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Abstract

Speech is the most important ways for human communication, and a number of research
topic for human-machine communication have been proposed. Automatic speech recog-
nition (ASR) and text-to-speech synthesis (TTS) are fundamental technologies for human-
machine communication. In recent years, they are used in many application such as car
navigation system, information retrieval over the telephone, voice mail, speech-to-speech
translation (S2ST) system, and so on. The goal of ASR and TTS systems is perfect speech
recognition and speech synthesis with natural human voice characteristics.

Most state-of-art speech synthesis systems are based on large amounts of speech data.
This type of approach is generally called corpus-based systems. This approach makes
it possible to dramatically improve the performance compared with early systems such
as rule-based one. In these days statistical approaches based on hidden Markov models
(HMMs) have been dominant in TTS, due to their ease of implementation and model-
ing flexibility. In this approach, the HMMs are used for modeling sequences of speech
spectra. In this paper, improved techniques for acoustic modeling are proposed for HMM-
based speech synthesis.

It is well known that spectral features are affected by contextual factors, e.g., phoneme
identities, accent, parts-of-speech, etc., and extracting the context dependencies is a criti-
cal problem for acoustic modeling. One of the major difficulties in the context dependent
modeling is finding a good balance between model complexity and availability of training
data. In this paper, a novel acoustic modeling is proposed for representing complicated
context dependencies.

First, an acoustic modeling with contextual additive structures in HMM-based speech
synthesis is proposed. To represent more moderate dependencies between contextual fac-
tors and acoustic features, an additive structure of acoustic feature components that have
different context dependencies has been proposed for HMM-based speech recognition.
Contextual additive structure models can represent complicated dependencies between
acoustic features and context labels using multiple decision trees. However, the com-
putational complexity of the context clustering is too high for the full context labels of



speech synthesis. To overcome this problem, this paper proposes two approaches; covari-
ance parameter tying and a likelihood calculation algorithm using the matrix inversion
lemma. Additive structure models can be applied to HMM-based speech synthesis us-
ing these techniques and speech quality would significantly be improved. Experimental
results show that the proposed method outperforms the conventional one in subjective
listening tests.

Next, a technique for constructing independent parameter tying structures of mean and
variance using additive structure models for HMM-based speech synthesis is proposed.
Conventionally, an HMM stream-level tying structure is constructed in HMM-based speech
synthesis, i.e., mean vectors and variance matrices have exactly the same parameter tying
structure. However, it has been reported that a clustering technique of mean vectors while
tying all variance matrices improves the quality of synthesized speech. This indicates
that mean and variance parameters should have different optimal tying structures. In the
proposed technique, the decision trees for mean and variance parameters are simultane-
ously grown by taking into account the dependency on mean and variance parameters.
Experimental results show that the proposed technique outperforms the conventional one.

Finally, I proposed a spectral modeling technique based on a contextual partial additive
structure which provides an efficient representation of context dependencies to acoustic
features for HMM-based speech synthesis. The contextual additive structure models as-
sume that the observation vectors are generated from the sum of additive components with
tree regression structures and they can be regarded as an intermediate structure between
linear regression and tree regression. However, the additive structure models still have a
limitation that the number of additive components is fixed for all output probability distri-
butions. The proposed technique is a generalization of the additive structure models which
have variable number of additive components dependently on contextual sub-spaces, and
the clustering algorithm for extracting partial additive structure is provided. Experimental
results show that the proposed technique outperformed the technique of extracting only
standard additive structures in a subjective test.

For HMM-based speech synthesis system, above improved techniques were proposed and
systems using these techniques improved their performance.

Keywords: Speech synthesis, Hidden Markov Model, Context dependent models, Con-
text clustering, Decision trees, Additive structure, Distribution convolution
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Abstract in Japanese

WE5, TV Ea—RESEKRL, Z2LOADPHENCHMNS EDLTD, FiEIC
HE R NMIFTEDEIR> TS, [FRFIC, N— R I7 OMREOREEMN M b
XD, EERE, EREERY T R ITMNEBHLTETWVS. COXd AmRnomh
T, I—PADIHHEME, 12—V DaIa=r—yary2RSCEeEHNE LT
FRE NG AT LOEEICHF A L SNTW5. ZORTEHERA G,
Hiam & & BICE RN R T B b OEE i L ko TV 5.

EEARICBT 2RENGHHHA L LT, BT IVICHTET IVDO—RTH SR
N~V 37 7))l (Hidden Markov Model; HMM) 7 FHWL 2 HHAD D 5. HMM &
FET—RICHDENRTG A= ZHET H2RHERH %7 )V ALMMFEL, FR
0¥ — YN ERETFIRETH S, HMM & S ClE LR A EIMEICE D < S
INTGA—=ZERTIVTY A L2 O TEEEFR /ST XA—2ZH I LEFRZHKT %
728, HALERBOEFH G KRTFE E ERXTREREERADECRY, T AXA—42%
WS % T & THRAIGFEICEITE 2R EDRL D 5.

C O HMM TOERDETIULICE N T, [FA—DEHETEHXRNAER (22T
FAMNEEETEET, XOBEOEWVETIVERSRET L2 LN TEET LI
5NTW5. LAL, aVFFAFNDETOMHAEDLEZERT S LHAGDOLER
Rz, ZEHTF—R2LLTRTOAVTFAINEHET S LI EETHS.
CORER R T B 728, PEARICEBAVTFARN I ARY VT FERGIE
IHETINCKD AV TF A MIFHEORBEMDMEREINTE N, 2ET— 2 b
Ynca v F A MEEE RIS 2 C L IZEESROMEICERETER 5 %, KA
HELHETHS. AR TIE, X0 &ML HMM &5 Y X7 LOWERD =01,
XOJEYZ Y T F A MEAFEDO RO REGSHE T T IVEFERIRET 5.

F9, HMM SE SOOIV T F A hOINEMESEICED S8 7 )VL%E
RET 5. 1RO HMMICE DS ERERT AT LTI, a7 F AR I
WHLUT, 1 DOFEBRAREDO A2 NI TS, UL, S2RHEIIEM T
AVTFAMEENEZEF > TED, TOXS REENZTETIVEDAT LEEY e
WBE AR, TOREICH LT, HMM S AR IC BV T a Yy 7F A S ONEIRE
BICHED S ETIVEDRREIN TV S, IERGET 7V TSR EN GO
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HRFOME LTERHEEI N, SIERFIEEAS 375X MIAEEZRED ERGE
LTWa. ZHUCKD, SFEREEICHT 228 EROMN ORI AEEE 75D,
DEDINTG A—RZTHMZ O TF A MAFEZREHT A2 N TES. LML,
HMM ZA S Tl HMM SRtk e ERIEFICZ < DAV T F A M 2EET 51
O, MEMETTIVTHWS AV TFANI T AR VT O EENFEEARER
FEWKICIRS. CORERRIT 3728, Ria X TR EEE L3050 HiE
WCHD S REFHED 2 DO REENRTFEZIRET 5. CThHOFEEZHVWS L
T, HMM S H S ADIEREEE T IVOMHMNAEEE 75 0, ARG O E D[]
EAHRFTE S, Tz, RBEHMOIER, TBIEHMEIEEIC X 0 RREOAMME R
L.

X7z, IERGEE T IVORSHAZ VT, 580 8T A — 2 O HAG RS O [H R
Wt7 222077 )TV ZLZRET S, RO HMM ICHE D ERAaY A
T LTI, nHUST A= IR CHEEEEZF O EZIREL TS, LA,
—H TR ITARTHEUNT A—22GT 5 L2 REL, FEINT A—ZIZD
WCDRTFARY) VT %179 T & THRERDMENNRET ST EMHERINT
W5, DT EMND, P, TEUST A—=RICiE, TNFIEPOREZHEARESED
FIET B EEZADNS. KBTS, DBUST A—2DikiFZzEE L DD, A
RHCZN S OHERGEZ MR T 5. REILETIE S, DS A—2ZNZIc
o, KESEFOWEAREZWRTZC LN TEZ 10, BREHOMEDA
AR TE S, Fiz, EBEMIFERIC X D IRRIEOEMMEZ R L.

RIZIC, HMM EEGRRICBW T X D EYITHROB W V7 F A MEFEEDOERB D
fe¥h, AT A NOENAINEREICE D BT T UL ZIEET 5. sk
WETIVTE, SR EITEROTERZ WS T & THEEBDIER 1 54K
ENB. 2D, IMENEETIVIEVERICHE DS AV TFANITARZY VT
IZ & BAREEHA LB RIGE T IVOHRBICiIBET S #2615, LML, hnEkE
EETFINTIZ TR TOEIHERRICB O CEEHONERFDHNLNS LWV S
RIEAMEKIRE UTIEET 5. AT, IV TF A FOEOZEEICKEL TRE S
DK FZ2HDO L 2B R LUz, MEMEDO L FLEEHRT L TES. X
Iz, TOXSEAVTFANDOETNEINEMEZ M T 2 FEZIRRT 5.

PLED XS, KX T XD mMEREA HMM SR G AT LOMEDT2HIC,
K VYR YT FA MIEEORBOATREAET IV EREL, TOHEMEZRT.
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Chapter 1

Introduction

Speech is the most important ways for human communication, and a number of research
topic for human-machine communication have been proposed. Automatic speech recog-
nition (ASR) and text-to-speech synthesis (TTS) are fundamental technologies for human-
machine communication. In recent years, they are used in many application such as car
navigation system, information retrieval over the telephone, voice mail, speech-to-speech
translation (S2ST) system, and so on. The goal of ASR and TTS systems is perfect speech
recognition and speech synthesis with natural human voice characteristics.

The majority of state-of-the-art speech synthesis systems is trained by using a large
amount of speech data. In general, this type of system is called as a corpus-based speech
synthesis system [1]. Compared with the previous speech synthesis systems, corpus-
based one especially improve the naturalness of synthesized speech. An HMM-based
speech synthesis system is major approach to enable machines to speak naturally like
humans [2, 3]. In HMM-based speech synthesis, the spectrum, excitation and duration
of speech are modeled simultaneously with HMMs, and speech parameter sequences are
generated from the HMMs themselves [3]. In HMM-based speech synthesis, the ML cri-
terion has been typically used for training HMMs and generating speech parameters. The
ML criterion guarantee that the ML estimates approach the true values of the parameters.
In synthesis part, the sequences of spectrum and excitation parameters are generated from
the sentence HMM using speech parameter generation algorithm [4-6].

It is well known that spectral features are affected by contextual factors, e.g., phoneme
identities, accent, parts-of-speech, etc., and extracting the context dependencies is a crit-
ical problem for acoustic modeling. One of the major difficulties in the context depen-
dent modeling is finding a good balance between model complexity and availability of
training data. Although increasing the model complexity makes it possible to accurately
capture variations in spectral features, the reliability of parameter estimation is degraded
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due to decreasing the amount of training data for each model. Furthermore, since it is
difficult to prepare training data covering all context dependent models, there are numer-
ous unseen models that are not observed in the training data but that are required in the
synthesis phase. To avoid this problem, the decision tree based context clustering has
been proposed [7]. In the clustering, HMM states of the context dependent models are
grouped into “clusters,” and all states belonging to the same cluster are assumed to have
the same distribution. A binary tree is constructed based on the maximum likelihood cri-
terion by applying a phonetic question to each node and iteratively splitting the cluster
into two child clusters. By limiting the number of possible splits using prior knowledge,
linguistic and articulatory information can be reflected in the clustering results. Instead of
the maximum likelihood criterion, the minimum description length (MDL) criterion can
be adopted to automatically determine the optimal number of clusters without setting a
threshold [8].

