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Abstract 
 

Chapter 1: Computational modeling studies are useful for elucidating the 

driving forces behind microstructure formation and for predicting the resultant 

microstructures. The phase-field method is a powerful technique that can predict 

various microstructural evolutions. In the context of improving the performance 

of polymer-electrolyte fuel cells (PEFCs) and Li-ion secondary batteries (LIBs), 

the phase-field method has been applied to electrode materials to predict 

microstructures in the length scales ranging from nanometers to micrometers. The 

objective of the present work is to first construct an effective phase-field model 

to describe the compositional variation and phase transformation within a 

single-alloy catalyst particle in a PEFC and provide information on the crucial 

aspects that affect the internal structure of a catalyst particle. The second 

objective is to construct an effective phase-field model to describe the Li 

diffusion process in polycrystalline LiCoO2 in a LIB and explore the crucial 

aspects of anisotropic materials to quantitatively understand their Li transport 

properties. 

Chapter 2: In this chapter, the development of a phase-field model that 

demonstrates the phase transformations and surface segregation within 

platinum-based alloy nanoparticles is described. Fe–Pt binary-alloy nanoparticles 

with diameters less than 10 nm were investigated. The calculations clearly 

showed that the surface segregation and phase transformations were sensitive to 

the alloy components and particle size. The degree of L10 ordering decreased with 

a decrease in the particle size. The calculated gradations were in good agreement 



II 
 

with the experimental results. The simulated phase boundary between the solid 

and liquid phases was slightly below that obtained with the classical model 

because of surface premelting, which is not considered in the classical model. In 

addition, FePt exhibited hardly any significant segregation, and an increase in the 

Pt concentration in the outermost surface was compensated by a decrease in the 

concentration in the sub-surface. The results were consistent with those obtained 

by previously reported Monte Carlo simulations. Thus, these results imply that 

the present phase-field model is sufficiently accurate to describe the internal 

structure of a single nanoparticle. 

Chapter 3: In this chapter, a phase-field model that describes the radial 

distributions of the phase transformations and surface segregation in a 

single-alloy nanoparticle is introduced to clarify the overall behavior of surface 

segregation of various Pt-based alloy nanoparticles. From the results of the 

calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary 

nanoparticles with a diameter of 3 nm at 973 K, the compositional variation within 

a single particle was found to depend on the balance between the atomic 

interaction within particles and the surface free energy. In addition, the obtained 

specific steady-state composition of the surface varied significantly with alloy 

combination. Based on the general tendencies of a binary system to exhibit 

segregation, attempts to control the amount of platinum segregation on the 

surface using a ternary-alloy system were examined. 

Chapter 4: To gain a quantitative understanding of the relationship between 

the morphology of the microstructure and Li diffusivity, phase-field models for 

non-Fickian Li diffusion in two-dimensional polycrystalline microstructures were 
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proposed by considering the grain size, spatial distribution of the crystal 

orientation for each grain, crystallographic anisotropy of the self-diffusion 

coefficient of Li, and Li diffusion along or across the grain boundary (GB) 

modeled as a thin layer. The simulation results showed that the apparent Li 

diffusivity was sensitive to the GB diffusivity, spatial distribution of the crystal 

orientation for each grain, and grain size. It was also found that the diffusivity of 

a small grained structure was determined by the properties of the grain boundary, 

while the diffusivity of a large-grained structure depended considerably on the 

relative orientation angle between neighboring grains, even when the GB 

diffusivity was large. 

Chapter 5: In this chapter, the constant-current discharge properties of 

polycrystalline LiCoO2 were theoretically investigated in relation to the grain 

size, spatial distribution of the crystal orientation for each grain, and GB 

diffusivity. The phase-field method to treat the Li diffusion generated from the 

elastic stress field associated with Li concentration is proposed in this chapter. 

The simulation results showed that the discharge properties were affected by the 

microstructure at a high discharge rate through modification of the Li diffusivity. 

Both the intergranular angle mismatch and GB diffusivity were determined to be 

crucial parameters for evaluating the apparent discharge properties. Since the Li 

diffusivity was promoted to alleviate the elastic stress, the discharge capacity 

slightly increased. The effect of the elastic strain energy was weaker than the 

effects of intergranular angle mismatch and GB diffusivity; however, the elastic 

strain energy led to a nontrivial change in the Li diffusivity during discharge. 
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Chapter 1 
Introduction 

 
This chapter begins with a brief introduction to high-performance batteries 

and battery electrode materials. Following an explanation of the numerical 

simulation techniques used for nanostructural characterization, the research 

objectives and the outline of the present thesis are described. 

 

1.1 General Trends in High-Performance Batteries 

 

As global energy consumption increases steadily, continuous depletion of 

fossil fuel resources and global warming caused by carbon dioxide emissions are 

turning into major obstacles that threaten the environment and prosperity of 

future generations [1]. Driven by immediate demands for alternative fuel 

resources that can replace existing fossil fuels, extensive studies are being 

conducted to develop new, clean, and efficient sources of energy. One 

interesting approach to improve the fuel efficiency and suppress carbon dioxide 

emissions in vehicles is the application of hybrid systems consisting of a 

secondary battery and engine. In such hybrid systems, a secondary battery that 

stores the electricity generated by the engine plays a major role in responding to 

significant changes in the power output of an electric motor caused by varying 

road conditions. Therefore, batteries that meet the demands of high energy 

storage and high power are required. Lithium ion batteries (LIBs) have attracted 
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increased attention recently as high-performance secondary batteries for 

application in vehicles. 

Typical LIBs use carbon as the active anode material and lithium metal 

oxides as active materials for the cathode. The electrochemical reactions [2] 

occurring at the anode and cathode are represented by Eqs. (1.1) and (1.2), 

respectively: 

                    (1.1) 

                (1.2) 

As shown in Fig. 1.1, the ionic conduction between the two electrodes is 

maintained by a liquid or solid electrolyte. The intercalation–deintercalation of 

Li in the active materials of both electrodes is a fundamental phenomenon that 

determines the performance of the batteries. In particular, Li-ion conduction in 

the cathode material substantially affects the performance of Li-ion batteries at 

high charge/discharge rates. Therefore, there are continual attempts to improve 

the power density of lithium batteries by enhancing the ionic diffusivity in 

cathode materials [2,3]. 

However, in order to build a vehicle with zero emission, manufacturers are 

intensively promoting the replacement of a reciprocating engine with fuel-cell 

systems. The fuel-cell system is usually used in combination with a secondary 

battery system. In typical hydrogen–oxygen fuel cells [4], the following 

electrochemical reactions occur at the anode (Eq. (1.3)) and cathode (Eq. (1.4)):  

,2H2H2 e                        (1.3) 
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.OH2H2O
2
1

22 e                     (1.4) 

A typical fuel-cell system finding application in vehicles uses a polymer 

electrolyte [5] to ensure adequate performance at room temperature. These fuel 

cells are called polymer-electrolyte fuel cells (PEFCs) [6]. As shown in Fig. 1.2, 

the sequential processes occurring in a PEFC are the (1) dissolutions of 

hydrogen and oxygen gases at the gas–electrolyte interface, (2) diffusions of 

dissolved hydrogen and oxygen into the electrolyte–catalyst interface, (3) 

electrochemical reaction at the catalyst–electrolyte interface, (4) conduction of 

electrons by the current collector, and (5) transport of protons from the anode 

across the electrolyte to the cathode. One of the key challenges in achieving 

high-performance fuel-cell systems is the development of highly effective 

electrocatalysts for oxygen reduction at the cathode. Thus far, numerous 

electrocatalysts including pure platinum and platinum alloys have been 

proposed. 

  



4 
 

 

 

Fig. 1.1. Schematic illustrations of a LIB system. 

 

 

 

Fig. 1.2. Schematic illustrations of a PEFC system and an electrocatalyst 

supported on the carbon substrate.  
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1.2 Challenges Encountered in Electrode Materials 

 

This section briefly reviews the challenges encountered in achieving 

high-performance electrode materials for PEFCs and LIBs. 

 

1.2.1 Electrocatalysts in PEFCs 

 

Recently, intensive efforts have been made to develop PEFCs for 

applications in vehicles [7]. Nanoscale particles of platinum supported on a 

carbon carrier are widely used as a catalyst for PEFCs. To achieve further 

improvement in the oxygen reduction reaction (ORR), shown in Eq. (1.4), in the 

cathode layers of PEFCs, implementations of platinum–transition-metal alloy 

nanoparticles as cathode electro-catalysts are expected [8]. The alloying 

technique is also expected to reduce the required amount of platinum loading by 

replacing some platinum with less expensive metals. Because the catalytic 

activity of the alloys in the ORR is significantly affected by the surface 

structure, the surface structure of the platinum alloy nanoparticles has been 

evaluated as a function of the alloying element and its composition [9]. 

Theoretical estimations, including first-principles calculations, indicate that the 

catalytic activity of a Pt–3d-transition-metal binary alloy depends on the oxygen 

adsorption energy, which is explained by the d-band center [10]. Among 

numerous candidate alloys, the catalytic activities of some Pt-based alloys are 

predicted to be superior to that of pure platinum. Recently, evaluations of the 
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electro-catalyst alloy system have been expanded from binary to ternary alloys 

[11,12]. 

On the other hand, it has been experimentally observed that the alloy 

compositions of nanoparticles often differ from the nominal bulk composition 

[13]. During the nanoparticle fabrication process, a compositional difference 

between the bulk and the alloy surface may be induced by differences in the 

surface energies of the alloying elements and changes in the interaction energies 

between them. This compositional difference is known as surface segregation 

[14], which affects the catalytic activities of the alloys [15]. However, the 

diameters of the currently used pure platinum catalyst particles are controlled to 

remain below 10 nm to ensure the availability of a large surface area for the 

electrochemical reaction [16], as shown in Fig. 1.2. On the scale of a few 

nanometers, the effect of the surface energy on the thermodynamic equilibrium 

is inversely proportional to the particle size, which causes degradation because 

of Ostwald ripening [16]. Therefore, the particle size is also expected to affect 

surface segregation. To overcome these obstacles when designing and 

fabricating binary-alloy nanoparticles, it is necessary to understand the 

fundamental effects of particle size, alloy composition, and heat-treatment 

temperature on the microstructure formation. 
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1.2.2 Positive Electrode Materials in LIBs 

 

Layered Li transition-metal oxides, which are characterized by 

two-dimensional (2D) Li diffusion paths [17–20], are the most widely used 

positive-electrode active materials in LIBs. They are expected to allow the 

occurrence of topotactic electrochemical reactions for high power applications 

[21]. Nevertheless, a Li transition-metal oxide contains many shortcomings, 

such as limited range of current density, that need to be resolved. 

Schematic illustrations of a porous electrode in a liquid-state battery and a 

thin-film electrode in an all-solid-state battery are shown in Fig. 1.3. In a 

commercial liquid-state LIB, the electrolyte, which intrudes into pores within a 

secondary particle, may provide short-circuit transport paths for Li. 

Nevertheless, experimental observation [22] has shown that secondary particles 

contain numerous grain boundaries, which implies that a primary particle within 

a secondary particle is not completely isolated and the surface is not entirely 

exposed to the electrolyte. Furthermore, in the case of an all-solid-state battery 

with a flat thin-film electrode, since most crystal grains are not in direct contact 

with the solid electrolyte particles, intergranular diffusion between crystal 

grains plays a crucial role in the Li transport.  

LiCoO2 is the most popular cathode material, and its crystal structure [23] is 

represented in Fig. 1.4. The self-diffusion coefficient, D se l f ,  of Li in LixCoO2 has 

been investigated using both theoretical and experimental approaches [24–26]. 

The value of D se l f  estimated from muon spin spectroscopy [24] was found to 

range from 1  10 10 to 1  10 9 cm2·s 1 for LixCoO2 (0.5 < x < 0.8) at 300 K, 
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which was in good agreement with the value calculated from first principles [26]. 

However, the chemical diffusion coefficient, Dchem, evaluated by 

electrochemical measurements, was found to vary from 1  10 12 to 1  10 10 

cm2·s 1 [27,28] for (104)-textured thin films. Grains with their (104) planes 

parallel to the Li transport direction was shown to facilitate Li transport [29]. It  

is known that Dchem can be expressed as a product of Dse l f  and the 

thermodynamic factor, . Since the binary solution of Li–vacancy in the 2D 

layer is not ideal, the value of  must be larger than 1 for a wide range of Li 

concentrations. Therefore, Dchem is expected to be larger than Dse l f ,  which 

contradicts the experimental data. Thus, the transport properties of Li appear to 

be limited by microstructural inhomogeneities such as crystal anisotropy, grain 

size, and grain boundaries. 

In order to fabricate materials with improved performances, an 

understanding of the properties that contribute to the performance of LIBs is 

necessary. Without an accurate and detailed comprehension of the Li-ion 

conduction mechanism at the nanometer to micrometer levels, the rational 

design of Li-based active materials with better performance will remain a 

challenge. The details of the effect of the microstructure on the Li-ion 

conduction are yet to be clearly and completely understood, however, because of 

the difficulties involved in the experimental assessment of the conduction 

mechanism. 
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 (a)   

(b)  

 

Fig. 1.3. Schematic illustrations of (a) a porous electrode in a liquid-state LIB 

and (b) a thin-film electrode in an all-solid-state LIB. 
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Fig. 1.4. Crystal structure of LiCoO2. 

 

1.3 Simulation Methodology 

 

This section explains the methodology used for the numerical simulation of 

the nanostructural and microstructural characteristics. The temporal evolution 

of the microstructure is calculated using the phase-field method based on the 

free-energy function. 

 

1.3.1 Phase-Field Method 

 

The methods of simulating the material structure on the nanometer to 

micrometer scale are roughly classified into two categories. The first class of 
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methods simulate the temporal evolution of the microstructure by directly 

calculating the atomic motion. In methods belonging to the second category, the 

evolution of the microstructure is described by calculating the transform of a set 

of spatially dependent field variables. Molecular dynamics and Monte Carlo 

methods based on classical or first-principles potential typically belong to the 

first group. The phase-field method, which is a continuum model belonging to 

the second group and is in accordance with local thermodynamic equilibrium, 

has been widely used since the second half of the 1980s to study a variety of 

microstructure formations such as dendritic growth, spinodal decomposition, 

and grain growth [30]. 

In the phase-field method, the conservative variables, which characterize the 

atomic concentrations, and the non-conservative variables, which characterize 

the structural heterogeneities, are defined as the field variables in the simulation 

area. The total free energy of the simulated system is described using these 

variables. The temporal evolutions of the conservative variables are calculated 

using the Cahn–Hilliard equation [31], which is represented as follows:  

,sys

c
G

M
t
c

                     (1.5) 

where c  is the local atomic concentration, Gsys represents the total free energy of 

the simulated system, and M is the mobility of the component that correlates 

with the atomic self-diffusion coefficient, D .  

The temporal evolutions of the non-conservative variable are calculated 

using the Allen–Cahn equation [32]:  
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.sys

c
G

L
t
s

s                       (1.6) 

In the above equation, s is the so-called phase-field parameter, which is usually 

introduced to describe the phase interface or grain boundary, and L s denotes the 

mobility of the interface or boundary. Finally, as a consequence of the temporal 

evolution, quasi-stationary microstructures corresponding to the minimum free 

energy are obtained. 

Depending on the type of interactions, a number of variations of the 

expression of Gsys  for the targeted system should be considered. Typically, Gsys  

includes Gc, Egrad, and Es t r ,  which correspond to the bulk chemical free energy, 

the gradient energy, and the elastic strain energy, respectively. Each of these 

terms is described in detail in the following sections. 

