatigue tests were occasionally interrupted to obtain EBIC 

images with an acceleration voltage of 30 kV. 

For the first specimen (specimen #1), fatigue test was performed in the 

environment with gas pressure of 560 Pa. Its SEM picture before the fatigue tests is 

shown in Fig. A2.3(a). Firstly, the maximum compressive stress applied to the EBIC 

observation of the specimen was 0.62 GPa. EBIC pictures shown in Fig. A2.3(b) were 

taken during this test at gas pressure inside the ESEM chamber of 80 Pa. There was 

no noticeable change in the EBIC pictures from before the fatigue test (0 cycles) to 

after 5105 cycles as shown in Fig. A2.3(b). By increasing the maximum compressive 

stress to 0.89 GPa, the EBIC pictures were obtained as shown in Fig. A2.3(c). These 

EBIC pictures were taken at gas pressure inside the ESEM chamber of 40 Pa. The 

change in the EBIC pictures was clearly observed. After these fatigue tests, the 

specimen was etched by using 10%HF solution in 10 minutes, whose etch rate against 

thermal oxide is estimated to be 23 nm/min [115]. Therefore it should remove all the 

silicon oxide layer, even if it would be so thick as 100 nm as presented in the other 

reports [29,33], locally exists at areas with stress concentration. If there would have 

been a locally grown silicon oxide layer on the surface to reduce EBIC, the image 

after HF treatment should have returned to the original image before fatigue loading. 

Figure A2.3(d) shows the SEM and EBIC pictures of this specimen after etching. 

There was no marked difference between the EBIC images before and after HF 

treatment. Therefore, the changes in EBIC images were not due to the growth of 

surface oxide layer but growth of defects inside silicon. 

For the second specimen (specimen #2), fatigue test was performed in the 

environment with gas pressure of 40 Pa. The maximum compressive stress was 0.82 

GPa. Its SEM and EBIC pictures were obtained as shown in Fig. A2.4. Gas pressure 

when taking those pictures was 40 Pa. The change in the EBIC pictures was also  
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(a) SEM 

 
0 cycles   2105 cycles   5105 cycles 

(b) 

 
0 cycles   105 cycles    2105 cycles 

(c) 

    
SEM    EBIC 

(d) 

Fig. A2.3   Observation results of Specimen #1 with (a) SEM picture before the test,  

(b,c) EBIC pictures the  during fatigue loading process when the applied compressive 

stress was (b) 0.62 GPa and (c) 0.89 GPa, and (d) after HF treatment. 

 

observed as the dark region gradually widening with the increment of number of 

cycles. 

 

A2.4. Conclusion 

Direct images of damage growth process in silicon under cyclic compressive  
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SEM 

 
0 cycles   2105 cycles   5105 cycles 

Fig. A2.4   Observation results during fatigue loading process of Specimen #2 when the 

applied compressive stress was 0.82 GPa. 

 

stress were successfully obtained with EBIC. The damage, which caused the local 

contrast changes at the notch tip in the specimen, was not the thickened surface oxide 

layer but the evolution of intrinsic defects being likely dislocations inside the crystal 

of silicon. Therefore, it supports the theory on evaluation of fatigue lifetime estimated 

in this thesis, which was on the basis of Paris’ law. 
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