Although many researches about structures and training of context dependent models have
been carried out, context dependent models is a very important and critical research topic
for HMM-based speech synthesis. The context space in the decision tree based context
clustering is divided into clusters by contextual factors and the distributions of acoustic
features are individually estimated for each cluster. This means that the distributions of
each cluster are specified immediately from only training data assigned to the cluster and
trained context models have direct dependencies of contexts. On the other hand, the linear
regression model [9] is another approach to modeling spectral variations in which all the
contextual factors independently affect the acoustic features. Since the combination of
contextual factors determines the distribution of spectral features, it can efficiently rep-
resent the variety of distributions. However, the dependence among contextual factors is
ignored and it is difficult to determine those factors that should additively affect acous-
tic features. To represent more moderate dependencies between contextual factors and
acoustic features, an additive structure of acoustic feature components that have differ-
ent context dependencies has been proposed for HMM-based speech recognition [10].
This approach includes intermediate structures of decision tree based context clustering
and linear regression models as special cases. Since the output probability distribution
is composed of the sum of the mean vectors and covariance matrices of additive compo-
nents, a number of different distributions can be efficiently represented by a combination
of fewer distributions. However, it is unknown what kinds of contexts have additive de-
pendencies on acoustic features. To solve this problem, a context clustering algorithm for
the additive structure that automatically extracts additive components by simultaneously
constructing multiple decision trees has been proposed [10]. Moreover, it can automati-
cally determine an appropriate number of additive components. It has been reported that
contextual additive structures are very effective for HMM-based speech recognition [10].



In this paper, a technique for applying additive structure models to HMM-based speech
synthesis is proposed. labels using multiple decision trees. Although additive structure
models would significantly be effective for HMM-based speech synthesis as well as for
recognition, it is difficult to apply the additive structure models to HMM-based speech
synthesis due to the high computational cost caused by context labels, which are richer
than the triphone context used in speech recognition. This problem is critical for extract-
ing the additive structure in context clustering with multiple decision trees. To reduce
the computational complexity, I propose the techniques to deal with the following three
major problems: 1) As mean parameters depend on covariance parameters, those param-
eters should be simultaneously or iteratively updated until a convergence, 2) A gradient
method is required to estimate covariance parameters because no closed form analytical
solution has been found, and 3) A matrix whose dimension depends on the number of
leaves in the decision trees should be treated when estimating mean parameters. The first
and second problems are solved by covariance parameter tying [11]. Tying all covariance
matrices of all additive components, the mean parameters can be estimated independently
of the covariance matrix and the tied covariance can be analytically estimated. Although
covariance parameter tying is a strong approximation, it has been reported that the context
clustering of mean parameters assuming the tied covariance can improve the speech qual-
ity [11], and tying covariance parameters would be effective for additive structure models
as well as for the conventional HMMs. For the third problem, an efficient likelihood
calculation technique based on the matrix inversion lemma is proposed. This technique
eliminates the redundancy of the context clustering; the likelihood calculation after node
splitting includes very similar matrix inversions when different questions are applied at
the same leaf node. Additive structure models for HMM-based speech synthesis can be
achieved using these two proposed approaches.

Moreover, this paper proposes a technique for constructing independent parameter tying
structures of mean and variance using additive structure models in HMM-based speech
synthesis. Conventionally, an HMM stream-level tying structure is constructed in HMM-
based speech synthesis, i.e., mean vectors and variance matrices have exactly the same
parameter tying structure. However, it may not be always appropriate that mean and
variance parameters have the same tying structure. As an example, the effectiveness of
a technique for context clustering mean vectors while tying all variance matrices was
confirmed [11]. In this technique, the synthesized speech can be expected to improve by
constructing different tying structures for both mean and variance parameters. However,
some degree of freedom for variance parameters may be necessary for improving the
quality of synthesized speech. In this paper, it is assumed that both mean and variance
parameters have their own tying structure and the construction of appropriate parameter
tying structures is examined. In the clustering algorithm, it is necessary to simultaneously



construct each parameter tying structure due to the dependency on mean and variance
parameters. Although such a context clustering algorithm can be derived by expanding
the conventional context clustering algorithm, a context clustering algorithm is derived
using the fact that simultaneous context clustering of mean and variance parameters can
be regarded as a special case of context clustering in additive structure models.

Finally, a spectral modeling technique based on a contextual partial additive structure
for HMM-based speech synthesis is proposed. The additive structure models still have a
limitation that the number of additive components is fixed for all output probability distri-
butions, though the number of components can be automatically determined through the
context clustering for the additive structure models. However, it is natural to assume that
an appropriate number of additive components depends on contexts. That is, it is expected
that some context dependent models require many additive components to represent vari-
ations in acoustic features and others do not. To represent such context dependencies
appropriately, a technique which enable us to extract additive components affecting ar-
bitrary contextual sub-spaces as well as the entire contextual space is proposed. In the
proposed clustering algorithm, the partial additive components are created on demand
at an arbitrary node in the context clustering to increase the likelihood. Therefore, the
number of additive components corresponding to each context dependent model is auto-
matically determined from the resultant structure of decision trees. The model structure
with various number of additive components yields larger combination of components
than the standard additive structure with the same number of parameters. This means that
it can effectively represent the context dependencies with a limited amount of the training
data.



Chapter 2

Speech Synthesis based on Hidden
Markov Models

Recently, hidden Markov models (HMMs) are widely used as statistical models for speech
synthesis. The advantages of using the HMM are that 1) it can represent speech as proba-
bility distributions, ii) it is robust, iii) efficient algorithms for estimating its model parame-
ters are provided. Parameter estimation and calculation of output probability distributions
for HMM are described in this chapter. And then the HMM-based speech synthesis sys-
tem and context dependet models are described in this chapter.

2.1 Hidden Markov Model

2.1.1 Definition of HMM

An HMM [12-14] is a finite state machine which generates a sequence of discrete time
observations. At each frame it changes states according to its state transition probabil-
ity distributions, and then generates an observation at time ¢, o;, according to its output
probability distribution of the current state. Therefore, the HMM is a doubly stochastic
random process model.

An N-state HMM consist of state transition probability distributions {a;; }ﬁvjzl,
probability distributions {b; (ot)}j.vzl,

For convenience, the compact notation is used to indicate the parameter set of the model

output

and initial state probability distributions {7;}2 .

A as follows:



arl az ass

by (o) by (o) b3 (o)

(a) A 3-state ergodic model (b) A 3-state left-to-right model

Figure 2.1: Examples of HMM structure.

A= Haihiym s 10O {ndi (2.1)

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic
model, in which every state of the model could be reached from every state of the model
in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state
index increases or stays the same state as time increases. The left-to-right HMMs are
generally used to model speech parameter sequences, since they can appropriately model
signals.

The output probability distributions {b; ()};\]:1 can be discrete or continuous depending
on the observations. In continuous distribution HMM (CD-HMM), each output probabil-
ity distribution is usually modeled by a mixture of multivariate Gaussian components [15]
as follows:

M
bj (00) = > Wi - N (01 | Wi, Tjm) . 22)
m=1

where M, wj.,, Mjm, and o}, are the number of Gaussian components, the mixture
weight, mean vector, and covariance matrix of the m-th Gaussian component of the j-
th state, respectively. Each Gaussian component is defined by

6



1 1 _
N (0: | Bjm, Tjm) = m exp {—5 (0 — Mjm)T ani (0 — Mjm)} , (2.3)

where symbol T means transpose of vector or matrix, and / is the dimensionality of an
observation vector o;. For each state, {w]m} _, should satisfy the stochastic constraint

> wm=1 1<j<N (2.4)
jEN
Wim >0, | Py (2.5)

so that {0, ()};\;1 are properly normalized, i.e.,

2.1.2 Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence
o = {01,0,...,0r} and a state sequence ¢ = {q1, ¢, - - .,qr} is calculated by multi-
plying the state transition probabilities and state output probabilities for each state, that
18,

(0,q | A) Haqt 10, (0¢) 2.7)

where a4, denotes 7, . The total output probability of the observation vector sequence
from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

(o] A) ZH“% 1a:Ogs (o) (2.8)

all g t=1

The order of 27" - N7 calculation is required, since at every ¢t = 1,2,...,7T there are
N possible states that can be reached (i.e., there are N7 possible state sequences). This
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calculation is computationally infeasible, even for small values of N and 7'; e.g., for
N = 5 (states), " = 100 (observations), there are on the order of 2 - 100 - 5'%° ~ 107
computations. Fortunately, there is an efficient algorithm to calculate Eq. (2.8) using
forward and backward procedures.

2.1.3 Forward-Backward algorithm
The forward-backward algorithm is generally used to calculate p (o | A), which is the
probability of the observation sequence o given the model A. If I directly calculate

p(o | A), it requires on the order of 27" - NT calculation. The detail of the forward-
backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to ¢ and the i-th state
at time ¢, given the HMM A is defined as

a(i) =p(01,09,...,00,q. =1 | A\). (2.9)

oy (i) is calculated recursively as follows:

1. Initialization

2. Recursion
N
. . 1<j<N
() = [Z at_lu)aij] bilo, =5 (2.11)
— s
3. Termination
N
plo|A)=> ar(i). (2.12)

As the same way as the forward algorithm, backward variables 3;(i) are defined as

Bt(l) :p(ot+170t+2a"'7OT | St :iaA)a (213)

that is, the probability of a partial vector observation sequence from time ¢ to 7', given the
i-th state at time ¢ and the HMM A. The backward variables can also be calculated in a
recursive manner as follows:



| | | |

1 2 3 4 - - -
Observation sequence

\'.7

Figure 2.2: Implementation of the computation using forward-backward algorithm in
terms of a trellis of observations and states.

1. Initialization

pr(i)=1, 1<i<N (2.14)
2. Recursion
1<:<N
Z% (0011) Bia(G), 24" (2.15)
3. Termination
N
A) = Bi(i). (2.16)
=1

The forward and backward variables can be used to compute the total output probability
as follows:

po|A) = a()B(j). 1<t<T 2.17)



The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In
this figure, the x-axis and y-axis represent observations and states of an HMM, respec-
tively. On the trellis, all possible state sequences will re-merge into these N nodes no
matter how long the observation sequence. In the case of the forward algorithm, at time
t = 1, I need to calculate values of a4 (i), 1 < i < N. Attimest = 2,3,...,T, I need
only calculate values of a;(j), 1 < j < N, where each calculation involves only the N
previous values of o, 1(7) because each of the N grid points can be reached from only
the NV grid points at the previous time slot. As a result, the forward-backward algorithm
can reduce order of probability calculation.

2.1.4 Searching optimal state sequence

The single optimal state sequence ¢ = {qi, ¢, .-, Gr} for a given observation vector
sequence 0 = {01, 09, ...,07} is useful for various applications (e.g., decoding, initial-
izing HMM parameters). By using a manner similar to the forward algorithm, which is
often referred to as the Viterbi algorithm [16], the optimal state sequence g can be ob-
tained. Let 0, (¢) be the likelihood of the most likely state sequence ending in the i-th
state at time ¢

5t(7’) = max p(Qh e Q1,4 = iaola -5 0t | A)’ (218)

q1;---s qt—1

and 1), (7) be the array to keep track. The complete procedure for finding the optimal state
sequence can be written as follows:

1. Initialization

Y1 (i) =0, 1<i<N (2.20)

2. Recursion

=

(2.21)

A
N .

6t (J) = m?X (611 (1) aij] b; (o)

IS SR Y
A

DN .
w N W IA

Vi (j) = arg max [0¢—1 (7) aij] (2.22)
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3. Termination

~

P = max [6r (1)], (2.23)
gr = arg max [dr (7)] . (2.24)

4. Back tracking
G ="V (@), t=T-1,...,1 (2.25)

It should be noted that the Viterbi algorithm is similar to the forward calculation of
Egs. (2.10)—(2.12). The major difference is the maximization in Eq. (2.21) over previ-
ous states, which is used in place of the summation in Eq. (2.11). It also should be clear
that a trellis structure efficiently implements the computation of the Viterbi procedure.

2.1.5 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the
maximum likelihood (ML) criterion to obtain A which maximizes its likelihood p (o | A)
for a given observation sequence o, in a closed form. Since this problem is a high dimen-
sional nonlinear optimization problem, and there will be a number of local maxima, it is
difficult to obtain A which globally maximizes p (o | A). However, the model parameter
set A locally maximizes p (o | A) can be obtained using an iterative procedure such as
the expectation-maximization (EM) algorithm [17], and the obtained parameter set will
be appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the
HMM with discrete output distributions can also be derived in a straightforward manner.

O-function

In the EM algorithm, an auxiliary function Q(A, A) of the current parameter set A and the
new parameter set A is defined as follows:

Q(A,A)=> p(g|o,A)logp(o,q | A). (2.26)

all g
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Each mixture of Gaussian components is decomposed into a sub-state, and q is redefined
as a sub-state sequence,

q= {(Q1751)><Q2732)7--~7<QT75T>}7 (227)

where (¢, s;) represents being in the s;-th sub-state (Gaussian component) of the ¢;-th
state at time ¢.