 

1 .3 .1 .1  Bu lk  Free  Energy  

 

The bulk stress-free chemical free energy, Gc,  is assumed to be the volume 

integral of a well-defined local free energy density over the entire volume, V: 

,d,1
mc r

rr tG
V

G                      (1.7) 

where r  is the position vector; t  is the time; and Gm is the molar Gibbs free 

energy, which is estimated assuming that the thermodynamic fields are spatially 

uniform and can be approximated by a regular solution model. The interaction 

energies between the atoms are evaluated by the calculation of phase diagram 

(CALPHAD) method [33], an important technique based on thermodynamic 
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models. In this method, various parameters are determined using the model to 

appropriately represent the experimental observations or the theoretically 

estimated phase boundaries and thermodynamic properties. For example, the 

molar free energy is modeled as a substitutional binary solution according to the 

following equation: 

,ln ABBA
oror

m LccccRTGcG i
BAi

i
BAi

ii              (1.8) 

where cA and cB are the molar fractions of the elements A and B, respectively; 

iG  is the Gibbs formation energy of the pure element i; and R and T  are the gas 

constant and absolute temperature, respectively. The second term is the ideal 

entropy of mixing, and the last term is the excess Gibbs free energy. The term 

LAB is the binary interaction parameter, and the form of the composition 

dependence, which is known as the Redlich–Kister (RK) power series, is given 

by 

AB A B AB
0

,
k

L c c L                     (1.9) 

where ABL  represents the parameters in the RK series. To describe the ordered 

phase, two or more sublattices are used. For example, a binary alloy using four 

sublattices can be expressed as 

.,,,, 25.025.025.025.0 BABABABA               (1.10) 

The Gibbs free energy equation for this ordered model is divided into two parts 

as shown in Eq. (1.11). The two portions indicate the contribution from the 

disordered state, dis
mG , and that from the long-range ordering, ord

mG : 
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dis ord
m m m .s

i iG G c G y                  (1.11) 

The free energy contribution from dis
mG  is provided by Eq. (1.8). In the above 

equation, yi  is the site fraction of the constituent i  on the sublattice s ,  which is 

defined by the following equation: 

4

1
0.25 .s

i i
s

c y                       (1.12) 

To ensure that ord
mG  is zero in the disordered state, the ordered term in a 

four-sublattice model is described by 

ord ord ord
m m m .s s

i i iG y G y G c               (1.13) 

The expression for the ordered term in a four-sublattice model with an arbitrary 

number of components is given in the following form:  

1 2 3 4ord ( ) ( )
m : : : m0.25 ln ,s s E

i j k l i j k l i i
i j k l s i

G y y y y G RT y y G    (1.14) 

where : : :i j k lG  is the Gibbs free energy of formation with components i , j,  k , and l 

for each sublattice site. The excess Gibbs free energy can be written as follows 

using interaction parameters: 

1 2 1 2

1 2 1

1 2 1 2 1 2 1 2

1 2 1 1 2 1

m , : : :

, : , : : .

r r s t uE
i i j k l i i j k l

i i i j k l

r r s s t u
i i j j k l i i j j k l

i i i j j j k l

G y y y y y L

y y y y y y L      (1.15) 

Recently, thermodynamic assessments using the CALPHAD technique have been 

carried out for a number of alloy systems [33]. Therefore, the phase-field 

method can be applied extensively to numerous alloy systems in combination 

with the CALPHAD database. 
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1 .3 .1 .2  Gradient Energy  

 

If all of the thermodynamic fields are not spatially uniform, then Gc (it is 

homogeneous in Sec. 1.3.1.1) must be supplemented by Egrad to account for the 

energetic interactions between the system and its environment. In this approach, 

the changes in the thermodynamic variables are assumed to change smoothly 

from one phase or domain to another [34]. By introducing this term, phase-field 

models can overcome the computational difficulty of tracking a moving 

boundary, which is usually diffuse in real physical systems. Therefore, in this 

case, the total free energy is the sum of two different functions as shown below: 

.gradcsys EGG                        (1.16) 

To derive Egrad, the Taylor series about Gc in terms of the derivatives of the 

concentration, c ,  is used and is approximated as follows: 

22 2
c c 0 1 2, , ,0,0 .G c c c G c c c K c c K c cK    (1.17) 

The first term on the right corresponds to the homogeneous chemical free energy. 

A value of 0 is assigned to K0 to ensure that the energy is invariant with 

coordinate transformation. Therefore, Egrad is defined as 

22
grad 1 2

21
2

2

1 d

1 d

1 1 d ,
2

E K c c K c c
V

K K c c
V c

c c
V

r

r

r

r

r

r
            (1.18) 

where the term  is a function of the concentration: 

.2 2
1 cK

c
Kc                      (1.19) 
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However, it is assumed to have a constant value in practical applications. 

The gradient energy coefficient, , can be determined from the relationship 

between the free energy function and surface energy [35,36]. Considering a 

surface with a gradient only in the x direction, the excess free energy, G i n te r f ace,  

across the interface is expressed as 

2
interface

1 [ ( ) (d / d ) ]d ,
2

G f c c x S
V r

r            (1.20) 

21 [ ( ) (d / d ) ]d .
2

f c c x x
V

                (1.21) 

In the above equation, S  is the interfacial area, and  is the excess free energy 

per unit area, which is usually called the interfacial (surface) energy. In addition, 

f  indicates the difference between the chemical free energy, Gc,  at the interface 

and the linear combinations of the free energies of two homogeneous phases. At 

equilibrium, when c  is treated as stationary points of , the following 

relationship is satisfied: 

0.
c

                         (1.22) 

However, when c ,  which is a function of x ,  is regarded as a stationary function 

that yields a stationary value of , the Euler–Lagrange equation (given below) is 

derived using a variational method: 

d 0,
d (d / d )

c II
x c x

                  (1.23) 

where 
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2( ) (d / d ) .
2

I f c c x                    (1.24) 

The following relationship is derived from Eq. (1.24): 

2( ) (d / d ) .
2

f c c x const                   (1.25) 

Since both f  and dc/dx are zero at x  = ± , const in Eq. (1.25) is equal to zero 

as well and the following relationship is obtained: 

2( ) (d / d ) .
2

f c c x                      (1.26) 

Substituting Eq. (1.26) to Eq. (1.21) yields  

2 ( )d ,f c x
V

                      (1.27) 

and modifying Eq. (1.26) gives 

d d .
2 ( )

x c
f c

                       (1.28) 

Therefore, Eq. (1.27) can be expressed as 

A

B

1 2 ( ) d
c

c
f c c

V
,                    (1.29) 

where the variables cA and cB denote the equilibrium concentrations of the two 

phases, and the coefficient  is determined using the excess energy, f , and .  

The thickness of the interfacial layer, d ,  can be approximated by the following 

equation from the concentration gradient when f  is maximized: 

1/2
A B A B max( ) / (d / d ) ( )[ / (2 )] .d c c c x c c f         (1.30) 
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1 .3 .1 .3  Elas t i c  Strain Energy  

 

In some cases of microstructure formation, the elastic strain energy, Es t r ,  

caused by the lattice mismatch also contributes to the total free energy [37]. In 

this case, the total free energy is the sum of three different functions: 

.strgradcsys EEGG                     (1.31) 

Using the Einstein summation convention [37], the term Es t r  is expressed as 

0 0
str

1 , , , , d ,
2

c c
ijkl ij ij kl klE C t t t t

V r
r r r r r r     (1.32) 

where Cijk l  is the elastic stiffness constant, and c
ij  and 0

ij  are the constrained 

strain and the eigenstrain, respectively. The term E s t r  is practically evaluated by 

calculating c
ij  for a given Cijk l  and 0

ij . The term c
ij  is calculated using the 

stress equilibrium equation, as described in detail in Sec. 5.2.1. 

 

1.3.2 Charge Transfer Reactions 

 

Processes involving the exchange of charged species at the interface between 

the electrolyte and the electrodes are referred to as charge transfer reactions or 

Faradaic reactions. The theories that can quantitatively rationalize the kinetics 

of electrode reactions [38] are briefly explained in this section. A typical 

electrode reaction proceeds as follows: 

.                    (1.33) 
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The equilibrium potential of the electrode reaction is obtained using the Nernst 

equation according to 

0 0'O O
eq

R R
ln ln ,a cRT RTU U U

nF a nF c               (1.34) 

where 0U  and 0'U  are the standard and formula redox potentials, respectively; 

aO and aR indicate the activity coefficients of the reaction product and reactants, 

respectively; cO and cR indicate the interfacial concentrations of the reaction 

product and reactants, respectively. The rates per unit surface area of the 

forward and backward reactions, fv  and bv ,  respectively, are written in the 

following form using the reaction constants, k f  and kb: 

Off ckv , Rbb ckv .                    (1.35) 

The Faraday current density, i ,  generated by the electrode interface reaction is 

obtained by multiplying the reaction rate with the Faraday constant, F,  and the 

number of transferred charges, n ,  and by subtracting the current in the forward 

and backward reactions: 

f b f O b R .i nF v v nF k c k c                (1.36) 

The kinetic rate constants of the electrochemical reaction are obtained from  

f
f f exp Gk A

RT
, b

b b exp Gk A
RT

,             (1.37) 

where the coefficients A f  and Ab are the frequency factors, and G f  and Gb are 

the activation energies. This theory is based on the modeling of the reaction 

pathway as a curve through an energy landscape. The activation energy is then 

explicitly quantified as the difference between the energy minimum occupied by 

the reactants and the energy of the saddle point over which the reaction pathway 
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must traverse on its way to achieve the products. When an external electric field, 

U ,  is applied, the activation energy is altered according to 

0 0
f f b b, (1 ) ,G G nFU G G nFU          (1.38) 

where  is the transfer coefficient. By substituting Eq. (1.37) and Eq. (1.38) into 

Eq. (1.36), the following equation is obtained: 

0' 0'
0

O R

1
exp exp ,

nF U U nF U U
i nFk c c

RT RT
   (1.39) 

where 

0 0'0 0'
0 bf

f b
(1 )exp exp .G nFUG nFUk A A

RT RT
      (1.40) 

Here, i is assumed to be zero at equilibrium. Furthermore, using the exchange 

current density, i0, which is defined as 
10 * *

0 O Ri nFk c c , and the over 

potential, , which is defined as  = U  Ueq, Eq. (1.39) can be rewritten as  

O R
0 * *

O R

1
exp exp .

nFc cnFi i
c RT c RT

          (1.41) 

This equation is known as the current–overpotential equation. The first and 

second terms on the right hand side describe the cathodic and anodic 

components of current. At sufficiently large currents or large overpotentials, 

either of the two current components is negligible. When i0 is small, the excess 

potential associated with providing the activation energy required to satisfy the 

current density is more visible. This kind of excess potential is usually called 

the activation overpotential. However, when the exchange current is large, the 

current is limited by mass transfer. In this case, the observed overpotential is 

associated with the surface concentrations of the oxidant and the reductant, and 
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the potential is called the concentration overpotential, which is required to drive 

the mass transfer. 

 

1.3.3 Finite-Volume Method 

 

The cell-centered finite-volume method (FVM) is a general numerical 

scheme for solving partial differential equations (PDEs) [39]. This section 

explains the procedure for calculating the Cahn–Hilliard equation, shown in Eq. 

(1.5), using the FVM. Here, it is assumed that the scalar variable c  is locally 

conserved. Conservation of the concentration variable is derived by the 

following equation using the flux J for c:  

c
t

J ,                       (1.42) 

MJ ; sys /G c ,                  (1.43) 

where  represents the diffusion potential. The simulation region is divided into 

many small control volumes for a one-dimensional problem, as shown in Fig. 

1.5. 
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Fig. 1.5 Schematic illustration of a one-dimensional model. 

 

 

By integrating both sides of Eq. (1.42) in the control volume at node i  (shown in 

Fig. 1.5) using the divergence theorem (also called Gauss's theorem), the right 

hand side of Eq. (1.42) can be expressed as  

1/2 1/2 1/2 1/2d d .
i i

i i i iV S
V S J S JJ J S         (1.44) 

Here, the direction of the surface vector S  is set in the outward direction of the 

control volume surface such that S  at node i  + 1/2 is in the direction of +x  and S  

at node i   1/2 is in the direction of x .  Si±1/2 represents the surface area at 

intermediate nodes between two cells and is defined by 

2
1/2 1

1, One-Dimensional

4 , Spherical Symmetry
2

i i i
S x x .         (1.45) 

The left hand side of Eq. (1.42) can be expressed as 

d ,
i

i
iV

cc V V
t t

                     (1.46) 

where Vi  denotes the cell volume of the node i , which can be determined using 
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the trapezoidal rule as follows: 

1 1

3 3
1 1

1 ( ), One-Dimensional
2

4 , Spherical Symmetry
3 2 2

i i

i
i i i i

x x

V
x x x x

.      (1.47) 

The following equation is obtained from Eqs. (1.44) and (1.46): 

1/2 1/2 1/2 1/2 .i
i i i i i

c S J S J V
t

              (1.48) 

Here, the flux at the intermediate points i  ± 1/2 can be obtained (as shown in Eq. 

(1.49)) by using the diffusion potentials,  (defined in Eq. (1.43)), of nodes i ± 1 

and applying the central difference formula: 

1
1/2 1/2

1

,i i
i i

i i

J M
x x                    (1.49) 

where the coefficient Mi±1 /2 denotes the mobility at the cell interface. In the 

present study, Mi±1 /2 was simply set as 

1/2 1
1 .
2i i iM M M                    (1.50) 

When the mobility is constant and the grid spacing is uniform, Eq. (1.48) 

represents a discretized formula obtained using the finite-difference method 

with second order accuracy. Furthermore, the global conservation with respect 

to c is numerically guaranteed because the flux from one cell into the 

neighboring cell is exactly the negative of the flux from the neighbor into the 

first cell. 
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1.4 Research Objectives 

 

This thesis describes the development of a numerical simulation technique 

for investigating two distinctive nanoscale to microscale phenomena. First, the 

fundamental effects of particle size, alloy composition, and heat-treatment 

temperature on the microstructure formation of Pt-based alloy nanoparticles 

were investigated. In this case, computational modeling studies are used as tools 

to explain the driving forces and predict the resultant surface structures. Next, 

the constitutive relationship between the Li conductivity and the quantitative 

microstructural features of a layered Li–transition-metal oxide, such as grain 

size, spatial distribution of the crystal orientation of each grain, and grain 

boundary (GB) diffusivity was investigated. 

Atomistic simulations such as first-principles calculations, molecular 

dynamics, and Monte Carlo simulations have been regarded as powerful tools 

that can accurately probe the mechanism of microstructural formation from the 

view of atomic motion. However, in practical calculations, the system size will 

obviously be limited by its excessive computational cost on a much smaller 

scale than the nano–microscale phenomena. As an alternative approach, the 

phase-field method, which is described in section 1.3.1, is a possible numerical 

simulation technique for investigating mesoscale phenomena based on the 

formulation of free energy functions. 

The objective of this work is to first construct an effective phase-field model 

to describe the compositional variation and phase transformation within a 
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single-alloy catalyst particle in PEFCs and provide information on the crucial 

aspects that affect the internal structure of a catalyst particle. In the case of 

alloy nanoparticle models, the free energy of the interface between the 

condensed phase and the gas phase was approximated by a regular solution of 

the atom–vacancy complex system. In the case of alloy nanoparticles, the free 

energy of the inner particle was defined assuming that the lattice points were 

occupied by the atomic component elements and vacancies. The energy function 

of the alloy nanoparticle was constructed to include the surface free energies of 

the alloy component elements and the thermodynamic assessments of the binary 

systems using the CALPHAD method. Therefore, it is possible to calculate the 

nanostructures in line with the specific material parameters.  

The second objective of this work is to construct an effective phase-field 

model to describe the diffusion of Li in polycrystalline LiCoO2 in LIBs. 

Information obtained from the model on the crucial aspects of anisotropic 

materials is then used to quantitatively understand their Li transport properties. 

In the case of the Li diffusion model, the energy function is constructed with the 

Gibbs free energy of the binary solution in the Li–vacancy system evaluated 

from the experimental or theoretical open-circuit potential of LixCoO2 and the 

elastic strain energy associated with Li intercalation–deintercalation. To 

quantitatively predict the Li diffusivity, the models secure the formulation such 

that the material’s kinetic parameters, including the Li diffusion process and 

electrochemical reaction of Li insertion, crystallographic misfit, and elastic 

constants obtained from theoretical calculations or from experiments as 

empirical data, can be introduced. Since observable phenomena represent the 
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consequences of a multi-step process, it is difficult to separately evaluate the 

role of each basic step. Therefore, an integrated computational approach that 

simultaneously simulates the microstructure and evaluates the transport 

properties presented is helpful in obtaining a quantitative understanding of each 

basic step of the Li transport process. 

 

1.5 Outline of the Thesis 

 

This thesis consists of six chapters including (1) Introduction, (2) 

Phase-Field Modeling of Phase Transformations in Fe–Pt Alloy Nanoparticles, 

(3) Surface Segregations in Platinum-Based Alloy Nanoparticles, (4) Numerical 

Study of Li Diffusion in Polycrystalline LiCoO2, (5) Effect of Microstructure on 

the Discharge Properties of Polycrystalline LiCoO2, and (6) Conclusions and 

Future Work. Since each chapter addresses different problems, every chapter 

includes an introductory section at its beginning. 

Chapter 1 describes the general trends in high-performance batteries and 

challenges encountered in the development of electrode materials. The 

simulation methodology is then explained, followed by a brief discussion of the 

research objectives and the outline of the thesis. 

Chapter 2 describes the fundamental formulation of a phase-field model 

constructed for describing the compositional variations and phase 

transformations within the Fe–Pt binary-alloy nanoparticles to understand the 
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effects of particle size and heat-treatment temperature on the microstructure 

formation. 

In Chapter 3, the binary alloy model described in Chapter 2 is applied to Cr–

Pt, Fe–Pt, Co–Pt, Ni–Pt, Cu–Pt, Pd–Pt, Ir–Pt, and Au–Pt binary-alloy 

nanoparticles. The overall picture of the compositional variation within a single 

particle with the alloy combinations, particle size, and heat-treatment 

temperature is elucidated. Moreover, based on the general tendencies for a 

binary system to exhibit segregation, control of the amount of platinum 

segregation on the surface using a ternary-alloy system is examined. 

In Chapter 4, phase-field models are proposed to simulate the non-Fickian Li 

diffusion in 2D polycrystalline microstructures by considering the grain size, 

the spatial distribution of the crystal orientation in each grain, the 

crystallographic anisotropy of D se l f  of Li, and the Li diffusion along or across 

GBs modeled as a thin layer. The relationship between the apparent Li 

diffusivity and a 2D polycrystalline microstructure is discussed. 

In Chapter 5, a method to treat the Li diffusion generated from the elastic 

stress field associated with Li concentration is proposed by solving the 2D 

inhomogeneous elastic equilibrium equations. Using this method, the effects of 

the elastic inhomogeneity on the apparent Li diffusivity of oriented single 

crystals and polycrystalline LiCoO2 are investigated. Moreover, the effects of 

microstructure on the discharge properties of polycrystalline LiCoO2 are 

clarified by simultaneously considering the microstructural factors investigated 

in Chapter 4 and the elastic stress field. 
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In Chapter 6, the key results obtained from the previous chapters are 

summarized. Further, future work that can be undertaken on the phase-field 

modeling of the microstructural evolution and properties is suggested. 

