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Abstract

Speech is the most important ways for human communication, and a number of research

topic for human-machine communication have been proposed. Automatic speech recog-

nition (ASR) and text-to-speech synthesis (TTS) are fundamental technologies for human-

machine communication. In recent years, they are used in many application such as car

navigation system, information retrieval over the telephone, voice mail, speech-to-speech

translation (S2ST) system, and so on. The goal of ASR and TTS systems is perfect speech

recognition and speech synthesis with natural human voice characteristics.

Most state-of-art speech synthesis systems are based on large amounts of speech data.

This type of approach is generally called corpus-based systems. This approach makes

it possible to dramatically improve the performance compared with early systems such

as rule-based one. In these days statistical approaches based on hidden Markov models

(HMMs) have been dominant in TTS, due to their ease of implementation and model-

ing flexibility. In this approach, the HMMs are used for modeling sequences of speech

spectra. In this paper, improved techniques for acoustic modeling are proposed for HMM-

based speech synthesis.

It is well known that spectral features are affected by contextual factors, e.g., phoneme

identities, accent, parts-of-speech, etc., and extracting the context dependencies is a criti-

cal problem for acoustic modeling. One of the major difficulties in the context dependent

modeling is finding a good balance between model complexity and availability of training

data. In this paper, a novel acoustic modeling is proposed for representing complicated

context dependencies.

First, an acoustic modeling with contextual additive structures in HMM-based speech

synthesis is proposed. To represent more moderate dependencies between contextual fac-

tors and acoustic features, an additive structure of acoustic feature components that have

different context dependencies has been proposed for HMM-based speech recognition.

Contextual additive structure models can represent complicated dependencies between

acoustic features and context labels using multiple decision trees. However, the com-

putational complexity of the context clustering is too high for the full context labels of
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speech synthesis. To overcome this problem, this paper proposes two approaches; covari-

ance parameter tying and a likelihood calculation algorithm using the matrix inversion

lemma. Additive structure models can be applied to HMM-based speech synthesis us-

ing these techniques and speech quality would significantly be improved. Experimental

results show that the proposed method outperforms the conventional one in subjective

listening tests.

Next, a technique for constructing independent parameter tying structures of mean and

variance using additive structure models for HMM-based speech synthesis is proposed.

Conventionally, an HMM stream-level tying structure is constructed in HMM-based speech

synthesis, i.e., mean vectors and variance matrices have exactly the same parameter tying

structure. However, it has been reported that a clustering technique of mean vectors while

tying all variance matrices improves the quality of synthesized speech. This indicates

that mean and variance parameters should have different optimal tying structures. In the

proposed technique, the decision trees for mean and variance parameters are simultane-

ously grown by taking into account the dependency on mean and variance parameters.

Experimental results show that the proposed technique outperforms the conventional one.

Finally, I proposed a spectral modeling technique based on a contextual partial additive

structure which provides an efficient representation of context dependencies to acoustic

features for HMM-based speech synthesis. The contextual additive structure models as-

sume that the observation vectors are generated from the sum of additive components with

tree regression structures and they can be regarded as an intermediate structure between

linear regression and tree regression. However, the additive structure models still have a

limitation that the number of additive components is fixed for all output probability distri-

butions. The proposed technique is a generalization of the additive structure models which

have variable number of additive components dependently on contextual sub-spaces, and

the clustering algorithm for extracting partial additive structure is provided. Experimental

results show that the proposed technique outperformed the technique of extracting only

standard additive structures in a subjective test.

For HMM-based speech synthesis system, above improved techniques were proposed and

systems using these techniques improved their performance.

Keywords: Speech synthesis, Hidden Markov Model, Context dependent models, Con-

text clustering, Decision trees, Additive structure, Distribution convolution
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Abstract in Japanese

昨今，コンピュータは広く普及し，多くの人が日常的に触れるものとなり，生活に
深く影響を及ぼすものとなっている．同時に，ハードウエアの性能の飛躍的な向上
により，高性能，高機能なソフトウエアが実現してきている．このような流れの中
で，ユーザへの情報提供，ユーザとのコミュニケーションを取ることを目的とした
音声対話システムの実用化に向けた試みが数多くされている．その中で音声合成は，
音声認識とともに音声対話を実現するための重要な技術となっている．

音声合成における代表的な枠組みとして，音響モデルに統計モデルの一種である隠
れマルコフモデル (Hidden Markov Model; HMM)を用いる枠組みがある．HMMは
学習データに基づきパラメータを推定する実現容易なアルゴリズムが存在し，トポ
ロジーを適切に設計可能である．HMM音声合成では尤度最大化基準に基づく音声
パラメータ生成アルゴリズムを用いて直接音声パラメータを出力し音声を合成する
ため，単位選択型の音声合成手法と比べて素片接続歪みが生じない，パラメータを
変換することで様々な声質に変換できるなどの特徴がある．

この HMMでの音声のモデル化においては，同一の音素でも文脈的な要因 (コンテ
キスト)を考慮することで，より精度の高いモデルを構築することができることが知
られている．しかし，コンテキストの全ての組み合わせを考慮すると組み合わせは
膨大となり，学習データとして全てのコンテキストを用意することは不可能である．
この問題を解決するため，決定木によるコンテキストクラスタリング手法や線形回
帰モデルによるコンテキスト依存性の表現が提案されてきたが，学習データから適
切にコンテキスト依存性を抽出することは音声合成の品質に直接影響を与え，依然
重要な課題である．本論文では，より高性能なHMM音声システムの構築のために，
より適切なコンテキスト依存性の表現の可能な音響モデル化手法を提案する．

まず，HMM音声合成のためのコンテキストの加算的構造に基づく音響モデル化を
提案する．従来のHMMに基づく音声合成システムでは，各コンテキストラベルに
対して，1つの音響特徴量の分布を対応付けている．しかし，音響特徴量は複雑な
コンテキスト依存性を持っており，このような直接的なモデル化が必ずしも適切と
は言えない．この問題に対して，HMM音声認識においてコンテキストの加算的構
造に基づくモデル化が提案されている．加算構造モデルでは音響特徴量が複数の加
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算因子の和として表現され，各加算因子は異なるコンテキスト依存性を持つと仮定
している．これにより，音響特徴量に対する変動要因の独立性の表現が可能となり，
少量のパラメータで複雑なコンテキスト依存性を表現することができる．しかし，
HMM音声合成ではHMM音声認識と比べ非常に多くのコンテキストを考慮するた
め，加算構造モデルで用いるコンテキストクラスタリングの計算量が実現不可能な
ほど膨大になる．この問題を解決するため，本論文では共分散共有と逆行列の補題
に基づく尤度計算の 2つの計算量削減手法を提案する．これらの手法を用いること
で，HMM音声合成への加算構造モデルの適用が可能となり，合成音声の品質の向
上が期待できる．また，客観評価実験，主観評価実験により提案法の有効性を確認
した．

また，加算構造モデルの枠組みを用いた平均，分散パラメータの共有構造の同時最
適化クラスタリングアルゴリズムを提案する．従来のHMMに基づく音声合成シス
テムでは平均，分散パラメータは同じ共有構造を持つことを仮定している．しかし，
一方で全クラスタで分散パラメータを共有することを仮定し，平均パラメータにつ
いてのみクラスタリングを行うことで合成音声の品質が改善することが確認されて
いる．このことから，平均，分散パラメータには，それぞれ個別の最適な共有構造が
存在すると考えられる．提案法は平均，分散パラメータの依存性を考慮しつつ，同
時にそれらの共有構造を構築する．提案法では平均，分散パラメータそれぞれに異
なる構造，大きさを持つ決定木を構築することができるため，合成音声の品質の向
上が期待できる．また，主観評価実験により提案法の有効性を確認した．

最後に，HMM音声合成においてより適切で効率の良いコンテキスト依存性の表現の
ため，コンテキストの部分的な加算構造に基づく音響モデル化を提案する．加算構
造モデルでは，音響特徴量は複数の決定木を用いることで複数の加算因子から生成
される．そのため，加算構造モデルは決定木に基づくコンテキストクラスタリング
による状態共有と線形回帰モデルの中間に位置すると考えられる．しかし，加算構
造モデルにはすべての出力確率分布において固定数の加算因子が用いられるという
問題が依然として存在する．本手法は，コンテキストの部分空間に依存して異なる
個数の因子を持つことを考慮した，加算構造の一般化手法とみなすことできる．ま
た，そのようなコンテキストの部分的な加算構造を抽出する手法を提案する．

以上のように，本論文ではより高性能な HMM音声合成システムの構築のために，
より適切なコンテキスト依存性の表現の可能なモデルを提案し，その有効性を示す．
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Chapter 1

Introduction

Speech is the most important ways for human communication, and a number of research

topic for human-machine communication have been proposed. Automatic speech recog-

nition (ASR) and text-to-speech synthesis (TTS) are fundamental technologies for human-

machine communication. In recent years, they are used in many application such as car

navigation system, information retrieval over the telephone, voice mail, speech-to-speech

translation (S2ST) system, and so on. The goal of ASR and TTS systems is perfect speech

recognition and speech synthesis with natural human voice characteristics.

The majority of state-of-the-art speech synthesis systems is trained by using a large

amount of speech data. In general, this type of system is called as a corpus-based speech

synthesis system [1]. Compared with the previous speech synthesis systems, corpus-

based one especially improve the naturalness of synthesized speech. An HMM-based

speech synthesis system is major approach to enable machines to speak naturally like

humans [2, 3]. In HMM-based speech synthesis, the spectrum, excitation and duration

of speech are modeled simultaneously with HMMs, and speech parameter sequences are

generated from the HMMs themselves [3]. In HMM-based speech synthesis, the ML cri-

terion has been typically used for training HMMs and generating speech parameters. The

ML criterion guarantee that the ML estimates approach the true values of the parameters.

In synthesis part, the sequences of spectrum and excitation parameters are generated from

the sentence HMM using speech parameter generation algorithm [4–6].

It is well known that spectral features are affected by contextual factors, e.g., phoneme

identities, accent, parts-of-speech, etc., and extracting the context dependencies is a crit-

ical problem for acoustic modeling. One of the major difficulties in the context depen-

dent modeling is finding a good balance between model complexity and availability of

training data. Although increasing the model complexity makes it possible to accurately

capture variations in spectral features, the reliability of parameter estimation is degraded
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due to decreasing the amount of training data for each model. Furthermore, since it is

difficult to prepare training data covering all context dependent models, there are numer-

ous unseen models that are not observed in the training data but that are required in the

synthesis phase. To avoid this problem, the decision tree based context clustering has

been proposed [7]. In the clustering, HMM states of the context dependent models are

grouped into “clusters,” and all states belonging to the same cluster are assumed to have

the same distribution. A binary tree is constructed based on the maximum likelihood cri-

terion by applying a phonetic question to each node and iteratively splitting the cluster

into two child clusters. By limiting the number of possible splits using prior knowledge,

linguistic and articulatory information can be reflected in the clustering results. Instead of

the maximum likelihood criterion, the minimum description length (MDL) criterion can

be adopted to automatically determine the optimal number of clusters without setting a

threshold [8].

Although many researches about structures and training of context dependent models have

been carried out, context dependent models is a very important and critical research topic

for HMM-based speech synthesis. The context space in the decision tree based context

clustering is divided into clusters by contextual factors and the distributions of acoustic

features are individually estimated for each cluster. This means that the distributions of

each cluster are specified immediately from only training data assigned to the cluster and

trained context models have direct dependencies of contexts. On the other hand, the linear

regression model [9] is another approach to modeling spectral variations in which all the

contextual factors independently affect the acoustic features. Since the combination of

contextual factors determines the distribution of spectral features, it can efficiently rep-

resent the variety of distributions. However, the dependence among contextual factors is

ignored and it is difficult to determine those factors that should additively affect acous-

tic features. To represent more moderate dependencies between contextual factors and

acoustic features, an additive structure of acoustic feature components that have differ-

ent context dependencies has been proposed for HMM-based speech recognition [10].

