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Chapter 1. Introduction 

1-1. Fast lithium ionic conductors for all solid state lithium batteries 

The next generation of lithium-based energy conversion and storage technologies 

has been recognized by consensus as being critically dependent on the progress and 

development in the field related to one particular group of solid state ionic materials: the 

fast lithium ionic conductors. They are the key towards meeting the ever increasing 

performance demands of today’s market, the mass production of commercial plug-in 

hybrid electric vehicles and hybrid electric vehicles, and the maximum utilization of 

clean energy sources. These materials, in the simplest description, have or can contain 

lithium (Li) ions and allow for significant diffusion of Li ions in their crystal structure at 

room or low temperature. From a historical perspective, the first successful commercial 

breakthrough for fast Li ion conduction could be ascribed to Sony Corporation (year 

1991) with their high-voltage (around 3.7 V) and high-energy LixC6/non-aqueous liquid 

electrolyte/LiCoO2 cell [1]. In this set-up, Li is extracted and inserted during charge and 

discharge process, respectively, within the intercalation cathode LiCoO2. Many 

commercial batteries now still use LiCoO2 as the cathode component while other 

compositions include that of Ni and Mn analogues [2], stabilized spinel LiMn2O4 [3], 

and olivine-type LiFePO4 [4]. For the anode, the latest high capacity materials are 

composed of carbon nanostructures with designed morphology such carbon nanotubes 

[5], carbon nanofibers [6], graphenes [7], and their composites [8-10]. 

A schematic diagram of the working principles of a Li ion battery is shown in 

Figure 1-1. As shown, Li ions are shuttled between the cathode and the anode via the 

electrolyte; the latter functions both as an electronic insulator and an ionic conductor. 

During a charge process, an external potential is applied, forcing Li ions to migrate from 

the cathode where the chemical potential is relatively lower, passing through the 

electrolyte, and ending up at the anode where the chemical potential is higher. For the 

discharge process, the circuit is closed and Li ions migrate spontaneously from the 

anode and again through the electrolyte, and then back into the cathode. At the same 
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time, an external work can be performed (eg. lighting a bulb) as electrons travel through 

the external circuit during this stage. 

 
Figure 1-1. A schematic illustration of the working principles of a LixC6 / Electrolyte / 

Li1-xCoO2 Li ion battery. 
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Another crucial fast ionic conductor component being mentioned for a working 

battery is the electrolyte which separates the cathode and the anode and essentially 

restricts electronic conduction to prevent the battery from short circuiting. In a 

conventional set-up, this component is based on solutions of one or more Li salts such 

as LiPF6, LiBF6, and LiClO4 that are dissolved in organic solvents such as ethylene 

carbonate, dimethyl carbonate, diethyl carbonate [11]. These electrolytes have excellent 

Li ionic conductivity which can reach on the order of 10-2 S/cm. However, it is 

recognized that such electrolytes are prone to combustion, difficult to miniaturized, and 

can pose serious environmental concerns if not properly disposed or recycled. Thus, 

efforts have been focused on replacing them with solid-type electrolytes which can 

address the aforementioned issues. The resulting battery set-up is often referred to as an 

all solid state Li ion battery. Unfortunately, there are a number of disadvantages that 

needs to be solved as well before commercialization. Examples of promising solid 

electrolytes that have been reported so far, including their limiting factors, are listed in 

Table 1-1. 
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Table 1-1. Reported potential solid electrolytes, their Li ionic conductivity, and limiting 
factors. 

Composition σbulk,300 K (S/cm) Limiting factors Reference 
Li-βAl2O3 3 x 10

-3 Highly hygroscopic, difficult 
to prepare as pure phase 

Yao et al., 
1967 [12] 

Li3N 10
-3 Very low decomposition 

voltage (0.44 V) 
Alpen et al., 
1977 [13] 

Li14Zn(GeO4)4 
(LISICON) 

2 x 10
-6 Highly reactive with Li metal, 

atmospheric CO2, 
conductivity decreases with 

time 

Hong, 1978 
[14] 

Li1.3Al0.3Ti1.7(PO4)3 7 x 10
-4 Unstable with Li metal (Ti

4+
 

reduction) 
Aono et al., 
1989 [15] 

Li0.35La0.55TiO3 
(LLT) 

1 x 10
-3 Unstable with Li metal (Ti

4+
 

reduction), 
high T preparation, high loss 

of Li2O, variance of 
conductivity with Li 

concentration, difficulty of 
controlling Li content 

Inaguma et al., 
1993 [16] 

Li2.9PO3.3N0.46 
(LiPON) 

2 x 10
-6 Moderate conductivity, used 

in development of thin film 
battery, prepared using 

sputtering method in situ 

Bates et al., 
1993 [17] 

Li3.25Ge0.25P0.25S4 
(Thio-LISICON) 

2.2 x 10
-3 Low electronic conductivity 

of sulfur prevents a close 
contact with electrode. 

Kanno et al., 
2001 [18] 

0.7Li2S-0.3P2S5 
glass-ceramics 

3.2 x 10
-3 Extremely hydroscopic, 

reacts with water 
Mizuno et al., 

2005 [19] 
Garnet-type 

Li6BaLa2Ta2O12 
4 x 10

-5 Conductivity is not sufficient 
though stable against Li 
metal, moisture, and air 

Thangadurai et 
al., 2005 [20] 

Garnet-type 
Li7La3Zr2O12 

2.44 x 10
-4 High polarization potential Murugan et 

al., 2007 [21] 
Li10GeP2S12 1.20 x 10-2 High cost of Ge, air and 

moisture sensitivity 
Kamaya, et al., 

2011 [22] 
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1-2. Search for new fast Li ionic conductors: present issues and challenges 

New material discovery in the field of materials science, in general, is still largely 
driven by significant trial-and-error. Oftentimes, it takes years of research efforts to 
identify a suitable material for an intended application and optimize it for commercial 
use. The battery field is no exception to this and progress has been indeed slow due to 
the vast combinatorial space of chemistries involved in materials design. So far, 
reported experimental data for fast Li ionic conductors are usually dispersed in the 
literature and studies have only been able to survey limited search spaces and thus, 
opportunities for leveraging on them have become very limited. 

Efforts to consolidate material information into databases for the benefit of the 
whole materials community have been done in order to accelerate new materials search 
and materials design. Two of the well-established resources so far are the 
crystallographic and thermochemical databases. The former is considered as the basis 
for crystal structure data interpretation of metals, alloys, and inorganic materials while 
the latter is a compilation of fundamental thermochemical data such as heat capacity 
and calorimetric information. The Inorganic Crystal Structure Database (ICSD), for 
example, contains 161,030 crystal structures as of April 2013 and its entries are mostly 
reported in journals, only a few are sourced from private communications [23]. 
However, the thermochemical database, which covers physical and chemical property 
data, still lags behind massively as compared to the crystallographic database. One 
dataset, the National Institute of Standards and Technology-Joint Army Navy Air Force 
(NIST-JANAF) Thermochemical Tables, has only about 1800 entries and already 
includes both inorganic and organic substances [24]. This large discrepancy presents 
both a challenge and opportunity for battery researchers. 

It would be greatly beneficial if materials can be tested accurately and reliably in 
silico in order to fill gaps in the search space, or beforehand in order to provide 
informed choices for experimentalists. Computational modeling such as by ab 
initio-based methods can potentially address the issue at hand, as important materials 
properties can now be predicted with sufficient accuracy (detailed description is 
available in the Appendix section) [25-29]. Recently, a number of initiatives has been 
deployed for such a purpose and is now encountering a considerable number of 
successes. One of these initiatives is the U.S. Materials Genome Initiative, of which the 
database component called Materials Project has now a total of 34,158 materials; 
15,355 of which have their band structures calculated, and 16,016 and 443 of which are 
identified for conversion and intercalation battery application, respectively [30]. Figure 
1-2 shows the number of compounds available on the Materials Project sorted out 
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according to compound type. The data collection in this database has been derived by 
using high-throughput computation and latest information age techniques. In this 
respect, one issue that becomes apparent is that solving material properties of a given 
material by using ab initio codes usually requires several hundreds of central processing 
unit (CPU) – hours. The solution employed for this is the construction of a massive 
computational infrastructure and because of this, computations that predict, screen, and 
optimize materials are made possible at an unparalleled scale and rate. Other issues on 
the use of ab initio-based methods at the core of database construction are the 
bottleneck processes during its implementation. Some of these include: i.) assessment of 
target properties that typically involves sequential computation schemes that use output 
from preceding steps as input in order to proceed, ii.) recurrent failed convergence that 
needs recalculations with modified convergence parameters, and iii) calculations that 
inherently requires large SCF iterations for convergence. The problem related to 
computational time is much more magnified, especially when working with 
infrastructures of limited or modest computational power, just like as in most research 
groups nowadays.  
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Figure 1-2. Number of calculated materials in Materials Project since its initial release 
in October 2011. 
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1-3. Search for new fast Li ionic conductors: related computational strategies 

The current challenge in predicting new compounds by computation is actually 
what to calculate, i.e., the chemical compositions that will likely form compounds and 
signify enough merit for further investigation. Computational exploration of chemical 
search spaces using mathematical schemes has been attempted in the past. One study in 
particular, which presented a way of predicting structures for alloys, outlined a general 
approach for constructing an informatics-based structure suggestion model based from 
rigorously mined correlations embodied within experimental data which are in turn used 
to direct ab initio-based methods towards finding stable crystal structure of materials 
[31]. The approach, formally termed as Data Mining Structure Predictor (DMSP) 
modeling, used a database of 28,457 entries of experimentally determined structure 
types in 2,600 binary alloys. Figure 1-3 illustrates the concept view for predicting the 
structure of a sample target composition AgMg3. First, information is collected for 
reported structures including additional information for compositions AgMg and Ag3Mg. 
This evidence e is then used to query the DMSP model to generate a list of ranked 
candidate structures as shown in Figure 1-3a. To verify the prediction, the formation 
enthalpies of the top 10 structures and most common reported structures are calculated 
and compared as displayed in Figure 1-3b. Another similar work followed which 
focused on large-scale search of new ternary oxides in the AxByOz system; there were 
209 new ternary compounds discovered in the said study [32]. The results are 
summarized in Figure 1-4, in which the new compounds are shown to be distributed 
across different chemistries.  
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Figure 1-3. (a) Data Mining Structure Predictor (DMSP) modeling for AgMg3 
compound on the basis of the limited data available at other compositions (green box). 
(b) Ab initio-derived formation enthalpy of candidate structures are plotted to aid in 
prediction verification.  

 
Figure 1-4. Distribution of new compounds across chemical classes. The plot here 
indicates the number of new compounds discovered in the A-B-O system. Elements are 
sorted according to their Mendeleev number in order to easily spot different chemical 
classes. 
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For battery materials, few calculations for new materials search and evaluation 
have been conducted in a targeted manner on existing crystal structures. An example of 
these is the investigation on the electrochemical stability and Li+ conductivity of the 
Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of fast ionic 
conductors [33]. All the compositions were calculated by ab initio method in the DFT 
framework. It was aimed at addressing two key limitations of the composition with 
reported high ionic conductivity (Li10GeP2S12 [34]), namely: the high cost of one of the 
elemental constituent (Ge) and the air and moisture sensitivity. Another study explored 
the materials stability within the tavorite search space for cathode application [35]. The 
relative stabilities of the different compositions are shown in Figure 1-5. The plot 
predicts which materials pass the thermodynamic stability screen, will not release O2 at 
room temperature, and will insert lithium at >1 V vs. Li metal. Meanwhile, yet another 
published paper has succeeded in using both ab initio-based high throughput screening 
and systematic experimental validation to evaluate a novel alkali carbonophosphate 
family of compounds as cathodes [36]. This kind of study is especially desired because 
ultimately, predictions should be proven by experiment and is the only way to make 
tangible advancements in the field. The effort was able to synthesized seven new 
compositions with the general formula Na3M(PO4)(CO3) (M = Mg, Mn, Fe, Co, Ni, Cu, 
Sr) that were predicted first by computations.  
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Figure 1-5. Energy relative to the thermodynamic hull and oxygen chemical potential 
for fully delithiated tavorite materials. The plotted materials pass the thermodynamic 
screen, are not predicted to release O2 at room temperature, and are predicted to insert 
Li at >1 V vs. Li metal. The chemical composition is indicated by the symbol shape, 
with the redox-active metal labeled at the individual data points. The colors indicated 
the voltage at which Li is predicted to be inserted vs. Li metal. Spinel MnO2 and olivine 
FePO4 are added for reference. 
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1-4. An emerging paradigm for new battery material discovery and selection 

It is not until in recent years that the field of Li ion battery has started taking 

advantage of ab initio-based computations in guiding new materials search or 

rationalizing data from experimental measurements. It is still greatly underutilized and 

is yet to gain momentum in its application. When large-scale computational data is 

combined and made in close collaboration with experiments, a comprehensive strategy 

for new battery material discovery and selection can be realized that can drive a new 

paradigm shift in the field. This so-called paradigm shift is shown in Figure 1-6 and can 

be explained in a path diagram involving material composition, structure, and 

properties. 

The path for relating from structure to property (in black) has been realized in 

many instances by traditional experiments and simulations. This path is what forms the 

bottleneck and is allocated with the bulk of the research cost and time resource. 

Similarly, the path for relating from structure to composition (in black), which has been 

done through combinatorial experiments, is also characterized by the same issues. 

Meanwhile, a new component which can revolutionize materials investigation is 
the composition-to-structure path (in violet) which mainly relies on computational 
crystal structure prediction. At present, this path is considered as one of the continuing 
scandals in the physical sciences and it still remains in general impossible to predict the 
structure of even the simplest crystalline solids from a knowledge of their chemical 
composition [37]. With the increasing computational power of computers, this problem 
is supposed to be solvable now, in which ideally one can simply type in the formula of 
the chemical and obtain the atomic coordinates of the atoms in a unit cell as output. 
However, this case is still debatable. The composition-to-structure path, if solved in a 
brute force manner in which ideally all possible solutions are evaluated per composition, 
will be severely limited by the available computational hardware as one will have to 
wrestle with the “curse of dimensionality” especially when the scope is extended to a 
large number of atoms [38]. Essentially, minimum energy structure search can be 
imagined as a complex problem related to crystal structure prediction, i.e., finding the 
most stable (lowest free energy) structure for a given chemical composition at given 
external conditions (such as pressure and temperature). This involves the evaluation of a 
very large number of possible distinct crystal structures  defined by the combinatorial 
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space: 

 (1-15) 

where  is the total number of atoms in the unit cell of volume ,  is a relevant 
discretization parameter (eg., 1 Å) and  is the number of atoms of ith type in the cell. 
Considering the dimensionality of the energy landscape: 

 (1-16) 
where  degrees of freedom are the atomic positions and the remaining six 

dimension are lattice parameters. Clearly, this global optimization problem is 
high-dimensional, and simple exhaustive search strategies are undoubtedly unfeasible. A 
pragmatic approach for this is the use of systematic and efficient optimization and 
search methods to survey and find local and global basins in the energy landscape of 
crystal structures. Knowledge of these low energy structures allows one to predict 
plausible reaction paths and eventually construct phase diagrams that can be used to 
design materials without relying on experimental input. An example of a search method 
that is currently employed in the field of materials science is the metadynamics 
approach [39]. The concept is illustrated in Figure 1-7 wherein the free energy surface 
(FES) is constructed in a set of generalized coordinates h (distances, lattice vectors, 
coordination number, energy, etc) and the search is biased by a history-dependent 
potential constructed as a sum of Gaussians centered along the trajectory of h. The 
driving force for evolving h is derived from F + Fg, where F is the thermodynamic 
driving force while Fg comes from a potential constructed as a superposition of 
Gaussians and is used to penalized a visited configuration from being sampled again. 
The crossing of the saddle point is detected when F||Fg. This method appears to be 
reasonable enough, but one of its current limitations is the selection of order parameter 
that will effectively and universally describe the energy landscape of any given system. 

