博士論文

アルミナおよびチタネート単結晶の育成と

その光学特性に関する研究

Growth of alumina and titanate crystals, and their optical properties

2014年

川南修一

目 次

博士論文題目:

「アルミナおよびチタネート単結晶の育成とその光学特性に関する研究」 "Growth of alumina and titanate crystals, and their optical properties"

第1章 緒言 ・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.1 酸化物単結晶の製造の歴史と現状	1
1.2 酸化物単結晶の育成方法	3
1.3 本研究の目的	14
1.3.1 サファイアを取り巻く環境	14
1.3.2 チタネート単結晶の現状	17
1.3.3 本研究の目的	18
1.4 本論文の構成	20
参考文献(第1章)	21
第2章 火炎溶融法によるサファイアの育成とその光学特性 ・・・・・	22
2.1 はじめに	22
2.1.1 火炎溶融法の原理と特徴	22
2.1.2 本章における研究の目的	24
2.2 実験方法	26
2.3 実験結果および考察	28
2.3.1 遷移金属ドープサファイアの光学特性	28
2.3.2 Tiドープサファイアの光学特性	33
2.3.2.1 結晶育成	33
2.3.2.2 UV照射による着色	35
2.3.2.3 欠陥反応式によるカラーセンターについての考察	39
2.3.2.4 フォトルミネッセンス (PL)	44
2.3.2.5 Ti-Fe, Ti-Mg 共ドープの効果	47

2. 4 本章のまとめ	49
参考文献(第2章)	50
第3章 大型サファイアの育成とその紫外域における光学特性 ・・・・・・	53
3.1 はじめに	53
3. 2 TSMG 法の原理と特徴	54
3.3 実験方法	56
3. 4 結果および考察	59
3.4.1 結晶育成	59
3.4.2 育成方法の違いによる透過率	59
3.4.3 TSMG 法で育成したサファイアの光学特性	61
3.4.3.1 as ⁻ grown 結晶の透過率	61
3.4.3.2 熱処理による透過率変化	62
3.4.3.3 強還元 TSMG サファイアの光学特性	67
3.5 本章のまとめ	73
参考文献(第3章)	74
第4章 火炎溶融法による Al ₂ TiO ₅ 単結晶の育成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
4.1 はじめに	76
4.2 実験方法	78
4.3 実験結果および考察	79
4.3.1 原料粉末の仮焼および育成雰囲気の影響	79
4.3.2 結晶のキャラクタリゼーション	83
4.3.3 Al/Ti 比を変更した結晶育成	86
4.3.4 熱処理による変化	90
4.3.5 光学特性	92
4.4 本章のまとめ	93
参考文献(第4章)	94

第5章 火炎溶融法による SrTiO3 単結晶の育成とその光学特性 ・・・・・	95
5.1 はじめに	95
5. 2 実験方法	97
5.2.1 原料粉末の調製	97
5.2.2 結晶の育成と光学特性の測定	98
5.3 実験結果および考察	99
5.3.1 FFM 用原料粉末の調製	99
5.3.1.1 スプレードライヤーによる造粒	99
5.3.1.2 分散剤量と水分量の調査	99
5.3.1.3 アジテーションミルでの造粒	101
5.3.2 結晶育成および育成した結晶の評価	104
5.3.3 SrTiO3 単結晶の熱処理による透過率の変化	108
5.3.3.1 as ⁻ grown 結晶の透過率	108
5.3.3.2 空気中熱処理後の透過率	109
5.3.3.3 熱処理雰囲気の影響	112
5.3.3.4 透過率に及ぼす不純物の影響	117
5.4 本章のまとめ	121
参考文献(第5章)	122
第6章 総括 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	124
原著論文リスト	128
関連論文リスト	129
学会発表リスト	130
謝辞	131

1.1 酸化物単結晶の製造の歴史と現状

今日、酸化物単結晶は様々な分野で利用が進んでいる。代表的なものとして、水熱合 成法による水晶(Quartz, SiO₂)、火炎溶融法(Flame-Fusion Method、以下「FFM」 と記述)によるコランダム(α-Al₂O₃)、ルチル(TiO₂)、チタン酸ストロンチウム(SrTiO₃) チョクラルスキー法(Czochralski Method,以下「CZ 法」と記述)による LiNbO₃, LiTaO₃、YAG(Y₃Al₅O₁₂)などがある。これらの結晶は電子部品、光学部品、薄膜成長 用基板などに使用されており、産業上不可欠の材料となっている。

本研究で対象とした結晶の一つであるコランダム(アルミナ単結晶)に関してみると、 古くより天然結晶がその色合いや輝きからルビーやサファイアなどの宝石として珍重 されてきた。そのためこれを人工的に作ろうという試みは古くからなされている。実際 に人工のルビーが市場に出回ったのは 1800 年代後半くらいで、その時は天然のルビー の屑を再溶融していたようである[1]。1904 年にフランスのベルヌーイ (Verneuil) に よって発明されたベルヌーイ法、すなわち火炎溶融法 (FFM) によって人工単結晶ル ビーが作られると、これまでより格段に高品質のルビーが大量に市場に出回り、装飾品 用宝石の他、電力メーターや時計用の軸受け石などの工業用途に利用されるようになっ た。コランダムは融点が高く[2]、るつぼ、耐火物、ヒーターなどの材料に制約がある ため結晶育成は容易ではないが、今日では様々な方法で結晶が育成されている[3]。

日本においてルビーなどの単結晶が製造されるようになったのは 1930 年代頃からで、 当初から軸受け石などの工業用途に使用する目的で、ベルヌーイ法による開発が進めら れた[1]。戦後いくつかの会社がベルヌーイ法による生産を開始したが、終戦直後は工 業用途ではなく、米兵などに販売する装飾品用途が主であった。その後、腕時計用の窓 材料として量産され、現在に至っている。さらにサファイア(α-Al₂O₃、鉱物名: Corundum、以下アルミナ単結晶の一般名称である「サファイア」を使用する)は、硬 く(モース硬度:9)、化学的・熱的に安定であり、絶縁性、透明性に優れるなどの多 くの特徴を有することから、酸やアルカリに接する部材、理化学機器部品、半導体製造 装置用部品などに使用される工業的に重要な材料となっている[4]。また、1990 年代に 青色発光ダイオード(LED)が開発され、その基板材料にサファイアが使用されると、 サファイアの需要は急速に高まり、キロプロス法(Kyropoulos Method、以下「KY法」)、 熱交換法(Heat Exchange Method、以下「HEM」)、EFG 法(Edge Defined Film Fed Growth Method) など種々の方法でサファイアが育成され市場に供給されている。

チタネート系単結晶の代表であるチタン酸ストロンチウム(SrTiO₃:以下「STO」) は、ペロブスカイト型の結晶構造をとり、正方晶から立方晶への転移が105K付近であ り、室温付近では立方晶として安定である。そのためSTO単結晶は、超電導、強誘電 体、磁気抵抗メモリ、熱電素子、半導体素子など各種の薄膜成長用基板として広く使用 されている[5]。STOの単結晶は、そのほとんどが火炎溶融法(FFM)で育成されてい る[6]。STOは屈折率が2.407(at 589nm)とダイヤモンドに近く、当初は模造ダイヤモ ンド用として結晶が製造された。ルチルと同様FFM以外の方法で結晶を育成すること が困難であり、現在もほとんどの結晶はFFMで育成されている。FFMは、育成速度 が速く、るつぼを使用しないため高純度化できる、ドープが容易であるなどの特徴を有 し、現在、市販品としては、直径約30mm、長さ約50mmの結晶が薄膜成長用基板な どに製造されている。

1.2 酸化物単結晶の育成方法

酸化物単結晶は様々な方法で育成されているが、本研究では FFM と TSMG 法によ る育成を行った。以下に、その結晶育成方法を他の育成方法とともに示す。

①火炎溶融法(Flame-Fusion Method)

前述の通り、古くからルビーやサファイアの育成に利用されている。るつぼを使用し ない、原料として粉末が使用できる、育成速度が比較的速いなどの利点を有する。しか し、育成できる結晶のサイズに限界がある、育成速度が速いため結晶性はそれほどよく ないという欠点もある。

サファイアの他、酸化チタン(ルチル)、チタン酸ストロンチウムなどの結晶もこの 方法で育成されており、発明されてから 100 年以上経つ方法であるが、今なお重要な 育成方法の一つである。

詳細については、第2章で述べる。

Fig. 1-1 Schematic view of Flame-Fusion Method.

②回転引き上げ法(チョクラルスキー法;「CZ法」)

シリコンなど多くの結晶育成に使用されている最もポピュラーな育成方法である。加 熱方法はワークコイルによる誘導加熱または抵抗加熱方式であるが、誘導加熱方式が多 く用いられている。誘導加熱方式の場合は、るつぼが発熱体となるため効率が良く、装 置も簡易になるためである。LiNbO₃、LiTaO₃、サファイア、Gd₂SiO₄:Ce、Bi₄Ge₃O₁₂、 Lu₂SiO₅:Ce などのシンチレータ結晶、さらに YAG (Y₃Al₅O₁₂:Nd)等のレーザー用結 晶など、多くの結晶がこの方法で育成されている。サファイアを育成する場合、イリジ ウム(Ir)るつぼが使用されることが多く、直径 100mm×300mmL 程度の大きさの結晶 が工業的に育成されている。径の制御性がよく、自動で径制御することも行われている。 一般にるつぼ径に対し半分程度の径の結晶が得られることから、大型化するにはるつぼ や装置も大型化することになり、コスト面で課題がある。

Fig. 1-2 Schematic illustration of CZ method.

③水熱合成法

水晶(Quartz)は573℃で相転移があるため、CZ 法などによる融液からの結晶成長 が困難である。そのため、オートクレーブにより水熱合成法で製造されている。Fig. 1-3 にその概念図を示すが、育成炉の下部にラスカと呼ばれる天然原料を入れ水酸化ナトリ ウムまたは炭酸ナトリウムの希アルカリ溶液で満たす。オートクレーブは下部を約 400℃に加熱すると内部は約 140MPa になり、SiO₂が溶液に溶け過飽和状態となり対 流で上部に移動し、上部に設置したシードに析出する。このようにして結晶が成長する。

Fig. 1-3 Schematic of hydrothermal method.

④フラックス法

原料をアルカリなどの溶液に溶解し、過飽和状態とし析出させる方法である。結晶の 融点よりも低温で育成できることが最大の特徴で、装置もシンプルにできる。

Fig. 1-4 Schematic of Flux growth method.

⑤浮遊帯溶融法(Floating Zone Method;「FZ法」)

Fig. 1-5 にハロゲンランプの光をミラーで一点に集め、局所的に加熱する方法のイメ ージ図を示す。るつぼを必要とせず、比較的簡単に単結晶が得られるため、小型の結晶 や実験で使用するのに適した方法である。しかし、大型で高品質の結晶を得るのは難し く、工業的にはあまり使用されていない。

Fig. 1-5 Schematic of Floating Zone method.

⑥キロプロス法 (Kyropoulos 法: KY 法)

ロシアで開発された結晶育成方法で、ロシアやアメリカのメーカーでサファイアが量 産されている。近年では、中国や韓国にもこの技術が導入されているようで、大型のサ ファイアを育成する代表的な方法の一つになっていて、最大 200kg のインゴットを育 成したという報告もある[7]。Fig. 1-6 に示すように、上部からシードを接液し、そのま ま固化させる方法である。通常は回転や引き上げは行われず、融液内部で徐々に固化さ せる。結晶性はよく大型の結晶が得られるが、るつぼと接触すること、育成方向が a 軸 方向に限定されることがデメリットである。

Fig.1-6 Schematic illustration of KY method.

アメリカのメーカーが開発した方法で、最近では装置と育成方法をセット販売する形 で、中国や韓国のメーカーに広がっている。Fig. 1-7 に示すように、るつぼの下部にシ ードをセットし、るつぼ軸からの冷却で固化させる方式である。大型の結晶が容易に得 られるという特徴があるが、るつぼと接触するため、その剥離や外周部の結晶性に課題 がある。

Fig.1-7 Schematic illustration of HEM.

⑧TSMG 法(Top Seeded Melt Growth Method)

著者らが開発した方法で、キロプロス法と CZ 法の長所を取り入れた方法である[8]。 キロプロス法と異なる点はゆっくり回転させながら少し引き上げる点で、高品質の大型 結晶が得られ、るつぼとの接触もなく、育成方位も任意選択できるという利点がある。 詳細については第3章で述べる。

Fig. 1-8 Schematic illustration of the TSMG method.

⑧垂直ブリッジマン法 (Vertical Bridgeman method)

水平方向と垂直方向のブリッジマン法がある。ともに Mo などのるつぼ中に原料を入 れ、ヒーターまたはるつぼを移動させ、ゾーンメルト法のように固化させる方法である。 Fig. 1-9 に垂直ブリッジマン法(VB法: Vertical Bridgeman Method)のイメージ図 を示すが、この場合はるつぼを徐々に降下させながら固化する方法である。結晶径の制 御が容易であるが、結晶とるつぼとの固着、結晶性などに課題がある。

Fig.1-9 Schematic illustration of VB(Vertical Bridgeman) method.

⑨水平結晶化法(Horizontally Directed Crystallization Method;「HDC 法」)

水平方向結晶化法(HDC 法、Fig.1-10) はバグダサロフ法とも呼ばれ、ブリッジマン法の分類に入れることもできる。300mmx500mmx40mmのサファイアを育成した例もあり[9]、大きな平板を育成するのに適した方法である。

Fig.1-10 Schematic illustration of HDC method.