At each iteration of the procedure, the current parameter set A is replaced by the new
parameter set A which maximizes Q(A, A). This iterative procedure can be proved to
increase likelihood p (o | A) monotonically and converge to a certain critical point, since
it can be proved that the Q-function satisfies the following theorems:

e Theorem 1

Q(A,A) > Q(A,A) = plo| A) > plo]| A) (2.28)

e Theorem 2
The auxiliary function Q(A, A) has the unique global maximum as a function of A,
and this maximum is the one and only critical point.

e Theorem 3
A parameter set A is a critical point of the likelihood p(o | A) if and only if it is a
critical point of the Q-function.

Maximization of O-function

According to Egs. (2.2) and (2.7), logp (0, q | A) can be written as

logp(o.q|A)=logp(o|q,A)+logP(q|A), (2.29)
T
logp (o] q,A)=> 1ogN (0; | g Tgrs. ) (2.30)
t=1
T T
log P(q | A) =logm, + Z logag, ,q + Z log wg,s, - (2.31)

t=2 t=1

Hence, Q-function (Eq. (2.26)) can be rewritten as

12



N
> plo,g=1i|A)-logm

i=1

S
_

P(O, Gt =1,Q41 = j) - log 55
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plo,q =i,8, =m|A)-logw;y,
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—
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-
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—

plo,q=1i,sp =m|A)-logN (0 | pim,Oim ). (2.32)

-
M=
] =

@
Il
»—-
I
—
-
Il
—

The parameter set A which maximizes the above equation subject to the stochastic con-

straints

N
Ym=1, (2.33)
=1
N
» a;=1 1<i<N (2.34)
j=1
M
 wpm=1, 1<i<N (2.35)
m=1

can be derived by Lagrange multipliers or differential calculus as follows [18]
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mi = (i), 1<i<N (2.36)

T
Z gt—l(%]) 1 < N
t=2 S1 s
Qi T 5 1 < S N (237)
Z%—l(l)
t=2
T
Z%(lem) 1 <71 <N
_t=1 ST
Z V()
t=1
T
Z Vi (Z7 m) Oy 1 N
_ t=1 <1<
Pim - : L <me< M (2.39)
Z’Yt(@ m)
t=1
T
Z’Yt(iam) ) (Ot - Mim) <0t - ,u'im)T L <i<N
=1 S1 s
OTim = T S l<m< M (2.40)
Z fyt(ia m)
t=1

where ,(7), v:(i,m), and & (i, j) are the probability of being in the j-th state at time ¢,
the probability of being in the m-th sub-state of the ¢-th state at time ¢, and the probability
of being in the ¢-th state at time ¢ and j-th state at time ¢ + 1, respectively, that is
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Y (1) =p(o,q =i | A)
(1) B(4) 1<i<N

-~ t:1,...,T (241)
> w(i)A0)
j=1
Y (im) = p(o,q =1i,5.=m | A)
o 1<i<N
at(z)ﬁ(z) ' wimN(Ot | Bims i) 1 i :n§< M (2.42)
Zozt )Bi(j szkN o | ow) T hoot
awzp( 0.¢r =11 = j | A)
_ (i) aijb; (0111) Bry1(J) ' IR (2.43)

Mz

D

=1

Oét Clln n (0t+1)5t+1(n)
1

S
Il

2.2 HMM-based speech synthesis

2.2.1 Statistical speech synthesis framework

The goal of a text-to-speech system is acoustic speech waveform generation from a word
sequence. In general, given word sequence w is processed by a text analysis module. In
this part, contextual factors (e.g., accent, lexical stress, part-of-speech, phrase boundary,
etc.) are estimated. Next, a speech waveform is generated by a speech synthesis module.

The majority of state-of-the-art speech synthesis systems is trained by using a large
amount of speech data. In general, this type of system is called as a corpus-based speech
synthesis system [1]. Compared with the previous speech synthesis systems, corpus-based
one especially improve the naturalness of synthesized speech.

One of the major approaches in the corpus-based speech synthesis is unit selection based
one [19-21]. In this system, the speech waveform is segmented into the small units,
phone, di-phone, syllable, etc.. Next, a unit sequence with minimum target and concate-
nation costs is selected [20] and connected.

Another major approach is statistical speech synthesis, such as HMM-based one [3] This
system generates speech parameter sequence o = {01, 0o, . .., 07} with the maximum a
posteriori (MAP) probability given the sub-word sequence u as follows:
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Figure 2.3: An overview of a typical HMM-based speech synthesis system.

0 =argmax P (o | u). (2.44)
o

Eq. (2.44) means that generative models can directly be applied in speech synthesis sys-
tem. The HMM is the most popular generative models.

2.2.2 Overview of HMM-based speech synthesis

Figure 2.3 shows the HMM-based speech synthesis system [3]. It consists of the train-
ing and synthesis part. In the training part, spectrum and excitation parameters are ex-
tracted from a speech database. These parameters are modeled by context-dependent
HMMs. State duration models are also estimated. In the synthesis part, a sentence HMM
is constructed by concatenating the context-dependent HMMs from a given text to be
synthesized. In synthesis part, the sequences of spectrum and excitation parameters are
generated from the sentence HMM using speech parameter generation algorithm [4-6].
Finally, speech waveform is synthesized from a synthesis filter module. One of the advan-
tage is that voice qualities of synthesized speech can be modified by transforming HMM
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parameters. It has been shown that its voice characteristics can be modified by speaker
adaptation [22], speaker interpolation [23], or eigenvoice technique [24].

2.2.3 Speech parameter generation algorithm

Problem

For a sentence HMM A,, corresponding to a given sub-word sequence w, the speech syn-
thesis problem is to obtain an output vector sequence consisted of spectral and excitation
parameters.

o=1{01,09,...,071} (2.45)

which maximizes its posterior probability with respect to o, that is

0 =argmaxp (o | Ay)
o

= argmax ) _p(0,q | Au)

all g
=argmax ) _p(o|q, M) P(q | Nu) (2.46)
all g
q= {(Q1,$1)7(Q2,52)7---,(QT,ST)} (2.47)

where, g and (q;, s;) represent a sub-state sequence and the s;-th sub-state of the ¢;-th
state, respectively. This problem is approximated by a Viterbi approximation, because
there is not method to analytically obtain o which maximizes p (o | A, ) in a closed form.
As a result, this maximization problem can be separated into two stages: finding the best
sub-state sequence g for given A, and obtaining o which maximizes p (o | g, A,,) with
respect to o, i.e.,

g =argmax P (q | Ay), (2.48)
q

o0 =argmaxp(o|q,\,). (2.49)

The optimization of Eq. (2.48) is performed using explicit state duration models [25] in
the HMM-based speech synthesis system. If the output vector o, is independent from
previous and next frames, the output vector sequence o which maximize p (o | q,A4)
is obtained as a sequence of mean vectors of sub-states. This causes discontinuity in
the output vector sequence at transitions of sub-states. To avoid this problem, dynamic
features have been introduced. It is assumed that the output vector o, consists of a static
feature vector

¢ = [e(1),..., (K" (2.50)
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and its dynamic features, that is
o = [c] Ac], A%, (2.51)

where Ac; and A%¢, are delta and delta-delta coefficients, respectively. They are calcu-
lated as follows:

&
L+

Acy= Y w(7)ep (2.52)

A= > w?(r)en. (2.53)

Solution for the Problem

First, the output vector sequence o and the static feature vector sequence ¢ can be rewrit-
ten as follows:

o=[o],05,....0]] . (2.54)
c=[c,e5,...,ep]". (2.55)

Then, the relationship between ¢ and o can be expressed in a matrix form (Figure 2.4) as
follows:
o= We, (2.56)

where, W is a regression window matrix given by

W =W, W,,... Wy]" @ Iy, (2.57)
W, = |w”, wi, w?|, (2.58)
o _ [ !
w® =o,...,0,1,0,...,0] , (2.59)
N~—"  N—
t—1 T—t
- T
w® = [0,...,0,0V(=LY), ... wV(0),...,wO(LY), o,...,o] C(2.60)
N—~— ——
t—LM -1 T (t+L)
- T
2 2 2
w? =[0,...,0,0@(-L?),... . w?(0),...,w?L?), 0,...,0] . @60
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Figure 2.4: An example of the relationship between the static feature vector sequence ¢
and the speech parameter vector sequence o in a matrix form (the dynamic features are
caleulated using L") = LV = L® = L? = 1, w®W(=1) = —0.5, wM(0) = 0.0,

w(1) = 0.5, w?(~1) = 1.0, w?(0) = —2.0, w?(1) = 1.0).

The output probability of o conditioned on q is calculated by multiplying the output
probabilities of entire observation vectors,

T

p(o]| g Ay) =[N (0 | Bgsi:Zas.) (2.62)

t=1

where, p,,s, and X, are the 3K x 1 mean vector and 3/ x 3K covariance matrix, re-
spectively. Eq. (2.62) can be rewritten as an output probability of o from a single Gaussian
component, that is

p(O | quu) :N(O | lJ’quq>7 (263)

where, pg and 3, are super-vector and super-matrix corresponding to entire sub-state
sequence q, that is

Y, =diag (X, s, Xisas - > Dgese) » (2.64)
T
Ha = (Mo By s Bgs,] - (2.65)
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Therefore, the logarithm of Eq. (2.62) can be written as

o8 ' (0 | pa, Bq) = —5 {3KTTog2m +108 (S| + (0~ p1a) 5" (0~ pig)
(2.66)
Under the condition in Eq. (2.56), maximizing N (0 | w4, 34 ) with respect to o is equiv-
alent to that with respect to c. By setting

Olog N (0 | pq, 3q)
= 2.
9e Ok, (2.67)

a set of linear equations can be obtained
R,c =g, (2.68)

where, O is a K'I'-dimensional zero vector, R, and r, are given as

R,=WX 'W, (2.69)

q

re=WX_'u, (2.70)

q

Since R, isa K'T'x K'T matrix, O( K*T?) operations are required for solution of Eq. (2.68).
Eq. (2.68) can be solved by the Cholesky with O( K3 L?T) operations by utilizing the spe-
cial structure of 4. Eq. (2.68) can also be solved by an algorithm derived in [4-6], which
can operate in a time-recursive manner [26].

2.3 Context Dependent Acoustic Models

Iintroduce context dependent acoustic models in this Section. Firstly, context dependency
is described.

2.3.1 Context dependency

It is well known that contextual factors, e.g., phoneme identities, accent, parts-of-speech,
etc., affect acoustic features. In normal fluent speech every instance of a particular sound
can be different. For example, it is well known that prosodic information such as Fj
is affected by multiple contextual factors [27]. One of the most famous models for the
generative process of a Fg contour is the Fujisaki model [28]. Figure 2.5 is a conceptual
diagram of this model. It is assumed that the superposition of three components, i.e. a
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Figure 2.5: Fujisaki model.

phrase component x,(t), an accent component z,(t), and a base component x;, represents
an Fy contour on a logrithmic scale y(t) as follows:

y(t) = xp(t) + 24 (t) + zp. (2.71)

In this model, the phrase commands with a function A,(¢) are assumed to be impules
applied to the phrase control mechanism to generate the phrase components, while the
accent commands with a function A,(t) are assumed to be positive stepwise functions
applied to the accent control mechanism to generate the accent components. These two
components are modeled as the outputs of second-order critically dampled filters.

zp(t) = Gp(t) * Ap(t), (2.72)
_ Jatte™ (t>0)

Gy(t) { 0 (t <0)’ (2.73)

zq(t) = Gu(t) * Au(t), (2.74)
) pEe Pt (6> 0)

Gu(t) = {0 =0 (2.75)

where * denotes convolution over time. Parameters « and /3 are natural angular frequency
of the phrase and accent control mechanism and assumed to be constant at least within
an utterance. The phrase component x,(t) consists of the major-scale pitch variation,
the accent component z,(t) cosists of the smaller-scale pitch variations in accented syl-
lables, and the baseline component z;, is a constant value related to the lower bound of
the speaker’s Fj. This means that the pharase and the accent, i.e. contexts, affect acoustic
features Fy.