Another new component is the multi-directional path for composition, structure, 

and property which can now be potentially explored using materials informatics. 

Another facet of the “curse of dimensionality” is encountered when one is trying to 

visualize a high dimensional materials-related function or data set in which sparsity 

increases exponentially given a fixed amount of data points. The human brain can only 

process this high dimension of variables, associations, and data structures in a very 

limited way and thus, many useful correlations, patterns, and structures embedded in 

large databases are often easily overlooked and unrecognized. Materials informatics can 
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process these data into human readable form and can do this efficiently through the use 

of latest computational algorithms and statistical techniques [40]. The insights collected 

in this procedure can then be leveraged for designing new materials. Figure 1-8 shows 

the simplified schematic diagram of how materials informatics can be implemented for 

knowledge discovery. First, the original data collected from experimental measurements 

or theoretical simulations are warehoused and organized in databases. Second, a 

database is then accessed for extraction of data features that are related to the material 

property or properties of interest. Third, the extracted data are analyzed statistically for 

pattern recognition. Fourth, the data are further transformed using visualization tools 

according to the patterns or trends that were identified. Then, the transformed data are 

subjected to physical interpretation based on well-founded theories and chemical 

intuition and then validated through experiments. Thereafter, the acquired knowledge is 

tested and validated through experimentation and computation. The database is then 

updated with the new collected data. This leads to an iterative cycle where in every 

cycle, it is possible to get new information.  

Table 2 summarizes the present merits and demerits of conventional 

structure-to-composition path-based, composition-to-structure path-based and 

property-to-composition (structure) path-based new materials searches. In this thesis 

work, solutions to the listed demerits for composition-to-structure and 

property-to-composition (structure) paths are suggested and demonstrated by combining 

ab initio calculation with sophisticated search or optimization techniques as well as 

materials informatics. 
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Table 2. Comparison of merits and demerits between the conventional and this study’s 

proposed approaches for materials search.  

 Merit Demerit 

Structure-to- 

composition 

path 

(conventional) 

Availability of information in 
existing structural databases 
 
 

Limited availability of information 
in existing property databases 
 

Composition- 
to-structure 
path 
(this study) 

Systematic search can be done 
for true novel materials or 
chemistries without relying on 
initial assumptions 
 

The free energy surface of possible 
crystal structures that needs to be 
evaluated has exceedingly many 
dimensions 
 
Sophisticated and efficient search 
and optimization techniques are 
needed to evaluate the  free 
energy landscape 

Property-to- 
composition 
path 
(this study) 

Highly efficient when performed 
against computational data 
 
Useful insight for material 
design  Patterns or trends from 
high-dimensional data that 
would have been missed by the 
human brain can be extracted 
and analyzed systematically 

Limited availability of information 
in existing property databases 
 
Experimentally derived data 
requires careful evaluation as the 
quality varies from one source to 
another, this could lead to a 
significant noise in the material 
property-based data trends or 
patterns 
 
Sophisticated and efficient data 
mining or machine learning tools 
are needed  
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Figure 1-6. An emerging paradigm for the acceleration of battery materials discovery, 
selection, and evaluation. 
 
 
 

 
Figure 1-7. The trajectory of a metadynamics simulation generated using coordinate 
variables h. 
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Figure 1-8. The cycle chart of an informatics driven materials science aimed towards 

knowledge discovery. 
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1-5. Aim of this thesis 

As mentioned in the preceding section, crystal structure prediction and materials 

informatics are the two new concepts that offer new ways of discovering, selecting, and 

evaluating reported or new materials in a high throughput fashion or in a targeted 

manner. However, their widespread use is yet to be seen and still very little is known as 

to the details of how to apply them for specific problems in the battery field. One of the 

major reasons is that only few reports that demonstrate their use and effectiveness is 

available in the literature, particularly in areas of new battery materials search and 

materials screening. In order to encourage the battery community, there is a need to 

investigate and clearly outline not only the latest and relevant state of the art schemes 

and algorithms for crystal structure prediction and materials informatics but as well as 

establish a clear procedure on how to gain useful information from large scale 

computational data and use them in order to aid experiments. 

The ultimate goal of this thesis is to develop comprehensive solutions derived 

from latest computational and statistical techniques to address two of the crucial 

high-dimensional problems in new battery materials discovery, selection and evaluation, 

namely,: i.) assessment of the thermodynamic stability of materials and ii) target 

property-driven evaluation of large chemical search spaces. By applying ab initio-based 

computational methods and materials informatics, this study will, respectively,: i.) 

predict thermodynamically stable crystal structures from starting chemical compositions 

by an evolutionary-based search method (which will be describe in the succeeding 

relevant section) and ii) efficiently screen a large chemical search space by building 

robust prediction models for a given target material property. The study will establish a 

clear framework for the aforementioned goals and will be demonstrated by the 

following topics: 

1. Ab initio-based evolutionary algorithm search of global minimum energy 

structures in the chemical search space of LixCoO2 intercalation cathode 

material; and 

2. Multivariate method-assisted ab initio study of olivine-type LiMXO4 



 

 
 

21 

(M2+-X5+, M3+-X4+) and tavorite-type LiMXO4F (M2+-X6+, M3+-X5+) 

potential solid electrolyte materials. 
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Chapter 2. Global minimum energy structure search in LixCoO2 

2.1. Background of the study 

The O3 layered structure LiCoO2 is the first commercial and one of the most 
commonly used active cathode material for secondary Li batteries due to its good 
cycling performance during charge and discharge reactions, which involve the 
electrochemical removal and insertion of Li ions [1-3]. This fast Li ion conductor which 
belongs to the R-3m space group and rhombohedral symmetry (see Figure 2-1) has an 
open circuit voltage (OCV) of ~4 V vs. Li metal [4]. The stacking of O-Co-O slabs are 
distinguished as ABCABC… ordering. The related intercalation mechanism shows the 
CoO2 host framework being almost unchanged during the delithiation process in the 
compositional range is 1/2 < x < 1 (x in LixCoO2). However, some small, yet discernible, 
structural change can be distinguished in the range 0 < x < 1/2 and can be viewed as a 
stacking fault perpendicular to c-axis caused by simple gliding of the Co octahedron 
layer, eventually leading to continuous capacity fading. This emphasizes the important 
relationship between changes in the host structure and electrochemical cyclability [5-6]. 

In recent years, large-scale battery development for electric vehicles and 
stationary energy storage devices has been poured with investment and is becoming 
increasingly attractive in the today’s society; the latter technology is now being used 
more as backup for conventional power sources. With the impending effect of climate 
change causing more typhoons and erratic weather conditions each year, potentially 
inflicting more devastation to existing power grids and infrastructures, the importance 
of back-up power systems are becoming increasingly important. The same case is true 
for areas which frequently experience high-magnitude earthquakes. Therefore, it is 
imperative that standby back up energy devices are reliable and stable even at long 
periods of time. 

Back-up batteries are usually kept in a fully charged state for up to 10 years. 
During standby mode, the electrochemically delithiated phase of layered LixCoO2 (x < 
1) is in a metastable state, and with longer time scale, formation of more stable phases 
are conceivable and can lead to the eventual degradation of the device itself. Therefore, 
it is necessary to evaluate the cathode material with respect to its long-term storage 
stability. The thermodynamic ground state and metastable structures should be 
investigated for different Li ion contents of the host LixCoO2 layered structure. However, 
experiments for such of studies have been limited because of the difficulty in evaluating 
the structural change from the metastable to ground-state phase over several years. This 
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technical challenge needs to be addressed in order to systematically study the structure 
of LixCoO2. A practical approach for this issue would be to use structural prediction 
techniques with energy evaluation in DFT framework to determine the thermodynamic 
ground state of any given composition. In this work, the evolutionary approach [7] is 
used to effectively sample the LixCoO2 energy landscape to search the global minimum 
energy structures at different Li content x. This technique has already been used in the 
prediction and confirmation of novel materials [8-10]. 
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2.2. Structural description 

Li, Co, and O Wyckoff positions in LiCoO2 are assigned as 3a octahedral, 3b 
octahedral, and 6c sites, respectively. The ratio c/a = 4.989 is larger than that of an ideal 
cubic-close-packed lattice, where c/a = 4.899. As more Li is extracted, insterslab 
repulsion is increased and the c/a ratio is further increased [11]. At x = 1/2, shearing of 
the rhombohedral oxygen lattice occurs which sets the onset for monoclinic distortion. 
This translation also significantly changes the lattice angle β [3] and Li ion ordering in 
rows is reported to become favorable [12]. Thermodynamically, a spinel phase with Li 
ions in the 8a tetrahedral sites will eventually form at this composition; this formation is 
observed after extensive charge/discharge cycling processes [13-14]. At x = 0, further 
shearing leads into the hexagonal packing of oxygen ions with ABAB sequence of 
O-Co-O slabs along the c-axis; this is referred to as O1 (P-3m1) structure [15-16]. 
 

 
Figure 2-1. A 2 x 2 x 1 supercell of R-3m LiCoO2 with highlighted stacking of the 
O-Co-O slabs in ABCABC… ordering. Blue and green octahedra layer are CoO6 and 
LiO6 units, respectively. Planar view of the CoO6 and LiO6 layers are also shown. 
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2.3. Structure search by evolutionary algorithm 

Evolutionary algorithm treats structural variables as physical numbers and 
incorporates “learning from history”, i.e., the offspring structures will have resemblance 
to the more successful structures from previous sampling. This is carried out in three 
stages: i.) the selection of the low-energy structures to become parents of the new 
generation, ii.) the survival of the fittest structures, and iii.) the tweaking of structures 
by variation operators. These variation operators are basically the recipe for creating 
offspring structures from parent structures. 

There are three common types of variation operators. The first one is the heredity 
operator which produces offspring structures from planar slabs cut from two parent 
structures. The second one is the lattice mutation operator which creates offspring 
structures through large deformation applied to a parent structure. The third one is the 
permutation operator which swaps chemical identity in pairs of chemically different 
atoms. The simplified representation of the three operators is indicated in Figure 2-2. 

It is necessary that the population of structures be kept diverse enough to avoid 
trapping in local minima. To measure diversity, it is important to detect similar 
structures so they can be removed from the structure pool, thereby ensuring that 
radically different solutions can be obtained. One way to do this is through a structure 
fingerprint function, : 

            (2-1) 

where ,  are atomic number of atoms  and ,  is the distance between 
atoms  and ,  is the volume of the unit cell,  is the number of atoms in the 
unit cell, and  is the bin width used to discretized  to obtain the fingerprint 
vector.  is a Gaussian-smeared delta function, absorbing numerical errors 
and making  a smooth function. Since  describes the correlations 
between atomic positions, it can be used as well to characterize the structure’s order 
parameter : 

                        (2-2) 

where  is characteristic length (eg., a cubic root from volume per atom for a given 
system). 

With a means to measure structural similarity, structures can be compared using 
the abstract cosine distance : 

.                     (2-3) 
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 are distances measure the structural dissimilarity and can only take values between 
0 and 12. The metric for diversity can then be evaluated using the function called 
collective quasientropy, : 

                   (2-4) 
After structure relaxation, the locally optimized structures are compared and 

ranked in order of their free energies. For the parent selection step, the probability  of 
selecting a structure is determined by its fitness rank , e.g. in a linear scheme: 

                 (2-5) 

where  is a selection cutoff. 
The detailed scheme for the implementation of evolutionary algorithm in 

combination with structure relaxation is displayed in Figure 2-3 [17]. 
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Figure 2-2. Concept view of variation operators in evolutionary algorithm. 

 
 
 
 
 

 
Figure 2-3. Flowchart of evolutionary algorithm in combination with structure 
relaxation for search of global minimum energy structure. 
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2.4. Computational details 

The evolutionary variable-cell simulations were carried out for the LixCoO2 using 
the Universal Structure Predictor: Evolutionary Xtallography (USPEX) code [17-21]. 
Several compositions were explored: x = 0, 1/4, 1/3, 1/2, 2/3, 3/4, and 1. Atomic 
stoichiometry was observed, for example, Co:O = 1:2, 2:4, 4:8 in CoO2, Li:Co:O = 
1:4:8, 2:8:16 in Li1/4CoO2, Li:Co:O = 1:3:6, 2:6:12 in Li1/3CoO2, and Li:Co:O = 1:2:4, 
2:4:8, 4:8:16 in Li1/2CoO2. With the initial population randomly generated beforehand, 
about 20 structures were allowed to compete in each generation. When the lowest 
energy structure remained the lowest for 25 consecutive generations, or after 50 
generations, the simulation was terminated. Since evolutionary algorithm is a heuristic 
method, the exploration per composition was repeated 6 times.  

For the underlying energy calculation, ab initio method was used with conditions 
of 0 K and 0.1 MPa performed within the DFT framework of the generalized gradient 
approximation (GGA) [22], as implemented in the Vienna Ab Initio Simulation Package 
(VASP) [23]. Three local optimization levels were set, with accuracy increasing at each 
level. For the first level (coarse), the setting is as follows: plane-wave cutoff energy set 
to the maximal minimum of the pseudopotentials, break condition for the ionic 
relaxation loop set to 2 × 10-1 eV, total energy error threshold at 3 × 10-3 eV. For the 
second level (intermediate), the setting is 450 eV, 1 × 10-2 eV, and 1 × 10-3 eV, 
respectively. For the third level (normal), the setting is 450 eV, 1 × 10-3 eV, and 1 × 10-4 
eV, respectively. The global minimum energy structure at the end was further relaxed 
with a setting of 500 eV, 1 × 10-3 eV, and 1 × 10-4 eV, respectively. The k-point 
resolution was set to at least 800. The valence electrons, according to projector 
augmented-wave (PAW) potentials, were defined as s1p0 for Li, d8s1 for Co, and s2p4 
for O [24-25]. The functional described in the Perdew-Burke-Ernzerhof 
parameterization for solids (PBEsol) was used to treat the exchange and correlation 
interactions [26-27]. The KPLOT software was used to evaluate the symmetry of the 
searched structures [28]. 
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2.5. Results and discussion 

2-5-1. Structure population and diversity 
A benchmark study was first carried out using two compositions which are 

already extensively investigated through experiments (x = 1 and x = 1/2). The 
purpose of this is to establish the validity of the input parameters for the structural 
prediction as well as for the energy evaluation using ab initio DFT. The results are 
summarized from Figure 2-2a to 2-2d; the figure shows the enthalpies of the 
generated structures, predicted global minimum energy structures, population 
diversity (quasientropy, Scoll) [29], and calculated XRD plots, respectively. As 
indicated, the prediction for the two compositions, LiCoO2 and LiCo2O4, 
reproduced the experimentally reported thermodynamics phases which are the O3 
and spinel configurations, respectively. Using the characteristic fingerprint 
functions of the different structures generated in the simulated competition, the 
diversity of structures from all generations was also evaluated as given by the Scoll 
plot [30]. For both compositions, the Scoll metrics suggested a relatively retained 
degree of diversity for the majority of the sampling except for the first few 
generations where the diversity is higher. This implies that the search has 
effectively “zoom in” or focused on the energy basin where global minimum 
energy structures are located.  