  



29 
 

Chapter 2 
Phase-Field Modeling of Phase Transformations 

in Fe–Pt Alloy Nanoparticles 
 

2.1 Introduction 

 

To predict and design the surface structure of platinum-based alloy 

nanoparticles, various computational methodologies have been proposed, such 

as those based on the thermodynamic model [40], Monte Carlo simulation model 

with embedded-atom method (EAM) potential [41–49], and first-principles 

methods [9]. It appears that a thermodynamic method based on the knowledge of 

bulk thermodynamic parameters rather than nanoscale parameters is useful for 

understanding general trends in surface segregation, which occurs in many alloy 

systems. A previously proposed thermodynamic method estimates surface 

atomic fractions using vaporization enthalpies of pure elements and alloy 

solution activity coefficients [40]. Additionally, the dependence of surface 

composition on alloy particle size has been discussed. However, the combined 

effect of particle size and phase transformations on the degree of surface 

segregation has not been well understood. 

The phase-field method [50] has been increasingly used as a numerical 

simulation method for predicting nanoscale phenomena. This method was 

applied for investigating the particle-size dependence in the ordering of FePt 

nanoparticles [51,52]. The results clearly showed that the disordered phase 
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induced by FePt particle surfaces becomes dominant as particle size decreases. 

Using the phase-field model to simulate the temporal evolution of the platinum 

density profile, it successfully represented the formation of platinum 

nanoparticles on a carbon substrate [53]. These application results support the 

use of the phase-field model to describe systems in thermodynamic equilibrium 

when the surface-area-to-volume ratio is high. This chapter focuses on the 

description of surface segregation by considering the phase transformations of 

internal particles. Recent progress in the methodology of the phase-field 

technique allows for simultaneous evaluation of the conservative temporal 

evolution of atomic concentration and non-conservative temporal evolution of 

phase transformations using the solutions of the Cahn–Hilliard [31] and Allen–

Cahn [32] equations, respectively.  

In this chapter, a phase-field model that describes atomic concentration and 

phase transformations inside platinum-based alloy nanoparticles is proposed for 

revealing the effects of particle size, alloy composition, and heat-treatment 

temperature on microstructure formation. To verify the accuracy of this 

simulation, the model was compared with experimental and other simulation 

results for the compositional variations and phase transformations in FePt 

nanoparticles.  
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2.2 Methods of Calculation 

 

The phase-field model was developed to describe the radial distributions of 

the ordered–disordered phase, solid–liquid phase, and the atomic concentration 

of a single-alloy nanoparticle. Their temporal evolutions were calculated using 

the Cahn–Hilliard and Allen–Cahn equations on the basis of the free-energy 

function associated with an alloy’s thermodynamics and surface free energy, 

including the effects of phase transformations. Formulations and 

implementations of the simulation method are described herein. 

 

2.2.1 Formulation 

 

Three types of field variables related to the atomic concentration, c ,  

long-range crystallographic ordering, s,  and phase transition, , between solid 

and liquid were introduced. A condensed-matter phase is distinguished from a 

surrounding vapor phase by the vacancy concentration. The temporal evolution 

of the radial distribution of each atomic concentration within a nanoparticle was 

calculated using the ternary Cahn–Hilliard equation [54,55], as expressed in the 

following conservative form:  

j
ij

i
ii

i

c
G

M
c

G
M

t
c syssys ; i = Pt, TM; j = Pt, TM; i   j,   (2.1) 

Pt TM Va 1c c c ,                        (2.2) 

where ci  is the local atomic concentration of component i as a function of the 
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radial coordinate, r ,  and the time variable, t ,  and its value is normalized with 

respect to the maximum concentration so that it is a dimensionless value 

between 0 and 1. The subscripts TM and Va indicate the concentrations 

represent those of transition-metal element alloyed with platinum and the 

vacancy, respectively; in this chapter, TM corresponds to Fe, and Mii  is the 

mobility of component i owing to the gradient of the functional derivative of 

Gsys  with respect to the concentration of component i .  The coefficients Mii  and 

Mij are expressed as Mii = ci(1  ci)D  /  RT  and Mij  = cicjD /  RT ,  respectively, 

when all species have the same diffusion coefficient, D [55]. Here, R and T are 

the gas constant and absolute temperature, respectively.  

The equilibrium radial distributions of the ordered–disordered phase and the 

solid–liquid phase within a nanoparticle were calculated using the Allen–Cahn 

equation [32], expressed in the following nonconservative form:  

sys ,s

Gs L
t s

                         (2.3) 

sys ,
G

L
t

                         (2.4) 

where s is defined as the long-range order (LRO) parameter so that s values of 0 

and 1 correspond to the disordered and ordered phases, respectively;  is defined 

as the phase-field parameter so that  values of 0 and 1 correspond to the liquid 

and solid phases, respectively; and Ls  and L  denote the mobility of the ordered–

disordered and solid–liquid phase interfaces, respectively. As a consequence of 

temporal evolution, quasi-stationary microstructures corresponding to the 

minimum free energy were obtained.  
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The total free energy of the simulated system, Gsys , is defined as the volume 

integral of the local chemical free energy and the gradient energy term over the 

entire volume, V ,  as follows: 

2 2(S) (L) Pt TM
sys chem chem Pt TM

22 2Va s
Va Pt TM

1 { 1
2

1 }d ;
2 2 2

G h G h G c c
V

c h c s W

r

r    (2.5) 

3 26 15 10 ;h x x x x  x = , cPt+TM;             (2.6) 

;TMPtTMPt ccc                         (2.7) 

;/ TMPtTMTMPtPt cWcWcW                   (2.8) 

Pt ,Pt TM ,TM Pt TM/ .c c c                  (2.9) 

Because the spatial derivative terms multiplied by Pt–TM are not zero when the 

spatial derivative term multiplied by Va is not zero, Va is represented by the 

subtraction of Pt–TM from a linear combination of Pt  and TM, as given in the 

following equations: 

Va Pt Pt Pt TM TM TM Pt TM Pt TM/ ,c c c           (2.10) 

with 

(L)(S) 1 iii hh ; i = Pt, TM;              (2.11) 

where (S)
i  and (L)

i  are the gradient energy coefficients of the solid–vapor and 

liquid–vapor interfaces, respectively, of atomic element i.  

The terms (S)
chemG  and (L)

chemG  denote the changes in the chemical free energies 

between the solid and vapor phases and between the liquid and vapor phases, 

respectively. The chemical free energies were evaluated along with the 

approximation of the regular solution model expressed as follows:  
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(S) (S) (S) (S) (S) (S)
chem Pt Pt TM TM Pt Va Pt Va TM Va TM Va Pt TM Pt TM

(ord)
Pt TM Pt Pt TM TM Va Valn ln ln ,

G c G c G L c c L c c L c c

G RT c c c c c c    (2.12)
 

(L) (L) (L) (L) (L) (L)
chem Pt Pt TM TM Pt Va Pt Va TM Va TM Va Pt TM Pt TM

Pt Pt TM TM Va Valn ln ln ,
G c G c G L c c L c c L c c

RT c c c c c c    (2.13)
 

where the superscripts (S) and (L) indicate the solid and liquid phases, 

respectively; and )( j
iG  is the Gibbs formation energy of pure element i in phase 

j,  obtained  from data of the Scientific Group Thermodata Europe (SGTE) [56]. 

When these formulations are applied to a pure material, Eqs. (2.12) and (2.13) 

result in expressions similar to those reported in Ref. [57], which were applied 

to the sintering of two spherical pure-element particles. The energy difference 

between the ordered and disordered phases, (ord)
Pt FeG ,  is defined by the site 

fraction of component i on sublattice j,  )( j
iy  [58]. To reduce the number of field 

variables,  a three-component LRO parameter, S [59], which is defined as 

follows, was adopted: 

1 1,Pt 1,Fe

2 2,Pt 2,Fe

3 3,Pt 3,Fe

1 ,
2

s s s
s s s
s s s

S                   (2.14) 

with 
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S  i = Pt, Fe.     (2.15) 

Here, the )( j
iy  values are obtained uniquely using S i and ci values. The 

parameter S = (s1, s2, s3) has the values of ( 1, 0, 0), (0, 1, 0), and (0, 0, 1) for 

the complete L10 and L11 ordered phases, and ( 0.5, 0.5, 0.5) for the 
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complete L12 ordered phase. The coefficient ( )
Va

j
iL  is a pair-wise interaction 

parameter between alloy element i  and a vacancy, and it is defined as follows:  

( ) ( )
Va f, f

j j
i iL H T S ; j = S, L;                (2.16) 

where ( )
f,

j
iH  and S f  are the enthalpy and entropy of mono-vacancy formation, 

respectively. The terms (S)
Pt FeL  and (L)

Pt FeL  were provided as polynomial 

equations with respect to the atomic concentrations based on the thermodynamic 

assessments of the Fe–Pt [58] binary systems using the CALPHAD method. The 

Fe–Pt system has the ordered phase in the temperature–concentration phase 

diagram for the bulk material. Therefore, (S)
Pt FeL  and (L)

Pt FeL  had negative values. 

In addition, it may be claimed that the volume in one nanoparticle is too small 

for an assessment of the macroscopic thermodynamic equilibrium state. It may 

be presumed that these calculation results using the CALPHAD data could be 

treated as an average state corresponding to a long timescale or ensemble 

averages of two or more particles with the same particle diameter. 

 

2.2.2 Physical Constants and Parameters 

 

The surface energy of the condensed-matter–vapor interface corresponds to a 

summation of the excess free energy in the diffusive transition region from very 

low to very high vacancy concentration, which depends on the alloy 

components. In the case of the condensed-matter–vapor interface with a 

one-dimensional gradient, the following relationship exists among the surface 

energy, )( j
i ,  interfacial thickness, )( j

id ,  and gradient energy coefficient, )( j
i , 
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in accordance with the derivations described in Sec. 1.3.1.2: 

c

v

( )
1( )

( ) 0
m,

2 d ,
j

cij
i j c

i

G c c
V

                 (2.17) 

( )
( )

c v ,
2 0.5

j
j i

id c c
G c

                (2.18) 

where the subscript i indicates the alloy component (Pt or Fe); cc and cv are the 

atomic concentrations of the condensed and vapor phases, respectively; ( )
m,

j
iV  is 

the molar volume; and G  is the free-energy change across the interface, which 

correlates with ( )
Va

j
iL .  In these calculations, (S)

VaiL  and (S)
i  were determined to 

reproduce the (S)
i  and (S)

id  values. The (S)
id  value for the solid phase was 

set at 3.0 × 10 10 m by adjusting the mono-vacancy formation energy, (S)
f,iH ,  

which led to a change in the (S)
VaiL  values. Here, the values obtained for the solid 

surface energy, (S)
i ,  of the (111) surfaces of Pt and Fe from first-principles 

calculations [60] were employed. Table 2.1 shows the surface energy including 

the temperature correction. The temperature correction was made using the 

following equation [61]:  

(S) (S) 0 / ,i iT RT A                    (2.19) 

where A is the surface area per mole of surface atoms, as defined by [61] 

1/3 2/31.612 ,A N V                       (2.20) 

where N  is Avogadro’s number and V  is the molar volume. The liquid surface 

energy, (L)
i ,  was estimated from 18.1/(S)(L)

ii  [61]. For representation of the 

differences in the bond strengths in solids and liquids, (L)
f,iH  was assumed to be 

a relative value of (S)
f,iH ,  as defined by the equation 
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v,(L) (S)
f, f,

m, v,

,i
i i

i i

H
H H

H H                   (2.21) 

where Hm, i is the heat of fusion and Hv , i  is the heat of vaporization. As the 

surface energy is considered to be associated with H f  /  A,  (S) (L)/i i  is rewritten 

as SL(L)
f,

(S)
f, // AAHH ii .  In the case of platinum, (S) (L)

f,Pt f,Pt/H H  was calculated 

to be about 1.04 (from Eq. (2.21)), and A(L) / A (S)  was about 1.07 (from Eq. 

(2.20)). Therefore, L S(S) (L)
f,Pt f,Pt/ /H H A A  was about 1.11. The derived value 

was approximately equal to the abovementioned value of 1.18 obtained from 

18.1/(S)(L)
ii .  Therefore, it is suggested that the assumption of Eq. (2.21) is 

physically relevant. The (L)
i  value was then determined to reproduce the (L)

i  

and (L)
f,iH  values. The S f  value in Eq. (2.16) approximately adopted a 

formulation of 1.32R,  which was originally used for platinum [62]. The 

estimated (S)
f,iH , (S)

i , and (L)
i  values at 973.15 K (a typical annealing 

temperature for the synthesis of nanoparticles) are listed in Table 2.1. The 

estimated (S)
f,iH  values in Table 2.1 are in fairly good agreement with the 

experimental values [63].  

In the case of the solid–liquid interface, the values of the interfacial energy 

barrier, Wi,  and , i  were determined by introducing the values obtained for 

(S L) (S) (L)
i i i  and the width of the solid–liquid interface (S L)

id  (which was 

assumed to be approximately equal to that of the solid–vapor interface) into the 

following equations: 

1(S L)
, (S L)0

2
d ,i

i i
i

W
V

                    (2.22) 
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,(S L) ,
2

i
i

i

d
W

                       (2.23) 

where (S L)
iV  is introduced as 

(S L) (S) (L)1 .i i iV h V h V                 (2.24) 

Equation (2.18) is modified slightly to the following expression [35] for the 

estimation of the s  value for the ordered–disordered phase interface: 

2 ,
2 0

sx
G s

                      (2.25) 

where x is the width of the anti-phase boundary (APB), and G(s  = 0) 

corresponds to the absolute value of (ord)
Pt FeG . For the reproduction of the 

experimental results shown in Fig. 2.1, a x value of 1.0 × 10 9 m was used, 

which was close to the experimentally observed value of approximately 1.38 × 

10 9 m for FePt [64]. The values of s  at 973.15 K were 1.63 × 10 15 J·m2·mol 1 

for L10.  

The value of Pt–Fe was defined as having a negative sign according to Eq. 

(2.17). However, a negative Pt–Fe value may induce instability during the 

numerical simulation. It is confirmed that when Pt–Fe is set to a positive value 

of the order of about 10 17, such instability is avoided, and the value has a minor 

effect on the final concentration profile. In this study, the Pt–Fe value for the 

Fe–Pt system was set at 5 × 10 17 J·m2·mol 1. 
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Table 2.1. Estimated parameters of the alloy elements at 973.15 K. 
 

Atomic element Fe Pt 
Surface Energy,  

(S)
i /J·m 2 2.05 1.35 

Molar volume,  
(S)

m,iV /10 6 m3·mol 1 7.28 9.15 
(L)

m,iV /10 6 m3·mol 1 7.83 10.1 
Mono-vacancy formation energy, 

(S)
f,iH /96485 J·mol 1 

1.65 
1.54a 

1.42 
1.32a, 1.35a 

Gradient energy coefficient, 
(S)
i /10 15 J·m2·mol 1 5.81 4.92 
(L)
i /10 15 J·m2·mol 1 5.08 4.57 

,i /10 15 J·m2·mol 1 0.947 0.804 
Solid–liquid interface energy, 
Wi /kJ·mol 1 19.0 16.0 

a Reference [63].  

 

2.2.3 Numerical Calculation 

 

The numerical calculation of the one-dimensional problem along the radial 

direction of a nanoparticle was performed using the finite-volume method with 

the explicit Euler method. In the present calculation, the isotropic surface 

energy of a nanoparticle was assumed. The simulation was executed mainly at a 

temperature of 973.15 K, with an initial grid spacing of 0.005 nm. Changes in 

the local molar volume, depending on the changes in atomic concentrations and 

phase transformations, were taken into account to ensure mass conservation. 

Therefore, the grid spacing at each grid point was updated for each time step. 

The initial simulation size, l,  was defined as the particle radius plus 0.75 nm, 
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and the boundary conditions at r = 0 and r = l  were chosen such that the spatial 

derivatives of the field variables were zero. In the external region of the particle, 

only vaporized atomic elements were present, i.e.,  it was an inert atmosphere. 

The initial concentration of platinum was equal to that of the alloying element 

combined with platinum, the initial  value was equal to the cPt+Fe value, the 

initial s values in Eq. (2.15) were set as (s1 ,Pt ,  s2 ,P t ,  s3 ,P t) = (cPt+Fe, 0, 0), and SFe = 

SPt was assumed for all positions. The variable SPt  is denoted as the variable S 

in Sec. 2.3, the representative variable for estimating the degree of L10 or L11 

ordering. In this simulation study, we focused on obtaining the steady-state 

microstructure. Therefore, the simulated time step was varied according to the 

flux of atomic concentration to reduce the simulation time. The mobility values 

of Ls  and L  in Eqs. (2.3) and (2.4) were set to be larger than the atomic 

concentration change so that the rate of atomic diffusion was not limited by the 

mobility of the solid–liquid and ordered–disordered phase interfaces. 

 

2.3 Results and Discussion 

 

The results of the practical applications of the developed method are 

explained here. First, to verify the accuracy of this simulation, the results of the 

phase transformations and compositional variations in FePt nanoparticles with 

diameters of less than 10 nm were compared with those of experiments and other 

simulations. 