Table 2.1 shows an example of contexts for English used in HMM-based speech syn-
thesis. In HMM-based speech recognition contextual factors about next and previouse
phonemes are typically used. However, in HMM-based speech synthesis enormous con-
textual factors, which are richer than the triphone context, are used. This is because that
richer models are required for speech synthesis than recognition. To improve modeling
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Figure 2.6: An example of the decision tree based context clustering.

accuracy variations of acoustic features caused by contextual effects should be taken ac-
count. In order to accurately capture the variations of acoustic features, context dependent
acoustic models [7,29] are widely used in HMM-based speech synthesis. However, this
models produce a data insuffiiciency problem because context dependent acoustic mod-
els have a large number of model parameters. Furthermore, the data is usually unevenly
spread. Sharing models across different contexts is a traditional method of dealing with
these problem. Although a large number of context dependent acoustic models can cap-
ture variations in speech data, too many model parameters lead to the over-fitting problem.
Consequently, maintaining a good balance between model complexity and the amount of
training data is very important for obtaining a high generalization performance. I intro-
duce typical context dependent models in next subsection.

2.3.2 Context Dependent Acoustic Models

Decision Tree based Context Clustering

The decision tree based context clustering [30] is an efficient method for estimating ro-
bust model parameters of context dependent models. Figure 2.6 shows an example of the
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decision tree based context clustering. In this clustering technique, top-down clustering
is performed to locally maximize the likelihood of parameters with respect to the train-
ing data using pre-defined questions about contexts. Then, mean vectors and covariance
matrices of HMM states clustered on the same leaf node are tied. The four steps in the
procedure for the decision tree based context clustering algorithm are as follows:

Step 1. Create the root node and compute its likelihood.

Step 2. Evaluate questions at the root node or two nodes created by previous splitting.
The likelihood after the node is split is calculated by estimating the ML parameters
of new nodes created by splitting.

Step 3. Select the pair of a node and a question that gives the maximum likelihood and
then split the node into two by applying the question. The model parameters of new
created nodes are updated by the ML parameters calculated in Step 1.

Step 4. If the change of likelihood after the node is split is below a predefined threshold,
stop the procedure. Otherwise, go to Step 2.

In decision tree based context clustering, the total log likelihood is as follows as o, is an
acoustic feature vector at time ¢:

L= Z > l(e) log N0y |1y Se) ) (2.76)
t=1 ceC

where C' denotes all contexts observed in the training data, 7;(c) is the state occupancy
probability with respect to context ¢, and pty() and X represent the mean vector and
the covariance matrix associated with the leaf node, respectively. In the decision based
context clustering, single Gaussian distributions are typically used for output probability
distributions. The function f(c) gives the index of the leaf nodes in the decision tree. In
Eq (2.76) the state index is ignored. The mean vector fi;(, and the covariance matrix
Yif(¢) can be estimated using the ML criterion. In HMM-based speech synthesis, the
minimum description length (MDL) criterion [8] is widely used to automatically control
the size of decision trees. The context space in the decision tree based context clustering
is divided into clusters by contextual factors and the distributions of acoustic features are
individually estimated for each cluster.

Linear Regression

The linear regression model [9] is another approach to modeling acoustic variations in
which all the contextual factors independently affect the acoustic features. In the linear
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regression model, the context dependencies are represented by a linear model in which
an acoustic feature is decomposed into a context independent vector, a context-dependent
component and a residual vector. The context-dependent component is given by the prod-
uct of a weight matrix and an context vector. It is well known that the acoustic feature
is varied by contexts. To represent the effect, in the linear regression model an acoustic
feature vector o, at time ¢ is represented as follows:

o, =a,+ B,z + ¢ 2.77)

where a, B, z; and €; represent a context independent vector, a weight matrix to the
context vector, a context vector, and a residual vector respectively. In Eq. (2.77), tem-
plates, e.g. context independent phonemes, are used [31,32] and p represents the number
of templates. If the residual vector ¢, is distributed according to the multivariate normal
distribution with a 0 mean vector and a covariance matrix 3, and z; is given, the param-
eters, a,, B), and X, can be estimated using the ML criterion. The total log likelihood is
as follows:

L= ZZ% )log N (o |a, + Bz, 3, ). (2.78)

t=1 ceC

By letting the partial derivation of Eq. (2.78) with respect to a,, B, or 3, equal zeros,
the solutions can be obtained using the generalized inverse.

Since the combination of contextual factors determines the acoustic feature, it can effi-
ciently represent the variety of distributions. However, the dependence among contextual
factors is ignored and it is difficult to determine those factors that should additively af-
fect acoustic features. Although in [9] three kinds of the context vectors are described
as below, it is difficult to heuristically find the best structure because there are numerous
contexts.

Bottom-up

In a bottom-up model the context vector at ¢-th frame is obtained from the feature vectors
as

z)T
Z;r = Zg ) = [O;E'_Aw(l), 70;|—+A1(M1)] (279)

where M, is the number of feature vectors extracted as acoustic contexts and A, (m)
represents a relative position of the m-th acoustic feature. In this case z is an M, x N
dimensional vector,

24



Top-down model

In the top-down model the context vector is obtained from a phoneme sequence as

zl = 2" =le(pia,0) s e(Pren,on) '] (2.80)

where ¢, is the phoneme at time ¢, e(q) represents a unit P-dimensional vector whose row
corresponded to ¢ has a one, A, (m) represents the relative position of the m-th phoneme
and M, is the number of phonemes extracted as contexts.

Combined model

In the combined model the context vector is defined by a concatenation of the context
vectors in above two models.

2] =27 27 (2.81)

2.4 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), its algorithm
for calculating the output probability (forward-backward algorithm), searching the opti-
mal state sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are
described. And then, the HMM-based speech synthesis system and context dependent
models are described. Following chapter will derive a acoustic modeling with contextual
additive structures for HMM-based speech synthesis.
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Table 2.1: An example of contexts used in HMM-based speech synthesis.

the phoneme identity before the previous phoneme

the previous phoneme identity

the current phoneme identity

the next phoneme identity

the phoneme after the next phoneme identity

position of the current phoneme identity in the current syllable (forward)
position of the current phoneme identity in the current syllable (backward)

whether the previous syllable stressed or not (0: not stressed, 1: stressed)
whether the previous syllable accented or not (0: not accented, 1: accented)
the number of phonemes in the previous syllable

whether the current syllable stressed or not (0: not stressed, 1: stressed)

whether the current syllable accented or not (0: not accented, 1: accented)

the number of phonemes in the current syllable

position of the current syllable in the current word (forward)

position of the current syllable in the current word (backward)

position of the current syllable in the current phrase (forward)

position of the current syllable in the current phrase (backward)

the number of stressed syllables before the current syllable in the current phrase
the number of stressed syllables after the current syllable in the current phrase
the number of accented syllables before the current syllable in the current phrase
the number of accented syllables after the current syllable in the current phrase
the number of syllables from the previous stressed syllable to the current syllable
the number of syllables from the current syllable to the next stressed syllable

the number of syllables from the previous accented syllable to the current syllable
the number of syllables from the current syllable to the next accented syllable
name of the vowel of the current syllable

whether the next syllable stressed or not (0: not stressed, 1: stressed)
whether the next syllable accented or not (0: not accented, 1: accented)
the number of phonemes in the next syllable

gpos (guess part-of-speech) of the previous word
the number of syllables in the previous word

gpos (guess part-of-speech) of the current word

the number of syllables in the current word

position of the current word in the current phrase (forward)

position of the current word in the current phrase (backward)

the number of content words before the current word in the current phrase
the number of content words after the current word in the current phrase
the number of words from the previous content word to the current word
the number of words from the current word to the next content word
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Table 2.1: An example of contexts used in HMM-based speech synthesis (cont.).

gpos (guess part-of-speech) of the next word
the number of syllables in the next word

the number of syllables in the previous phrase
the number of words in the previous phrase

the number of syllables in the current phrase

the number of words in the current phrase

position of the current phrase in this utterance (forward)
position of the current phrase in this utterance (backward)
TOBI endtone of the current phrase

the number of syllables in the next phrase
the number of words in the next phrase

the number of syllables in this utterance
the number of words in this utterance
the number of phrases in this utterance
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Chapter 3

Acoustic modeling with contextual
additive structures

In this chapter, an acoustic modeling with contextual additive structures for HMM-based
speech synthesis is described. In additive structure models, a more complex structure, i.e.,
the additive structure of acoustic feature components is considered. Contextual additive
structure models can represent complicated dependencies between acoustic features and
context labels using multiple decision trees. However, the computational complexity of
the context clustering is too high for the full context labels of speech synthesis. To over-
come this problem, this paper proposes two approaches; covariance parameter tying and
a likelihood calculation algorithm using the matrix inversion lemma.

3.1 Additive structure models

In additive structure models, an acoustic feature vector o; at time ¢ is generated by the
sum of additive components:

N
or=> o 3.1)
n=1

where o§"> denotes the n-th additive component. If each component is independent and

generated according to a Gaussian distribution, the probabilistic density function of acous-
tic features is represented by the convolution of the additive components [33] so that

N
Plodeny) = [TIN!u. 200! o™
n=1
= N<Ot ‘ He, Ect) (3.2)
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Figure 3.1: An example of a contextual additive structure. This outlines the generative
process for the triphone feature.

where ugl) and ng) are respectively the mean vector and covariance matrix of the n-

th component o§”) given a context ¢;. The output probability distribution is a Gaussian

distribution whose mean vector and covariance matrix are respectively given as

N N
fe, = > _ pl, B, => %0
n=1 n=1

Since each additive component o§”) has different context dependencies, it is assumed that

each component has a different decision tree that represents tying structures of model
parameters g, and X.,.

(3.3)

Although it is unknown which kinds of contexts have additive dependencies on acoustic
features in practice, an example of a contextual additive structure of triphone HMMs to
explain the effective of the additive structure is present. Here, it is assumed that the left,
center, and right phones are the contexts of additive components. Figure 3.1 outlines the
generative process for the triphone feature. The generative process for acoustic features is
as follows: first, the component of a given monophone (center phone) context is generated
from a corresponding distribution obtained by descending the tree. Then, the additive
components of the left and right contexts are also generated independently from each

29



distribution and added to the monophone feature.

The effective of the additive structure depends on whether acoustic features really have
an additive structure for contexts. When acoustic features have an additive structure, a
number of different distributions can be efficiently represented by a combination of fewer
distributions. Furthermore, it is also effective to predict the acoustic features of unseen
contexts. Although in the conventional method unseen models are assigned to one of the
clusters in the decision tree, the proposed method can construct the distribution for unseen
contexts, which are different from any distributions of observed contexts.

3.1.1 EM algorithm for additive structure models

The Maximum Likelihood (ML) parameters of additive component distributions can be
estimated with the EM algorithm. In the E-step, since the convolved output probability
distribution becomes a Gaussian distribution, the standard forward-backward algorithm
can simply be applied as in the standard HMMs. However, there is difficulty in the M-
step due to the dependencies among additive component distributions.

Using the statistics obtained by the E-step, the Q-function with respect to the output
probability distribution can be written as

L = ZZ% Jlog P(o; | ¢ = ¢, \)

t=1 ceC
= Zz’yt logN Ot ‘l’l’(ﬂ C)
t=1 ceC
1 T
_ _52[2%(0)(K10g27r+log|Ec!)
ceC t t=1

+Tr {Ec_l Z%(C) (0r — p.) (0 — HC)T} ]

1 ~
- _izTc[Klog2w+log!2c\
ceC

1 {30 (S (e~ 1) (e — )7 }} (34)

where K is the dimensionality of feature vectors and C' denotes all contexts observed in
the training data. The state index is ignored. The statistics with respect to context c are
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represented by (-), and each of the statistics is calculated as follows:

o= S ==Y oy (33)
> ule) (00— f) (00— i) (3.6)

In [10], the updating the parameters of a particular additive component has been pro-
posed. To represent the tree structure, a function f(™ (c) is introduced that gives the index
of the Gaussian distribution (number of leaves in the decision tree) of the n-th additive
components for c. Using this function, the mean parameter and the covariance parameter
of the convolved distribution are given by

N N
e =Y o, Ze= Y Tim (3.7)
n=1 n=1

The derivative of the Q-function with respect to the mean and covariance of the particular
additive component can be written as

oL S 1~
a_ = Z TCEC l(l“l’c - l’l‘c) (38)
o)

oL 1 ~ ~
— == TAS ! +3'S.3 + 3 (1, — 1) (1. — f2. ngl} 3.9
=3 Ce%m)) { (bre = Fro) (e — Bac) (3.9)
where m is the index of the leaf node and (;557? ) denotes the contexts which are included
in the m-th cluster, i.e., ¢\ = {c | f™(c) = m}. The function g(m) gives the index of
the component of the m-th cluster. It can be seen from the above equations that updating
of p,, and 3, requires the parameters of the other additive component (decision trees).
Hence, all parameters of all trees are dependent on each other to compose the output prob-
abilities. This means that all parameters of all trees should be estimated simultaneously
or iteratively until a convergence.