For the LiCoO2 composition, the simulated competition was carried out 
successfully after 27 generations with stable Scoll values. In the first generation, 
the lowest energy structure (LES1) that was formed already has the topological 
O3-like layered configuration except that the symmetry was monoclinic with 
lattice angle β = 82.180°. In addition, the correct alternate layering of the Li and 
Co cations with respect to the c-axis was already obtained even at this very early 
stage. Even when LES1 was re-optimized with higher precision settings, it did not 
change into a hexagonal symmetry in which β = 90°, which is the recognized most 
stable phase, suggesting a high energy barrier for the said transformation. Thus, 
LES1 can be considered as a configuration which resides near the energy funnel 
containing the O3 configuration. Of the lowest energy structures in each 
generation, the cobalt oxide layer did not change significantly during the 
structural competition, which made it an important high-order fragment during 
structural evolution. The calculated range of the Co-O bond length in the lowest 
energy structures was 1.930-1.940 Å. The subsequent mutation operation was then 
effectively able to cross the energy barrier for the LES1 → O3 reaction and the 
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final structure was confirmed to be indeed that of the hexagonal O3 phase (R-3m) 
with β = 90°. The Co-O and Li-O distances for the global minimum energy 
structure O3 are 1.910-1.912 Å and 2.070-2.100 Å, respectively, and are in 
reasonable agreement with previous experimental reports [31]. 

For the Li1/2CoO2 composition, the calculation search leading to the spinel 
phase formation as the global minimum structure (Figure 2-2d) proceeded for 38 
generations before termination. The Scoll values are also confirmed to be stable 
(Fig. 2-2b). Just like in the case of LiCoO2, the lowest energy structures for 
LiCo2O4, for each generation, have face-centered-cubic oxygen packing and this 
observation was also found even in the first generation (Figure 2-3). The 
difference between the former and the latter is how the constituent cations are 
ordered within the voids of the oxygen array. The LES1 for LiCo2O4 prediction 
(generation 1) is noted to have the cation positions permutated to form a reverse 
variant with a more negative enthalpy (generation 4). Partial reorganization of the 
Co atoms then formed Li-Co mixed layers (generation 7). This configuration then 
transformed into an O3-like layered variant with uniform Li and Co layers 
(generation 8). Finally, the spinel phase was successfully evolved (generation 15 
and 38). The optimized Co-O and Li-O distances are 1.880-1.890 Å and 
1.914-1.916 Å, respectively. Moreover, the validity of the results are further 
established with the emergence of the O3-like layered phase. This configuration is 
an important metastable state as it can be formed during an electrochemical Li 
extraction. 

Another observation is the similarity of the calculated XRD patterns (Figure 
2-4) for the O3 layered LiCoO2 (R-3m) and the spinel LiCo2O4 (Fd-3m) structures. 
This can be attributed to the similarity in the oxygen packing between the two 
phases and the low scattering factor of Li ions which makes their detection 
difficult during measurements [32]. 

Based from the successful prediction of global minimum structures at x = 1 
and x = 2, it was verified that: (i) the use of evolutionary approach with multiple 
starting structures is a justified and an effective approach for finding minimum 
energy structures, and (ii) the settings for structural relaxation was appropriate to 
obtain global minimum structures. 

 
 
 
 



 

 
 

33

 
 

 
Figure 2-2. (a) Calculated enthalpies of generated structures, and (b) population 
diversity (quasientropy) as functions of generation. The lowest energy structures 
are (c) O3 layered phase (LiCoO2, R-3m) and (d) spinel phase (LiCo2O4, Fd-3m). 
Blue, green, and red spheres are Co, Li and O atoms, respectively. 
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Figure 2-3. Planar view of the structural evolution of the lowest energy structures 
using Li2Co4O8 (Li1/2CoO2 unit) composition leading to the spinel (Fd-3m) phase 
formation. Structural motifs are displayed for generation 1, generation 4, 
generation 7, generation 8, generation 15, and generation 38. Blue, green, and red 
spheres are Co and Li, and oxygen atoms, respectively. 

 

 

Figure 2-4. XRD patterns of for layered LiCoO2 and Li1/2CoO2 with assigned 
peaks. 
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2-5-2. Topology of predicted minimum energy structures 
Shown in Fig. 2-5 is the reduced energy landscape derived from the 

distribution of about 1000 generated structures at each surveyed LixCoO2 
compositions and leading to lowest energy layered phases. The energy surface is 
defined in here by average order parameter (see equation 2-2) and volume per 
atom basis. Based from these contour plots, the evolutionary approach is noted to 
be effective in locating a number of local minima as well as finding the major 
energy basins at different compositions. These basins can be characterized as 
locus of points representing structures with high symmetry. It is now apparent that 
structures with relatively high average order (degree of symmetry) have more 
negative enthalpies, and thus are more stable, than those with lower order or more 
random arrangement of atoms [33]. Meanwhile, cell volume is determined to be 
weakly correlated with structural stability and an optimized value exists with 
respect to composition. At x = 0, the prediction resulted into an intermediate O1 
structure, with hexagonal closed-packing and a Co-O distance of 1.859-1.862 Å 
(Fig. 2-5a). The same O1 stacking was also determined with face-sharing of Co 
and Li octahedra for the global minimum structure at x = 1/7 (Fig. 2-5b); Co-O 
and Li-O distances are 1.850-1.886 Å and 2.030-2.477 Å, respectively. A 
monoclinic structure (C2/c) was noted at x = 1/2 with β = 101.815° (Fig. 2-5c) 
and with Co-O and Li-O distances to be about 1.865-1.888 Å and 2.002-2.672 Å, 
respectively. This structure is characterized by coherent zigzag Li chains in the 
intercalation layer and Li vacancy ordering as reported by Reimers et al. [3] and 
Horn et al [12]. Meanwhile, O3 stacking and no O1 stacking was observed for the 
rest of the intermediate compositions at 1/2 < x < 1. 
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Figure 2-5. Crystal structure prediction by evolutionary algorithm leading to 
layered LixCoO2 phases. Energy landscape sampling is shown for (a) O1 structure 
(P-3m1), (b) O1 structure at x = 1/7, and (c) monoclinic structure (C2/c) at x =1/2. 
Green and blue octahedra are Li and Co atoms, respectively.  
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New non-layered phases in the composition x < 1/2 that showed more 

negative enthalpies than their layered counterparts are given in Figure 2-6. Again, 
a strong (weak) correlation is established between average order (cell volume) and  
stability. These non-layered structures have a similar topology with rutile-like 
configurations (Pnnm, P42/mnm) with (1 × 1) tunnels at x = 0 (Figure 2-6a) and 
ramsdellite-like configurations (C2/m, P2/m) at x = 1/4 and x = 1/3 (Figures 2-6b 
and 2-6c) with (3 × 1)-(1 × 1) and (2 × 1)-(1 × 1) tunnels, respectively. For the 
rutile-like variant, the Co-O distance was calculated in the range of 1.843-1.845 Å, 
whereas the ramsdellite-like variant had Co-O and Li-O distances of 1.814-1.922 
Å and 1.789-2.194 Å, respectively. As previously mentioned, a possible 
transformation pathway for these non-layered host structures is through Co 
migration from the CoO6 layer into an octahedral environment in the Li layer. The 
tunnels in the structure can be regarded as part of the original Li plane. On the 
other hand, the structures at x = 1/4 and x = 1/3 need coherent stacking faults 
along the c-axis for them to form from their layered phases. These new 
configurations are comparable with those found in MnO2 compounds [34]. The 
same case is apparently justified for spinel LiCo2O4, in which Co ions need to 
migrate into the Li plane to form the lowest energy configuration. At 1/2 < x ≤ 1, 
only O3 stacking were predicted. Assuming that spinel formation is kinetically 
limited, the results are complementary to the established range of electrochemical 
stability for layered LiCoO2. 
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Figure 2-5. Crystal structure prediction by evolutionary algorithm leading to 
non-layered LixCoO2 phases. Energy landscape sampling is shown for: (a) 
rutile-like structure (P42/mnm) with (1 × 1) tunnels at x = 0, and (b, c) 
ramsdellite-like structure with (3 × 1)-(1 × 1) tunnels and (2 × 1)-(1 × 1) tunnels 
at x = 1/4 and at x = 1/3, respectively. Green and blue octahedra are Li and Co 
atoms, respectively. 
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2-5-3. Relative stability of predicted minimum energy structures 

Stability of the phases in LixCoO2 can be completely described by the 
knowledge of the free energies at every investigated Li content x. At low 
temperatures in which T ~ 0 K and entropy S ~ 0, the ground state energies found 
from ab initio DFT energy evaluation can be used to approximate the phase 
diagram. Once these energies are derived, the formation energy  of a 
particular phase can then be calculated as a cohesive energy relative to the 
composition-weighted average cohesive energies of the end member compositions 
[16]: 

          (2-1) 
where  is the total energy of the configuration per LixCoO2 formula unit, 

 is the energy of LiCoO2 in the O3 host, and  is the energy of 
CoO2 in the O1 host. When plotted versus composition x, the convex hull curve 
for LixCoO2 can be generated. This plot is displayed in Figure 2-5. The concept of 
formation energy describes the relative stability of a predicted structure against 
separation into the LiCoO2 fraction and the (1 – x) CoO2 fraction. When  is 
negative, the formation of a particular compound is said to be favored. This is 
represented by the location of the point ( , ) with respect to the convex hull, 
in which a point below the hull means favored while a point above means an 
unfavored formation.  

For the kinetically controlled layered phases, their convex hull is indicated 
by the solid tie line. Meanwhile, another convex hull, shown as a hatched tie line, 
represents the thermodynamic ground reaction route for the LixCoO2 system. 
From interpreting the plot, the layered structures are expected to decompose and 
transform into more stable variants, except at x = 1. In addition, spinel LiCo2O4 
will coexist with layered LiCoO2 at 1/2 < x < 1. At 0 < x < 1/2, spinel LiCo2O4 
and a rutile-like structure are predicted to be the end member compositions. 

It becomes obvious that the midpoint composition at x = 0.5 forms an 
important end member structure and is crucial towards understanding LiCoO2 
cathode stability. From a closer inspection of the topology, layer to spinel 
transformation can be imagined as a reaction in which the onset is facilitated by 
Co ion migration. This can occur during excessive cycling and implies that the 
other predicted non-layered structures could be formed via a similar route. 
However, this migration is not yet understood well. Surveying the literature, one 
useful report that could shed light about this issue is an ab initio calculation study 
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which suggested a spinel or spinel nucleus formation from layered configuration; 
the mechanism is assisted by a charge-disproportionation reaction [35]: 

           (2-2) 
where  and  are the octahedrally and tetrahedrally 
coordinated Co ions, respectively. In this process,  is surrounded by 
Li trivacancy nearest neighbors in the Li plane has a high static migration energy 
barrier of 1.5 eV. In  species has an unfavorable outer electron configuration 
(d7) for complete covalent bonding when at the triangular (activated state) and the 
tetrahedral position in the Li plane. As a consequence, the change in ligand field 
stabilization energy for tetrahedral coordination is expected to be unfavorable as 
well [36]. This, in turn, leads to the kinetic frustration of the spinel phase 
formation. In contrast, at x < 1/2, Co ion migration is suggested to be a favorable 
reaction owing to the destabilization of the layered structure in relation to the 
Madelung energy minimization [37]. This harmonizes with the results for several 
non-layered structures that were predicted to be favorable, examples include the 
rutile-like and the ramsdellite-like variants. Thus, it is highly likely that when the 
charge state of LiCoO2 cathodes at x < 1/2 are kept for sufficiently long enough 
time, metastable to non-layered phase formation should occur. The critical 
parameters that could facilitate this reaction are Co size factor effect and Li 
vacancy configuration. 

A thermodynamics study on the thermal degradation of charged Li battery 
cathodes was conducted by Wang et al [38]. From the calculated Li-Co-O2 ternary 
diagram, it was suggested that for partially delithiated LixCoO2, the favorable 
thermodynamic end route is spinel phase formation, specifically Co3O4 and O2 gas 
products. Referring to this results, the stability of the predicted non-layered 
structures were evaluated by calculating the reaction energies given by [39]: 

  (2-3) 

The calculated reaction energies for x = 0 (rutile-like), x = 1/4 (ramsdellite-like), x 
= 1/3 (ramsdellite-like), and x = 1/2 (spinel) were +0.754, +0.584, +0.548, and 
+0.597 eV / LixCoO2 unit, respectively. These suggest that all the predicted 
non-layered phases are thermodynamically stable against the oxygen evolution 
reaction. Therefore, these phases are reasonably important over the course of 
long-term storage of the delithiated layered variants of LixCoO2. However, the 
reaction energy calculation scheme employed based on reaction 2-3 does not take 
into account any discrepancy associated to inherent errors from GGA formalism 
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such as over-binding in the O2 molecule and correlation effects in the 3d orbitals 
[40, 41, 42]. Therefore, some of the calculated reaction energies could still shift to 
the exothermic region, i.e., negative reaction energies. 

The rutile-like CoO2 phase has not been reported yet experimentally, and it 
is possible that some of the predicted non-layered structures are not the actual 
ground-state phases but metastable phases. However, since the cathode can 
oftentimes be subjected to severely restricting conditions, formation these 
structures cannot be completely ruled out. For instance, spinel LiCo2O4 can be 
formed under repeated electrochemical cycling of LiCoO2 [13-14] or during 
chemical delithiation of a low temperature phase of LiCoO2 [43-44]. Similarly, the 
predicted non-layered phases may also form as a result of long-term storage under 
charged state. 
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2.6. Conclusions 

The lowest energy minimum structures in the LixCoO2 composition (0 ≤ x ≤ 1) 
were successfully investigated using the hybrid evolutionary algorithm with ab initio 
DFT energy evaluation. Specifically, the following results are determined in the study: 
1) The different transformations of LixCoO2 during the Li deintercalation were 

correctly predicted.  
2) New non-layered host structures at x < 1/2 were predicted to be more favorable than 

their layered counterparts. 
3) Formation of non-layered configurations is suggested to be facilitated by Co ion 

migration from the CoO6 layer into the octahedral sites of the LiO6 layer at low Li 
concentration (0 ≤ x ≤ 1/2).  

4) Co ion migration can be aided by the destabilization of the Co octahedron layer as 
more electrons are drawn out during Li delithiation.  

5) The predicted non-layered structures were thermodynamically stable against 
decomposition or oxygen evolution. 
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2.7. Future work and direction 

The following points are the suggested for the future work of the study: 
1) a detailed mechanistic investigation of the Co ion migration for the highly 

delithiated phases. 
2) exploration of the cathode stability across different compositions (Ni, Mn, Fe, and 

their solid solutions) with layered-type and fully-lithiated base configurations. 
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Chapter 3. Multivariate method-assisted ab initio-based new material 
search of olivine-type LiMXO4 solid electrolytes 

3-1. Background of the study 

The development of solid electrolytes for all-solid-state rechargeable Li ion 
batteries has now become a major area of interest. This is primarily driven by the 
materials’ advantages as compared to conventional electrolytes: nonflammability, 
operating stability because of an oxide-based composition, corrosion resistance (which 
leads to high safety), a wide range of operating temperatures, and longer service life. 
However, there are an extremely limited number of identified materials that are 
considered to be of potential because of problems with the diffusion of Li ions within 
the framework structure. Some of the oxides that were reported as potential solid 
electrolytes are garnet-type Li5La3Ta2O12, perovskite-type (Li,La)TiO3, Liβ-Al2O3, 
LISICON, and NASICON [1−5]. Finding suitable new solid electrolyte materials will 
provide the next major advance in this field. In finding good solid electrolytes, the main 
issue is the low polarizability of Li+ and O2− which leads to the strong interaction 
between neighboring ions in a densely packed crystal structure [6]. 