⑩EFG 法(Edge defined Film-Fed Growth method)

Mo などの金型(ダイ)を使用して、毛管現象で上がってくる融液を固化し引き上げ る方法である。Fig. 1-11 に示すように板状の結晶やチューブ状の結晶を育成すること が可能で、これらの形状を育成する場合は生産性に優れた方法である。板状の場合には、 一度に数十枚引き上げることが行われており、サファイア基板としても使用されている。 金型を使い比較的速く引き上げることから、結晶性に課題がある。また厚みのある試料 は引き上げが困難である、金型に接するところでは泡が入りやすい、オフ角など厳密な 方位制御が困難であるなどの課題がある。

Fig.1-11 Schematic illustration of EFG method.

1.3 本研究の目的

1.3.1 サファイアを取り巻く環境

現在サファイアは、軸受け石などの耐摩耗部品、時計用窓、装置用機械部品など多く の用途に使用されている。約40年前から量産されている腕時計用の窓は、今でもその ほとんどが FFM により育成されており、さらなるコストダウン、品質改善が求められ ている。その内の一つとして、UV 照射やスパッタによる耐光性の向上が課題として残 されている。

90年代後半から、サファイアは LED 用基板として利用されているが、近い将来、白色 LED の世界市場は1兆円に達する規模であると見込まれ、サファイアウェハの世界市場は500億円程度と推定されている[10]。青色、白色 LED は日本発の技術で、これまで日本メーカーは優位な立場にあったが、市場の拡大により中国、韓国、台湾などのメーカーが台頭し、日本メーカーのシェアは急激に低下している。これに伴いサファイアウェハの価格も急激に低下しており、競争が激化している。

Table 1-1 に GaN 用基板の比較を示す。LED 用基板としてのサファイアは窒化ガリ ウム(GaN)との格子定数のミスマッチが比較的大きく、熱膨張係数も異なることから、 エピ膜の高品質化、ウェハの大型化は困難であると言われている。しかし 1000℃近い 高温の活性ガス雰囲気下での処理に耐え、可視域で透明であり、価格も比較的安いなど 多くの利点を持つため、今後も LED 基板として需要は拡大するものと思われる(Fig. 1-12)。

最近では、スマートフォンのカバーにサファイアが採用されるなど、サファイアの需要はさらに拡大している。今後はLED基板としてより大型化が進み、結晶育成技術の 高度化、高品質化、加工技術開発が重要となる。さらにエピタキシャル基板としての用 途だけではなく、光学特性と機械、電気、熱、化学的特性などを複合した機能を併せ持 ったサファイア部品の需要が見込まれる。

	GaN	Sapphire	SiC	Si	AlN	ZnO
Lattice matching	O	\bigtriangleup	0	×	\bigtriangleup	0
Crystallinity	\bigtriangleup	O	\bigtriangleup	0	×	\bigtriangleup
Thermal conductivity	0	Δ	O	0	O	×
Heat resistance	O	O	0	\bigtriangleup	O	×
Chemical durability	O	O	O	×	0	×
Workability	×	\bigtriangleup	×	O	×	\bigtriangleup
Band Gap Energy(eV)	3.4	9	2.9	1.1	6.3	3.3
Cost	×	0	×	0	×	\bigtriangleup
Availability	×	O	\bigtriangleup	0	×	\bigtriangleup

Table 1-1Comparison of substrate materials for GaN.

Fig. 1-12 Demand of sapphire substrate.(Estimated by some marketing companies data)

1.3.2 チタネート単結晶の現状

SrTiO₃はペロブスカイト構造を持つ安定な酸化物であり、多くの機能性酸化物薄膜の成長用基板として使用されていて、今後も利用が拡大すると見込まれる。現在そのほとんどは研究開発用途であるが、近い将来機能部品として実用化されれば、高品質化、大型化、安定供給などがニーズとして顕在化すると思われる。また、SrTiO₃の持つ光触媒機能や光照射発光など、光学特性を利用した用途開発も期待されている。しかし、高純度な原料を安価に入手することは困難である、結晶の加工や熱処理などの影響が明瞭でないなどの課題が存在している。

また、TiO₂や SrTiO₃結晶は、FFM 以外の方法で育成するのは困難なため、FFM に よる結晶育成技術の向上は産業上重要な課題である。そのため、FFM の利点を生かし た新規チタネート単結晶の需要は潜在的に存在しており、そのニーズに応えることは重 要な課題である。

1.3.3 本研究の目的

以上のような背景から、アルミナ単結晶(サファイア)およびチタネート単結晶は、 その結晶育成技術向上、光学特性をはじめとする品質向上が強く望まれている。

そこで本研究では、サファイアおよびチタネート単結晶の育成技術向上、ならびに、 これら育成した結晶の格子欠陥(点欠陥)と光学特性の関連を探査することにより、光 学特性を改善することを目的とした。

具体的な研究の目的は以下の通りである。

①サファイアの結晶格子欠陥と光学特性の調査、および光学特性の改善

まず、FFM により育成したサファイアの結晶格子欠陥による光学特性の調査とその 改善を目指した。ここでは実験的に様々な元素をドープし、その光学特性を調査するこ とで不純物や格子欠陥と光学特性の関連を把握することを目的とした。その中でも Ti を微量ドープしたサファイアは時計用の窓として利用されていて、UV 照射によりカラ ーセンターを生成するという課題を有するため、その解明と低減を目的とした。

次に、TSMG 法により育成した大型サファイアの紫外域における光学特性の探査と 透過率改善を目的とした。サファイア結晶中の酸素欠損などの格子欠陥と光学特性の関 連を明らかにし、熱処理により紫外域における光透過率を改善することを目的とした。

②チタネート単結晶の育成技術向上、および格子欠陥と光学特性の関連調査

新規チタネート単結晶の育成技術開発を目的に、FFM による Al₂TiO₅単結晶の育成 を試みた。FFM はチタネート単結晶の育成に適しており、Al₂TiO₅単結晶は光学材料 としても期待できるためである。

次に、結晶の高品質化、コストダウン等を目的に、SrTiO₃の原料粉末の高純度化と FFM 原料として利用するための原料調製のプロセス開発を目指した。さらに、SrTiO₃ の結晶格子欠陥や不純物と光透過特性の関係、および熱処理による透過率変化を調査す ることを目的にした。

Fig.1-13 The objectives of this study. (Conception diagram)

1. 4 本論文の構成

本論文は6章からなる。

- 第1章:酸化物単結晶の工業的利用、酸化物単結晶の結晶育成方法を概観し、本研究の目的を明らかにする。
- 第2章:FFM で育成したサファイアの光学特性について述べる。FFM により各種元 素をドープしたサファイアを育成し、その光学特性を調査した結果を述べる。特に Ti をドープしたサファイアは工業的にも有用であるが、そのカラーセンター生成 メカニズムについて詳細に検討した結果を報告する。
- 第3章:大型サファイアの需要に対し、新規に開発した TSMG 法により育成したサ ファイアの特性、特に紫外域での光学特性とその改善について詳細に報告する。
- 第4章:FFMによるAl₂TiO₅結晶の育成について報告する。Al₂TiO₅は単結晶育成の 報告がないため、FFMによる結晶育成とその結晶のキャラクタリゼーションにつ いて述べる。
- 第5章:FFM による SrTiO₃単結晶の育成とその光学特性について述べる。ここでは、 固相反応法による SrTiO₃原料の調製、FFM による結晶育成、そして SrTiO₃結晶 の雰囲気や温度を変化させて熱処理した場合の透過率変化、各種元素をドープした 場合の透過率について述べる。

第6章:本研究を総括する。

参考文献(第1章)

- [1] 広瀬三夫「宝石をつくる」全国出版社刊 (1983)
- [2] JCPDS46-1212
- [3] H. Tang, H. Li and J. Xu, in Advanced Topics on Crystal Growth, Ed. by S. O. Ferreira, InTech, Croatia (2013) pp. 307-333.
- [4] 米澤卓三、望月圭介「サファイア単結晶の育成と応用」化合物半導体の最新技術大 全集,技術情報協会 p55-66 (2007)
- [5] http://lippmaa.issp.u-tokyo.ac.jp/
- [6] H. J. Scheel, J. G. Bednorz, and P. Dill, Ferroelectrics, 13, 507-509 (1976)
- [7] http://www.rubicontechnology.com/
- [8] K. Mochizuki, H. Shimura, S. Kawaminami, *Japan patent*, P4810346 (2011)[in Japanese].
- [9] http://www.isc.kharkov.com/
- [10] LED 市場、富士キメラ:http://www.fcr.co.jp/pr/12025.htm

2.1 はじめに

2.1.1 火炎溶融法の原理と特徴

火炎溶融法(Flame-Fusion Method:FFM)は1902年にフランスのベルヌーイ(A. Verneuil)によって発明され、ベルヌーイ法(Verneuil Method)とも呼ばれている。 発明されたのは百年以上も前であるが、今なお有力な結晶育成方法の一つとして工業的 に利用されている。FFMによる人工宝石の育成はルビー(Al₂O₃:Cr)が最初で、当初 は宝飾用途が主であった。日本でも昭和10年頃から製造されていたようであるが、本 格的に生産されるようになったのは戦後である。宝飾用のみならず、電力メーターや時 計などの軸受け石としてルビー、サファイア(Al₂O₃)が工業的に利用されるようにな って生産が本格化した[1,2]。その後1970年頃から腕時計用の窓材料として、硬くてキ ズがつきにくく、高級感のあるサファイアが使用されるようになり、現在でもFFMに より量産されている。

FFM は CZ 法などのようにるつぼを必要とせず、装置がシンプルである[3]。FFM 装置の外観写真を Fig. 2-1 に示す(概略図: Fig.1-1 参照)。

原料粉末を入れたタンクが上部にあり、スクリーンメッシュによって保持されている。 このスクリーンをハンマーでたたくなどして振動させることにより、少量ずつ原料粉末 を落下させる。そして酸素および水素を混合した燃焼炎中を通過させることにより溶融 し、種結晶上に堆積させる育成方法である。結晶成長が進行している部分はバーナーの 炎で熱せられているので融液が表面張力で保たれている。そのため育成方法としては融 液法に分類することができる。

FFM では原料粉末の紛体特性をどう制御するかが重要なポイントである。結晶中の 泡、インクルージョンを防止する観点から、原料は比表面積が大きな微粉末が使用され ることが多い。落下量の経時変化を少なくするためには粉末の圧縮度が小さい方が望ま しく、スプレードライヤーで造粒することも行われている。

装置構成上、マッフルの材質、形状、内径、ガスノズルの径とその組み合わせ、結晶 成長界面の位置などを最適化する必要がある。結晶育成のパラメーターは、H2ガス量、 O2 ガス量、原料落下量、結晶降下速度であり、これらをプログラム制御で最適化する ことが行われている。 FFM は装置が単純でるつぼを使用しないため、るつぼからのコンタミネーションが ない、育成速度が速いなどの優れた特徴を有している。さらに、ドープが容易であるた め実験的に結晶を試作評価するにも適している。

一方、結晶サイズは直径数十 mm、長さ 100mm 程度で大型化は困難である。さらに 成長速度が速いために結晶品質を向上させるには限界があり、用途が限られている。ま た育成中の温度勾配が大きいため、結晶には歪みが残っている。これを高温でアニール しなければならない点がデメリットである。

Fig. 2-1 Photograph of FFM Furnaces.

Fig. 2-2 Photograph of sapphire boules grown by FFM.

2.1.2 本章における研究の目的

高純度のサファイアは無色透明であるが、Feや Cr などの不純物により着色すること はよく知られている。そのためサファイアを利用する上でドープ元素による着色を把握 しておくことは工業的に重要なことである。

単結晶の着色の原因として、おおまかに3つの原理が報告されている[4]。1つ目は、 遷移金属が結晶格子中に存在することで、結晶格子が歪み電子状態が変化することでそ の変化に対応した固有の吸収を示すための発色である(d-d 遷移)。2つ目は複数の元 素がドープされた場合などで電荷が移動することにより生じる電荷移動遷移(Charge Transfer Transition)である。3つ目は点欠陥に電子やホール(正孔)がトラップされ たカラーセンターによる着色である。

サファイアの場合も、Cr や Ni などの遷移金属をドープすると、Al サイトに置換し た遷移金属の配位状態に固有の吸収を示すことから、着色することが知られている[5]。 しかしそのドープ量依存性や熱処理雰囲気によってどのような発色をするかは意外に 知られていない。そこでドープサファイアの育成に有利な FFM により、各種サファイ アを育成しその光学特性を調査することを第1の目的とした。

腕時計用のサファイアは、今日でもそのほとんどが FFM により生産されている。 FFM サファイアは結晶欠陥を少なくするため a 軸方向に育成することが多いが、この ときブール側面に c 面のファセットが出やすい。時計用の窓材に使用するには直径 \$ 20 ~45mm の円柱状のブールにすることが好ましく、ファセット面を抑制するため Ti を 微量ドープすることが行われている[6]。Ti のドープは微細な泡の発生を少なくする上 でも効果があるが、Ti をドープすることによって別の問題が生じる。近年、サファイ ア窓をケースに固定する際、紫外線(UV)硬化接着剤が多用されているが、紫外線照 射によりカラーセンターによる吸収が生じ茶色に着色するという問題がある。これは UV 硬化接着剤を使用する場合だけでなく、反射防止膜(AR コート)を施す際プラズ マの照射によっても起こるため、工業上解決すべき重要な問題である。

