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ABSTRACT 

Due to the ability of capturing the complexity of traffic systems, traffic simulation has 

become one of the most used approaches for traffic planning, traffic design and traffic 

management. A wide variety of traffic simulation software is currently available on the 

market and is utilized by thousands of consultants, researchers and public agencies. With 

the popularity of traffic simulation, the car-following and lane-changing models, two of 

the most significant components in traffic simulation, have naturally attracted a lot of 

attention from traffic researchers. In this thesis, we also attempt to use some advanced 

computing technologies to model such driving behavior more realistically and accurately. 

In order to achieve a complete insight in the state-of-the-art of traffic modeling, 

several typical car-following models are evaluated by using trajectory data from real 

traffic conditions and genetic-algorithm-based calibration method in the 3rd chapter. The 

models with calibrated parameters are validated not only under uncongested traffic 

conditions but also under congested traffic conditions. Unlike the results in previous 

study based on experimental data, there are obvious differences in the performance of 

these models.  

In the 4th chapter, we investigate drivers’ acceleration and deceleration behavior 

by using a mixed logit model. Compared to conventional car-following models, the 

vehicle type variable is used in the proposed model, which enables the model to allow for 

driving differences of different vehicle types. In addition, to intentionally avoid 

interference from lane-changing behavior, the model is estimated and validated by 

trajectory data in the high occupancy vehicle (HOV) lane. Estimation and validation 
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results sufficiently demonstrate reasonability, robustness, along with accuracy of the 

model. Finally, this model is applied to simulate 30-minute traffic conditions.  

Reaction delay of the driver-vehicle unit varies greatly according to driver-vehicle 

characteristics and traffic conditions, and is an indispensable factor for modeling vehicle 

movements. In Chapter 5, by defining the time interval between the relative speed and 

acceleration, the gap and speed observed from real traffic as driver-vehicle reaction delay, 

a neural network for instantaneous reaction delay is built. Incorporating the reaction 

delay network into a neural-network-based car-following model, movements of nine 

vehicles which follow each other are simulated. Simulation results show that the models 

with instantaneous reaction delay apparently outperform the models with fixed reaction 

delay.  

Lane changing has a significant impact on traffic flow characteristics and 

potentially reduces traffic safety. However, literature relating to lane changing is not 

comprehensive, largely owing to the inherent complexity of lane changing and a lack of 

large-scale data to analyze such behavior. In an effort to cope with these obstacles, in 

Chapter 6 we adopt a neural network (NN) model to capture the complexity of lane 

changing, and large-scale trajectory data are employed for model estimation and 

validation. For comparison purposes, a multinomial logit (MNL) model that was 

frequently accepted as a framework for lane changing in previous studies is also built. 

Comparison results show that NN model is more realistic than MNL model. Finally, the 

impact of heavy vehicles on driver’s lane-changing decisions is quantitatively evaluated 

using the sensitivity analysis of the proposed NN model. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation 

 

Due to the ability of capturing the complexity of traffic systems, traffic simulation has 

become one of the most used approaches for traffic planning, traffic design and traffic 

management. A wide variety of traffic simulation software is currently available on the 

market and is utilized by thousands of consultants, researchers and public agencies 

(Barceló 2010; Bloomberg and Dale 2000; Hidas 2005; Yang and Koutsopoulos 1996). 

With the popularity of traffic simulation, the car-following and lane-changing models, 

two of the most significant components in traffic simulation, have naturally attracted a lot 

of attention from traffic researchers (Brackstone and McDonald 1999; Panwai and Dia 

2005; Toledo 2007). A number of models have been proposed in the past decades to 

describe such driving behavior more realistically and accurately. 

The concept of car following was first proposed by Reuschel (1950) and Pipes 

(1953), which assumed that the following vehicle controls its behavior with respect to the 

preceding vehicle in the same lane. Thereafter, considerable car-following models were 

developed to mimic this behavior more consistently with real traffic. In (Gipps 1981), 

equations of motion were accepted to describe driver's acceleration and deceleration 

behavior. According to stimulus and response relationship, Gazis et al. (1961) proposed a
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widely studied car-following model. Kikuchi and Chakroborty (1992) built a car-

following model based on fuzzy logic theory. In addition, Nagel and Schreckenberg 

(1992) presented a typical cellular automata model to simulate vehicle movements. And, 

the model formulation in (Bham and Benekohal 2004) adopted the concept of cellular 

automata and car-following models. Besides, neural networks were also used to model 

car-following behavior (Panwai and Dia 2007). 

According to previous studies, lane changing has a significant impact on traffic 

flow characteristics owing to the inference effect on surrounding vehicles (Daganzo et al. 

1999). In addition, lane changing is also viewed as a key trigger in freeway breakdown 

(Duret et al. 2011; Jiang and Adeli 2004), and it potentially reduces freeway safety (Jin 

2010; Mauch and Cassidy 2002). To describe such driving behavior more accurately, 

over the past two decades, several lane-changing models have been developed (Aghabayk 

et al. 2011; Gipps1986; Hidas 2002; Laval and Daganzo 2006). However, compared to 

the car-following model, literature relating to lane changing is less comprehensive. This 

may be owing to two reasons: the inherent complexity of lane changing and the absence 

of large-scale data to analyze such behavior. Unlike car following, lane changing is 

influenced not only by preceding and following vehicles in the same lane but also by 

leading and lagging vehicles in adjacent lanes (Moridpour et al. 2010). Besides, driver’s 

decisions to change lane are also affected by driver characteristics (age, gender, driving 

experience) and driving attitudes (aggressive or conservative driver) (Sun and 

Elefteriadou 2012). As a result, the prediction of driver’s lane-changing decisions is 

extremely complicated.   
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As the most important components in traffic simulation, a better understanding of 

driver car-following and lane changing behavior is, therefore, essential to enhance the 

accuracy of traffic simulation. Therefore, there is a need for improving the current 

understanding of drivers' car-following and lane-changing behavior at a microscopic 

level. 

 

1.2 Problem Description 

 

Researchers started paying attention to the car-following and lane-changing models as 

microscopic traffic simulation emerged as an important tool for studying traffic behavior 

and developing and evaluating different traffic control and management strategies. 

However, the existing car-following and lane changing models are rule-based and do not 

explicitly capture variability within driver and between drivers. Furthermore, the model 

parameters have not been estimated formally. More specifically, existing driving 

behavior models have the following important limitations.  

1. Evaluation of some typical car-following models by using data from real traffic 

was seldom conducted. 

2. The inherent approximate nature of human decision-making processes were not 

reflected in previous car-following and lane-changing models. 

3. Instantaneous reaction delay of the driver-vehicle unit were not taken into 

consideration in previous studies where usually fixed reaction delay were adopted. 

4. The factors that influence lane-changing decisions were not sufficiently included 

in previous lane-changing models. 
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5. Driving differences in the different types of vehicles were not accounted for in 

pervious driving models. 

Given the inherent approximate nature of human decision-making processes and 

the understanding that car-following is such a decision-making process, deterministic car-

following models are unable to capture the uncertainty of driving behavior. Although 

stochastic car-following models can somewhat reflect the imprecision of driving behavior, 

random mechanisms in the models do not directly relate to any driver or traffic 

characteristics. As common driving experiences, drivers perceive the current traffic 

conditions, use their knowledge to infer possible actions, and respond in an approximate 

manner. To reflect the inherent imprecision in the human perception and reasoning 

process, fuzzy inference models are adopted in (Kikuchi and Chakroborty 1992; 

Chakroborty and Kikuchi 1999). However, the difficulty in calibrating unobservable 

parameters greatly limits the applicability of these models (Toledo 2007; Chakroborty 

and Kikuchi 2003). 

Reaction delay is a common characteristic of humans in operation and control, 

such as driving a car. The operational coefficients and delay characteristics of humans 

can vary rapidly because of changes in factors such as task demands, motivation, 

workload and fatigue. As mentioned above, research on car-following models historically 

has focused on exploration of different modeling frameworks and variables that affect 

this behavior. Recently, researchers have recognized that reaction delay of each driver is 

an indispensable factor for the identification of car-following models since it affects 

traffic dynamics not only in a microscopic way but also macroscopically (Ma and 

Andréasson 2006 ). However, due to that the estimation of variations in reaction delay is 
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almost impossible in classic paradigms, in the abovementioned car-following models 

reaction delay was all assumed to be fixed. Besides, in previous studies the delay within 

the mechanical system of a vehicle was usually neglected. In fact, the time that a vehicle 

takes to respond to a request (decelerating, accelerating, steering) depends greatly on the 

vehicle and roadway conditions, and is different for different types of vehicles 

(motorcycle, car, heavy vehicle). For modeling vehicle movements more realistically, 

vehicle reaction delay should also be considered.  

Besides, compared to the car-following model, literature relating to lane changing 

is less comprehensive. This may be owing to two reasons: the inherent complexity of lane 

changing and the absence of large-scale data to analyze such behavior. Unlike car 

following, lane changing is influenced not only by preceding and following vehicles in 

the same lane but also by leading and lagging vehicles in adjacent lanes (Moridpour et al. 

2010). Besides, driver’s decisions to change lane are also affected by driver 

characteristics (age, gender, driving experience) and driving attitudes (aggressive or 

conservative driver) (Sun and Elefteriadou 2012). As a result, the prediction of driver’s 

lane-changing decisions is extremely complicated. On the other hand, models should be 

estimated and validated by field data (Hollander and Liu 2008). However, most of the 

previous lane-changing models were proposed without rigorous estimation and validation, 

largely owing to a lack of available data (Gipps1986; Hidas 2002).  
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1.3 Thesis Contributions 

 

The objective of this research is to improve modeling of driving behavior. This thesis 

contributes to the state-of-the-art in driving behavior modeling in the following aspects: 

 In order to achieve a complete insight in the state-of-the-art of traffic modeling, 

several typical car-following models are evaluated by using trajectory data from 

real traffic conditions and genetic-algorithm-based calibration method.  

 We investigate drivers’ acceleration and deceleration behavior by using a mixed 

logit model. Compared to conventional car-following models, the vehicle type 

variable is used in the proposed model, which enables the model to allow for 

driving differences of different vehicle types. In addition, to intentionally avoid 

interference from lane-changing behavior, the model is estimated and validated by 

trajectory data in the high occupancy vehicle (HOV) lane. 

 The driver-vehicle reaction delay is defined by the time interval not only between 

the relative speed and acceleration but also between the gap and speed of the 

vehicle.  

 A neural network for instantaneous reaction delay is trained by observed delay 

samples and then compared with a previous piecewise linear reaction delay model. 

Incorporating the reaction delay network into a neural-network-based car-

following model, movements of nine vehicles which follow each other are 

simulated. 
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 A detailed analysis of left and right lane changes is conducted, which suggests 

that the left and right lane changes are asymmetric and incentivized by different 

motivations.  

 A neural network model that can completely account for the impact of 

surrounding vehicles on lane-changing decisions is developed. In addition, the 

proposed NN model clearly outperforms a multinomial logit model, which was 

frequently adopted as a framework for lane changing in previous studies, both in 

model estimation and validation processes. 

 The impact of heavy vehicles on driver’s lane-changing decisions is quantitatively 

evaluated using the sensitivity analysis of the proposed NN model.  

 

1.4 Thesis Outline 

 

The thesis is composed of seven chapters. In Chapter 2, the data sets used in this thesis is 

introduced. Several typical car-following models are evaluated by using trajectory data 

from real traffic conditions and genetic-algorithm-based calibration method in Chapter 3. 

In the 4th chapter, we investigate drivers’ acceleration and deceleration behavior by using 

a mixed logit model. In Chapter 5, by defining the time interval between the relative 

speed and acceleration, the gap and speed observed from real traffic as driver-vehicle 

reaction delay, a neural network for instantaneous reaction delay is built. Incorporating 

the reaction delay network into a neural-network-based car-following model, movements 

of nine vehicles which follow each other are simulated.  In an effort to cope with the 

obstacles of modeling lane-changing behavior, in Chapter 6 we adopt a neural network 
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model to capture the complexity of lane changing, and large-scale trajectory data are 

employed for model estimation and validation.  Finally, conclusions and directions for 

future research are presented in Chapter 7. 
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CHAPTER 2. DATA SETS 

The data sets which are used in this study was prepared by Cambridge Systematics 

(2005a,b) incorporated for the Federal Highway Administration as a part of Next 

Generation SIMulation NGSIM  project. In December 2005, NGSIM provided the video 

images of two sections of two highways in California: (1) Hollywood Freeway, (US-101) 

and (2) Berkeley Highway (I-80). Subsequently, a comprehensive vehicle trajectory data 

set was developed through processing the video images. Detailed information about 

observed vehicles, (vehicle type and size, lane ID, two-dimension position, speed and 

acceleration) was extracted from video data, together with information about the 

preceding and following vehicles.  

 

2.1 US-101 Data Sets 

 

Data presented in this section represent travel on the southbound direction of U.S. 

Highway 101 (Hollywood Freeway) in Los Angeles, California. This data was collected 

using eight video cameras mounted on a 36-story building, 101 Universal City Plaza, 

which is located adjacent to the U.S. Highway 101 and Lankershim Boulevard 

interchange in the Universal City neighborhood.  
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Fig. 2.1 U.S. 101 study area schematic and camera coverage 
 

Table 2.1 Traffic composition and traffic flow characteristics in U.S. 101 data sets 
Number of automobiles Number of heavy vehicles Number of motorcycles 

5919 (97.0%) 137 (2.2%) 45 (0.7%) 

Flow rate (veh/hr) Average speed (km/hr) Density (veh/km) 

8077 35.0 231 
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Fig. 2.2 Flow by each lane during 7:50 and 8:05 on U.S. 101 study site 
 

 

Fig. 2.3 Speed by each lane during 7:50 and 8:05 on U.S. 101 study site 
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Fig. 2.1 provides a schematic illustration of the location for the vehicle trajectory 

data sets. The site was approximately 640 m in length, with five mainline lanes 

throughout the section. An auxiliary lane is present through a portion of the corridor 

between the on-ramp at Ventura Boulevard and the off-ramp at Cahuenga Boulevard. 

Lane numbering is incremented from the left-most lane.  

Video data were collected using eight video cameras, camera 1 through 8, with 

camera 1 recording the southernmost, and camera 8 recording the northernmost section of 

the study area, as shown in Fig. 2.1.  

Data reflecting congested traffic conditions in morning peak periods were 

collected during 7:50 am and 8:35 am on June 15, 2005. Traffic composition and traffic 

flow characteristics are listed in Table 2.1. In addition, the data were collected in clear 

weather, good visibility, and dry pavement conditions.  

Fig. 2.2 and Fig. 2.3 show the flow and speed by each lane during 7:50 and 8:05 

on U.S. 101 study site. The time mean speed and space mean speed are defined as 

follows: 

( , ) ( , )
( , ) , ( , ) ,

( , ) ( , )

i i
i i

i
i

v t s d t s
TMS t s SMS t s

n t s tt t s
                                                     (2.1) 

where, 

TMS(t,s) = Time Mean Speed in section s during time period t measured at midsection; 

SMS(t,s) = Space Mean Speed in section s during time period t; 

v(t,s)i = Instantaneous speed of vehicle i in section s during time period t measured at 

midsection; 
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 n(t,s) = Number of vehicles traversing section s during time period t; 

d(t,s)i = Distance traveled by vehicle i in sections s during time period t; 

tt(t,s)i = Travel time of vehicle i in section s during time period t. 

 

2.2 I-80 Data Sets 

 

Data presented in this section represent travel on the northbound direction of Interstate 80 

in Emeryville, California. This data was collected using seven video cameras mounted on 

a 30-story building, Pacific Park Plaza, which is located in 6363 Christie Avenue and is 

adjacent to the interstate freeway I-80. The University of California at Berkeley 

maintains traffic surveillance capabilities at the building and the segment is known as the 

Berkeley Highway Laboratory (BHL) site.  

Fig. 2.4 provides a schematic illustration of the location for the vehicle trajectory 

data sets. The site was approximately 503 m in length, with an on-ramp at Powell Street.  

The off-ramp at Ashby Avenue is just downstream of the study area.  Lane numbering is 

incremented from the left-most lane (the high-occupancy vehicle (HOV) lane).  

Video data were collected using seven video cameras, camera 1 through 8, with 

camera 1 recording the southernmost, and camera 7 recording the northernmost section of 

the study area, as shown in Fig. 2.4.  

Data reflecting congested traffic conditions during afternoon  peak periods were 

collected during 4:00 pm and 4:15 pm, 5:00 pm and 5:30 pm on April 13, 2005. Traffic 

composition and traffic flow characteristics are listed in Table 2.2. Fig. 2.5 and Fig. 2.6 



27 

 

show the flow and speed by each lane during 5:15 and 5:30 on I-80 study site. In addition, 

the data were collected in clear weather, good visibility, and dry pavement conditions. 

 

 

Fig. 2.4 I-80 study area schematic and camera coverage 
 

Table 2.2 Traffic composition and traffic flow characteristics in I-80 data sets 
Number of automobiles Number of heavy vehicles Number of motorcycles 

3466 (95.6%) 119 (3.3%) 41 (1.1%) 

Flow rate (veh/hr) Average speed (km/hr) Density (veh/km) 

7252 27.9 300 
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Fig. 2.5 Flow by each lane during 5:15 and 5:30 on I-80 study site 
 

 

Fig. 2.6 Speed by each lane during 5:15 and 5:30 on I-80 study site 
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Besides, in order to alleviate the noise in the data (Punzo et al. 2011), the moving-

average filter for a duration of one second is applied to all vehicle trajectories before data 

analysis in this thesis. 
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CHAPTER 3. EVALUATION OF CAR-FOLLOWING MODELS USING 
TRAJECTORY DATA FROM REAL TRAFFIC 

3.1 Introduction 

 

Traffic simulation, as an effective tool for traffic system analysis and traffic management, 

has become very popular in recent years. Car-following model and lane-changing model, 

the most significant components in traffic simulator, attract considerable attention from 

traffic researchers. A number of car-following and lane-changing models have been 

proposed to describe real traffic more accurately. 

In order to find out the most suitable model to be applied in traffic simulation, 

researchers compared some of the these models by using field data, experimental data,  or 

even assumed data at the microscopic or macroscopic level, especially for car following 

models (Olstam and Tapani 2004; Panwai and Dia 2005; Rakha and Crowther 2002, 

2003; Ranjitkar et al. 2005a). 