In search of new solid electrolyte materials, a logical approach would be to survey 
existing structure types that are form naturally because they ensure some degree of 
stability in terms of configuration. In connection with this, one of the most commonly 
forming oxides that can be considered is the olivine group. The olivine structure, 
indicated in Figure 3-1, has the typical orthorhombic symmetry, belongs to the Pnma 
space group, and has a slight distortion in the close-packed arrays of oxygen ions. 
Oxides with olivine structure have been experimentally confirmed, one example is the 
LiFePO4 composition, and was reported to be capable of high lithium bulk mobility and 
ultrafast charging/discharging capabilities. These indicate the possibility of olivine-type 
materials to be used as fast Li ionic conductors [7]. However, electronic conductivity 
has prevented olivine-type materials with transition metals from being considered as 
practical solid electrolytes [8−10]. An olivine-type electrolyte material, when 
successfully developed with high lithium bulk mobility and suppressed electronic 
conductivity, would be a major technological advance, especially if it is paired with 
attractive cathode materials of the same structure such as LiFePO4 since reduction of 
interfacial resistance can be engineered. 

An exploration of the LiMXO4 olivine search space, to determine the best 
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compositions for use as a fast Li ionic conductor, would be an interesting study that can 
potentially lead to new battery materials discovery. The composition would be, based on 
main group M octahedral atoms (Group 2, Group 3, lanthanides, and Group 13) and X 
tetrahedral atoms (Group 14 and Group 15). There is a total of 72 M−X pairs that can be 
considered and most of the compositions are not yet reported. 

In this study, the technical difficulty arising from computational expense for a 
large number of isostructural compounds is addressed by using informatics driven 
exploration of the olivine search space. This is carried out by combining ab initio 
methods and a multivariate analysis technique called partial least squares (PLS) 
regression. The latter technique has been widely adopted in other areas of research but 
has not been applied yet in the battery field [11−13]. 
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Figure 3-1. Schematic view of the olivine structure. Green spheres are the Li atoms 
arranged along the b-channel, violet octahedra are MO6 units, and blue tetrahedra are 
XO4 units. 
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3-2. Multivariate method: partial least squares (PLS) regression 

Partial least squares (PLS) analysis is a method for constructing prediction models 
when the descriptors for a response or set of responses are many and highly collinear. 
Its prerequisite notions is that the  observations described by  dependent variables 
are stored in a  matrix denoted , the values of  predictors on the  
observations are collected in the  matrix . The goal is to predict  from X and 
to describe their common structure. PLS searches for a set of components (called latent 
variables) that performs a simultaneous decomposition of  and  with the constraint 
that these components explain as much as possible of the covariance between  and . 
A regression step is then performed where  is predicted by using the decomposition 
in . An algorithm for this is called the nonlinear iterative partial least squares 
(NIPALS) algorithm which focuses on maximizing the variance of the dependent 
variables explained by the independent variables. A PLS model will have a structural 
part, which explains the relationships between latent variables, a measurement 
component which reflects how the descriptors and the latent variables are related, and 
weight relations components which are used for case values estimation for the latent 
variables. 

The NIPALS algorithm starts from two given data blocks, the  matrix  for 
independent variables and the  matrix  for dependent variables. The matrix 
operation then follows according the following procedure: 
1. Select a -weight vector , e.g., a non-zero row of , and normalize it to length 1. 
2. Enter the loop: 

a. Compute a score vector, 
.                            (3-1) 

b. Compute a -loading vector, 
.                            (3-2) 

c. Compute a -loading vector, 
.                            (3-3) 

d. Compute a new weight vector, 
.                            (3-4) 

Scale  to length 1. 
e. If , where  is a predefined error threshold, convergence is achieved, 
otherwise set  and go back to step a. 
3. Use the latest  and  to construct a latent variable. 
4. Construct the succeeding latent variable: 
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a. Compute the loading vector, 
.                          (3-5) 

b. Adjust , 
.                        (3-6) 

c. Compute the regression of  onto , 
.                          (3-7) 

d. Adjust , 
.                        (3-8) 

e. Set  and . 
f. If the variance of the dependent variables explained by the independent 
variables is maximized, i.e., the root mean square error (RMSE) does not 
improved upon addition of new latent variables (overfitting), terminate the 
iteration, otherwise continue with the latent variable construction (go to step 1). 

Figure 3-2 shows the conceptual view of PLS method [14, 15]. 
 

 
Figure 3-2. Schematic outline of PLS method showing the relationships between 
relevant matrices as derived from the data blocks  (independent variables or 
descriptors) and  (dependent variables or response). 
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3-3. Computational details 

The atomistic model was initialized based on the projected augmented wave 
(PAW) method [16] through the Vienna Ab Initio Simulation Package (VASP) [17]. 
Olivine compositions with published structural data were taken from the Inorganic 
Crystal Structure Database (ICSD). The atomic coordinate set of the known materials 
was used in the structural optimization of virtual compositions [18]. Figure 3-3 shows 
the different M-X pairs considered in the study. 

For the structural optimization step, an energy cutoff of 500 eV is chosen to 
ensure that the total energies are converged within 3 meV per formula unit. A 2 × 3 × 3 
Monkhorst-Pack kpoint grid in a unit cell led to a reasonable convergence and an error 
of <1 meV/LiMXO4 unit in the total energy. Moreover, the calculated error for the 
optimized lattice parameters was about 1.5% on the average and is well within the 
standard generalized gradient approximation (GGA) error when using the 
parametrization of Perdew−Burke−Ernzernhof for solids (PBEsol) for the exchange 
correlation energy [19]. 

For the Li ion migration pathway and Li diffusion barrier energy (EA), the 
nudged-elastic-band (NEB) method [20] was used and results were compared with 
available experimental data [21]. For the NEB method, a 1 × 2 × 2 supercell with a 
formula unit of Li15M16X16O64 (1 Li vacancy created along the diffusion channel), and 
numerical integration was performed over the Brillouin zone by sampling the Γ point. 
The error level related to convergence condition was determined to be within 30 
meV/formula unit. 

All the multivariate analyses were carried out using the JMP statistical software. 
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Figure 3-3. Sampling of the olivine-type LiMXO4 search space. 
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3-4. Results and discussion 

3-4-1. Structural variation across the olivine-type LiMXO4 search space 
In the LiMXO4 olivine structure, the distortion in the M octahedron can be 

explained by two main factors: (i) M ions being off-center, which is expressed 
relative to the tilt of the octahedron from the a-axis (see Figure 1b) and (ii) the 
variation of θ, the largest internal O−M−O angle, relative to the b-axis (see Figure 
1c). 

The DFT framework was used to calculate the different crystal structure 
lattice parameters for all the compositions (Figure 3-5). When different cation 
pairs constitute the skeleton host structure, observing how the structural 
parameters change may clarify the determining factors in the value of the Li-ion 
hopping energy. Figure 3-5a shows the direct relationship between the unit-cell 
volume and the ionic size (Shannon radii) of the inserted cations in both the M 
and X sites [22]. For simplicity, the different LiMXO4 samples are denoted by 
their M−X pairing. The largest volume was determined for LiBaSbO4 (434.87 Å3), 
and the smallest volume was found for LiAlSiO4 (255.13 Å3). LiBaSbO4 consists 
of large ions, whereas the LiAlSiO4 consists of relatively small-sized ions. The 
main cluster of data points belongs to pairs containing rare-earth cations, with a 
volume that gradually increases with the ionic size of M. Further investigation 
into the variation along the major axes (Figures 3-5b to 3-5d) revealed that lattice 
parameter a changes with volume, implying that the volume could be governed 
primarily by the expansion or contraction in the a axis, as suggested by the 
distortion shown in Figure 3-4a. The alternating Li and M octahedron along the 
a-axis are expected to have strong repulsion because they are both highly ionic, 
especially for large M. This repulsion also will result in M becoming more 
off-center and farther from the Li channel, directly affecting the value of a. The 
lattice parameter b is directly influenced by the largest internal angle, θ (Figure 
1c). Because the variation in θ causes a strain component along the b-axis, 
increasing or decreasing it should also alter the value of lattice parameter b. 
Furthermore, no significant variation in lattice parameter b was observed for 
different cation sizes of X. The contribution along the b-axis from the X tetrahedra 
may have been minimal; these sites are generally regarded as interstices for small, 
strong directionality cations, which cause minimal strain along the major 
directions. Furthermore, there is no abrupt change in lattice parameter c for 
different M ioni cradii, where the bulk of the distortion was already taken in along 
the a- and b-axes. Another important observation here is that large-sized M ions 



 

 
 

54 

often lead to more distortion of the related octahedron from the coordinated 
oxygen ions. As evidence, we calculated the shape unideality factor for 
polyhedrons, formally defined by the quadratic elongation λ  of the form [23]: 

                    (3-9) 

where  and  are the center-to-vertex distance of the actual and regular 
polyhedron of the same volume, respectively.  is dimensionless, giving a 
quantitative measure of distortion that is independent of the effective polyhedron 
size. For the M octahedron with Group 2 cations such as Mg-P, Ca-P, Sr-P, and 
Ba-P pairs, the  values are 1.0318, 1.0538, 1.1157, and 1.1574, respectively. 
Conversely, X cations of Group 13, such as Ca-P, Ca-As, Ca-Sb, Ba-P, Ba-As, and 
Ba-Sb pairs, follow a similar pattern but to a lesser extent: 1.0032, 1.0080, 1.0203, 
1.0008, 1.0017 and 1.0127, respectively. Later, we will discuss these numerical 
values, among others, and use them to extract the underlying factor(s) to build a 
prediction model for the Li ion hopping energy, which is characteristic of a 
particular composition. 
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Figure 3-4. (a) 2D view of olivine structure highlighting the off-centering of M 
cation due to repulsion from the Li channel, and (c) projection view highlighting 
the variation of the largest internal O−M−O angle, θ, relative to the b-axis. Green 
spheres represent Li atoms, purple octahedra represent M atoms, and blue 
tetrahedra represent X atoms. 

 
Figure 3-5. Structural data across the olivine LiMXO4 search space: (a) cell 
volume, (b) lattice parameter a, (c) lattice parameter b, and (d) lattice parameter c 
of the DFT-relaxed structures, sorted according to X tetrahedral cation. 
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3-4-2. Li ion migration pathway and its correlation with structural information 
The Li ion diffusion barrier EA was computed for several M-X pairs by the 

NEB method. Different intermediate positions were calculated along the projected 
distance between two stable Li sites. The threshold value for fast Li ionic 
conduction was based on the Li ion diffusion barrier energy reported for the 
(Li,La)TiO3 perovskite material, which is 0.30 eV, since it has one of the highest 
experimental Li-ion conductivity value of the oxides ( 1 × 10-3 S/cm at 300 K) [3]. 
A vacancy-driven mechanism along a 1D-diffusion channel was determined for 
olivine-type cathodes and this diffusion process is adopted in the present study for 
olivine-type solid electrolytes. Several related studies has been carried out for 
LiFePO4, an olivine-type material, by using DFT method [24], force-field method 
[9], and neutron diffraction [25]. Although this 1D conduction is likely to limit 
conductivity in polycrystalline pellets, this issue can be addressed by controlling 
the alignment of the grains to minimize inter-grain resistance. Another possible 
limiting factor is the existence of antisite defects that can give rise to pathway 
blocking, which eventually could further decrease conductivity [26, 27].  

The transport properties of the olivine structure are thought to be largely 
determined by topology where Li inter-chain routes (see Figure 3-1), which utilize 
interstitial sites for Li-ion migration, become much more difficult, compared to 
intrachain motion, because of the very close proximity of Li ions along the chains, 
as opposed to between chains. A complex energy landscape also exists between 
chains caused by the two types of polyhedron neighbors (in our study, ionic M 
octahedra and covalent X tetrahedra). Shown in Figure 3-6 is the pathway of a 
migrating Li ion in the Li intra-chain as calculated by DFT. The starting and end 
point (vacancy) are indicated as positions 1 and 2, respectively. Two possible 
intermediate routes via interstitials along the diffusion channel exist. The first one 
is through the interstitial site (dashed yellow outline) face-shared with the 
first-nearest tetrahedral cation X1 while the second one is through the interstitial 
site (solid yellow outline) edge-shared with the second-nearest octahedral M 
cation M2. The path curvature can then be described as minimizing the long-range 
interaction between the mobile Li ion and X cation by maximizing their 
interatomic distance through passage into the immediate interstitial site near the M 
cation. 
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Figure 3-6. DFT-derived Li ion migration (from position 1 to position 2) passing 
through an interstitial route in olivine-type LiInGeO4. Inset shows the projected 
view of the path with two possible routes: via tetrahedral site near X1 tetrahedron 
(dashed yellow outline) and via tetrahedral site near M2 octahedron (solid yellow 
outline). 
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To further understand the reason for the preference of Li between two 
conceivable paths (see Figure 3-5 inset), structural data related to the local 
environment of the path for several ICSD reported compositions are collected and 
plotted in Figure 3-7. The energy profiles for a migrating Li ion are displayed as 
well (panel a of Figure 3-7). As can be noticed, the Li−X1 distance (panel d in 
Figure 3-7), when Li is still at position 1, is 1 Å shorter than Li−M2. Another 
point is that the X1-related route has a face-shared interstitial site with the X1 
tetrahedron while the M2-related route has an edge-shared interstitial site with the 
M2 octahedron. With these factors, the X1-related route is expected to be 
energetically unfavorable owing to the expected increased Li−X Coulombic 
interaction from the decreasing Li−X1 distance and energy penalty of face sharing 
in that route. On the other hand, the interatomic distances for Li−O1 and Li−M2 
decrease up to path midway (see panels b and c in Figure 3-7). For Li−O1, the 
variation in the distance profile is relatively small which indicates that the Li 
octahedral cages are relatively unchanged at different M and X ions. For Li−M2, 
the variation is much more obvious, which could be directly attributed to the 
varying size and distortion of the M octahedron itself. The M3−X1 distance only 
showed a slight increase along the pathway (panel e in Figure 3-7). With the edge 
sharing of the intermediate tetrahedral pass with the M2 octahedron, the 
interaction of the mobile Li with the framework cation should be lesser than in the 
X2-related path. 
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Figure 3-7. Energy and interatomic distance profiles of ICSD-derived LiMXO4 
compositions (from NEB method) with (a) EA profiles and the corresponding 
nearest neighbor interatomic distances during Li ion migration ((b) Li−O1, (c) 
Li−M2, (d) Li−X1, and (e) M3−X1 distance profiles). 
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Establishing a sensible relationship between structure-related information 
and EA must be clarified at this point in order to justify the creation of a 
reasonable prediction model for the latter. One way to do this is by first 
investigating the correlation that exists between chemistry and structural variation. 
The Born effective charge calculation results are compiled in Table 3-1 for M-X 
combination taken from two elemental groups. It is confirmed here that the 
dynamic charge of the X cations is considerably smaller than their nominal charge, 
which confirms the strong covalent character of X−O bonds. For the M cation, the 
case is opposite where the actual charge tends to be larger than the nominal value. 
It would be related to the polarizability of M and the partially covalent interaction 
between M and O which is responsible for the anomalous effective charges and 
for the anisotropy observed in the oxygen charge tensor [28, 29]. For the Li cation, 
the dynamic charge is almost isotropic, which is reflective of its low polarizability 
and similarity with other oxides containing alkali metals [30]. It now becomes 
apparent that larger M tends to have higher polarizability and this could explain 
the observed M distortion and M off-centering (see Figure 3-4a). Also, M 
octahedron tends to have more distortion than the X tetrahedron. Since the 
pathway maximizes the Li−X1 distance by passing through an M2 edge shared 
interstitial site, the M octahedron distortion, as a function of M cation size, may 
have a direct influence on the Li migration path.  
 