 



41 
 

2.3.1 Phase Transformations 

 

To verify the accuracy of this phase-field model, the simulated results were 

compared with experimental and other simulation results. Figure 2.1 shows the 

experimentally observed particle-size dependence of the L10 ordering in FePt 

particles that were fabricated or annealed at 973.15 K [65–67]. The degree of 

L10 ordering decreased as the particle size decreased. When the APB width was 

assumed to be 1.0 nm, in accordance with the experimental results described in 

Sec. 2.2, the calculated s values were in good agreement with the experimental 

results. This implies that the present phase-field model is sufficiently accurate 

to describe the order–disorder phase transition within a nanoparticle. Figure 2.2 

shows the temperature dependence of the L10 ordering of FePt particles with 

diameters of 4 nm. The order–disorder phase-transition temperature decreased 

as the particle size decreased. This figure also shows previously reported results 

from Monte Carlo simulations [43]. At first glance, the present model 

reproduced the general trend of the temperature dependence seen from the 

Monte Carlo simulations, although the simulated phase-transition temperature 

was slightly below that obtained from the Monte Carlo simulations. In the 

present simulation, the ordered–disordered phase interface had a finite width 

inside a particle. Therefore, the disordered phase was dominant at the particle 

surface. On the other hand, it is well known that the surface state from the 

Monte Carlo simulation result is affected significantly by the adopted surface 

potential [44]. In short, there is no conclusive evidence of any method providing 

more accurate results than others.  
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Fig. 2.1. Comparison of the dependence of L10 ordering of the FePt particles on 
particle size with experimental results. 

 

 

 
Fig. 2.2. Comparison of dependence of the L10 ordering of the FePt particles on 
temperature with the results of Monte Carlo simulation. The particle diameter 
was 4 nm.  
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Another important feature was the particle-size dependence of the solid–

liquid transition temperature. Figure 2.3 shows the equilibrium phase of the 

FePt nanoparticle versus the holding temperature and the particle size. When the 

particle diameter was on the nanometer scale, the influence of the surface 

tension of the particle on its chemical potential was significant. The difference 

in surface tension between the solid and liquid phases also led to a difference in 

the equilibrium vapor pressures of those phases. Generally, the surface tension 

of the liquid phase is smaller than that of the solid phase, and the liquid phase is 

formed at a temperature lower than the melting point of the bulk to decrease the 

free energy. Furthermore, at temperatures lower than the complete melting 

temperature of the nanoparticles, it is known that a kind of core–shell structure  

 

 

 
Fig. 2.3. Phases of the FePt particles calculated with respect to the particle size 
(circles) compared to the phase boundaries predicted by Pawlow’s model (solid 
line).  
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is formed in the particle only through melting of the particle surface, which is 

known as surface pre-melting [68]. In this figure, the open circles denote 

completely melted particles and filled circles denote partially melted particles. 

The simulated transition temperature of the solid–liquid phases corresponded to 

the interface of these circles. The temperature dependence was more remarkable 

in particles of less than 10 nm in diameter. Figure 2.3 also shows the theoretical 

prediction from Pawlow’s model, which yields the following equation [69]: 

2/3
Bulk s s l l

m m
m s s s

21 1 .v vT T
H r v

               (2.26) 

In Eq. (2.26), the relationship between the melting temperature, Tm, and the 

particle radius, rs,  is estimated on the basis of the equilibrium between solid and 

liquid particles. Each parameter in Eq. (2.26) is defined as the mean of the 

physical constants of Pt and Fe: Bulk
mT  is 1926.6 K; the molar heat of fusion, 

Hm, is 16.4 kJ·mol 1; the molar volumes of the solid, s, and liquid, l , are 8.10 

 10 6 and 8.97  10 6 m3·mol 1, respectively; and the surface tensions of the 

solid, s, and liquid, l ,  are 1.85 and 1.57 J·m 1, respectively. The simulated 

phase boundary between the solid and liquid phases was slightly below that 

obtained with Pawlow’s model. It was postulated that this subtle but meaningful 

difference was due to surface pre-melting [70]. The surface layers of the FePt 

particles were partially in the liquid phase, as described in the next section. This 

layer was expected to induce the more significant melting-temperature 

dependence on the particle size, as shown in Fig. 2.3. 
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2.3.2 Surface Segregation 

 

Figure 2.4 shows the radial distributions of the atomic concentrations (cPt ,  

cFe, and cPt+Fe), values of |S |   cPt+Fe of the ordered–disordered phase, and values 

of  of the solid–liquid phase of nanoparticles with diameters of 2 and 4 nm at 

973.15 K. The region in which the value of cPt+Fe changes from 0 to 1 

corresponds to the particle surface. The change in the black line corresponding 

to the fraction of the solid phase from 0 to 1 inside the particle implies that 

surface pre-melting occurred. As the particle size decreased, the stable phase 

inside the particle changed from an ordered phase to a disordered phase. In 

addition, this simulation also evaluated the atomic concentrations of the 

alloying elements. As seen in Fig. 2.4 (a), the FePt particles did not show 

significant concentration decomposition because the strong attractive 

interaction energy between Fe and Pt overcame the differences in surface energy. 

Monte Carlo simulations with the cluster expansion fitted to ab initio data [44] 

indicated that FePt did not exhibit significant segregation, and an increase in Pt 

concentration in the outermost surface was compensated by a decrease in Pt 

concentration in the sub-surface. The results shown in Fig. 2.4 (a) are consistent 

with those obtained from the simulation reported in Ref. [44]. 

Figure 2.4 (b) shows the results for the FePt3 nanoparticle, where the |S |  

value of 0.866 corresponds to the L12 phase. The simulation predicted that Pt 

shells formed on the surface layers (indicated by gray arrows), and the L12 phase 

existed stably in this particle. As explained in the next chapter, the structure of 

Fe–Pt particle was similar to that of Co–Pt particle. The FePt3 particle showed 



46 
 

that its core–shell structure was similar to the experimental observed structure 

of the CoPt3 particle [71], although the structure of the FePt3 particle has not 

been studied experimentally.  

 

 

(a)  

  

 
(b) 

  

 

Fig. 2.4. Radial distribution of the mole fraction of each atom, cx , the long-range 
ordering parameter, |S | ,  and the solid–liquid phase transition parameter, ,  
within (a) FePt and (b) FePt3 nanoparticles with diameters of (left column) 2 nm 
and (right column) 4 nm at 973.15 K. The horizontal axis denotes the distance 
from the particle center. The |S |  value of 0 corresponds to the disordered phase. 
The |S |  values of 1 and 0.866 correspond to the L10 phase in (a) and the L12 
phase in (b), respectively. The dashed black lines in (b) show the values of 
cPt/cPt+Fe. 
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2.4 Summary 

 

Phase-field simulations were performed to investigate phase transformations 

and surface segregation in the Fe–Pt binary-alloy nanoparticles. The phase-field 

model based on an alloy’s thermodynamic and surface free energy was 

developed to describe the radial distributions of the ordered–disordered phase, 

solid–liquid phase, and the alloy composition of a single-alloy nanoparticle.  

From the results, it was evident that surface segregation, atomic ordering, 

and solid–liquid phase transition are sensitive to the alloy components and 

particle size. The degree of L10 ordering decreased with a decrease in the 

particle size. The calculated gradations were in good agreement with the 

experimental results. The simulated phase boundary between the solid and liquid 

phases was slightly below that obtained with the classical model because of 

surface premelting, which is not considered in the classical model. In addition, 

FePt exhibited hardly any significant segregation, and an increase in the Pt 

concentration in the outermost surface was compensated by a decrease in the 

concentration in the sub-surface. The results were consistent with those obtained 

by previously reported Monte Carlo simulations.  

Although the surface energy was accounted for through parameter values 

related to a flat plane surface, the proposed phase-field approach provides a 

sufficiently accurate description of the internal structure of a single 

nanoparticle.   
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Chapter 3 
Surface Segregations in Platinum-Based Alloy 

Nanoparticles 
 

3.1 Introduction 

 

In the previous chapter, the phase-field method is proposed for describing 

the internal structure of a single Fe–Pt nanoparticle. It is based on the 

thermodynamic theory of alloys and the surface free energy, which 

simultaneously calculates the atomic segregation and phase transformations 

within single platinum-based alloy nanoparticles. According to thermodynamics 

theory, the steady state of the atomic distribution and phase parameter 

corresponds to the state with minimum free energy. This phase-field method has 

sufficient accuracy to evaluate the effects of the particle size, alloy composition, 

and heat-treatment temperature on the ordered–disordered and solid–liquid 

phase transitions. Thus it can be used to describe the atomic surface segregation 

in Pt-based binary-alloy nanoparticles. 

The objective of the present chapter is to first examine the surface 

compositions resulting from the balance between the surface and the chemical 

interaction among atomic components for various alloy combinations. Second, 

with these results, a general scheme of the binary-alloy system to obtain a thinly 

coated Pt surface structure in a nanoparticle is derived. Finally, applications of 

this method to a ternary-alloy system are presented. 
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3.2 Surface Segregation of Binary Nanoparticles 

 

To obtain the general attributes of the abovementioned relationship, the 

radial distribution of the phase state and the atomic compositions of CrPt, FePt, 

CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt nanoparticles with diameters below 10 

nm at 973 K were investigated. In addition, the validity of the simulation results 

were examined through comparisons with previously reported Monte Carlo 

simulations. 

 

3.2.1 Computational Details 

 

A one-dimensional calculation along the particle radial coordinates was used 

to evaluate the distribution of the alloy composition and the ordered–disordered 

phase from the center to the surface of a single spherical particle. Detailed 

explanations of the numerical calculation scheme for a binary-alloy nanoparticle 

utilizing the phase-field method are presented in the previous chapter.  

The coefficients (S)
Pt TML  and (L)

Pt TML ,  as well as (ord)
Pt TMG  (TM = Cr, Fe, Co, Ni, 

Cu, Pd, Ir, or Au) shown in Eqs. (2.12) and (2.13), are provided as polynomial 

equations with respect to the atomic concentrations based on the thermodynamic 

assessments of the Cr–Pt [72], Fe–Pt [58], Co Pt [73], Ni–Pt [74], Cu–Pt [75], 

Pd–Pt [76], Ir–Pt [77], and Au–Pt [78] binary systems using CALPHAD. The 

coefficients H f , i , 
(S)
i ,  and (L)

i  (i  = Pt, TM) used in Eqs. (2.17) and (2.18) are 

calculated simultaneously based on the (111) surface energy of the fcc structure 
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of the pure metal element [60,79] and assuming a solid–vapor interface width of 

3 × 10 10 m. Here, the values used for the solid surface energy, (S)
i , of the (111) 

surfaces of Pt, Fe, and Co were obtained from first-principles calculations [60], 

and the values of (S)
i  for Ni, Cu, Pd, Ir, and Au were evaluated from 

embedded-atom calculations [79]. Since there is a discrepancy between the Pt 

surface energies in Refs. [60] and [79], the values in Ref. [79] were scaled to fit 

the Pt value in Ref. [79] to the Pt value in Ref. [60]. The surface energy of 

fcc-Cr was estimated based on the relative value of -Fe and -Fe in Ref. [60] 

and the relative value of bcc-Cr and -Fe in Ref. [80]. 

In the case of a solid–liquid interface, the values of the interfacial energy 

barrier Wi,  and , i  were determined by introducing the solid–liquid interfacial 

energy and the width of the solid–liquid interface, as described by Eqs. (2.22) 

and (2.23) in Sec. 2.2.2. The evaluated values are listed in Table 3.1. The 

estimated (S)
f,iH  values in Table 3.1 are in fairly good agreement with the 

experimental values [63,81,82].  

The gradient energy coefficient, s,  represents the gradient energy 

coefficient with respect to the ordered–disordered phase interface. Using 

(ord)
Pt TMG  and assuming an anti-phase boundary width of 1 × 10 9 m, the values of 

s  for CrPt (L10), FePt (L10), CoPt (L10), and CuPt (L11) were found to be 0.303 

× 10 15, 1.63 × 10 15, 0.160 × 10 15, and 0.137 × 10 15 J·m2·mol 1, respectively. 

The variable Pt–TM represents a significant value in binary systems such as 

Ir–Pt and Au–Pt with a miscibility gap. Using the interfacial energy heights 

estimated from the CALPHAD data and assuming an interface width of 1 × 10 9 

m, the values of Pt -TM for the Ir–Pt and Au–Pt binary systems were determined 
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to be 1.66 × 10 15 and 1.67 × 10 15 J·m2·mol 1, respectively. The Pt–TM values 

for the other binary systems examined in the present computational study were 

set at 5 × 10 17 J·m2·mol 1 in the same manner described in Sec. 2.2.2. 

 

 

Table 3.1. Estimated parameters of the alloy elements at 973.15 K. 

 
Atomic element Cr Fe Co Ni Cu Pd Ir  Pt  Au 
Surface energy,  

(S)
i /J·m 2 2.62 2.05 1.88 1.66 1.11 1.11 2.41 1.35 0.67 

Molar volume,       
(S)

m,iV /10 6 m3·mol 1  6.60 7.28 6.76 6.65 7.20 8.94 8.62 9.15 10.3 
(L)

m,iV /10 6 m3·mol 1  8.20 7.83 7.51 7.34 7.88 10.0 9.46 10.1 11.3 

Mono-vacancy  
formation energy, 

(S)
f,iH /96485 J·mol 1  

1.85 
2.0a  

 

 

1.65 
1.54a

 

 

1.45 
1.34a

 
 

1.31 
1.78a

1.80c

 

1.05 
1.28a 
1.48a

 

1.22 
1.85a  

1.54c  

 

2.15 
1.97b 
2.24c  

 

1.42 
1.32a 
1.35a  

1.50c  

0.96 
0.89a  

0.97c  

 

Gradient energy 
coefficient ,           

(S)
i /10 1 5  J·m2·mol 1  6.76 5.81 5.03 4.38 2.89 3.86 8.15 4.92 2.74 
(L)
i /10 1 5  J·m2·mol 1  7.87 5.08 4.72 4.08 2.65 3.72 7.45 4.57 2.50 

,i /10 1 5  J·m2·mol 1  1.13 0.947 0.797 0.681 0.439 0.636 1.33 0.804 0.426 
Solid–liquid  
interface energy, 
Wi  /kJ·mol 1  

25.0 19.0 17.0 15.0 11.0 13.0 27.0 16.0 9.3 

a Reference [63].  
b Reference [81]. 
c Reference [82]. 

 

 

  



52 
 

3.2.2 Results and Discussion 

 

Figure 3.1 shows the radial distributions of the atomic concentrations (cPt ,  

cTM, and cPt+TM), values of |S |   cPt+TM of the ordered–disordered phase, and the 

values of  of the solid–liquid phase of nanoparticles with diameters of 2, 4, and 

6 nm at 973.15 K. The compositional ratio of Pt to the alloyed metal element 

was 1:1. The region where the summation of the concentration of the component 

elements, excluding the vacancy (indicated by the black solid line), varies from 

0 to 1 corresponds to the particle surface. The difference in the composition 

ratios between the surface and the particle center is obtained from the 

distributions of cPt  and cTM with respect to the horizontal axis in Fig. 3.1. 

The CoPt particle showed no significant concentration decomposition, as 

was the case for the FePt particle and described in the previous chapter, which is 

consistent with Monte Carlo predictions [45]. In contrast, the surfaces of IrPt 

and AuPt consisted of one of the two alloy component elements. In IrPt 

nanoparticles, Pt enrichment was obtained at the particle surface. As the total 

mass was conserved, the enriched alloy element concentrations on the particle 

surface resulted in reduced concentrations of these elements inside the particles. 

Our results were probably consistent with those of the Monte Carlo simulation 

employing the EAM potential [48], which simulated the Pt segregation on the 

flat (100) and (111) surfaces of the Ir–Pt alloy. In the cases of CrPt, NiPt, CuPt, 

and PdPt, the concentration of one component was slightly higher than that of 

the other, while both elements were still present on the particle surface. In CuPt 

nanoparticles, both the energetic tight-binding Ising model (TBIM) [83] and 
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Monte Carlo simulation employing the modified embedded-atom method 

(MEAM) [47] predicted Cu enrichment of the (100) and (110) surfaces owing to 

the low surface energy of Cu. For the (111) surface, the Monte Carlo model with 

MEAM sustained Pt segregation, which was in contrast to the results of the 

TBIM model. Schurmans et al. [47] reported that the reduction in elastic strain 

energy causes the Pt segregation. In PdPt nanoparticles, slight Pd enrichment on 

the particle surface occurred, which was in good agreement with the Monte 

Carlo simulation [48]. Moreover, the difference between the Ni and Pt surface 

energies was very small. Our simulation predicted slight Ni enrichment on the 

NiPt particle surface, which was opposite to the prediction made by the Monte 

Carlo simulation [49]. Therefore, it is suggested that in the case of a small 

difference in surface energy, as in the NiPt particle, the actual surface could be 

determined by atomic size mismatch, which was not considered in this model. 