Although there are the several update procedures for this optimization problem, in [10]
the iterative update of each parameter is used. This technique estimates each parameter
while keeping the other parameters fixed. If the other parameters are fixed, the mean can
be easily estimated by setting the derivative to zero. However, the update of covariance
matrices is difficult to solve analytically. Therefore, one of the gradient methods is needed
for the covariance update and the Newton method is applied in [10]. In [10], iteratively
update of all mean vectors of all trees until a convergence and the same update of covari-
ance matrices are selected for the update process. These update processes for mean and
covariance parameters are also iterated until a convergence.

31



In this paper, the update process of mean parameters is different from the technique used
in [10]. Mean parameters of all leaf nodes of all decision trees are updated by solving a set
of linear equations. For simplicity of notation, 3. is the diagonal covariance matrix and
one of dimensions of feature vectors is focused. Under this assumption, the covariance
T

parameter is 0. and the mean parameters of all leaf nodes are g = [p1, ..., pups] ', where

M 1is the sum of all leaf nodes of all decision trees. Then, Eq. (4.5) can be rewritten as

1 o ~c c ~c 2
E:——ZTc{log27r+log|ac|+a * (e = ) } (3.10)
2 0.
ceC
The terms with respect to p of £ can be rewritten as
1 2 N2 + _Q/Lcﬂc
Lo —= T, | Fe— =fele
xy ST (M
ceC
1 1 N 2 N
Y °7, (Z Mf<n><c>> -2 (Z ﬂfw(c)) He
ceC ¢ n=1 n=1
1
=3 (0" Gp—2p"k) (3.11)
where
g1 - 1M ky
G = A , k=1 (3.12)
gmz1 -+ MM ks
-1
Imi,ma = Ima,mi — Z Tco__ (313)
cepg(m) nglgtma)
~ 1 .
k= ) To—h (3.14)
et ¢

Since G is a symmetric matrix, the first partial derivative of Eq. (3.11) with respect to p
can be written as

oL

- —%{(GJrGT)p,—Qk:}

= —Gu+k (3.15)
By setting Eq. (3.15) to 0, the solution of & is given as follows:
Gp =k (3.16)
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However, G is typically a singular matrix. Therefore, to solve Eq. (3.16), a Moore-
Penrose generalized inverse is used. Covariance parameters are updated with the same
technique as in [10]. Hence, the iterative update of covariance parameters is necessary,
though the iterative update of mean parameters is not necessary. The update process for
mean and covariance parameters are also iterated until a convergence.

3.1.2 Context clustering for multiple decision trees

A context clustering algorithm for multiple decision trees has been proposed to auto-
matically extract the additive structure from training data [10]. It is easy to construct a
decision tree if the other decision trees and their parameters are fixed. However, as the
tree structures of the additive components interact with each other to compose the output
probabilities, the multiple decision trees for additive components should be constructed
simultaneously. The four steps in the procedure for the proposed clustering algorithm are
as follows:

Step 1. Set the number of trees /N to one, create the root node of the first tree and
compute its likelihood.

Step 2. Evaluate questions at all leaf nodes of all trees and a root node of a new tree.
The likelihood after the node is split is calculated by estimating the ML parameters
of all leaf nodes of all trees.

Step 3. Select the pair of a node and a question that gives the maximum likelihood and
then split the node into two by applying the question. The model parameters of all
leaf nodes are updated by the ML parameters.

Step 4. If the change of likelihood after the node is split is below a predefined threshold,
stop the procedure. Otherwise, go to Step 2.

There are some differences from the conventional clustering algorithm in the procedure.
First, in Step 2, the ML estimates of all parameters of all trees are required to evaluate
questions at a candidate node. In the conventional clustering, the ML parameters of the
two nodes that are split can be obtained independently of the other nodes. However, in
additive structure models, the change of likelihood before and after the node splitting
is calculated not only with the parameters of the nodes created by splitting but also the
parameters of the other trees. From the same reason, the likelihood of a candidate node
is affected by other nodes in additive structure models. Therefore, all questions should
be re-evaluated at all leaf nodes after a node is split. The computational complexity of
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selecting the pair of a node and a question for a splitting in the conventional clustering and
the clustering for multiple trees are O(Q- D) and O(Q- D-M*) with a diagonal covariance
matrix, respectively, where () is the number of questions and D is the dimension of the
feature. The computational complexity of the clustering for multiple trees is derived from
the computational complexity of calculating the solution of Eq. (3.16) for all dimensions,
i.e., O(D - M?), and the number of the evaluations for all questions at all leaf nodes.
Furthermore, the computational complexity is also dependent on the number of iteration
of the update for mean and covariance parameters in the clustering for multiple trees. The
computational complexity between the two techniques are completely different. Second,
in the context clustering for multiple decision trees, an appropriate splitting of a leaf node
or a root node representing a new tree is selected based on the MDL criterion in STEP
2. A splitting of a root node is equivalent to creating a new component. Therefore, the
number of components can be automatically determined based on the MDL criterion.

Additive structure models can be regarded as an intermediate model between a decision
tree based context dependent model and a linear regression model, and it includes these
two models as special cases. If the number of additive components is restricted to one, the
model becomes a decision tree based model, and if all trees have only two nodes (only one
question is applied), the model is equivalent to a linear regression model. Furthermore,
the above clustering algorithm can automatically select the appropriate model structures,
1.e., the number of trees and the tree structures, from training data.

3.2 Computational complexity reduction in the training
algorithm

In the context clustering for multiple decision trees, the ML parameters of all leaf nodes
need to be simultaneously estimated. Moreover, all questions need to be re-evaluated at
all leaf nodes after node splitting, because the likelihood gain of all candidate questions
are dependently changed by the split node. Since speech synthesis uses richer context
labels than speech recognition, the computational complexity becomes enormous to con-
duct the exact context clustering algorithm for additive structure models. A computational
time of more than several years is required to extract an additive structure using the gen-
eral training data for speech synthesis. Therefore, some approximation techniques are
required.
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(a) Parameter tying structures constructed by the conventional technique

Component 1 ComponentN
| Mean Mean || Mean Mean | Mean Mean || Mean Mean

| Covariance |

(b) Parameter tying structures constructed by the proposed technique

Figure 3.2: Examples of parameter tying structures constructed by the conventional and
the proposed techniques.

3.2.1 Computational complexity reduction by covariance parame-
ters tying

In additive structure models, mean parameters can be analytically estimated. However, as
it is difficult to analytically solve the update of covariance parameters, a gradient method
is applied to each covariance parameter. Furthermore, as Eqgs. (3.13) and (3.14) indicate
that mean parameters depend on covariance parameters, the mean and covariance param-
eters should be re-estimated until convergence. Therefore, huge computational cost is
involved when extracting additive structures.

In this paper, covariance parameter tying is applied to additive structure models. It has
been reported that mean parameters are relatively more important than covariance pa-
rameters for the quality of HMM-based speech synthesis [11]. The impact on speech
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quality in additive structure models caused by the covariance parameter tying would also
be small. Figure 3.2 shows examples of parameter tying structures constructed with the
conventional technique (Figure 3.2(a)) and the proposed technique (Figure 3.2(b)). By
tying covariance parameters, the mean parameters can be updated independently of the
covariance parameters and iterative updates are not required. Using the tied covariance
parameter 3, the Q-function with respect to the output probability distribution (Eq. (4.5))
can be rewritten as

1 ~
L= _§;TC[Klog2w +log |NZ,|

T {(Nz)g)*l (i)c + (e = o) (e — f"c)T> }}

(3.17)
The first partial derivative of Eq. (3.17) with respect to 3, can be written as
oL 1 -
= = —-Y T,|Z'-N'z !
m L E|E A,
ceC
By setting Eq. (3.18) to 0, X, is analytically calculated as follows:
-1
¥, =N (Z T})
ceC
TS+ (e A (e~ )" (3.19)
ceC
the log likelihood L after the parameters are estimated can be written as
1 -
L= —§ZT5{Klog27r+log]NEg| +K} (3.20)

ceC

3.2.2 Computational complexity reduction with matrix inversion lemma

Since the size of G depends on the sum of all leaf nodes of all trees in Eq. (3.16), the
computational complexity to solve the linear equations becomes enormous. However,
when a leaf node is split by different questions, the statistics corresponding to the leaf
nodes locally change in newly created nodes and the statistics corresponding to the other
nodes are fixed. Figure 3.3 shows an example of such local change of statistics. Since G
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Figure 3.3: An example of splitting a leaf node of a tree.

only becomes dependent on 7. due to covariance parameter tying, many elements of G
do not change among the questions at the same node. The computational complexity can
significantly be reduced by using this property.

Assuming that G’ is obtained with one question, and G” is obtained with another question
at the same node, G” can be represented by using G” as follows:

G =G +GY (3.21)

where G'? is a symmetric matrix and can be written as

G —
i d d 7
M e g
d d ) d
g g gD d (3.22)
d d d d
gfnzi-l,l e 7(712&—1,771 gfnzl—l,m—f—l e gfnL,M
0 o o 0
L Mm gM,m+1 ]

where m and m + 1 are indexes of leaf nodes created by splitting. A matrix G is
represented by M x 4 and 4 x M matrices i.e., D and FE, as follows:

GY = DE (3.23)
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Figure 3.4: The relation between G’ and G".
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E=[D; D, D, D] (3.25)

Figure 3.4 shows the relation between G’ and G”. Assuming that G'~* is given, G"*
can be calculated as follows:

Gll—l _ (G/ + DE)—I
= G '-G 'DVYEG! (3.26)

where ¥ = (CG' ' B +I)~" and I is the identity matrix. Eq. (3.26) is derived using the
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following matrix inversion lemma.

(G' -G 'DYEG )G + DE)

= I+G'DE-G"'DVYE - G"'DVEG 'DE

= I+G"'D{E-Y(I+EG 'D)E}
I+G'D(E—-9¥'E)

= I (3.27)

The size of matrix ¥ is 4 x 4 in Eq. (3.26). Therefore, it can significantly reduce the
computational complexity in comparison with directly calculating the inverse of G”.

In the context clustering, this algorithm can be applied to the likelihood calculation of
questions at the same leaf node. The matrix G'~' is calculated from the first question
using the Moore-Penrose inverse, and the likelihood of other questions can then be calcu-
lated by using Eq. (3.26) with lower computational complexity.

3.3 Experiments

3.3.1 Experimental conditions

Objective and subjective experiments were conducted to evaluate the effectiveness of the
proposed method. The 200 and 450 sentences of the phonetically balanced 503 sentences
from the ATR Japanese speech database B-set, uttered by male speaker MHT, were used
for training. The 1,267 sentences including 450 sentences of the phonetically balanced
sentences, uttered by female speaker, was also used for training. The remaining 53 sen-
tences were used for evaluation. The speech data was down-sampled from 20 to 16 kHz
and windowed at a frame rate of 5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and F{ feature vectors. The mel-cepstral coef-
ficients were obtained from STRAIGHT spectra [34]. The spectrum parameter vectors
consisted of 39 STRAIGHT mel-cepstral coefficients including the zero coefficient and
their delta and delta-delta coefficients. The excitation parameter vectors consisted of log
Fy and its delta and delta-delta.

A five-state, left-to-right, no-skip structure with a diagonal covariance matrix was used for
the hidden semi-Markov model. Additive structure modeling is applied to only the spec-
trum parameters, and the excitation parameters were modeled with conventional multi-
space probability distributions HMMs [35]. The proposed and the conventional methods
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had the same tying structures for the excitation parameters. The MDL criterion was used
to determine the size of the decision trees [8].