Ti ドープサファイアは、近赤外域の波長可変レーザーとして利用されており、Ti ド ープサファイアに関する研究は数多く存在するが、その多くはTi を数百 ppm 以上ドー プしたサファイアについての研究である[7,8]。また、UV 照射による発光とその後の着 色に関する研究もいくつか報告されている[9~15]。しかしながら、それらの報告では、 測定に使用した単結晶の育成方法や不純物が様々であり、実験条件や測定機器も異なる ため、UV 照射による着色(可視域のカラーセンター)については不明な点が多い。

そこで、Ti を微量ドープした場合の光学特性について詳細に調査しカラーセンターの生成原因を検討することにより、UV 照射による着色を軽減することを第2の目的とした。

2.2 実験方法

原料は純度 4N 以上、粒径約 0.1 μ m の γ-Al2O3 を使用した。原料中の不純物とし て GD-MS 分析で Na, K がそれぞれ約 15ppm、Si が約 10ppm、Fe が約 5ppm、Ca が 約 3ppm 含まれていたが、FFM で育成した結晶中の不純物は ICP 分析で、Si が数 ppm 検出されたものの、その他の元素はすべて検出限界以下であった。これに Cr, Ni, Co, Fe, Ti, Mg, Si の酸化物を 1at%の組成になるように、ボールミルで 2h 乾式混合した後、目 開き 180 μ m のふるいを通過させた。また 1at%の混合粉末をさらに希釈することで、 1000ppm(at)~10ppm(at)の所定量になるよう乾式混合し、結晶育成用の原料とした。 結晶育成は FFM にて、育成方位: a 軸<11·20>方向、降下速度 10mm/h で実施した。 育成条件は、サファイアの直径が 10~15mm、長さ 30~60mm になるよう、水素ガス流 量、酸素ガス流量および原料落下量をプログラムで調整した。育成した結晶は、電気炉 (大気中) 1923K、H₂-O₂ガス炉 1923K、または Ar 雰囲気中 2273K でアニールを施 した後、a 面 {11·20} の試料となるように育成方向と垂直に輪切り切断し、研削、両 面研磨して厚み約 1mm の試料とした。UV の照射は低圧水銀ランプを使用し 30 分以 上照射を行った。透過率測定は HITACHI U-4100 を、フォトルミネッセンス (PL) は HITACHI F-7000 を使用した。

Fig. 2-3 Photograph of spectrophotometer.

Fig. 2-4 Photograph of Photoluminescence spectrometer.

2.3 実験結果および考察

2.3.1 遷移金属元素をドープしたサファイア

Fig. 2-5に Crをドープした場合の透過率を示す。ドープ量に比例して 250nm、410nm、550nm 付近の吸収が増加している。410nm 付近は青紫色、550nm 付近は貴緑色の吸 収であり、Crをドープした結晶は赤く着色することと対応していることが確認できた。この着色は、配位子場(結晶場)の作用で不対電子の励起による配位子場吸収帯がこの 波長に存在するために起こる発色である。また Fig. 2-6 に示すように、紫外光により赤 色の発光を示すことから、ルビーはより赤く輝いて見えると考えられる。

Fig. 2-5 Transmittance of Cr-doped Al₂O₃ (Ruby).

Fig. 2-6 Photoluminescence of Cr-doped Al₂O₃ (Ruby).

Fig. 2-7 に Ni:1000ppm ドープ、Fig. 2-8 に Co:1000ppm ドープサファイアの大気中 及び H₂-O₂燃焼炉 (H₂-O₂ガス炉) にてアニールした試料の透過率を示す。いずれの場 合も大気中でアニールすると吸収が増加していて、Ni の場合は 500nm 以下の波長で吸 収が増加し、400nm 付近の青色の吸収が大きくなり黄色に着色していた。Co の場合も 300nm 以下の吸収が増加し、同時に 450nm 付近 (青) と 680nm 付近 (赤) に少し吸 収が見られ薄く緑色に着色した。このように Ni や Co の場合は熱処理雰囲気により価 数変化することにより電子状態が変化し、それに伴い吸収が変化すると考えられる。こ れらの結晶は FFM で育成しているが、この時の雰囲気は水素過剰の H₂-O₂燃焼炎であ るため H₂/H₂O 雰囲気であると考えられる。エリンガム図から酸素分圧を推定すると 10⁶atm と見積もることができ、弱還元雰囲気でるため、Ni, Co は 2 価としてサファイ ア中に存在していると考えられる。H₂-O₂ ガス炉アニールも同様の雰囲気であるため、 Ni, Co の多くは 2 価で存在し、酸素欠損と電荷のバランスを取っていると考えられる。 これを大気中でアニールすると酸化が進み、Ni, Co は 3 価としてサファイア中に存在 するものと考えられる。3 価として存在する場合にサファイア結晶中での配位状態が安 定し、d 電子軌道に対応した遷移吸収が起こると考えられる。

Fig. 2-7 Transmittance of Ni-doped sapphire.

Fig. 2-8 Transmittance of Co-doped sapphire.

Fig. 2-9 に Fe をドープした場合の透過率を示す。雰囲気を変えても透過率はほとん ど変化しなかった。Fe の場合は 3 価として比較的安定に存在し、酸化雰囲気でアニー ルした場合も弱還元雰囲気下でアニールした場合も、Al サイトに 3 価として置換して いるものと考えられる。そして Fe 固有の吸収は 300nm 以下にあるため、着色はなか ったものと考えられる。

Fig. 2-10 に Fe と Ti を同時にドープした場合の透過率を示す。これはよく知られて いるように電荷移動型の発色である。酸化雰囲気でアニールした場合も弱還元雰囲気で アニールした場合も同様の呈色を示すが、弱還元雰囲気でアニールした場合の方が少し 濃い青色になった。この試料は約 1250℃の温度でアニールするとルチル結晶の析出が 起こり、いわゆるスターサファイアとなる。

Fig. 2-9 Transmittance of Fe-doped sapphire.

Fig. 2-10 Transmittance of Fe and Ti doped sapphire.

2.3.2 Tiドープサファイアの光学特性

2.3.2.1 結晶育成

Ti をドープして育成した結晶の写真を Fig. 2-11 に示す。Ti を少量ドープしただけで もファセットが見られなくなり、円柱状に成長した。また as grown 結晶は Ti ドープ 量に比例してピンク色に着色した。これらを大気中でアニールするとピンク色の着色は なくなり無色透明になった。結晶育成は、H₂ガス過剰の H₂-O₂ガス燃焼炎中、すなわ ち H₂と H₂O が存在する雰囲気で結晶を育成したため、エリンガムダイアグラムより育 成中の酸素分圧はおよそ 10⁻⁶atm であると見積もることができる。そのため育成後の結 晶には酸素空孔が多数存在し、電荷のバランスを取るために Ti イオンは Ti³⁺として存 在していると考えられる。この時サファイア中では Al サイトに Ti が 3 価で存在するこ とから、サファイア中における Ti³⁺固有のピンク色に着色している。この着色は遷移金 属元素である Ti の配位子場吸収によるものである。これを大気中(酸化雰囲気)でア ニールすると酸素が導入され酸素空孔が消滅し、Ti³⁺は酸化され Ti⁴⁺となることで、可 視域に吸収はなくなり無色になったと考えられる。

Fig.2-11 Ti-doped Sapphire boules.

2.3.2.2 UV 照射による着色

Fig. 2-12 に Ti、Mg、Fe、Si をドープした結晶を、電気炉(大気中)、H2-O2ガス炉、 高温 Ar ガス中電気炉でアニールした試料の UV 照射前後の色の変化を示す。大気中で アニールした Ti ドープ試料は、UV 照射により Ti 量の増加とともに茶色く変色した。 H2-O2燃焼炎中 1923K(1650℃)でアニールした試料は、大気中でアニールした場合より も色は薄茶色に着色した。これに対し高温の還元雰囲気でアニールした試料は UV 照射 による変色はほとんど見られなかった。

 H_2 -O₂ガス炉は H_2 の燃焼により H_2 と H_2 O が存在する雰囲気であり、結晶育成中の 雰囲気とほぼ同様で、酸素分圧は 1923K(1650°C)で 10⁻⁸atm 程度の弱い還元雰囲気で ある。これに対し 2273K(2000°C)、Ar ガス雰囲気中アニールの場合、炉内はカーボン ヒーターを使用しているため、より酸素分圧の低い強い還元雰囲気となっていると考え られる。したがって、 H_2 -O₂燃焼炎中では弱還元雰囲気により Ti³⁺および Ti⁴⁺が混在し たが、高温強還元雰囲気でアニールした場合にはそのほとんどが Ti³⁺となったと考えら れた。以上のことから、Ti が 4+で存在する場合に UV 照射による着色が生じるものと 考えられた。

Mg ドープ試料では as grown および H₂-O₂ ガス炉でアニールした場合は無色であっ たが、大気中で熱処理した場合、黒褐色に変化した。これらのいずれの試料に対しても、 UV 照射前後で色の変化はなかった。Fe ドープ試料では H₂-O₂ ガス炉アニール後でも 大気中アニール後でも無色であった。しかし、大気中アニール試料は UV 照射によりご く薄い茶色に着色した。Si ドープ試料は H₂-O₂ ガス炉アニール後でも大気中アニール 後でも無色で、UV 照射でも全く色の変化がなかった。以上のことからも UV 照射によ る着色は、Ti が 4+で存在する場合に顕著に見られる現象であることがわかった。

Fig. 2-13(a)に un-doped、Ti:50ppm、Ti:100ppm ドープ試料に対して大気中でアニ ールした後、UV 照射を行なった時の透過率の変化を示す。また Fig. 2-13(b)に Ti:100ppm ドープした as grown および大気中アニール処理試料の UV 照射前後の透過 率変化を示す。アンドープ試料ではほとんど吸収が見られず、UV 照射前後で透過率に 変化はなかった。これに対し、Ti ドープ試料では、UV 照射前試料は、200~300nm の 波長領域において、Ti⁴⁺に起因する 5.4eV の吸収、F センター (6.05eV)、F⁺センター (5.95eV、5.4eV、4.8eV) 等[16~19]が複合していると考えられる吸収が観察された。 UV 照射後、これら紫外域の吸収は全体的に増加し、240nm 付近の Ti⁴⁺と考えられる吸 収ピークは明瞭でなくなり、225nm 付近に吸収ピークがシフトした。これは UV 照射 により、Ti⁴⁺が減少し、F⁺センターが増加したためと考えられる。また、410nm をピ ークとする可視域での吸収が顕著に現れ、茶色の着色と一致した。

Fig. 2-15 は、Si、Mg、Fe ドープサファイアの UV 照射前後の透過率を示す。Si ド ープ試料の場合は UV 照射により透過率に変化はなかった。Mg ドープ試料の場合には、 大気中でアニールすると黒褐色と対応する可視域にブロードな吸収が現れたが、UV 照 射による透過率の変化はなかった。Fe ドープ試料の場合は、紫外域に遷移吸収が見ら れた。また UV 照射により 400nm 付近にごくわずかではあったが吸収が見られ、淡い 着色と一致した。

以上の結果から、価数が変化しやすい Ti および Fe において、UV 照射による可視域 での吸収、すなわち、着色が起きると結論付けられた。

Fig. 2-12 Color change of specimens before and after UV irradiation.Specimens were (a) as grown, (b) annealed in oxidized atmosphere,(c) annealed in reduced atmosphere.

Fig.2-13 Transmittance change before and after UV irradiation(a) Compare between before and after UV irradiation(b) Detail of transmittance change in the UV region

Fig.2-14 Transmittance of Si, Fe and Mg doped sapphire

2.3.2.3 欠陥反応式によるカラーセンターについての考察

サファイア中の欠陥については非常に多くの研究がなされている[20~37]。サファイ アは融点が高く結晶を育成する際には Ir、Mo,W などの高融点金属を使用するため還 元雰囲気中で育成することが多い。そのため、酸素空孔($V_0^{\bullet \bullet}$)、F センター(V_0^{\bullet})、F⁺セン ター(V_0^{\bullet})など多種類の酸素空孔に起因する欠陥が確認されている[21,23,24]。(2-1)式の 平衡は温度や酸素分圧により変化する。

$$0_{0}^{\times} \to V_{0}^{\times} + 1/2O_{2}(g) \to V_{0}^{\bullet} + e' + 1/2O_{2}(g) \to V_{0}^{\bullet\bullet} + 2e' + 1/2O_{2}(g)$$
(2-1)

Ti ドープサファイアに関するこれまでの報告によると、Ti⁴⁺による吸収は 5.4eV(230nm)、5.2eV(240nm)に、F センターは 6.05eV(205nm)、F⁺センターは 5.95eV(210nm)、5.4eV(230nm)、4.8eV(260nm)に存在する。

またこれまで Ti ドープサファイアについて、UV 照射による可視域における吸収、 すなわち 410nm 付近を中心とするブロードな吸収 (以降「カラーセンター (410nm)」 と記す)を論じている報告は少ないが、次の(2-2)式および(2-3)式に示されるように、 Evans ら[20]、および Moskvin ら[13]は、Al サイトの空孔にホールがトラップされた ことが着色の原因だと説明している。ここで、O₀は活性な酸素イオンを、V_{Al} は Al 空 孔にトラップされたホールを表す。

 $Ti_{Al}^{\bullet} + 0_{0}^{\times} + h_{V}(Ex:_{\lambda < 300 \text{ nm}}) \to Ti_{Al}^{\times} + 0_{0}^{\bullet}$ (2-2) $V_{Al}''' + 0_{0}^{\bullet} \to V_{Al}'' + h_{V}(Em:_{\lambda = 410 \text{ nm}}) + 0_{0}^{\times}$ (2-3)