Figure 3.1 also shows the phase transformations inside the nanoparticles. At 

first glance, the stable phase inside the particle changed from an ordered to 

disordered state as the particle size decreased. The appearance of the ordered 

phase also varied depending on the alloy combination. The L10 phase existed 

stably in the interior of CoPt, CrPt, and FePt particles with diameters above 4 

nm. As mentioned in Sec. 3.3.2, the CrPt particles with diameters below 4 nm 

exhibited the L12 ordered phase. In the case of CuPt particles, the L11 phase 

existed stably in the particles with diameters above 4 nm. The NiPt and PdPt 

particles demonstrated that the disordered phase was more stable than the 

ordered phase in all the cases examined. 
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(a) 

   

 
(b) 

   

 
(c) 

   

 
(d) 

   

 
(e) 
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(f) 

   

 
(g) 

   

 
(h) 

   

 

Fig. 3.1. Radial distribution of the mole fraction of each atom, cx , the long-range 
ordering parameter, |S | ,  and the solid–liquid phase transition parameter, ,  
within (a) CrPt, (b) FePt, (c) CoPt, (d) NiPt, (e) CuPt, (f) PdPt, (g) IrPt, and (h) 
AuPt nanoparticles with diameters of 2 nm, 4 nm, and 6 nm at 973.15 K. The 
horizontal axis denotes the distance from the particle center. The |S |  value of 0 
corresponds to the disordered phase. Except for the CrPt particle with a diameter 
of less than 4 nm, the |S |  value of 1 corresponds to the L10 (or L11) ordered 
phase. In the case of the CrPt particle with a diameter of less than 4 nm, the |S |  
value of 0.866 corresponds to the L12 ordered phase. 
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To quantitatively understand the extent of the surface segregation, the values 

obtained from the equation ( cPt  cTM) / (cPt + cTM) for the shell region of the 

nanoparticle, i.e.,  r   (d/2  0.5), which corresponded to the surface shell of the 

nanoparticle (d is the particle diameter in nm), were evaluated. A positive or 

negative value indicates Pt or TM segregation, respectively. The values are 

plotted against the surface energy difference, as shown in Fig. 3.2. The 

coefficients Pt  and TM are defined as Pt  and TM multiplied by the atomic 

surface areas of their (111) crystal planes, respectively. The difference in 

surface energy between the two metallic elements acted as a driving force of the 

surface segregation for these alloy particles. Figure 3.2 shows that the alloy 

element with the lower surface energy had a tendency to segregate near the 

surface. The results presented in Fig. 3.2 also indicate that the degree of the 

segregation decreased as the particle diameter decreased. Because the surface 

energy difference increased inversely proportional to the particle size, the 

surface segregation was expected to increase as the particle diameter decreased. 

On the other hand, since the particle volume decreased as the particle diameter 

decreased, the degree of the segregation was restricted by the amount of the 

segregated element contained in a particle. Therefore, it is concluded that the 

degree of the segregation was affected by the decrease in particle volume more 

than the increase in surface energy difference. 

The surface segregations did not depend on only the alloy surface energies 

and the particle volume. As shown in Fig. 3.2, the effect of the particle diameter 

on the degree of the segregation also changed with alloy composition. In the 

case of AuPt and IrPt, the significant surface segregation was triggered by the 
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large difference in surface energy. On the other hand, FePt and CoPt particles 

did not exhibit significant surface segregation, although the absolute difference 

in surface energy between Fe and Pt was almost identical to that between Cu and 

Pt. 

Thus, because the degrees of the segregation for all examined alloy 

nanoparticles with the same diameter did not fit on the same straight line, it  

appears that factors other than the surface energy difference affected the surface 

segregation. Other potential factors include the attractive interaction between 

two elements within the alloy particle that suppressed the degree of surface 

segregation as well as the repulsive interaction that acted as the promoting 

factor. 
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Fig. 3.2. Relationship between the degree of surface segregation and surface 
energy difference. Positive values on the vertical axis indicate segregation of Pt 
on the particle surface; positive values on the horizontal axis indicate that the 
surface energy of Pt was larger than that of the transition metal. 
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In order to depict the general characteristics of the surface segregation, 

information regarding the degree of segregation was plotted on a 

two-dimensional map with respect to the surface energy and the free energy of 

mixing of the binary alloy using the CALPHAD data, as shown in Fig. 3.3. In 

addition, the corresponding radial distributions of the values of ci and |S |   

cPt+TM were calculated, as shown in Figure 3.4. The free energies of mixing of 

alloys, except IrPt and AuPt, with respect to the vertical axis in Fig. 3.3 were 

evaluated as deviations from the linear combinations of the free energies of two 

pure end products of the solutions. In the case of IrPt and AuPt, the mixing 

energies were evaluated as deviations from the tie-lines that connect the 

equilibrium compositions of the Pt-rich and Ir-rich (or Au-rich) phases. The 

composition ratio is 1:1, and the temperature is 973.15 K. The surface energy 

difference on the horizontal axis is the same as that of Fig. 3.2. To simplify the 

description of the interatomic interaction and the surface energy, the calculation 

was performed under conditions that did not consider the existence of the liquid 

phase. The degree of surface segregation in the alloy particles is expressed by 

the numerical values shown in parentheses. 

In Fig. 3.3, an alloy with a large negative value with respect to the vertical 

axis means that the solid solution state, including the ordered phase, is stable. 

No segregation occurs in the FePt particle, for example, despite the surface 

energy difference, because of the effect of this large mixing energy. In the case 

of IrPt or AuPt, the mixing energy has a positive value with respect to the 

vertical axis, which indicates that the solid solution is unstable and 

decomposition into a TM-rich phase or a Pt-rich phase has occurred. Here, the 
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phase decomposition triggered by surface segregation is promoted and the 

surface layer is occupied by one of the two elements. In the case of other binary 

systems such as CrPt, NiPt, CuPt, and PdPt, the surface-segregated species is 

determined by the surface energy difference, and the degree of the surface 

segregation is determined by the balance between the surface energy and 

chemical interaction between the atomic components. 

 

 

 

 

Fig. 3.3. Trend of surface atomic segregation of Pt-based binary nanoparticles. 
The number within the parentheses following the name of each alloy element is 
the value calculated using the equation ( cPt   cTM) / (cPt + cTM) for the region 
where r  (d/2  0.5) (d is the particle diameter in nm), which corresponds to the 
surface shell of the nanoparticle. Numerical calculation results were obtained 
for a particle with a diameter of 3 nm at 973 K. 
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(a)    (b)  

(c)    (d)  

(e)    ( f )  

(g)    (h)  

  
Fig. 3.4. Radial distribution of the mole fraction of each atom, cx,  and the 
long-range ordering parameter, |S | ,  within (a) CrPt, (b) FePt, (c) CoPt, (d) NiPt, 
(e) CuPt, (f) PdPt, (g) IrPt, and (h) AuPt nanoparticles with a diameter of 3 nm 
at 973.15 K. The horizontal axis denotes the distance from the particle center. 
Except for CrPt particle, the |S |  values of 0 and 1 correspond to the disordered 
phase and L10 (or L11) ordered phase, respectively. In the case of CrPt particle, 
the |S |  values of 0 and 0.866 correspond to the disordered phase and L12 ordered 
phase, respectively. 
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Furthermore, the degree of surface segregation of the binary alloys located 

on the third quadrant of this map (such as CrPt, FePt, and CoPt) is slightly 

smaller than that of the binary alloys on the fourth quadrant (such as NiPt, CuPt, 

and PdPt). In the case of CrPt, FePt, and CoPt, the ordered phase is stable. If the 

ordered phase is generated because the energy change as a function of the 

deviation of the composition from a 1:1 composition is more significant, the 

compositional shift is more strongly suppressed. Therefore, the asymmetry 

behavior with respect to the horizontal axis in the degree of surface segregation 

presumably results from the ordered phase formation. Moreover, as shown in 

Figs. 2.1 and 2.2, the degree of ordering increases as the holding temperature 

decreases and the particle diameter increases. Therefore, in order to reduce 

excessive surface segregation and prevent instability in the alloy system, it is 

possible to take advantage of the formation of the ordered phases by increasing 

the particle size and decreasing the temperature. 
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3.3 Surface Segregation of Ternary Nanoparticles 

 

In this section, the binary-alloy model is extended to a multinary form for 

application to a ternary-alloy system. 

 

3.3.1 Formulation 

 

The conservative temporal evolution of the atomic concentration can be 

calculated by solving the following equation: 

1
sys

1

n
i

ij
j j

Gc M
t c

, 1i n ,               (3.1) 

where ci  is the local atomic concentration of component i as a function of the 

radial coordinate r  and the time variable t ,  and its value is normalized with 

respect to the maximum concentration so that it is a dimensionless value 

between 0 and 1. Here, the binary-alloy (TM–Pt) system is represented by a 

three-component setup (n = 3): Pt (component 1), the transition-metal element 

alloyed with platinum TM1 (component 2), and the vacancy Va (component 3). 

In a ternary-alloy (TM1–TM2–Pt) system, component 3 corresponds to the 

secondary transition-metal element TM2 and component 4 corresponds to the 

vacancy. The coefficient Mij is the mobility of component i  owing to the 

gradient of the functional derivative of Gsys  with respect to the concentration of 

component j; it is expressed as 

RTDccM iiii /1  and / .ij ji i jM M c c D RT            (3.2) 
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Here, D  is the self-diffusion coefficient; R  and T  are the gas constant and 

absolute temperature, respectively. The temporal evolution of the concentration 

of each component can be calculated under the following condition: 

1
1

n

i
i

c .                           (3.3) 

The equilibrium radial distributions of the ordered phase–disordered A1 fcc 

phase within a nanoparticle can be calculated by solving the following 

non-conservative equation: 

sysi
s

i

Gs L
t s

,                        (3.4) 

where S = (s1, s2, s3) is defined as the three-component long-range order (LRO) 

parameter [59]. The parameter (s1, s2, s3) is represented by the values of (1, 0, 0) 

for complete L10 and L11 ordering, and (0.5, 0.5, 0.5) for L12 ordering. The 

coefficient Ls is the mobility of the ordered–disordered phase interfaces. 

The total free energy of the simulated system, Gsys , is defined as the volume 

integral of the local chemical free energy and gradient energy over the entire 

volume, V ,  as follows: 

2 2
sys chem

1

1 1 d
2 2

n
s

i i
i

G G c h c s V
V

,          (3.5) 

1

1

n

i
i

c c ,                           (3.6) 

3 26 15 10h c c c c .                    (3.7) 

Here, Gchem denotes the changes in the bulk chemical free energies and is 

evaluated together with the approximation of the regular solution model as 
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follows: 

1 1
(ord)

chem
1 1 2, 1

ln
n n n n

i i ij i j i i
i i j j i i

G c G L c c G RT c c ,        (3.8) 

where iG  is the Gibbs formation energy of pure element i  in the solid phase. If 

the thermodynamic field is not spatially uniform, the bulk free energy, Gche m, 

must be supplemented by an additional energy term with respect to the gradients 

of the field variables to account for the interfacial interactions.  

The term i  ( i n ) represents the gradient energy coefficient with respect to 

the solid–solid interface between two co-existing phases of mixtures with a 

miscibility gap: 

1 1

/
n n

i j ij j
j i j i

c c , 1i n .                   (3.9) 

The i j  value is determined using the interfacial energy heights estimated from 

the CALPHAD data and assuming an interface width of 1 × 10 9 m.  The 

coefficient Lin represents the interaction energy between alloy element i and a 

vacancy; n  represents the gradient energy coefficient with respect to the solid–

vapor interface. Lin  and n  are obtained using the following equations: 

f, fin iL H T S ,                      (3.10)  

1

1

1 n

n j nj j
j

c
c

.                    (3.11) 

In Eq. (3.10), H f , i  and S f  are the enthalpy and entropy of mono-vacancy 

formation, respectively. The S f  value adopted an approximate formulation of 

1.32R,  which was originally used for platinum [62].  

The gradient energy coefficient, s,  represents the gradient energy 
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coefficient with respect to the ordered–disordered phase interface. Most values 

of the above parameters are already provided in Sec. 3.2.1. In addition, for the 

calculation of the values for parameters of the Fe–Cr–Pt and Ir–Cr–Pt systems, 

the CALPHAD data of Fe–Cr [84] and Cr–Ir [85] binary systems were applied. 

 

3.3.2 Results and Discussion 

 

Based on the general trends for the binary system, as shown in the previous 

section, this method was applied to a ternary-alloy system. From the viewpoint 

of industrial application as the electro-catalysts of the cathodes in PEFCs, it was 

certified that, when exposed to a corrosive operating environment such as a low 

pH and high cathode potential, the transition metals of these alloys dissolve into 

the aqueous solution containing the polymer electrolyte [86]. The catalytic 

activity of the ORR is exhibited through a thin skin of pure Pt on the surface of 

the catalyst particles. Therefore, it may be useful to consider a microstructure 

where a Pt skin layer is formed on a particle’s surface and adhered to its interior. 

Among the examined binary alloys, the Cr–Pt system is the closest to this 

structure. Figure 3.5 shows the results for a ternary alloy containing Cr with a 

diameter of 3 nm at 973 K. First, a Fe0.25Cr0 .25Pt0.5 nanoparticle was examined. 

In this case, interactions in the Fe–Pt system were stronger than those in the Cr–

Pt system. The relative surface energies of the component elements resulted in 

Pt enrichment on the surface, and the degree of Pt enrichment was almost the 

same as that of Cr–Pt. Moreover, the interaction between Fe and Cr was 
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attractive, but the mixing energy was not very large compared with that of the 

L10 ordered phase of Fe–Pt. Therefore, the decomposition in the Fe and Cr 

concentrations occurred, and the ordered structure was maintained by increasing 

the Fe concentration inside the particles. The particle interior thus changed to a 

more stable L10 ordered structure by adding Fe to Cr–Pt while maintaining the 

amount of Pt on the surface. Next, a Ir0 .4Cr0 .1Pt0 .5 nanoparticle was examined. 

The Ir–Pt alloy showed the decomposition described in the previous section. On 

the other hand, Cr–Pt and Cr–Ir formed solid solutions. The interactions in the 

Cr–Pt system were stronger than those in the Cr–Ir system. The relative surface 

energies between these components resulted in Pt enrichment on the surface. 

Therefore, Cr was present in the Pt shell, but a slight increase in the Ir 

concentration of the Pt shell was observed owing to Cr attracting Ir. Because the 

complete separation of Pt and Ir was suppressed by the presence of Cr while 

forming the Pt shell, it is thought that this ternary alloy also improved the 

stability of the Pt-shell–Ir-core structure. 
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Fig. 3.5. Radial distribution of the mole fraction of each atom, cx,  and the 
long-range ordering parameter, |S | ,  within (a) Fe0.25Cr0 .25Pt0 .5 and (b) 
Ir0 .4Cr0 .1Pt0 .5 nanoparticles with diameters of 3 nm at 973.15 K. 
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3.4 Summary 

 

The radial distributions of the phase transformations and surface segregation 

in single-alloy nanoparticles were examined as functions of the input values of 

alloy composition, particle diameter, and temperature. The compositional 

variation within a single particle was found to depend on the balance between 

the atomic interaction within particles and the surface energy, and the obtained 

specific equilibrium points that varied significantly with alloy composition. In 

the case where the attractive interaction between Pt and the alloyed component 

was large, especially when an ordered structure was formed, surface segregation 

was suppressed. In contrast, a weak attractive or repulsive interaction led to the 

enhancement of the surface layer formation. Thus, it was demonstrated that 

computer modeling studies are useful for obtaining the overall picture of how 

the equilibrium structure changes with the variations of the alloy components. It 

is therefore useful to consider alloy systems that have a microstructure with a Pt 

skin layer on a particles’ surface to improve the catalytic activity. Among the 

examined binary alloys, the Cr–Pt system has the closest layout to this structure. 

Furthermore, the ternary-alloy system was briefly examined. In the case of 

Ir0 .4Cr0 .1Pt0 .5 nanoparticles, Cr improved the stability of the Pt-shell–Ir-core 

structure. 
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Chapter 4  
Numerical Study of Li Diffusion in 

Polycrystall ine LiCoO2 
 

4.1 Introduction 

 

Layered Li transition-metal oxides are widely used as active materials for 

the positive electrodes of Li-ion rechargeable batteries [21], where intercalation 

of Li in the metal oxide is a fundamental phenomenon that determines the 

performance of the batteries. The intercalation process is significantly affected 

by the crystal anisotropy and grain boundaries, particularly for all-solid-state 

thin-film batteries as described in Sec. 1.2.2. Therefore, to improve the 

batteries, a thorough understanding of the intercalation process on the 

nanometer scale is essential. 

Most previously reported numerical simulations [87 89] have adopted 

several assumptions of the anisotropic Li intercalation process, such as an 

isotropic grain model and linear Fickian diffusion of Li inside the grains. In 

these models, because the influence of the polycrystalline anisotropic 

microstructure on the Li mobility was taken into account through apparent 

diffusion coefficients, the reaction and diffusion processes of the actual battery 

electrode were greatly simplified. Consequently, such models could fail to 

capture important aspects of the charging or discharging dynamics in an 

essentially anisotropic inhomogeneous medium. It can be easily imagined that a 
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linked approach for simultaneously modeling the microstructure and transport 

would be indispensable, because microstructural modeling that does not 

consider transport cannot identify optimal transport properties for a particular 

application. The phase-field method is a promising technique [30,50] for 

calculating the morphological characteristics through microstructural evolution 

on a nanometer scale. The method has also been applied to describe Li diffusion 

in a phase-separated system [90,91] and to simulate the anisotropic 

electrochemical strain microscopy (ESM) response of polycrystalline LiCoO2 

[92]. 

This chapter focuses on gaining a quantitative understanding of the 

relationship between the morphology of the microstructure and Li diffusivity 

using numerical simulation techniques. To this end, phase-field models have 

been proposed for calculating the relationship between the realistic 

polycrystalline microstructure and the apparent Li diffusion coefficient, Dapp. 