Five techniques are compared; Cony is the conventional decision tree based method and
Compl to Comp3 and Variable are the additive structure models trained by the proposed
method, where the number after Comp represents the number of decision trees and Vari-
able automatically determines the number of decision trees in the clustering algorithm.
Note that Comp1 is equivalent to the conventional decision tree based method but covari-
ance parameter tying was applied.

For the subjective experiments, mean opinion score tests were conducted. Ten subjects
participated in these listening tests. Twenty sentences were randomly selected from the 53
sentences for each subject. The subjects were asked to rate the naturalness of the synthe-
sized speech on a scale from one (completely unnatural) to five (natural). All experiments
were carried out using headphones in a soundproof room.

3.3.2 Objective results

Figures 3.5, 3.6 and 3.7 show bar charts of the number of leaf nodes for each state. In addi-
tive structure models, the bars were divided and the length of each division represents the
number of leaf nodes of each decision tree. When the conventional and proposed methods
have the same number of leaf nodes, the proposed method only has half the number of pa-
rameters because of covariance parameter tying. Figure 3.5, 3.6 and 3.7 show that Comp1
has more leaf nodes than Conv. This means that decision trees with respect to the mean
parameters are constructed with taking account of tying covariance parameters. Similar
to Comp1, the number of leaf nodes increases in the additive structure models with mul-
tiple decision trees. This is because the MDL criterion was used to determine the size of
decision trees and decision trees were constructed to represent variations in acoustic fea-
tures by only using mean parameters in the additive structure models. Although the size
of decision trees differs among additive components, multiple decision trees were split.
This suggests that additive structures are inherent in the training data. In Variable, the
number of decision trees was automatically determined, and it can actually be seen from
Figures 3.5, 3.6 and 3.7that a different number of decision trees was constructed in each
state. In the 200 sentence case, a larger number of decision trees was obtained for Statel
and State5 than for the middle state of HMMs. This might be because the triphone or
quinphone contexts strongly affect the spectral features around phone boundaries. With
increasing the amount of training data, the spectral variations caused by other contextual
factors were modeled by increasing the number of decision trees in the middle states.

Tables 3.1, 3.3 and 3.5 show the total number of parameters and Tables 3.2, 3.4 and 3.6
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show the average likelihoods per frame of training and test data obtained from 200, 450
and 1,267sentences, respectively. Cony obtained the highest likelihood among the five
techniques in both training and test data. This is because covariance parameter tying was
not applied to Conv and the number of parameters is larger than the other techniques.
It can also be seen that the likelihoods of additive structure models (Comp2, Comp3,
and Variable) were higher than Compl. In addition, the likelihoods tended to increase
with increasing additive components. This is because the number of parameters was
slightly increased with increasing additive components and multiple additive components
were appropriate for representing the spectral variations. However, Comp3 and Variable
obtained almost the same values in the 200 sentences. This is because three additive
components were enough for 200 training sentences and Variable estimates automatically
appropriate the number of additive components dependently on the amount of training
data. With increasing the amount of training data, a larger number of additive components
are needed for capturing the spectral variations and the likelihood is increased in Variable
from Comp3.

Figure 3.8 shows spectrograms of test speech and synthesized speech in Conv and Comp3
with 450 sentences. Spectrograms corresponding to each component of Comp3 are also
shown. From this figure, it can be observed that three components additively affect to
the resultant spectrogram of Comp3. It can be also seen that component affects different
frequencies, e.g., it seems that components represent different formants. For examples,
component 1 represents formants at about 0.7, 1.2, etc seconds and component 2 repre-
sents at about 0.6, 2.6, etc seconds. However, the relation to the contextual factors is
unknown and further analysis will be required in future work.

3.3.3 Subjective results

Figures 5.5, 5.6 and 3.11 show the results of MOS tests using 200, 450 and 1,267 training
sentences, respectively. It can be seen from the figures that Conv and Compl obtained
almost the same score. This confirmed that the impact of speech quality by tying co-
variance parameters is small. Although Conv obtained the highest likelihood, Conv and
Comp1 obtained almost the same subjective score. This is because that mean parameters
are relatively more important than covariance parameters for the speech quality, though
covariance parameter contributed greatly to the likelihood. It can also be observed that ad-
ditive structure models (Comp2, Comp3, and Variable) achieved better subjective scores
than the conventional methods (Conv and Comp1). This means that the additive structure
models appropriately extracted context dependencies from training data and they were
effectively used to predict spectral features of unseen contexts. Similar to the objective
evaluation, the scores tended to increase with increasing additive components. “Variable”
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obtained the highest scores in the case of 200, 450 and 1,267 sentences. This is because
the proposed method appropriately selected the model structures including the number of
decision trees dependently on the amount of training data.

3.4 Summary

In this chapter, I proposed an efficient training algorithm for additive structure models and
applied it to HMM-based speech synthesis. Additive structure models are significantly
effective for extracting the context dependencies and accurately capturing variations in
spectral features. However, it is difficult to apply this model to HMM-based speech syn-
thesis due to its computational complexity caused by richer context labels. Covariance
parameter tying in each state and using the matrix inversion lemma can significantly re-
duce the amount of computational complexity and allow us to apply additive structure
models to HMM-based speech synthesis. In experiments, the proposed method outper-
formed the conventional method. Additive structure modeling for prosodic information
such as FO will be a future work, because FO has an additive structure with multiple con-
textual factors [27]. The proposed method for FO would significantly improve synthesized
speech quality.
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Figure 3.5: Number of leaf nodes for each state (200 sentences). The proposed method
only has half the number of parameters in each node because of covariance parameter

tying.

State2

State3 State4

State5

Table 3.1: The total number of parameters (200 sentences).

Cony

Compl

Comp?2

Comp3 | Variable

105,600

86,520

90,960

91,920 | 93,120

Table 3.2: Avg. likelihood per frame (200 sentences).

Avg. likelihood (training) | Avg. likelihood (test)
Cony 139.66 131.62
Compl 131.87 124.30
Comp?2 132.36 124.86
Comp3 132.52 124.86
Variable 132.60 124.97
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Figure 3.6: Number of leaf nodes for each state (450 sentences). The proposed method
only has half the number of parameters in each node because of covariance parameter

tying.

Table 3.3: The total number of parameters (450 sentences).

Conv Compl | Comp2 | Comp3 | Variable
195,600 | 159,120 | 160,680 | 162,960 | 168,120

Table 3.4: Avg. likelihood per frame (450 sentences).

Avg. likelihood (training) | Avg. likelihood (test)
Cony 138.70 136.12
Compl 131.15 129.13
Comp2 131.51 129.53
Comp3 131.78 129.80
Variable 132.12 130.05
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Figure 3.7: Number of leaf nodes for each state (1,267 sentences). The proposed method
only has half the number of parameters in each node because of covariance parameter

tying.

Table 3.5: The total number of parameters (1,267 sentences).

Cony Compl | Comp2

Comp3 | Variable

261,840 | 201,480 | 208,440 | 209,640 | 211,320

Table 3.6: Avg. likelihood per frame (1,267 sentences).

Avg. likelihood (training) | Avg. likelihood (test)
Cony 120.84 116.90
Compl 116.42 113.04
Comp?2 116.59 113.21
Comp3 116.67 113.21
Variable 116.81 113.34
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Figure 3.8: Spectrograms of test speech and synthesized speech in Conv and Comp3 (450
sentences). Spectrograms corresponding to each component of Comp3 are also shown.
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Figure 3.9: Mean opinion scores for synthesized speech with 95% confidence intervals
obtained by conventional and proposed methods (200 sentences).
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Figure 3.10: Mean opinion scores for synthesized speech with 95% confidence intervals
obtained by conventional and proposed methods (450 sentences).
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Figure 3.11: Mean opinion scores for synthesized speech with 95% confidence intervals
obtained by conventional and proposed methods (1,267 sentences).
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Chapter 4

An optimization algorithm for mean
and variance tying structures

In this chapter, a technique for constructing independent parameter tying structures of
mean and variance using additive structure models for HMM-based speech synthesis is
described. This model structure is one of the structures of additive structure models and
equivalent to an constrained ones. However, this model structure is very interesting and
experimenta show useful results for modeling of acoustic features. Conventionally, mean
and variance parameters are assumed to have the same tying structure. However, it has
been reported that a clustering technique of mean vectors while tying all variance matri-
ces improves the quality of synthesized speech. This indicates that mean and variance
parameters should have different optimal tying structures. In the proposed technique, the
decision trees for mean and variance parameters are simultaneously grown by taking into
account the dependency on mean and variance parameters.

4.1 Independent Tying Structures for Mean and Variance
Parameters

In this section, a context clustering technique for both mean and variance parameters is
descrived. Conventionally, an HMM stream-level tying structure is constructed in HMM-
based speech synthesis, i.e., mean vectors and variance matrices have exactly the same
parameter tying structure. In this paper, it is assumed that both mean and variance param-
eters have their own tying structure and examine the construction of appropriate parameter
tying structures. Figure 4.1 shows an example of parameter tying structures constructed
with the conventional and proposed techniques. In the clustering algorithm, it is neces-
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Conventional technique | Proposed technique

Tied-structure of mean Tied-structure of variance

L-Voiced? | L-Silence? R-Consonant?

no no

no yes

| Mean | | Mean | | Mean | | Mean | | | Mean | | Mean | | Mean | | Mean | lVariancel IVariancei

lVariancel lVariance| lVariancel lVariancc| |

Figure 4.1: Example of parameter tying structures constructed with the conventional and
proposed techniques.

sary to simultaneously construct each parameter tying structure due to the dependency
on mean and variance parameters. Although such a context clustering algorithm can be
derived by expanding the conventional context clustering algorithm, the algorithm is de-
rived using the fact that simultaneous context clustering of mean and variance parameters
can be regarded as a special case of context clustering in additive structure models.

4.1.1 Proposed Model Structure

In additive structure models, an acoustic feature vector is generated by the sum of additive
components.

In this paper, an acoustic feature vector o; is generated by the sum of two components,

™) and o®)-

i.e.,0; ~ and o,

o, = ol(tm) + oﬁ”). 4.1)

If each component is independent and generated according to a Gaussian distribution,
each component usually has mean and variance parameters. In this paper, it is assumed
that ogm) is generated from a Gaussian distribution that has only a mean parameter and
zero variance and oﬁ“) is generated from one that has only a variance parameter and zero
mean. In this case, the probabilistic density function of the acoustic feature is represented

by the convolution of these two components so that

o™ ~ N(u,,,0), (4.2)
o” ~ N(0,%,,), (4.3)
P(o/|c,\) = N(o|p,,, Xc,). 4.4)
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Assuming that each component has a different decision tree, independent parameter tying
structures of mean and variance can be represented.

4.1.2 Parameter Estimation for the proposed technique

In this model structure, the Maximum Likelihood (ML) parameters can be estimated with
the Expectation Maximization (EM) algorithm. In the E-step, since the convolved output
probability distribution becomes a Gaussian distribution, the standard forward-backward
algorithm and the Viterbi algorithm can simply be applied as in standard HMMs.

Using the statistics obtained by the E-step, the Q-function with respect to the output
probability distribution can be written as

Q:ZZ% )log P(oy | e = ¢, )

t=1 ceC
1 ~
_ _§ZTC[K10g27r+log!2c\
ceC
+Tr {Ec_l (20 + (Ko = o) (Be — ﬁC)T) } ] ’ “

where K is the dimensionality of feature vectors and C' denotes all contexts observed in
the training data. The statistics with respect to context c are represented by (-)_ and each
of the statistics is calculated as follows:

T
T, = Z%(c) Z% c)oy, (4.6)

c t=1
20 = _Z% )(Ot_,&‘c)T> (4'7)
c t=1

where v, (c) is the state occupancy probability and the state index is ignored for simplicity
of notation.

By setting the first partial derivative of Q function with respect to an arbitrary mean vector
or variance matrix, the ML parameters are given as follows:

oo = | Y LB Y LB, (4.8)
CED, (m) cEqﬁn(m)
-1

So= (YT > TS+ (- ) - )T}

€D, (v) €D, (v)
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where n™_ n(*) are respectively the number of clusters in mean and variance parameter
trees, and ¢,,() denotes the contexts included in the n)-th cluster.