This approach includes intermediate structures of decision tree based context clustering

and linear regression models as special cases. Since the output probability distribution

is composed of the sum of the mean vectors and covariance matrices of additive compo-

nents, a number of different distributions can be efficiently represented by a combination

of fewer distributions. However, it is unknown what kinds of contexts have additive de-

pendencies on acoustic features. To solve this problem, a context clustering algorithm for

the additive structure that automatically extracts additive components by simultaneously

constructing multiple decision trees has been proposed [10]. Moreover, it can automati-

cally determine an appropriate number of additive components. It has been reported that

contextual additive structures are very effective for HMM-based speech recognition [10].
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In this paper, a technique for applying additive structure models to HMM-based speech

synthesis is proposed. labels using multiple decision trees. Although additive structure

models would significantly be effective for HMM-based speech synthesis as well as for

recognition, it is difficult to apply the additive structure models to HMM-based speech

synthesis due to the high computational cost caused by context labels, which are richer

than the triphone context used in speech recognition. This problem is critical for extract-

ing the additive structure in context clustering with multiple decision trees. To reduce

the computational complexity, I propose the techniques to deal with the following three

major problems: 1) As mean parameters depend on covariance parameters, those param-

eters should be simultaneously or iteratively updated until a convergence, 2) A gradient

method is required to estimate covariance parameters because no closed form analytical

solution has been found, and 3) A matrix whose dimension depends on the number of

leaves in the decision trees should be treated when estimating mean parameters. The first

and second problems are solved by covariance parameter tying [11]. Tying all covariance

matrices of all additive components, the mean parameters can be estimated independently

of the covariance matrix and the tied covariance can be analytically estimated. Although

covariance parameter tying is a strong approximation, it has been reported that the context

clustering of mean parameters assuming the tied covariance can improve the speech qual-

ity [11], and tying covariance parameters would be effective for additive structure models

as well as for the conventional HMMs. For the third problem, an efficient likelihood

calculation technique based on the matrix inversion lemma is proposed. This technique

eliminates the redundancy of the context clustering; the likelihood calculation after node

splitting includes very similar matrix inversions when different questions are applied at

the same leaf node. Additive structure models for HMM-based speech synthesis can be

achieved using these two proposed approaches.

Moreover, this paper proposes a technique for constructing independent parameter tying

structures of mean and variance using additive structure models in HMM-based speech

synthesis. Conventionally, an HMM stream-level tying structure is constructed in HMM-

based speech synthesis, i.e., mean vectors and variance matrices have exactly the same

parameter tying structure. However, it may not be always appropriate that mean and

variance parameters have the same tying structure. As an example, the effectiveness of

a technique for context clustering mean vectors while tying all variance matrices was

confirmed [11]. In this technique, the synthesized speech can be expected to improve by

constructing different tying structures for both mean and variance parameters. However,

some degree of freedom for variance parameters may be necessary for improving the

quality of synthesized speech. In this paper, it is assumed that both mean and variance

parameters have their own tying structure and the construction of appropriate parameter

tying structures is examined. In the clustering algorithm, it is necessary to simultaneously

3



construct each parameter tying structure due to the dependency on mean and variance

parameters. Although such a context clustering algorithm can be derived by expanding

the conventional context clustering algorithm, a context clustering algorithm is derived

using the fact that simultaneous context clustering of mean and variance parameters can

be regarded as a special case of context clustering in additive structure models.

Finally, a spectral modeling technique based on a contextual partial additive structure

for HMM-based speech synthesis is proposed. The additive structure models still have a

limitation that the number of additive components is fixed for all output probability distri-

butions, though the number of components can be automatically determined through the

context clustering for the additive structure models. However, it is natural to assume that

an appropriate number of additive components depends on contexts. That is, it is expected

that some context dependent models require many additive components to represent vari-

ations in acoustic features and others do not. To represent such context dependencies

appropriately, a technique which enable us to extract additive components affecting ar-

bitrary contextual sub-spaces as well as the entire contextual space is proposed. In the

proposed clustering algorithm, the partial additive components are created on demand

at an arbitrary node in the context clustering to increase the likelihood. Therefore, the

number of additive components corresponding to each context dependent model is auto-

matically determined from the resultant structure of decision trees. The model structure

with various number of additive components yields larger combination of components

than the standard additive structure with the same number of parameters. This means that

it can effectively represent the context dependencies with a limited amount of the training

data.
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Chapter 2

Speech Synthesis based on Hidden
Markov Models

Recently, hidden Markov models (HMMs) are widely used as statistical models for speech

synthesis. The advantages of using the HMM are that i) it can represent speech as proba-

bility distributions, ii) it is robust, iii) efficient algorithms for estimating its model parame-

ters are provided. Parameter estimation and calculation of output probability distributions

for HMM are described in this chapter. And then the HMM-based speech synthesis sys-

tem and context dependet models are described in this chapter.

2.1 Hidden Markov Model

2.1.1 Definition of HMM

An HMM [12–14] is a finite state machine which generates a sequence of discrete time

observations. At each frame it changes states according to its state transition probabil-

ity distributions, and then generates an observation at time t, ot, according to its output

probability distribution of the current state. Therefore, the HMM is a doubly stochastic

random process model.

An N -state HMM consist of state transition probability distributions {aij}Ni,j=1, output

probability distributions {bj (ot)}Nj=1, and initial state probability distributions {πi}Ni=1.

For convenience, the compact notation is used to indicate the parameter set of the model

Λ as follows:
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Figure 2.1: Examples of HMM structure.

Λ =
[
{aij}Ni,j=1 , {bj (·)}Nj=1 , {πi}Ni=1

]
(2.1)

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic

model, in which every state of the model could be reached from every state of the model

in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state

index increases or stays the same state as time increases. The left-to-right HMMs are

generally used to model speech parameter sequences, since they can appropriately model

signals.

The output probability distributions {bj (·)}Nj=1 can be discrete or continuous depending

on the observations. In continuous distribution HMM (CD-HMM), each output probabil-

ity distribution is usually modeled by a mixture of multivariate Gaussian components [15]

as follows:

bj (ot) =
M∑

m=1

wjm · N (ot | μjm,σjm ) , (2.2)

where M , wjm, μjm, and σjm are the number of Gaussian components, the mixture

weight, mean vector, and covariance matrix of the m-th Gaussian component of the j-

th state, respectively. Each Gaussian component is defined by

6



N (ot | μjm,σjm ) =
1√

(2π)K |σjm|
exp

{
−1

2
(ot − μjm)

� σ−1
jm (ot − μjm)

}
, (2.3)

where symbol � means transpose of vector or matrix, and K is the dimensionality of an

observation vector ot. For each state, {wjm}Mm=1 should satisfy the stochastic constraint

M∑
m=1

wjm = 1, 1 ≤ j ≤ N (2.4)

wjm ≥ 0,
1 ≤ j ≤ N
1 ≤ m ≤ M

(2.5)

so that {bj (·)}Nj=1 are properly normalized, i.e.,

∫
RK

bj (ot) dot = 1. 1 ≤ j ≤ N (2.6)

2.1.2 Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence

o = {o1,o2, . . . ,oT} and a state sequence q = {q1, q2, . . . , qT} is calculated by multi-

plying the state transition probabilities and state output probabilities for each state, that

is,

p (o, q | Λ) =
T∏
t=1

aqt−1qtbqt (ot) , (2.7)

where aq0q1 denotes πq1 . The total output probability of the observation vector sequence

from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

p (o | Λ) =
∑
all q

T∏
t=1

aqt−1qtbqt (ot) . (2.8)

The order of 2T · NT calculation is required, since at every t = 1, 2, . . . , T there are

N possible states that can be reached (i.e., there are NT possible state sequences). This
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calculation is computationally infeasible, even for small values of N and T ; e.g., for

N = 5 (states), T = 100 (observations), there are on the order of 2 · 100 · 5100 ≈ 1072

computations. Fortunately, there is an efficient algorithm to calculate Eq. (2.8) using

forward and backward procedures.

2.1.3 Forward-Backward algorithm

The forward-backward algorithm is generally used to calculate p (o | Λ), which is the

probability of the observation sequence o given the model Λ. If I directly calculate

p (o | Λ), it requires on the order of 2T · NT calculation. The detail of the forward-

backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to t and the i-th state

at time t, given the HMM Λ is defined as

αt(i) = p (o1,o2, . . . ,ot, qt = i | Λ) . (2.9)

αt (i) is calculated recursively as follows:

1. Initialization

α1(i) = πibi (o1) , 1 ≤ i ≤ N (2.10)

2. Recursion

αt(j) =

[
N∑
i=1

αt−1(i)aij

]
bj (ot) ,

1 ≤ j ≤ N
t = 2, . . . , T

(2.11)

3. Termination

p (o | Λ) =
N∑
i=1

αT (i). (2.12)

As the same way as the forward algorithm, backward variables βt(i) are defined as

βt(i) = p (ot+1,ot+2, . . . ,oT | st = i,Λ) , (2.13)

that is, the probability of a partial vector observation sequence from time t to T , given the

i-th state at time t and the HMM Λ. The backward variables can also be calculated in a

recursive manner as follows:
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Figure 2.2: Implementation of the computation using forward-backward algorithm in

terms of a trellis of observations and states.

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N (2.14)

2. Recursion

βt(i) =
N∑
j=1

aijbj (ot+1) βt+1(j),
1 ≤ i ≤ N
t = T − 1, . . . , 1.

(2.15)

3. Termination

p (o | Λ) =
N∑
i=1

β1(i). (2.16)

The forward and backward variables can be used to compute the total output probability

as follows:

p (o | Λ) =
N∑
j=1

αt(j)βt(j). 1 ≤ t ≤ T (2.17)
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The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In

this figure, the x-axis and y-axis represent observations and states of an HMM, respec-

tively. On the trellis, all possible state sequences will re-merge into these N nodes no

matter how long the observation sequence. In the case of the forward algorithm, at time

t = 1, I need to calculate values of α1(i), 1 ≤ i ≤ N . At times t = 2, 3, . . . , T , I need

only calculate values of αt(j), 1 ≤ j ≤ N , where each calculation involves only the N

previous values of αt−1(i) because each of the N grid points can be reached from only

the N grid points at the previous time slot. As a result, the forward-backward algorithm

can reduce order of probability calculation.

2.1.4 Searching optimal state sequence

The single optimal state sequence q̂ = {q̂1, q̂2, . . . , q̂T} for a given observation vector

sequence o = {o1,o2, . . . ,oT} is useful for various applications (e.g., decoding, initial-

izing HMM parameters). By using a manner similar to the forward algorithm, which is

often referred to as the Viterbi algorithm [16], the optimal state sequence q̂ can be ob-

tained. Let δt (i) be the likelihood of the most likely state sequence ending in the i-th

state at time t

δt(i) = max
q1,...,qt−1

p (q1, . . . , qt−1, qt = i,o1, . . . ,ot | Λ) , (2.18)

and ψt (i) be the array to keep track. The complete procedure for finding the optimal state

sequence can be written as follows:

1. Initialization

δ1 (i) = πibi (o1) , 1 ≤ i ≤ N (2.19)

ψ1 (i) = 0, 1 ≤ i ≤ N (2.20)

2. Recursion

δt (j) = max
i

[δt−1 (i) aij] bj (ot) ,
1 ≤ i ≤ N
t = 2, 3, . . . , T

(2.21)

ψt (j) = argmax
i

[δt−1 (i) aij] ,
1 ≤ i ≤ N
t = 2, 3, . . . , T

(2.22)
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3. Termination

P̂ = max
i

[δT (i)] , (2.23)

q̂T = argmax
i

[δT (i)] . (2.24)

4. Back tracking

q̂t = ψt+1 ( ˆqt+1) , t = T − 1, . . . , 1. (2.25)

It should be noted that the Viterbi algorithm is similar to the forward calculation of

Eqs. (2.10)–(2.12). The major difference is the maximization in Eq. (2.21) over previ-

ous states, which is used in place of the summation in Eq. (2.11). It also should be clear

that a trellis structure efficiently implements the computation of the Viterbi procedure.

2.1.5 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the

maximum likelihood (ML) criterion to obtain Λ which maximizes its likelihood p (o | Λ)
for a given observation sequence o, in a closed form. Since this problem is a high dimen-

sional nonlinear optimization problem, and there will be a number of local maxima, it is

difficult to obtain Λ which globally maximizes p (o | Λ). However, the model parameter

set Λ locally maximizes p (o | Λ) can be obtained using an iterative procedure such as

the expectation-maximization (EM) algorithm [17], and the obtained parameter set will

be appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the

HMM with discrete output distributions can also be derived in a straightforward manner.

Q-function

In the EM algorithm, an auxiliary function Q(Λ, Λ̂) of the current parameter set Λ and the

new parameter set Λ̂ is defined as follows:

Q(Λ, Λ̂) =
∑
all q

p(q | o,Λ) log p(o, q | Λ̂). (2.26)
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Each mixture of Gaussian components is decomposed into a sub-state, and q is redefined

as a sub-state sequence,

q = {(q1, s1) , (q2, s2) , . . . , (qT , sT )} , (2.27)

where (qt, st) represents being in the st-th sub-state (Gaussian component) of the qt-th

state at time t.