Table 3-1. DFT-calculated Born effective (dynamic) charges of selected LiMXO4 
compositions. 

Composition Effective charge 
Li M X 

LiAlSiO4 +1.09 +3.06 +3.04 
LiAlGeO4 +1.10 +3.09 +3.21 
LiAlSnO4 +1.12 +3.01 +3.66 
LiGaSiO4 +1.11 +3.34 +3.05 
LiGaGeO4 +1.12 +3.38 +3.20 
LiGaSnO4 +1.14 +3.33 +3.59 
LiInSiO4 +1.12 +3.41 +2.94 
LiInGeO4 +1.14 +3.44 +3.10 
LiInSnO4 +1.15 +3.40 +3.33 

 
It is also worthwhile to check other factors that might directly affect the 
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value of EA. One of these other factors is the steric hindrance of the interstitial 
oxygen cage edge-shared with M2 octahedron. However, this factor cannot 
account for the variation in EA, since the change in Li−O distance with different 
M during Li migration is negligible (panel b in Figure 3-7). Another factor is the 
electrostatic repulsive interaction between Li and M2 (panel c in Figure 3-7) over 
the course of migration. This repulsive interaction increases as the interatomic 
distance of Li−M2 decreases at the transition state. In other words, EA increases 
with the reduction of the Li−M2 distance. However, the order of EA (panel a in 
Figure 3-7) seems to be independent of the Li−M2 distance (panel c in Figure 3-7). 
Therefore, the electrostatic repulsive interaction cannot be considered as the 
critical factor that affects EA. Another factor that can be taken into account is the 
local lattice distortion effect. To validate this claim, the local lattice distortion that 
accompanies the actual Li migration process must be quantified. This 
quasi-volume associated with the path for the migrating Li ion can be estimated 
from the sum of the polyhedral cages when a moving Li ion is at an initial stable 
site, when the Li ion is at the interstitial site near with M2, and when it is at the 
final position (see Figure 3-6). The path volumes at the initial state ( ) and the 
transition state ( ), respectively, are calculated as follows: 

            (3-10) 
            (3-11) 

where Vi and Vt are the quasi-volume of the path at the initial state and the 
transition state, respectively. The path volume is taken as the sum of Poly1, Poly2, 
and Poly3, which are the Li ion octahedron volume, interstitial tetrahedron 
volume, and neighboring octahedron Li vacancy volume, respectively, during the 
initial and transition state. The findings are given in Figure 3-8 (with the three 
polyhedrons shown in the inset) using Al-Ge, Ga-Ge, and In-Ge pairs. The volume 
difference  of the two states is shown to be positive and increasing 
with increasing M size, suggesting that Li-ion migration is accompanied by 
significant local lattice distortion. It also indicates that at larger M size, the degree 
of lattice distortion is increased. Such types of distortion usually involve an 
energy penalty and complements well with the observed EA variation. 
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Figure 3-8. Variation in the local lattice distortion along the Li-ion migration 
pathway expressed in terms of volume difference of the quasi-volume of the path 
between the transition state (mobile Li ion at interstitial site) and the initial state 
(before migration). Inset describes the path volume as the sum of the polyhedrons 
Poly1, Poly2, and Poly3. Large gray spheres in Poly1 and Poly2 depict Li ions 
while the small gray sphere in Poly3 depicts a Li vacancy. Poly1 is occupied with 
Li ion at the initial state and empty at the transition state. Poly2 is empty at the 
initial state and is occupied at the transition state. Sample pairs are Al−Ge, Ga−Ge, 
and In−Ge. 
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Among the ICSD compositions, the following are determined to be potential 

for solid electrolyte use: LiMgAsO4 (0.17 eV), LiScGeO4 (0.22 eV), LiInGeO4 
(0.28 eV), and LiMgPO4 (0.30 eV). In here, LiMgAsO4 and LiScGeO4 have not 
been investigated yet as battery materials. The composition LiInGeO4 has been 
evaluated theoretically by Rajkumar et al., with similar results [31]. The 
composition LiMgPO4 was electrochemically characterized by Fehr et al., with 
EA determined to be about 1.45 eV which is consistent with Li diffusion barrier 
with additional contribution for Li vacancy formation [32]. The present DFT EA 
values does not include this contribution. 

Towards a successful solid electrolyte candidate material, aside from EA, 
other factors must be evaluated as well. These are electrical conductivity, stability 
for forming the olivine framework, and vacancy content, which mediates Li ion 
hopping in the diffusion channel. Since the substituted M cations here are 
non-transition metals, electrical conduction should be minimal in all the 
investigated LiMXO4 compositions and the bulk of the conduction should 
originate mainly from the ionic component. In terms of stability, some of the 
compositions being sampled have experimental information in ICSD, some of 
which are calculated to have low EA values. These are LiInGeO4, LiScGeO4, 
LiMgPO4, and LiMgAsO4. Some of the non-reported olivine-type materials may 
be synthesized via hydrothermal methods or high-pressure conditions, and so on. 
For the vacancy creation in the Li channels, the introduction of aliovalent dopant 
cations either in the M or X site is suggested. Instances where large fractions of 
blockage in 1D diffusion in the olivine structure are observed, i.e., antisite defects 
could be dominated by mobility of other species which allow crossover between 
different 1D channels. Even with this alternative route, this blocking is likely to 
reduce the overall Li mobility as well [33]. 
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3-4-3. Prediction model building for EA 
DFT-based methods have been known to accurately determine structural 

parameters [34-36]. Leveraging on this, the entire olivine-type LiMXO4 search 
space (see Figure 3-2) is then calculated in order to extract structural information 
that can be used as input variables for EA model building. For use in supervision 
during model training, some of the stabilized compounds (15 M−X pairs) were 
then evaluated in terms of EA along the energetically favored b-axis by the NEB 
method [21]. The input variables extracted from DFT-relaxed unit cells can be 
categorized under the following: lattice parameters, Born effective charges, 
intra-polyhedron parameters, and inter-polyhedron parameters. 

The underlying assumption for the EA prediction model in this study is that 
the energy when a Li ion is in an activated state during migration depends on the 
surrounding configuration and can be described by the information of the 
stabilized lattice model with no diffusion computed by first principles. With this 
parameterization, rapid calculation of EA is achievable for any arbitrary 
composition. For simplicity, the different input variables in here will be hereafter 
called original variables (OVs). By linearly combining these variables, EA can be 
formalized as [37]: 

             (3-12) 
where EA represents the Li-ion hopping energy,  represents the OVs,  
represents the model coefficients describing the degree of contribution of each 
variable to the value of EA, and  is the intercept of the function, which can be 
determined directly from the model fit. Details regarding the OVs are listed in 
Table 3-2. Visual representation for the inter-polyhedron-based variables within 
the olivine structure is displayed in Figure 3-9. 
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Table 3-2. Description and code assignment for the different original variables 
taken from relaxed LiMXO4 unit cells. 

Symbol Description 
a lattice parameter a 
b lattice parameter b 
c lattice parameter c 
v unit cell volume 
b1 born effective charge of Li cation 
b2 born effective charge of octahedral M cation 
b3 born effective charge of tetrahedral X cation 
l1 average bond length of Li octahedron 
p1 polyhedral volume of Li octahedron 
i1 distortion index of Li octahedron 
e1 quadratic elongation of Li octahedron 
v1 bond angle variance of Li octahedron 
c1 effective coordination number of Li ion 
l2 average bond length of M octahedron 
p2 polyhedral volume of M octahedron 
i2 distortion index of M octahedron 
e2 quadratic elongation of M octahedron 
v2 bond angle variance of M octahedron 
c2 effective coordination number of M cation 
l3 average bond length of X tetrahedron 
p3 polyhedral volume of X tetrahedron 
i3 distortion index of X tetrahedron 
e3 quadratic elongation of X tetrahedron 
v3 bond angle variance of X tetrahedron 
c3 effective coordination number of X cation 
d1 Li octahedron-M octahedron distance at edge sharing 
d2 Li octahedron-X octahedron distance at edge sharing 
d3 M octahedron-X tetrahedron distance at edge sharing 
a1 Li-O-M angle at edge sharing 
a2 Li-O-X angle at edge sharing 
a3 M-Li-X angle at edge sharing 
d4 M octahedron-X tetrahedron distance at corner sharing 
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d5 Li octahedron-M octahedron distance at corner sharing 
d6 Li octahedron-X tetrahedron distance at corner sharing 
a4 M-O-X angle at corner sharing 
a5 Li-O-M angle at corner sharing 
a6 Li-O-X angle at corner sharing 
d7 M-M octahedron pair distance at corner sharing 
d8 M-M octahedron pair distance near midplane 
d9 M-M octahedron pair distance along diagonal axis 
a7 O-O-O angle at corner-shared M octahedron pair 
d0 X-X tetrahedron pair distance near midplane 

 
Figure 3-9. Inter-polyhedron parameters within the LiMXO4 unit cell that were 
used in EA model building. 
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In PLS modeling, the OVs are projected onto a new space to form latent 
variables (LVs) in that space. This procedure captures the multidimensional 
direction in this X space that can explain the maximum multidimensional variance 
direction in the EA space. The final model showed that 84.13% of the variation in 
the response variable Y (in this case, EA) can be explained by LV1 and 96.26% 
can be explained by three LVs (root-mean-square error, RMSE = 0.316). The fit of 
the model shown in Figure 3-10 shows good accordance between PLS and DFT. 
In other words, the use of linear function formalism is justified to reproduce the 
DFT EA. 

 

 
Figure 3-10. Fitting quality of PLS model-predicted EA for different LiMXO4 
compositions with respect to DFT EA values. Blue data points represent 
compositions with published experimental data in ICSD. 
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In order to validate the prediction model for EA, a test dataset was evaluated 
using compositions that were not included in the actual model building. The 
results are listed in Table 3-3 for the DFT-derived and PLS-derived EA values and 
their energy differences. Indeed, there is a significant predictive power based from 
the five tested samples, namely, LiAlSiO4, LiDyGeO4, LiYSiO4, LiHoSiO4, and 
LiSmGeO4. The energy difference between DFT and PLS results falls within 35 
meV. Among the compositions, LiAlSiO4 is of practical interest for experimental 
testing due to the low EA ( 0.2 eV) and cheap constituent elements. 
 
Table 3-3. Comparison of DFT-derived and PLS-derived EA values for M−X pairs 
which are excluded from the model building step. 

Composition EA (eV) 
DFT PLS difference 

LiAlSiO4 0.1958 0.2296 -0.03379 
LiDyGeO4 0.3366 0.3388 -0.00225 
LiYSiO4 0.5150 0.4824 -0.03253 

LiHoSiO4 0.4773 0.4552 +0.02526 
LiSmGeO4 0.3937 0.4190 -0.02526 

 
After model has been test and validate, EA prediction can now be performed 

for the rest of the LiMXO4 compositions. The results are displayed in Figure 3-11, 
with data points sorted according to the M and X ionic radii. The plot shows the 
dependence of the Li-ion hopping energy on the ionic size of M and X. An 
increase in the size of M increases the EA, whereas an increase in the size of X 
leads to a decrease in EA. Collectively, results from both DFT calculations and 
PLS predictions showed low EA values for small-sized Group 13 M cations (Al 
and Ga). Large-sized Group 2 cations (Sr and Ba) and most lanthanide ions gave 
large barrier energy values. With respect to our benchmark material, LiAlSiO4, 
LiAlGeO4, LiGaSiO4, LiGaGeO4 and LiGaSnO4 can be treated as candidate 
materials with predicted EA values of 0.23, 0.12, 0.28, 0.16, and 0.01 eV, 
respectively. From the standpoint of mineral resource abundance, compositions 
containing Al and Si should be regarded as a priority for new material synthesis. 
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Figure 3-11. PLS model-predicted EA for different LiMXO4 compositions sorted 
with respect to X cation type. 
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Since the prediction for EA was initially based on model training with 42 
OVs, it is apparent that analyzing the underlying structure of the PLS model 
becomes an arduous task. Therefore, OVs that are of low importance should be 
identified and removed from the model itself and this can be carried out by 
evaluating two important criteria: one is the OV absolute coefficients used to fit 
the DFT EA values and the other one is the parameter for variable importance in 
projection (VIP) for the LV construction [38]. The model coefficient plot and VIP 
plot for the reduced final model (only 33 OVs left) are illustrated in Figures 3-12a 
and 3-12b, respectively. In here, there is no appreciable change observed after 
deletion of unimportant OVs to the ordering of VIP between the first and the 
reduced final model. 
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Figure 3-12. (a) Model coefficient plot and (b) variable importance in projection 
(VIP) plot of the remaining 33 original variables for the final PLS model (9 
deleted unimportant variables). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

72 

Another merit of PLS-based modeling is the built-in procedure for deducing 
factors that directly affect the EA value from the list of OVs used. In the present 
model, major contributions to EA primarily came from M octahedron descriptors, 
as based on Figure 3-12, the three highest OVs are e2 – quadratic elongation for 
M octahedron, v2 – bond angle variance of the M octahedron, and a1 – Li−O−M 
angle at the edge-sharing octahedra along the diffusion channel. It is also worth 
noting that, according to the X-loading plots in Figure 3-13, LV1, which 
contributes the largest magnitude for EA, has been built from OVs that are also 
closely related to M octahedron descriptors. These agree well with our proposed 
crucial parameter for Li-ion migration, which is the local lattice distortion around 
the M octahedron. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
 

73 

 
Figure 3-13. X loading plots for the final PLS-derived model for EA showing 
contribution of the OVs to the three latent variables (LVs), namely: LV1 (X 
Loadings 1), LV2 (X Loadings 2), and LV3 (X Loadings 3), respectively.  
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3-5. Conclusions 

In summary, a robust model for the prediction of the Li ion hopping energies 
(EAs) within the olivine-type LiMXO4 search space was successfully formulated using 
a combination of ab initio-based methods and PLS technique. Specifically, the 
following results are determined in the study: 
1) An increase in the ionic size of M results in a significant distortion of the M 

octahedron, which, in turn, leads to an increase in the energy-penalizing local lattice 
distortion around the migration pathway and during the actual Li ion hop. 

2) Promising compositions with low EA values (< 0.30 eV) include ICSD-reported 
materials such as LiMgAsO4, LiScGeO4, LiInGeO4, and LiMgPO4, and virtual 
compositions such as Li(group 13)XO4 and LiCaXO4. 

3) Original variables (OVs) that have major contribution to the value of EA belong to 
M octahedron descriptors such as e2 – quadratic elongation for M octahedron, v2 – 
bond angle variance of the M octahedron, and a1 – Li−O−M angle at the 
edge-sharing octahedra along the diffusion channel. 
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3-6. Future work and direction 

The following points are the suggested for the future work of the study: 
1) Systematic survey of suitable dopants (low solution energies) for the identified 

candidate olivine-type LiMXO4 solid electrolytes in order to activate their intrinsic 
fast Li ion conduction. 