Practical applications are simulated using 2D models. A realistic 2D 

polycrystalline model has been generated from the phase-field simulations—a 

crystallographic orientation was randomly allocated to each crystal grain, and 

the grain boundary (GB) was treated as a thin layer between two crystal grains. 

The Dapp value was obtained from the temporal evolution of the Li concentration 

using the Cahn–Hilliard diffusion equation [31], which treated non-Fickian Li 

diffusion in combination with the anisotropic self-diffusion tensor. A 

constitutive relationship between Li conductivity and quantitative 

microstructural features such as average grain size and crystallographic 

orientation was directly provided from the simulation results. The dependence 
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of Dapp on various grain sizes and crystal orientation angles between 

neighboring grains in the microstructure models is discussed in Sec. 4.3. 

 

4.2 Methods of Calculation 

 

This section describes the methodology used for the numerical simulation of 

Li diffusion in a 2D polycrystalline microstructure. The temporal evolution of 

the microstructure was calculated using the phase-field method, based on a 

diffusion potential of Li that correlates with the equilibrium potential of 

LiCoO2. 

 

4.2.1 Cahn–Hilliard Diffusion Equation 

 

In order to represent isotropic Li diffusion, the Cahn–Hilliard diffusion 

equation is introduced: 

self1c c Dc
t RT

,                   (4.1) 

where c is the local concentration of Li, normalized by the maximum Li 

concentration, max
Lic ,  so that it is dimensionless and has a value between 0 and 1. 

The coefficient Dse l f is the self-diffusion coefficient of Li. The coefficients R  

and T  are the gas constant and the absolute temperature, respectively. Finally,  

represents the diffusion potential of Li, which is defined as the functional 
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derivative of the total chemical free energy, Gsys,  with respect to the local 

concentration: 

sysG
c

.                         (4.2) 

Gsys  is expressed as the volume integral of the local chemical free energy, Gc ,  

and the gradient energy term, Egrad, over the entire system: 

2
sys c grad m

1 d ,
2

G G E G c
V r

r              (4.3) 

where Gm is the Gibbs free energy of the uniform binary solution in the Li–

vacancy system, and  is the gradient energy coefficient as estimated from the 

interaction parameters obtained by fitting the Gibbs free energy function [93] to 

the mixing enthalpy of the disordered solution. This mixing enthalpy value is 

estimated from first-principles calculations [94,95]. By substituting Eqs. (4.2) 

and (4.3) into Eq. (4.1), it can be rewritten as 

self 2m1
.

c c D Gc c
t RT c

              (4.4) 

Here, Gm/ c is evaluated by utilizing the electrochemical potential: 

2

m
Li LiCoO ave ,G n F U c U

c
                (4.5) 

where nLi is the number of electrons in the charge-transfer reaction, i.e.,  nLi = 1 

in Li+ + e  = Li, and F  is Faraday’s constant. The term ULiCoO2(c) is the 

equilibrium potential of LiCoO2, which is evaluated using Eq. (4.6) [96]: 
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2

max,

1 0
LiCoO1 exp

n
i

i
i

c
c

F U U
RT

.                (4.6) 

It is noted that ULiCoO2(c) is given as a function of c. The parameters, cmax , i , ,  

and 0
iU  are determined by fitting the function to experimental open-circuit 

potential data [93]. The average potential, Uave, is given by the expression 

2 2ave LiCoO CoO Li Li( ) / ( )U G G G n F .              (4.7) 

In order to evaluate Gm, it is also possible to use a theoretical approach as an 

alternative to performing experiments. The thermodynamic parameters of the 

Gibbs free energy functions for the individual phases in the LixCoO2 system 

were previously assessed, and a two-sublattice model [93] was adopted for the 

Li–vacancy ordered phase. The interaction parameter was determined so as to 

reproduce the formation entropy, H ,  as estimated from first-principles 

calculations [94,95]. To verify the accuracy of the present phase-field model, it  

was used to estimate the thermodynamic factor, , defined as the ratio of Dche m 

to a given Dse l f for homogeneous LiCoO2. A one-dimensional model with an 

electrode thickness of 1 m was employed to mimic the potentiostatic 

intermittent titration technique (PITT) [97]. The temperature was set at 300.15 

K and a potential step of 2 mV was applied, with the current recorded as a 

function of time. Dchem was calculated from the time dependence of the current. 

The accuracy of this simulation program was verified through a comparison of 

the calculated value of  with the experimental result [28,98], as shown in Fig. 

4.1. It can be seen that  varied considerably near a composition of  = 0.5 

(Li0 .5CoO2), which was induced by an increase in the degree of Li–vacancy 

ordering [99]. The simulated results based on both experimentally and 
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theoretically evaluated values for Gm were, overall, in good agreement with the 

measured results, thus justifying the modeling method and parameters used for 

the simulation. 

 

 

 

Fig. 4.1. Variation of the thermodynamic factor of Li (defined as the ratio of the 
chemical diffusion and self-diffusion coefficients) with Li composition. (a) The 
solid black line and (b) the dashed black line represent results of simulations 
performed using experimentally and theoretically evaluated ULiCoO2,  
respectively. The gray line represents the experimental results. 

 

4.2.2 Li Diffusion in Polycrystalline Materials 

 

Figure 4.2 shows the microstructural features considered in this model, with 

the crystal structure of fully lithiated LiCoO2 shown in a hexagonal setting in 

Fig. 1.4. Equation (4.1) can be rewritten using the anisotropic diffusion tensor 

in order to represent Li diffusion within a LiCoO2 grain: 
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                   (4.8) 

Microstructure characteristics were taken into account by adopting component 

values of the diffusion tensor, ijD ,  which reflect the local structure. In the inner 

grains, ijD  is expressed as 

.mnmnjnimij DAAD                      (4.9) 

Here, we assume isotropic Li diffusion on the basal plane of LiCoO2, with D11 (= 

D22) and D33 corresponding to D se l f_basa l  and D se l f_c -ax i s ,  respectively. Dse l f_c -ax i s is 

the self-diffusion coefficient along the crystallographic c-axis direction, while 

Aij  is the rotation matrix randomly allocated to each crystal grain:  

cos sin 0
sin cos 0 .

0 0 1
ijA                   (4.10) 

In the present study, a two-dimensional polycrystalline microstructure was 

examined under plane strain. The isotropic strain in the basal plane of LiCoO2 

was assumed, and the crystallographic c-axis of each crystal grain was included 

in this plane. In this case, Aij is uniquely defined by the orientation angle, , 

which is the angle between the crystallographic basal plane of LiCoO2 and the 

global Li transport direction, corresponding to one of two axes of the Cartesian 

coordinate system. The orientation angle  assigned to each grain is expressed 

by 

,m                         (4.11) 

where  is defined as 180° divided by the total number of grains, Ngb. The 

variable m ,  which is an integer between zero and Ngb, was randomly assigned to 
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each crystal grain. When  is zero or 180 , the c-axis of the hexagonal LiCoO2 

crystallite is perpendicular to the global Li transport direction. 

The GB was assumed to be a thin layer between neighboring grains [100]. In 

the 2D GB model, a change in the Li concentration in the GB was calculated by 

the following equations, where the coefficient  was introduced to represent that 

the Li diffusivity along the GB core and that across the interface between a grain 

and a GB layer were different from the diffusivity within the grain: 

.11 self
2/2/ lRT

Dcc
l

JJ
ht

c
hihi          (4.12) 

Here, h  is the GB width, J i=h /2  o r  –h /2 denotes the flux of Li across the interface 

between a grain and a GB layer, and l  is the direction along the GB. Calculations 

were performed for such an inhomogeneous system consisting of the grain and 

the GB by solving the two types of differential equations, Eqs. (4.8) and (4.12), 

simultaneously. 

 

 
 

Fig. 4.2. Schematic illustration of the microstructural characteristics treated in 
this simulation.  
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4.2.3 Polycrystalline Microstructures 

 

In order to quantitatively discuss the relationship between the polycrystalline 

microstructure and the Li diffusivity, various models of polycrystalline 

microstructures were prepared, as shown in Fig. 4.3. The microstructures were 

obtained using the multi-phase-field algorithm [101] under periodic boundary 

conditions. The ideal grain growth for a system was simulated under the 

assumption that the GB energy and the GB mobility were isotropic. The 

orientation angle  assigned to each grain is defined by Eq. (4.11). The diameter 

of an irregularly shaped grain was calculated as that of the circle with the 

equivalent area. In the following section, the grain size in the polycrystalline 

model is represented by the ratio of the mean grain diameter to the length of the 

simulation region, L . Figure 4.4 shows the relationship between the grain size 

and the volume fraction of the GB layer, Vgb, for an assumed GB width of 10 nm. 
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Fig. 4.3. Microstructures of randomly oriented grains with various approximate 
ratios of the mean grain diameter to the length of the simulation region: (a) 0.05; 
(b) 0.1; (c) 0.2; (d) 0.3; (e) 0.4. The orientation angle of each grain is 
represented by its gray tone. The variable  is defined as  = 90  |90  |. 

 

 

 
Fig. 4.4. Volume fraction of the GB layer as a function of the grain size. A GB 
width of 10 nm is assumed.  
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4.2.4 Numerical Calculation 

 

Two-dimensional numerical calculations were performed by using the 

finite-volume method with the explicit Euler method. The boundary conditions 

are listed in Table 4.1. The temperature was 300.15 K, the grid spacing was 0.02 

m, and the simulation region was a square measuring 4.0  4.0 m2. Finer grid 

spacing near the GBs was used so that the GB surface could be well represented. 

The parameters used in the numerical calculation are listed in Table 4.2. Taking 

into account the experimental Li conductivities obtained using the PITT method 

for thin films with (003) and (104) preferred orientations [28], Dse l f_c -ax i s was 

assumed to be 100 times smaller than the value of D se l f_basa l .  

 

 
Table 4.1. Boundary conditions. 

 

x  = 0 and x = L  y  = 0 y  = L  

cx=0 = cx=L  n c  = 0 
c = constant  
or 
J to t a l  = constant 

 

 

The temporal evolution of the Li concentration in the microstructure induced 

by a concentration gradient along the y-axis was calculated numerically, as 

shown in Fig. 4.5. The initial concentration of Li in the microstructure was 0.6, 

and the Li concentration at y  = L  was fixed at 0.61. Once dc/dt was obtained, 

Dapp of Li in the calculation region was evaluated using the following equation 
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[97]: 

2

app 2

d ln d / d 4
d
c t LD
t

, if app
2 / DLt ,            (4.13) 

where L  corresponds to the macroscopic Li diffusion length. In an isotropic 

diffusion system, where Eq. (4.1) holds, Dapp corresponds to the chemical 

diffusion coefficient, and the value is greater than or equal to D se l f .  

 

 

 

Fig. 4.5. Temporal evolution of the mean Li concentration in the simulation 
region. The concentration gradually approached the concentration supplied at 
the position of y  = L .  The value of dln(dc/dt)/dt  became constant when the time t  
was larger than L2/Dapp. 

 

 

When the electrochemical reaction was explicitly treated with the purpose of 

investigating the degree of Li segregation under realistic discharge conditions, 

the Butler–Volmer equation [87] was incorporated in the model to describe the 
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charge-transfer reaction occurring across the LiCoO2–electrolyte interface at y  = 

L.  The total Li intercalation flux per unit area, J to t a l ,  is then defined by the 

following expression: 

total
1 ( , ) d ,J J x y L x
L

                    (4.14) 

with 

2 2

a Li c Li
LiCoO LiCoO, exp exp ,n F n FJ x y L k U U

RT RT
   (4.15) 

a ac
+

max
0 Li Li Li Licos ,k k c c c c                (4.16) 

where  is the electrode potential and k  is the kinetic rate of the electrochemical 

reaction, which depends on the angle between the basal plane of LiCoO2 and the 

tangential line of the interface between LiCoO2 and the electrolyte. The terms 

cLi and cLi+ in Eq. (4.16) are the Li concentrations in LiCoO2 and the electrolyte, 

respectively; a and c are the anodic and cathodic transfer coefficients, 

respectively. In addition, k0 is the kinetic rate constant of the electrochemical 

reaction and max
Lic  is the maximum Li concentration in LiCoO2. The values of 

these parameters used for the simulations are also listed in Table 4.2. The 

equilibrium potential function of LiCoO2 in Eq. (4.15) is the same as ULiCoO2(c) 

in Eq. (4.6). The current density, I,  for this reaction is expressed as I  = J to t a l /F ,  

and the value was fixed at 0.276 mA·cm 2. To obtain the converged  value for 

each individual time step, the Newton–Raphson method was employed. In 

addition, the potential distribution in LiCoO2 and the electrolyte and the mass 

transport of Li ions in the electrolyte were calculated using the conventional 

formulation given in Ref. [87]. 
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Table 4.2. Values of parameters for the numerical simulation. 

 
Parameter Value 
Self-diffusion coefficient of Li,  
Dse l f_basa l  /cm2·s 1 1 × 10 9a 
Dse l f_c -ax i s  /cm2·s 1  1 × 10 11 
Grain boundary width, h /nm 10.0 
Gradient energy coefficient,  /J·m2·mol 1  4.0 × 10 14 
Kinetic rate constant of the electrochemical reaction,  
k0  /cm5/2·mol 1/2·s 1 

 
2.6 × 10 6 

Anodic transfer coefficient, a 0.5 
Cathodic transfer coefficient, c 0.5 
Maximum Li concentration, max

Lic /mol·cm 3 0.051555 
a Reference [26]. 
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4.3 Results and Discussion 

 

The dependence of Dapp on the grain size and the manner in which the crystal 

orientation was assigned to each grain was investigated. The mean orientation 

angle, mean, is defined by the following equation: 

_ max _max

mean _ max _ max
1 1

90 90 , /
y y x x

y x

n n n n

x y x y
n n

n n n n ,       (4.17) 

where nx_ max and ny_max denote the number of grid points along the x-axis and 

y-axis, respectively, in the numerical simulation region. For this method of 

assignment, mean approached 45  as the number of grains increased. The Dapp 

value of the single-crystalline model with  = 45  was about 3.6  10 9 cm2·s 1.  

Figure 4.6 shows Dapp as a function of the normalized grain size, dmean/L ,  for 

simulations using two different values of . In the case of  = 1.0, Li was 

assumed to diffuse in the GB with the same Dse l f_basa l  value as that in the inner 

grain. At a glance, all of the Dapp values corresponding to the polycrystalline 

models were smaller than those of the single-crystalline model with  = 45 . A 

decrease in the grain size led to an increase in Dapp. When the calculation results 

for  = 0.01 were compared with those for  = 1.0, a decrease in the grain size 

did not directly lead to an increase in Dapp. In this case, the GB appeared to have 

a blocking effect on Li diffusion. The Li transport involving the GB network 

was notably affected for a large value of ; the inverse proportionality between 

Dapp and the grain size was mainly due to the Li diffusion process utilizing a 

kind of a channeling through the GB network. 
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Fig. 4.6. Relationship between the apparent diffusion coefficient and the grain 
size. The distribution of Dapp for each grain size and that of the  values 
originated from the different ways in which the crystal orientation of each grain 
was assigned. 

 

 

Another important feature of the results, as shown in Fig. 4.6, was the 

remarkable variations in Dapp even when dme an was the same. These variations 

uniquely depended on the assignment of the orientation angle to each grain. The 

Dapp value is plotted against mean in Fig. 4.7. The symbols corresponding to 

dmean/L  values of 0.3 or 0.4 show that Dapp decreased slightly as mean increased. 

Since a  value of 90° corresponded to a crystallographic c-axis parallel to the 

Li transport direction, the trend shown was reasonable. However, since the 

variation of Dapp was still wide even with the same mean value, it was difficult 

to estimate the value of Dapp from only the value of mean.  
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(a)  

(b)  

 

Fig. 4.7. Relationship between the apparent diffusion coefficient and the mean 
value of the orientation angle, mean, estimated using Eq. (4.17) for (a)  = 0.01 
and (b)  = 1.0. 



87 
 

In fact, the influence of the connectivity of the conduction path between the 

crystal grains was not represented by the mean value. To address this issue, the 

area-averaged value was evaluated using the following equation to take into 

account the relative orientation between neighboring grains: 

_ max _max

relative _ max _ max
1 1

90 90 , /
y y x x

y x

n n n n

x y x y
n n

n n n n .    (4.18) 

The summation in Eq. (4.18) takes into consideration the different signs of  

instead of the absolute value. In Fig. 4.8, Dapp is plotted against the mean value 

of the relative orientation angle, re la t i ve, and a clear correlation between the two  

was observed. Large re l a t ive values mean that for most interfaces parallel to the 

y-axis, the angles for the two neighboring grains sandwiching the interface had 

opposite signs. When all the GBs parallel to the y-axis were so-called twin 

boundaries, the re l a t ive value reached 90 , and the flux of Li was restricted by 

the region near the GBs because the 2D accessible path for Li diffusion was 

disconnected. The good correlation between re la t ive and Dapp, as shown in Fig. 