At each iteration of the procedure, the current parameter set Λ is replaced by the new

parameter set Λ̂ which maximizes Q(Λ, Λ̂). This iterative procedure can be proved to

increase likelihood p (o | Λ) monotonically and converge to a certain critical point, since

it can be proved that the Q-function satisfies the following theorems:

• Theorem 1

Q(Λ, Λ̂) ≥ Q(Λ,Λ) ⇒ p(o | Λ̂) ≥ p(o | Λ) (2.28)

• Theorem 2

The auxiliary function Q(Λ, Λ̂) has the unique global maximum as a function of Λ,

and this maximum is the one and only critical point.

• Theorem 3

A parameter set Λ is a critical point of the likelihood p(o | Λ) if and only if it is a

critical point of the Q-function.

Maximization of Q-function

According to Eqs. (2.2) and (2.7), log p (o, q | Λ) can be written as

log p (o, q | Λ) = log p (o | q,Λ) + logP (q | Λ) , (2.29)

log p (o | q,Λ) =
T∑
t=1

logN (ot | μqtst ,σqtst ) , (2.30)

logP (q | Λ) = log πq1 +
T∑
t=2

log aqt−1qt +
T∑
t=1

logwqtst . (2.31)

Hence, Q-function (Eq. (2.26)) can be rewritten as
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Q(Λ, Λ̂) =
N∑
i=1

p (o, q1 = i | Λ) · log πi

+
N∑
i=1

N∑
j=1

T−1∑
t=1

p (o, qt = i, qt+1 = j) · log aij

+
N∑
i=1

M∑
m=1

T∑
t=1

p (o, qt = i, st = m | Λ) · logwim

+
N∑
i=1

M∑
m=1

T∑
t=1

p (o, qt = i, st = m | Λ) · logN (ot | μim,σim ) . (2.32)

The parameter set Λ which maximizes the above equation subject to the stochastic con-

straints

N∑
i=1

πi = 1, (2.33)

N∑
j=1

aij = 1, 1 ≤ i ≤ N (2.34)

M∑
m=1

wim = 1, 1 ≤ i ≤ N (2.35)

can be derived by Lagrange multipliers or differential calculus as follows [18]
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πi = γ1(i), 1 ≤ i ≤ N (2.36)

aij =

T∑
t=2

ξt−1(i, j)

T∑
t=2

γt−1(i)

,
1 ≤ i ≤ N
1 ≤ j ≤ N

(2.37)

wim =

T∑
t=1

γt(i,m)

T∑
t=1

γt(i)

,
1 ≤ i ≤ N
1 ≤ m ≤ M

(2.38)

μim =

T∑
t=1

γt(i,m) · ot

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m ≤ M

(2.39)

σim =

T∑
t=1

γt(i,m) · (ot − μim) (ot − μim)
�

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m ≤ M

(2.40)

where γt(i), γt(i,m), and ξt (i, j) are the probability of being in the j-th state at time t,

the probability of being in the m-th sub-state of the i-th state at time t, and the probability

of being in the i-th state at time t and j-th state at time t+ 1, respectively, that is
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γt (i) = p (o, qt = i | Λ)
=

αt(i)β(i)
N∑
j=1

αt(j)βt(j)

,
1 ≤ i ≤ N
t = 1, . . . , T

(2.41)

γt (i,m) = p (o, qt = i, st = m | Λ)

=
αt(i)β(i)

N∑
j=1

αt(j)βt(j)

· wimN (ot | μim,σim )
M∑
k=1

wikN (ot | μik,σik )

,
1 ≤ i ≤ N
1 ≤ m ≤ M
t = 1, . . . , T

(2.42)

ξt(i, j) = p (o, qt = i, qt+1 = j | Λ)
=

αt(i)aijbj (ot+1) βt+1(j)
N∑
l=1

N∑
n=1

αt(l)alnbn (ot+1) βt+1(n)

.
1 ≤ i ≤ N
t = 1, . . . , T

(2.43)

2.2 HMM-based speech synthesis

2.2.1 Statistical speech synthesis framework

The goal of a text-to-speech system is acoustic speech waveform generation from a word

sequence. In general, given word sequence w is processed by a text analysis module. In

this part, contextual factors (e.g., accent, lexical stress, part-of-speech, phrase boundary,

etc.) are estimated. Next, a speech waveform is generated by a speech synthesis module.

The majority of state-of-the-art speech synthesis systems is trained by using a large

amount of speech data. In general, this type of system is called as a corpus-based speech

synthesis system [1]. Compared with the previous speech synthesis systems, corpus-based

one especially improve the naturalness of synthesized speech.

One of the major approaches in the corpus-based speech synthesis is unit selection based

one [19–21]. In this system, the speech waveform is segmented into the small units,

phone, di-phone, syllable, etc.. Next, a unit sequence with minimum target and concate-

nation costs is selected [20] and connected.

Another major approach is statistical speech synthesis, such as HMM-based one [3] This

system generates speech parameter sequence o = {o1,o2, . . . ,oT} with the maximum a

posteriori (MAP) probability given the sub-word sequence u as follows:
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Figure 2.3: An overview of a typical HMM-based speech synthesis system.

ô = argmax
o

P (o | u) . (2.44)

Eq. (2.44) means that generative models can directly be applied in speech synthesis sys-

tem. The HMM is the most popular generative models.

2.2.2 Overview of HMM-based speech synthesis

Figure 2.3 shows the HMM-based speech synthesis system [3]. It consists of the train-

ing and synthesis part. In the training part, spectrum and excitation parameters are ex-

tracted from a speech database. These parameters are modeled by context-dependent

HMMs. State duration models are also estimated. In the synthesis part, a sentence HMM

is constructed by concatenating the context-dependent HMMs from a given text to be

synthesized. In synthesis part, the sequences of spectrum and excitation parameters are

generated from the sentence HMM using speech parameter generation algorithm [4–6].

Finally, speech waveform is synthesized from a synthesis filter module. One of the advan-

tage is that voice qualities of synthesized speech can be modified by transforming HMM
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parameters. It has been shown that its voice characteristics can be modified by speaker

adaptation [22], speaker interpolation [23], or eigenvoice technique [24].

2.2.3 Speech parameter generation algorithm

Problem

For a sentence HMM Λu corresponding to a given sub-word sequence u, the speech syn-

thesis problem is to obtain an output vector sequence consisted of spectral and excitation

parameters.

o = {o1,o2, . . . ,oT} (2.45)

which maximizes its posterior probability with respect to o, that is

ô = argmax
o

p (o | Λu)

= argmax
o

∑
all q

p (o, q | Λu)

= argmax
o

∑
all q

p (o | q,Λu)P (q | Λu) (2.46)

q = {(q1, s1), (q2, s2), . . . , (qT , sT )} (2.47)

where, q and (qt, st) represent a sub-state sequence and the st-th sub-state of the qt-th

state, respectively. This problem is approximated by a Viterbi approximation, because

there is not method to analytically obtain o which maximizes p (o | Λu) in a closed form.

As a result, this maximization problem can be separated into two stages: finding the best

sub-state sequence q̂ for given Λu and obtaining o which maximizes p (o | q,Λu) with

respect to o, i.e.,

q̂ = argmax
q

P (q | Λu) , (2.48)

ô = argmax
o

p (o | q̂,Λu) . (2.49)

The optimization of Eq. (2.48) is performed using explicit state duration models [25] in

the HMM-based speech synthesis system. If the output vector ot is independent from

previous and next frames, the output vector sequence o which maximize p (o | q,Λu)

is obtained as a sequence of mean vectors of sub-states. This causes discontinuity in

the output vector sequence at transitions of sub-states. To avoid this problem, dynamic

features have been introduced. It is assumed that the output vector ot consists of a static

feature vector

ct = [ct(1), . . . , ct(K)]� (2.50)
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and its dynamic features, that is

ot =
[
c�t ,Δc�t ,Δ

2c�t
]�

, (2.51)

where Δct and Δ2ct are delta and delta-delta coefficients, respectively. They are calcu-

lated as follows:

Δct =

L
(1)
+∑

τ=−L
(1)
−

w(1)(τ)ct+τ , (2.52)

Δ2ct =

L
(2)
+∑

τ=−L
(2)
−

w(2)(τ)ct+τ . (2.53)

Solution for the Problem

First, the output vector sequence o and the static feature vector sequence c can be rewrit-

ten as follows:

o =
[
o�
1 ,o

�
2 , . . . ,o

�
T

]�
, (2.54)

c =
[
c�1 , c

�
2 , . . . , c

�
T

]�
. (2.55)

Then, the relationship between c and o can be expressed in a matrix form (Figure 2.4) as

follows:

o = Wc, (2.56)

where, W is a regression window matrix given by

W = [W1,W2, . . . ,WT ]
� ⊗ IM×M , (2.57)

Wt =
[
w

(0)
t ,w

(1)
t ,w

(2)
t

]
, (2.58)

w
(0)
t =

[
0, . . . , 0︸ ︷︷ ︸

t−1

, 1, 0, . . . , 0︸ ︷︷ ︸
T−t

]�
, (2.59)

w
(1)
t =

[
0, . . . , 0︸ ︷︷ ︸
t−L

(1)
− −1

, w(1)(−L
(1)
− ), . . . , w(1)(0), . . . , w(1)(L

(1)
+ ), 0, . . . , 0︸ ︷︷ ︸

T−
(
t+L

(1)
+

)

]�
, (2.60)

w
(2)
t =

[
0, . . . , 0︸ ︷︷ ︸
t−L

(2)
− −1

, w(2)(−L
(2)
− ), . . . , w(2)(0), . . . , w(2)(L

(2)
+ ), 0, . . . , 0︸ ︷︷ ︸

T−
(
t+L

(2)
+

)

]�
, (2.61)
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Figure 2.4: An example of the relationship between the static feature vector sequence c
and the speech parameter vector sequence o in a matrix form (the dynamic features are

calculated using L
(1)
− = L

(1)
+ = L

(2)
− = L

(2)
+ = 1, w(1)(−1) = −0.5, w(1)(0) = 0.0,

w(1)(1) = 0.5, w(2)(−1) = 1.0, w(2)(0) = −2.0, w(2)(1) = 1.0).

The output probability of o conditioned on q is calculated by multiplying the output

probabilities of entire observation vectors,

p (o | q,Λu) =
T∏
t=1

N (ot | μqtst ,Σqtst ) , (2.62)

where, μqtst and Σqtst are the 3K × 1 mean vector and 3K × 3K covariance matrix, re-

spectively. Eq. (2.62) can be rewritten as an output probability of o from a single Gaussian

component, that is

p (o | q,Λu) = N (o | μq,Σq ) , (2.63)

where, μq and Σq are super-vector and super-matrix corresponding to entire sub-state

sequence q, that is

Σq = diag [Σq1s1 ,Σq2s2 , . . . ,Σqtst ] , (2.64)

μq =
[
μ�

q1s1
,μ�

q2s2
, . . . ,μ�

qtst

]�
. (2.65)
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Therefore, the logarithm of Eq. (2.62) can be written as

logN (o | μq,Σq ) = −1

2

{
3KT log 2π + log |Σq|+ (o− μq)

� Σ−1
q (o− μq)

}
.

(2.66)

Under the condition in Eq. (2.56), maximizing N (o | μq,Σq ) with respect to o is equiv-

alent to that with respect to c. By setting

∂ logN (o | μq,Σq )

∂c
= 0KT , (2.67)

a set of linear equations can be obtained

Rqc = rq, (2.68)

where, 0KT is a KT -dimensional zero vector, Rq and rq are given as

Rq = WΣ−1
q W , (2.69)

rq = WΣ−1
q μq. (2.70)

Since Rq is a KT×KT matrix, O(K3T 3) operations are required for solution of Eq. (2.68).

Eq. (2.68) can be solved by the Cholesky with O(K3L2T ) operations by utilizing the spe-

cial structure of Rq. Eq. (2.68) can also be solved by an algorithm derived in [4–6], which

can operate in a time-recursive manner [26].

2.3 Context Dependent Acoustic Models

I introduce context dependent acoustic models in this Section. Firstly, context dependency

is described.