さらにショットキー型の欠陥 ($2V_{A1}^{\prime\prime\prime}$ + $3V_0^{\bullet\bullet}$) がサファイア中には存在すると考えられる。この欠陥は熱力学的に安定であるためである。また(2-4)式に示すように $V_0^{\bullet\bullet}$ が V_0^{\bullet} や V_0^{\bullet} に変化する際にはホール (h[•]) が生成する。この h[•] が Al 空孔 $V_{A1}^{\prime\prime\prime}$ にトラップ されカラーセンターが生成すると考えられている。

 $V_0^{\bullet\bullet} \to V_0^{\bullet} + h^{\bullet} \to V_0^{\times} + 2h^{\bullet}$ (2-4)

育成後のノンドープサファイアは F センターによる 200nm 付近の吸収がほとんどな い。また V_0^{\bullet} や $V_0^{\bullet \bullet}$ は電荷のバランスを取る必要があるためほとんど生成しないと考え られることから、ノンドープの as grown 結晶には、 $V_{AI}^{\prime\prime\prime}$, $V_0^{\bullet \bullet}$ と少量の V_0^{\star} が存在す ると考えられる。空気中でアニールすると 200nm 付近の吸収はさらに減少することか ら、(2-1)式に示すようにほとんどの V_0^{\star} は O_0^{\star} に酸化される。そのため UV 照射による カラーセンターの生成はなかったものと考えられる。

SiO₂をドープした場合、ノンドープと変わらない結果であった。このとき Si イオン と O イオンはショットキー型の空孔に置換すると考えられ、(2-5)式のように 2Si_{Al} + 40_0° と $2V_{Al}^{\prime\prime\prime}$ + $2V_0^{\circ\circ}$ が生成すると考えられる。Si_{Al} は酸化、還元で価数変化はなく、 0_0° のごく一部が V_0° に還元されるのみで、ノンドープの場合と同様、光学特性に影響を与 えなかったものと考えられる。

$$2SiO_2 + 4V_{A1}''' + 6V_0^{\bullet\bullet} \to 2Si_{A1} + 2V_{A1}''' + 4O_0^{\times} + 2V_0^{\bullet\bullet}$$
(2-5)

TiO₂をドープした場合もSiO₂の場合と同様、Ti⁴⁺O²⁻² が2Ti^{IV}_{Al} + 40[×] と 2V^{''}_{Al} + 2V[•]₀ を生成すると考えられる(2-6)。以降、Ti^{IV}、Ti^{III} はそれぞれ Ti⁴⁺、Ti³⁺ として存在 する状態を示すものとする。

$$2\text{Ti}O_2 + 4V_{\text{Al}}^{\prime\prime\prime} + 6V_0^{\bullet\bullet} \to 2\text{Ti}_{\text{Al}}^{\text{IV}\bullet} + 2V_{\text{Al}}^{\prime\prime\prime} + 4O_0^{\times} + 2V_0^{\bullet\bullet}$$
(2-6)

もし TiO₂ が完全に Ti₂O₃ に還元されているとしたら、O²⁻ は酸素ガスとして放出され 同時にe'を生成する。この電子が Ti⁴⁺ を Ti³⁺に還元することから、(2-7)式が(2-1)と(2-6) 式から導かれる。

$$2\text{Ti}^{I_{Al}} + 2V_{Al}''' + 30_{0}^{\times} + (V_{0}^{\bullet\bullet} + 2e' + 1/2O_{2}(g)\uparrow) + 2V_{0}^{\bullet\bullet}$$

$$\rightarrow 2\text{Ti}^{III\times}_{Al} + 2V_{Al}''' + 30_{0}^{\times} + 3V_{0}^{\bullet\bullet} + 1/2O_{2}(g)\uparrow$$

$$\rightarrow 2\text{Ti}^{III\times}_{Al} + 30_{0}^{\times}$$
(2-7)

還元された Ti ドープサファイアでは、(2-7)式に示すようにTi^{IV•} が完全にTi^{III×} になったとすれば、 V_0^{*} (F-center) や V_0^{\bullet} (F⁺-center)などの酸素欠損型カラーセンターは存在

しないため、UV領域での吸収がほとんどない。

一方、as-grown の Ti ドープサファイアは完全な還元状態ではなく、酸素分圧は 10⁻⁶ atm 程度の弱還元雰囲気である。そのため(2-7)式において、電子(e') は 2Ti^{IV・} や酸素 空孔 V₀[•]にトラップされ、 V₀[•] (F⁺-center) や V₀[×] (F -center)が(2-8)式に示すように生 成する。

 $2\mathrm{Ti}_{\mathrm{Al}}^{\mathrm{IV}\bullet} + 2\mathrm{e}' + 2\mathrm{V}_{\mathrm{O}}^{\bullet\bullet} \to 2\mathrm{Ti}_{\mathrm{Al}}^{\mathrm{IV}\bullet} + 2\mathrm{V}_{\mathrm{O}}^{\bullet} \to 2\mathrm{Ti}_{\mathrm{Al}}^{\mathrm{IV}\bullet} + \mathrm{V}_{\mathrm{O}}^{\star\bullet} + \mathrm{V}_{\mathrm{O}}^{\star}$ (2-8)

さらに電子(e)は、(2-1)式に示す V₀の形成によっても生成するため、(2-9)式が導かれる。

$$2\text{Ti}_{Al}^{\text{IV}\bullet} + 2\text{V}_{Al}^{\prime\prime\prime} + 30_{0}^{\times} + (\text{V}_{0}^{\bullet} + e' + 1/2\text{O}_{2}(g)\uparrow) + 2\text{V}_{0}^{\bullet\bullet}$$

$$\rightarrow \text{Ti}_{Al}^{\text{IV}\bullet} + \text{Ti}_{Al}^{\text{III}\times} + 2\text{V}_{Al}^{\prime\prime\prime} + 30_{0}^{\times} + \text{V}_{0}^{\bullet} + 2\text{V}_{0}^{\bullet\bullet} + 1/2\text{O}_{2}(g)\uparrow$$
(2-9)

結果として as-grown の Ti ドープサファイアには、 $V_{Al}^{\prime\prime\prime}$, $V_0^{\bullet\bullet}$, Ti^{III×}, Ti^{IV•}, V_0^{\bullet} , V_0^{\star} の 各種の欠陥が存在する。そのため UV 領域にブロードな吸収が存在する。

酸化された Ti ドープサファイアでは、Ti は Ti⁴⁺に酸化され、 V₀[×] は容易に 0[×]₀ に電荷の変化なく酸化される。これは Fig. 2-9(b)において、240nm のピークが明瞭になっているのに対して、210nm の吸収が減少していることと対応する。式(2-7)および(2-9)において、Ti^{III}_{Al} は Ti^{IV}_{Al} は逆の反応で酸化され電子が生成し、V₀^{••} にトラップされ、再度 V₀[•] が生成する。よってこれらの式から(2-10)式が導かれる。

$$2\text{Ti}_{Al}^{\text{III} \times} + 30_{0}^{\times} + 2V_{Al}^{\prime\prime\prime} + 3V_{0}^{\bullet\bullet}$$

$$\rightarrow 2\text{Ti}_{Al}^{\text{IV} \bullet} + 2e' + 30_{0}^{\times} + 2V_{Al}^{\prime\prime\prime} + 3V_{0}^{\bullet\bullet}$$

$$\rightarrow 2\text{Ti}_{Al}^{\text{IV} \bullet} + 30_{0}^{\times} + 2V_{Al}^{\prime\prime\prime} + V_{0}^{\bullet\bullet} + 2V_{0}^{\bullet}$$
(2-10)

そして、酸化された Ti ドープサファイア中には $V_{Al}^{\prime\prime\prime}$, V_{O}^{\bullet} , Ti $_{Al}^{IV}$, V_{O}^{\bullet} が存在することとなり、メインの Ti⁴⁺による吸収とわずかに F⁺センターによる吸収が見られる。

UV 照射により、 Ti_{Al}^{IV} は UV を吸収し、 $Ti_{Al}^{III \times}$ とホール (h)となる。

$$\operatorname{Ti}_{\mathrm{Al}}^{\mathrm{IV}} + hv \to \operatorname{Ti}_{\mathrm{Al}}^{\mathrm{III} \times} + h^{\bullet}$$
 (2-11)

生成したホール(h・)は Al 空孔にトラップされ、新たなカラーセンターが生成し、茶色に 着色する。しかしこのカラーセンターがV''_AI, V'AI のいずれであるかはこの研究から はわからない。

$$2\text{Ti}_{Al}^{\text{IV}\bullet} + 2\text{V}_{Al}^{\prime\prime\prime} + 40_{0}^{\times} + 2\text{V}_{0}^{\bullet\bullet} + hv$$

$$\rightarrow 2\text{Ti}_{Al}^{\text{III}\times} + 2\text{h}^{\bullet} + 2\text{V}_{Al}^{\prime\prime\prime} + 40_{0}^{\times} + 2\text{V}_{0}^{\bullet\bullet}$$

$$\rightarrow 2\text{Ti}_{Al}^{\text{III}\times} + 2\text{V}_{Al}^{\prime\prime} + 40_{0}^{\times} + 2\text{V}_{0}^{\bullet\bullet} \qquad (2-12)$$

それと同時に、F-center (V_0^{x}) と F+-center (V_0^{\bullet}) も UV により励起されホール (h) と 電子 (e')を生成する。この電子が酸素空孔(V0) にトラップされ F+センター(V0)を新た に生成する。

- $V_0^{\bullet} + hv \rightarrow V_0^{\times} + h^{\bullet}$ (2-13)
- $V_0^{\times} + hv \rightarrow V_0^{\bullet} + e'$ (2-14) $e' \ + \ V_0^{\bullet \bullet} \ \rightarrow V_0^{\bullet}$
- (2-15)

この(2-13)から(2-15)式の連鎖反応により、F-center (V₀)とF⁺-center (V₀)が増加し、 結果として 200~300nm の吸収が増加する。さらに(2-10)式は次の(2-16)、(2-17)式のよ うに書き換えることもできる。

$$2\text{Ti}_{Al}^{IV} + 30_{0}^{\times} + 2V_{Al}^{'''} + V_{0}^{\bullet\bullet} + 2V_{0}^{\bullet} + hv$$

$$\rightarrow 2\text{Ti}_{Al}^{III\times} + 2h^{\bullet} + 30_{0}^{\times} + 2V_{Al}^{'''} + V_{0}^{\bullet\bullet} + 2V_{0}^{\times} + 2h^{\bullet}$$

$$\rightarrow 2\text{Ti}_{Al}^{III\times} + 30_{0}^{\times} + 2V_{Al}^{\prime} + V_{0}^{\bullet\bullet} + 2V_{0}^{\times} \qquad (2-16)$$

$$2\text{Ti}_{Al}^{III\times} + 30_{0}^{\times} + 2V_{Al}^{\prime} + V_{0}^{\bullet\bullet} + 2V_{0}^{\times} + hv$$

$$\rightarrow 2\text{Ti}_{Al}^{III\times} + 30_{0}^{\times} + 2V_{Al}^{\prime} + V_{0}^{\bullet\bullet} + (2V_{0}^{\bullet} + 2e')$$

$$\rightarrow 2\text{Ti}_{Al}^{III\times} + 2V_{Al}^{\prime} + V_{0}^{\times} + 2V_{0}^{\bullet} \qquad (2-17)$$

結局、UV 照射後には Ti^{III×}, V^{'''}_{Al}, (V^{''}_{Al}, V[×]_{Al}, V[×]_{Al}), V[•]₀, (V[•]₀, V[×]₀) の点欠陥が存在するこ

とになる。そして Al 空孔にトラップされたホール (V^{*x*}_{Al}, V^{*x*}_{Al}) が可視域での吸収の 原因であると考えられる。

MgOをドープした場合、(2-18)式のように表される。

 $2V_{Al}''' + 3V_0^{\bullet\bullet} + 2MgO \rightarrow 2Mg_{Al}' + V_0^{\bullet\bullet} + 20_0^{\times}$ (2-18)

この場合、 V_0^x や V_0^o は存在せず、as-grown で Mg ドープサファイアは無色である。 しかしながら、大気中でアニールすると 450nm 付近にピークを持つブロードな吸収が 現れ、黒褐色に着色する。この吸収は Ti ドープサファイアに UV を照射したとき茶色 に着色する Al 空孔にトラップされたカラーセンターと類似している。おそらく酸化時 に、 $V_0^{\bullet\bullet}$ からホールが放出されこれが Mg'_{Al} にトラップされたと考えられる。ここで (Mg'_{Al}: h[•])× は Al サイトに置換した Mg イオンに、ホールがトラップされた状態を示 す。UV 照射で色や吸収に変化がなかったのは、Mg の価数変化がなく、 V_0^x や V_0^\bullet の UV 域に吸収のあるカラーセンターがないためと考えられる。

$2Mg'_{Al} + V_0^{\bullet\bullet} + 1/2O_2 \rightarrow 2Mg'_{Al} + O_0^{\times} + 2h^{\bullet} \rightarrow 2(Mg'_{Al} : h^{\bullet})^{\times} + O_0^{\times}$ (2-19)