As pointed out in their conclusions (Olstam and Tapani 2004; Ranjitkar et al. 

2005a), a comprehensive comparison with complex real traffic data is a compelling need 

to achieve a complete insight in the state-of-the-art of traffic modelling. Under such 

requirement, several typical car-following models are evaluated by using trajectory data 

from real traffic condition and genetic-algorithm-based calibration method in this study. 
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The evaluated models are stimulus-response model (Gazis et al. 1961), safety 

distance model (Gipps 1981), Newell model (Newell 2002), cellular automata model 

(Nagel and Schreckenberg 1992), optimal velocity model (Bando et al. 1995). Although 

these models were compared in previous studies (Brockfeld et al. 2004; Ranjitkar et al. 

2005a) based on experimental data, unlike their conclusions, the differences in the 

performance of these models are obvious in this study. 

This chapter is composed of five sections. The subsequent section briefly 

introduces the car-following models to be evaluated, followed by the third section which 

includes the introduction of objective function, genetic algorithm, and data sets to be used 

in current study. The evaluation results are put into the fourth section. The last section is 

devoted to the conclusion of this study. 

 

3.2 Car-following Models 

 

The concept of car-following was perhaps first proposed by Reuschel (1950) and Pipes 

(1953), which assumed that the following vehicle controls its behaviour with respect to 

the preceding vehicle in the same lane. As one of the most important components in 

traffic simulator, in the past decades considerable car-following models were developed 

to mimic this process more consistently with real traffic (see (Brackstone and McDonald 

1999) and references therein). In this study, the following models are discussed. 

 

3.2.1 Stimulus-response model (SRM) 
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The stimulus-response kind models are probably the earliest and most studied car-

following models, which express the suggestion that a driver of a vehicle responses to a 

given stimulus according to a relationship:  Response = λ * Stimulus. 

The typical one in stimulus-response family is perhaps the one proposed by Gazis 

et al. (1961): 

( )( ) ( )
( )

n
n n

n

v ta t T v t T
x t

                                                                                         (3.1)    

where an(t), vn(t), xn(t) and T are the acceleration, velocity, position and reaction time of 

the subject vehicle, respectively. Moreover, ∆vn(t) and ∆xn(t) are the relative velocity and 

relative spacing between the subject vehicle and its leader, vehicle n and vehicle n-1, at 

time t. Besides, α, β, γ are parameters needed to be calibrated. Brackstone and McDonald 

(1999) summarized the works conducted by previous researchers in calibrating this kind 

model, alone with problems appearing in their study in detail. 

 

3.2.2 Safety-distance model (SDM) 

 

Taking safety reaction time into account, Gipps (1981) developed a model consisting of 

two components, acceleration and deceleration, using variables directly corresponding to 

obvious characteristics of drivers and vehicles. Assumed that if one vehicle is not 

affected by its leader, the acceleration should increase with velocity then decrease to zero 

as the vehicle approaches the desired velocity. The desired velocity limitation fitted from 

field data is presented as: 



33 

 

( ) ( )( ) ( ) 2.5 (1 ) 0.025a n n
n n n

n n

v t v tv t T v t Ta
V V

                                                        (3.2)                         

where an(t) is the maximum acceleration that the driver in vehicle n wishes to apply and 

Vn is desired velocity. 

The velocity limitation that can avoid collision when the leading vehicle brakes to 

slow down was derived from the equation of motion, written as: 

2
2 2 1

1 1
( )( ) [2( ( ) ( )) ( ) ]ˆ

d n
n n n n n n n n

v tv t T b T b T b x t s x t v t T
b

                         (3.3)                         

where bn is the most severe braking that the driver of vehicle n wishes to undertake (bn < 

0), sn-1 is the effective size of vehicle n-1 and b̂  is the estimation of  bn-1.  

Combining the limitation (2) and (3), the velocity of vehicle n at time t+T is set 

as: 

( ) min{ ( ), ( )}a d
n n nv t T v t T v t T                                                                               (3.4)                         

which can ensure drivers to achieve desired velocity as far as possible, and to avoid the 

collision with the preceding vehicle, meanwhile. The car-following model implemented 

in microscopic traffic simulator AIMSUN is based on this model. 

 

3.2.3 Newell model (NM) 

 

With different logic, Newell (2002) proposed a new approach to model car-following 

behaviour based on the analysis of time-space trajectory, assuming that the time-space 

trajectory for vehicle n-1 and n is essentially the same except for a translation in time and 

space. Under the supposition that there is a linear relationship between the spacing sn and 
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the velocity v, the logic behind Newell's simple car-following model can be demonstrated 

by Fig. 3.1. From the time displacement τn and space displacement dn in Fig. 3.1, one can 

get the following relationship: 

, .n n n n n nd v s d v s                                                                                             (3.5)                         

It is important to note that τn is not the reaction time, which is the time needed for 

driver n to reach preferred spacing at a new velocity. Therefore, the simple car-following 

model proposed by Newell can be written as: 

1( ) ( ) .n n n nx t x t d                                                                                                   (3.6) 

In previous study, this model was considered to be able to perform as well as 

complex models (Brockfeld et al. 2004; Ranjitkar et al. 2005a).  Furthermore, Ahn (2004) 

verified this model by measuring vehicles discharging form long queues at signalized 

intersections. 

 

Fig. 3.1 Linear approximation to vehicle trajectories. 
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3.2.4 Optimal velocity model (OVM) 

 

Under the assumption that the acceleration is determined by the difference between the 

actual velocity and optimal velocity, Bando et al. (1995) proposed a charming car-

following model. The dynamical equation is presented as: 

( ) 1 [ ( ( )) ( )]n
n n

dv t V x t v t
dt T

                                                                                       (3.7) 

where  

( ( )) tanh( ( ) 2) tanh(2)n nV x t x t                                                                            (3.8) 

is called the optimal velocity function. 

Bando's model can describe many properties of real traffic, such as the instability 

of traffic flow, the evolution of traffic congestion and formation of stop-and-go 

phenomenon. In addition, it was highly praised by physicists due to its feasibility in 

theory analysis. Although it is successful in physical community, a few studies were 

conducted to evaluate the model with real traffic data.  

 

3.2.5 Cellular automata model (CAM) 

 

CA models are based on a coarse description of driving behaviour by a discrete 

representation of both time and space. Road length is divided into cells of equal size 

(typically 7.5 meters long). Each cell has two states, occupied or not, depending on the 

presence of a vehicle. Each time step one vehicle's velocity and position are updated 

according to its desired velocity and whether there is a vehicle blocking its movement in 
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front. Nagel and Schreckenberg (1992) introduced stochastic perturbations into updating 

rules and presented a typical CA model: 

max( 1) min( ( ) 1, ( ), )
max( ( 1) 1,0),

( 1)
( 1) ,

( 1) ( ) ( 1)

n n n

n rand
n

n

n n n

v t v t g t V
v t C P

v t
v t otherwise

x t x t v t

( 1)nv ( 1)n ( 1) m1) m11) m

n ( )( ) 1( 1) 1(( 1) 11) 111) 1
( ) ,nv t( 1) ,n

                                                                       (3.9)                         

where vv n(t+1) is an temporary value and gn(t) = xn-1(t) - xn(t) - 1. Crand is a random 

number ranging from [0, 1] and P is a given velocity reduction probability. 

Due to computational efficiency and simple rules, CA model can be used for 

large-scale traffic simulation. TRANSIM simulator developed by Los Alamos National 

Lab is the one based on CA model. Some researchers also took other rules into account, 

according to real traffic phenomena, such as slow-to-start rule in which vehicles are 

slower to accelerate from standstill, anticipation-based rule that predicts the movement of 

the leading vehicle in advance. For a detailed review, readers are referred to 

(Schadschneider  2006). 

 

3.3 Parameter Calibration 

 

As is well known, model's performance depends not only on the inherent structure of 

model but also on parameters included in the model. Consequently, on the one hand, 

researchers work on the improvement of the structure of the models, and on the other 

hand, they seek to find out appropriate optimization techniques to achieve optimal values 

for parameters. Hollander and Liu (2008) summarized the methodologies used in 

calibration process, and provided the general principles for traffic analysts. 
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3.3.1 Objective function 

 

As shown in (Hollander and Liu 2008), various objective functions can be used in 

optimization techniques. In this study, the one proposed by Kesting and Treiber (2008) is 

used: 

2

1

1[ ] ( )
sim dataT

sim i i
rel data

i i

s sF s
T s

                                                                                (3.10)                         

where sdata and ssim are the real and simulated data respectively, and ∆T is the total time 

interval. As pointed out by Kesting and Treiber (2008), Frel is sensitive for small 

deviation in spacing, and spacing is suitable for the error measurement due to that when 

optimized in terms of spacing the average velocity errors will also be automatically 

reduced.  

Furthermore, additional constraints are imposed to the objective function in order to 

avoid collision and negative velocity value in the simulation process, presented as: 

1 min( ) ( ) , ( ) 0, [1, ]n n nx t x t S v t t T                                                                   (3.11)                         

where  Smin is the minimum spacing between two successive vehicles at rest. 

 

3.3.2 Genetic algorithm (GA) 

 

Typically, the motivation of using GA in optimization problems is due to the globality, 

parallelism and robustness of GA. In addition, GA is simple and powerful in its search 

improvement, and not fundamentally limited by restrictive assumption about the search 

space. In fact, GA was successfully used in many aspects of traffic field, such as optimal 
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traffic signal control (Ceylan and Bell 2004; Memon and Bullen 1996), urban transit 

system design (Agrawal and Mathew 2004; Pattnaik et al. 1998), traffic assignment 

(Reddy and Chakroborty 1999; Sadek et al. 2007; Zhou et al. 2006), and traffic model 

calibration (Cheu et al. 1998; Kesting and Treiber 2008; Ranjitjar et al. 2005b).  

 

3.3.3 Data sets 

 

The data used in this study were collected by the NGSIM program from 4:00 pm to 5:30 

pm on a segment of Interstate freeway I-80 in Emeryville (San Francisco), California. 

Two successive vehicles with mean velocity 2.18 m/s and 2.23 m/s denoted by C1 and 

C2 are selected for parameter calibration. Moreover, another two pair vehicles with mean 

velocity 1.52 m/s and 1.54 m/s, 5.38 m/s and 6.27 m/s, denoted by V1, V2  and V3, V4 ,  

are chosen for model validation. 

 Fig. 3.2 exhibits position and velocity changes of all tested vehicles. It is clear 

that data used in calibration process are under congested traffic condition represented by 

the stop-and-go phenomenon. Data used in the first validation process, V1 and V2, are 

similar to calibration data but under more severe congested condition. V3 and V4 

representing the non-congested traffic condition are used for the second validation. It is 

worth pointing out that three pair vehicles are from different lanes and different time 

intervals, so they are independent to each other and suitable for calibrating and validating 

models, respectively. 
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Fig. 3.2 Position trajectories and velocity profiles of tested vehicles. 
 
 

3.4 Model Evaluation 

 

In simulation run, the time step is set to be 0.1 seconds in order to keep pace with video 

data, and all the models are modified to adopt such time step. Moreover, all the preceding 

vehicles are updated according to the real value and all the following vehicles are updated 

according to rules of the discussed models. Additionally, parameters in Genetic 
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Algorithm are always the same for all of the models in order to evaluate them by the 

same criterion. The calibration and validation of these models are implemented in Matlab. 

For SRM and OVM, due to nonlinear differential structure and no existence of 

analytical solutions, first order difference algorithm is implemented to calculate their 

numerical solutions. In addition, the constant 2 in optimal velocity Eq. 3.8 is treated as 

parameter denoted by C. For CAM, the length of one cell is taken as one meter and 

velocity is the corresponding integer value in order to improve the accuracy of this model. 

Moreover, the proceeding value per time step in acceleration and random reduction rule 

is seen as parameter denoted by Dmin, different from that in (Nagel and Schreckenberg 

1992) defined as one site per time step. 

 

3.4.1 Calibration results 

 

The calibration results are exhibited in Table 3.1. From it, one can see that the error rates 

for most models are between 17.6% and 31.29%, which is consistent with previous study 

(Brockfeld et al. 2004; Ranjitkar et al. 2005a), apart from OVM. This result also indicates 

that GA is suitable for being used in calibrating car-following models, which can achieve 

optimal parameter value for most models. It is also clear that SDM with the most 

parameters has the lowest error rate among these models. The reaction time T is smaller 

and the estimation to deceleration of the preceding vehicle b̂  is larger than that usually 

assumed. Probably, this may be caused by the collision-avoidance limitation vn
d in the 

model under the congested traffic condition. 
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Table 3.1 Calibration results of models under investigation. 
Model Parameter Range Calibrated result Error rate 

 

 

SRM 

 

T 

α 

β 

γ 

0~1 

-4~4 

-4~4 

-4~4 

0.4 

1.38 

-0.27 

-0.07 

 

18.48% 

 

 

 

SDM 

 

 

T 

an 

Vn 

bn 

sn-1 

b̂  

0~1 

2~6 

5~50 

-10~-4 

5~20 

-10~-4 

0.1 

2 

40 

-4 

6.56 

-10 

 

 

 

17.6% 

NM 

 

τn 

dn 

0~100 

0~20 

0.1 

8.84 

31.29% 

OVM 

 

T 

C 

0.01~20 

0~100 

0.05 

6.36 

750% 

 

CAM 

 

Dmin 

Vmax 

P 

1~10 

10~40 

0~1 

6 

26 

0.7 

 

24.27% 

 

Moreover, the result also shows that SRM has acceptable error rate, although the 

parameters calibrated in this study are not similar to that calibrated by previous 

researchers (Brackstone and McDonald 1999), and a relatively longer reaction time is 

observed. Due to the simple rules, NM and CAM have rather higher error rate, but 

surprisingly, even with discrete variables the error rate in CAM is lower than that in NM. 

In addition, it is disappointed to see that OVM has incredible error rate although this 

model is popular in the physical community. 

Fig. 3.3 presents a visual comparison between real and simulated value of the 

velocity for vehicle C2. SRM, SDM and NM can depict the real velocity change 

accurately, which are consistent with the spacing error rate in Table 3.1. Because of 



42 

 

discrete value in velocity, the velocity error rate in CAM seems larger than spacing error 

rate in Table 3.1. After some simulation step, one can see that the velocity in OVM 

retains a constant value which is caused by the property of tanh(x) function. When 

spacing ∆xn(t) exceeds a certain big value, tanh(x) function is not sensitive to small 

change and prone to maintain a constant value, which is also the reason for the incredible 

spacing error rate in Table 3.1. 

 

 

Fig. 3.3 Comparison of velocity between real and simulated value for vehicle C2. 
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3.4.2 Validation results 

 

In what follows using the calibrated parameters in Table 3.1, the robustness of all models 

investigated in this paper is validated. In fact, this is a very significant part in evaluating 

models, although it is rarely conducted by previous researchers. Even with the excellent 

performance in calibration process it cannot be guaranteed that models never generate 

serious errors, such as collision or negative velocity value, in application stage, which is 

known as over-fitting problem. Typically, for one model, over-fitting problem is defined 

as the infeasibility of generalizing to other situation due to the adaptation to a particular 

situation. 

Table 3.2 shows the spacing error rate calculated by using Eq. 10 in twice 

validation processes. It clearly can be seen in the first validation process, SRM and OVM 

generate collision or negative velocity value error, while the remainders achieve 

acceptable error rates, although a little higher than those in calibration process. Fig. 3.4 

presents the comparison of the position and velocity between real and simulated data in 

the first validation process. From it, one can see that there are nearly no differences in 

position between real and simulated data, and the deviations in velocity between real and 

simulated data are also tiny except for CAM. 

In the second validation process, due to the rather big differences between 

calibration and validation data most models yield serious error, only SRM and CAM can 

survive with higher error rate. Fig. 3.5 provides a visual comparison in position and 

velocity between real and simulated data. The position and velocity differences between 

real and simulated data are more apparent in relation to the first validation process. 
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From the validation results, CAM is the only one that can survive in both 

validation processes due to the collision-avoidance and negative-velocity-avoidance 

mechanism in its rules. Furthermore, even with discrete variables, CAM is able to 

maintain an acceptable error rate, while other models either make serious error or 

produce rather higher error rate. It also can be seen that SRM and SDM have the over-

fitting problem, that is, they perform better than other models in calibration process or 

validation process with high similarity to calibration process, whereas under the situation  

Table 3.2 The spacing error rate of tested models in validation process. 
Model SRM SDM NM OVM CAM 

Validation 1 error 24.68% 34.75% error 31.69% 

Validation 2 345.80% error error error 49.20% 

 

 
Fig. 3.4   Comparison of position and velocity between real and simulated data in the first validation 

process 
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Fig. 3.5 Comparison of position and velocity between real and simulated data in the second validation 
process 

 

with big differences to calibration process they generate rather higher error rate. This is 

due to that the number of parameters used in SRM and SDM are more than that used in 

other models, 4 and 6 respectively. Hence, the performance of SRM and SDM mostly 

depends on calibrated parameters not on the inherent structure of the models. So models 

with rather more parameters are prone to achieve better performance under particular 

situation but under other situation the over-fitting problem is likely to appear. The 

validation results also show that OVM is not suitable for real traffic simulation, because 

of the property of tanh(x) function. With rather simple rule and fewer parameters, NM 

generates larger error rate than other models except for OVM, which means it cannot 
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describe traffic phenomenon accurately at microscopic lever. Besides, models with 

complex structure, such as SRM and OVM, cost more time than those with simple 

structure, such as NM and CAM, in simulation runs, which means they are not suitable 

for real time traffic simulation.  

 

3.5 Conclusions 

 

Several typical car-following models are evaluated by using field trajectory data and 

genetic-algorithm-based calibration method. The models with calibrated parameters are 

validated by using not only the uncongested traffic data but also congested traffic data.  

Unlike the results extracted from experimental data in (Brockfeld et al 2004; Ranjitkar et 

al 2005a), there are obvious differences in performances of the evaluated models. Models 

with complex structure, such as SRM and OVM, cost more time than those with simple 

structure, such as NM and CAM, in simulation process, which means they are not 

suitable for real time traffic simulation. Besides, SRM and OVM do not perform as well 

as expected in terms of calibration and validation results. Furthermore, models with more 

parameters such as SDM are easy to incur over-fitting problem in validation process, 

although they can mimic real traffic accurately in calibration process. Even with the very 

simple structure, NM and CAM reproduce the real traffic well both in calibration and 

validation process, especially the discrete CAM, the only one that can survive in both 

validation processes. 