4.8, implied that the characteristics of the GBs parallel to the Li transport 

direction significantly affected the Li diffusivity. Recently, experimental 

observation has revealed that the high-coincidence twin boundary stably exists 

in LiCoO2 thin films [102]. Therefore, the restriction of Li flux by the 

disconnectedness of the 2D accessible path described in this chapter is believed 

to occur in an actual polycrystalline LiCoO2 film. Moreover, the Dapp values 

corresponding to the dmean/L  value of 0.05 for  = 1.0, shown in Fig. 4.8 (b), 

were somewhat larger than the values expected from the results for the dmean/L  

values of 0.3 and 0.4. This was mainly because the Li flux in microstructures 
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with such a small grain size and such good conductive GBs was considerably 

affected by the GB diffusion. When GB diffusivity was poor, e.g.,  when  = 

0.01, the Dapp value corresponding to dmean/L  = 0.05 was in good agreement with 

the one predicted using other dmean/L  values, as shown in Fig. 4.8 (a). 
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(a)  

(b)  

 

Fig. 4.8. Relationship between the apparent diffusion coefficient and the mean 
value of the orientation angle, re la t i ve, estimated using Eq. (4.18) for (a)  = 
0.01 and (b)  = 1.0. 
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It is postulated that the Li diffusion coefficient approximates a linear 

relationship combining the diffusion coefficients of Li utilizing a GB diffusion 

circuit, Dgb_c i rcu i t ,  and an alternative path, Dgra in–gra in , as shown in Eq. (4.19): 

app _mean gb gb_ circuit gb grain grain1D V D V D .            (4.19) 

Here, Dapp_mean is an average of values over a range of microstructures in which 

the  value and grain size are the same. If it is assumed that the value of Dgra in –

gra in  is constant for all grain sizes present, then a plot of Dapp_mean/Vgb against 

(1 Vgb)/Vgb yields a linear relationship. The Vgb value is represented in Fig. 4.4. 

As shown in Fig. 4.9, a linear relationship between Dapp_mean/Vgb and (1 Vgb)/Vgb 

suggested a constant value of Dgra in–gra in for all  values. However, the Dgra in–g ra in 

value did change slightly with , as it incorporated the diffusion process across 

the GB layer. Consequently, changes in Li transferability per unit of GB 

surface, which were correlated with the  and re l a t ive values, resulted in a 

change in Dgra in–gra in . The value of Dapp was also influenced by the GB volume, 

which was accounted for, and normalized by, the Vgb value. Therefore, when the 

value of  was determined, the value of Dapp/Vgb was expected to be dependent 

only on changes in re la t i ve. Fig. 4.10 shows the relationship between Dapp/Vg b 

and re l a t ive, where it can be seen that variations in Dapp/Vgb were solely 

dependent on changes in  and re la t ive.  
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Fig. 4.9. Relationship between Dapp_mean/Vgb and (1 Vgb)/Vgb .  Gradient values 
adjacent to the line, which correspond to Dgra in–gra in, were obtained by the least 
mean squares method for a set of plot points. Dapp_mean is an average of values 
over a range of microstructures in which the  value and grain size are 
comparable. 
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(a)  

(b)  

 

Fig. 4.10. Relationship between Dapp/Vgb and re l a t ive for (a)  = 0.01 and (b)  = 
1.0. 

  



93 
 

Consequently, it is determined that Li diffusivity in a polycrystalline 

structure is largely influenced by two main factors: The first is the GB volume 

per unit volume, which affects the Li flux utilizing the GB network. The second 

is the relative orientation angle between neighboring grains and Li diffusion, 

which affects the Li flux per unit grain surface. When the grain size is 

significantly small, Li diffusivity most likely varies depending on the GB 

diffusion, since there are a number of ways the crystal orientation of each grain 

can be assigned such that the resultant re la t ive values are almost the same among 

the various simulation models. Conversely, the diffusivity within a 

large-grained structure model depends predominantly on the relative orientation 

angle between neighboring grains, even when the Li conductivity of the GB is 

quite large, resulting in variations in Dapp. When the electrode size is quite 

large, such local inhomogeneities are averaged out. However, in the case of 

thin-film electrodes, the value of dmean is not that high relative to the electrode 

thickness. Therefore, an evaluation of dmean/L  is useful for obtaining the 

appropriate electrode microstructure. Once it is possible to experimentally 

evaluate the grain size relative to electrode size from a 2D image, the possible 

in-plane variation in electrode performance in relation to dmean/L  can be roughly 

estimated. 

The results of the calculations were also used to obtain a relative ratio of 

Dapp for a microstructure with grains that were randomly oriented such that  = 

0 . As seen in Figure 4.11, the obtained ratio decreased with increasing grain 

size and varied within a range of 0.05 to 0.45. In addition, because the ratio 

behaved similarly for both  = 1 and  = 0.01, it follows that the influence of 
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GB diffusivity and re l a t ive could be evaluated separately. The experimental 

value for ionic conductivity, obtained using the electron blocking method with a 

randomly oriented sample, was between the conductivities for the (003) and 

(104) orientations of LiCoO2 [28]. Furthermore, the ratio of the conductivity of 

a (104)-oriented film to that of a randomly oriented sample was roughly 0.3, 

giving a thin-film composition of Li0 .65CoO2 [28]. Hence, the calculated results 

were consistent with experimental results. 

Finally, the absolute value of Dapp when  = 1, as presented in Fig. 4.6, was 

still quite large in comparison with the experimental Dchem of the 

pulsed-laser-deposited (PLD) film measured by PITT, which varied from 10 12 

to 10 10 cm2·s 1 [27,28]. Therefore, in order to obtain a good match between the 

value of  Dapp and the measured value, an extremely low Li GB diffusivity is 

suggested. Recently, a combined study of high-resolution transition microscopy 

and first-principles calculations [102,103] has shown that the activation energy 

of Li diffusion at the twin boundary core is almost twice that of a single crystal. 

Therefore, this type of GB therefore seems to act as a barrier to Li diffusion. 
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Fig. 4.11. Relationship between the grain size and the ratio of Dapp of the 
microstructure with randomly oriented grains to that of the microstructure with 
oriented grains such that  = 0 . The open squares and filled circles denote the 
mean values of the ratio. The ranges of variation of the ratio are shown as error 
bars. 

 

 

Another important aspect of the charging or discharging dynamics is the Li 

segregation in the polycrystalline LiCoO2 thin film induced by the 

microstructural anisotropy. To investigate that, we used the phase-field model 

in combination with the electrochemical model. Figure 4.12 shows the change in 

the Li concentration in polycrystalline LiCoO2 during the discharge process at a 

constant current. Lithium tends to rapidly diffuse in the direction along the 

basal plane. As shown in Fig. 4.12, more remarkable Li segregation was induced 
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when dmean/L  was larger than 0.1. The simulation results also showed that the Li 

segregation was enhanced by decreases in the GB diffusivity. When the grain 

size relative to the LiCoO2 thickness was small, such as when dmean/L = 0.05, the 

existence of several possible diffusion paths led to a decrease in the degree of 

Li segregation. These results suggest that Li piles up in one grain when an 

intergranular angle mismatch is large or when the GB diffusivity is poor, while 

the assumption of isotropic diffusion is valid for strictly limited cases. The 

detailed relationship between the microstructures and the discharge property is 

described in the next chapter. 

 

 

 

 

Fig. 4.12. Changes in Li concentration during a constant-current discharge 
process. The Li transport direction is parallel to the y  axis. Here, cmean indicates 
the Li concentration in LixCoO2 averaged over the entire simulation region. The 
electrolyte near LiCoO2 is represented by a blue thin layer at y  L .  
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4.4 Summary 

 

A phase-field model was used to investigate Li diffusion in polycrystalline 

LixCoO2 that is randomly oriented on a nanometer length scale. The simulation 

results demonstrated that Li diffusivity in anisotropic materials is determined by 

a balance between several basic characteristics related to microstructure, such 

as the GB properties, the crystallographic orientation, and the grain size.  

Li diffusivity in a polycrystalline structure is determined by the GB 

properties and the mean relative orientation angle between neighboring grains. 

Diffusivity in a small-grained structure most likely varies depending on GB 

diffusion, since the mean relative orientation is almost the same among all the 

models generated for simulation. On the other hand, when the grain size is large, 

the variation in the mean relative orientation angle increases, and thus 

diffusivity varies considerably even when the Li conductivity of the GB is quite 

high. Consequently, it is possible that the diffusivity of a randomly oriented and 

large-grained microstructure will be one order of magnitude smaller than that of 

a textured microstructure with  = 0 . 
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Chapter 5 

Effect of Microstructure on the Discharge 
Properties of Polycrystall ine LiCoO2 

 

5.1 Introduction 

 

As reported in Chapter 4, the phase-field model was used to investigate Li 

diffusion in randomly oriented polycrystalline LiCoO2. A crystallographic 

orientation was randomly allocated to each crystal grain. The general trend in 

apparent Li diffusivity, which reflected the GB characteristics parallel to the Li 

transport direction, was explained by the grain boundary (GB) diffusivity, and 

by taking into account the relative orientations of neighboring grains. 

In this chapter, the relationship between various microstructural features 

and the constant-current discharge properties of LiCoO2 is presented. In 

particular, the influence of the elastic stress field associated with Li 

intercalation was investigated. A numerical model that includes the elastic 

stress field has previously been proposed in earlier studies [92,104,105]. 

However, most numerical simulations have adopted an isotropic diffusion 

medium [104,105] or have conducted separate evaluations of the diffusion 

process and the stress field [92]. Therefore, the influence of heterogeneous 

polycrystalline structure on the Li diffusion process has not been fully 

understood. On the other hand, the phase-field model, which could factor in 

non-Fickian diffusion generated from the Li concentration and the elastic strain, 



99 
 

offered a clear picture. The simulation took into account the Li diffusion along 

or across the GB modeled as a thin layer, as well as the effect of LiCoO2 

crystallographic anisotropy on the self-diffusion coefficient of Li. Furthermore, 

the model incorporated the Butler–Volmer equation to determine Li flux across 

the LiCoO2–electrolyte interface. The effects of microstructure on the discharge 

properties were then explored as a function of the grain size, spatial distribution 

of the crystal orientation for each grain, and GB diffusivity. 

 

5.2 Methods of Calculation 

 

Formulations and implementations of the simulation of Li diffusion 

generated by the elastic stress field associated with Li concentration are 

described herein. 

 

5.2.1 Formulation 

 

In order to take into account the effect of elastic strain energy, the total free 

energy Gsys  is expressed as 

,strgradcsys EEGG                      (5.1) 

where Gc,  Egrad, and Es t r  correspond to the chemical free energy, gradient energy, 

and elastic strain energy, respectively. Gc and Egrad are determined in the manner 

described in Sec. 4.2.1. The term Es t r  is expressed in the following form [106]: 
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c 0 c 0
str

1 , , , , d ,
2 ijkl ij ij kl klE C t t t t
V r

r r r r r r        (5.2) 

where Cijk l(r) is the elastic stiffness constant; c ,ij tr  and 0 ,ij tr  are the 

constrained strain and the eigenstrain, respectively. The variables c ,ij tr  and 

0 ,ij tr  are expressed as 

c 0 c, , ,ij ij ijt t tr r                     (5.3) 

0 , , ,ij im jn mnt A A tr r r r                  (5.4) 

where mn(r ,t) is the lattice misfit and Aij(r) is the rotation matrix randomly 

allocated to each crystal grain, as shown in Eq. (4.10). Here, a two-dimensional 

polycrystalline microstructure is examined under plane strain, with the 

crystallographic c-axis of each crystal grain included in this plane. The strain in 

the basal plane of LiCoO2 is assumed to be isotropic. The variable tij
0  is the 

mean strain averaged over the entire system, whereas c ,ij tr  is defined as the 

deviation of the local strain from tij
0 . When c ,ij tr  is calculated using an 

equation for inhomogeneous elasticity, it results in a calculation that adopts a 

self-consistent iterative scheme [107], as described below. To satisfy the 

differential stress-equilibrium equations, Eq. (5.5) is introduced: 
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Eq. (5.5) is then transformed to yield 
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     (5.6) 

When ui(r ,t) is defined as a displacement, the relationship between ui(r ,t) and 

,c
kl tr  can be written as  
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Eq. (5.8) is obtained by substituting c ,kl tr  with Eq. (5.7) in Eq. (5.6), 

followed by executing a Fourier transform:  

0 c c 0

k
, , , , ,ijkl j l k j ijkl kl ijkl kl kl klC k k u t ik C t C t tk k r r r   (5.8) 

where k  is the reciprocal space vector, and []k means that the Fourier transform 

within the brackets occurs after the calculations in real space. Equation (5.8) 

can be rewritten as per Eq. (5.9) using Gik(k)=(Cijk lkjkl)
1:  

0 c c 0

k
, , , , .k ik j ijkl kl ijkl kl kl klu t iG k C t C t tk k r r r    (5.9) 

Substituting Eq. (5.9) into a Fourier transform of Eq. (5.7), followed by 

executing an inverse Fourier transform, the variable c ,ij tr  can be expressed 

as 

c( )
3

2 0 c c( 1) 0
3k

0

, ,1 1, , , exp
2 2 2

1 , , , exp
2 2
1 ,
2

k ln
kl l k k lk

l k

n
l ik k il j ijkl kl ijkl kl kl klk

l ik k il j ijkl kl ijkl kk

u t u t dt i k u t k u t i
x x

di k G k G k C t C t t i

n n n C t C

r r kr k k k r

kk k k r r r k r

n n k r c c( 1) 0
3k

, , exp ,
2

n
l kl kl

dt t i kr r k r

 

  (5.10) 

where i j(n)=k2Gij(k) and n  in c( ) ,n
kl tr  refers to the iteration number. In the 

case of inhomogeneous elasticity, since the right hand side of Eq. (5.10) 

contains c ,ij tr ,  a self-consistent value of c ,ij tr  is obtained using iterative 

calculation. For homogeneous elasticity, the elastic stiffness constant is not 

dependent on the global coordination, and iterative calculation is thus not 

necessary. 



102 
 

5.2.2 Numerical Calculation 

 

The effect of various microstructures on the Li diffusivity was evaluated in 

combination with the Li diffusion model shown in the previous chapter and the 

two-dimensional model representing the orientation of the LiCoO2. Figure 5.1 

shows the two-dimensional polycrystalline microstructures generated from the 

multi-phase-field simulations [101]. The number of grid points along each axis, 

nmax, was set to be 256. The variable  represents the relative angle with respect 

to the y-axis, as defined by Eq. 4.11, where the y-axis is parallel to the global 

direction of Li transport.  

 

 

 

 
Fig. 5.1. Two-dimensional models of a polycrystalline microstructure with 
randomly oriented grains. The orientation angle of each grain is represented by 
its gray tone. The variable  is defined as  = 90  |90  |. 
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It is demonstrated in Chapter 4 that the difference in the apparent diffusion 

coefficient caused by the disconnectivity of Li diffusion paths between 

neighboring grains can be estimated by the area-averaged value defined in Eq. 

(4.18). It was confirmed that the apparent Li diffusivity of the polycrystalline 

model with  defined in Eq. (4.11) decreased as re l a t i ve increased. Fine- and 

coarse-grained models with median or upper/lower limit value of re la t ive were 

examined, as shown in Table 5.1. The grid spacing was 0.02 m. Finer grid 

spacing near the GBs was used to represent Li diffusion in the GB thin layer. 

Fisher et al. [102], using first-principles calculation, predicted that the 

activation energy of Li diffusion at the twin boundary core is almost twice as 

large as that in the single crystal. Therefore, it is important to examine the 

condition that allows the GB to acts as an obstacle to Li diffusion. The GB width 

was set to 2 nm, which approximately corresponded to the width of the region 

where the activation energy deviated from that inside the grain. Dse l f_basa l  and 

Dse l f_c -ax i s of inner grains were 1.0 × 10 9 and 1.0 × 10 11 cm2·s 1, respectively 

[26,28]. Dgb was introduced to represent the Li diffusivity along or across the 

GB thin layer, and is defined as Dgb = D se l f_basa l  or Dgb = 0.01Dse l f_basa l .  The 

elastic stiffness components of LiCoO2 were theoretically estimated in Ref. 

[108]. Here, we regard the elasticity of LiCoO2 as being isotropic, and thus the 

corresponding stiffness component is defined by two parameters,  and , which 

are called Lamé's constants. The values of  and  were set to 133.5 and 120.9 

GPa, respectively, to reproduce the values of C33 (=  + 2 ) and C13 (= C23 = ) 

in order to properly describe the displacement in the c-axis direction. When a Li 

atom is deintercalated from the host lattice, the lattice constant along the c-axis 
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increases locally owing to the electrostatic repulsion of the oxygen layer [94]. 

Therefore, it is assumed that the crystal lattice misfit is expressed as 

, 1 ,ij ij ijt c tr r .  The coefficient i j is the Kronecker delta. The values of 

11 22  and 33  were set at 0.005 and 0.05, respectively, based on 

previously reported lattice parameters measured from X-ray diffraction patterns, 

as shown in Fig. 5.1 [109,110]. 

The electrochemical reaction was explicitly treated to investigate the 

discharge capacity under realistic discharge conditions. The Butler–Volmer 

equation was incorporated into the model to determine the Li flux across the 

LiCoO2–electrolyte interface at y = 0 and y = L, where L represents the length of 

the simulation region. The total Li intercalation flux per unit area was 

determined by Eq. (4.14). The adopted equilibrium potential of LiCoO2, given as 

a function of Li concentration, was evaluated in Ref. [96]. The initial voltage, V ,  

was about 4.026 V, which corresponded to a Li concentration of 0.6 at 

equilibrium. The kinetic rate constant of the electrochemical reaction was 2.0 × 

10 6 cm5/2·mol 1/2·s 1. The current density for this reaction was set to be 3.45 

mA·cm 2, which corresponded to a discharge rate of approximately 20C 

discharge rate. The temperature was set at 298.15 K. Because the focus of this 

study is to clarify how the microstructure of LiCoO2 affects its discharge 

properties, the model did not address the potential distribution in LiCoO2 and 

the electrolyte, or the mass transport of Li ions in the electrolyte. 
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5.3 Results and Discussion 

 

The effects of microstructure on the apparent diffusion coefficient and 

discharge properties were investigated and reported in the following sections.  