It can be seen from the Eqs. (4.8) and (4.9) that the update of p,,m) and 3, ) requires
the parameters of the other clusters. Hence, all parameters of all trees have dependencies
on each other to compose the output probabilities; therefore, all parameters of all trees
should be estimated simultaneously. Thus, iterative updates are needed for estimating
mean and variance parameters until a convergence.

4.1.3 Simultaneous Context Clustering for Mean and Variance Pa-
rameters

In the context clustering, the optimal parameter tying structures are given by maximizing
Eq. (4.5). However, it is necessary to simultaneously construct each parameter tying
structure due to the dependency on mean and variance parameters. Since this problem
corresponds to a problem of estimating parameter tying structures of additive components
ogm) and o§”>, appropriate parameter tying structures of mean and variance parameters
are constructed with simultaneous context clustering in additive structure models. The

procedure for the proposed context clustering algorithm is as follows.

Step 1. The root nodes of the two trees of mean and variance parameters are created.

Step 2. Questions at all leaf nodes of two trees are evaluated. The likelihood after the
node is split is calculated by estimating the ML parameters of all leaf nodes of all
trees.

Step 3. The pair of a node and question that gives the maximum likelihood is selected,
and the node is split into two by applying the question. The model parameters of
all leaf nodes are updated by the ML parameters.

Step 4. If the change of likelihood after the node is split is below a predefined threshold,
stop the procedure. Otherwise, go to Step 2.

The decision trees of mean and variance parameters can be simultaneously constructed
with this technique. Furthermore, the size of mean and variance decision trees can be
independently controled with the the proposed technique by adjusting the weights in the
MDL criterion. Thus, the proposed context clustering would construct more appropriate
parameter tying structures than the conventional one.
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4.2 Experiments

4.2.1 Experimental conditions

The first 450 sentences of the phonetically balanced 503 sentences the ATR Japanese
speech database B-set, uttered by male speaker MHT, were used for training. The re-
maining 53 sentences were used for evaluation. The speech data was down-sampled from
20 to 16 kHz and windowed at a frame rate of 5-ms using a 25-ms Blackman window.

The feature vectors consisted of spectral and Fj feature vectors. The spectrum parameter
vectors consisted of 39 STRAIGHT mel-cepstral coefficients [34] including the zero coef-
ficient, their delta and delta-delta coefficients. The excitation parameter vectors consisted
of log Fy, its delta and delta-delta.

A five-state, left-to-right, no-skip structure with diagonal covariance matrices was used
for the hidden semi-Markov model. The proposed context clustering technique for mean
and variance parameters is applied to only the spectrum parameters. The conventional
and proposed techniques have the same tying structures for the excitation parameters.
The MDL criterion was used to control the size of the tree of the conventional technique
and the mean parameter tree of the proposed technique. The heuristic weight for the
penalty term (Eq. (18) in [8]) is changed to construct the variance parameter tree of the
proposed technique. The weights used here were 4.0, 2.0, and 1.0. In addition, the pro-
posed technique is compared with a technique for tying variance parameters in each state
of HMMs as conventional one. In [11], variance parameters are tied to one in all states of
HMMs.

4.2.2 Experimental results

Table 4.1 lists the number of leaf nodes and the total number of parameters for each tech-
nique. In this table, Baseline is the conventional technique, TieVar is the technique for
tying variance parameters in each state of HMMs, and MDL4.0, MDL2.0, and MDLI.0
respectively represent the proposed technique with 4.0, 2.0, and 1.0 weights of the MDL
criterion. Although leaf nodes have mean and variance parameters in Baseline, in the
other techniques leaf nodes have only parameters of either. First, it can be seen from the
table that MDL1.0 has more mean parameters and less variance parameters than Baseline.
This indicates that the proposed technique constructs decision trees that are appropri-
ately sized for both mean and variance parameters. Next, MDL2.0 and MDL4.0 have
less variance parameters and slightly more mean parameters in the proposed technique.
This means that the mean parameter decision tree was constructed to compensate for less

52



Table 4.1: Number of leaf nodes and total number of parameters.

Number of leaf nodes | The total number of
Mean Variance parameters
Baseline | 809 809 194160
TieVar | 1316 5 158520
MDIA4.0 | 1255 147 168240
MDIL2.0 | 1249 247 179520
MDLI.0 | 1235 403 196560

variance parameters.

A subjective listening test was conducted to evaluate quality of synthesized speech. The
subjects were asked to rate the naturalness of the synthesized speech on a scale from one
(completely unnatural) to five (natural). The subjects were 10 Japanese. Twenty sentences
were randomly chosen from the evaluation sentences. Figure 4.2 plots the experimental
results. In this figure, although TieVar and MDLA4.0 obtained almost the same score, the
proposed technique with the small weight of MDL criterion achieved better subjective
scores than the conventional one. This indicates that the proposed technique constructed
the optimal tying structures for each of mean and variance parameters. It can be seen from
the table 4.1 that although the total number of parameters is almost the same in Baseline
and MDLI.0, their balance between the number of mean and variance parameters are
different. Even though this indicates that mean parameters are relatively more important
than variance parameters, some degree of freedom for variance parameters is necessary
for improving the quality of synthesized speech.

4.3 Summary

In this chapter, an optimization algorithm of independent mean and variance parameter
tying structures for HMM-based speech synthesis was proposed. The proposed technique
constructed simultaneously tying structures for both mean and variance parameters using
context clustering algorithm in additive structure models. In the experiments, the pro-
posed technique outperformed the conventional one. Investigation of the appropriate size
of the trees will be future work.
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Figure 4.2: Mean opinion scores for synthesized speech obtained by the conventional and
proposed techniques.
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Chapter 5

Acoustic modeling with contextual
partial additive structures

The contextual additive structure models assume that the observation vectors are gener-
ated from the sum of additive components with tree regression structures and they can
be regarded as an intermediate structure between linear regression and tree regression.
However, the additive structure models still have a limitation that the number of additive
components is fixed for all output probability distributions. The proposed technique is
a generalization of the additive structure models which have variable number of addi-
tive components dependently on contextual sub-spaces, and the clustering algorithm for
extracting partial additive structure is provided.

5.1 Contextual partial additive structure

Although additive structure models can automatically determine the number of compo-
nents, there is a constraint that a fixed number of additive components are used for gen-
erating acoustic features. However, it is natural to assume that an appropriate number of
additive components depends on contexts. That is, is, it is expected that some context
dependent models require many additive components to represent variations in acoustic
features and others not. To represent such context dependencies, partial additive compo-
nents affecting arbitrary contextual sub-spaces is introduced.

In the proposed technique, a partial additive component is represented by a decision tree
attached to an internal node of another decision tree. Figure 5.1 shows examples of the
standard and partial additive structure. The standard technique extracts additive compo-
nents for the only entire contextual space corresponding to a root node. The proposed
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Figure 5.1: Examples of standard and partial additive structures.
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Figure 5.2: The effect of an partial additive structure in distribution modeling of acoustic

features.

technique can attach the additive component to an arbitrary node including internal nodes
as well as root nodes. Figure 5.2 shows the effect of a partial additive structure in dis-
tribution modeling of acoustic features. The gray regions represent the contextual spaces
affected by the second additive component “Comp. 2”. The second component of the
partial additive structure affects the contextual sub-space corresponding to the internal
node of the first component, even though the second component of the standard structure
always divides the entire contextual space. The proposed model structure yields larger
combination of components than the standard additive structure with the same number of

parameters.

Considering the relation between the standard and partial additive structure models, an ar-
bitrary partial additive structure can be converted to a global additive component, because
a partial decision tree can be expanded to a global decision tree by copying the upper
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structure of the parent decision tree. In this case, the partial decision tree is represented as
a sub-tree at the internal node of the copied tree and the other nodes are assumed to have
zero mean and variance. Therefore, the proposed structure can be regarded as special
case of the standard additive structure. This means there is no advantage of the proposed
technique in the representation of decision trees. However, the proposed technique pro-
vides an efficient representation for partial context dependencies with a smaller number
of model parameters. Furthermore, if there exists an optimal structure representing partial
context dependencies, it is difficult to extract an equivalent global additive structure by
using the context clustering algorithm described in Section 2.2, due to the greedy strat-
egy. Therefore, an explicit representation of partial context dependencies and a context
clustering algorithm for extracting partial additive structures are required.

The context clustering algorithm for the partial additive structure can be derived by mod-
ifying STEP. 2 in the standard context clustering algorithm for multiple decision trees as
follows:

STEP 2. Evaluate questions at all leaf nodes of all trees and a root node representing a
new tree. In addition, all candidate root nodes representing partial additive compo-
nents are also evaluated at all internal nodes. The likelihood after the node splitting
is calculated by estimating the ML parameters of all leaf nodes of all trees.

The difference with the standard context clustering algorithm for multiple decision trees
is to explicitly evaluate all questions at all internal nodes for constructing a new tree rep-
resenting a partial additive component. The number and position of additive components
corresponding to each context dependent model are automatically determined on demand
to increase the likelihood based on the ML criterion. Thus, the proposed technique can
effectively represent the context dependencies with a limited amount of the training data.
For an unseen context, the corresponding distribution can be found by answering the
question from the top-node as the standard decision tree. However, if there is an attached
decision tree at the current node, the number of components for the current context is
increased and the corresponding distributions must be searched for in both the parent and
attached decision trees.

5.1.1 Related model structures

The additive structure models include different model structures as special cases. If the
additive structure is restricted to having a single decision tree, it becomes the conventional
decision tree (tree regression). Linear regression models [9] can also be represented by
additive structure models, which consist of additive components each of which has only
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one contextual question. Therefore, additive structure models can be regarded as interme-
diate models between tree regression and linear regression. Partial decision trees in the
proposed technique inherit this property. Constrained Tree Regression (CTR) [36] also
has a strong relation to the proposed model structure. CTR has an additive component
corresponding to a contextual question at each intermediate node, and feature vectors are
predicted by adding all additive components from the top-node to leaf-node. Although
CTR can also represent a variable number of additive components, similar to the pro-
posed structure, only a sub-set of standard additive structure models can be represented
by CTR because it integrates the structures of tree regression and linear regression into a
single tree structure. As mentioned above, partial additive structure models have the same
ability in the representing model structures as standard additive structure models.

5.2 Experiment

5.2.1 Experimental conditions

Objective and subjective experiments were conducted to evaluate the effectiveness of the
proposed method. The 200 and 450 sentences of the phonetically balanced 503 sentences
from the ATR Japanese speech database B-set, uttered by male speaker MHT, were used
for training. The remaining 53 sentences were used for evaluation. The speech data was
down-sampled from 20 to 16 kHz and windowed at a frame rate of 5-ms using a 25-ms
Blackman window.

The feature vectors consisted of spectral and Fj feature vectors. The spectrum parameter
vectors consisted of 39 STRAIGHT mel-cepstral coefficients including the zero coeffi-
cient and their delta and delta-delta coefficients. The excitation parameter vectors con-
sisted of log F{) and its delta and delta-delta. A five-state, left-to-right, no-skip structure
with a diagonal covariance matrix was used for the hidden semi-Markov model. Additive
structure modeling was applied to only the spectrum parameters, and the excitation param-
eters were modeled with conventional multi-space probability distribution HMMs [37].
The tying structures for excitation parameters were constructed with the conventional de-
cision tree based context clustering.

Four techniques were compared; CONYV: the conventional decision tree, LR: the linear
regression, ADD: the standard additive structure models, and PADD: the proposed partial
additive structure models. Covariance parameter tying was applied to LR, ADD and PADD
for reducing computational cost.

The minimum description length (MDL) criterion [8] was used to select splitting a node in
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Table 5.1: Number of decision trees in each state. The number of decision trees In PADD
consists of that attached to the root node and internal nodes (200 sentences).

CONV | LR | ADD PADD
State 1 1 59 6 7 (root 3 + internal 4)
State 2 1 73 4 7 (root 2 + internal 5)
State 3 1 81 3 9 (root 2 + internal 7)
State 4 1 59 3 7 (root 2 + internal 5)
State 5 1 63 6 8 (root 3 + internal 5)
Total 5 335 | 22 | 38 (root 12 + internal 26)

Table 5.2: Number of leaf clusters, total number of parameters and average likelihood per
frame of training and test data (200 sentences).