2.3.1 Context dependency

It is well known that contextual factors, e.g., phoneme identities, accent, parts-of-speech,

etc., affect acoustic features. In normal fluent speech every instance of a particular sound

can be different. For example, it is well known that prosodic information such as F0

is affected by multiple contextual factors [27]. One of the most famous models for the

generative process of a F0 contour is the Fujisaki model [28]. Figure 2.5 is a conceptual

diagram of this model. It is assumed that the superposition of three components, i.e. a
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Figure 2.5: Fujisaki model.

phrase component xp(t), an accent component xa(t), and a base component xb, represents

an F0 contour on a logrithmic scale y(t) as follows:

y(t) = xp(t) + xa(t) + xb. (2.71)

In this model, the phrase commands with a function Ap(t) are assumed to be impules

applied to the phrase control mechanism to generate the phrase components, while the

accent commands with a function Aa(t) are assumed to be positive stepwise functions

applied to the accent control mechanism to generate the accent components. These two

components are modeled as the outputs of second-order critically dampled filters.

xp(t) = Gp(t) ∗ Ap(t), (2.72)

Gp(t) =

{
α2te−αt (t ≥ 0)

0 (t < 0)
, (2.73)

xa(t) = Ga(t) ∗ Aa(t), (2.74)

Ga(t) =

{
β2te−βt (t ≥ 0)

0 (t < 0)
, (2.75)

where ∗ denotes convolution over time. Parameters α and β are natural angular frequency

of the phrase and accent control mechanism and assumed to be constant at least within

an utterance. The phrase component xp(t) consists of the major-scale pitch variation,

the accent component xa(t) cosists of the smaller-scale pitch variations in accented syl-

lables, and the baseline component xb is a constant value related to the lower bound of

the speaker’s F0. This means that the pharase and the accent, i.e. contexts, affect acoustic

features F0.

Table 2.1 shows an example of contexts for English used in HMM-based speech syn-

thesis. In HMM-based speech recognition contextual factors about next and previouse

phonemes are typically used. However, in HMM-based speech synthesis enormous con-

textual factors, which are richer than the triphone context, are used. This is because that

richer models are required for speech synthesis than recognition. To improve modeling
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Figure 2.6: An example of the decision tree based context clustering.

accuracy variations of acoustic features caused by contextual effects should be taken ac-

count. In order to accurately capture the variations of acoustic features, context dependent

acoustic models [7, 29] are widely used in HMM-based speech synthesis. However, this

models produce a data insuffiiciency problem because context dependent acoustic mod-

els have a large number of model parameters. Furthermore, the data is usually unevenly

spread. Sharing models across different contexts is a traditional method of dealing with

these problem. Although a large number of context dependent acoustic models can cap-

ture variations in speech data, too many model parameters lead to the over-fitting problem.

Consequently, maintaining a good balance between model complexity and the amount of

training data is very important for obtaining a high generalization performance. I intro-

duce typical context dependent models in next subsection.

2.3.2 Context Dependent Acoustic Models

Decision Tree based Context Clustering

The decision tree based context clustering [30] is an efficient method for estimating ro-

bust model parameters of context dependent models. Figure 2.6 shows an example of the
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decision tree based context clustering. In this clustering technique, top-down clustering

is performed to locally maximize the likelihood of parameters with respect to the train-

ing data using pre-defined questions about contexts. Then, mean vectors and covariance

matrices of HMM states clustered on the same leaf node are tied. The four steps in the

procedure for the decision tree based context clustering algorithm are as follows:

Step 1. Create the root node and compute its likelihood.

Step 2. Evaluate questions at the root node or two nodes created by previous splitting.

The likelihood after the node is split is calculated by estimating the ML parameters

of new nodes created by splitting.

Step 3. Select the pair of a node and a question that gives the maximum likelihood and

then split the node into two by applying the question. The model parameters of new

created nodes are updated by the ML parameters calculated in Step 1.

Step 4. If the change of likelihood after the node is split is below a predefined threshold,

stop the procedure. Otherwise, go to Step 2.

In decision tree based context clustering, the total log likelihood is as follows as ot is an

acoustic feature vector at time t:

L =
T∑
t=1

∑
c∈C

γt(c) logN (ot |μf(c),Σf(c) ) (2.76)

where C denotes all contexts observed in the training data, γt(c) is the state occupancy

probability with respect to context c, and μf(c) and Σf(c) represent the mean vector and

the covariance matrix associated with the leaf node, respectively. In the decision based

context clustering, single Gaussian distributions are typically used for output probability

distributions. The function f(c) gives the index of the leaf nodes in the decision tree. In

Eq (2.76) the state index is ignored. The mean vector μf(c) and the covariance matrix

Σf(c) can be estimated using the ML criterion. In HMM-based speech synthesis, the

minimum description length (MDL) criterion [8] is widely used to automatically control

the size of decision trees. The context space in the decision tree based context clustering

is divided into clusters by contextual factors and the distributions of acoustic features are

individually estimated for each cluster.

Linear Regression

The linear regression model [9] is another approach to modeling acoustic variations in

which all the contextual factors independently affect the acoustic features. In the linear
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regression model, the context dependencies are represented by a linear model in which

an acoustic feature is decomposed into a context independent vector, a context-dependent

component and a residual vector. The context-dependent component is given by the prod-

uct of a weight matrix and an context vector. It is well known that the acoustic feature

is varied by contexts. To represent the effect, in the linear regression model an acoustic

feature vector ot at time t is represented as follows:

ot = ap +Bpzt + εt (2.77)

where a, B, zt and εt represent a context independent vector, a weight matrix to the

context vector, a context vector, and a residual vector respectively. In Eq. (2.77), tem-

plates, e.g. context independent phonemes, are used [31, 32] and p represents the number

of templates. If the residual vector εt is distributed according to the multivariate normal

distribution with a 0 mean vector and a covariance matrix Σp and zt is given, the param-

eters, ap, Bp and Σp, can be estimated using the ML criterion. The total log likelihood is

as follows:

L =
T∑
t=1

∑
c∈C

γt(c) logN (ot |ap +Bpzt,Σp ). (2.78)

By letting the partial derivation of Eq. (2.78) with respect to ap, Bp or Σp equal zeros,

the solutions can be obtained using the generalized inverse.

Since the combination of contextual factors determines the acoustic feature, it can effi-

ciently represent the variety of distributions. However, the dependence among contextual

factors is ignored and it is difficult to determine those factors that should additively af-

fect acoustic features. Although in [9] three kinds of the context vectors are described

as below, it is difficult to heuristically find the best structure because there are numerous

contexts.

Bottom-up

In a bottom-up model the context vector at t-th frame is obtained from the feature vectors

as

z�
t = z

(x)�
t = [o�t+Δx(1), ..., o

�
t+Δx(Mx)] (2.79)

where Mx is the number of feature vectors extracted as acoustic contexts and Δx(m)

represents a relative position of the m-th acoustic feature. In this case z is an Mx × N

dimensional vector,
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Top-down model

In the top-down model the context vector is obtained from a phoneme sequence as

z�
t = z

(y)�
t = [e(pt+Δy(1))

�, ..., e(pt+Δy(My))
�] (2.80)

where qt is the phoneme at time t, e(q) represents a unit P -dimensional vector whose row

corresponded to q has a one, Δy(m) represents the relative position of the m-th phoneme

and My is the number of phonemes extracted as contexts.

Combined model

In the combined model the context vector is defined by a concatenation of the context

vectors in above two models.

z�
t = [z

(x)�
t , z

(y)�
t ] (2.81)

2.4 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), its algorithm

for calculating the output probability (forward-backward algorithm), searching the opti-

mal state sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are

described. And then, the HMM-based speech synthesis system and context dependent

models are described. Following chapter will derive a acoustic modeling with contextual

additive structures for HMM-based speech synthesis.
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Table 2.1: An example of contexts used in HMM-based speech synthesis.

the phoneme identity before the previous phoneme

the previous phoneme identity

the current phoneme identity

the next phoneme identity

the phoneme after the next phoneme identity

position of the current phoneme identity in the current syllable (forward)

position of the current phoneme identity in the current syllable (backward)

whether the previous syllable stressed or not (0: not stressed, 1: stressed)

whether the previous syllable accented or not (0: not accented, 1: accented)

the number of phonemes in the previous syllable

whether the current syllable stressed or not (0: not stressed, 1: stressed)

whether the current syllable accented or not (0: not accented, 1: accented)

the number of phonemes in the current syllable

position of the current syllable in the current word (forward)

position of the current syllable in the current word (backward)

position of the current syllable in the current phrase (forward)

position of the current syllable in the current phrase (backward)

the number of stressed syllables before the current syllable in the current phrase

the number of stressed syllables after the current syllable in the current phrase

the number of accented syllables before the current syllable in the current phrase

the number of accented syllables after the current syllable in the current phrase

the number of syllables from the previous stressed syllable to the current syllable

the number of syllables from the current syllable to the next stressed syllable

the number of syllables from the previous accented syllable to the current syllable

the number of syllables from the current syllable to the next accented syllable

name of the vowel of the current syllable

whether the next syllable stressed or not (0: not stressed, 1: stressed)

whether the next syllable accented or not (0: not accented, 1: accented)

the number of phonemes in the next syllable

gpos (guess part-of-speech) of the previous word

the number of syllables in the previous word

gpos (guess part-of-speech) of the current word

the number of syllables in the current word

position of the current word in the current phrase (forward)

position of the current word in the current phrase (backward)

the number of content words before the current word in the current phrase

the number of content words after the current word in the current phrase

the number of words from the previous content word to the current word

the number of words from the current word to the next content word
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Table 2.1: An example of contexts used in HMM-based speech synthesis (cont.).

gpos (guess part-of-speech) of the next word

the number of syllables in the next word

the number of syllables in the previous phrase

the number of words in the previous phrase

the number of syllables in the current phrase

the number of words in the current phrase

position of the current phrase in this utterance (forward)

position of the current phrase in this utterance (backward)

TOBI endtone of the current phrase

the number of syllables in the next phrase

the number of words in the next phrase

the number of syllables in this utterance

the number of words in this utterance

the number of phrases in this utterance
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Chapter 3

Acoustic modeling with contextual
additive structures

In this chapter, an acoustic modeling with contextual additive structures for HMM-based

speech synthesis is described. In additive structure models, a more complex structure, i.e.,

the additive structure of acoustic feature components is considered. Contextual additive

structure models can represent complicated dependencies between acoustic features and

context labels using multiple decision trees. However, the computational complexity of

the context clustering is too high for the full context labels of speech synthesis. To over-

come this problem, this paper proposes two approaches; covariance parameter tying and

a likelihood calculation algorithm using the matrix inversion lemma.

3.1 Additive structure models

In additive structure models, an acoustic feature vector ot at time t is generated by the

sum of additive components:

ot =
N∑

n=1

o
(n)
t (3.1)

where o
(n)
t denotes the n-th additive component. If each component is independent and

generated according to a Gaussian distribution, the probabilistic density function of acous-

tic features is represented by the convolution of the additive components [33] so that

P (ot | ct, λ) =

∫ N∏
n=1

N (o
(n)
t |μ(n)

ct ,Σ(n)
ct )do

(1)
t · · ·o(N−1)

t

= N (ot |μct ,Σct) (3.2)
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Figure 3.1: An example of a contextual additive structure. This outlines the generative

process for the triphone feature.

where μ
(n)
ct and Σ(n)

ct are respectively the mean vector and covariance matrix of the n-

th component o
(n)
t given a context ct. The output probability distribution is a Gaussian

distribution whose mean vector and covariance matrix are respectively given as

μct =
N∑

n=1

μ(n)
ct , Σct =

N∑
n=1

Σ(n)
ct (3.3)

Since each additive component o
(n)
t has different context dependencies, it is assumed that

each component has a different decision tree that represents tying structures of model

parameters μct and Σct .

Although it is unknown which kinds of contexts have additive dependencies on acoustic

features in practice, an example of a contextual additive structure of triphone HMMs to

explain the effective of the additive structure is present. Here, it is assumed that the left,

center, and right phones are the contexts of additive components. Figure 3.1 outlines the

generative process for the triphone feature. The generative process for acoustic features is

as follows: first, the component of a given monophone (center phone) context is generated

from a corresponding distribution obtained by descending the tree. Then, the additive

components of the left and right contexts are also generated independently from each
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distribution and added to the monophone feature.

The effective of the additive structure depends on whether acoustic features really have

an additive structure for contexts. When acoustic features have an additive structure, a

number of different distributions can be efficiently represented by a combination of fewer

distributions. Furthermore, it is also effective to predict the acoustic features of unseen

contexts. Although in the conventional method unseen models are assigned to one of the

clusters in the decision tree, the proposed method can construct the distribution for unseen

contexts, which are different from any distributions of observed contexts.