2) Computational phase stability studies of identified candidate olivine-type LiMXO4 
compositions. 
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Chapter 4. Multivariate method-assisted ab initio-based new material 
search of tavorite-type LiMXO4F solid electrolytes 

4-1. Background of the study 

Similar with Chapter 3, this study aims to find new solid electrolytes by taking 
inspiration from structural frameworks that forms naturally in the earth’s crust. Recent 
studies have reported tavorite-type structures as candidate battery materials [1-2]. This 
class of materials has the general formula AMTO4X, where A is occupied by an alkali or 
alkaline-earth element, M is a metal, T is a p-block element, and X can be any anion 
such as O, F, or OH. It is characterized by MO4X2 octahedron and TO4 tetrahedron that 
are alternately vertex-linked to form chains in one dimension. So far, most evaluated 
compositions in this group are those with transition metals that can form redox couples 
and were intended as cathodes [3-9]. Logical solid electrolyte candidates would be those 
analogs without transition metals such as LiAlPO4F and LiMgSO4F [10,11]. Figure 4-1 
shows the schematic view of the tavorite structure LiMXO4F. In this illustration, the Li 
cations are disordered at half occupancy in splitting sites within the framework tunnels 
defined by MO4F2 and PO4 polyhedra. At present, tavorite materials with nontransition 
metals have not yet been intensively investigated and their Li ionic conduction behavior 
is still poorly understood. So far, only the Li ion conduction in LiMgSO4F has been 
reported with experimental measurement, showing poor conductivity with an order of 
10-3 S/cm (~800 K) and activation energy of 0.94 eV [11]. 

This chapter deals with the efficient exploration of the tavorite-type LiMXO4F 
chemical search space by combining ab initio-based calculations and neural networks in 
order to determine compositions that are potential for solid electrolyte application in an 
all-solid state Li ion battery set-up. The search criterion will be based on the Li 
diffusion barrier of the representative bottleneck pathway within the tavorite framework. 
The compositions that will be evaluated would be based on main group M octahedral 
atoms (group 2, group 3, lanthanides, and group 13) and X tetrahedral atoms (group 15 
and group 16), leading to, again, a total of 72 compositions. 
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Figure 4-1. Schematic view of the tavorite structure. Green/white spheres are half 
occupied Li/vacancy atoms arranged in a zigzag manner along the a-channel, light gray 
octahedra are MO4F2 units, and dark gray tetrahedra are XO4 units. 
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4-2. Multivariate method: neural network (NN) analysis 

Another information processing or prediction modeling tool is the neural network 
(NN) method. It mimics the learning process of the human brain with its interconnected 
assembly of simple processing elements called neurons or nodes. The processing ability 
of the network is stored in connection weights obtained by a process of learning from a 
set of training patterns. A typical NN architecture is the single hidden layer feed-forward 
NN described by the statistical formula: 

          (4-1) 

where  is the predicted dependent or response variable set,  and  are the 
activation functions,  and  are the intercept values (constant) in the model,  
and  are the connection weights for the hidden output layers and response output 
layers, respectively, and  is the independent or input variable set. In the hidden and 
output layers, the inputs for the basis functions are given by: 

 and                    (4-2) 

,                    (4-3) 
respectively. One of the learning algorithms employed is the back-propagation 
technique. This approach compares the network output to the target output, and the 
randomly initialized weights are updated accordingly in the direction so as to reduce the 
error between them. The forward pass generates the network’s output activities and is 
generally the least computation-intensive but the more time consuming backward pass 
involves propagating the error initially found in the output node back through the 
network to assign errors to each preceding nodes that contributed to the initial error; the 
goal here is to minimize this error value summation until a predetermined threshold is 
met: 

                          (4-4) 
                          (4-5) 

where e is the actual error and E is the sum of square error for the target output value y. 
From here, the weights w2kl at the hidden layer are updated by gradient descent based on 
the calculated El. Applying chain rule: 

       (4-6). 
Equation 4-6 can be simplified with: 

                          (4-7) 
                         (4-8) 

                (4-9) 
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                     (4-10) 
Thus, the change in El with respect to w2kl becomes: 

                 (4-11) 
From equation 11, the weights can be updated by: 

     (4-12) 
with the local gradient at the node: 

                         (4-13) 
where Δw2kl is the weight change from hidden layer node k to output layer node l, η is 
the learning rate which much be 0 < η ≤ 1, and δl is the local gradient at the output layer 
node l. Meanwhile, the local gradient δk for the hidden layer nodes can be derived as: 

          (4-14) 
With El taken from the output layer: 

                       (4-15) 
The derivative ∂El/∂σ(1)(vk) can be evaluated as: 

          (4-16) 
where: 

          (4-17) 
and at a particular single node at the output layer: 

         (4-18). 
Parallel with equation 15, the expression becomes: 

          (4-19). 
Applying equation 19 to 14: 

                     (4-20) 
Finally, the weights for hidden layer are updated similar to equation 11 by: 

                     (4-21). 
Figure 4-2 shows the schematic outline of a three-layer feed-forward NN architecture 
[12]. 
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Figure 4-2. A three layer ( ) feedforward neural network architecture. The 
circles are assigned as computational nodes which integrate input from the 
preceding layer and transmit a signal to the next layer. Arrows represent weighted 
connections (  and ) between nodes. Modulation of incoming signals is 
carried out by activation functions . 
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4-3. Computational details 

Atomistic modeling was initialized within the density functional theory (DFT) 
framework using projected augmented wave (PAW) method [13] as implemented in 
Vienna Ab Initio Simulation Package (VASP) [14]. Standard generalized gradient 
approximation (GGA) using the parametrization of Perdew−Burke−Ernzernhof for 
solids (PBEsol) was used for the exchange correlation energy [15]. Published structural 
information on experimentally synthesized ordered tavorite compounds were taken from 
the Inorganic Crystal Structure Database (ICSD) [16]. For the virtual compositions, the 
coordinate set from the reported ones were used as template for the subsequent 
relaxation and evaluation of Li diffusion barrier. Figure 4-3 shows the different M-X 
pairs considered in the study. Spin-polarized calculation with an energy cutoff of 500 eV 
was carried out and allowed the total energies to converged within 3 meV per formula 
unit (f. u.). A 5 × 4 × 3 Monkhorst-Pack kpoint grid in a 16-atom unit cell showed a 
reasonable convergence and an error of <1 meV/f. u. in the total energy. Berry phase 
method was used for the Born effective charge calculation in order to evaluate 
ionicity/covalency of cation bonds [17]. The nudged-elastic-band (NEB) method [18] 
was used to determine migration pathway and energy; the calculation was done with a 1 
× 2 × 2 supercell. Numerical integration was performed over the Brillouin zone by 
sampling the Γ-point. Convergence was determined to be within 30 meV/f. u. 

For the NN architecture, a single hidden layer network with 3 hidden nodes and a 
single external attribute (EA) is evolved with a fixed learning rate of η = 0.1 [19]. The 
partition for the training set is 2/3 of the total sampled compositions and the remaining 
1/3 is allocated for the validation set. The training order (combinations for the training 
and validation sets) is randomly varied for 6 times during the model building step. 
About 20 compositions are initially used for EA sampling. The data set is preprocessed 
by standardization (mean = 0 and standard deviation = 1) to equalize the scaling; this 
allows the assignment of the excitatory or inhibitory effects to the correct outputs. 

A hyperbolic tangent function is used for node activation [20]: 
,                  (4-22) 

where v is described in equations 4-2 and 4-3. This transforms values between -1 and 1, 
and is the centered and scaled form of the logistic function. In order to mitigate the 
overfitting and ensure that the final model can be generalized to cases it has not been 
trained on, a penalty term for the error function is introduced during training using the 
expression [21]: 

,                     (4-23) 
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where P is the penalty function, λ is a small positive weight decay constant based on the 
generalization error derived using the first validation set, p(βi) is the function of the 
parameter estimates, and βi is the weight for i neural nodes, which includes that for the 
hidden and output layers. The absolute penalty function is used with p(βi) [22], 

.                       (4-24) 
Because there is no a priori knowledge of the number of local minima on the error 

landscape [23], it is crucial that sufficient sampling is conducted aside from varying the 
training order. Therefore, the fitting process is restarted 10,000 times for each training 
order and using different random starting points for the node weights. The penalty 
function (equation 7) ensures that variables which contribute more than the others to the 
predictive ability of the model are weighted more, whereas the other functions are 
reduced to zero. Hence, this term can also minimize the influence of highly collinear 
variables on the final model.  
During training and out-of-sample validation, the models are evaluated using the 
coefficient of determination, R2, which is the proportion of the variability in a data set 
that is accounted for by the statistical model, and the root mean square error (RMSE), 
which is the difference between the values predicted by the model and the values 
actually observed. The equations describing R2 and RMSE are as follows: 

             (4-25), 
                 (4-26), 

where yi is the accurate DFT external attributes (EA, CE), ŷi is the external attributes 
predicted by multivariate modeling, and ȳ is the mean external attribute values, for n 
samples. The calculated RMSE is also called the cross-validation (CV) score for the 
out-of-sampling estimates. The convergence criterion is set relative to the change in the 
value of the objective function, stopping the iteration when the error falls below 10-8 eV. 
The run with the best validation statistic is then chosen as the final model. 

The causal index (CI) method [24] is used for analyzing input variable relevance. 
The CI method is a qualitative, heuristic approach for rule extraction, expressed by 

,             (4-27) 
where h is the number of hidden nodes, wlk are weights linking the hidden node k to the 
output node l, and wkj are the weights linking input node j to hidden node k. The indices 
reveal the direction (positive or negative) and relative contribution of each input 
variable to a given output. 
 
 
 



 

 
 

85 

 

 

Figure 4-3. Sampling of the tavorite-type LiMXO4F search space. 
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4-4. Results and discussion 

4-4-1. Structural variation across the tavorite-type LiMXO4F search space 
Figure 4-4a shows the direct relationship between the unit-cell volume and 

the ionic size (Shannon radii) of the inserted cations in both the M and X sites. 
Except for lattice parameter a, a strong positive correlation is observed for volume, 
b, and c with M ionic size. The largest volume was determined for LiBaTeO4F 
(250.37 Å3), and the smallest volume was found for LiAlPO4F (159.04 Å3). The 
main cluster of data points from 0.88 – 1.03 Å M ionic size belongs to pairs 
containing rare-earth cations. However, an exception within this cluster of points 
is noticeable, i.e., a discontinuity in the trend is observed for compositions 
containing the elements of the second half of the rare earth cation group and Sb 
tetrahedral cation. This can be attributed to the severe distortion in these 
aforementioned compositions due to the simultaneous accommodation of 
large-sized M and X cations. As a consequence, their symmetry may have already 
diverge from a typical tavorite configuration. For example, structural relaxation of 
LiLaSbO4F, a terminal point in the cluster of rare earth-containing compositions, 
has led to Sb5+ which is supposed to assume a tetrahedral coordination has moved 
significantly so that it is now in either a five-fold or six-fold instead coordination. 
Looking into the component lattice parameter values, the increasing trend found 
in cell volume with increasing M ionic size for the majority of compositions can 
be traced back to lattice parameters b and c. Meanwhile, the discontinuous plot in 
cell volume is noted to be primarily contributed by lattice parameter c.  
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Figure 4-4. Structural data across the olivine LiMXO4F search space: (a) cell 
volume, (b) lattice parameter a, (c) lattice parameter b, and (d) lattice parameter c 
of the DFT-relaxed structures, sorted according to X tetrahedral cation. 
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4-4-2. Li ion diffusion within the tavorite framework 

The Li ion hopping energy (EA) criterion is again used in the subsequent 
analysis and evaluation of the tavorite LiMXO4F space. For this, it is necessary 
that the different main pathways for Li migration in the tavorite structure are 
investigated first in order to draw conclusions as to which pathway(s) can be used 
as representative(s) for the calculation of EA. In connection to this, two 
compositions are studied, namely: LiAlPO4F and LiMgSO4F; these two materials 
are reported in the ICSD database. The relevant pathways are shown in Figures 
4-5a and 4-5b, respectively. Upon inspection, four paths are needed for a complete 
connectivity and Li long-range diffusion along the open tunnels of the tavorite 
structure. These paths can be characterized as XO4-XO4 tetrahedral face pair 
sandwich path (path 1 in Fig. 4-5a, path 1 in Fig. 4-5b, path 4 in Fig. 4-5a, path 3 
in Fig. 4-5b) and MO4F2-MO4F2 octahedral face pair sandwich path (path 2 in Fig. 
4-5a, path 2 in Fig. 4-5b, path 3 in Fig. 4-5a, path 4 in Fig. 4-5b). Starting at one 
Li site, there are four neighboring unique jump sites are available for a moving Li, 
i.e., two along [100] and another two along [010]. When the energy profiles of 
these paths are plotted, a comparison can be made in order to identify highly 
unlikely paths, bottleneck paths, and highly favorable paths. The results are 
displayed in Fig. 4-5 for the two investigated materials. The potential energies at 
several points along the projected migration distance are plotted and the highest 
point determines the value of EA for a particular path. In both LiAlPO4F and 
LiMgSO4F, the pathway which passes the XO4-XO4 tetrahedral face pair 
sandwich are found out to be strongly penalized for Li migration due to the high 
EA values (0.89-1.34 eV) while the pathway via MO4F2-MO4F2 octahedral face 
pair sandwich has lower EA values (<0.55 eV). This suggests that Li mobility 
should proceed mainly in one dimension (1D), i.e., path 2-path 3-path2-… zigzag 
along [001] in LiAlPO4F (Fig. 4-4a) and path 2-path 4-path 2-… zigzag along 
[111] in LiMgSO4F (Fig. 4-4b). In addition, the bottleneck of this 1D pathway is 
determined by path 2 in both compositions with values of 0.55 and 0.20 eV, 
respectively. The difference in the estimated EA in the two topologically identical 
paths (path 2 and path 3 in LiAlPO4F, path 2 and path 4 in LiMgSO4F) comprising 
the 1D channel can be ascribed to the staggered configuration of MO4F2 octahedra 
that delimits cavities and the Li disordering between two half-occupied sites. 
Interestingly enough, this 1D-type diffusion is also observed in olivine-type 
materials [25-26], particularly the LiFePO4 composition which is reported to 
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demonstrate ultrafast charging and discharging capabilities [27]. 
 

 
Figure 4-5. Planar view on a) (100) plane and b) (011) plane for the tavorite 
structure. Possible Li paths are shown as colored dashed lines. The local 
environment can be distinguished as passing through: c) XO4-XO4 tetrahedral pair 
(path 1 and path 4) or d) MO4F2-MO4F2 octahedral pair (path 2 and path 3). 
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Figure 4-6. Energy profiles of ICSD-derived LiMXO4F compositions (from NEB 
method). 