It is also observed that although most models under study simulate real traffic 

with high fidelity in calibration process, in validation process none of them is able to 
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perform as well as in calibration process. From this point of view, using different 

parameters or even different models under different traffic condition seems to be feasible 

for simulating real traffic more accurately. In fact, this view can be confirmed by only 

adjusting the parameter Vmax in CAM to 14 in the second validation process. Accordingly, 

the error rate can be reduced from 49.20% to 38.79%. 
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CHAPTER 4. MODELING ACCELERATION AND DECELERATION BEHAVIOR 
IN HOV LANE BY USING DISCRETE CHOICE THEORY 

4.1 Introduction 

 

Traffic simulation, as an effective tool for traffic system analysis and traffic management, 

has become very popular in recent years. Various traffic simulators have been developed, 

and there are still some under construction. Car-following models and lane-changing 

models, the most significant components in traffic simulators, attract a lot of attention 

from traffic researchers. A number of models have been proposed in the past decades to 

describe such driving behavior more realistically and accurately (Bham and Benekohal 

2004; Gazis et al. 1961; Gipps 1981; Gipps 1986; Gunay 2007; Hidas 2002; Kometani 

and Sasaki 1961; Nagel and Schreckenberg 1992; Newell 2002) . Meanwhile, there are 

also some researchers comprehensively analyzing such behavior by field observation or 

traffic experiment (Banks 2006; Ozaki 1991; Xing et al. 1991). 

In this study, we pay attention to car-following models. The concept of car-

following was first proposed by Reuschel (1950) and Pipes (1953), which assumed that 

the following vehicle controls its behavior with respect to the preceding vehicle in the 

same lane. Thereafter, considerable car-following models were developed to mimic this 

process more consistently with real traffic (see (Brackstone and McDonald 1999; Oguchi 
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2000) and references therein).  

Typically, car-following models can be classified as continuous or discrete 

models.  Gazis (1961) and Gipps (1986) used the second order differential equation and 

equations of motion to describe acceleration and deceleration behavior respectively, 

which are prominent examples of continuous car-following models. The prominent 

examples for discrete car-following models may be that proposed by Nagel and 

Schreckenberg (1992), Kikuchi and Chakroborty (1992), using cellular automaton model 

and fuzzy set theory. 

In this study, we also assume drivers acceleration and deceleration behavior are 

discrete. Under this assumption, we attempt to apply discrete choice theory to model such 

driving behavior.  

Discrete choice theory has been widely used in many fields of economics and 

traffic science (Asakura et al. 2001; Ben-Akiva and Lerman 1985; Bhat and Gossen 

2004; Dia 2002; Revelt and Train 1998; Train 2003). Recently, Antonini et al. (2006) and 

Robin et al. (2009) used cross nested logit model to investigate pedestrian movements. 

Motivated by their study, a mixed logit model with alternative-specific parameters is 

adopted to investigate drivers acceleration and deceleration behavior, in this study. 

Unlike previous car-following models, the vehicle type variable is used, which makes the 

proposed model be able to allow for driving differences of different vehicle types. 

Variables minus reference values adopted in this study improve explicability of the 

proposed model. Additionally, to intentionally avoid interference from lane-changing 

behavior, this model is estimated and validated by trajectory data in the high occupancy 

vehicle (HOV) lane. Finally, due to the fact that the purpose of developing traffic models 
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is to predict unknown traffic conditions, the model is applied to simulate 30-minute 

traffic conditions. Estimation, validation and simulation results sufficiently exhibit merits, 

together with defects of this model. 

The paper is composed of seven sections. Model specification is in the subsequent 

section, followed by the introduction of data sets to be used in this study. Estimation, 

validation and simulation results are separately put into the fourth, fifth and sixth section. 

The last section is devoted to the conclusion and further discussion. 

 

4.2 Model Specification 

 

It is important to mention that, according to (McFadden and Train, 2000), the mixed 

multinomial logit model can approximate any random utility model, and the model 

proposed in this study is the result of an intensive modeling process, where many 

different specifications have been considered. Although an ordered logit or probit model 

can account for the ordinal nature of the deceleration/acceleration alternatives, it is 

unable to capture the correlation between deceleration/acceleration alternatives in the 

same group, as well as heterogeneity across choice occasions. Eluru et al. (2008) stated 

that the ordered logit or probit model has a limitation in that the threshold values are 

fixed across observations, which could lead to inconsistent model estimation. Although 

the model in (Eluru et al., 2008) addresses this limitation, the correlation between 

alternatives is overlooked. The nested logit model could deal with the correlation 

between alternatives, but heterogeneity across choice occasions is not taken into 

consideration. Besides, Brownstone and Train (1998) proved that a particular mixed logit 
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model could be equivalent to a nested logit model. In addition to specifying the 

compound error term, the mixed logit model also allows for other random terms such as 

random alternative-specific constants. Hence, the mixed logit model is more flexible.  

 

4.2.1  Alternatives 

 

Based on current traffic conditions, it is assumed that drivers can make a judge about the 

acceleration or deceleration to be carried out in the next time step.   As shown in Fig. 4.1, 

for convenience, acceleration and deceleration are discretized into five alternatives. Ma 

and Md stand for maximum acceleration and minimum deceleration, and we suppose that 

vehicles in this study have the same maximum acceleration and minimum deceleration. If 

alternative 4 or 5 is selected, drivers will accelerate at the rate of 0.4 or 0.8 times Ma, in 

next time step. Similarly, alternative 1 or 2 means decelerating at 0.8 or 0.4 times Md. 

And, if drivers intend to maintain current speeds, alternative 3 will be selected. Here, we 

clarify that due to few studies in acceleration and deceleration classification, the 

classification approach we used is to keep balance in acceleration and deceleration  

 

 

Fig. 4.1 Acceleration and deceleration alternatives for one driver. 
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intervals and observations, according to acceleration and deceleration distribution in the 

data sets to be used. Undoubtedly, other classification methods can also be considered.  

In addition, it is important to note that, in order to avoid collision with its leader, 

some alternatives are unavailable under certain traffic conditions. For example, if 

alternative 5 is selected, there will be a collision with the preceding vehicle. Hence, it is 

necessary to identify the availability of each alternative in the next time step. In this study, 

we define the availability of each alternative as follows,  

nt nt nt
n(t 1)

1, if ( ) ,

0, otherwise [1,2,3,4,5]
L i gap

i

Gap v v AD C
Av

i
                                                         (4.1) 

It is assumed that when the preceding vehicle maintains the current speed vLnt and 

the subject vehicle n selecting alternative i accelerates or decelerates at the rate of ADi,  

the gap between them should be greater than the critical gap Cgap in the next time step.  

Cgap is taken as the mean gap of stationary vehicles in the data set to be used. Gapnt and 

vnt are the current gap and speed for the vehicle n. 

According to the availability, alternatives faced by drivers vary with traffic 

conditions. Defining the availability of alternatives can improve the accuracy of the 

proposed model by setting the choice probability of unavailable alternatives as zero.  

 

4.2.2 Mixed logit model  

 

As is well known that mixed logit model is a highly flexible model that can approximate 

any random utility model (McFadden and Train 2000), we adopt the mixed logit model 

with random constants to investigate acceleration and deceleration behavior in this study.  
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Like the standard logit model, the utility function is defined as, 

int int int , [1,2,3,4,5], [1, ]U V i n N ,                                                                             (4.2) 

where Vint is the observed utility and εint is the unobserved error term at time t. Besides, i 

stands for the alternative defined in Fig. 4.1 and N is the  number of drivers in the data set 

to be used.  

According to driving experiences, current traffic conditions (such as, speed, gap 

and relative speed) have different impact on choosing each alternative in next time step. 

When current speeds are fast enough, drivers prefer to maintain or slow down current 

speeds. As a result, the probability of choosing alternatives 3 and 2 is higher than that of 

other alternatives. In order to capture such different attractiveness of each alternative, 

alternative-specific parameters are used in the model.  The observed utility is proposed as, 

int i ( ) ( )
( )

( ) ,

n Ti n base vi nt mean

Adi nt LTi n base

Gi nt mean Rvi nt

V C T T v v
Ad LT T
Gap Gap Rv

                                                                              (4.3) 

where  

Cin = random-alternative specific constant for vehicle n; 

Tn = the type of vehicle n; 

Tbase = the basic vehicle type; 

vmean = the mean speed in the data set to be used; 

Adnt = the current acceleration or deceleration of  vehicle n;   

LTn = the type of preceding vehicle; 

Gapmean = the mean gap in the data set to be used; 

Rvnt = the relative speed between the leader and vehicle n.  

Furthermore, βs are corresponding parameters needed to be estimated. 
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It is worth to note that some variables minus reference values are used in the 

model, such as the vehicle type minus the basic vehicle type, the speed  minus the mean 

speed. In fact, doing this can improve explicability of this model, which will be 

illustrated in the third section. It is also noted that the vehicle type variable is 

incorporated in the utility function. Although it is more reasonable to construct different 

utility functions for different vehicle types, a larger number of parameters that go with 

different utility functions will definitely limit the applicability of the proposed model. 

For the standard logit model, assuming that the unobserved error terms 

independently and identically belong to Gumble distribution over alternatives, drivers as 

well as  choice situations and following (McFadden 1973), the predicted probability of 

choosing alternative i in next time step can be computed as,  

int

int 5

1

, [1,...,5]
jnt

V

V

j

eP i
e

.                                                                                                   (4.4)  

However, the assumption of independently distributed error terms prevents a 

treatment of correlation in errors across alternatives and choice situations for the same 

driver, and the assumption of identically distributed error terms does not allow for 

random driving behavior variations in errors across drivers. In order to obviate such 

limitations, in this study, the mixed logit model is adopted and specify that alternative-

specific constants independently belong to normal distribution, Ci ~ N(μi, σi
2), where μi, σi 

are the mean and standard deviation of normal distribution. Let ξ = (C1, ..., C5), α = 

(μ1, ..., μ5), β2 = (σ1
2, ..., σ5

2). For the proposed mixed logit model, the predicted 



58 

 

probability of choosing alternative i in next time step can be calculated as,  

* 2
int int ( | ) ( , ) , [1,...,5]P P i N d i .                                                                             (4.5) 

Due to the unclosed form, this model has to be estimated by using simulated 

maximum likelihood method (Train 2003). 

 

4.3  Data Sets 

 

The trajectory data used in this study were collected on a stretch of interstate freeway I-

80 in Emeryville, California, by using several video cameras that were mounted on a 

nearby high story building. The data sets were provided by Cambridge Systematic 

Incorporation for Federal Highway Administration as a part of Next Generation 

Simulation (NGSIM) program. Detailed information of observed vehicles, (vehicle type 

and size, lane identification, two dimension position, speed and acceleration) were 

extracted from video data, as well as the information about the preceding and following 

vehicles. Traffic is composed of three different vehicle types, motorcycle, automobile and 

truck (denoted as 1, 2 and 3). Fig. 4.2 provides a schematic illustration of the study site. It 

has five main lanes and one auxiliary lane, and the leftmost lane (lane 1) is a HOV lane.  

Data reflecting congested traffic conditions between afternoon peak periods were 

collected during 5:00-5:30 pm on April 13, 2005. Since only acceleration and 

deceleration behavior are discussed in this research, in order to avoid interference from 

lane-changing behavior, trajectory data in the HOV lane are used. Data during 5:00-5:15 

pm and 5:15-5:30 pm, denoted as data set 1 and data set 2, are used for model estimation 
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and validation, respectively. Traffic composition and traffic characteristics are presented 

in Table 4.1, where the mean speed and gap are mean values of instantaneous speed and 

gap for all vehicles in data set 1 and 2. 

In addition, Fig. 4.3 and Fig. 4.4 exhibit the acceleration and deceleration 

distribution in data set 1 and 2, where values are rounded toward negative infinity. One 

can see that 99% acceleration and deceleration range from -5 m/s2 to 5 m/s2. There also 

exists a few severe acceleration and deceleration, most of which were conducted by 

motorcycle drivers. 

 

Fig. 4.2 The illustration of the data collection site which is  northbound in reality. 
 

Table 4.1 Traffic composition and traffic characteristic in data set 1 and 2. 

Data sets 
Traffic composition Traffic characteristics 

motorcycle automobile truck mean speed mean gap 

Set 1 24 373 15 13 m/s 25 m 

Set 2 15 378 13 12 m/s 23 m 
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Fig. 4.3 Acceleration and deceleration distribution in data set 1. 
 

 

Fig. 4.4 Acceleration and deceleration distribution in data set 2. 
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4.4 Model Estimation 

 

 In this study, based on some study in drivers' reaction delay time (Brackstone and 

McDonald 1993; Ozaki 1993), the time interval between two successive choices made by 

drivers is taken as one second. The data set for model estimation includes 13119 

observations of 412 vehicles. 

Parameters in utility function (3) are estimated by Biogeme (Bierlaire 2003) 

software and listed in Table 4.2. 

Alternative 3 is set as the base for all variables. Automobile is taken as the basic 

vehicle type, that is, Tbase = 2. Ma and Md in alternatives are set as 5 m/s2 and -5 m/s2, 

according to Fig. 4.3 and Fig. 4.4. 

Table 4.2 The estimation results by using the data set 1. 
             

Parameter 

   Alternative 1    Alternative 2    Alternative 4    Alternative 5 

Value t-test Value t-test Value t-test Value t-test 

C  -4.65 -45.03 -2.22 -49.54 -1.69 -58.85 -4.24 -47.59 

 C              -0.03 0* 0.37 6.47 0.08 0.56* 0.01 0* 

T  0 0* 0.39 3.07 -0.44 -4.08 -0.66 -2.28 

v  0.18 6.73 0.13 9.00 -0.01 -0.88* -0.08 -2.69 

Ad  0.46 13.06 0.28 12.28 0.04 1.85* -0.32 -8.47 

LT  -0.03 -0.09* -0.31 -2.45 0.17 1.96 0 0* 

G  -0.03 -6.76 -0.03 -9.00 0.01 4.76 0.03 7.45 

Rv  -0.57 -19.00 -0.43 -24.25 0.25 17.89 0.35 13.17 

Number of vehicles: 412                  Number of observations: 13119 

Init log-likelihood: -21059.34          Final log-likelihood: -10873.34 

Likelihood ratio test: 20371.99         Rho-square: 0.484 

 * means the estimated parameters are not significantly different from zero at 99% confidence level. 
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From Table 4.2, one can see that there are some parameters which are not 

significantly different from zero at 99% confidence level and marked by *.   

For random constants, with large t-values, the means of normal distribution are 

significantly different from zero. However, important differences with zero are not 

observed in standard deviations, except for the one in alternative 2. It implies random 

driving behavior variations across drivers reflected by constant term are not significant in 

the used data set. 

For trucks whose value of vehicle type difference is Tn - Tbase = 3 - 2 = 1, the 

parameters of vehicle type difference in alternative 4 and 5 are negative. It means truck 

drivers do not prefer to acceleration alternatives, especially for maximum acceleration 

alternative, in the used data set. On the contrary, for motorcycles whose value of vehicle 

type difference is -1, it seems alternatives 4 and 5 are more preferable than other 

alternatives. This is reasonable since differences in maneuverability and the vehicle type 

make truck drivers cautious and motorcycle drivers aggressive. 

When current speeds are faster than the mean speed, drivers prefer to use 

deceleration to slow down in next time step, according to the parameters of the speed 

difference variable. Based on the parameters of the acceleration and deceleration variable, 

alternatives 1 and 2 are more likely to be selected for vehicles under acceleration. We 

also note that for parameters of the speed difference and acceleration and deceleration 

variable, the difference between alternatives 3 and 4 is tiny.  

From parameters of the preceding vehicle type difference, it shows that the 

difference in choosing alternatives 1, 3, and 5 is not notable. This may result from small 
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number of motorcycles and trucks, relative to the number of automobiles in the used data 

set. 

Although magnitudes of gap difference parameters are small, they have relative 

large t-values, which reflect sensitivity of this variable. By parameters, it shows that 

when current gaps are greater than the mean gap, alternatives 5 and 4 have higher chosen 

probabilities, compared to alternatives 1 and 2. 

According to common driving experiences, when preceding vehicles are slower 

than following vehicles, the drivers in following vehicles have to be cautious in avoiding 

collision with preceding vehicles and intend to decelerate to maintain desired gaps. On 

the other hand, when leader's speeds are faster than following vehicles speeds, even with 

small gaps, the drivers of following vehicles are also likely to accelerate to follow the 

leaders. This driving behavior is realistically represented by the parameters of the relative 

speed variable. Predicted probabilities for choosing alternatives 5 and 4 are relative 

higher than that for choosing alternatives 1 and 2, when preceding vehicles are faster than 

following vehicles. 

From above analysis, one can see that estimated parameters in Table 4.2 

demonstrate reasonability of the proposed model.  In addition, it is important to note that 

variables minus reference values used in utility function (3) make corresponding 

parameters more explainable. 
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4.5 Model Validation 

 

While reasonability of the proposed model is demonstrated through estimated parameters 

in the previous section, accuracy of this model still needs to be validated. Two data sets 

are adopted for model validation: data set 1 used for model estimation and data set 2 

which is not involved in estimation process and includes 14292 observations of 406 

vehicles. For the proposed model, parameters in Table 4.2 marked by * are set to zero. 

Firstly, we apply the estimated model to predict the probabilities of choosing each 

alternative in the next time step for every observation in data sets 1 and 2. Fig. 4.5 

presents the distribution of predicted probabilities for chosen alternatives in next time 

step in data sets 1 and 2. 

 

Fig. 4. 5 Distribution of predicted probabilities of chosen alternatives in data set 1 (the left) and 2 (the 
right). 
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From Fig. 4.5, we can see that predicted probabilities of chosen alternatives 

between 70% and 80% are most prominent both in data sets 1 and 2. In addition, the 

percentage for predicted probabilities of chosen alternatives which are more than 20% 

(the average probability of choosing each alternative) in data set 1 and data set 2 are 

81.34% and 82.13%, respectively, and for predicted probabilities of chosen alternatives 

which are more than 50% are 67.98% and 69.17%, separately. By these figures, it 

indicates that accuracy of the proposed model is sufficiently confirmed. 

Furthermore, it is worth to note that the model performs better in data set 2 than in 

the data set used for estimation, which shows strong robustness of the estimated model. 