Fe ドープサファイアの場合、Fe のほとんどは Al サイトに Fe³⁺として置換している と考えられる。しかしごく少量は Fe²⁺として存在し、この時ホールを放出することか ら F センターや F⁺センターは as-grown 結晶にはほとんど存在しない。しかし、UV 域 には Fe³⁺の遷移吸収が存在するため、UV を照射するとFe^{III}× が Fe^{II}/_{Al} となりホール を生成する。このホールが Al 空孔にトラップされ、Ti ドープサファイアと同様のカラ ーセンターを生じたものと考えられる。しかし Fe は 3+として比較的安定にサファイア 中に存在していると考えられ、カラーセンターによる吸収は極くわずかである。

 $2V_{Al}''' + 3V_0^{\bullet\bullet} + Fe_2O_3 \rightarrow 2Fe_{Al}^{III\times} + 3O_0^{\times}$ $2Fe_{Al}^{III\times} + 2V_{Al}''' + 3V_0^{\bullet\bullet} + h_V \rightarrow 2Fe_{Al}^{II} + 2V_{Al}'' + 3V_0^{\bullet\bullet}$ (2-20)

2.3.2.4 フォトルミネッセンス (PL)

Ti ドープサファイアにおけるカラーセンターと青色発光には関係があることが知られている。これまで青色発光がTi⁴⁺、Ti³⁺、F⁺センターによるなどのいくつかの報告があるが、実際にはよくわかっていないことが残されている。

Fig. 2-15 に 254nm で励起した場合の PL スペクトルを示す。254nm の波長は、低 圧水銀ランプの主波長であり、Ti⁴⁺(240nm)や F⁺センター(258nm)の波長とも近い。酸 化された Ti ドープサファイアは、410nm にピークを持つ顕著な発光を示した。この波 長は UV 照射後のカラーセンターの吸収ピークの波長とも一致する。発光強度は Ti⁴⁺ の量に比例して増加した。これに対し、ノンドープサファイアや還元された Ti³⁺ドープ サファイアにおいてはほとんど発光は見られなかった。Si, Fe, Mg ドープサファイアに おいても発光はほとんど観察されなかった。よってこの青色の発光は、Ti⁴⁺に起因する ものであると考えられる。

Fig.2-16 に、410nm の発光の励起波長依存性を示す。200nm から照射するため初期 に発光強度が低下していることを考慮する必要があるが、励起波長のピークは約 230~240nm である。この波長は F-center(205nm)の波長とは異なることから、Ti⁴⁺に 起因するものと考えることができる。

Fig. 2-17 に、Fig. 2-15 における発光強度とFig. 2-12 における UV 照射後の 410nm における吸収係数の関係を示す。発光強度と吸収係数はともに Ti⁴⁺量に比例してほぼ直線的に増加している。この強い相関からも、UV 照射による着色が Ti⁴⁺に起因するものであることがうかがえる。FFM による育成では、ブールの外周部にドープした元素が偏析することが知られている。これまでの実験で、変動の大きい値ではあるが、中心部でドープ量の 20~50%、外周部で 120~180%の濃度になることがわかっている。今回 Ti を 50ppm ドープした試料では、中心部で 14ppm、外周部で 78ppm が ICP 分析で検出された。他の濃度でも、発光強度や吸収係数の結果から、ほぼ同様の割合で Ti がドープされているものと考えられる。

Fig. 2-15 Photoluminescence spectrum of Ti-doped sapphire.

Fig. 2-16 Exiting-wavelength dependence for 410nm emission.

Fig. 2-17 Emission and absorption versus Ti concentration

2.3.2.5 Ti-Fe、Ti-Mg 共ドープの効果

アルミナセラミックスにおいては、UV 照射着色が Mn と Fe の共添加によって防止 できることが報告されている[38]。そこで Ti⁴⁺を Fe²⁺や Mg²⁺とコドープすることによ り、着色が防止できないか実験した。前述の通り着色のメカニズムは、(1) UV 照射に より Ti⁴⁺が Ti³⁺となりホールを生成する、(2) そのホールが Al 空孔にトラップされカラ ーセンターを生成する、というプロセスである。そこで (1/2Ti⁴⁺ + 1/2Fe²⁺)³⁺ または (1/2Ti⁴⁺ + 1/2Mg²⁺)³⁺ のペアを形成すれば Ti⁴⁺は電荷が補償され安定である。さらに Ti⁴⁺から Ti³⁺となりホールを生成したとしても、Fe²⁺が Fe³⁺となりホールを消費する (Ti⁴⁺ + Fe²⁺) → (Ti³⁺ + Fe³⁺) ことが期待できる。

Fig. 2-19 に UV 照射後の吸収係数と PL 発光強度を示す。いずれも Ti-Fe、Ti-Mg の 共ドープにより期待通り減少していた。これらの値は Ti のみの場合に比べ約半分に減 少していたものの、完全にはなくならなかった。これは共ドープした元素が約半分しか 有効にペアを形成していないためであると考えられる。

また Mg ドープサファイアは大気中でアニールすると黒褐色に着色したが、Ti と Mg を共ドープした場合は、大気中でアニールしても無色であった。これは Ti³⁺が Ti⁴⁺に酸 化され電子を放出するが、その電子が式(2-16)で生成するホールと打ち消し合うことで 電荷のバランスを取り、無色になったものと考えられる。

Fig. 2-18 PL emission and absorption after UV irradiation of co-doped sapphire.

2. 4 本章のまとめ

本章においては、FFM により各種の元素をドープしたサファイアを育成し、その光 学特性について調査を行った。

まず、遷移金属元素をドープした場合のドープ量や熱処理雰囲気で透過率がどのよう に変化するかを調査した。その結果、3価の状態でAlサイトに置換すると遷移金属固 有の吸収を示し、着色することが明らかになった。

次に、Tiドープサファイアにおいて、UV を照射すると茶色に着色するという問題の 解決を図るべく、そのメカニズムを他の元素(Fe, Mg, Si)をドープした場合と比較し て調査した。Tiドープサファイアは、育成直後 Ti³⁺に起因する薄いピンク色をしている が、空気中でアニールすると Ti⁴⁺に変化し無色になった。これに UV 照射すると茶色く 変色した。UV 照射により着色するメカニズムは、UV 照射により Ti⁴⁺が Ti³⁺へ変化し、 同時に生成されるホールが Al 空孔にトラップされることにより、300~600nm にかけ てのブロードな吸収が生じたと推定された。UV 照射時に青色の発光が見られるが、こ れは F センターや F⁺センターによるものではなく、Ti⁴⁺に起因するものであると考え られた。この UV 照射による着色は、Fe³⁺が Fe²⁺に変化することによっても生じるが、 Fe は 3 価で比較的安定であるため、着色はごくわずかであった。さらに Mg ドープサ ファイアを空気中で熱処理すると黒褐色に着色した。この現象も酸化時にホールが Al サイトに置換した Mg イオンにトラップされ起こるものと推論した。

これらの考察を元に、Tiによる着色を電荷補償により軽減することを試みた。その 結果、Ti+FeおよびTi+Mgのコドープにより、Tiの価数変化を制御し、UV照射に よる着色が軽減することを確認した。

参考文献(第2章)

- [1] 広瀬三夫「宝石をつくる」全国出版社刊(1983)
- [2] 米澤卓三「メルトから製造される宝石と用途」、セラミックス、31、501-504 (1996)
- [3] 米澤卓三、山本博文「ベルヌーイ法 (Al₂O₃,TiO₂)」バルク単結晶の最新技術と応用 開発、シーエムシー出版、p195-201 (2006)
- [4] http://www.is.nagoya-u.ac.jp/dep-cs/morilabo/pdf_file_quantum/1.pdf
- [5] 川南修一、安達信泰、太田敏孝、*名古屋工業大学先進セラミックス研究センター年* 報、**Vol.1**, 3-8 (2012)
- [6] S. Kawaminami, H. Yamamoto, Y. Murata, J. Toyoshima and K. Uwe, Publication of Patent applications in Japan, P2004-123467A (2004).
- [7] P. F. Moulton, J. Opt. Soc. Am., B3, 125 (1986).
- [8] K. F. Wall and A. Sanchez, The Lincoln Laboratory Journal, 3, 447-462 (1990).
- [9] B. Macalik, L. E. Bausa, J. Garcia-Sole, F. Jaque, J. E. Munoz Santiuste and I. Vergara, Appl. Phys., B55, 144-147 (1992).
- [10] G. Blasse and J. W. M. Verweij, *Materials Chemistry and Physics*, 26, 131-137 (1990).
- [11] Y. V. Malyukin, A. N. Lebedenko, N. L. Pogrebnyk, L.A. Litvinov, M. Roth and N. I. Leonyuk, *Optics Communications*, **186**, 121-125 (2000).
- [12] T. Daimon, H. Naruse, H. Watanabe, H. Oda and A. Yamanaka, *IOP Conf. Series: Materials Science and Engineering*, 18, 102012 (2011).
- [13] N. A. Moskvin, V. A. Sandulenko and E. A. Sidorova, *J. Appl. Spectroscopy*, **32**, 592-596 (1980).
- [14] J. Kvapil, B. Perner, J. Sulovsky and J. Kvapil, *Kristall und Technik*, 8, 247-251 (1973).
- [15] G. Molnar, M. Benabdesselam, J. Borossay, D. Lapraz, P. Iacconi, V. S. Kortov and A. I. Surdo, *Radian Measurements*, **33**, 663-667 (2001).
- [16] K. H. Lee, and J. H. Crawfold, Jr., *Physical Review B*, **19**, 3217-3221 (1979).
- [17] J. D. Brewer, B. T. Jeffries, and G. P. Snmmers, *Physical Review B*, 22, 4900-4906 (1980).

- [18] S. Choi and T. Takeuchi, *Physical Review Letters*, **50**, 1474-1477 (1983).
- [19] R. C. Powell, J. L. Caslasvsky, Z. AlShaieb and J. M. Bowen, *J. Appl. Phys.*, 58, 2331-2336 (1985).
- [20] B. D. Evans, G. J. Pogatshnik, and Y. Chen, Nuclear Instruments and Methods in Physics Research, B91, 258-262 (1994).
- [21] B. D. Evans and L. S. Cain, Radiation Effects and Defects in Solids, 134, 329-332 (1995).
- [22] S. V. Solov'ev, I. I. Milman, and A. I. Syurdo, *Physics of the Solid State*, 54, 726-734 (2012).
- [23] V. S. Kortov, I. A. Vainshtein, A. S. Vokhmintsev, and N. V. Gavrilov, J. Appl. Spectroscopy, 75, 452-455 (2008).
- [24] A. I. Surdo, V. S. Kortov, and V. A. Pustovarov, *Radiation Measurements*, 33, 587-591 (2001).
- [25] W. Chen, H. Tang, C. Shi, J. Deng, J. Shi, Y. Zhou, S. Xia, Y. Wang, and S. Yin, *Appl. Phys. Lett.*, 67, 317-319 (1995).
- [26] M. Yamaga, T. Yosida, S. Hara, N. Kodama, and B. Henderson, *J. Appl. Phys.*, 75, 1111-1117 (1994).
- [27] N. A. Kulagin, Optics and Spectroscopy, 101, 402-409 (2006).
- [28] M. J. Springs and J. A. Valbis, Phys. Stat. Sol. (b), 125, k165 (1984).
- [29] S. K. Mehta and S. Sengupta, Nuclear Instruments and Methods, 164, 349-354 (1979).
- [30] P. A. Kulis, M. J. Springs, I. A. Tale, V. S. Vainer, and J. A. Valbis, *Phys. Stat. Sol. (b)*, **104**, 719 (1981).
- [31] G. Molnar, J. Borossay, M. Benabdesselan, P. Iacconi, D. Lapraz, K. Suvegh, and A. Vertes, *Phys. Stat. Sol. (a)*, **179**, 249-260 (2000).
- [32] R. Reisfeld, M. Eyal and C. K. Jorgensen, Chimia, 41, 117-119 (1987).
- [33] P. Lacovara, L. Esterowitz, and M. Kokta, *IEEE J. Quantum Electronics*, QE-21, 1614-1618 (1985).
- [34] N. D. M. Hine, K. Frensch, W. M. C. Foulkes, M. W. Finnis, and A. H. Heuer, www.tcm.phy.cam.ac.uk/~mdt26/esdg_slides/hine030609.pdf (2009).

- [35] D. Lapraz, P. Iacconi, Y. Sayadi, P. Keller, J. Barthe, and G. Portal, *Phys. Stat. Sol. (a)*, **108**, 783-794 (1988).
- [36] B. Li, S. L. Oliveira, S. C. Rand, J. A. Azurdia, T. R. Hinklin, J. C. Marchal, and R. M. Laine, *J. Appl. Phys.*, **101**, 053534 (2007).
- [37] S. Sanyal, and M. S. Akselrod, J. Appl. Phys., 98, 033518 (2005).
- [38] M. Yanagisawa, I. Sugiura, T. Hotta, J. Tsubaki and H. Hosono, J. Cer. Soc. Japan, 101, 1189-1191 (1993).