 

5.3.1 Apparent Diffusion Coefficient 

 

Figure 5.2 shows a schematic illustration of the oriented single crystal model. 

The stress was assumed to have a value of 0, and the Li composition was 1.0. 

Because allowance was made for the whole body to be freely distorted, the stress 

remained at zero when the Li composition was varied from 1.0 to 0.6. When the 

potential was increased stepwise from this state, the Li composition of the 

electrochemical reaction surface was higher than that of the single crystal 

interior. As a result of this compositional difference, an elastic strain was 

induced in the crystal. The distribution of xx at a mean Li concentration of 

0.605 is also shown in Fig. 5.2. A tensile stress in the x  direction was induced in 

the (100)-oriented model (Fig. 5.2 (a)), in which the Li layer was parallel to the 

x-axis. The introduction of tensile elastic stress during Li intercalation has also 

been experimentally observed in a LiCoO2 thin film with (104) preferred 

orientation using laser beam deflection [111]. On the other hand, the 

compressive stress state was along the x  direction in the case of a (003)-oriented 

model (Fig. 5.2 (b)), in which the Li layer was perpendicular to the x-axis. Since 
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the misfit strain of the c-axis was one order of magnitude larger than that of the 

a- and b-axis, the absolute stress value for each model also changed by an order 

of magnitude. In addition, the vertical stress in the y  direction was close to zero 

in each model.  

 

 

 (a)        

 (b)        

 
Fig. 5.2. Schematic illustrations of 2D single crystal models in which the (a) 
c-axis or (b) a-axis is parallel to the x-axis. The bold lines located on the upper 
or lower boundary of the y-axis represent the electrochemical interfaces. The 
figures on the right represent the distribution of xx  at a mean Li concentration 
of 0.605. 

 

 

To clarify whether or not this variation in the elastic stress field affects Li 

diffusivity, the apparent diffusion coefficient, Dapp, was estimated for each type 

of microstructure using PITT [97]. The kinetic rate constant of the 
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electrochemical reaction was set to 1.0 × 10 3 cm5/2·mol 1/2·s 1 in order to 

prevent the surface reaction from becoming a rate-determining step. The 

boundary conditions at x  = 0 and x  = L  were cx  =  0  =  cx  =  L,  and those at y  = 0 and y  

= L were V  = constant . A potential step of about 8 mV (from 4.026 V to 4.018 V) 

was applied, and Dapp was calculated from the time dependence of the current 

[97]. The apparent diffusion coefficients for each model are shown in Table 5.1.  

 

 

Table 5.1. Apparent diffusion coefficients of Li in single-crystal models. 
 

Microstructural Model 
Dapp (× 10 9 cm2·s 1) 

Es t r  is omitted Es t r  is included 

Single Crystal Model   

(100)-oriented (Fig. 5.2 (a)) 7.06 7.61 

(003)-oriented (Fig. 5.2 (b)) 0.073 0.073 

 

 

The diffusion of Li along the y-axis began from the electrochemical reaction 

surface towards the crystal interior. Consequently, the Dapp value of the (100) 

oriented model was larger than that of the (003) orientation model. Although the 

value obtained by multiplying the eigenstrain to the stress value was included in 

the Li diffusion potential, G sys/ c , Li diffusion was promoted in directions that 

reduced the stress gradient by reducing the Li concentration gradient. Therefore, 

in the case of the (100)-oriented model, the Dapp value increased by about 8% 

when compared with the case where the elastic strain energy was not taken into 

account. In the (003)-oriented model, no significant difference was observed 
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since the misfit of the a-axis was small in comparison with the c-axis.   

Table 5.2 shows Dapp values for the polycrystalline microstructures shown in 

Fig. 5.1. In the present model, the mean value of 90 |90 | was around 45°. 

Since all of the Dapp values obtained were smaller than that of a single crystal 

where | |  = 45°, which was about 3.6  10 9 cm2·s 1, Li diffusion appeared to be 

restricted by the polycrystalline microstructure. Table 5.2 shows that the GB 

diffusivity exhibited a larger influence on Dapp of the fine-grained model than 

that of the coarse-grained model. Moreover, Dapp of the coarse-grained model 

also varied quite widely. This variation was mainly due to the assignment of an 

orientation angle to each grain, reflected in the value of re la t ive described in Sec. 

4.3. The fine-grained microstructure exhibited less variation in Li diffusion, and 

it is thought that the existence of several possible diffusion paths led to a 

decrease in the degree of Li segregation.  

The results also illustrate the effect of elastic strain energy, with its 

inclusion in Gsys  causing an increase of a few percent in Dapp of both the 

fine-grained and coarse-grained models. When the concentration of Li at the 

surface was higher than that in the bulk, the bulk was subject to compressive 

elastic stress, while the polycrystalline surface was subject to tensile elastic 

stress. This variation in the elastic stress field decreased when the Li 

concentration gradient between the bulk and surface was reduced. Therefore, 

when the bulk-to-surface Li concentration gradient was large, Li diffusion was 

promoted to alleviate the elastic stress field. The relative ratios calculated with 

either omission or inclusion of E s t r  of the most polycrystalline models, were 

smaller than that of the (100)-oriented model and larger than that of the 
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(003)-oriented model. However, the ratios were slightly varied depending on the 

polycrystalline microstructures. Therefore, the elastic stress field induced by 

the angle mismatch between neighboring grains is expected to perturb the 

influence of the elastic stress field generated by the concentration gradient. In 

addition, elastic strain energy may also play a larger role when the overall 

distortion of the diffusion medium is constrained, as observed in a 

polycrystalline thin film. This condition is therefore a potentially fruitful area 

for future research. 

 

 

Table 5.2. Apparent diffusion coefficients of Li in polycrystalline models. The 
value of re la t i ve is defined in Eq. (4.18). The values in parentheses denote the 
relative ratio calculated with either omission or inclusion of E s t r .  
 

Model relative ( ) 

Dapp (× 10 9 cm2·s 1) 
Dgb = Dself_basal Dgb = 0.01Dself_basal 
Estr is  
omitted 

Estr is 
included 

Estr is  
omitted 

Estr is 
included 

Fine-Grained     
(a) 75.1 1.49 1.57 (1.05) 0.44 0.46 (1.05) 
(b) 79.2 1.51 1.59 (1.05) 0.44 0.46 (1.05) 
(c) 83.3 1.29 1.36 (1.05) 0.39 0.41 (1.05) 
Coarse-Grained     
(d) 63.6 1.29 1.42 (1.10) 0.78 0.85 (1.09) 
(e) 71.9 1.05 1.09 (1.04) 0.61 0.64 (1.05) 
(f) 79.8 0.62 0.66 (1.06) 0.39 0.41 (1.05) 
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5.3.2 Discharge Properties 

 

Figure 5.3 shows the constant-current discharge properties of the 

microstructures shown in Fig. 5.1. The black and blue lines denote the 

simulation results under the conditions of Dgb = Dse l f_basa l  and Dgb = 0.01Dse l f_basa l ,  

respectively. The solid and broken lines indicate the inclusion and exclusion of 

the Es t r ,  respectively. Fine-grained microstructures exhibited small variations in 

discharge properties (Figs. 5.3(a–c)), while coarse-grained microstructures 

exhibited larger variations (Figs. 5.3(d–f)). The differences in the discharge 

capacities of each microstructure appeared to have resulted from the Li 

segregation at the electrochemical reaction interface. Figure 5.4 shows the 

spatial distribution of Li concentration at a mean Li concentration of 0.65. In the 

case of the coarse-grained microstructure, a remarkable Li variation (Figs. 

5.4(d–f)) was induced by initial assignment of the orientation angle distribution.  

Another important feature shown in Fig. 5.3 is that the discharge capacities 

of the fine-grained models were smaller than those of the coarse-grained models 

when the GB behaved as a diffusion barrier. The effect of the elastic strain 

energy on the discharge properties was also evident. From the results of Fig. 5.3, 

the elastic strain energy slightly increased the discharge capacity. Figure 5.5 

shows the differences in Li concentration (left) and von Mises stress (right). A 

greater decrease in the elastic stress field occurred in the vicinity of the region 

where the Li concentration increased. Although the effect of elastic strain 

energy was weaker than that of intergranular angle mismatch or GB diffusivity, 

it nonetheless led to a nontrivial change in Li diffusivity during discharge.  



111 
 

These tendencies imply that changes in the Li diffusivities manifested 

themselves directly as changes in the discharge capacities of the high discharge 

rate at 20C. Therefore, one obvious method for optimizing the discharge 

properties of LiCoO2 is to synthesize LiCoO2 with a textured microstructure that 

exhibits unidirectional grain orientations.  

 

 

 

 
Fig. 5.3. Constant-current discharge properties at 298.15 K. The current density 
was fixed at 3.45 mA·cm 2. The black and blue lines denote the simulation 
results under the conditions of Dgb = Dse l f_basa l  and Dgb = 0.01Dse l f_basa l ,  
respectively. The solid and broken lines indicate the inclusion and exclusion of 
the E s t r ,  respectively. 
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Fig. 5.4. Distribution of Li concentration during constant-current discharge. The 
Li transport direction was parallel to the y  axis. The mean Li concentration in 
LiCoO2 was about 0.65. Dgb was assumed to be equal to Dse l f_basa l .  Es t r  was 
included. 

 

 

 

 
Fig. 5.5. Differences in the Li concentration (on the left hand side) and von 
Mises stress (on the right hand side), defined as c = c(cmean  0.65)  c(cmean  
0.61) and Mises  = Mises(cmean  0.65)  Mises(cmean  0.61), using the results of 
model (e) in Fig. 5.4. 
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5.4 Summary 

 

The discharge capacity of LiCoO2 at a high discharge rate (e.g. ,  20C-rate) 

was affected by the microstructure: specifically the grain size, spatial 

distribution of crystal orientations for each grain, and the GB diffusivity 

throughout the apparent Li diffusivity. The calculated results suggest that both 

the intergranular angle mismatch and the GB diffusivity are crucial parameters 

for evaluating the apparent discharge property.  

A Li diffusion model for LiCoO2,  taking into account the elastic strain 

energy Es t r ,  was developed. This model confirmed that the effect of a stress field 

on the apparent diffusion coefficient of Li varied depending on the relative 

relation between the crystallographic orientation and the Li diffusion direction. 

The elastic strain energy, varied according to the Li intercalation, also exhibited 

a non-negligible effect on the discharge properties. However, the ratio of Dapp 

with Es t r  included to Dapp with Es t r  omitted was smaller than: (i) the ratio of the 

chemical diffusion coefficient (7.06 × 10 9 cm2·s 1 at Li0 .6CoO2) to the given 

self-diffusion coefficient (1 × 10 9 cm2·s 1); (ii) the ratio of Dapp for a 

microstructure in which the grains were oriented such that  = 0  to Dapp for a 

microstructure with randomly oriented grains (~20 as estimated from Fig. 4.11). 
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Chapter 6 
Conclusions and Future Work 

 

6.1 Conclusions 

 

In the search for ways to improve the performance of polymer-electrolyte 

fuel cells and Li-ion secondary batteries, the phase-field methods were applied 

to electrode materials with microstructures ranging from the nanometer to 

micrometer length scale. On the basis of the findings presented in each chapter, 

which are listed below, it can be concluded that phase-field modeling studies are 

useful for elucidating the driving forces behind nanostructure formation, as well 

as for gaining information on crucial aspects of anisotropic materials in order to 

quantitatively understand their atomic diffusion properties. 

 

6.1.1 Phase-Field Modeling of Phase Transformations in Fe–

Pt Nanoparticles 

 

A phase-field model that describes the phase transformations and surface 

segregation in Fe–Pt binary-alloy nanoparticles was developed. The calculation 

results clearly showed that the atomic concentration and phase transformations 

inside these nanoparticles are sensitive to the alloy composition, particle size, 

and holding temperature. These results are consistent with the previously 
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reported experimental and simulation results. In addition, the calculation results 

suggested that the internal structure of the alloy nanoparticles often differ from 

that of the nominal bulk state because the variability in surface energy caused 

by the particle size distribution influences the thermal equilibrium 

microstructure of the nanoparticles. Atomistic simulations such as 

first-principles calculations, molecular dynamics, and Monte-Carlo simulation 

have been regarded as powerful tools to accurately probe the mechanism of 

microstructural formation from the viewpoint of atomic motion. However, in 

practical calculations, the system size is limited by the computational cost. As 

an alternative approach, it is concluded that the method proposed in this study 

can provide useful information on the internal structure of single-alloy 

nanoparticles. 

 

6.1.2 Surface Segregations in Platinum-Based Alloy 

Nanoparticles 

 

The radial distributions of the phase transformations and surface segregation 

in the various single-alloy nanoparticles were examined as functions of the input 

values of alloy composition, particle diameter, and temperature. To obtain the 

general attributes of the abovementioned relation, the radial distribution of the 

phase state and the atomic compositions of CrPt, FePt, CoPt, NiPt, CuPt, PdPt, 

IrPt, and AuPt nanoparticles with diameters below 10 nm at 973 K were 

investigated. The results revealed that the compositional variation within a 
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single particle depends on the balance between the atomic interaction within 

particles and surface energy, and the specific equilibrium points vary 

significantly with the alloy combination. To improve catalytic activity, alloy 

systems that have a microstructure with a Pt skin layer on the particle surface 

are worth considering. Among the examined binary alloys, the Cr–Pt system 

comes closest to having such a structure. Furthermore, a ternary-alloy system 

was briefly examined and it is suggested that a more desirable distribution of the 

phase state and atomic concentration inside a particle can be obtained by 

adopting the ternary-alloy system. In the case of Ir0 .4Cr0.1Pt0 .5 nanoparticles, Cr 

improves the stability of the Pt-shell–Ir-core structure. This study has provided 

a basis for conducting additional extended surveys targeting binary- and 

ternary-alloy systems. 

 

6.1.3 Numerical Study of Li Diffusion in Polycrystalline 

LiCoO2 

 

To gain a quantitative understanding of the relationship between the 

microstructural morphology and Li diffusivity, phase-field models for 

non-Fickian Li diffusion in two-dimensional polycrystalline microstructures 

were developed. The simulation results showed that the apparent Li diffusivity 

is sensitive to the diffusivity of grain boundaries, spatial distribution of the 

crystal orientation of each grain, and grain size. If we can experimentally 
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evaluate the grain size relative to the electrode size from a 2D image, we can 

roughly estimate the possible in-plane variation in electrode performance. 

This study is expected to facilitate the understanding of Li transport 

properties such as those in a thin-film electrode for use in an all-solid-state 

battery. A comparison of the simulation results with the experimentally 

measured quantities that represent consequences of the multi-step process 

provides a quantitative understanding of each elemental step in the Li transport 

process. Moreover, the rate-determining step may change from the internal 

diffusion to the surface reaction when the surface reaction resistance increases. 

Therefore, the effect of microstructure on the discharge properties was 

subsequently investigated and is presented in the next chapter. 

 

6.1.4 Effect of Microstructure on the Discharge Properties of 

Polycrystalline LiCoO2 

 

The constant-current discharge properties of polycrystalline LiCoO2 were 

theoretically investigated in relation to the grain size, spatial distribution of the 

crystal orientation of each grain, and grain boundary (GB) diffusivity. The 

simulation results showed that the microstructure notably affects the discharge 

properties at a high discharge rate by modifying Li diffusivity. Intergranular 

angle mismatch and GB diffusivity are crucial parameters for the evaluation of 

apparent discharge properties. Since Li diffusivity is promoted to alleviate 

elastic stress, discharge capacity is slightly increased. Although the effect of 
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elastic strain energy is weaker than the effects of intergranular angle mismatch 

and GB diffusivity, it leads to a nontrivial change in Li diffusivity during 

discharge. Therefore, an obvious method for optimizing the discharge properties 

of LiCoO2 is to synthesize LiCoO2 with a textured microstructure exhibiting 

unidirectional grain orientations.  
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6.2 Future Work 

 

1. In order to design and stably retain a thinly coated Pt surface structure in a 

nanoparticle, more extensive ternary-alloy systems as functions of particle 

size and heat treatment temperature will be explored. Moreover, simulations 

for multi-particle systems along with the particle size distributions will be 

needed for practical applications in real systems. 

 

2. For the study on Li diffusivity in a practical electrode structure used in LIBs, 

simulations of Li diffusion in LiCoO2, potential distribution in LiCoO2 and 

the electrolyte, and mass transport of Li ions in the electrolyte will be 

required. To reduce the simulation time in order to complete the study, a 

more efficient numerical algorism including a parallelized code must be 

developed. 

 

3. The present phase-field method is developed by linking it with CALPHAD 

data and material parameters such as mobility, compositional dependence of 

lattice parameters, elastic constants, and interfacial energies. To perform 

broad surveys on alloy phases in multinary alloy systems, parameter 

estimation utilizing first-principles calculations should be given thorough 

consideration. 
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