 

 

Fig. 4.6 Distribution of predicted probabilities of chosen alternatives for different vehicle type in data 
set 1 (the upper)   and 2 (the lower). 
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In Fig. 4.6, the distribution of predicted probabilities of chosen alternatives for 

different vehicle types in data sets 1 and 2 are provided. Obviously, predicted results for 

motorcycles are not satisfactory, relative to that of automobiles and trucks. However, this 

is reasonable. As is well known, with high maneuverability and small size, motorcycle 

drivers seem to be more aggressive. In fact, in the used data sets, there are some 

motorcycle drivers driving at rather small gaps and even passing preceding vehicles along 

the edge of HOV lane. Such aggressive driving behavior of motorcycle drivers reduces 

accuracy of the estimated model, to some extent.  

In what follows, we validate the model from other perspective. For the 

observation k of driver n, let yink = 1 if alternative i is selected in the next time step, 

otherwise 0, and denote the predicted probability of choosing alternative i as Pink, i = 

[1, ..., 5]. Then, the following fact can be given,  

5 5

1 1 1 1 1 1

n nK KN N

ink ink
i n k i n k

y P M ,                                                                                     (4.6)    

where Kn, M are the number of observations for driver n and the number of total 

observations .  

If 
1 1 1 1

n nK KN N

ink ink
n k n k

P y for each alternative i, one can say that the model can accurately 

predict the shares of observations. 

From Fig. 4.7, as expected, the predicted shares are similar to the observed, which 

also illustrates accuracy of the proposed model.  
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Fig. 4.7 The observed and predicted shares for data sets 1 and 2. 
 

4.6 Simulation 

 

Although the accuracy of the proposed model is sufficiently validated in the preceding 

section, we believe that there is no better way to validate the model than to apply it to 

simulate real traffic, since the purpose of developing traffic model is to simulate 

unknown traffic conditions.  In fact, some problems in the model are found with the help 

of simulation. 

Fig. 4.8 shows the flowchart of simulation process. Firstly, drivers judge the 

availability of each alternative in next time step, according to current traffic conditions. 

Then, the proposed model is applied to estimate the probability of choosing each 
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available alternative. Subsequently, according to the corresponding probabilities, one 

alternative is determined at random. Here, it is important to point out that: the alternative 

with the highest predicted probability may not be definitely selected in this step; It just 

has the highest probability of being chosen. This is consistent with the definition of 

probability, and introduces randomness into simulation. In vehicle movement step, 

similar to cellular automata model (Nagel and Schreckenberg 1992), we introduce some 

assistant mechanisms to limit unreasonable speed and avoid collision.  

Vehicle movement: 

min( 1) max{ , ( ) }n n iv t V v t AD( )n ( )v ( 1) mn ( 1) m1) m1)1) m ,                                                                                       (4.7)    

max( 1) min{ ( 1), }n nv t v t Vmax( 1) min{ ( 1), }maxn n( ) {v ( 1) min{ ( 1),1) min{ ( 1), mn ( 1) min{1) min{1) min{ ((1) min{  ,                                                                                           (4.8)      

( 1) min{ ( 1), ( ) }n n n gapv t v t Gap t Cn ( 1),( 1),( ),( ),( )( 1)1)( 1),( 1), ,                                                                            (4.9) 

( 1) ( ) ( 1)n n nx t x t v t ,                                                                                               (4.10)               

where ṽn is the temporary value, Vmin, Vmax are the minimum and maximum speed in the 

used data.  ADi is the acceleration or deceleration relating to the chosen alternative i. 

One-hour single-lane traffic conditions are simulated. Traffic flow is set as 1636 

veh/hour, which is composed of 78 motorcycles, 1502 automobiles and 56 trucks. 

Vehicles are generated at random and initial speeds are set as the mean speed of the used 

data sets in the simulation run. Data associated with vehicles pasting the specified 503-

meter interval in the last 30-minute simulation time are collected to compare with the real 

traffic conditions composed of data sets 1 and 2. In addition, the following results are the 

average of five simulation runs and simulation is carried out with MATLAB. 
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Fig. 4.8 Flowchart of the simulation process. 
 

Table 4.3 The observed and simulated results for different vehicle   types. 
 Motorcycle Auto Truck 

Observed results 

Number 

Mean speed  

Mean gap 

39  

14.6 m/s 

14.9 m 

751 

12.6 m/s 

23.9  m 

28 

12.4 m/s 

36.7 m 

Simulated results 

Number 38 755 32 

Mean speed 9.5 m/s 9.0  m/s 8.6  m/s 

Mean gap 17.7 m 19.7 m 27.1  m 
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Before analyzing the simulation results, importantly, we point out that although 

assistant mechanisms (Equations. (7-9)) are introduced in the proposed model, in the 

3600-second simulation process of 1636 vehicles, the mechanisms are used only 570 

times. It implies that the following simulation results largely rely on the proposed model 

rather than assistant mechanisms.  

As an important feature, we firstly check the ability of describing driving 

differences of different vehicle types for the proposed model. The comparison results for 

different vehicle types are exhibited in Table 4.3.   Number in Table 4.3 is the number of 

vehicles passing the identified 503-meter study site in 30 minutes, for each vehicle type.   

From Table 4.3, we can see that, traffic composition in simulated traffic 

conditions is similar to that in real traffic conditions, which indicates that simulation is 

feasible by using the proposed model. Furthermore, it is important to note that the 

proposed model can represent different driving behavior of different vehicle types. 

Namely, motorcycle drivers drive at the fastest speeds and smallest gaps; on the 

contrary, truck drivers drive at the lowest speeds and greatest gaps both in real and 

simulated traffic conditions. 

However, we also note that simulated mean speeds for all vehicle types are lower 

than the observed ones, and simulated mean gaps except for motorcycle are less than the 

observed. The reason can be clearly explained by the following vehicle trajectory figures. 

In order to check the performance of the proposed model from the microscopic 

point of view, trajectories in five minutes of the observed and simulated vehicles are 

presented in Fig. 4.9 and Fig. 4.10.  
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From Fig. 4.9 and Fig. 4.10, we can see that, on the whole, simulated speeds are 

lower and simulated speed fluctuations are much severer than the observed results. And, 

many severe shock waves emerge in the simulation results. Like the real conditions, 

however, there are no obvious congestions in simulation.  As can be seen, Fig. 4.9 and 

Fig. 4.10 completely reveal the defects of proposed model in simulation process, and also 

point out the direction of improving this model. 

In our view, there are some reasons causing the unrealistic simulated results. First, 

although we use the data in HOV lane to intentionally avoid interference of lane-

changing behavior on acceleration and deceleration behavior; in fact, there are many 

vehicles changing into or out the HOV lane during data collection time. And, as shown in 

Fig. 4.7, the aggressive driving behavior of motorcycle drivers is hardly represented by 

the proposed model. Furthermore, as for the structure of the proposed model, we believe 

that the discrete nature makes speed fluctuations over severe. And, the fixed reaction 

delay time for all drivers of different vehicle types in this study may be one reason to the 

severe shock waves.  

Classifying acceleration and deceleration into more than five alternatives can be 

an effective way to mitigate severe speed fluctuation. However, it also imposes additional 

burden on calculation, especially for model estimation. Adopting the variable reaction 

delay time for  different drivers of different vehicle types may be a good solution to the 

severe shock wave phenomena emerging in the simulation results. Besides, more 

reasonably defining the availability of alternatives, Equation (4.1), may be able to limit 

unreasonable speed and avoid collision in simulation process, rather than using Equations 

(4.7-4.9). 
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Fig. 4.9 Trajectories of observed vehicles from 5:05 to 5:10. 

 

Fig. 4.10 Trajectories of simulated vehicles from the 35th to 40th minute. 
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4.7 Discussion 

 

Although careful considerations were given in this study, there remain some issues that 

require further discussions. The main assumption about the driver's decision-making 

process was not theoretically or empirically verified, as well as the approach used to 

classify deceleration/acceleration regions. In fact, to validate the reasonableness of the 

approach of classifying deceleration/acceleration regions, in the following study (Zheng 

et al. 2012) we tried to classify deceleration/acceleration regions into seven alternatives. 

From the Rho-square in Table 4.4 in (Zheng et al. 2012), the accuracy of the model 

declines greatly when deceleration/acceleration regions are divided into seven 

alternatives. Besides, compared with the 5-min trajectories, the stability of traffic flow 

are also not improved obviously. Therefore, the reasonableness of the approach of 

classifying deceleration/acceleration regions into five alternatives has been confirmed. 

 

Table 4.4 Estimation results in (Zheng et al. 2012) 

Parameter D3 D2 D1 A1 A2 A3 

Value T-test Value T-test Value T-test Value T-test Value T-test Value T-test 

Ci -5.03 -24.43 -2.40 -38.37 -0.39 -14.8 -0.16 -6.47 -1.89 -41.2 -4.21 -28.01 

βvi 6.20 8.98 3.36 12.75 1.34 9.55 -0.05 0.35* -0.89 -3.57 -4.05 -5.60 

βAdi 0.48 6.86 0.21 4.81 -0.06 -2.59 0.16 6.47 0.21 4.54 -0.09 -2.91 

βGapi -1.90 -4.71 -1.34 -8.44 -0.58 -7.10 0.37 5.09 0.89 6.61 1.22 3.29 

βRvi -0.54 -2.85 -0.80 -10.96 -0.46 -12.91 0.20 6.03 -0.09 1.44* -0.44 -2.65 

Number of vehicles: 376                Number of observations: 11509 

Init log-likelihood: -22321.74        Final log-likelihood: -15795.83 

Likelihood ratio test: 13051.83      Rho-square: 0.292 
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4.8 Conclusions 

 

In this study, a mixed logit model is proposed to describe drivers acceleration and 

deceleration behavior. Acceleration and deceleration are discretized into five alternatives. 

To represent different attractiveness of each alternative, alternative specific parameters 

are adopted in the model. Moreover, variables minus reference values are used, which 

improve explicability of the proposed model. Driving differences of different vehicle 

types are taken into account by the vehicle type variable in the model. In order to avoid 

interference of lane-changing behavior, this model is estimated and validated by 

trajectory data in HOV lane. The estimated parameters show reasonability of this model, 

and validation results sufficiently demonstrate robustness and accuracy of the model. 

Finally, the model is applied to simulate 30-minute traffic conditions. Simulation results 

exhibit that this model can describe driving differences of different vehicle types. 

Meanwhile, defects of this model in simulation process are also disclosed.  

For further research, this model can be extended along two directions, in our 

view. In this study, we attempt to use the random alternative-specific constants to capture 

driving behavior variations across drivers. However, estimated results show that, except 

for the alternative 2, standard deviations of the specified normal distribution are not 

significantly different from zero. This means the proposed model is similar to the 

standard logit model. This model may be extended to capture such variations through 

specifying other random terms or a mixed error term (Bhat and Gossen 2004). 

Furthermore, lane-changing behavior can be integrated in the model by defining 
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alternatives as in study (Antonini et al. 2006; Robin et al. 2009). We believe that each of 

the extensions of this model is a compelling and promising work. 
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CHAPTER 5. CAR-FOLLOWING BEHAVIOR WITH INSTANTANEOUS DRIVER-
VEHICLE REACTION DELAY: A NEURAL-NETWORK-BASED 

METHODOLOGY 

5.1 Introduction  

 

Due to the ability of capturing the complexity of traffic systems, traffic simulation has 

become one of the most used approaches for traffic planning, traffic design and traffic 

management. A wide variety of traffic simulation software is currently available on the 

market and is utilized by thousands of consultants, researchers and public agencies 

(Barceló 2010; Bloomberg and Dale 2000; Hidas 2005; Takahashi et al. 2002; Wu et al. 

2003; Yang and Koutsopoulos 1996). With the popularity of traffic simulation, the car-

following and lane-changing models, two of the most significant components in traffic 

simulation, have naturally attracted a lot of attention from traffic researchers (Brackstone 

and McDonald 1999; Gipps 1986; Hidas 2002; Panwai and Dia 2005; Toledo 2007; 

Zheng et al. 2012a). A number of models have been proposed in the past decades to 

describe such driving behavior more realistically and accurately.  

The concept of car following was first proposed by Reuschel (1950) and Pipes 

(1953), which assumed that the following vehicle controls its behavior with respect to the 

preceding vehicle in the same lane. Thereafter, considerable car-following models were 
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developed to mimic this behavior more consistently with real traffic. In (Gipps 1981), 

equations of motion were accepted to describe driver's acceleration and deceleration 

behavior. According to stimulus and response relationship, Gazis et al. (1961) proposed a 

widely studied car-following model. Kikuchi and Chakroborty (1992) built a car-

following model based on fuzzy logic theory. In addition, Nagel and Schreckenberg 

(1992) presented a typical cellular automata model to simulate vehicle movements. And, 

the model formulation in (Bham and Benekohal 2004) adopted the concept of cellular 

automata and car-following models. Besides, neural networks were also used to model 

car-following behavior (Panwai and Dia 2007). Based on discrete choice theory, drivers' 

acceleration and deceleration decisions were evaluated (Zheng et al. 2012b; Zheng et al. 

2012c).  

Reaction delay is a common characteristic of humans in operation and control, 

such as driving a car. The operational coefficients and delay characteristics of humans 

can vary rapidly because of changes in factors such as task demands, motivation, 

workload and fatigue. As mentioned above, research on car-following models historically 

has focused on exploration of different modeling frameworks and variables that affect 

this behavior. Recently, researchers have recognized that reaction delay of each driver is 

an indispensable factor for the identification of car-following models since it affects 

traffic dynamics not only in a microscopic way but also macroscopically (Ma and 

Andréasson 2006 ). However, due to that the estimation of variations in reaction delay is 

almost impossible in classic paradigms, in the abovementioned car-following models 

reaction delay was all assumed to be fixed. Besides, in previous studies the delay within 

the mechanical system of a vehicle was usually neglected. In fact, the time that a vehicle 
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takes to respond to a request (decelerating, accelerating, steering) depends greatly on the 

vehicle and roadway conditions, and is different for different types of vehicles 

(motorcycle, car, heavy vehicle). For modeling vehicle movements more realistically, 

vehicle reaction delay should also be considered.  

As an effort to circumvent the limitations to modeling vehicle movements, by 

defining the time interval between the relative speed and acceleration observed in real 

traffic as reaction delay, Khodayari et al. (2012) proposed a neural-network-based car-

following model which can take instantaneous driver-vehicle reaction delay into 

consideration. Although based on their method for some vehicles driver-vehicle reaction 

delay can be clearly identified, an explicit reaction delay model was not presented in the 

research, which completely limits the applicability of the method in simulation.  

In this study, the driver-vehicle reaction delay is specified by the time interval not 

only between the relative speed and acceleration but also between the gap and speed of 

the vehicle. A neural network for instantaneous reaction delay is trained by observed 

delay samples and then compared with a previous piecewise linear reaction delay model. 

Comparison results show that the neural network delay model is more realistic than the 

piecewise linear model. Incorporating the reaction delay network into a neural-network-

based car-following model, movements of nine vehicles which follow each other are 

simulated. Simulation results demonstrate that the models with instantaneous driver-

vehicle reaction delay clearly outperform the models with fixed reaction delay. 

Furthermore, the model with short fixed reaction delay makes the simulated vehicles 

follow each other more closely than the observed vehicles do, and collisions happen in 
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the model with long fixed reaction delay, which also indicates that taking instantaneous 

reaction delay into account is essential for modeling vehicle movements.  

The paper is composed of five sections. Data sets used in this study are briefly 

introduced in the subsequent section, followed by the description of the neural-network-

based methodology. In Section 5.4, the proposed methodology is thoroughly validated. 

The last section is devoted to the conclusions. 

 

5.2 Data sets 

 

The data used in this study were collected on a segment of U.S. Highway 101 in Los 

Angeles, California, by using eight video cameras that were mounted on a high story 

building. The study site is 640 meters long and covers an on-ramp and an off-ramp. There 

are five mainline lanes throughout the study site and an auxiliary lane is present through a 

portion of the corridor between the on-ramp and the off-ramp. The data sets were 

provided by Cambridge Systematic Incorporation for Federal Highway Administration as 

a part of the Next Generation Simulation (NGSIM) program. Detailed information about 

observed vehicles, (vehicle type and size, lane ID, two-dimension position, speed and 

acceleration) was extracted from video data, together with information about the 

preceding and following vehicles.  

Table 5.1 Traffic composition and traffic flow characteristics 
Number of automobiles Number of heavy vehicles Number of motorcycles 

5919 (97.0%) 137 (2.2%) 45 (0.7%) 

Flow rate (veh/hr) Average speed (km/hr) Density (veh/km) 

8077 35.0 231 
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Data reflecting congested traffic conditions in morning peak periods were 

collected during 7:50 am and 8:35 am on June 15, 2005. Traffic composition and traffic 

flow characteristics are listed in Table 1. In addition, the data were collected in clear 

weather, good visibility, and dry pavement conditions. A detailed analysis of the data and 

the data processing methodology is presented in NGSIM U.S. 101 Data Analysis Report 

(Cambridge Systematics Inc. 2005). 

Besides, in order to alleviate the noise in the data (Punzo et al. 2011), the moving-

average filter for a duration of one second is applied to all vehicle trajectories before data 

analysis in this study. 

 

5.3 The neural-network-based methodology 

 

The methodology is based on two models, the reaction delay model and the car-following 

model. As displayed in Fig. 1, according to traffic conditions (speed, gap, relative 

speed, ... ) at time t, the reaction delay model is used to estimate the time T that is 

required for the reaction of the driver-vehicle unit. On the other hand, the car-following 

model is applied to calculate the speed that the driver is going to accelerate/decelerate to 

in the next step. With respect to the driver-vehicle reaction delay, the expected speed can 

only be reached at t T , denoted by ( )v t T . In addition, to reflect continuous change 

in speed, we set the speed between t and t T as,  

0 0
( ) ( )( ) ( ) ,  [ ,2 ,..., ),v t T v tv t k v t k k t t T

T
                                                (5.1)     

where 0t is the minimum time step in simulation. 
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Fig. 5.1 Conceptual operation of the proposed methodology. 
 

In this study, the proposed reaction delay and car-following models are all based 

on neural networks. We will briefly introduce neural networks and the back-propagation 

algorithm for network training in the next subsection.  