第3章 大型サファイアの育成とその紫外域での光学特性

3.1 はじめに

サファイア(a-Al₂O₃ 単結晶)は紫外から赤外までの広い範囲で吸収が無く透明で ある、化学的、熱的に安定である、材料が入手しやすいなど多くの利点を有し、各種の 用途に使用されている[1]。1990年代に青色 LED が開発されて以来、サファイアの需 要は急拡大している。現在では照明や液晶(LCD)のバックライトなどに使用される 白色 LED のほとんどにサファイア基板が使用されている。

LED 用のサファイア基板は、シリコンウェハと同様プロセスコストを減少させるために大型化が望まれている。2000 年代当初は 2 インチのウェハであったものが、3 インチ、4 インチのウェハが使用されるようになった。現在は 4 インチが主流であるが、6 インチウェハも量産に使用され始めており、8 インチウェハも近い将来量産されると思われる。

現在 LED 基板用として使用されているサファイアの育成方法は、KY 法、HEM、EFG 法、水平ブリッジマン法などがあり、多くのメーカーが様々な育成方法で品質と低コス ト化を競っている。

一方、近年紫外線発光 LED が開発されるなど[2,3]、UV 光を利用したアプリケーションが数多く開発されており、サファイアが LED 基板としてはもちろん、UV 透過材料としても注目されている。しかし、製造方法や不純物によって吸収を生じることもあり、酸素欠損によるカラーセンターについての報告もいくつかなされている[4~9]。

サファイアの融点は 2050℃と高いため、単結晶の育成には Ir, Mo, W などの高融点 金属をるつぼに使用する。そのため不活性ガス中や還元雰囲気中で結晶を育成すること が多く、酸素欠損型の欠陥が生じやすい。サファイアのバンドギャップは約 9eV で、 約 140nm 以上の波長の光が透過する[10~12]。しかし実際には 200nm 付近で吸収が存 在することが多く[13,14]、 真空紫外域で透過率の高い材料が望まれている。サファイ アの VUV 域での吸収やルミネッセンスに関する研究も多くされているが[15~18]、製 法や欠陥による特性はまだよく理解されていないところが残されている。

3.2 TSMG 法の原理と特徴

大型サファイアの育成は、TSMG(Top Seeded Melt Growth)法と呼ぶ独自の方法 で実施した[19]。Fig. 3-1 に装置の写真を示す(TSMG 法の概念図は Fig.1-8 参照)。ま た Table 3-1 に TSMG 法の特徴を CZ 法、KY 法と比較して示す。

TSMG法はゆっくり回転させながら少しだけ引き上げる点が回転引き上げ法(CZ法) やキロプロス法(KY法)と異なる。CZ法は成長界面がメルトの表面付近であるため 温度勾配が比較的大きいのに対して、TSMG法は液中でゆっくり成長させるため温度 勾配の小さな条件で育成が可能で結晶品質に優れるという特徴がある。この点ではKY 法と同様であるが、ゆっくり回転させながら少しだけ引き上げる点がKY法と異なり、 るつぼとの接触がなく、形状の制御が容易であるという特徴がある。結晶を少しだけ引 き上げながら回転させることによって、結晶を円柱状に成長させることが可能で、引き 上げ速度と冷却速度を制御することにより希望の形状が得られ、固化率を90%以上と することが可能である。さらに結晶成長方位を任意に選択できるため、必要とする面方 位に適した結晶を育成できるという利点がある。

しかしながら TSMG 法はヒーターなどにカーボン部材を使用していることから、酸 素欠損型の吸収を生じやすい。そこで本研究では、TSMG 法で育成したサファイアの 光透過特性と、熱処理による紫外域での透過率変化を詳細に調査することとした。併せ て製法や雰囲気の違いによる光透過特性を調査し考察することにした。

Fig. 3-1 Photograph of the TSMG furnaces.

	CZ	TSMG	КҮ
Classification	Melt Growth	Melt Growth	Melt Growth
Pull-up	Yes	Yes	No
Rotation	Yes	Yes	No
Growth Point	Near the Fluid	In the Melt	In the Melt
	Level		
Temperature Gradient	Large	Small	Small
Crystal's Diameter	Small	Large	Large
Contact with Crucible	None	None	Yes
Control of Shape	Easy	Possible	Difficult
Growing Direction	a, c	a, c, r, m	а

Table 3-1 Comparison table of growing methods.

3.3 実験方法

大型サファイア結晶はクラックル(FFM で結晶化後粉砕)を原料とし、TSMG 法で 育成した。育成した結晶中の不純物は ICP 分析ではすべて検出限界以下であった

(Fe<1ppm, Cr<2ppm, Ti<0.5ppm, Si<10ppm, Mo<5ppm)。育成方法や育成雰囲気の 違いを比較検討するために、CZ 法、火炎溶融法(Flame-Fusion Method「FFM」)で もサファイアを育成した。

Table 3-2 に本実験の結晶育成条件を示す。TSMG 法での育成は Ar ガス雰囲気中で 実施したが、ヒーターなどの炉材にカーボンを使用しているため還元雰囲気下での育成 となっている。比較の目的で、通常よりも CO が多く存在する強還元雰囲気下での育成 も行った(以下「SR-TSMG」と記す)。CZ 法は Ir るつぼを使用し、N₂+O₂(2%)中で 育成を行った。FFM は水素–酸素燃焼炎中で育成した。

得られた結晶は、*c* (0001)面または*a* (11-20)面が透過面になるように切り出し、厚み 2~10mm になるように鏡面研磨した。これを雰囲気調整が可能な縦型管状炉 (雰囲気: 乾燥空気 (露点-70℃)、O₂、湿潤 H₂(2%)/N₂ ガスを 1LPM フロー) で 1400℃および 1500℃で処理した。さらに SR-TSMG 試料については、電気炉 (大気中、1650℃-10h)、 およびガス炉 (H₂-O₂燃焼炎中、1650℃-10h および 1750℃-10h) でアニールした。

200nm~2000nm の透過率は HITACHI U-4100 分光光度計、120~300nm の透過率 は JASCO KV-201、また赤外の透過率は JASCO FT/IR 4100 を使用した。フォトルミ ネッセンス(PL)は HITACHI F-7000 を使用した。X 線ロッキングカーブ(XRC)は RIGAKU Smart Lab 4 結晶法にて測定した。

	FFM	CZ	TSMG
Growing direction	<i>a</i> -axis	caxis	<i>c</i> -axis
Pulling (growing) rate	10 mm/h	2 mm/h	0.2 mm/h
Rotating speed	none	10 rpm	0.2 rpm
Atmosphere	H_2 - O_2 flame	N ₂ +O ₂ (2%)	Ar, Ar+CO
Crystal size	$\varphi 20x40mm$	φ50x100mm	φ250x300mm
Specimens	5mmt	φ23x5mmt	φ23x1,2,5mmt φ33x10mmt

Table 3-2 Growing conditions and preparation of specimens.

Fig. 3-2 Photograph of Vacuum Ultra-Violet Spectrophotometer.

Fig. 3-3 Photograph of X-ray diffractmeter.

Fig. 3-4 Photograph of FT-IR spectrophotometer.

3.4 実験結果及び考察

3.4.1 結晶育成

3 種類の方法で育成した結晶の写真と XRC を Fig. 3-5 に示す。FFM で育成した結晶 は、ピーク割れが見られた。FFM は育成速度が速く温度勾配の大きな育成方法であり、 結晶上部の融液層の厚みが薄いためサブグレインバウンダリが生成したためと考えら れる。CZ 法で育成したサファイアは、FFM のようなピーク割れはなかったが半値幅は 12arcsec であった。これに対し TSMG サファイアの XRC (X 線ロッキングカーブ)の 半値幅は 5arcsec 以下で装置分解能の限界に近く優れた結晶品質であった。

3.4.2 育成方法の違いによる透過率

Fig. 3-6 に 3 種類の方法で育成した結晶の透過率を示す。計算値はセルマイヤーの屈 折率分散式[21]を用いて算出した。TSMG 法で育成した結晶は、200nm 付近に顕著な 吸収が見られ、これはこれまでに報告されている酸素欠損によるカラーセンター

(F-center (205nm)) によるものである[5~10]。F センターは(3-1)式のように生成する。 サファイアは還元雰囲気中で酸素欠損が生じやすいが、Al はサイトの 2/3 しか占有し ていないため、Al 空孔は生成しにくく、F センターが生成する。また、TSMG 結晶で は、F+-center (230nm, 258nm)による吸収もしばしば観察される。

 $Al_2O_3 \rightarrow 2Al_{Al}^{\times} + 3V_0^{\times} + 3/2O_2(g)$ (3-1)

CZ 法で育成した結晶は F センターの吸収は顕著ではないが、258nm、180nm およ び 160nm 付近に吸収があった。これらの吸収ピークは何によるものか不明で、F+セン ター、または他のカラーセンターと思われる。FFM で育成したサファイアも CZ と同 様 258nm、180nm、160nm 付近に吸収が見られたが、CZ よりも吸収は小さく透過率 は高かった。CZ 結晶は O₂ が 2%存在する雰囲気下で育成しているのに対して、FFM サファイアは酸素分圧が約 10⁻⁶atm の酸素-水素燃焼炎中で育成している。酸素-水素 燃焼炎中では、O 原子は雰囲気中に十分に存在しているため F センターの吸収がなく、 F+センターの吸収が CZ に比べ小さかったことから、水素がカラーセンターの生成に有 効である可能性も考えられる。

Fig. 3-5 Photograph of grown crystals and their XRCs.

Fig. 3-6 Transmittance of as grown crystals in UV region. (specimens: c-plane)

3.4.3 TSMG 法で育成したサファイアの光学特性

3.4.3.1 as-grown 結晶の透過率

Fig. 3-7 に TSMG 法で育成したサファイアの as-grown での透過率を示す。F センターによる吸収がいずれの試料にも見られ、厚い試料や強還元試料では F+センターの吸収も見られた。

Fig. 3-7 Transmittance as-grown crystals, (a) *c* (0001) plane, (b) *a* (11-20) plane.

3.4.3.2 熱処理による透過率変化

Fig. 3-8 に 1400℃, 10h、雰囲気を変えて熱処理した後の透過率を示す。O2 中アニー ルが最も F センターの解消に効果があり、c面 2mmt の試料では F センターの減少に よる透過率改善が見られ、205nm で約 60%まで改善した。また同じc面 2mmt の試料 で、H₂(2%)-H₂O(2%)/N₂ガスおよび空気中で熱処理した場合、205nm で約 30%まで透 過率が改善した。H₂(2%)-H₂O(2%)/N₂ガス雰囲気の酸素分圧は 1400℃で約 10⁻¹⁰atm で、 FFM の育成雰囲気と H₂/H₂O 比は同程度である。それでも空気中と同程度の透過率向 上が見られたことから、活性な O 原子が有効に機能していると考えられる。c面と a面 を比べると、c面の方が F センターが減少していて、透過率が改善している。これは結 晶構造が c軸方向に酸素とアルミニウムのレイヤーを重ねた構造をしており、アルミニ ウムイオンは 3 分の 2 のサイトしか占めていないため、c軸方向の酸素の拡散速度が速 いためと考えられる[22,23]。

 O_2 中で熱処理をした場合(3-2)式に示すように F センターの吸収は減少する。しかし 258nm 付近と 195nm 付近にピークがあり、VUV 域の吸収が増加した。170nm と 195nm に F+センターによる吸収があるとの報告がある[18,26]。サファイア中ではショ ットキー型の欠陥($2V_{Al}^{"}$ + $3V_{0}^{\bullet \bullet}$)が少なからず存在していて、これらは熱力学的に安定な 欠陥である。 しかし $V_{0}^{\bullet \bullet}$ はカラーセンターとして振る舞わないと考えられ、 O_{0}^{\bullet} に 酸化されるときホール(h•)を生成する(3-3 式)。このホールが V_{0}^{\bullet} にトラップされ て V_{0} を生成すると考えられる(3-4 式)。

 $V_0^{\times} + 1/2O_2(g) \to 0_0^{\times}$ (3-2) $V_0^{\bullet\bullet} + 1/2O_2(g) \to 0_0^{\times} + 2h^{\bullet}$ (3-3) $V_0^{\times} + h^{\bullet} \to V_0^{\bullet}$ (3-4)

Fig. 3-8 Transmittance after heat treatment at 1400° C for 10h, (a) c(0001) plane, (b) a(11-20) plane.