3.1.1 EM algorithm for additive structure models

The Maximum Likelihood (ML) parameters of additive component distributions can be

estimated with the EM algorithm. In the E-step, since the convolved output probability

distribution becomes a Gaussian distribution, the standard forward-backward algorithm

can simply be applied as in the standard HMMs. However, there is difficulty in the M-

step due to the dependencies among additive component distributions.

Using the statistics obtained by the E-step, the Q-function with respect to the output

probability distribution can be written as

L =
T∑
t=1

∑
c∈C

γt(c) logP (ot | ct = c, λ)

=
T∑
t=1

∑
c∈C

γt(c) logN (ot |μc,Σc )

= −1

2

∑
c∈C

[ T∑
t=1

γt(c) (K log 2π + log |Σc|)

+Tr

{
Σ−1

c

T∑
t=1

γt(c) (ot − μc) (ot − μc)
�
}]

= −1

2

∑
c∈C

T̃c

[
K log 2π + log |Σc|

+Tr
{
Σ−1

c

(
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
)}]

(3.4)

where K is the dimensionality of feature vectors and C denotes all contexts observed in

the training data. The state index is ignored. The statistics with respect to context c are
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represented by (̃·)c and each of the statistics is calculated as follows:

T̃c =
T∑
t=1

γt(c), μ̃c =
1

T̃c

T∑
t=1

γt(c)ot (3.5)

Σ̃c =
1

T̃c

T∑
t=1

γt(c) (ot − μ̃c) (ot − μ̃c)
�

(3.6)

In [10], the updating the parameters of a particular additive component has been pro-

posed. To represent the tree structure, a function f (n)(c) is introduced that gives the index

of the Gaussian distribution (number of leaves in the decision tree) of the n-th additive

components for c. Using this function, the mean parameter and the covariance parameter

of the convolved distribution are given by

μc =
N∑

n=1

μf (n)(c), Σc =
N∑

n=1

Σf (n)(c) (3.7)

The derivative of the Q-function with respect to the mean and covariance of the particular

additive component can be written as

∂L
∂μm

=
∑

c∈φ(g(m))
m

T̃cΣ
−1
c (μ̃c − μc) (3.8)

∂L
∂Σm

= −1

2

∑
c∈φ(g(m))

m

T̃c

{
Σ−1

c +Σ−1
c Σ̃cΣ

−1
c +Σ−1

c (μc − μ̃c)(μc − μ̃c)
�Σ−1

c

}
(3.9)

where m is the index of the leaf node and φ
(n)
m denotes the contexts which are included

in the m-th cluster, i.e., φ
(n)
m = {c | f (n)(c) = m}. The function g(m) gives the index of

the component of the m-th cluster. It can be seen from the above equations that updating

of μm and Σm requires the parameters of the other additive component (decision trees).

Hence, all parameters of all trees are dependent on each other to compose the output prob-

abilities. This means that all parameters of all trees should be estimated simultaneously

or iteratively until a convergence.

Although there are the several update procedures for this optimization problem, in [10]

the iterative update of each parameter is used. This technique estimates each parameter

while keeping the other parameters fixed. If the other parameters are fixed, the mean can

be easily estimated by setting the derivative to zero. However, the update of covariance

matrices is difficult to solve analytically. Therefore, one of the gradient methods is needed

for the covariance update and the Newton method is applied in [10]. In [10], iteratively

update of all mean vectors of all trees until a convergence and the same update of covari-

ance matrices are selected for the update process. These update processes for mean and

covariance parameters are also iterated until a convergence.
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In this paper, the update process of mean parameters is different from the technique used

in [10]. Mean parameters of all leaf nodes of all decision trees are updated by solving a set

of linear equations. For simplicity of notation, Σc is the diagonal covariance matrix and

one of dimensions of feature vectors is focused. Under this assumption, the covariance

parameter is σc and the mean parameters of all leaf nodes are μ = [μ1, ..., μM ]�, where

M is the sum of all leaf nodes of all decision trees. Then, Eq. (4.5) can be rewritten as

L = −1

2

∑
c∈C

T̃c

{
log 2π + log |σc|+ σ̃c + (μc − μ̃c)

2

σc

}
(3.10)

The terms with respect to μ of L can be rewritten as

L ∝ −1

2

∑
c∈C

T̃c

(
μ2
c +−2μcμ̃c

σc

)

= −1

2

∑
c∈C

T̃c
1

σc

⎧⎨
⎩
(

N∑
n=1

μf (n)(c)

)2

− 2

(
N∑

n=1

μf (n)(c)

)
μ̃c

⎫⎬
⎭

= −1

2

(
μ�Gμ− 2μ�k

)
(3.11)

where

G =

⎡
⎢⎣ g1,1 . . . g1,M

...
. . .

...

gM,1 . . . gM,M

⎤
⎥⎦, k =

⎡
⎢⎣ k1

...

kM

⎤
⎥⎦ (3.12)

gm1,m2 = gm2,m1 =
∑

c∈φ(g(m1))
m1

∩φ(g(m2))
m2

T̃c
1

σc

(3.13)

km1 =
∑

c∈φ(g(m1))
m1

T̃c
1

σc

μ̃c (3.14)

Since G is a symmetric matrix, the first partial derivative of Eq. (3.11) with respect to μ

can be written as

∂L
∂μ

= −1

2

{(
G+G�)μ− 2k

}
= −Gμ+ k (3.15)

By setting Eq. (3.15) to 0, the solution of μ is given as follows:

Gμ = k (3.16)
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However, G is typically a singular matrix. Therefore, to solve Eq. (3.16), a Moore-

Penrose generalized inverse is used. Covariance parameters are updated with the same

technique as in [10]. Hence, the iterative update of covariance parameters is necessary,

though the iterative update of mean parameters is not necessary. The update process for

mean and covariance parameters are also iterated until a convergence.

3.1.2 Context clustering for multiple decision trees

A context clustering algorithm for multiple decision trees has been proposed to auto-

matically extract the additive structure from training data [10]. It is easy to construct a

decision tree if the other decision trees and their parameters are fixed. However, as the

tree structures of the additive components interact with each other to compose the output

probabilities, the multiple decision trees for additive components should be constructed

simultaneously. The four steps in the procedure for the proposed clustering algorithm are

as follows:

Step 1. Set the number of trees N to one, create the root node of the first tree and

compute its likelihood.

Step 2. Evaluate questions at all leaf nodes of all trees and a root node of a new tree.

The likelihood after the node is split is calculated by estimating the ML parameters

of all leaf nodes of all trees.

Step 3. Select the pair of a node and a question that gives the maximum likelihood and

then split the node into two by applying the question. The model parameters of all

leaf nodes are updated by the ML parameters.

Step 4. If the change of likelihood after the node is split is below a predefined threshold,

stop the procedure. Otherwise, go to Step 2.

There are some differences from the conventional clustering algorithm in the procedure.

First, in Step 2, the ML estimates of all parameters of all trees are required to evaluate

questions at a candidate node. In the conventional clustering, the ML parameters of the

two nodes that are split can be obtained independently of the other nodes. However, in

additive structure models, the change of likelihood before and after the node splitting

is calculated not only with the parameters of the nodes created by splitting but also the

parameters of the other trees. From the same reason, the likelihood of a candidate node

is affected by other nodes in additive structure models. Therefore, all questions should

be re-evaluated at all leaf nodes after a node is split. The computational complexity of

33



selecting the pair of a node and a question for a splitting in the conventional clustering and

the clustering for multiple trees are O(Q·D) and O(Q·D ·M4) with a diagonal covariance

matrix, respectively, where Q is the number of questions and D is the dimension of the

feature. The computational complexity of the clustering for multiple trees is derived from

the computational complexity of calculating the solution of Eq. (3.16) for all dimensions,

i.e., O(D · M3), and the number of the evaluations for all questions at all leaf nodes.

Furthermore, the computational complexity is also dependent on the number of iteration

of the update for mean and covariance parameters in the clustering for multiple trees. The

computational complexity between the two techniques are completely different. Second,

in the context clustering for multiple decision trees, an appropriate splitting of a leaf node

or a root node representing a new tree is selected based on the MDL criterion in STEP

2. A splitting of a root node is equivalent to creating a new component. Therefore, the

number of components can be automatically determined based on the MDL criterion.

Additive structure models can be regarded as an intermediate model between a decision

tree based context dependent model and a linear regression model, and it includes these

two models as special cases. If the number of additive components is restricted to one, the

model becomes a decision tree based model, and if all trees have only two nodes (only one

question is applied), the model is equivalent to a linear regression model. Furthermore,

the above clustering algorithm can automatically select the appropriate model structures,

i.e., the number of trees and the tree structures, from training data.

3.2 Computational complexity reduction in the training
algorithm

In the context clustering for multiple decision trees, the ML parameters of all leaf nodes

need to be simultaneously estimated. Moreover, all questions need to be re-evaluated at

all leaf nodes after node splitting, because the likelihood gain of all candidate questions

are dependently changed by the split node. Since speech synthesis uses richer context

labels than speech recognition, the computational complexity becomes enormous to con-

duct the exact context clustering algorithm for additive structure models. A computational

time of more than several years is required to extract an additive structure using the gen-

eral training data for speech synthesis. Therefore, some approximation techniques are

required.
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(a) Parameter tying structures constructed by the conventional technique
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(b) Parameter tying structures constructed by the proposed technique

Mean Mean Mean Mean

Covariance

Mean Mean Mean Mean

Figure 3.2: Examples of parameter tying structures constructed by the conventional and
the proposed techniques.

3.2.1 Computational complexity reduction by covariance parame-
ters tying

In additive structure models, mean parameters can be analytically estimated. However, as

it is difficult to analytically solve the update of covariance parameters, a gradient method

is applied to each covariance parameter. Furthermore, as Eqs. (3.13) and (3.14) indicate

that mean parameters depend on covariance parameters, the mean and covariance param-

eters should be re-estimated until convergence. Therefore, huge computational cost is

involved when extracting additive structures.

In this paper, covariance parameter tying is applied to additive structure models. It has

been reported that mean parameters are relatively more important than covariance pa-

rameters for the quality of HMM-based speech synthesis [11]. The impact on speech
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quality in additive structure models caused by the covariance parameter tying would also

be small. Figure 3.2 shows examples of parameter tying structures constructed with the

conventional technique (Figure 3.2(a)) and the proposed technique (Figure 3.2(b)). By

tying covariance parameters, the mean parameters can be updated independently of the

covariance parameters and iterative updates are not required. Using the tied covariance

parameter Σg, the Q-function with respect to the output probability distribution (Eq. (4.5))

can be rewritten as

L = −1

2

∑
c∈C

T̃c

[
K log 2π + log |NΣg|

+Tr
{
(NΣg)

−1
(
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
)}]

(3.17)

The first partial derivative of Eq. (3.17) with respect to Σg can be written as

∂L
∂Σg

= −1

2

∑
c∈C

T̃c

[
Σ−1

g −N−1Σ−1
g

·
{
Σ̃c + (μc − μ̃c) (μc − μ̃c)

�
}
Σ−1

g

]
(3.18)

By setting Eq. (3.18) to 0, Σg is analytically calculated as follows:

Σg =N−1

(∑
c∈C

T̃c

)−1

·
∑
c∈C

T̃c

{
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
}

(3.19)

the log likelihood L after the parameters are estimated can be written as

L = −1

2

∑
c∈C

T̃c

{
K log 2π + log |NΣg|+K

}
(3.20)

3.2.2 Computational complexity reduction with matrix inversion lemma

Since the size of G depends on the sum of all leaf nodes of all trees in Eq. (3.16), the

computational complexity to solve the linear equations becomes enormous. However,

when a leaf node is split by different questions, the statistics corresponding to the leaf

nodes locally change in newly created nodes and the statistics corresponding to the other

nodes are fixed. Figure 3.3 shows an example of such local change of statistics. Since G
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Statistics change locally

Figure 3.3: An example of splitting a leaf node of a tree.

only becomes dependent on T̃c due to covariance parameter tying, many elements of G

do not change among the questions at the same node. The computational complexity can

significantly be reduced by using this property.

Assuming that G′ is obtained with one question, and G′′ is obtained with another question

at the same node, G′′ can be represented by using G′ as follows:

G′′ = G′ +G(d) (3.21)

where G(d) is a symmetric matrix and can be written as

G(d) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 g
(d)
1,m g

(d)
1,m+1 0...

...

g
(d)
m,1 . . . g

(d)
m,m g

(d)
m,m+1 . . . g

(d)
m,M

g
(d)
m+1,1 . . . g

(d)
m+1,m g

(d)
m+1,m+1 . . . g

(d)
m+1,M

0
...