 

5.3.1  Neural networks and the back-propagation algorithm 

 

Since 1990s, there has been an increased interest concerning artificial neural networks in 

a wide variety of disciplines (Adeli 2001; Dougherty 1995; Kalogirou 2000; 

Kalyoncuoglu and Tigdemir 2004; Karlaftis and Vlahogianni 2011; Rafiq et al. 2001; 

Sinha and McKim 2000). Typically, two advantages contribute to the popularity of neural 

networks. One advantage is that neural networks are able to handle noisy data and 

approximate any degree of complexity in non-linear systems (Adeli 2001; Kalogirou 

2000; Rafiq et al. 2001). Another advantage is that, they do not require any simplifying 

assumptions or prior knowledge of problem solving, compared with statistical models 

(Kalyoncuoglu and Tigdemir 2004; Karlaftis and Vlahogianni 2011). For example, in 

regression models we have to specify the underlying relationship (linear, polynomial, 

exponential, rational ...) between independent and dependent variables before model 

estimation. However, such specification is not necessary for inputs and outputs in neural 
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networks. In terms of the topic discussed in this study, driver-vehicle reaction delay and 

car following are two complicated concepts. Although there are some findings in 

previous studies, it is not clear what factors impact the reaction delay and car-following 

behavior, and what their underlying relationships are. Therefore, by virtue of the 

abovementioned features we believe that neural networks are more flexible than 

statistical approaches. In fact, validation results in Sec. 5.4 also confirm our judgment.  

 

 

Fig. 5.2 The schematic diagram of a two-layer feed-forward neural network. 
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According to (Haykin 1999), a neural network is a massively parallel distributed 

processor that has a natural propensity for storing experiential knowledge and making it 

available for use. It resembles the human brain in two respects: the knowledge is acquired 

by the network through a learning process, and inter-neuron connection strengths, known 

as synaptic weights, are used to store the knowledge. A schematic diagram of a typical 

multilayer feed-forward neural network  is displayed in Fig. 5.2.   

Before describing the neural network, it is important to give an explanation about 

superscripts and subscripts used in notations. In this study, we use superscripts to denote 

layers and subscripts to represent  neurons. The first subscript refers to the neuron in 

question and the second subscript stands for the source of the signal fed to the current 

neuron.  

The network is composed of inputs and two layers. The last layer of a neural 

network is also called the output layer. The input vector consists of R elements

1 2, ,..., Rp p p . Each input element ip  is multiplied by a weight 1
,j iw   to form 1

,j i iw p , one of 

the terms that is sent to the summer. The other input, the constant 1, is multiplied by a 

bias 1
jb  and then passed to the summer. The summer output 1 1 1

,
1

R

j j i i j
i

n w p b , often 

referred to as the net input, goes into the transfer function 1f , which produces the neuron 

output 1
ja  in the first layer. The bias 1

jb  has the effect of increasing or lowering the net 

input of the transfer function, depending on whether it is positive or negative, 

respectively. 1L is the number of neurons adopted in layer one.  
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If we relate the artificial neural network to a biological neuron, the weights and 

bias 1 1
, ,  j i jw b  correspond to the strength of a synapse. A cell body is represented by the 

summer and transfer function, and the neuron output 1
ja represents the signal on an axon.  

In the same way, treating the outputs of layer one as the inputs of layer two, the 

signals from layer one are passed through layer two. The transfer function in layer two 2f  

can be totally different from that in the first layer.  The outputs of layer two,

2 2,  [1,2,..., ]ka k L , are also the outputs of the discussed neural network. 2L is the number 

of neurons used in layer two.  

The neuron network can also be written in the following matrix form:

1 1 1 1 2 2 2 1 2(W ),  (W )a f p b a f a b                                                                        (5.2) 

where 1 2,W W  are the weight matrixes and 1 2 1 2, , , ,p b b a a denote the input, bias and output 

vectors in layers one and two. 

The property that is of primary significance for a neural network is the ability of 

the network to learn from its environment, and improve its performance through learning. 

In the context of neural networks, learning is defined as a process by which free 

parameters (weights and biases) of a neural network are adapted through a process of 

stimulation by the environment in which the network is embedded. The network uses a 

learning mode, in which inputs are presented to the network along with the desired 

outputs and parameters are adjusted so that the network attempts to produce the desired 

outputs. 

The back-propagation algorithm is one of widely used learning methods for 

multilayer neural networks. The back-propagation algorithm attempts to improve neural 
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network performance by reducing the total error through changing the gradient weights 

and biases. The mean square error is often used as a measure of neural network 

performance, 

2

2 2

1 1

1 ( ( ) ( ))
M L

k k
m k

E r m a m
M

                                                                                       (5.3)    

where kr  is the actual output and M is the number of samples in the training data set. 

The parameter change for neurons in layers one and two can be respectively 

denoted as, 

1 1 1
, 1 1

,

, , [1,2,..., ], [1,2,..., ],j i j
j i j

E Ew b i R j L
w b

                                        (5.4) 

2 2 1 2
, 2 2

,

, , [1,2,..., ], [1,2,..., ],k j k
k j k

E Ew b j L k L
w b

                                    (5.5)                       

where represents the learning rate. 

The error signal terms for the jth neuron and the kth neuron in the first and output 

layers are defined as: 

1 2 1 2
1 2, , [1,2,..., ], [1,2,..., ].j k
j k

E E j L k L
n n

                                                   (5.6) 

Applying the chain rule, the gradient of the mean square error with respect to 

weights and biases is as follows, respectively: 

1 1
1 1 1

1 1 1 1 1 1
, ,

, , [1,2,..., ], [1,2,..., ],j j
j i j

j i j j i j j j

n nE E E Ep i R j L
w n w b n b

              (5.7) 

2 2
2 1 2 1 2

2 2 2 2 2 2
, ,

, , [1,2,..., ], [1,2,..., ].k k
k j k

k j k k j k k k

n nE E E Ea j L k L
w n w b n b

         (5.8) 

Furthermore, Eq. 5.6 can be calculated as: 
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2
2 2 2 2 2

2 2 2
1

2 ( ( ) ( )) ( ), [1,2,..., ],
M

k
k k k k

mk k k

aE E r m a m f n k L
n a n M

                      (5.9) 

2
1 2 2 1 1 1

,1 2 1 ( ), [1,2,..., ].k
j k k j j

j k j

nE E w f n j L
n n n

                                              (5.10) 

Finally, the weights and biases can be updated using the following equations,

1 1 1 1 1 1 1
, ,( 1) ( ) ,b ( 1) ( ) , [1,2,..., ], [1,2,..., ],j i j i j i j j jw t w t p t b t i R j L           (5.11) 

2 2 2 1 2 2 2 1 2
, ,( 1) ( ) , ( 1) ( ) , [1,2,..., ], [1,2,..., ].k j k j k j k k kw t w t a b t b t j L k L        (5.12) 

In this study, neural networks are built by using the Neural Network Toolbox and 

implemented in MATLAB. In the learning process, 70% input samples are used for 

training and 30 % input samples for model validation.  The maximum number of training 

iterations, the minimum performance gradient, and the learning rate are set to 1000,

51.0 10 , and 0.01, respectively. 

 

5.3.2  Definition of driver-vehicle reaction delay 

 

Based on the observed vehicle data, Khodayari et al. (2012) defined the driver-vehicle 

reaction delay. Fig. 5.3(a) displays the relative speed and acceleration profiles of a 

vehicle during 100-second recording time. It is clear that, except some time lags, the 

changing tendency of acceleration is quite similar to that of the relative speed. Treating 

the relative speed as the stimulus and acceleration as the response, the driver-vehicle 

reaction delay is defined by the time interval between the relative speed and acceleration, 

as represented by the arrows in Fig. 5.3(b) 
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Fig. 5.3 The profiles of the relative speed and acceleration (a, b), the gap and speed (c), for the vehicle 
closely following its leading vehicle. 

 

According to common driving experience, however, drivers are more likely to 

adjust their speed based on the current gaps, since the change in the gap is more easily 

perceived than that in the relative speed.  Fig. 5.3(c) displays the gap and speed profiles 

of the vehicle. We note that the similar changing tendency in the gap and speed is also 

apparently observed. Besides, for vehicles maintaining large gaps with their leading 

vehicles, although the correlationship between the relative speed and acceleration is hard 

to be identified, the time lags between the gap and speed are still apparent, as shown in 

Fig. 5.4. Therefore, in this study the time interval between the gap and speed is also 

viewed as the driver-vehicle reaction delay. 
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Fig. 5.4 The profiles of the relative speed and acceleration (a), the gap and speed (b), for the vehicle 
maintaining large gaps with its leading vehicle. 

 

5.3.3  The instantaneous reaction delay model 

 

By the observed time delay between the relative speed and acceleration, as represented by 

the arrows in Fig. 5.3(b), Khodayari et al. (2012) introduced the driver-vehicle reaction 

delay. We note that, however, there exist some obvious issues in their research. The most 

obvious one is that the instantaneous reaction delay model was not explicitly presented. 

Although for observed vehicles the vehicle movements can be modeled by specifying the 

reaction delay at some specific time, such as in Fig. 3(b) at the 31st second they can 

specify the reaction delay as 1 second, for simulated vehicles whose movements in the 

next time step are totally unknown specifying reaction delay is impossible. Hence, to 
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reflect instantaneous reactive delay in traffic simulation, the instantaneous reaction delay 

model is essential.  Besides, as reaction delay appears to change during a single maneuver 

of acceleration or deceleration in the car-following behavior, reaction delay is divided 

into four categories (reaction delay to start deceleration, reaction delay for maximum 

deceleration, reaction delay to start acceleration, reaction delay for maximum 

acceleration) in (Khodayari et al. 2012). Similar to the mentioned issue, for observed 

vehicles such classification is feasible, but for simulated vehicles it is impossible to judge 

whether the current acceleration/deceleration is maximum or not. Therefore, dividing the 

reaction delay in four categories is not operational in simulation.  

According to the definition of driver-vehicle reaction delay in the previous 

subsection, 630 reaction delay samples are drawn from 50 cars. The statistic summary is 

listed in the second row of Table 2. In addition, 4024 car-following samples are also 

drawn from these cars in order to train the car-following models discussed later.  

Considering that reaction delay under acceleration and deceleration is different, 

Ozaki (1993) proposed a reaction delay model by using a piecewise linear function. The 

model is recalibrated by the samples in this study, as follows: 

0.743 0.016 0.037 ,  (deceleration)
0.886 0.008 0.037 ,  (acceleration)

g a
T

g a
                                                              (5.13) 

where g  is the gap and a  is the acceleration rate. Hereafter, this model is termed as 

Ozaki delay. 

Although it seems to be reasonable to distinguish between deceleration and 

acceleration reaction delay, a statistical hypothesis test, Kolmogorov-Smirnov test, shows 
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that such differences are not statistically significant at the 5% significance level in the 

samples used in this study. 

Based on the neural network introduced in Subs. 5.3.1, an instantaneous reaction 

delay model is developed, which is termed as NN delay in the following discussion. The 

input elements are the speed, relative speed, acceleration and the gap of the following 

vehicle. Two layers are adopted in the network. The transfer function in the first layer is 

Hyperbolic tangent function, written as: 

1 exp( ) exp( )( ) .
exp( ) exp( )

x xf x
x x

                                                                                           (5.14) 

This function is inherently nonlinear and produces outputs with upper and lower 

bounds, which is considered suitable for complicated systems. Besides, ten neurons are 

used in the first layer. 

The second layer which is also the output layer employs the following transfer 

function, 

2 1( ) ,
1 exp( )

f x
x

                                                                                              (5.15) 

where  is the maximum delay time in the samples. As the output of the neural network 

is instantaneous reaction delay, only one neuron is included in the output layer. 

 

5.3.4  The car-following model 

 

To reflect the effect of instantaneous reaction delay on simulating real vehicle 

movements, a car-following model is needed. The car-following model considered in this 
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study is also based on a neural network. Due to that acceleration is derived from observed 

speed, it is more direct and  convenient to model the vehicle speed. Therefore, unlike the 

models in the previous studies that the dependent variable is acceleration/deceleration 

(Gipps 1981; Khodayari et al. 2012; Panwai and Dia 2007; Zheng et al. 2012b), the 

output of the car-following model in this study is the speed of the following vehicle in the 

next time step.  

The inputs are the current speed, relative speed, the gap of the following vehicle 

and the gap of the leading vehicle. Two layers are employed in the model and the first 

layer is the same as in NN delay. The transfer function in the second layer is a piecewise 

linear function, as follows: 

2 0, if 0;
( )

, if x >0
x

f x
x

 .                                                                                                  (5.16) 

By using the observed samples, the neural-network-based reaction delay and car-

following models are trained by the back-propagation algorithm discussed in Subs. 5.3.1. 

Besides, in the previous neural-network-based studies (Khodayari et al. 2012; Panwai and 

Dia 2007), the frameworks of their research were introduced in detail, but the parameters 

of the proposed neural networks that contain meaningful information about the problems 

in question were not presented, which makes their results unduplicated. To some extent, 

this retrains the effective dissemination of their research.  In this study, for future 

reference, the calibrated weights and bias of the reaction delay and car-following neural 

networks are listed in Appendix.  
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5.4 Validation of the methodology   

 

Two measures are employed to validate the proposed methodology. One measure is the 

mean square error, Eq. 3. Another measure is the correlation coefficient between 

observed and simulated values, defined as follows: 

1

2 2

1 1

( )(S )

( ) (S )

M

m m
m

M M

m m
m m

OV OV V SV
R

OV OV V SV

                                                                              (5.17) 

where ,Sm mOV V are the observed and simulated values of the sample m and ,SOV V  are 

the mean values of all observed and simulated samples.  

 

5.4.1  Validation of instantaneous reaction delay models 

 

The observed and simulated reaction delay by Ozaki and NN delay models are listed in 

Table 5.2. From the interval between 25% and 75% and the mean value, there are nearly 

no differences between the observed and simulated results. From the standard deviation, 

the correlation coefficient R and the mean square error E, however, the differences are 

significant. We note that the standard deviation in NN delay model is somewhat similar 

to the real value, but the value in Ozaki delay model is less than half of the real value. R 

in NN delay model is almost two times greater than that in Ozaki delay model, and E in 

NN delay model is less than half of that in Ozaki delay model. The results quantitatively 

show that NN delay model is more realistic than Ozaki delay model. 
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Table 5.2 Observed and simulated reaction delay by Ozaki and NN delay models. 
 Percentile from 25% to 75% Mean value Standard deviation R E 

Observed delay [0.8, 1.1] 0.98 2.63 1 0 

Ozaki delay [0.9, 1.1] 0.98 1.23 0.43 5.62 

NN delay [0.8, 1.1] 0.98 2.06 0.77 2.78 

 

Fig. 5.5 Distribution of observed and simulated reaction delay. 
 

Fig. 5.5 provides the distribution of observed and simulated reaction delay. It 

shows that observed values are more dispersed than simulated ones and the most of the 

values in Ozaki delay model distribute between 0.9 and 1.1 seconds. Obviously, the 

distribution in NN delay model is more consistent with the real distribution.  
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Fig. 5.6 Reaction delay at the different speed and gap in NN delay model. 
 

Compared with statistical models in which the impact of each independent 

variable on the dependent variable can be clearly explained by the sign and magnitude of 

the corresponding parameter, the inherent explanatory power in neural networks is 

limited, which is known as the ''black box'' disadvantage. To find out the effect of the 

input of interest on the neural network output, sensitivity analysis is typically carried out. 

In Fig. 5.6, reaction delay in NN delay model at the different speed and gap is 

displayed. We can see that, with the increase of speed reaction delay decreases, while 

with the increment of the gap reaction delay increases. To some extent, this is consistent 

with common driving experience. When the vehicle runs fast, the diver is usually more 
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cautious and the time needed for the vehicle reaction is shorter too. When the gap is 

relatively large, without the collision risk the driver may not hurry to react to current 

traffic conditions. 

 

5.4.2  Validation of car-following models  

 

Nine cars that follow each other in the third lane are selected from the trajectory data set.  

Movements of the eight following vehicles are simulated by neural-network-based car-

following models with different reaction delay. The first vehicle is fed into simulation. 

The observed and simulated speed and gaps are illustrated in Figs. 5.7 and 5.8. 

By Fig. 5.7, we can see that, except the model with 1.5-second delay, the models 

are all able to accurately imitate the speed of the eight following vehicles. Particularly, 

the stop-and-go driving behavior is exactly modeled. Although observed speed profiles 

seem to be more coarse than simulated ones, it is believed that sharp fluctuations in 

observed speed profiles are largely caused by errors in deriving the speed from observed 

vehicle trajectories, since in reality for comfortable driving and fuel saving drivers 

seldom continually adjust their speed sharply.  Moreover, it is also noted that the speed 

profiles in the model with 0.5-second delay are more compact than those in other models. 

This is largely due to the relatively short reaction delay with which following vehicles 

can react quickly to the change of traffic conditions. In the model with 1.5-second delay, 

following vehicles do not stop when the first vehicle stands still, that is, collisions occur 

in simulation. This mainly results from the quite long reaction delay of the driver-vehicle 

unit such that the speed cannot be adjusted in time. 
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In Fig. 5.8, on the whole, the simulated gaps are similar to the real gaps, apart 

from the model with 1.5-second delay.  However, some differences can also be observed. 

During the first 30 seconds, in reality, vehicle 3 maintains relatively large gaps with 

vehicle 2, but the vehicles behind vehicle 3 maintain quite appropriate gaps. This may be 

due to that the following drivers act with the anticipation of their leading vehicles' next  

 

 

Fig. 5.7 Observed and simulated speed by models with different delay. 
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Fig. 5.8 Observed and simulated gaps by models with different delay. 
 

actions. When vehicle 3 is going to accelerate to follow vehicle 2, vehicles behind vehicle 

3 can estimate such intention and accelerate in time. In simulation, the relatively large 

gaps of vehicle 3 during the first 30 seconds are somewhat represented except in the 

model with 0.5-second delay, although the maximum value is less than the observed one. 

Besides, it is also noted that, the simulated vehicles 4 and 5 maintain greater gaps with 

their leading vehicles than observed vehicles do during the first 30 seconds. Although we 

adopt the gap of the leading vehicle as an input element in the car-following model to 

reflect the driver's anticipation ability, such ability is not well learned. 
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Possible reasons for the failure are that representative samples are not contained 

in the training data set, or drivers may estimate the movements of their leading vehicles 

depending not only on the gap but also on other traffic conditions such as the existence of 

vehicles in adjacent lanes.  