Fig. 3-9 に乾燥空気中で熱処理した場合の透過率変化を示す。1400℃、10hの焼成を 繰り返すと、200nm付近の透過率は、2回処理後が最も高く、3回目では透過率が低下 し、トータル 50h 熱処理するとさらに透過率の低下が見られた。また1500℃で焼成し た場合にも1400℃で長時間熱処理した場合と同様、透過率が低くなっていた。この時、 170nm、195nm、258nmに吸収ピークがあり、熱処理を繰り返すとこれらの吸収が増 大することで透過率が低下した。

これらの吸収が F+センターによるものであるとすれば、酸化により F センター V₀[×](F-center)とV₀^{••}が減少し((3-2)、(3-3))、F+センター(V₀[•])が増加すると考えら れる((3-3)、(3-4))。

Fig. 3-9 Transmittance change annealed in the air. (Specimens; *c* (0001) plane, 2mmt)

Fig. 3-10 に H₂-H₂O/N₂雰囲気で処理した場合の透過率を air 中で処理した場合と比較して示す。Air 中、1500℃で熱処理した場合は、前述の 170nm、195nm、258nm に吸収ピークがあり、F センターが消滅した後、F+センターが生成し透過率が低下していると考えられる。これに対して H₂·H₂O/N₂ 雰囲気中で処理した場合にはこれらの吸収ピークは見られず、155nm, 180nm, 230nm 付近にわずかに吸収が見られたが、全体に吸収は小さかった。155nm, 180nm の吸収は、as grown の FFM および CZ にも見られ (Fig. 3-7)、F+センターとは異なる吸収であると考えられる。これらの結果から、H₂·H₂O/N₂ 雰囲気で処理した場合には、水素が結晶中に取り込まれ、(3-3)式で生成したホール(h[•])と反応し、格子間水素(H_i[•])を生成すると考えられる(3-5 式)。

 $H_2 + 2h^{\bullet} \rightarrow 2H_i^{\bullet}$ (3-5)

このように、H₂O や H₂が存在する雰囲気では、(3-5 式)に示すように格子間水素が生成し(3-4)式で生成したホール(h)を消費するため、(3-4)式に示す F+センターの生成を抑制する効果があり、高い透過率が得られたと考えられる。

Fig. 3-11 Transmittance after heat treatment in the air and H_2 - H_2O/N_2 atmosphere. (Specimens; c (0001) plane, 2mmt)

3.4.3.3 強還元 TSMG サファイアの光学特性

結晶育成雰囲気は育成ごとに多少ばらつくため、意識的に通常よりも還元が強い雰囲 気で育成したサファイアについて調査を行った。本実験では吸収を顕著にするため ϕ 33x10mmtの試料を使用した。強還元雰囲気で育成した結晶は薄黄色をしていた。Fig. 3-11 に強還元雰囲気で育成したサファイアの透過率を示す。強還元された試料では F-center の吸収波長幅が広くなり、F+の吸収が増加していた。さらに、F₂+-center の吸 収ピークが 355nm に現れ、F₂-center (300nm)、F₂²⁺-center (285nm, 455nm)と思われ る吸収も確認された。455nm における F₂²⁺-center の吸収が薄黄色の原因である。

Fig. 3-11 Transmittance of strongly-reduced TSMG (SR-TSMG) sapphire. (Specimens: *c*-plane, 10mmt)
Fig. 3-12 に強還元試料について熱処理前後の透過率変化を示す。1650℃でアニール した場合、大気中でも H₂-O₂ 燃焼炎中でも F センターの吸収は完全になくならなかっ た。

これに対し、1750℃、H₂-O₂ガス炉でアニールした場合には、F センター、F⁺センター、F₂+センターなどほとんどのカラーセンターに起因する吸収ピークは見られなくなった。しかし 400nm 以下の UV 域で計算値よりも少し透過率が低い結果となった。これは FFM の場合などと同様、水素をサファイア中に取り込んだ結果、別の吸収が生じたためと考えられる。

Fig. 3-12 Transmittance change of normal and strongly-reduced TSMG sapphire.(Specimens: *c*-plane, 10mmt)

Fig. 3-13 に赤外域の透過率を示すが、H₂-O₂燃焼炎中でアニールすると 3050nm に 吸収ピークが現れる。FFM で育成した場合には 2923nm, 3050nm, 3066nm のピーク が観察され、これらの吸収は OH 基によるもので、ベーサルプレーンに平行な酸素イオ ン三角形の中心に水素が取り込まれていると考えられている[27,28]。as grown の TSMG サファイアにはこれらの吸収ピークは観察されないが、水素 – 酸素炎熱処理に より水素が結晶中に取り込まれていると考えられる。

Fig. 3-13 Transmittance of sapphire in IR region.

UV 透過材料は、UV 域に吸収がないことは当然であるが、UV 照射による発光がな いことも重要であり、F センターや F+センターによる発光は好ましくない。Fig. 3-14 に TSMG 法で育成したサファイアの PL スペクトルを示す。F-center の吸収波長であ る 205nm で励起した場合には 410nm 付近にピークをもつ発光スペクトルが観察され、 通常の育成の場合と強還元で育成した試料間にそれほど強度の差はなかった。一方低圧 水銀ランプの輝線の波長であり、F+センターの吸収に近い 254nm で励起した場合には、 330nm をピークとする発光が確認された。通常育成に比べ強還元試料では発光強度が 強く、F+センターの吸収が増加したことに対応していた。強還元雰囲気下で育成した試 料でも、1750℃、H₂-O₂燃焼炎中で処理した場合は、PL はほとんど観察されなかった。 TSMG サファイアを熱処理した試料では、完全に吸収はなくならなかったが、CZ 試料、 FFM 試料においても顕著な発光は見られなかったことを考慮すると、これらの材料に おける吸収は F+による吸収ではないと考えられる。このことは、F センター、F+セン ターがほとんど消滅し、UV 域において問題となるカラーセンターによる発光も抑えら れたことを示しており、UV 用材料として有益な材料であると考えられる。

Fig.3-15 に吸収係数のグラフを示すが、TSMG 法で育成したサファイアを H₂-O₂燃 焼炎中で熱処理したサファイアは、FFM や CZ 法で育成したサファイアよりも吸収が 小さく、VUV 域で吸収の小さな材料であることがわかった。

Fig. 3-14 Photoluminescence spectrum of sapphire.

Fig. 3-15Absorption coefficient of TSMG-sapphire after heat treatmentcompared with FFM-sapphire.(Specimens; c (0001) plane)Absorption coefficient (α) : α = - (1/x) ln(I/I $_{0}$) x:thickness

3.5 本章のまとめ

TSMG 法により 200mm ウェハが取得できる大型サファイアを育成した。この方法 で育成したサファイアは、LED 基板としての品質を十分満足するものであった。しか し、TSMG サファイアは還元雰囲気中で育成するため F センター、F⁺センター等酸素 欠損型のカラーセンターに起因する吸収が存在した。

これを酸化アニール処理することで、カラーセンターは減少し透過率は改善するが、 a軸方向はc軸方向より拡散が遅く長時間の処理を要すること、厚みが増すと内部まで 酸化するには高温、長時間の熱処理が必要であることがわかった。また、空気中や O_2 中の酸化熱処理により、Fセンターの吸収は減少するが、Fセンターの消滅後は水素の 脱離により放出される電子が酸素空孔にトラップされたことにより生じたと考えられ るF+センターの吸収が増加した。

この吸収を増加させないためには、H₂-H₂O/N₂雰囲気での熱処理が有効であった。F センター、F+センターは強い PL 発光を示したが、熱処理によりカラーセンターによる 吸収と PL 発光が消滅した。特に H₂-O₂ ガス炉でのアニールは酸素の供給ができる雰囲 気で高温処理が可能なことから、強還元されたサファイアや厚みのあるサファイアの熱 処理方法として有効であることがわかった。

- E. R. Dobrovinskaya, L. A. Lytvynov and V. Pishchik, "Sapphire Material, Manufacturing, Applications", Springer Science+Business Media, New York (2009).
- [2] Tokyo University of Agriculture and Technology, and Tokuyama corporation, http://www.tuat.ac.jp/~koukai/gakuho/2012/529/news2_siryou.pdf

 (2013) [in Japanese].
- [3] T. Oto, R. G. Banal, K, Kataoka, M. Funato and Y. Kawakami, *Nature Photonics*, 4, 767-770 (2010).
- [4] A. Ren, Q. Sun, S. Y. Kwon, J. Han, K. Davitt, Y. K. Song, A. V. Nurmikko, W. Liu,
 J. Smart and L. Schowalter, *Phys. Stat. Sol.*, (c) 4, 2482-2485 (2007).
- [5] A. I. Surdo, V. S. Kortov and V. A. Pustovarov, *Radiation Measurements*, 33, 587-591 (2001).
- [6] S. V. Solov'ev, I. I. Milman and A. I. Syurdo, *Physics of the Solid State*, 54, 726-734 (2012).
- [7] B. Li, S. L. Oliveria, S. C. Rand, J. A. Azurdia, T. R. Hinklin, J. C. Marchal and R.
 M. Laine, *J. Appl. Phys.* 101, 053534 (2007).
- [8] K. H. Lee and J. H. Crawford, Jr., *Physical review*, **19**, 3217-3221 (1979).
- [9] V. S. Kortov, I. A. Vainshtein, A. S. Vokhmintsev and N. V. Gavriliv, J. Applied Spectroscopy, 75, 452-455 (2008).
- [10] B. D. Evans, G. J. Pogatshnik and Y. Chen, Nuclear Instruments and Methods in Physics Research, B91, 258-262 (1994).
- [11] T. Tomiki, Y. Ganaha, T. Shikenbaru, T. Futemma, M. Yuri, Y. Aiura, S. Sato, H. Fukutani, H. Kato, T. Miyahara, A. Yonesu and J. Tamashiro, *J. Phys. Soc. Japan*, 62, 573-584 (1993).
- [12] M. E. Thomas, W. J. Tropf and S. L. Gilbert, *Optical Engineering*, **32**, 1340-1343 (1993).
- [13] V. N. Abramov, B. G. Ivanov, A. I. Kuznetsov, I. A. Merilco and M. I. Musatov, *Phys. Stat. Sol. (a)*, 48, 287-292 (1978).

- [14] Y. M. Puzikov, A. Y. Dan'ko, G. T. Adonkin, N. S. Sidel'nikova, V. F. Tkachenko and A. T. Budnikov, *Semiconductor Physics, Quantum Electronics & Optoelectronics*, **3**, 185-190 (2000)
- [15] G. Zhou, Y. Dong, J. Xu, H. Li, J. Si, X. Qian and X. Li, *Materials Letters*, 60, 901-904 (2006).
- [16] R. H. French, H. Mullejans and D. J. Jones, J. Am. Ceram. Soc. 81, 2549-2557 (1998).
- [17] V. A. Arutyunyan, A. K. Babayan, A. N. Belskil, V. A. Gevorkyan, V. N. Makhov and U. M. Martirosyan, *J. Applied Spectroscopy*, **62**, 585-588 (1995).
- [18] V. V. Harutunyan, V. A. Gevorkyan and N. E. Grigoryan, Nuclear Instruments and Methods in Physics Research, A308, 200-202 (1991).
- [19] V. I. Baryshnikov, E. F. Martynovich, L. I. Shchepina and T. A. Kolesnikova, Opt. Spectrosc., 64, 455-457 (1988).
- [20] K. Mochizuki, H. Shimura and S. Kawaminami, *Japan patent*, P4810346 (2011)[in Japanese].
- [21] I. H. Malitson, J. Opt. Soc. Am., 52, 1377 (1962).
- [22] Nicholas D. M. Hine, K. Frensch, W. M. C. DFoulkes, M. W. Finnis, and A. H. Heuer, www.tcm.phy.cam.ac.uk/~mdt26/esdg_slides/hine030609.pdf (2009).
- [23] J. H. Harding, K. W. Atkinson and R. W. Grimes, J. Am. Ceram. Soc., 86, 554-559 (2003).
- [24] V. I. Baryshnikov, T. A. Kolesnikova, E. F. Martynovich and L. I. Shchepina, Opt. Spectrosc., 66, 930-932 (1989).
- [25] N. A. Kulagin, Optics and Spectroscopy, 101, 402-409 (2006).
- [26] W. Chen, H. Tang, C. Shi, J. Deng, J. Shi, Y. Zhou, S. Xia, Y. Wang, and S. Yin, *Appl. Phys. Lett.*, 67, 317-319 (1995).
- [27] N. Fukatsu, N. Kurita, Y. Oka and S. Yamamoto, *Solis State Ionics*, **162-163**, 147-159 (2003).
- [28] A. K. Kronenberg, J. Casting, T. E. Mitchell and S. H. Kirby, Acta Mater., 48, 1481-1494 (2000).

第4章 火炎溶融法による Al₂TiO₅ 単結晶の育成

4.1 はじめに

チタン酸アルミニウム(Al₂TiO₅)は耐火材として有用な材料であり、その合成や結晶構 造などについて多くの研究がなされている[1~7]。6-Al₂TiO₅は斜方晶の擬ブルッカイト 構造をとり、熱膨張の異方性が大きく、*c*軸方向(軸の取り方はJCPDS 41-0258に準 じた。)で負の熱膨張を示す[5~7]。その焼結体であるセラミックスは低熱膨張の耐熱衝 撃性材料として工業的に利用されている[8,9]。図 4-1 に報告されている状態図をいくつ か示すが、約 1200℃以下で Al₂O₃ と TiO₂ に分解する。セラミックスの場合にも、約 900℃~1200℃の温度で分解し Al₂O₃ と TiO₂ が生成することから、その分解を防止す ることが試みられている[10~16]。また Al₂TiO₅-Al₂O₃ 系の組成は、共晶温度が約 1800℃と高いことから、耐火材料としても有望なため最近でもいくつかの研究がなさ れている[17~19]。このように 6-Al₂TiO₅ 結晶は、異方性が大きく熱的に不安定である ことから、単結晶を育成したという報告は知る限りではない。

FFM はるつぼを必要としない、装置が簡易である、短時間で育成できる、組成変更 が容易であるなど、新規に結晶育成を試みるには優れた方法である。また FFM は結晶 の冷却速度を早くすることが可能なため、8-Al₂TiO₅ を分解せずに冷却できる可能性が ある。そこで本研究では、FFM により 8-Al₂TiO₅ 単結晶を育成することを試みた。

A.M. Lejus, D. Goldberg and A. Revcolevschi, C.R.Seances

S. Hoffmann, S. T. Norberg, M. Yoshimura, J Electroceram, 16,

In-Ho Jung, G. Eriksson, P. Wu, A. Pelton, ISIJ International, 49 (2009) 1290-1297

Fig. 4-1 Phase diagrams of Al₂O₃-TiO₂ system.