... 0
g
(d)
M,m g

(d)
M,m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.22)

where m and m + 1 are indexes of leaf nodes created by splitting. A matrix G(d) is

represented by M × 4 and 4×M matrices i.e., D and E, as follows:

G(d) = DE (3.23)
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Figure 3.4: The relation between G′ and G′′.

D =
[
D1 D2 D3 D4

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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1
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(d)
m,m+1 1 0

1
2
g
(d)
m+1,m

1
2
g
(d)
m+1,m+1 0 1

g
(d)
m+2,m g

(d)
m+2,m+1 0 0

...
...

...
...

g
(d)
M,m g

(d)
M,m+1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.24)

E =
[
D3 D4 D1 D2

]�
(3.25)

Figure 3.4 shows the relation between G′ and G′′. Assuming that G′−1 is given, G′′−1

can be calculated as follows:

G′′−1 = (G′ +DE)−1

= G′−1 −G′−1DΨEG′−1 (3.26)

where Ψ = (CG′−1B+ I)−1 and I is the identity matrix. Eq. (3.26) is derived using the
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following matrix inversion lemma.

(G′−1 −G′−1DΨEG′−1)(G′ +DE)

= I +G′−1DE −G′−1DΨE −G′−1DΨEG′−1DE

= I +G′−1D
{
E −Ψ(I +EG′−1D)E

}
= I +G′−1D

(
E −ΨΨ−1E

)
= I (3.27)

The size of matrix Ψ is 4 × 4 in Eq. (3.26). Therefore, it can significantly reduce the

computational complexity in comparison with directly calculating the inverse of G′′.

In the context clustering, this algorithm can be applied to the likelihood calculation of

questions at the same leaf node. The matrix G′−1 is calculated from the first question

using the Moore-Penrose inverse, and the likelihood of other questions can then be calcu-

lated by using Eq. (3.26) with lower computational complexity.

3.3 Experiments

3.3.1 Experimental conditions

Objective and subjective experiments were conducted to evaluate the effectiveness of the

proposed method. The 200 and 450 sentences of the phonetically balanced 503 sentences

from the ATR Japanese speech database B-set, uttered by male speaker MHT, were used

for training. The 1,267 sentences including 450 sentences of the phonetically balanced

sentences, uttered by female speaker, was also used for training. The remaining 53 sen-

tences were used for evaluation. The speech data was down-sampled from 20 to 16 kHz

and windowed at a frame rate of 5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and F0 feature vectors. The mel-cepstral coef-

ficients were obtained from STRAIGHT spectra [34]. The spectrum parameter vectors

consisted of 39 STRAIGHT mel-cepstral coefficients including the zero coefficient and

their delta and delta-delta coefficients. The excitation parameter vectors consisted of log

F0 and its delta and delta-delta.

A five-state, left-to-right, no-skip structure with a diagonal covariance matrix was used for

the hidden semi-Markov model. Additive structure modeling is applied to only the spec-

trum parameters, and the excitation parameters were modeled with conventional multi-

space probability distributions HMMs [35]. The proposed and the conventional methods
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had the same tying structures for the excitation parameters. The MDL criterion was used

to determine the size of the decision trees [8].

Five techniques are compared; Conv is the conventional decision tree based method and

Comp1 to Comp3 and Variable are the additive structure models trained by the proposed

method, where the number after Comp represents the number of decision trees and Vari-
able automatically determines the number of decision trees in the clustering algorithm.

Note that Comp1 is equivalent to the conventional decision tree based method but covari-

ance parameter tying was applied.

For the subjective experiments, mean opinion score tests were conducted. Ten subjects

participated in these listening tests. Twenty sentences were randomly selected from the 53

sentences for each subject. The subjects were asked to rate the naturalness of the synthe-

sized speech on a scale from one (completely unnatural) to five (natural). All experiments

were carried out using headphones in a soundproof room.

3.3.2 Objective results

Figures 3.5, 3.6 and 3.7 show bar charts of the number of leaf nodes for each state. In addi-

tive structure models, the bars were divided and the length of each division represents the

number of leaf nodes of each decision tree. When the conventional and proposed methods

have the same number of leaf nodes, the proposed method only has half the number of pa-

rameters because of covariance parameter tying. Figure 3.5, 3.6 and 3.7 show that Comp1
has more leaf nodes than Conv. This means that decision trees with respect to the mean

parameters are constructed with taking account of tying covariance parameters. Similar

to Comp1, the number of leaf nodes increases in the additive structure models with mul-

tiple decision trees. This is because the MDL criterion was used to determine the size of

decision trees and decision trees were constructed to represent variations in acoustic fea-

tures by only using mean parameters in the additive structure models. Although the size

of decision trees differs among additive components, multiple decision trees were split.

This suggests that additive structures are inherent in the training data. In Variable, the

number of decision trees was automatically determined, and it can actually be seen from

Figures 3.5, 3.6 and 3.7that a different number of decision trees was constructed in each

state. In the 200 sentence case, a larger number of decision trees was obtained for State1

and State5 than for the middle state of HMMs. This might be because the triphone or

quinphone contexts strongly affect the spectral features around phone boundaries. With

increasing the amount of training data, the spectral variations caused by other contextual

factors were modeled by increasing the number of decision trees in the middle states.

Tables 3.1, 3.3 and 3.5 show the total number of parameters and Tables 3.2, 3.4 and 3.6
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show the average likelihoods per frame of training and test data obtained from 200, 450

and 1,267sentences, respectively. Conv obtained the highest likelihood among the five

techniques in both training and test data. This is because covariance parameter tying was

not applied to Conv and the number of parameters is larger than the other techniques.

It can also be seen that the likelihoods of additive structure models (Comp2, Comp3,

and Variable) were higher than Comp1. In addition, the likelihoods tended to increase

with increasing additive components. This is because the number of parameters was

slightly increased with increasing additive components and multiple additive components

were appropriate for representing the spectral variations. However, Comp3 and Variable
obtained almost the same values in the 200 sentences. This is because three additive

components were enough for 200 training sentences and Variable estimates automatically

appropriate the number of additive components dependently on the amount of training

data. With increasing the amount of training data, a larger number of additive components

are needed for capturing the spectral variations and the likelihood is increased in Variable
from Comp3.

Figure 3.8 shows spectrograms of test speech and synthesized speech in Conv and Comp3
with 450 sentences. Spectrograms corresponding to each component of Comp3 are also

shown. From this figure, it can be observed that three components additively affect to

the resultant spectrogram of Comp3. It can be also seen that component affects different

frequencies, e.g., it seems that components represent different formants. For examples,

component 1 represents formants at about 0.7, 1.2, etc seconds and component 2 repre-

sents at about 0.6, 2.6, etc seconds. However, the relation to the contextual factors is

unknown and further analysis will be required in future work.

3.3.3 Subjective results

Figures 5.5, 5.6 and 3.11 show the results of MOS tests using 200, 450 and 1,267 training

sentences, respectively. It can be seen from the figures that Conv and Comp1 obtained

almost the same score. This confirmed that the impact of speech quality by tying co-

variance parameters is small. Although Conv obtained the highest likelihood, Conv and

Comp1 obtained almost the same subjective score. This is because that mean parameters

are relatively more important than covariance parameters for the speech quality, though

covariance parameter contributed greatly to the likelihood. It can also be observed that ad-

ditive structure models (Comp2, Comp3, and Variable) achieved better subjective scores

than the conventional methods (Conv and Comp1). This means that the additive structure

models appropriately extracted context dependencies from training data and they were

effectively used to predict spectral features of unseen contexts. Similar to the objective

evaluation, the scores tended to increase with increasing additive components. “Variable”
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obtained the highest scores in the case of 200, 450 and 1,267 sentences. This is because

the proposed method appropriately selected the model structures including the number of

decision trees dependently on the amount of training data.

3.4 Summary

In this chapter, I proposed an efficient training algorithm for additive structure models and

applied it to HMM-based speech synthesis. Additive structure models are significantly

effective for extracting the context dependencies and accurately capturing variations in

spectral features. However, it is difficult to apply this model to HMM-based speech syn-

thesis due to its computational complexity caused by richer context labels. Covariance

parameter tying in each state and using the matrix inversion lemma can significantly re-

duce the amount of computational complexity and allow us to apply additive structure

models to HMM-based speech synthesis. In experiments, the proposed method outper-

formed the conventional method. Additive structure modeling for prosodic information

such as F0 will be a future work, because F0 has an additive structure with multiple con-

textual factors [27]. The proposed method for F0 would significantly improve synthesized

speech quality.
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Figure 3.5: Number of leaf nodes for each state (200 sentences). The proposed method
only has half the number of parameters in each node because of covariance parameter
tying.

Table 3.1: The total number of parameters (200 sentences).

Conv Comp1 Comp2 Comp3 Variable
105,600 86,520 90,960 91,920 93,120

Table 3.2: Avg. likelihood per frame (200 sentences).

Avg. likelihood (training) Avg. likelihood (test)

Conv 139.66 131.62

Comp1 131.87 124.30

Comp2 132.36 124.86

Comp3 132.52 124.86

Variable 132.60 124.97
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Figure 3.6: Number of leaf nodes for each state (450 sentences). The proposed method
only has half the number of parameters in each node because of covariance parameter
tying.

Table 3.3: The total number of parameters (450 sentences).

Conv Comp1 Comp2 Comp3 Variable
195,600 159,120 160,680 162,960 168,120

Table 3.4: Avg. likelihood per frame (450 sentences).

Avg. likelihood (training) Avg. likelihood (test)

Conv 138.70 136.12

Comp1 131.15 129.13

Comp2 131.51 129.53

Comp3 131.78 129.80

Variable 132.12 130.05
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Figure 3.7: Number of leaf nodes for each state (1,267 sentences). The proposed method
only has half the number of parameters in each node because of covariance parameter
tying.

Table 3.5: The total number of parameters (1,267 sentences).

Conv Comp1 Comp2 Comp3 Variable
261,840 201,480 208,440 209,640 211,320

Table 3.6: Avg. likelihood per frame (1,267 sentences).

Avg. likelihood (training) Avg. likelihood (test)

Conv 120.84 116.90

Comp1 116.42 113.04

Comp2 116.59 113.21

Comp3 116.67 113.21

Variable 116.81 113.34

45



Time (sec)

Fr
eq

ue
nc

y 
(k

Hz
)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

(a) Test speech

Time (sec)

Fr
eq

ue
nc

y 
(k

Hz
)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

(b) Conv

Time (sec)

Fr
eq

ue
nc

y (
kH

z)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

(c) Comp3

Time (sec)

Fr
eq

ue
nc

y (
kH

z)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

(d) Component 1 of Comp3
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(e) Component 2 of Comp3
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(f) Component 3 of Comp3
Figure 3.8: Spectrograms of test speech and synthesized speech in Conv and Comp3 (450

sentences). Spectrograms corresponding to each component of Comp3 are also shown.
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Figure 3.9: Mean opinion scores for synthesized speech with 95% confidence intervals
obtained by conventional and proposed methods (200 sentences).
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Figure 3.10: Mean opinion scores for synthesized speech with 95% confidence intervals
obtained by conventional and proposed methods (450 sentences).
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Figure 3.11: Mean opinion scores for synthesized speech with 95% confidence intervals
obtained by conventional and proposed methods (1,267 sentences).
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Chapter 4

An optimization algorithm for mean
and variance tying structures

In this chapter, a technique for constructing independent parameter tying structures of

mean and variance using additive structure models for HMM-based speech synthesis is

described. This model structure is one of the structures of additive structure models and

equivalent to an constrained ones. However, this model structure is very interesting and

experimenta show useful results for modeling of acoustic features. Conventionally, mean

and variance parameters are assumed to have the same tying structure. However, it has

been reported that a clustering technique of mean vectors while tying all variance matri-

ces improves the quality of synthesized speech. This indicates that mean and variance

parameters should have different optimal tying structures. In the proposed technique, the

decision trees for mean and variance parameters are simultaneously grown by taking into

account the dependency on mean and variance parameters.

4.1 Independent Tying Structures for Mean and Variance
Parameters

In this section, a context clustering technique for both mean and variance parameters is

descrived. Conventionally, an HMM stream-level tying structure is constructed in HMM-

based speech synthesis, i.e., mean vectors and variance matrices have exactly the same

parameter tying structure. In this paper, it is assumed that both mean and variance param-

eters have their own tying structure and examine the construction of appropriate parameter

tying structures. Figure 4.1 shows an example of parameter tying structures constructed

with the conventional and proposed techniques. In the clustering algorithm, it is neces-
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L-Voiced? L-Silence? R-Consonant?