 

Table 5.3 Statistical summary for each observed and simulated vehicles 
Vehicle number V2 V3 V4 V5 V6 V7 V8 V9 Mean value 

Observed  

conditions 

Mean speed  5.8 6.0 6.2 6.2 6.3 6.5 6.4 6.5 6.2 

Mean gap  12.5 23.3 17.0 13.2 12.0 11.4 11.6 13.3 14.3 

Model with  

NN delay 

Mean speed  5.7 6.0 6.2 6.2 6.3 6.4 6.4 6.5 6.2 

Mean gap  13.4 18.8 17.0 14.6 12.5 12.5 11.3 12.4 14.1 

R 
Speed 0.99 0.97 0.97 0.97 0.92 0.93 0.89 0.89 0.94 

Gap 0.98 0.97 0.82 0.93 0.77 0.87 0.64 0.90 0.86 

E 
Speed 0.29 0.70 0.73 0.82 1.98 1.85 2.83 3.00 1.53 

Gap 4.82 33.30 31.57 14.28 10.92 6.87 11.36 8.51 15.20 

Model with  

Ozaki delay 

Mean speed  5.7 6.0 6.2 6.2 6.3 6.4 6.4 6.5 6.2 

Mean gap  13.1 18.3 16.3 14.3 12.7 11.7 10.4 11.9 13.6 

R 
Speed 0.99 0.98 0.98 0.95 0.89 0.90 0.86 0.86 0.93 

Gap 0.98 0.98 0.82 0.90 0.67 0.85 0.59 0.87 0.83 

E 
Speed 0.25 0.48 0.72 1.22 2.59 2.52 3.70 3.98 1.93 

Gap 2.74 33.8 34.2 20.53 19.54 8.16 20.55 11.36 18.86 

Model with  

0.5-second delay 

Mean speed  5.7 6.0 6.1 6.2 6.2 6.4 6.4 6.5 6.2 

Mean gap  12.9 14.9 15.7 13.9 12.1 13.0 11.9 13.0 13.4 

R 
Speed 0.98 0.91 0.93 0.93 0.88 0.84 0.81 0.79 0.88 

Gap 0.96 0.78 0.71 0.86 0.79 0.70 0.37 0.88 0.76 

E 
Speed 0.52 2.76 2.20 2.01 3.21 4.19 4.87 5.70 3.18 

Gap 12.60 154.10 35.51 9.72 6.86 13.69 14.74 11.28 32.31 

Model with  

1-second delay 

Mean speed  5.7 6.0 6.2 6.3 6.3 6.5 6.5 6.6 6.3 

Mean gap  12.2 17.7 16.6 14.5 12.4 11.4 10.6 11.7 13.4 

R 
Speed 0.99 0.97 0.98 0.95 0.90 0.90 0.86 0.87 0.93 

Gap 0.97 0.97 0.83 0.87 0.70 0.88 0.65 0.88 0.84 

E 
Speed 0.33 0.81 0.52 1.11 2.31 2.25 3.27 3.28 1.73 

Gap 3.82 42.69 50.59 29.24 19.36 6.63 15.21 11.17 22.34 
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Table 5.3 provides the statistical summary of each observed and simulated 

vehicles. It is shown that, compared with other vehicles, for vehicle 2 the models all 

acquire their best performance, which indicates that validating the models by using the 

data only from one vehicle in previous studies (Khodayari et al. 2012; Panwai and Dia 

2007) is insufficient. Furthermore, among all the models, the model with Ozaki delay 

achieves the highest accuracy for vehicle 2, but for vehicles 3 through 9 together with the 

mean value, the model with NN delay apparently outperforms other models. The results 

also quantitatively illustrate that the models with instantaneous reaction delay simulate 

the movements of vehicles more realistically than the models with fixed reaction delay do, 

which is in agreement with the conclusion in (Khodayari et al. 2012). 

 

5.5 Conclusions 

 

Reaction delay of the driver-vehicle unit varies greatly according to driver-vehicle 

characteristics and traffic conditions, and is an indispensable factor for modeling vehicle 

movements. However, estimation of these variations is almost impossible in classic 

paradigms so that fixed reaction delay was adopted in previous studies. Based on the time 

delay between the relative gap and acceleration, Khodayari et al. (2012) defined the 

reaction delay of driver-vehicle unit and modeled the movements of the vehicle used for 

reaction delay estimation. In this study, some limitations in (Khodayari et al. 2012) are 

pointed out. And, by redefining driver-vehicle reaction delay, a neural network for 

instantaneous reaction delay is trained using samples observed from real traffic. 
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Incorporating the reaction delay network into a neural-network-based car-following 

model, movements of nine vehicles which follow each other are simulated. 

 Simulation results show that, for all discussed models, vehicle 2 is simulated with 

the highest accuracy, since the first vehicle is fed into simulation. This indicates that in 

previous studies validating the models by using the data only from one vehicle is 

insufficient. Moreover, we find that the performance of the models with instantaneous 

reaction delay is apparently better than that of the models with fixed delay. In the model 

with short fixed reaction delay, the simulated vehicles follow each other more closely 

than the observed vehicles do, and collisions occur in the model with long fixed delay, 

which also illustrates the necessity of taking into account instantaneous reaction delay in 

vehicle movement modeling. Besides, for future reference, the calibrated weights and 

bias in the neural-network-based reaction delay and car-following models are presented 

in Appendix. 

Finally, we point out that due to lack of available data, in this study the proposed 

methodology was not validated in some different contexts, such as in a rainy day. 

Typically, in different contexts the accuracy of the models will be reduced to some extent, 

if we still use the same parameters. In actual practice, we usually recalibrate the models 

by using the data collected in the corresponding context and adopt different 1 1 2 2, , ,W b W b

in the Appendix. In addition, although more and more car-following and lane-changing 

models that can take a wide variety of driver-vehicle characteristics into consideration 

have been proposed so far, car-following and lane-changing behavior are usually treated 

individually. This is obviously inconsistent with the real driving behavior. A model 

framework that can integrate the acceleration and lane-changing behavior was developed 
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in (Toledo et al. 2007), but some driver-vehicle characteristics were avoided, such as 

instantaneous reaction delay and lane-changing duration. By using the neural network 

technology, an integrated methodology for the vehicle two-dimensional movements 

(longitudinal and lateral) comprises our further study. 

     

Appendix 

 

The calibrated weights and bias in the neural network for instantaneous reaction delay: 

1

-0.03    2.79     -1.96    3.62
 19.77 -16.68  -17.03  -23.61
 0.10    0.66     0.37    -0.04
-10.00  2.63    -1.31    -0.25
 2.33   -2.49     0.05     -2.19

 
-0.15   -0.68     1.10      1.80 
 0.51    0

W 1

 0.27
-9.69
 0.03
-2.29
 10.49

  b  
-15.80

.07    -0.62     -0.09  0.38
-8.01   11.08   -5.88      9.08  11.1
 1.84  -5.87      4.45      0.33 
-0.07  -0.73     -0.36      0.02  

2 2

 2.48
-0.18
-2.70
 3.12
-0.17

     b  1.62
 0.27
-1.01

6 -0.22
-13.67  0.05
 0.30 -2.77

W

 

The calibrated weights and bias in the car-following neural network:   

1

 22.76   7.78  -9.17   -2.33
-1.98    2.93   3.01    1.81
-0.27    0.34   0.20    0.14
-2.44    0.89  -4.66   -0.62
-2.09   -3.81   2.01    1.31

  
 1.01    0.02  -1.20    2.81 
-18.16 -8.02  -3.82    6.5

W 1

 -2.21
 -0.94
 -2.57
  3.14
  1.58

   b  
 -18.35

3  -10.80
-0.92    0.56  -0.02    0.32  -2.56
-0.06  -0.02    0.01    0.01   0.45
-2.82   8.91  -19.20   14.77   -1.23

2 2

 -0.01
 -0.85
  0.03
 -2.90
 -0.95

     b  -0.54
  0.01
 -0.04
  0.06
 -1.17
 -0.01

W
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CHAPTER 6. PREDICTING DRIVER'S LANE-CHANGING DECISIONS USING A 
NEURAL NETWORK MODEL 

6.1  Introduction 

 

Owing to the ability to capture the complexity of traffic systems, traffic simulation has 

become one of the most widely used approaches for traffic planning, traffic design, and 

traffic management. Various traffic simulation software packages are currently available 

in the market, and they are utilized by thousands of consultants, researchers, and public 

agencies (Barceló, J. 2010; Bloomberg, L. and Dale, J 2000; Hidas, P. 2005; Kondyli, A. 

et al. 2012). With the popularity of traffic simulation, the car-following and lane-

changing models, two of the most significant components in traffic simulation, have 

naturally attracted a lot of attention from traffic researchers (Brackstone and 

McDonald 1999; Toledo 2007; Zheng et al. 2012a; Zheng et al. 2012b). 

According to previous studies, lane changing has a significant impact on traffic 

flow characteristics owing to the inference effect on surrounding vehicles (Daganzo et al. 

1999). In addition, lane changing is also viewed as a key trigger in freeway breakdown 

(Duret et al. 2011; Jiang and Adeli 2004), and it potentially reduces freeway safety (Jin 

2010; Mauch and Cassidy 2002). To describe such driving behavior more accurately, 

over the past two decades, several lane-changing models have been developed 
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(Gipps1986; Hidas 2002; Laval and Daganzo 2006; Sheu and Ritchie 2001; Sun and 

Kondyli 2010; Toledo et al. 2003; Aghabayk et al. 2011). 

However, compared to the car-following model, literature relating to lane 

changing is less comprehensive. This may be owing to two reasons: the inherent 

complexity of lane changing and the absence of large-scale data to analyze such behavior. 

Unlike car following, lane changing is influenced not only by preceding and following 

vehicles in the same lane but also by leading and lagging vehicles in adjacent lanes 

(Moridpour et al. 2010). Besides, driver’s decisions to change lane are also affected by 

driver characteristics (age, gender, driving experience) and driving attitudes (aggressive 

or conservative driver) (Sun and Elefteriadou 2010; Sun and Elefteriadou 2012). As a 

result, the prediction of driver’s lane-changing decisions is extremely complicated. On 

the other hand, models should be estimated and validated by field data (Hollander and 

Liu 2008). However, most of the previous lane-changing models were proposed without 

rigorous estimation and validation, largely owing to a lack of available data (Gipps1986; 

Hidas 2002; Sheu and Ritchie 2001).  

In an effort to cope with the obstacles affecting the modeling of lane changing, in 

this study, a neural network (NN) model is adopted to capture the inherent complexity of 

lane changing, and large-scale trajectory data are used for model estimation and 

validation. Specifically, this study makes the following contributions. (1) A detailed 

analysis of left and right lane changes is conducted, which suggests that the left and right 

lane changes are asymmetric and incentivized by different motivations. (2) A NN model 

that can completely account for the impact of surrounding vehicles on lane-changing 

decisions is developed. In addition, the proposed NN model clearly outperforms a 
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multinomial logit (MNL) model, which was frequently adopted as a framework for lane 

changing in previous studies, both in model estimation and validation processes. (3) The 

impact of heavy vehicles on driver’s lane-changing decisions is quantitatively evaluated 

using the sensitivity analysis of the proposed NN model.  

The paper is composed of eight sections. Sec. 6.2 discusses the specification of 

our model, and is followed by the introduction and analysis of trajectory data in Sec. 6.3. 

Model estimation and validation are presented in Secs. 6.4 and 6.5, respectively. The 

application of the proposed model is demonstrated in Sec. 6.6. Secs. 6.7 and 6.8 are 

devoted to further discussions and conclusions. 

 

6.2 Model Specification 

 

Depending on the purpose, lane changing is categorized as being either mandatory or 

discretionary (Gipps1986). Typically, mandatory lane changing is executed when the 

driver must leave the current lane to maintain the desired route. Discretionary lane 

changing refers to cases in which the driver changes lane to improve driving conditions, 

such as overtaking slow vehicles, passing large/heavy vehicles, and avoiding traffic near 

an on-ramp. In addition, lane-changing maneuvers are different for different types of 

vehicles (heavy vehicle or car) (Aghabayk et al. 2011; Moridpour et al. 2010). In this 

study, we only discuss the discretionary lane changing of cars. In fact, the proposed 

methodology can also be applied to heavy vehicles or mandatory lane-changing vehicles 

by defining them as subject vehicles.  

The subject vehicle and its surrounding vehicles are illustrated in Fig. 6.1. Note 
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Fig. 6.1 Illustration of the subject vehicle and its surrounding vehicles. 
  

that in this study, not only are the nearest lead and lag vehicles in the current and adjacent 

lanes considered but also the nearer lead and lag vehicles. To facilitate model 

specification, the following variables are employed: 

idL  = ID of the current lane for the subject vehicle; 

V  = instantaneous speed of the subject vehicle; 

nearest
leadT  = type of the nearest lead vehicle; 

nearest
leadRV  = relative speed between the nearest lead vehicle and subject vehicle; 

nearest
leadSG  = space gap between the nearest lead vehicle and subject vehicle; 

nearer
leadT  = type of the nearer lead vehicle; 

nearer
leadRV  = relative speed between the nearer and nearest lead vehicles;  

nearer
leadSG  = space gap between the nearer and nearest lead vehicles. 

Accordingly, , , , , ,nearest nearest nearest nearer nearer nearer
lag lag lag lag lag lagT RV SG T RV SG  are variables with respect to the 

subject vehicle, the nearest, and nearer lag vehicles. 
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6.2.1  Neural network model 

 

Since the 1990s, there has been an increased interest in a wide variety of disciplines 

concerning the application of artificial NNs (Adeli 2001; Kalyoncuoglu and Tigdemir 

2004; Hunt and Lyons 1994; Kalogirou 2000; Karlaftis and Vlahogianni 2011; Rafiq et al. 

2001; Hagan et al. 1996). Typically, two advantages contribute to the popularity of NN 

models. One of them is that NNs are able to handle noisy data and approximate any 

degree of complexity in nonlinear systems (Adeli 2001; Hunt and Lyons 1994; Rafiq et al. 

2001). Another advantage is that NN models do not require any simplifying assumptions 

or prior knowledge of problem solving, compared with statistical models (Kalyoncuoglu 

and Tigdemir 2004;  Karlaftis and Vlahogianni 2011). For example, in regression models, 

we have to specify the underlying relationship (linear, polynomial, exponential, rational, 

etc.) between independent and dependent variables before model estimation. However, 

such specifications are not necessary for inputs and outputs in NN models. 

In (Hunt and Lyons 1994), Hunt and Lyons used two sorts of NNs to model a 

driver’s lane-changing behavior. In the prediction-type network, drivers are unable to 

change lanes because the model is trained by the simulated data from an individual 

subject driver, where the portion of lane-change instances is very small. The application 

of a classification-type NN is considered to be viable. The model is able to correctly 

classify a very high proportion of examples during training for both simulated and 

observed data. However, it is also noted that misclassification of unseen driving examples 

is highly significant in the testing process. Besides, only the effect of the position of 

surrounding vehicles on the subject vehicle’s lane changing is considered in the 
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classification-type network. The relative speed and the vehicle type of surrounding 

vehicles, which also greatly influences lane changing (Moridpour et al. 2010), are not 

considered. 

The NN considered in this study is a typical feed-forward NN with five layers (an 

input layer, three hidden layers, and an output layer), as displayed in Figure 2. If we 

relate the model to a biological neuron, the weights and bias (IW, LW, bi) correspond to 

the strength of a synapse, a cell body is represented by the summation and transfer 

functions (f(x), g(x)), and the output (OP) represents the signal on an axon (Hagan et al. 

1996). Training is the process of modifying the weights and bias using a suitable learning 

method. The network uses a learning mode, in which the inputs and desired outputs are 

presented to the network and the weights and bias are adjusted so that the network 

attempts to produce the desired outputs. After training, the weights and bias contain 

meaningful information, whereas before training, they are random and have no meaning 

(Kalogirou 2000). 

In the input layer of the proposed model, there are three input vectors, each of 

which separately connects a hidden layer. Elements in each input vector are the variables 

associated with the vehicles in the left (L), current (C), and right (R) lanes, respectively.  

 or  { , , , , , ,

                     , , , , , },

L R nearest nearer nearest nearer nearest nearer
lead lead lead lead lead lead

nearest nearer nearest nearer nearest nearer
lag lag lag lag lag lag

IP IP T T RV RV SG SG

T T RV RV SG SG
                                 (6.1)

{ , , , , , ,

, , , , }.

C nearest nearer nearest nearer
id lead lead lead lead

nearest nearer nearest nearest nearest
lead lead lag lag lag

IP L V T T RV RV

SD SD T RV SD
                                                           (6.2)  
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The transfer function in the hidden layers is a hyperbolic tangent sigmoid function

2( ) 1,  [ , , ]
1 exp( 2 )if x i L C R

x
                                                                             (6.3) 

This function is inherently nonlinear and produces outputs with upper and lower bounds, 

which is considered suitable for complicated systems. The number of neurons in each 

hidden layer will be determined by model estimation in the next section. According to 

lane-changing directions, three neurons are employed in the output layer. The transfer 

function adopted in the output layer is defined as follows: 

[ , , ]

exp( )( ) ,  [ , , ]
exp( )

i
i

jj L C R

xg x i L C R
x

                                                                         (6.4) 

Such a design provides the exact probability of making each decision, unlike the 

pattern recognition network, where outputs are represented by zeros or ones. Furthermore, 

it facilitates the comparison with an MNL model that will be discussed later. The 

Levenberg–Marquardt back-propagation algorithm (Hagan et al. 1996) is used for  

 

Fig. 6.2 The NN used for lane-changing decisions 
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training owing to its fast speed. The mean square error (MSE) is taken as a measure of 

the performance of the NN model, and is given by 

2
[ , , ]

1 ( ) ,i ii L C R
MSE OB OP

N
                                                                                  (6.5) 

where OB and OP are the observed lane-changing decisions and the predicted probability, 

respectively. N is the number of total samples.  

 

6.2.2  Multinomial logit model 

 

In previous studies, the discrete choice model was often adopted as a framework for lane 

changing (Toledo et al. 2003; Sun and Elefteriadou 2010). For comparison purposes, an 

MNL model of lane-changing decisions was also developed in this study. 