CONV LR ADD | PADD
# of leaf nodes 440 670 771 844
Total # of parameters | 105,600 | 81,000 | 93,120 | 101,880
Ave. likelihood (train) | 139.66 | 130.92 | 132.60 | 132.98
Ave. likelihood (test) | 131.62 | 124.87 | 124.97 | 125.18

all techniques. In the proposed technique, the increase in the the number of parameters of
splitting a leaf node and extracting a new component differs. The increase in the number
of parameters by extracting a new component doubles compared with that by splitting a
leaf node. Penalty terms of the description length then grows large in extracting a new
component. The MDL criterion was used to determine the size of the decision trees.

In subjective experiments, mean opinion score tests were conducted. Ten subjects par-
ticipated in these listening tests. Twenty sentences were randomly selected from the 53
sentences for each subject. The subjects were asked to rate the naturalness of the synthe-
sized speech on a scale from one (completely unnatural) to five (natural). The experiment
was carried out using headphones in a soundproof room .

5.2.2 Experimental results

5.2.3 Objective results

Table 5.1 and 5.3 lists the number of decision trees in each HMM state and total number
of decision trees in each technique. The number of decision trees in PADD consists of
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Table 5.3: Number of decision trees in each state. The number of decision trees In PADD

consists of that attached to the root node and internal nodes (450 sentences).

CONV | LR | ADD PADD
State 1 1 80 5 10 (root 4 + internal 6)
State 2 1 140 6 18 (root 2 + internal 16)
State 3 1 103 7 14 (root 3 + internal 11)
State 4 1 83 5 13 (root 3 + internal 10)
State 5 1 80 6 9 (root 3 + internal 6)
Total 5 486 | 30 | 59 (root 15 + internal 44)

Table 5.4: Number of leaf clusters, total number of parameters and average likelihood per
frame of training and test data (450 sentences).

CONV LR ADD PADD
# of leaf nodes 814 972 1391 1446
Total # of parameters | 195,360 | 117,240 | 167,520 | 174,120
Ave. likelihood (train) | 138.65 | 129.30 | 132.15 | 132.36
Ave. likelihood (test) | 136.10 | 127.83 | 130.07 | 130.27

that attached to the root node and internal nodes corresponding to the global and partial
additive components respectively. It can be seen from Table 5.1 and 5.3 that the addi-
tive structure models constructed multiple trees for each state in the context clustering,
even though they can select single tree structures. This results suggest that there is an
additive structure in the training data. The additive structure models also constructed less
decision trees compared to LR. In the additive structure models, intermediate structures
between tree regression and linear regression were constructed to represent appropriate
context dependencies. Furthermore, PADD created decision trees at internal nodes as
well as the root node. This means that the proposed clustering algorithm extracted partial
additive components to efficiently represent context dependencies in the training data. In
200 sentence case, a larger number of decision trees were obtained for State 1 and State
5 than the middle state of HMMs in ADD. This might be because the triphone or quin-
phone contexts strongly affect the spectral features around phone boundaries. However,
almost the same number of components were extracted in the all states in PADD. This is
because PADD extracted an appropriate number of components depending on contexts,
while ADD extracted only components for entire contextual space. With increasing the
amount of training data, a larger number of partial additive components as well as the
global components were extracted for representing the spectral variations caused by var-
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ious contextual factors. These means that PADD can effectively represent the context
dependencies with a limited amount of the training data.

Figures 5.3 and 5.4 are histograms of the number of components for each context de-
pendent model about each state in PADD. It can be seen from figure 5.3 and 5.4 that the
different numbers of components were used for each context model. For examples, the
larger number of components were used for representing acoustic features affected by
various contextual factors, i.e., vowels and some context features in the larger amount of
training data. Acoustic features that have less spectral variations, i.e., features about si-
lence, pause, and some context in the smaller amount of training data, were represented by
the smaller number of components. This means that PADD extracted the different num-
bers of components depending on contexts. However, there were unused and less used
numbers of components in especially a larger amount of training data case. This might
be because the greedy strategy of context clustering algorithm still affected the resultant
structure, though proposed context clustering algorithm effectively extracted the partial
additive structure.

Table 5.2 and 5.4 list the number of leaf nodes, the total number of parameters and the
average likelihoods per frame of training (200 and 450 sentences) and test data (53 sen-
tences). Note that CONV has double number of parameters in each leaf node compared
with LR, ADD and PADD, because the covariance parameter tying was applied to LR,
ADD and PADD. In table 5.2 and 5.4, the likelihood of CONV in the training and test
data was the highest of the four techniques. This is because covariance parameter tying
was not applied to CONV and the total number of parameters was larger than other three
techniques. It can also be seen that the likelihood of additive structure models is higher
than LR. This means that additive structure models represented complicated spectral vari-
ations, while the linear regression was too simple structure to represent that. It can also
be seen from Table 5.2 and 5.4 that ADD and PADD have almost the same number of
parameters and there is not the significant difference in the likelihood of ADD and PADD.

5.2.4 Subjective results

Figure 5.5 and 5.6 show the subjective listening results. In the subjective test, LR that
synthesizes low quality speech is not included from the result of the preliminary experi-
ment. In figure 5.5 and 5.6, ADD and PADD achieved better subjective scores than CONV
that has larger number of parameters. This means that additive structure models could
represent complicated context dependencies. It can be seen from Figure 5.5 and 5.6 that
PADD achieved better subjective scores than ADD. These results mean that the proposed
technique can represent appropriate context dependencies with the contextual partial addi-
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tive structure, even though ADD and PADD have almost the same number of parameters.
In 450 sentences case, the difference of subjective scores between ADD and PADD was
more clear than 200 sentences case. This is because a larger number of partial components
were extracted and the more effective structure was constructed from the larger amount of
training data. Moreover, the proposed technique could automatically determine the num-
ber of components affecting contextual sub-spaces as well as the entire contextual space
and effectively represent the context dependencies with the training data.

5.3 Summary

In this chapter, a spectral modeling technique based on the contextual partial additive
structure was proposed. In the standard additive structure models, it is difficult to extract
partial additive components which affects arbitrary contextual sub-spaces. The proposed
technique can extract the contextual partial additive structure. Furthermore, the number
of partial additive components as well as standard global additive components can be au-
tomatically determined with the training data. In the experiment, the proposed technique
outperformed the conventional technique and the standard additive structure models. Ad-
ditive structure modeling for prosodic information such as FO and experiments on other
dataset including style, emotions, etc, will be a future work.
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about each state (200 sentences).
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Figure 5.5: Mean opinion scores for synthesized speech obtained by conventional, stan-
dard and proposed techniques (200 sentences).
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dard and proposed techniques (450 sentences).
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Chapter 6

Conclusions

The present paper described improved acoustic modeling for HMM-based speech synthe-
sis. The basic theories of the hidden Markov models (HMMs), its algorithm for calculat-
ing the output probability (forward-backward algorithm), searching the optimal state se-
quence (Viterbi algorithm), and estimating its parameters (EM algorithm) are described in
Chapter 2. In Chapter 2, statistical speech synthesis frameworks based on the HMM were
also presented In Chapter 3, an acoustic modeling with contextual additive structures for
HMM-based speech synthesis was described. Contextual additive structure models can
represent complicated dependencies between acoustic features and context labels using
multiple decision trees. However, the computational complexity of the context clustering
is too high for the full context labels of speech synthesis. Covariance parameter tying
in each state and using the matrix inversion lemma can significantly reduce the amount
of computational complexity and allow us to apply additive structure models to HMM-
based speech synthesis. In objective results, although the size of decision trees differs
among additive components, multiple decision trees were split. This suggests that ad-
ditive structures are inherent in the training data. This suggests that additive structures
are inherent in the training data. In subjective results, additive structure models achieved
better subjective scores than the conventional methods. Additive structure modeling for
prosodic information such as FO will be a future work, because FO has an additive struc-
ture with multiple contextual factors. In Chapter 4, a technique for constructing inde-
pendent parameter tying structures of mean and variance using additive structure models
for HMM-based speech synthesis was described. In the proposed technique, the deci-
sion trees for mean and variance parameters are simultaneously grown by taking into
account the dependency on mean and variance parameters. the proposed technique with
the small weight of MDL criterion achieved better subjective scores than the conventional
one. This indicates that the proposed technique constructed the optimal tying structures
for each of mean and variance parameters. Even though experimental results indicate that
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mean parameters are relatively more important than variance parameters, some degree
of freedom for variance parameters is necessary for improving the quality of synthesized
speech. Investigation of the appropriate size of the trees will be future work. In Chapter 5,
an acoustic modeling with contextual partial additive structures for HMM-based speech
synthesis was described. The additive structure models still have a limitation that the
number of additive components is fixed for all output probability distributions. The pro-
posed technique is a generalization of the additive structure models which have variable
number of additive components dependently on contextual sub-spaces, and provided the
clustering algorithm for extracting partial additive structure. In the subjective test, partial
additive structure models achieved better subjective scores. These results mean that the
proposed technique can represent appropriate context dependencies with the contextual
partial additive structure. Additive structure modeling for prosodic information such as
FO and experiments on other dataset including style, emotions, etc, will be a future work.
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Appendix A

Software

) HMM-based Speech Synthesis System (HTS) - Home

[ Front page ] [ Edit | Freeze | Diff | Backup | Upload | Reload ] [ New | List of pages | Search | Recent changes | Help ]

Contents Welcome! '
» Home
» History The HMM-based Speech Synthesis System (HTS) has been being developed by the HTS working group and
» Download others (see Who we are and Acknowledgments). The training part of HTS has been implemented as a modified
: EEE:E;MQ"'E"G version of HTK and released as a form of patch code to HTK. The patch code is released under a free software
» Who we are license. However, it should be noted that once you apply the patch to HTK, you must obey the license of HTK.
. ::OLC\E dtemﬂs Related publications about the techniques and algorithms used in HTS can be found here.
» Publications
£ ’é‘ig”&s‘gﬁts HTS version 2.1 includes hidden semi-Markov model (HSMM) training/adaptation/synthesis, speech parameter
» Extensions generation algorithm considering global variance (GV), SMAPLR/CSMAPLR adaptation, and other minor new
» Contact features. Many bugs in HTS version 2.0.1 were also fixed. The API for runtime synthesis module, hts_engine
= API, version 1.0 was also released. Because hts_engine can run without the HTK library, users can develop their
Links own open or proprietary softwares based on hts_engine. HTS and hts_engine API does not include any text
.+ HTK analyzers but the Festival Speech Synthesis System, DFKI MARY Text-to-Speech System, or other text analyzers
» SPTK can be used with HTS. This distribution includes demo scripts for training speaker-dependent and speaker-
» hts_engine APL adaptive systems using CMU ARCTIC database (English). Six HTS voices for Festival 1.96 are also released.
: EZE&'S}‘( They use the hts_engine module included in Festival. Each of HTS voices can be used without any other HTS
» DFKI MARY tools.
» STRAIGHT
» Galatea For training Japanese voices, a demo script using the Nitech database is also prepared. Japanese voices trained
: JE‘\J\MZUZSBI'd Challenge by the demo script can be used on GalateaTalk, which is a speech synthesis module of an open-source toolkit
» ISCA SynSIG for anthropomorphic spoken dialogue agents developed in Galatea project. An HTS voice for Galatea trained by
the demo script is also released.
recent(10)
2010-01-12 '
» Download News! '
2010-01-06
» Extensions
2010-01-04 « December 25, 2009
» Acknowledgments
» History HTS version 2.1.1 beta was released to the hts-users ML members.
2009-10-01
2009, 10,01, « August 27, 2009
?qr‘l’wirf?rgs?}l?rs The first HTS meeting in Interspeech 2009.
meeting
2009-00-14 « May 22, 2009
» Tutorial
2009-03-14 HTS-Demo for Brazilian Portuguese is released.
» Publications
2009-01-01 « March 16, 2009
» Mailing List
Total: 31151 Prof. Keiichi Tokuda & Dr. Heiga Zen have a tutorial about HMM-based speech synthesis at Interspeech

Figure A.1: HTS: http://hts.sp.nitech.ac.jp/
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