Figure 4.1: Example of parameter tying structures constructed with the conventional and

proposed techniques.

sary to simultaneously construct each parameter tying structure due to the dependency

on mean and variance parameters. Although such a context clustering algorithm can be

derived by expanding the conventional context clustering algorithm, the algorithm is de-

rived using the fact that simultaneous context clustering of mean and variance parameters

can be regarded as a special case of context clustering in additive structure models.

4.1.1 Proposed Model Structure

In additive structure models, an acoustic feature vector is generated by the sum of additive

components.

In this paper, an acoustic feature vector ot is generated by the sum of two components,

i.e., o
(m)
t and o

(v)
t :

ot = o
(m)
t + o

(v)
t . (4.1)

If each component is independent and generated according to a Gaussian distribution,

each component usually has mean and variance parameters. In this paper, it is assumed

that o
(m)
t is generated from a Gaussian distribution that has only a mean parameter and

zero variance and o
(v)
t is generated from one that has only a variance parameter and zero

mean. In this case, the probabilistic density function of the acoustic feature is represented

by the convolution of these two components so that

o
(m)
t ∼ N (μct ,0), (4.2)

o
(v)
t ∼ N (0,Σct), (4.3)

P (ot | ct, λ) = N (ot |μct ,Σct). (4.4)
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Assuming that each component has a different decision tree, independent parameter tying

structures of mean and variance can be represented.

4.1.2 Parameter Estimation for the proposed technique

In this model structure, the Maximum Likelihood (ML) parameters can be estimated with

the Expectation Maximization (EM) algorithm. In the E-step, since the convolved output

probability distribution becomes a Gaussian distribution, the standard forward-backward

algorithm and the Viterbi algorithm can simply be applied as in standard HMMs.

Using the statistics obtained by the E-step, the Q-function with respect to the output

probability distribution can be written as

Q =
T∑
t=1

∑
c∈C

γt(c) logP (ot | ct = c, λ)

= −1

2

∑
c∈C

T̃c

[
K log 2π + log |Σc|

+Tr
{
Σ−1

c

(
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
)}]

, (4.5)

where K is the dimensionality of feature vectors and C denotes all contexts observed in

the training data. The statistics with respect to context c are represented by (̃·)c and each

of the statistics is calculated as follows:

T̃c =
T∑
t=1

γt(c), μ̃c =
1

T̃c

T∑
t=1

γt(c)ot, (4.6)

Σ̃c =
1

T̃c

T∑
t=1

γt(c) (ot − μ̃c) (ot − μ̃c)
� , (4.7)

where γt(c) is the state occupancy probability and the state index is ignored for simplicity

of notation.

By setting the first partial derivative of Q function with respect to an arbitrary mean vector

or variance matrix, the ML parameters are given as follows:

μn(m) =

⎛
⎝ ∑

c∈φ
n(m)

T̃cΣ
−1
c

⎞
⎠−1∑

c∈φ
n(m)

T̃cΣ
−1
c μ̃c, (4.8)

Σn(v) =

⎛
⎝ ∑

c∈φ
n(v)

T̃c

⎞
⎠−1

·
∑

c∈φ
n(v)

T̃c

{
Σ̃c + (μc − μ̃c)(μc − μ̃c)

�
}
,
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where n(m), n(v) are respectively the number of clusters in mean and variance parameter

trees, and φn(·) denotes the contexts included in the n(·)-th cluster.

It can be seen from the Eqs. (4.8) and (4.9) that the update of μn(m) and Σn(v) requires

the parameters of the other clusters. Hence, all parameters of all trees have dependencies

on each other to compose the output probabilities; therefore, all parameters of all trees

should be estimated simultaneously. Thus, iterative updates are needed for estimating

mean and variance parameters until a convergence.

4.1.3 Simultaneous Context Clustering for Mean and Variance Pa-
rameters

In the context clustering, the optimal parameter tying structures are given by maximizing

Eq. (4.5). However, it is necessary to simultaneously construct each parameter tying

structure due to the dependency on mean and variance parameters. Since this problem

corresponds to a problem of estimating parameter tying structures of additive components

o
(m)
t and o

(v)
t , appropriate parameter tying structures of mean and variance parameters

are constructed with simultaneous context clustering in additive structure models. The

procedure for the proposed context clustering algorithm is as follows.

Step 1. The root nodes of the two trees of mean and variance parameters are created.

Step 2. Questions at all leaf nodes of two trees are evaluated. The likelihood after the

node is split is calculated by estimating the ML parameters of all leaf nodes of all

trees.

Step 3. The pair of a node and question that gives the maximum likelihood is selected,

and the node is split into two by applying the question. The model parameters of

all leaf nodes are updated by the ML parameters.

Step 4. If the change of likelihood after the node is split is below a predefined threshold,

stop the procedure. Otherwise, go to Step 2.

The decision trees of mean and variance parameters can be simultaneously constructed

with this technique. Furthermore, the size of mean and variance decision trees can be

independently controled with the the proposed technique by adjusting the weights in the

MDL criterion. Thus, the proposed context clustering would construct more appropriate

parameter tying structures than the conventional one.
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4.2 Experiments

4.2.1 Experimental conditions

The first 450 sentences of the phonetically balanced 503 sentences the ATR Japanese

speech database B-set, uttered by male speaker MHT, were used for training. The re-

maining 53 sentences were used for evaluation. The speech data was down-sampled from

20 to 16 kHz and windowed at a frame rate of 5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and F0 feature vectors. The spectrum parameter

vectors consisted of 39 STRAIGHT mel-cepstral coefficients [34] including the zero coef-

ficient, their delta and delta-delta coefficients. The excitation parameter vectors consisted

of log F0, its delta and delta-delta.

A five-state, left-to-right, no-skip structure with diagonal covariance matrices was used

for the hidden semi-Markov model. The proposed context clustering technique for mean

and variance parameters is applied to only the spectrum parameters. The conventional

and proposed techniques have the same tying structures for the excitation parameters.

The MDL criterion was used to control the size of the tree of the conventional technique

and the mean parameter tree of the proposed technique. The heuristic weight for the

penalty term (Eq. (18) in [8]) is changed to construct the variance parameter tree of the

proposed technique. The weights used here were 4.0, 2.0, and 1.0. In addition, the pro-

posed technique is compared with a technique for tying variance parameters in each state

of HMMs as conventional one. In [11], variance parameters are tied to one in all states of

HMMs.

4.2.2 Experimental results

Table 4.1 lists the number of leaf nodes and the total number of parameters for each tech-

nique. In this table, Baseline is the conventional technique, TieVar is the technique for

tying variance parameters in each state of HMMs, and MDL4.0, MDL2.0, and MDL1.0
respectively represent the proposed technique with 4.0, 2.0, and 1.0 weights of the MDL

criterion. Although leaf nodes have mean and variance parameters in Baseline, in the

other techniques leaf nodes have only parameters of either. First, it can be seen from the

table that MDL1.0 has more mean parameters and less variance parameters than Baseline.

This indicates that the proposed technique constructs decision trees that are appropri-

ately sized for both mean and variance parameters. Next, MDL2.0 and MDL4.0 have

less variance parameters and slightly more mean parameters in the proposed technique.

This means that the mean parameter decision tree was constructed to compensate for less
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Table 4.1: Number of leaf nodes and total number of parameters.

Number of leaf nodes The total number of

Mean Variance parameters

Baseline 809 809 194160

TieVar 1316 5 158520

MDL4.0 1255 147 168240

MDL2.0 1249 247 179520

MDL1.0 1235 403 196560

variance parameters.

A subjective listening test was conducted to evaluate quality of synthesized speech. The

subjects were asked to rate the naturalness of the synthesized speech on a scale from one

(completely unnatural) to five (natural). The subjects were 10 Japanese. Twenty sentences

were randomly chosen from the evaluation sentences. Figure 4.2 plots the experimental

results. In this figure, although TieVar and MDL4.0 obtained almost the same score, the

proposed technique with the small weight of MDL criterion achieved better subjective

scores than the conventional one. This indicates that the proposed technique constructed

the optimal tying structures for each of mean and variance parameters. It can be seen from

the table 4.1 that although the total number of parameters is almost the same in Baseline
and MDL1.0, their balance between the number of mean and variance parameters are

different. Even though this indicates that mean parameters are relatively more important

than variance parameters, some degree of freedom for variance parameters is necessary

for improving the quality of synthesized speech.

4.3 Summary

In this chapter, an optimization algorithm of independent mean and variance parameter

tying structures for HMM-based speech synthesis was proposed. The proposed technique

constructed simultaneously tying structures for both mean and variance parameters using

context clustering algorithm in additive structure models. In the experiments, the pro-

posed technique outperformed the conventional one. Investigation of the appropriate size

of the trees will be future work.
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Figure 4.2: Mean opinion scores for synthesized speech obtained by the conventional and
proposed techniques.
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Chapter 5

Acoustic modeling with contextual
partial additive structures

The contextual additive structure models assume that the observation vectors are gener-

ated from the sum of additive components with tree regression structures and they can

be regarded as an intermediate structure between linear regression and tree regression.

However, the additive structure models still have a limitation that the number of additive

components is fixed for all output probability distributions. The proposed technique is

a generalization of the additive structure models which have variable number of addi-

tive components dependently on contextual sub-spaces, and the clustering algorithm for

extracting partial additive structure is provided.

5.1 Contextual partial additive structure

Although additive structure models can automatically determine the number of compo-

nents, there is a constraint that a fixed number of additive components are used for gen-

erating acoustic features. However, it is natural to assume that an appropriate number of

additive components depends on contexts. That is, is, it is expected that some context

dependent models require many additive components to represent variations in acoustic

features and others not. To represent such context dependencies, partial additive compo-

nents affecting arbitrary contextual sub-spaces is introduced.

In the proposed technique, a partial additive component is represented by a decision tree

attached to an internal node of another decision tree. Figure 5.1 shows examples of the

standard and partial additive structure. The standard technique extracts additive compo-

nents for the only entire contextual space corresponding to a root node. The proposed
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Standard Proposed

Attaching a component

to a root node

Attaching components

to internal nodes

Figure 5.1: Examples of standard and partial additive structures.

Figure 5.2: The effect of an partial additive structure in distribution modeling of acoustic
features.

technique can attach the additive component to an arbitrary node including internal nodes

as well as root nodes. Figure 5.2 shows the effect of a partial additive structure in dis-

tribution modeling of acoustic features. The gray regions represent the contextual spaces

affected by the second additive component “Comp. 2”. The second component of the

partial additive structure affects the contextual sub-space corresponding to the internal

node of the first component, even though the second component of the standard structure

always divides the entire contextual space. The proposed model structure yields larger

combination of components than the standard additive structure with the same number of

parameters.

Considering the relation between the standard and partial additive structure models, an ar-

bitrary partial additive structure can be converted to a global additive component, because

a partial decision tree can be expanded to a global decision tree by copying the upper

56



structure of the parent decision tree. In this case, the partial decision tree is represented as

a sub-tree at the internal node of the copied tree and the other nodes are assumed to have

zero mean and variance. Therefore, the proposed structure can be regarded as special

case of the standard additive structure. This means there is no advantage of the proposed

technique in the representation of decision trees. However, the proposed technique pro-

vides an efficient representation for partial context dependencies with a smaller number

of model parameters. Furthermore, if there exists an optimal structure representing partial

context dependencies, it is difficult to extract an equivalent global additive structure by

using the context clustering algorithm described in Section 2.2, due to the greedy strat-

egy. Therefore, an explicit representation of partial context dependencies and a context

clustering algorithm for extracting partial additive structures are required.

The context clustering algorithm for the partial additive structure can be derived by mod-

ifying STEP. 2 in the standard context clustering algorithm for multiple decision trees as

follows:

STEP 2. Evaluate questions at all leaf nodes of all trees and a root node representing a

new tree. In addition, all candidate root nodes representing partial additive compo-

nents are also evaluated at all internal nodes. The likelihood after the node splitting

is calculated by estimating the ML parameters of all leaf nodes of all trees.

The difference with the standard context clustering algorithm for multiple decision trees

is to explicitly evaluate all questions at all internal nodes for constructing a new tree rep-

resenting a partial additive component. The number and position of additive components

corresponding to each context dependent model are automatically determined on demand

to increase the likelihood based on the ML criterion. Thus, the proposed technique can

effectively represent the context dependencies with a limited amount of the training data.