In accordance with discrete choice theory (Ben-Akiva and Lerman 1985), the total 

utility of choosing an alternative is composed of two components, the observed utility Vi 

and the unobserved error term εi,  

,  [ , , ].i i iU V i L C R                                                                                                 (6.6) 

Based on driving conditions, the observed utility for each lane is defined as 

 1 3 4 5 6 7 8

9 10 11 12 13 14 ,

nearest nearest nearest nearer nearer nearer
L lead lead lead lead lead lead

nearest nearest nearest nearer nearer nearer
lag lag lag lag lag lag

V C T RV SG T RV SG

T RV SG T RV SG
         (6.7) 

2 1 2 3 4 5 6 7

8 9 10 11 ,

nearest nearest nearest nearer nearer
C id lead lead lead lead lead

nearer nearest nearest nearest
lead lag lag lag

V C L V T RV SG T RV

SG T RV SG
       (6.8) 

3 3 4 5 6 7 8

9 10 11 12 13 14 ,

nearest nearest nearest nearer nearer nearer
R lead lead lead lead lead lead

nearest nearest nearest nearer nearer nearer
lag lag lag lag lag lag

V C T RV SG T RV SG

T RV SG T RV SG
         (6.9)
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where C1, C2, C3 are alternative-specific constants and βs (s = 1, 2, 3, …,14) are 

corresponding parameters to be estimated. 

Assuming that the unobserved error terms ,  [ , , ]i i L C R  are independent and 

identically Gumbel-distributed across alternatives and choice occasions, the probability 

of changing into adjacent lanes or keeping the current lane in the next time step can be 

calculated as 

[ , , ]

exp( ) ,  [ , , ].
exp( )

i
i

jj L C R

VP i L C R
V

                                                                           (6.10) 

 

6.3 Data Sets 

 

The data used in this study were collected on a segment of U.S. Highway 101 in Los 

Angeles, California, where an on-ramp and off-ramp were covered using several video 

cameras mounted on a multistory building. The datasets were provided by Cambridge 

Systematic Incorporation for Federal Highway Administration as a part of the Next 

Generation Simulation (NGSIM) program. Detailed information about observed vehicles 

(vehicle type and size, lane ID, two-dimension position, speed, and acceleration) was 

extracted from the video data, along with information about the preceding and following 

vehicles. Traffic is composed of three different vehicle classes, namely motorcycle, 

automobile, and truck. 

Data reflecting congested traffic conditions in morning peak periods were 

collected between 7:50 am and 8:20 am on June 15, 2005. Because only the discretionary 

lane changing is discussed in this study, mandatory lane-changing vehicles entering the 
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freeway from the on-ramp or exiting to the off-ramp are excluded from the trajectory data. 

Data collected from 7:50 am to 8:05 am and 8:05 am to 8:20 am, which are hereafter 

denoted as dataset 1 and dataset 2, are used for model estimation and validation, 

respectively. A detailed analysis of the data and the data processing methodology is 

presented in the NGSIM U.S. 101 Data Analysis Report (Cambridge Systematics Inc. 

2005). In addition, to alleviate the noise in the data (Punzo et al. 2011), the moving-

average filter for the duration of one second is applied to all vehicle trajectories. 

In this study, a lane change is assumed to be instantaneous without duration. The 

instance at which a vehicle crosses over the current lane line in the next time step is 

treated as a lane-changing instance. Therefore, lane-changing instances are greatly 

outnumbered by car-following or free-flow instances during a driver’s journey. It is 

impossible to train the NN model using continuous trajectories of lane-changing vehicles. 

This is also the reason for the failure of the prediction-type network in (Hunt and Lyons 

1994). To mitigate this issue, in this study, samples were drawn from trajectory data. For 

a lane-changing vehicle, lane-changing instances were selected and two additional non-

lane-changing instances were chosen randomly. For a non-lane-changing vehicle, three 

samples were randomly drawn. A total of 5826 samples were drawn from dataset 1, 

which consists of 332 left-changing samples, 5284 non-lane-changing samples, and 210 

right lane-changing samples. The number of left lane-changing, non-lane-changing, and 

right lane-changing samples from dataset 2 were 223, 5030, and 112, respectively.  

To obtain a clear view on the causes of lane changes, the summary statistics of 

left and right lane-changing samples are presented in Tables 6.1 and 6.2, respectively. 

The Kolmogorov–Smirnov (KS) test is applied to compare the distribution of the 
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variables in two different lanes, where the result is one if the distribution is different at 

the 5% significance level, and otherwise zero. 

For left lane-changing samples in Table 6.1, the mean relative speed and mean 

space gap with the nearest lead vehicle in the left lane are obviously superior to that in 

the current and right lanes. Although the mean space gap between the nearest and nearer 

lead vehicles in the left lane is also greater than that in other lanes, the KS test does not 

show differences in their distribution. The results in the mean relative speed between the 

subject vehicle and the nearest lag vehicle are similar to that in the mean space gap 

between the nearest and nearer lead vehicles. From Table 6.2, both the mean relative  

 

Table 6.1 Summary statistics for 555 left lane-changing samples 

Variables 
Corresponding 

 lane 

Percentile 

 from 25% to 75% 
Mean Standard deviation KS test 

nearest
leadRV  (m/s) 

Left lane 

Current lane 

Right lane 

[-0.8, 1.3] 

[-2.3, 0.3] 

[-2.2, 1.0] 

0.4 

-0.8 

-0.5 

2.5 

2.7 

3.0 

Left-Current lane = 1 

Current-Right lane = 1 

Right-Left lane = 1 

nearest
leadSG  (m) 

Left lane 

Current lane 

Right lane 

[8.0, 24.8] 

[8.0, 17.8] 

[1.3, 18.7] 

18.3 

14.2 

11.0 

13.4 

9.9 

13.0 

Left-Current lane = 1 

Current-Right lane = 1 

Right-Left lane = 1 

nearer
leadRV (m/s) 

Left lane 

Current lane 

Right lane 

[-0.8,1.2] 

[-0.2, 1.5] 

[-0.5, 1.4] 

0.2 

0.6 

0.6 

1.7 

1.9 

2.3 

Left-Current lane = 1 

Current-Right lane = 0 

Right-Left lane = 1 

nearer
leadSG (m) 

Left lane 

Current lane 

Right lane 

[13.7, 30.7] 

[13.4, 28.5] 

[13.3, 27.9] 

23.3 

22.1 

21.8 

11.7 

12.2 

11.5 

Left-Current lane = 0 

Current-Right lane = 0 

Right-Left lane = 0 

nearest
lagRV (m/s) 

Left lane 

Current lane 

Right lane 

[-0.3, 2.2] 

[-0.4, 2.1] 

[-0.6, 2.5] 

1.3 

0.9 

0.9 

2.6 

2.4 

2.7 

Left-Current lane = 0 

Current-Right lane = 0 

Right-Left lane = 0 

nearest
lagSG (m) 

Left lane 

Current lane 

Right lane 

[12.3, 27.4] 

[13.4, 33.1] 

[3.1, 21.8] 

21.1 

24.1 

14.4 

12.3 

14.2 

14.3 

Left-Current lane = 1 

Current-Right lane = 1 

Right-Left lane = 1 
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Table 6.2 Summary statistics for 322 right lane-changing samples 
Variables Corresponding 

 lane 

Percentile 

 from 25% to 75% 

Mean Standard deviation KS test 

nearest
leadRV (m/s) 

Left lane 

Current lane 

Right lane 

[-1.9, 0.2] 

[-1.5, 0.5] 

[-0.7, 2.0] 

-0.8 

-0.6 

0.7 

2.2 

1.8 

2.2 

Left-Current lane = 0 

Current-Right lane = 1 

Right-Left lane = 1 

nearest
leadSG (m) 

Left lane 

Current lane 

Right lane 

[-0.9, 13.2] 

[9.8, 23.5] 

[6.3, 22.4] 

8.3 

18.1 

16.2 

11.8 

10.6 

13.2 

Left-Current lane = 1 

Current-Right lane = 1 

Right-Left lane = 1 

nearer
leadRV (m/s) 

Left lane 

Current lane 

Right lane 

[-0.6, 1.1] 

[-0.5, 1.3] 

[-0.9, 1.0] 

0.3 

0.4 

0.2 

1.4 

1.7 

1.6 

Left-Current lane = 0 

Current-Right lane = 0 

Right-Left lane = 0 

nearer
leadSG (m) 

Left lane 

Current lane 

Right lane 

[13.3, 24.1] 

[12.9, 24.0] 

[14.0, 29.6] 

21.0 

19.1 

23.1 

11.2 

10.2 

12.3 

Left-Current lane = 0 

Current-Right lane = 0 

Right-Left lane = 0 

nearest
lagRV (m/s) 

Left lane 

Current lane 

Right lane 

[-1.0, 2.2] 

[-0.4, 1.6] 

[-1.3, 1.4] 

0.7 

0.8 

0.3 

2.2 

2.2 

2.7 

Left-Current lane = 1 

Current-Right lane = 1 

Right-Left lane = 0 

nearest
lagSG (m) 

Left lane 

Current lane 

Right lane 

[3.0, 19.0] 

[14.3, 32.9] 

[9.2, 29.2] 

13.2 

24.4 

19.8 

14.1 

12.8 

14.3 

Left-Current lane = 1 

Current-Right lane = 1 

Right-Left lane = 1 

 

speed between the nearest lead vehicle in the right lane and the subject vehicle and the 

mean space gap between the nearest and the nearer vehicles in the right lane are superior 

to that in the current and left lanes. However, from the KS test, the distribution of the 

space gap between the nearest and the nearer vehicles is not significantly different.  

By comparing Tables 6.1 and 6.2, for left lane-changing samples, traffic 

conditions in the left lane are obviously better than those in the current and right lanes, 
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while for right lane-changing samples, the superiority of the right lane is not very 

significant. This implies that left and right lane-changing decisions are incentivized by 

different motivations. The motivation for left lane changes may be to realize better 

driving conditions, but for right lane changes, it may be to allow a following vehicle to 

pass by. As a result, left and right lane changing are considered to be asymmetric and 

should be treated individually if the rule-based lane-changing model is proposed. 

However, this was not discussed in previous studies (Gipps1986; Hidas 2002; Toledo et 

al. 2003;Sun and Elefteriadou 2010). On the other hand, NN models appear to be capable 

of accounting for such asymmetry because the models have the ability to deal with 

complicated nonlinear systems and do not require any predefined underlying relationship 

between inputs and outputs (Kalyoncuoglu and Tigdemir 2004; Karlaftis and Vlahogianni 

2011). 

 

6.4 Model Estimation 

 

In general, as the number of neurons used in the hidden layer increases, the 

accuracy of the NN model also increases in the model estimation process. However, the 

cost spent during model estimation and the over-fitting concern are also increased with 

the increase in the number of neurons (Yin et al. 2003). To make a better trade-off, the 

performance of the NN models with different number of neurons is checked by the MSE, 

as exhibited in Figure 3. In this study, the neural network is built by using the Neural 

Network Toolbox and implemented in MATLAB. In the learning process, 70% input 

samples are used for training and 30 % input samples for model validation. The 
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maximum number of training iterations and the minimum performance gradient are set to 

1000 and 1.0×10-5, respectively. The result in Figure 3 is the minimum value of MSE in 

10 simulation runs.  

 

Fig. 6.3 MSE of the NN models with different number of neurons in a hidden layer 
 

Table 6.3 Estimation results of the MNL model 
Parameters C1 C2 C3 β1 β2 β3 β4 β5 β6 

Value -1.38 3.33 -1.94 -0.031 -0.217 0.079 0.257 0.045 0.02 

T-test 0  0 0 -0.7 -14.71 0.87 9.53 14.55 0.22 

Parameters β7 β8 β9 β10 β11 β12 β13 β14  

Value 0.087 -0.003 -0.142 0.047 0.03 -0.236 -0.042 0.001 

T-test 3.05 -0.91 -1.19 2.24 10.65 -2.3 -1.37 0.31  

Number of observations: 5826 

Init log-likelihood: -5549.562    Final log-likelihood: -1647.593 

Likelihood ration test: 7803.938 Rho-square: 0.703 
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Based on Figure 3, 20 neurons are employed in each hidden layer of the proposed 

model because the decreasing trend of the MSE is not significant when more than 20 

neurons are used. 

The MNL model is estimated by a free software package, Biogeme [36], and the 

results are listed in Table 3. From the Rho-square value, the MNL model achieves a 

desirable goodness of fit and the T-test explicitly reflects the significance of each variable. 

This also contrasts sharply with the “black box” disadvantage of the NN model, where 

the inherent explanatory power is limited. 

 

6.5 Model Validation 

 

In this section, the NN and MNL models are validated by two datasets: dataset 1, which 

was used for model estimation in the previous section, and dataset 2, which is new for the 

two models and includes 223 left lane-changing samples, 5030 non-lane-changing 

samples, and 112 right lane-changing samples. 

To demonstrate the accuracy of the two models, we apply the estimated models to predict 

the probability of conducting the left/right lane change or maintaining the current lane in 

the next time step. For each sample, there are three predicted values that show the 

probability of executing left/right/non-lane changing based on the NN and MNL models. 

The distribution of the predicted probability for actual decisions in datasets 1 and 2 is 

illustrated in Figs 6.4 and 6.5, respectively, and the percentage of correct predictions is 

listed in Tables 6.4 and 6.5, respectively. Here, for an actual decision, if the predicted 
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probability by the NN and MNL models is more than P (33.3% or 50% in Tables 6.4 and 

6.5, respectively), the prediction is considered to be correct.  

 

Fig. 6. 4 Distribution of predicted probability for actual decisions in dataset 1 
 

Table 6.4 Percentage of correct predictions in dataset 1 

 

Left lane-

changing  

samples 

Non-lane-changing 

 samples 

Right lane-changing 

 samples 

Total 

samples 

Number of 

samples 
332 5284 221 5826 

 NN MNL NN MNL NN MNL NN MNL 

P > 33.3% 94.58% 30.12% 99.86% 99.77% 73.33% 5.71% 98.63% 92.41% 

P > 50% 94.58% 13.25% 99.86% 99.09% 73.33% 3.33% 98.63% 90.75% 

KS test 1 1 1 1 
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From the prediction results in dataset 1, for non-lane-changing samples, both the 

NN and MNL models can correctly forecast more than 99% of samples. However, for left 

lane-changing samples, the percentage correctly predicted in the NN model is greater 

than 94%, while that predicted in the MNL is less than 14%. Unsurprisingly, as implied 

by the data analysis in Section 3, the prediction of right lane changes is more difficult. 

For right lane-changing samples, the accuracy of the models remarkably drops. The 

percentage of correct predictions obtained by the NN model is less than 74%, while that 

obtained by the MNL model is less than 4%. Furthermore, the KS test reflects differences 

in the prediction results of the two models.  

For modelers, it is essential to check the over-fitting problem of the proposed 

model, especially for models with many parameters. The over-fitting problem is defined 

as the infeasibility of generalizing to other situations owing to adaptation to a particular 

situation. In addition, the over-fitting problem in a multilayer perceptron NN model is 

identified in (Mozolin et al. 2000). For this purpose, the models discussed in this study 

are validated by dataset 2. 

For non-lane-changing samples, the two models still perform well. The 

percentage correctly predicted for left and right lane-changing samples declines to 72.4% 

and 46.43% in the NN model, whereas the MNL model is totally unable to predict lane-

changing decisions. Moreover, the performance of the two models is statistically different 

according to the KS test. It should be noted that although the accuracy noticeably drops, 

the over-fitting problem in these two models is not serious in light of the validation 

results in (Hunt and Lyons 1994) and our previous study on car-following models (Zheng 

et al. 2012a).  
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Fig. 6.5 Distribution of predicted probability for actual decisions in dataset 2 
 

Table 6.5 Percentage of correct predictions in dataset 2 

 
Left lane-changing 

samples 

Non-lane-changing 

samples 

Right lane-

changing samples 
Total samples 

Number 

of samples 
223 5030 112 5365 

 NN MNL NN MNL NN MNL NN MNL 

P > 33.3% 73.54% 9.42% 94.17% 94.04% 46.43% 2.68% 92.32% 88.61% 

P > 50% 72.2% 1.79% 93.76% 93.96% 46.43% 0.89% 91.87% 88.18% 

KS test 1 1 1 1 
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In addition to reflecting the accuracy of the two models, the results in this section 

also suggest that validating the lane-changing model by total samples (Hunt and Lyons 

1994) or macroscopic traffic characteristics (Sun and Kondyli 2010)appears to be 

insufficient, because the performance of the MNL model is also acceptable for all 

samples, but is poor for lane-changing samples. 

 

6.6 Application 

 

Despite accounting for only a small proportion of all vehicular traffic, heavy vehicles 

have a significant impact on traffic flow and traffic safety (Moridpour et al. 2010; Stuster 

1999). Besides, as reported in (Aghabayk et al. 2011; Peeta et al. 2005), the number of 

heavy vehicles has markedly increased over the past few decades in North America and 

Australia, and this trend is likely to continue at least over the next decade. Owing to 

physical and operational characteristics, heavy vehicles impose physical and 

psychological effects on surrounding vehicles and drivers. From the common driving 

experiences, it is also known that most car drivers are unwilling to remain behind heavy 

vehicles during their trips owing to speed and visibility obstructions. In general, to 

mitigate the impact of heavy vehicles, car drivers may either maintain large distances or 

change lanes, which lead to a decreased capacity and additional driving risks. However, 

in literature, there are only a few studies that relate to the impact of heavy vehicles on 

lane-changing decisions. Because the vehicle type of surrounding vehicles is not 

incorporated in previous lane-changing models, such research can only be carried out by 
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an in-vehicle survey (Sun and Elefteriadou 2012). Meanwhile, the NN model in this 

study provides a solution to quantitatively evaluate such an impact. 

Using dataset 1, we first evaluate the impact of heavy vehicles on non-lane-

changing decisions of car drivers. For non-lane-changing samples that are correctly 

predicted by the NN model and have the nearest lead vehicles (that are cars or 

motorcycles) in the current lane, we gradually increase the proportion of heavy vehicles 

by changing the vehicle type of the nearest lead vehicles in the current lane to be of the 

heavy vehicle type. By making such adaptations, the non-lane-changing decisions may be 

changed and the proportion of changed decisions can be calculated by the NN model. In 

the same way, for left/right lane-changing samples that are correctly predicted by the NN 

model and have the nearest lead vehicles (that are cars or motorcycles) in adjacent lanes, 

we change the vehicle type of the adjacent nearest lead vehicles to be of the heavy 

vehicle type. This adaptation may lead to the rescission of some left/right lane-changing 

decisions. The impact of heavy vehicles on lane-changing and non-lane-changing 

decisions is displayed in Fig. 6.6. 