 
Preliminary analysis of the crucial factors for EA within the tavorite 

structure is carried out using the ICSD-reported LiAlPO4F and LiMgSO4F. The 
simple increase in local tunnel size (from AlO4F2 pair to MgO4F2 pair) should 
decrease the short-range repulsive interaction arising from electron cloud overlap 
in the jump vicinity; Al-Al and Mg-Mg distances for the bottleneck path 2 are 
5.15 and 5.41 Å, respectively. Another factor is the effect of strong bond 
directionality in XO4 tetrahedra (from PO4 to SO4). Table 4-1 highlights the Born 
effective charge tensor data for the cations in LiAlPO4F and LiMgSO4F. Nominal 
charges of Li, M, and X are +1, +3 (+2), and +5 (+6), respectively. For Li and M 
cation, Born effective charges (diagonal values) are relatively close to their 
nominal values which suggest strong ionic character of the Li/M-O bond. For Li 
cation, the charge is almost isotropic which is reflective of its low polarizability 
[28]. For M cation, the average effective charge is higher than its nominal charge 
and this can be owed to the polarizability of M and its partial covalent interaction 
with the oxide ion [29-30]. However, this is not the case for X cation in which the 
effective charge is significantly lower than nominal charge; this case indicates 
strong covalency in the X-O bond [31-32]. Tuning this covalency of the bonds in 
the polyanion may increase anion electronic polarizability and may reduce 
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Coulombic interaction effect between Li ion and the lattice. With the lower 
average Born effective charge for S6+ cation in (SO4)2- than in P5+ cation (PO4)3- 
polyanion relative to their nominal charges, the former is expected to have a 
stronger covalent character than the latter for bonding with oxide ion. Also, this 
degree of covalency in S-O bond should minimize more the interaction for the 
migrating Li with the lattice as the electron cloud from oxide ion in MO4F2 (c.f. 
path 2) are drawn more towards (SO4)2- polyanion. This bond directionality 
should then as well directly affect sterically the MO4F2 octahedra via 
displacement of common and corner-shared oxide ions. Hence, weighing among 
the two factors mentioned for the two investigated materials, polyanion covalency 
is suggested as one of the major contributors towards EA variation. 

 
Table 4-1. DFT-calculated Born effective (dynamic) charge (a. u.) tensors for 
cations in tavorite-type LiAlPO4F and LiMgSO4F. 

LiAlPO4F LiMgSO4F 
Li 1.24 -0.04 0.04 Li 1.28 -0.02 -0.03 

-0.07 1.12 0.06 -0.08 1.03 -0.07 
0.04 0.09 1.06 -0.10 -0.07 1.07 

Al1 3.60 0.05 0.15 Mg1 2.51 -0.02 -0.14 
0.11 2.84 -0.06 0.10 1.99 0.07 
-0.11 -0.46 3.04 0.14 0.41 2.17 

Al2 2.64 -0.18 -0.03 Mg2 1.84 -0.14 0.04 
-0.02 3.70 -0.11 -0.03 2.64 0.13 
-0.37 0.12 3.17 0.31 -0.05 2.08 

P 3.36 -0.04 -0.32 S 3.33 -0.02 0.26 
-0.12 3.24 -0.07 -0.08 3.08 0.04 
-0.08 -0.02 3.33 0.07 -0.01 3.27 

 
 
 
 
 
 
 
 
 



 

 
 

92 

The relevant equation for the Li ion diffusion coefficient for Li ion jumpis 
given by the equation [33-34]: 

              (4-28) 

where  is a geometric factor which is assumed to be unity,  is the Li ion 
jump pre-exponential factor which can be estimated by analyzing the potential 
profile curvature,  is the specific jump distance,  is the Boltzmann’s constant, 
and  is the temperature of the system. Assuming  = 300 K, diffusion 
coefficient values for path 2 is around 10-12 and 10-5 cm2/s for LiAlPO4F and 
LiMgSO4F, respectively. These are also comparable with experimental 
measurements for a typical LiCoO2 cathode which is in the range 10-11 – 10-13 
cm2/s [35-36]. A similar tendency is reported as well in previous studies 
conducted for transition metal-based tavorites [8, 9]. However, ME by impedance 
spectroscopy for LiMgSO4F was reported to be about 0.94 eV [11] which is 
sufficiently larger than the calculated bulk ME of 0.20 eV. This may be due to the 
following factors: i) some intrinsic defects which may cause blocking effects on 
the conduction path such as Li-M anti-site pair, or ii) penalty arising from Li 
vacancy creation which may be is a prerequisite before the actual Li ion 
conduction process could occur. As a whole, the conduction mechanism should be 
close to the predicted one and ME should be dominated by contribution from Li 
vacancy creation in conductivity measurements [37]. It may be beneficial to dope 
with aliovalent cations, targeting the M octahedral site in order to increase Li 
vacancies. Candidate dopants would be similar sized cations (≤ 1.15 factor of 
radius) such as Si4+ (0.4 Å), and Ge4+ (0.53 Å) for Al3+ (0.54 Å) and Sc3+ (0.75 Å), 
Al3+ (0.54 Å), Ga3+ (0.62 Å), and In3+ (0.8 Å) for Mg2+ (0.72 Å). We intend to 
carry out this doping strategy in order to activate the predicted bulk Li 
conductivity in these materials. 
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4-4-3. Prediction model building for EA 
Structural information-related variables are extracted for the entire 

tavorite-type LiMXO4F search space (see Figure 3-2) for EA model building. For 
model training supervision, NEB-derived EA values based on the identified 
bottleneck pathway (path 2, see section 4-4-2) for a sample of stabilized 
compounds (20 M−X pairs) were calculated. The input variables extracted from 
DFT-relaxed unit cells can be categorized under the following: lattice parameters, 
Bader charges, Born effective charges, intra-polyhedron parameters, and 
inter-polyhedron parameters. For simplicity, the different input variables in here 
will be hereafter called original variables (OVs). The formalism for EA can then 
be constructed by neural network; for a model with a single hidden layer, the 
equation is similar to equation 4-1: 

.      (4-29) 

Details regarding the OVs are listed in Table 4-2. Visual representation for the 
inter-polyhedron-based variables within the tavorite structure is displayed in 
Figure 4-6. 
 
Table 4-2. Description and code assignment for the different original variables 
taken from relaxed LiMXO4F unit cells. 

Symbol Description 
a lattice parameter a 
b lattice parameter b 
c lattice parameter c 

alpha lattice angle alpha 
beta lattice angle beta 

gamma lattice angle gamma 
Volume unit cell volume 
bader1 M1 cation Bader charge 
bader2 M2 cation Bader charge 
bader3 X1 cation Bader charge 
bader4 X2 cation Bader charge 
bader5 O1 anion Bader charge 
bader6 O2 anion Bader charge 
bader7 O3 anion Bader charge 
bader8 O4 anion Bader charge 
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bader9 O5 anion Bader charge 
bader10 O6 anion Bader charge 
bader11 O7 anion Bader charge 
bader12 O8 anion Bader charge 
bader13 F1 anion Bader charge 
bader14 F2 anion Bader charge 
bader15 Li1 cation Bader charge 
bader16 Li1 cation Bader charge 

b1 M1 cation Born effective charge 
b2 M2 cation Born effective charge 
b3 X1 cation Born effective charge 
b4 X2 cation Born effective charge 
b5 O1 anion Born effective charge 
b6 O2 anion Born effective charge 
b7 O3 anion Born effective charge 
b8 O4 anion Born effective charge 
b9 O5 anion Born effective charge 

b10 O6 anion Born effective charge 
b11 O7 anion Born effective charge 
b12 O8 anion Born effective charge 
b13 F1 anion Born effective charge 
b14 F2 anion Born effective charge 
b15 Li1 cation Born effective charge 
b16 Li1 cation Born effective charge 
avl1 average bond length of Li1 octahedron 
pv1 polyhedral volume of Li1 octahedron 
di1 distortion index of Li1 octahedron 
qe1 quadratic elongation of Li1 octahedron 

bav1 bond angle variance of Li1 octahedron 
ecn1 effective coordination number of Li1 ion 
avl2 average bond length of Li2 octahedron 
pv2 polyhedral volume of Li2 octahedron 
di2 distortion index of Li2 octahedron 
qe2 quadratic elongation of Li2 octahedron 

bav2 bond angle variance of Li2 octahedron 
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ecn2 effective coordination number of Li2 cation 
avl3 average bond length of M1 octahedron 
pv3 polyhedral volume of M1 octahedron 
di3 distortion index of M1 octahedron 
qe3 quadratic elongation of M1 octahedron 
bav3 bond angle variance of M1 octahedron 
ecn3 effective coordination number of M1 cation 
avl4 average bond length of M2 octahedron 
pv4 polyhedral volume of M2 octahedron 
di4 distortion index of M2 octahedron 
qe4 quadratic elongation of M2 octahedron 
bav4 bond angle variance of M2 octahedron 
ecn4 effective coordination number of M2 cation 
avl5 average bond length of X1 tetrahedron 
pv5 polyhedral volume of X1 tetrahedron 
di5 distortion index of X1 tetrahedron 
qe5 quadratic elongation of X1 tetrahedron 
bav5 bond angle variance of X1 tetrahedron 
ecn5 effective coordination number of X1 cation 
avl6 average bond length of X2 tetrahedron 
pv6 polyhedral volume of X2 tetrahedron 
di6 distortion index of X2 tetrahedron 
qe6 quadratic elongation of X2 tetrahedron 
bav6 bond angle variance of X2 tetrahedron 
ecn6 effective coordination number of X2 cation 
inter1 M2-F2-M1 angle 
inter2 M2-O2-Li1 angle 
inter3 M2-O2-X2 angle 
inter4 M1-F1-M2 angle 
inter5 F1-F2-F1’ angle (F1’ at mirror unit cell) 
inter6 M2-F2-Li2 angle 
inter7 M1-F2-Li2 angle 
inter8 M2-M2’ distance (M2’ at mirror unit cell) 
inter9 M2-M2 distance, third nearest neighbor M2 

inter10 M2-X1 distance 



 

 
 

96

 
Figure 4-7. Inter-polyhedron parameters within the LiMXO4F unit cell that were 
used in EA model building (see Table 4-2 for description). Atoms with highlighted 
‘+’ sign within the unit cell form the basis for a particular parameter. 
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In the present NN modeling, the OVs are linearly combined and squashed 
by a sigmoid function to form the latent variables (LVs) for the hidden layer 
which are in turn linearly combined again and squashed to predict the value of the 
target variable EA. Figure 4-8 depicts the network predictive capability of the 85 
(OVs) – 3 (hidden layer nodes) – 1 (EA) layout NN models. The random holdback 
partitioning was carried out 6 times in order to sample different combinations of 
training and validation sets. Based on the collected validation statistics, EA for 
pre-determined bottleneck pathway within the tavorite LiMXO4F structure can be 
reasonably predicted by using 3 hidden layer nodes as shown by the best model 
(DN4); the validation step metrics are R2 = 0.98 and RMSE = 5.27 x 10-2 eV, 
respectively. The fitting quality for the training and validation steps for the final 
NN model is shown in Fig. 4-9. 
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Figure 4-8. Validation statistics for 3-hidden-node NN-based EA prediction 
models with different training orders (combination of training and validation sets): 
(a) coefficient of determination R2 and (b) RMSE values during training (in red) 
and validation (in blue). 
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Figure 4-9. Fitting quality of the final NN model (DN4) for EA prediction during 
a) training and b) validation steps, respectively. Blue points represent composition 
with published experimental data in ICSD. 
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Once an acceptable EA prediction model from NN training and validation is 
determined, EA values for the rest of the compositions can now be predicted at a 
stroke. Figure 4-8 plots the predicted EA values of the sampled compositions 
which are sorted according to X cation type. An obvious observation here is the 
poor correlation of EA with both M and X ionic size parameter. For the screening 
procedure, candidate materials are determined if their EA values could satisfy the 
limit condition ≤ 0.30 eV; this is based on the activation energy of perovskite-type 
(Li, La)TiO3 which has one of the highest experimental Li ion conductivity value 
of all the oxides (1 × 10-3 S/cm at 300 K) [38]. Promising compositions, as 
predicted by the model, include LiGaPO4F (0.10 eV), LiGdPO4F (0.30 eV), 
LiNdSbO4F (0.15 eV), LiPrSbO4F (0.23 eV), LiCeSbO4F (0.10 eV), LiLaSbO4F 
(0.20 eV), LiMgSO4F (0.20 eV), LiSrTeO4F (0.10 eV), and LiBaSO4F (0.10 eV). 
Among these, only the composition LiMgSO4F (#281119) has been documented 
in ICSD while the rest are novel compositions.  
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Figure 4-10. NN model-predicted EA for different LiMXO4F compositions sorted 
with respect to X cation type. 
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Aside from the screening of the LiMXO4F search space, as a part of further 
characterization, it is also worthwhile to determine the degree of association of the 
OVs to the value of EA since these insights are especially useful when 
formulating motivations during material design. NN model incorporates 
interactions, as necessary, and detecting and interpreting them would not be 
straightforward due to nonlinearity effects from sigmoid function activation. To 
qualitatively assess specific interactions, the causal index (CI) plot for the final 
NN model (DN4) for EA is constructed as displayed in Figure 4-9. In the figure, 
the main increase in EA is attributed, and by far the largest, to the increase in 
variable ecn4 (effective coordination number of M cation) with CI value of +2.48 
while the main decrease in EA is contributed by the variable di4 (distortion index 
of the M octahedron) with CI value of -3.15. The strong interaction effects of 
these two variables with EA can be rationalized by the fact that both of them are 
direct descriptors of the evaluated path which passes through the MO4F2-MO4F2 
octahedral face pair (see Figure 4-5d). Meanwhile, contributions from the 
majority of OVs that belong to ion Bader charges (CI values in the range -0.60 – 
+0.95) and ion Born effective charges (CI values in the range -0.73 – +0.60) are 
noticeably small, this implies some multicollinearity issues among them, thus 
leading their weights to be eventually dragged down near to zero by the imposed 
penalty term (equation 4-23) during the error minimization step. In addition, OVs 
which are non-varying within the search space of interest are essentially pruned as 
well in the final model by the said penalty term. An example of this is the Bader 
charge for Li cations (bader15 and bader16 with CI values of -0.11 and +0.16, 
respectively), which essentially remained as +1 for all compositions. The 
reduction of the CI values for the strongly collinear and unimportant inputs is a 
crucial feature of the present NN model.  
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Figure 4-11. Causal index plot of 85 original variables (OVs) taken from the final 
NN prediction model (DN4) for EA (see Table 4-2 for OV description). 
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4-5. Conclusions 

In summary, a robust model for the prediction of the Li ion hopping energies 
(EAs) within the tavorite-type LiMXO4F search space was successfully formulated 
using a combination of ab initio-based methods and NN technique. Specifically, the 
following results are determined in the study: 
1) The strong degree of covalency in the X-O bond which minimizes the interaction for 

the migrating Li with the lattice, as the electron cloud from oxide ion in MO4X2 (c.f. 
path 2) are drawn more towards (XO4)2- polyanion, is suggested as one of the 
critical factors to EA variation. 

2) Promising compositions with low EA values (< 0.30 eV) include the ICSD-reported 
material LiMgSO4F (0.20 eV), and novel compositions such as LiGaPO4F (0.10 eV), 
LiGdPO4F (0.30 eV), LiNdSbO4F (0.15 eV), LiPrSbO4F (0.23 eV), LiCeSbO4F 
(0.10 eV), LiLaSbO4F (0.20 eV), LiSrTeO4F (0.10 eV), and LiBaSO4F (0.10 eV). 

3) The main increase in EA is attributed to the increase in variable ecn4 (effective 
coordination number of M cation) while the main decrease in EA is contributed by 
the variable di4 (distortion index of the M octahedron). 
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4-6. Future work and direction 

The following points are the suggested for the future work of the study: 
1) Systematic survey of suitable dopants (low solution energies) for the identified 

candidate tavorite-type LiMXO4F solid electrolytes in order to activate their 
intrinsic fast Li ion conduction. 