For an unseen context, the corresponding distribution can be found by answering the

question from the top-node as the standard decision tree. However, if there is an attached

decision tree at the current node, the number of components for the current context is

increased and the corresponding distributions must be searched for in both the parent and

attached decision trees.

5.1.1 Related model structures

The additive structure models include different model structures as special cases. If the

additive structure is restricted to having a single decision tree, it becomes the conventional

decision tree (tree regression). Linear regression models [9] can also be represented by

additive structure models, which consist of additive components each of which has only
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one contextual question. Therefore, additive structure models can be regarded as interme-

diate models between tree regression and linear regression. Partial decision trees in the

proposed technique inherit this property. Constrained Tree Regression (CTR) [36] also

has a strong relation to the proposed model structure. CTR has an additive component

corresponding to a contextual question at each intermediate node, and feature vectors are

predicted by adding all additive components from the top-node to leaf-node. Although

CTR can also represent a variable number of additive components, similar to the pro-

posed structure, only a sub-set of standard additive structure models can be represented

by CTR because it integrates the structures of tree regression and linear regression into a

single tree structure. As mentioned above, partial additive structure models have the same

ability in the representing model structures as standard additive structure models.

5.2 Experiment

5.2.1 Experimental conditions

Objective and subjective experiments were conducted to evaluate the effectiveness of the

proposed method. The 200 and 450 sentences of the phonetically balanced 503 sentences

from the ATR Japanese speech database B-set, uttered by male speaker MHT, were used

for training. The remaining 53 sentences were used for evaluation. The speech data was

down-sampled from 20 to 16 kHz and windowed at a frame rate of 5-ms using a 25-ms

Blackman window.

The feature vectors consisted of spectral and F0 feature vectors. The spectrum parameter

vectors consisted of 39 STRAIGHT mel-cepstral coefficients including the zero coeffi-

cient and their delta and delta-delta coefficients. The excitation parameter vectors con-

sisted of log F0 and its delta and delta-delta. A five-state, left-to-right, no-skip structure

with a diagonal covariance matrix was used for the hidden semi-Markov model. Additive

structure modeling was applied to only the spectrum parameters, and the excitation param-

eters were modeled with conventional multi-space probability distribution HMMs [37].

The tying structures for excitation parameters were constructed with the conventional de-

cision tree based context clustering.

Four techniques were compared; CONV: the conventional decision tree, LR: the linear

regression, ADD: the standard additive structure models, and PADD: the proposed partial

additive structure models. Covariance parameter tying was applied to LR, ADD and PADD
for reducing computational cost.

The minimum description length (MDL) criterion [8] was used to select splitting a node in

58



Table 5.1: Number of decision trees in each state. The number of decision trees In PADD
consists of that attached to the root node and internal nodes (200 sentences).

CONV LR ADD PADD
State 1 1 59 6 7 (root 3 + internal 4)

State 2 1 73 4 7 (root 2 + internal 5)

State 3 1 81 3 9 (root 2 + internal 7)

State 4 1 59 3 7 (root 2 + internal 5)

State 5 1 63 6 8 (root 3 + internal 5)

Total 5 335 22 38 (root 12 + internal 26)

Table 5.2: Number of leaf clusters, total number of parameters and average likelihood per

frame of training and test data (200 sentences).

CONV LR ADD PADD
# of leaf nodes 440 670 771 844

Total # of parameters 105,600 81,000 93,120 101,880

Ave. likelihood (train) 139.66 130.92 132.60 132.98

Ave. likelihood (test) 131.62 124.87 124.97 125.18

all techniques. In the proposed technique, the increase in the the number of parameters of

splitting a leaf node and extracting a new component differs. The increase in the number

of parameters by extracting a new component doubles compared with that by splitting a

leaf node. Penalty terms of the description length then grows large in extracting a new

component. The MDL criterion was used to determine the size of the decision trees.

In subjective experiments, mean opinion score tests were conducted. Ten subjects par-

ticipated in these listening tests. Twenty sentences were randomly selected from the 53

sentences for each subject. The subjects were asked to rate the naturalness of the synthe-

sized speech on a scale from one (completely unnatural) to five (natural). The experiment

was carried out using headphones in a soundproof room .

5.2.2 Experimental results

5.2.3 Objective results

Table 5.1 and 5.3 lists the number of decision trees in each HMM state and total number

of decision trees in each technique. The number of decision trees in PADD consists of
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Table 5.3: Number of decision trees in each state. The number of decision trees In PADD
consists of that attached to the root node and internal nodes (450 sentences).

CONV LR ADD PADD
State 1 1 80 5 10 (root 4 + internal 6)

State 2 1 140 6 18 (root 2 + internal 16)

State 3 1 103 7 14 (root 3 + internal 11)

State 4 1 83 5 13 (root 3 + internal 10)

State 5 1 80 6 9 (root 3 + internal 6)

Total 5 486 30 59 (root 15 + internal 44)

Table 5.4: Number of leaf clusters, total number of parameters and average likelihood per

frame of training and test data (450 sentences).

CONV LR ADD PADD
# of leaf nodes 814 972 1391 1446

Total # of parameters 195,360 117,240 167,520 174,120

Ave. likelihood (train) 138.65 129.30 132.15 132.36

Ave. likelihood (test) 136.10 127.83 130.07 130.27

that attached to the root node and internal nodes corresponding to the global and partial

additive components respectively. It can be seen from Table 5.1 and 5.3 that the addi-

tive structure models constructed multiple trees for each state in the context clustering,

even though they can select single tree structures. This results suggest that there is an

additive structure in the training data. The additive structure models also constructed less

decision trees compared to LR. In the additive structure models, intermediate structures

between tree regression and linear regression were constructed to represent appropriate

context dependencies. Furthermore, PADD created decision trees at internal nodes as

well as the root node. This means that the proposed clustering algorithm extracted partial

additive components to efficiently represent context dependencies in the training data. In

200 sentence case, a larger number of decision trees were obtained for State 1 and State

5 than the middle state of HMMs in ADD. This might be because the triphone or quin-

phone contexts strongly affect the spectral features around phone boundaries. However,

almost the same number of components were extracted in the all states in PADD. This is

because PADD extracted an appropriate number of components depending on contexts,

while ADD extracted only components for entire contextual space. With increasing the

amount of training data, a larger number of partial additive components as well as the

global components were extracted for representing the spectral variations caused by var-
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ious contextual factors. These means that PADD can effectively represent the context

dependencies with a limited amount of the training data.

Figures 5.3 and 5.4 are histograms of the number of components for each context de-

pendent model about each state in PADD. It can be seen from figure 5.3 and 5.4 that the

different numbers of components were used for each context model. For examples, the

larger number of components were used for representing acoustic features affected by

various contextual factors, i.e., vowels and some context features in the larger amount of

training data. Acoustic features that have less spectral variations, i.e., features about si-

lence, pause, and some context in the smaller amount of training data, were represented by

the smaller number of components. This means that PADD extracted the different num-

bers of components depending on contexts. However, there were unused and less used

numbers of components in especially a larger amount of training data case. This might

be because the greedy strategy of context clustering algorithm still affected the resultant

structure, though proposed context clustering algorithm effectively extracted the partial

additive structure.

Table 5.2 and 5.4 list the number of leaf nodes, the total number of parameters and the

average likelihoods per frame of training (200 and 450 sentences) and test data (53 sen-

tences). Note that CONV has double number of parameters in each leaf node compared

with LR, ADD and PADD, because the covariance parameter tying was applied to LR,

ADD and PADD. In table 5.2 and 5.4, the likelihood of CONV in the training and test

data was the highest of the four techniques. This is because covariance parameter tying

was not applied to CONV and the total number of parameters was larger than other three

techniques. It can also be seen that the likelihood of additive structure models is higher

than LR. This means that additive structure models represented complicated spectral vari-

ations, while the linear regression was too simple structure to represent that. It can also

be seen from Table 5.2 and 5.4 that ADD and PADD have almost the same number of

parameters and there is not the significant difference in the likelihood of ADD and PADD.

5.2.4 Subjective results

Figure 5.5 and 5.6 show the subjective listening results. In the subjective test, LR that

synthesizes low quality speech is not included from the result of the preliminary experi-

ment. In figure 5.5 and 5.6, ADD and PADD achieved better subjective scores than CONV
that has larger number of parameters. This means that additive structure models could

represent complicated context dependencies. It can be seen from Figure 5.5 and 5.6 that

PADD achieved better subjective scores than ADD. These results mean that the proposed

technique can represent appropriate context dependencies with the contextual partial addi-
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tive structure, even though ADD and PADD have almost the same number of parameters.

In 450 sentences case, the difference of subjective scores between ADD and PADD was

more clear than 200 sentences case. This is because a larger number of partial components

were extracted and the more effective structure was constructed from the larger amount of

training data. Moreover, the proposed technique could automatically determine the num-

ber of components affecting contextual sub-spaces as well as the entire contextual space

and effectively represent the context dependencies with the training data.

5.3 Summary

In this chapter, a spectral modeling technique based on the contextual partial additive

structure was proposed. In the standard additive structure models, it is difficult to extract

partial additive components which affects arbitrary contextual sub-spaces. The proposed

technique can extract the contextual partial additive structure. Furthermore, the number

of partial additive components as well as standard global additive components can be au-

tomatically determined with the training data. In the experiment, the proposed technique

outperformed the conventional technique and the standard additive structure models. Ad-

ditive structure modeling for prosodic information such as F0 and experiments on other

dataset including style, emotions, etc, will be a future work.
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(e) State 5

Figure 5.3: Histograms for the numbers of components for each context dependent model
about each state (200 sentences).
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Figure 5.4: Histograms for the numbers of components for each context dependent model
about each state (450 sentences).
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Figure 5.5: Mean opinion scores for synthesized speech obtained by conventional, stan-
dard and proposed techniques (200 sentences).
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Figure 5.6: Mean opinion scores for synthesized speech obtained by conventional, stan-
dard and proposed techniques (450 sentences).
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Chapter 6

Conclusions

The present paper described improved acoustic modeling for HMM-based speech synthe-

sis. The basic theories of the hidden Markov models (HMMs), its algorithm for calculat-

ing the output probability (forward-backward algorithm), searching the optimal state se-

quence (Viterbi algorithm), and estimating its parameters (EM algorithm) are described in

Chapter 2. In Chapter 2, statistical speech synthesis frameworks based on the HMM were

also presented In Chapter 3, an acoustic modeling with contextual additive structures for

HMM-based speech synthesis was described. Contextual additive structure models can

represent complicated dependencies between acoustic features and context labels using

multiple decision trees. However, the computational complexity of the context clustering

is too high for the full context labels of speech synthesis. Covariance parameter tying

in each state and using the matrix inversion lemma can significantly reduce the amount

of computational complexity and allow us to apply additive structure models to HMM-

based speech synthesis. In objective results, although the size of decision trees differs

among additive components, multiple decision trees were split. This suggests that ad-

ditive structures are inherent in the training data. This suggests that additive structures

are inherent in the training data. In subjective results, additive structure models achieved

better subjective scores than the conventional methods. Additive structure modeling for

prosodic information such as F0 will be a future work, because F0 has an additive struc-

ture with multiple contextual factors. In Chapter 4, a technique for constructing inde-

pendent parameter tying structures of mean and variance using additive structure models

for HMM-based speech synthesis was described. In the proposed technique, the deci-

sion trees for mean and variance parameters are simultaneously grown by taking into

account the dependency on mean and variance parameters. the proposed technique with

the small weight of MDL criterion achieved better subjective scores than the conventional

one. This indicates that the proposed technique constructed the optimal tying structures

for each of mean and variance parameters. Even though experimental results indicate that
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mean parameters are relatively more important than variance parameters, some degree

of freedom for variance parameters is necessary for improving the quality of synthesized

speech. Investigation of the appropriate size of the trees will be future work. In Chapter 5,

an acoustic modeling with contextual partial additive structures for HMM-based speech

synthesis was described. The additive structure models still have a limitation that the

number of additive components is fixed for all output probability distributions. The pro-

posed technique is a generalization of the additive structure models which have variable

number of additive components dependently on contextual sub-spaces, and provided the

clustering algorithm for extracting partial additive structure. In the subjective test, partial

additive structure models achieved better subjective scores. These results mean that the

proposed technique can represent appropriate context dependencies with the contextual

partial additive structure. Additive structure modeling for prosodic information such as

F0 and experiments on other dataset including style, emotions, etc, will be a future work.
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Appendix A

Software

Figure A.1: HTS: http://hts.sp.nitech.ac.jp/
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