From Fig. 6.6, it is clear that with the increase in the number of heavy vehicles in 

the current lane, non-lane-changing samples that decide to change lanes gradually 

increase. When the proportion of heavy vehicles is 50%, 3.44% of non-lane-changing 

samples decide to change lanes. If the nearest lead vehicles in the current lane are all 

heavy vehicles, the percentage of samples that change their decisions is more than 7%. 

For the left lane-changing samples, if 25% of the nearest lead vehicles in the left lane are 

heavy vehicles, more than 5% of the samples rescind their lane-changing decisions. 

When the nearest lead vehicles in the left lane are all heavy vehicles, the percentage of 
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samples that change their decisions is more than 17%. Compared with the non-lane-

changing and left lane-changing samples, the right lane-changing  samples are observed 

to be more susceptible to the existence of heavy vehicles in the right lane. If the 

proportion of heavy vehicles is 50%, around 14% of samples decide to stay in the current 

lane. While the nearest lead vehicles in the right lane are all heavy vehicles, 26.5% of 

samples rescind their right lane-changing decisions. To some extent, the evaluation 

results are consistent with common driving experience, which also demonstrates the 

reasonability of the proposed model. 

 

Fig. 6. 6 Impact of heavy vehicles on lane-changing and non-lane-changing decisions 
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6.7 Discussion 

 

Although careful considerations were given in this study, there remain some issues 

that require further discussions. We discuss the generality of a model first, since it is one 

of the most important considerations when developing a model. Typically, a model 

consists of three components: the fundamental relationship between independent and 

dependent variables (linear or non-linear), the independent variables adopted in the model, 

and the parameters associated with the independent variables.  According to the problem 

to be solved, modelers decide their preferred relationship between independent and 

dependent variables, and adopt the independent variables that are considered having 

significant impacts on the dependent variable. Before actual practice, modelers use the 

data collected in a specific context to calibrate the parameters of the model so that the 

model outputs are similar to the observed data, which is known as model estimation (or 

model calibration).  Furthermore, it is necessary to know how general the proposed 

model is or how serious the over-fitting problem in the model is. With the calibrated 

parameters, data collected in a different context are usually used to test the model, which 

is called model validation. Here, if the period, the weather or the study site, etc, in a 

context is different from the one in which data for model estimation were collected, we 

define the context as a different or new context. In fact, as pointed out by a reviewer, the 

generality of a model could not be confirmed by testing it in some specific cases. Even 

though the model is general for some contexts, it may not be general for other contexts. 

However, as it is very difficult to prove the generality of a model from a strictly 

mathematical viewpoint, the model validation process is still meaningful in the sense that 
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it examines the generality of a model in a new context. In this study, we also used a new 

dataset collected during the different period to validate the performance of the proposed 

NN model. From the results in Fig. 6.5 and Table 6.5, it is clear that in the new dataset 

the NN model is more general than the MNL model. To further test the generality of the 

model, we repeated the estimation and validation processes, by using dataset 2 for model 

estimation and dataset 1 for model validation. The results are listed in the following table. 

It is noted that for left lane-changing, Non-lane-changing, and Total samples, the 

prediction results are highly consistent with the results in Tables 6.4 and 6.5. However, 

for right lane-changing samples the accuracy of the model declines greatly. Because of 

the less number of right lane-changing samples in dataset 2, driver's right lane-changing 

decisions are not well learned by the NN model so that it is unable to predict the right 

lane-changing behavior in dataset 1. To some extent, the results confirm the generality of 

the proposed model. 

Table 6.6 The repeated estimation and validation results  

Dataset 2 

 Left lane-changing 

samples 

Non-lane-changing 

samples 

Right lane-

changing samples 

Total 

samples 

Number of samples 223 5030 112 5365 

P>33.3% 78.3% 99.5% 51.8% 97.6% 

P>50% 78.3% 99.5% 51.8% 97.6% 

Dataset 1 

Number of samples 332 5284 221 5826 

P>33.3% 66.7% 98.2% 27.6% 93.8% 

P>50% 66.7% 97.8% 27.2% 93.5% 
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  Due to the lack of available data, the generality of the NN model is not examined 

by using the data collected in other contexts such as in a rainy day or on a study site with 

different road geometries.  

In addition, drawing samples from continuous vehicle trajectories provides a 

feasible remedy for the problem caused by the small portion of lane-changing instances 

used in training the NN model. However, more care should be taken to determine an 

appropriate number of non-lane-changing samples. If the proportion of non-lane-

changing samples is increased, the accuracy of the NN model is improved for all samples. 

Whereas, for lane-changing samples, a reduction in the accuracy of the prediction results 

is expected. A rigorous analysis is required to determine a more convincing method of 

drawing samples. Besides, according to a recent study (Tomar and Verma  2011), the 

lane-changing process can be viewed as a series of multiple distinct phases: the planning 

phase, the preparation phase, the crossover phase, and the adjustment phase. Moreover, 

the NNs are used to model the vehicle’s lateral movements in the crossover phase (Tomar 

and Verma  2011; Ding et al. 2013). Obviously, the NN proposed in this study can be 

applied to the planning phase. We also note that these NNs are all typical feed-forward 

networks and the back-propagation algorithm is adopted for training.  However, as shown 

in Fig. 6.3, the number of neurons used in the hidden layer has very significant impact on 

the performance of NN. In (Tomar and Verma  2011; Ding et al. 2013), a quantitative 

analysis of such impact is not carried out, and it is unknown how many neurons are 

adopted in their study.  
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6.8 Conclusions 

 

Lane changes are very common in daily driving and have many implications for traffic 

capacity and traffic safety. However, literature associated with lane changing is not as 

comprehensive as that of car following. This is mainly caused by the inherent complexity 

of lane changing and a lack of large-scale trajectory data to analyze such behavior. 

In this study, using the large-scale trajectory data from the NGSIM program, we 

investigated the discretionary lane-changing behavior of cars. Because lane-changing 

instances are greatly outnumbered by car-following and free-flow instances during a 

driver’s journey, representative samples were drawn from two trajectory datasets. A 

detailed data analysis shows that for left lane-changing samples, traffic conditions in the 

left lane are clearly superior to the current lane and the right lane, while for right lane-

changing samples, the superiority of the right lane is not so noticeable. This implies that 

left and right lane-changing decisions are asymmetric and incentivized by different 

motivations, which was seldom discussed in previous studies. Owing to the ability to deal 

with complex nonlinear systems, an NN model was adopted to predict lane-changing 

decisions. Meanwhile, an MNL model that was often accepted as a framework for lane 

changing in previous studies was also developed for comparison purposes. The two 

models were validated by two datasets. In the dataset used for model estimation, the 

percentage correctly predicted by the NN model is 94.6% and 73.3% for left and right 

lane-changing samples, respectively, while for the MNL model, the percent is only 13.3% 

and 3.3%, respectively. In the new dataset, the accuracy of left and right lane-changing 

samples in the NN model drops to 72.2% and 43.4%, respectively, but the MNL model is 
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unable to forecast any lane-changing decisions. Obviously, the NN model outperforms 

the MNL model in this study. In addition, we investigated the impact of heavy vehicles 

on lane-changing decisions of car drivers using the sensitivity analysis of the proposed 

NN model. The results show that when the nearest lead vehicles in the corresponding 

lanes are all heavy vehicles, more than 7% of non-lane-changing samples decide to 

change lanes, more than 17% of left lane-changing samples reverse their left lane-

changing decisions, and the percentage of the samples that changed their right lane-

changing decisions is higher than 26.5%. Finally, in the discussion section some issues 

that are not considered in the current study are discussed.  
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CHAPTER 7. CONCLUSIONS 

This chapter summarizes the research reported in this thesis and highlights the major 

contributions. Directions for future research are suggested. 

 

7.1 Research Summary 

 

Owing to the ability to capture the complexity of traffic systems, traffic simulation has 

become one of the most widely used approaches for traffic planning, traffic design, and 

traffic management. Various traffic simulation software packages are currently available 

in the market, and they are utilized by thousands of consultants, researchers, and public 

agencies. With the popularity of traffic simulation, the car-following and lane-changing 

models, two of the most significant components in traffic simulation, have naturally 

attracted a lot of attention from traffic researchers. In this thesis, we also attempt to use 

some advanced computing technologies to model such driving behavior more realistically 

and accurately. 

In Chapter 3, we first evaluated several typical car-following models by using 

field trajectory data and genetic-algorithm-based calibration method. The models with 

calibrated parameters are validated by using not only the uncongested traffic data but also 
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congested traffic data.  Unlike the results extracted from experimental data in (Brockfeld 

et al 2004; Ranjitkar et al 2005), there are obvious differences in performances of the 

evaluated models. Models with complex structure, such as SRM and OVM, cost more 

time than those with simple structure, such as NM and CAM, in simulation process, 

which means they are not suitable for real time traffic simulation. Besides, SRM and 

OVM do not perform as well as expected in terms of calibration and validation results. 

Furthermore, models with more parameters such as SDM are easy to incur over-fitting 

problem in validation process, although they can mimic real traffic accurately in 

calibration process. Even with the very simple structure, NM and CAM reproduce the 

real traffic well both in calibration and validation process, especially the discrete CAM, 

the only one that can survive in both validation processes. 

Subsequently, a mixed logit model is proposed to describe drivers' acceleration 

and deceleration behavior in Chapter 4. Acceleration and deceleration are discretized into 

five alternatives. To represent different attractiveness of each alternative, alternative 

specific parameters are adopted in the model. Moreover, variables minus reference values 

are used, which improve explicability of the proposed model. Driving differences of 

different vehicle types are taken into account by the vehicle type variable in the model. In 

order to avoid interference of lane-changing behavior, this model is estimated and 

validated by trajectory data in HOV lane. The estimated parameters show reasonability of 

this model, and validation results sufficiently demonstrate robustness and accuracy of the 

model. Finally, the model is applied to simulate 30-minute traffic conditions. Simulation 

results exhibit that this model can describe driving differences of different vehicle types. 

Meanwhile, defects of this model in simulation process are also disclosed.  
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As reaction delay of the driver-vehicle unit varies greatly according to driver-

vehicle characteristics and traffic conditions, and is an indispensable factor for modeling 

vehicle movements, in Chapter 5 we defined driver-vehicle reaction delay by the time 

interval not only between the relative speed and acceleration but also between the gap 

and speed of the vehicle. And, a neural network for instantaneous reaction delay is 

trained using samples observed from real traffic. Incorporating the reaction delay network 

into a neural-network-based car-following model, movements of nine vehicles which 

follow each other are simulated.  Simulation results show that, for all discussed models, 

vehicle 2 is simulated with the highest accuracy, since the first vehicle is fed into 

simulation. This indicates that in previous studies validating the models by using the data 

only from one vehicle is insufficient. Moreover, we find that the performance of the 

models with instantaneous reaction delay is apparently better than that of the models with 

fixed delay. In the model with short fixed reaction delay, the simulated vehicles follow 

each other more closely than the observed vehicles do, and collisions occur in the model 

with long fixed delay, which also illustrates the necessity of taking into account 

instantaneous reaction delay in vehicle movement modeling. Besides, for future reference, 

the calibrated weights and bias in the neural-network-based reaction delay and car-

following models are presented in Appendix. 

Lane changes are very common in daily driving and have many implications for 

traffic capacity and traffic safety. However, literature associated with lane changing is not 

as comprehensive as that of car following. This is mainly caused by the inherent 

complexity of lane changing and a lack of large-scale trajectory data to analyze such 

behavior. In Chapter 6, using the large-scale trajectory data from the NGSIM program, 
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we investigated the discretionary lane-changing behavior of cars. Because lane-changing 

instances are greatly outnumbered by car-following and free-flow instances during a 

driver’s journey, representative samples were drawn from two trajectory datasets. A 

detailed data analysis shows that for left lane-changing samples, traffic conditions in the 

left lane are clearly superior to the current lane and the right lane, while for right lane-

changing samples, the superiority of the right lane is not so noticeable. This implies that 

left and right lane-changing decisions are asymmetric and incentivized by different 

motivations, which was seldom discussed in previous studies. Owing to the ability to deal 

with complex nonlinear systems, a neural network (NN) model was adopted to predict 

lane-changing decisions. Meanwhile, a multinomial logit (MNL) model that was often 

accepted as a framework for lane changing in previous studies was also developed for 

comparison purposes. The two models were validated by two datasets. In the dataset used 

for model estimation, the percentage correctly predicted by the NN model is 94.6% and 

73.3% for left and right lane-changing samples, respectively, while for the MNL model, 

the percent is only 13.3% and 3.3%, respectively. In the new dataset, the accuracy of left 

and right lane-changing samples in the NN model drops to 72.2% and 43.4%, 

respectively, but the MNL model is unable to forecast any lane-changing decisions. 

Obviously, the NN model outperforms the MNL model in this study. In addition, we 

investigated the impact of heavy vehicles on lane-changing decisions of car drivers using 

the sensitivity analysis of the proposed NN model. The results show that when the nearest 

lead vehicles in the corresponding lanes are all heavy vehicles, more than 7% of non-

lane-changing samples decide to change lanes, more than 17% of left lane-changing 

samples reverse their left lane-changing decisions, and the percentage of the samples that 
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changed their right lane-changing decisions is higher than 26.5%.  

 

7.2 Main Contributions 

 

The objective of this research is to improve modeling of driving behavior. This thesis 

contributes to the state-of-the-art in driving behavior modeling in the following aspects: 

 In order to achieve a complete insight in the state-of-the-art of traffic modeling, 

several typical car-following models were evaluated by using trajectory data from 

real traffic conditions. Some interesting findings were provided. 

 Drivers’ acceleration and deceleration behavior was investigated by using a mixed 

logit model. Compared to conventional car-following models, the vehicle type 

variable is used in the proposed model, which enables the model to allow for 

driving differences of different vehicle types. In addition, the model was applied 

to simulate 30-minute traffic conditions. Simulation results confirm feasibility of 

simulating real traffic by the model. 

 The driver-vehicle reaction delay was originally defined by the time interval not 

only between the relative speed and acceleration but also between the gap and 

speed of the vehicle.  

 A neural network for instantaneous reaction delay was trained by observed delay 

samples and then compared with a previous piecewise linear reaction delay model. 

The NN reaction delay model is more realistic than the previous model.  

 Incorporating the reaction delay network into a neural-network-based car-

following model, movements of nine vehicles which follow each other are 
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simulated. Simulation results clearly illustrate the necessity of taking into account 

instantaneous reaction delay in vehicle movement modeling.  

  For future reference, the calibrated weights and bias in the neural-network-based 

reaction delay and car-following models are presented in Appendix of Chapter 5. 

 A detailed analysis of left and right lane changes is conducted, which suggests 

that the left and right lane changes are asymmetric and incentivized by different 

motivations.  

 A neural network model that can completely account for the impact of 

surrounding vehicles on lane-changing decisions is developed. In addition, the 

proposed NN model clearly outperforms a multinomial logit model, which was 

frequently adopted as a framework for lane changing in previous studies, both in 

model estimation and validation processes. 

 The impact of heavy vehicles on driver’s lane-changing decisions was 

quantitatively evaluated using the sensitivity analysis of the proposed NN model.  

  

7.3 Directions for Future Research 

 

Although careful considerations were given in the studies of thesis, there remain some 

issues that require further discussions and we would like to suggest some directions for 

future research.  

In Chapter 3, It is observed that although most models under study simulate real 

traffic with high fidelity in calibration process, in validation process none of them is able 

to perform as well as in calibration process. From this point of view, using different 
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parameters or even different models under different traffic condition seems to be feasible 

for simulating real traffic more accurately. In fact, this view can be confirmed by only 

adjusting the parameter Vmax in CAM to 14 in the second validation process. Accordingly, 

the error rate can be reduced from 49.20% to 38.79%. 

We suggest that the model in Chapter 4 can be extended along two directions. In 

the study, we attempted to use the random alternative-specific constants to capture 

driving behavior variations across drivers. However, estimated results show that, except 

for the alternative 2, standard deviations of the specified normal distribution are not 

significantly different from zero. This means the proposed model is similar to the 

standard logit model. This model may be extended to capture such variations through 

specifying other random terms or a mixed error term (Bhat and Gossen 2004). 

Furthermore, lane-changing behavior can be integrated in the model by defining 

alternatives as in study (Antonini et al. 2006; Robin et al. 2009). We believe that each of 

the extensions of this model is a compelling and promising work. 

In Chapter 5, we point out that due to lack of available data, the proposed 

methodology was not validated in some different contexts, such as in a rainy day. 

Typically, in different contexts the accuracy of the models will be reduced to some extent, 

if we still use the same parameters. In actual practice, we usually recalibrate the models 

by using the data collected in the corresponding context and adopt different 1 1 2 2, , ,W b W b

in the Appendix. In addition, although more and more car-following and lane-changing 

models that can take a wide variety of driver-vehicle characteristics into consideration 

have been proposed so far, car-following and lane-changing behavior are usually treated 

individually. This is obviously inconsistent with the real driving behavior. A model 
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framework that can integrate the acceleration and lane-changing behavior was developed 

in (Toledo et al. 2007), but some driver-vehicle characteristics were avoided, such as 

instantaneous reaction delay and lane-changing duration. By using the neural network 

technology, an integrated methodology for the vehicle two-dimensional movements 

(longitudinal and lateral) can comprise the further study. 

In Chapter 6, drawing samples from continuous vehicle trajectories provides a 

feasible remedy for the problem caused by the small portion of lane-changing instances 

used in training the NN model. However, more care should be taken to determine an 

appropriate number of non-lane-changing samples. If the proportion of non-lane-

changing samples is increased, the accuracy of the NN model is improved for all samples. 

Whereas, for lane-changing samples, a reduction in the accuracy of the prediction results 

is expected. A rigorous analysis is required to determine a more convincing method of 

drawing samples. Besides, according to a recent study (Tomar and Verma  2011), the 

lane-changing process can be viewed as a series of multiple distinct phases: the planning 

phase, the preparation phase, the crossover phase, and the adjustment phase. Moreover, 

the NNs are used to model the vehicle’s lateral movements in the crossover phase (Tomar 

and Verma  2011; Ding et al. 2013). Obviously, the NN proposed in the study can be 

applied to the planning phase.  

On the whole, data used in the thesis does include the drivers’ characteristic, such 

as age, gender, driving experience etc and do not reflect the impact of the structure of 

roads on driving behavior. In future, such data should be collected to examine the 

proposed models. In addition, the proposed models should be incorporated in a traffic 

simulation software and tested in real application. 
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