2) Computational phase stability studies of identified candidate tavorite-type 
LiMXO4F compositions. 
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Chapter 5. Summary 

5-1. Significance of this thesis 

Oftentimes, it takes years of research efforts to identify a suitable material for an 

intended application and optimize it for commercial use. The battery field is no 

exception to this and progress has been indeed slow due to the vast combinatorial space 

of chemistries involved in materials design. This thesis develops and argues solutions 

that would promote a paradigm shift in new battery materials discovery, selection, and 

evaluation by replacing the conventional trial-and-error approach with more targeted 

search procedures driven by ab initio-based computational modeling and materials 

informatics. The first topic in this thesis introduces a method of finding the most stable 

structure for a given starting composition without any a priori assumption about the 

structure itself (except for the elemental constituents); this is the so-called 

composition-to-structure path solution to materials design. The second topic deals with 

screening large chemical search spaces of a given structure with a target property-based 

criterion; this can be referred to as the property-to-composition path solution. These 

studies highlight solutions to the previously mentioned demerits (see Table 2, section 

1-4 of Chapter 1) regarding composition-to-structure and property-to-composition 

(structure) paths related to new materials search. Overall, the solutions implemented can 

be easily extended to other systems. 

 

5-2. Achievement of this thesis 

In Chapter 2, the evolutionary approach for exploring energy landscapes has been 

successfully used to determine thermodynamic global minimum and local minimum 

energy structures for a given composition in cathode LixCoO2. Thermodynamic ground 

states at x = 1 (layered O3 structure) and x = 0.5 (spinel structure), which have been 

confirmed experimentally and are reported, were successfully predicted, thus validating 

the reliability of the present approach. Moreover, new and unreported phases below x < 

0.5 were predicted to be thermodynamically stable configurations. These phases are 
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characterized by 1x1 (rutile-like), 1x2 (ramsdellite-like), and 1x3 (ramsdellite-like) 

tunnels for Li atoms. Also, the method can systematically study reaction routes which 

could be critical for battery operation.  

Meanwhile, chapters 3 and 4 demonstrated the efficient screening of the olivine 

LiMXO4 and the tavorite LiMXO4F search spaces, respectively, for solid electrolyte 

application. In those chapters, accurate ab initio-based calculations were combined with 

materials informatics in order to build a target property-based prediction model within a 

reasonable tradeoff in accuracy. The search criterion used is a material property which is 

crucial for Li ionic conductivity: the Li ion hopping energy (EA). According to the 

trained and validated prediction models, potential solid electrolytes (<0.30 eV) within 

the LiMXO4 search space include LiMgAsO4, LiScGeO4, LiInGeO4, and LiMgPO4, and 

virtual compositions such as Li(group 13)XO4 and LiCaXO4. For the LiMXO4F search 

space, promising compositions are LiGaPO4F, LiGdPO4F, LiNdSbO4, LiPrSbO4F, 

LiCeSbO4F, LiLaSbO4F, LiSrTeO4F, and LiBaSO4F. In addition, the specific methods 

used (multivariate partial least squares and neural networks) also offer another 

advantage, i.e., the transformation of high dimensional structure-related data into a 

human readable form that could provide useful insights that could be tested and checked 

during materials design. 

 

5-3. Future directions of this work 

Ultimately, it would be beneficial if a database that organizes the generated and 

future data from the implementations introduced in this thesis can be constructed and 

made accessible to the battery community. This collection of materials datasets have the 

potential to extend its reach and application to other communities and could promote 

new collaborative approaches for materials discovery, selection, and evaluation. Also, 

this database should allow its users to contribute back to spur rapid development. This 

can be done by: i.) opening a web-based forum where users can freely interact and 

exchange information, ii.) being able to report issues or errors, and iii.) developing tools 

for analysis and data extraction and interfacing them with the database. 
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Meanwhile, it is also important to highlight some of the limitations and 

disadvantages of the proposed schemes in this thesis work that needs to be addressed in 

the future. 

 

In Chapter 2, the following issues need to be addressed: 

1) One of the restrictions for the combined ab initio method + evolutionary algorithm 

is the dimensionality itself. Although the energy calculation part is sufficiently 

accurate with ab initio method, this level of accuracy has the drawback of increasing 

computational time. Hence, the approach works well with dimensionalities below 

100-200, beyond that the curse of dimensionality becomes increasingly dominant. 

2) Since one of the main search criteria for the most stable configuration is the degree 

of order of the structure, ab initio + evolutionary algorithm finds it difficult to 

predict aperiodic and disordered systems. 

3) Energy landscapes with an overall shape such as single-funnel landscapes are much 

more amenable for evolutionary method than multifunnel or, even worse, featureless 

energy landscapes. 

 

In chapters 3 and 4, the following issue needs to be addressed: 

1) The combined ab initio + materials informatics approaches developed in this thesis 

work is limited to the compositional search or screening from a given host structure 

and cannot be used for the simultaneous evaluation of multiple structure types or 

partial substitutions. New techniques should be developed for such purposes. 
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Appendix [1-3] 

The use of computational modeling has become important in increasing the basic 

understanding not only of underlying scientific phenomena in any given experimental 

findings, but also of various fundamental processes and chemical reactions. Figure S-1 

shows the hierarchy in lengthscales and timescales of different computational methods 

that are currently employed for simulating materials. At the order of 10-10 m (1 Å) and 

10-15 – 10-12 s (fs to ps), ab initio calculation in DFT framework provides relevant 

predictions of crystal structure, electronic energetics, and vibrational frequencies. This 

complements the explanation of temperature and concentration dependence of chemical 

reaction rates (transition state theory) and atomistic molecular dynamics of materials 

which commonly proceed in the range of 10-9 to 10-6 m (nm to μm) and 10-9 to 10-6 s (ns 

to μs). Subsequently, access to rate constants and thermodynamic properties allows for 

macroscopic scale studies (e.g., local microstructures and system morphologies) with 

standard analytical continuum approaches such as microkinetics, kinetic Monte Carlo, 

and transport modeling. Finally, these methods operating at larger lengthscales and 

timescales reveal mechanistic insights and offers validation into the actual performance 

observed from the material of interest. 
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Figure S-1. Computational methods at different timescales and lengthscales for 

simulating battery materials. 
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1-2-1. Ab initio calculation 

The ultimate goal of most ab initio-based methods is the approximate 

solution of the time-independent, non-relativistic Schrödinger equation: 

 (1-1) 

where  is the Hamiltonian operator for a molecular system consisting of M 

nuclei and N electrons in the absence of magnetic or electric fields.  is the 

differential operator representing the total energy: 

  

                       (1-2) 

Here, A and B run over the M nuclei while  and  denote the N electrons in the 

system. The first two terms describe the kinetic energy of the electrons and the 

nuclei, respectively. The symbol  is the Laplacian operators in cartesian 

coordinates and  is the mass of nucleus A in multiples of the mass of an 

electron. The remaining three terms represent the potential part of the Hamiltonian 

and are assigned as the attractive electrostatic interaction between the nuclei and 

the electrons and the repulsive potential due to the electron-electron and 

nucleus-nucleus interactions, respectively.  (and in a similar case ) is the 

distance between the particles p and q.  is the 

wave function of the i’th state of the system, which depends on the 3N spatial 

coordinates , and the N spin coordinates  of the electrons, which are 

collectively termed  and the 3M spatial coordinates of the nuclei, . The 

wave function  contains all information that can possibly be known about the 

quantum system at hand. Finally,  is the numerical value of the energy of the 

state described by . 

The exact solution of this equation, which will then give access to material 

properties, is not directly solvable, but through a series of sensible approximations, 

the electronic structure and the total energy can be calculated with sufficient 

accuracy.  
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The first approximation to the Schrödinger equation stems from taking 

advantage of the significant difference between the masses of nuclei and electrons. 

The practical consequence is that the nuclei move much slower than the electron 

and therefore, at least to a good approximation, electrons can be considered as 

moving in the field of fixed nuclei. This is formally called the Born-Oppenheimer 

approximation. Since the nuclei are considered to be fixed in space and are 

immobile, their kinetic energy is zero and the potential energy due to 

nucleus-nucleus repulsion is a constant value. Thus, the complete Hamiltonian in 

equation 1 can be reduced to the so-called electronic Hamiltonian of the form: 

.   (1-3) 

The solution of the Schrödinger equation with  is the electronic wave function 

 and the electronic energy .  depends on the electron coordinates, while 

the nuclear coordinates enter only parametrically and do not explicitly appear in 

. The total energy  is then the sum of  and the constant nuclear 

repulsion term, i.e.: 

                         (1-4) 

and 

                  (1-5) 

The attractive potential exerted on the electrons due to the nuclei (the expectation 

value of the second operator  in equation 3 is the external potential in density 

functional theory, and will be described in details in the following section. It 

should be noted though that this external potential is not necessarily limited to the 

nuclear field but may include external magnetic or electric fields, etc. 

Unfortunately, there is no strategy yet developed to solve the Schrödinger 

equation exactly, especially for determining . However, there is a recipe for 

systematically approaching the wave function of the ground state , i.e., the 

state which delivers the lowest energy . This recipe is called the variational 

principle which states that the energy computed from a guessed  is an upper 
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bound to the true ground state energy : 

       (1-6) 

where  indicates that  is an allowed N-electron wave function. A search 

over all acceptable functions is obviously an impossible task. Variational principle 

can be applied to subsets of all possible functions and from there best 

approximation to the exact wave function can be obtained. However, the exact 

wave function itself cannot be identified when restricting the search to a subset 

unless it is included in the subset, which in turn is an extremely improbable case. 

The ground state energy then becomes a functional of the number of electrons N 

and the nuclear potential : 

                       (1-7) 

Another approximation which serves as the corner stone of almost all 

conventional wave function-based ab initio-based methods is the Hartree-Fock 

approximation. As previously implied, it is impossible to search through all 

acceptable N-electron wave functions. In the Hatree-Fock scheme, a suitable 

subset is defined, which consists of approximating the N-electron wave function 

by an antisymmetrized product of N one-electron wave functions . This 

product is called a Slater determinant, : 

            (1-8) 

where the one-electron functions  are called spin orbitals, and are 

composed of a spatial orbital  and one of the two spin functions,  or 

. However, the relationship between the spatial distribution of the electrons as 

provided by the electron density and their velocities is difficult to establish, 

thereby leading to the calculation of kinetic energy with very poor accuracy. The 

Kohn-Sham approach solves this problem by concentrating on computing as much 

as can be the true kinetic energy. The remainder of the contribution to the kinetic 

energy is then dealt with in an approximate manner and combined with the 

exchange-correlation term. Instead of interacting electrons, a non-interacting 
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reference system is used whereby an effective potential is introduced into the 

Hamiltonian: 

                (1-9) 

This Hamiltonian operator does not contain contributions from electron-electron 

interactions, the ground state wave function represented by a Slater determinant 

will have to be switched from  and  to  and , respectively, in order to 

underline the new quantities: 

          (1-10) 

 

1-2-2. Density functional theory 

Density Functional Theory (DFT) is presently the most successful and the 

most promising approach to compute the electronic structure of matter. In DFT, 

the system of interacting electrons is mapped onto an effective non-interacting 

system with the same total density. The ground-state energy of an N-electron 

system is a function only of the electron density . The electrons are 

represented by one-body wave functions, satisfying the Schrödinger-like equations 

given by: 

   (1-11) 

The first term stands for the kinetic energy of a system of non-interacting 

electrons, the second is the potential due to all nuclei, the third is the classical 

Coulomb energy (Hartree term), and the fourth is the exchange and correlation 

potential which contains the non-classical effects of self-interaction correction, 

exchange and correlation, and a portion belonging to the kinetic energy. The exact 

form of this is fourth term is unknown and is approximated, one approach for 

determining this is through generalized gradient approximation (GGA) which 

denotes the form for functionals appropriate for slowly varying densities; the 

exchange-correlation energy is: 

            (1-12) 
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where  and  are spin densities and f represents the functionals.  

Most ab initio-based methods also use functions called pseudopotentials 

which explicitly include only valence electrons in the calculation and replace the 

nuclear potential and chemically inert core electrons with an effective potential. 

This leads to the valence Kohn-Sham equations of the form: 

       (1-13) 

The pseudopotential  has to be chosen such that the main properties of the 

atom are reproduced. This approximation is assumed valid provided that the core 

electrons do not participate in chemical bonding. Since pseudo-wave functions are 

smooth and modeless, plane wave basis sets can be used which allows for a 

straightforward calculation of forces acting on atoms and stresses on the unit cell 

according to the Hellmann-Feynman theorem: 

                   (1-14) 

The pseudopotential form is illustrated in Figure S-2. 
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Figure S-2. Schematic representation of pseudopotential , pseudo-orbital 

function . The all-electron potential  and orbital function , respectively, 

are altered inside a core radius . 
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1-2-3. Crystal structure optimization 
 As there is no analytic solution to the electronic Schrödinger equation, a 

simpler wave function is instead used as suggested in the Hartree-Fock 
approximation. This then allows for a numerical solution to the problem. The 
self-consistent field (SCF) method is used for this purpose which is an iterative 
method that involves selecting an approximate Hamiltonian, solving the 
Schrödinger equation to obtain a more accurate set of orbitals, and then solving 
the Schrödinger equation again with these until the results converge or meet some 
predefined threshold. This SCF scheme is shown in more details in the flowchart 
in Figure S-3. 

 

 
Figure S-3. Flowchart showing the self-consistent field (SCF) method for the 
solution of electronic Schrödinger equation. 
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1-2-3. Li ion migration by nudged elastic band (NEB) method 
One target property that is used as a criterion for fast Li ion conduction is 

the migration energy barrier associated with the diffusing Li ions within their host 
structures. The determination of this energy barrier can be imagined as a problem 
related to the identification of a lowest energy pathway for a rearrangement of a 
group of atoms from one stable configuration to another. The potential energy 
maximum along this path is the saddle point energy which gives the migration 
energy barrier or the transition state (Figure S-4). The actual distance between two 
stable sites (Site 1 and Site 2) is the migration reaction coordinate. 

A method for finding the minimum energy path (MEP) between a pair of 
stable states is the nudged elastic band (NEB) method as shown in Figure S-5. In 
the NEB method, a string of images or geometric configurations is used to 
describe the reaction pathway. These configurations are connected by spring 
forces to ensure equal spacing along the path and are relaxed to the MEP through 
a force projection scheme. If atoms get close to each other, a geometric repulsive 
force is used to push these atoms apart, resulting in a band with lower initial 
forces. Spring forces act along the band and the potential forces act perpendicular 
to the band. In order to make the projection of these forces, the tangent along the 
path , which connects to the neighboring configuration, is defined. The NEB 
force on configuration  contains two independent components: 

                    (1-24) 
where  is the force component perpendicular to the band due to the potential: 

,                (1-25) 
and  is the parallel spring force to the band: 

             (1-26) 
where  is the spring constant. 
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Figure S-4. Sample of potential surface showing the minimum energy path 
between two stable sites and passing via saddle point (migration energy barrier). 
Surface portion in blue and red are low energy and high energy regions, 
respectively. 
 

 
Figure S-5. Schematic illustration of the nudged elastic band (NEB) method. The 
NEB force  has two components:  which acts along the tangent  and 

 which is a perpendicular force due to the potential. The force  is the 
unprojected force due to the potential. 
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