4.2 実験方法

 γ -Al₂O₃ (99.99%)とルチル型 TiO₂ (99.99%)粉末をボールミルで乾式混合し、メッシュ パスし FFM 原料とした。一部の実験については原料粉末を 1300°C,10h 仮焼し FFM 原料とした。これら原料粉末のゆるめ嵩密度をパウダテスタ (ホソカワミクロン製) に て測定した。FFM による育成は水素過剰の場合 H₂:15~25LPM、O₂:5~10LPM、酸素 過剰の場合 H₂:8~18LPM、O₂:7~12LPM の範囲でプログラムにてガス量を調整した。 また結晶の引き下げ速度は 8mm/h とした。通常の実験ではシードを使用せずチョッピ ン棒法[20]と呼んでいる、原料を降り積もらせ円錐状になった頂点から結晶を成長させ る方法で育成した (Fig. 4-2)。育成した結晶は X 線回折装置 (RIGAKU Smart Lab) で成長方位、格子定数等を測定した。格子定数は粉末法で Si を内部標準に用い、最小 二乗法で算出した。

Fig.4-2 Schematic illustration of the "Chopping-Stob Method"

(a) the raw materials accumulate conically on alumina ceramic plate,

- (b) the top of the cone melts,
- (c) the top part crystallizes to form a seed,
- (d) crystal growth proceeds.

4.3 実験結果および考察

4.3.1 原料粉末の仮焼および育成雰囲気の影響

Fig.4-3 に混合粉末と仮焼粉末を原料として、酸素リッチ雰囲気と水素リッチ雰囲気 で育成した結晶の写真を示す。また Fig.4-4 に雰囲気を変更して育成した結晶の粉末X 線回折データ(XRD)を示す。

FFM 原料として γ -Al₂O₃ と TiO₂ (ルチル)の混合粉末を使用した場合、 γ -Al₂O₃ 原料の嵩密度は 0.25g/cm³、TiO₂ 原料は 0.89g/cm³であり、FFM で原料を落下させる場合の組成変動の影響、融点の違いによる変動などが懸念されたため、原料混合後仮焼についても検討した。分解温度とされている 1200℃より少し高い 1300℃で 10h 仮焼すると、 β -Al₂TiO₅、Al₂O₃、TiO₂が検出され、 β -Al₂TiO₅単一相にはなっていなかったが、粉体特性が大きく変化した。仮焼粉末の嵩密度は 1.61g/cm³であり、混合粉末の嵩密度 0.48g/cm³と比べ大きく、粒成長が進んでいた。そのため、原料の落下条件を大幅に変更する必要があった。

育成した結晶は O₂過剰雰囲気の場合、混合粉末、仮焼粉末いずれの場合も単一相に なっていて、仮焼の効果は特に見られなかった。したがって、以後の実験は混合粉末で 実施した。

Fig.4-3 に示すように、育成した結晶はいずれも黒色をしていた。これは TiO₂ 単結晶 や SrTiO₃ 単結晶の場合と同様、結晶育成時に酸素空孔が生じ自由電子が生成するため と考えられる。水素過剰雰囲気では、燃焼炎は H₂/H₂O の雰囲気となっていることから、 育成中の酸素分圧はエリンガム図より 10⁻⁷atm 程度と弱還元雰囲気であり、還元により 酸素空孔が生じていると考えられる。一方、酸素過剰雰囲気では、O₂ と H₂O が共存す る雰囲気で O₂ 分圧はおよそ 0.2atm であり大気中と同程度の酸素分圧であるが、高温 では、Ti の一部は 3 価として存在する方が安定で、酸素空孔と電子を生成するためと 考えられる。

酸素過剰雰囲気で育成した場合には 8-Al₂TiO₅単一相であったが、水素過剰雰囲気で 育成した場合、第2相が確認された。この第2相のピークの一部は α -Al₂TiO₅相 (JCPDS 18-0068) と一致していた。D. Goldberg ら[21]の相図によると α 相は 8-Al₂TiO₅の高温 相である。S. Hoffmann ら[1,2]の研究によると、中間化合物である Al₆Ti₂O₁₃ (ICDD 04-011-9466) や Al₁₆Ti₅O₃₄ (ICDD 04-011-8572) の存在が報告されていて、第2相の ピークはこれらのピークとほとんど一致していた。しかしこれら Al リッチ相は主ピー クの位置が近く、いずれであるかは明らかではない。さらに In-Ho Jung ら[18]による 相図からは、Al₆Ti₂O₁₃ よりもさらに Al リッチの Al₄TiO₈ 相である可能性もあるが、 Al₄TiO₈ 相については確認されていない。In-Ho Jung らの研究によると、酸素分圧が 10⁻⁷atm の場合には Ti₂O₃ と TiO₂の割合はおよそ 1:9 であり、チタン酸化物の融点は低 下し、Al₂TiO₅の融点も空気中では 1846℃であるのが約 1700℃になるとしている。さ らにこの時の融液からの初晶はコランダム (α -Al₂O₃) になると報告している。そのた めコランダムが先に析出し、コランダムと融液の反応により Al₆Ti₂O₁₃またはAl₁₆Ti₅O₃₄ が晶出することが考えられる。Fig.4-4 に示す水素過剰雰囲気で育成した結晶の粉末 XRD において、第2相に加えわずかではあるが TiO₂が生成していることから、第2相 は高温相ではなく Al リッチの中間相であると考えられる。

結晶の上面を観察すると、酸素リッチ雰囲気で育成した結晶は固化した部分に気泡が 多く存在している。これに対し水素リッチ雰囲気で育成した場合には、気泡は少なかっ た(Fig.4-3)。酸素リッチ雰囲気の育成では融液から時々気泡が出ているのが観察され、 固化したときに泡が内包されたものと思われる。これに対し水素過剰雰囲気の育成では、 析出した結晶と融液が共存する状態で固化するため泡の生成が少なくなったものと考 えられる。

Fig. 4-3 Crystals grown under various atmosphere and raw materials.

- (a) Grown in O_2 rich atmosphere using mixed powder,
- (b) Grown in ${\rm H}_{\rm 2}$ rich atmosphere using mixed powder,
- (c) Grown in O_2 rich atmosphere using calcined powder,
- (d) Grown in $\rm H_{2}$ rich atmosphere using calcined powder,
- (e) Grown in $\mathrm{O}_{\scriptscriptstyle 2}$ rich atmosphere using mixed powder,

voids were seen in removed the crust,

(f) Grown in $\rm H_2$ rich atmosphere using mixed powder, voids were less than $\rm O_2$ rich boule.

 $\label{eq:Fig.4-4} \begin{array}{ll} \mbox{Powder XRD patterns, (a) grown in H_2 rich atmosphere,} \\ \mbox{(b) grown in O_2 rich atmosphere,} & \mbox{(c) β-Al_2TiO_5, (d) α-Al_2TiO_5,} \\ \mbox{(e) Al}_6$Ti}_2$O_{13}[1] and (f) Al_{16}Ti}_5$O_{34}[1]. \end{array}$

4.3.2 結晶のキャラクタリゼーション

育成した結晶について成長方位を調査した。Fig. 4-5 に成長方向に平行と垂直な断面 の XRD パターンを示す。成長方向に垂直な面では(002)のピークが、成長方向に平行な 面では(240)のピークが確認された。成長方向に垂直な切断面における(002)のピークは 分離していたが、これは少しチルトした面の反射によると考えられる。また成長方向に 平行な面では、(240)以外に、(430)、(250)、(200)等が確認できた。以上のことから、 結晶は *c* 軸と平行に成長しているが、結晶は育成方向と平行に針状または柱状に破断し、 劈開面は(240)面など様々な面があることがわかった。Fig. 4-6 にそのイメージを示す。 このような針状結晶の集合体となったのは、チョッピン棒法では結晶が最も成長しやす い方位に自由に成長していると考えられるが、核が複数生成するために少しずつ角度の ずれた針状結晶が複数生成したものと考えられる。

Fig. 4-7 に示す破断面の写真から、内部に気泡やクラックが存在しているのがわかる。 FFM では結晶上部に火炎が吹き付けられているためメルト層が形成されていて、Al₂O₃ はその厚みが薄いのに対し TiO₂ や SrTiO₃ は比較的メルト層が厚いことがわかってい る。Al₂TiO₅の場合も TiO₂などと同様メルト層の厚みは比較的厚く、目視でメルト層か ら気泡がはじけるのが観察された。これはメルト内部からガスが排出されたものと考え られ、一部の気泡はメルト内部に閉じ込められたものと推察される。クラックは多数の 針状又は柱状の結晶が少しずつ異なった角度で密集していて、*a* 軸方向の熱膨張係数

(9×10⁻⁶/deg) と b 軸方向の熱膨張係数 (18×10⁻⁶/deg) も大きく異なることから[16]、 冷却時にクラックが発生したものと考えられる。H₂ 過剰雰囲気で育成した場合には内 部の気泡は減少しているが、前述の通り固体と液体が共存する状態から固化したためで あると考えられる。これは Fig. 4-7(e)に示すように、1600[°]Cで熱処理すると白い部分 と黒い部分のまだらな組織になり、これは第2相や界面から分解が起こったためである と考えられる。

育成した結晶をシードにして育成することも試みたが(Fig. 4-7 (f))、単一のバルク は得られず、シードを使用しない場合と大差のない結晶の集合体であった。これはシー ドが複数の結晶の集合体であること、メルト内部に気泡が多く存在しそこから新たな核 が生成するためであると考えられる。このことは Fig. 4-7(b)において、途中から少しチ ルトした結晶が成長している様子からも推察される。

Fig.4-5 XRD patterns of cross-sectional surfaces,

(a) cut surface perpendicular to growing direction,

(b) and (c) fractured surfaces parallel to growing direction.

Fig.4-6 Image of crystal growth. Needle or pillar crystals were aggregated into bulk.

Fig.4-7 Fracture or cut surfaces and boule using seed crystal.

- (a); Fracture surfaces, cleavage were seen on (100) surface,
- (b); Fracture surface, tilted pillar were grown in the middle of growing,
- (c) ; Cross-sectional view (cut surface) grown in O_2 rich atmosphere,
- (d) ; Cross-sectional view grown in $\rm H_{2}$ rich atmosphere,
- (e) ; Grown in $\rm H_2$ rich atmosphere and annealed at 1600 $^\circ\!\rm C$, 5h, in air,
- (f); Boule using seed crystal.

4.3.3 Al/Ti比を変更した結晶育成

Al/Ti 比を 0.96~1.08 まで変化させて酸素リッチ雰囲気で結晶育成を試みた。育成し た結晶を Fig. 4-8 に、粉末の XRD パターンを Fig. 4-9 に示す。Ti リッチの組成では、 育成中にメルトが流れやすく結晶育成が困難であった。これは、相図[14,22,30]からも わかるように Ti リッチ側のメルトの融点は 1700℃と低いためであると考えられる。一 方 Al リッチにした場合、育成中のメルトの流れが抑えられ、ファセット面を持つ結晶 を育成することができた。しかし、Al/Ti=1.04 より Al リッチの場合には、粉末 XRD において第2相が観察された。この第2相は水素過剰雰囲気で育成した場合と同様、 α-Al₂TiO₅相 (JCPDS 18-0068)のピークと一致した。Al リッチの場合、酸素分圧が pO₂=0.2atm であれば、共晶点は 1835℃で Al₂TiO₅の融点である 1846℃とほとんど変 わらない[17]。そのため育成中、結晶成長部のメルトは流れにくく、一見するとファセ ット面の出たバルク結晶が得られたように思われた。これは Al₂TiO₅ - Al₂O₃ 系セラミ ックスを融液から生成した報告[18]と同様、複数の結晶相の混合物であると考えられる。

Al リッチで生成した第2相は、高温相といわれている a 相のピークと一致している が、S. Hoffmann らが報告している[1,2] Al₆Ti₂O₁₃のピークとも一致している。彼らの 報告では Al₆Ti₂O₁₃は a =0.3633, b =0.9322, c =1.249nm の斜方晶である。4つの強度 の高い XRD パターンのピークがあり、2つ(格子定数より計算した(020):20=19.0, (110): 20=26.3)は 8 相の主ピークとほとんど重なっており、残り 2つ((024):20=34.5, (200):20=50.2)のピークは a 相としているメインピークと一致した。Fig. 4-10 に Al₆Ti₂O₁₃(ICDD04-011-9446)および Al₁₆Ti₅O₃₄(ICDD 04-011-8572)を示すが、第 2 相のピークとよく一致していることから、第2 相は高温相である a 相ではなく、 Al₆Ti₂O₁₃または Al₁₆Ti₅O₃₄であると考えられる。

Al/Ti 比を変えて育成した結晶の格子定数を各組成 2~3 試料ずつ測定した結果を Fig. 4-11 に示す。b軸の格子定数が Al リッチになるにつれ少し小さくなる傾向が見られた が、それ以外は Al/Ti 比による違いはほとんどなかった。これは Al/Ti 比が化学量論比 からずれる場合には異相が生成するため、格子定数の大きな変化はなかったためと考え られる。Al/Ti 比を一元配置実験として分散分析により信頼区間を推定すると、 Al/Ti=1.00 の時、 $a=0.9432\pm0.0006$ nm, $b=0.9640\pm0.0002$ nm, $c=0.3595\pm0.0002$ nm であった。JCPDS41-0258 では、a=0.9439, b=0.9647, c=0.3592 であり、aおよび bは JCPDS の値より少し小さく、逆にcは少し大きい結果であった。また Morosin らの報告[5] では *a* =0.9429, *b* =0.9636, *c* =0.3591 であり、これと比較するとすべて の軸で少し大きいが近い値であった。しかし S. I. Norberg ら[4] の報告している *a* =0.9445, *b*=0.9653, *c*=0.3605 と比べるといずれも少し小さい値であった。結晶が黒 色をしており酸素欠損の影響で数値が異なっている可能性があるため同じ粉末を 700℃大気中でアニールして測定したところ、粉末は白色になったが、格子定数は変化 しなかったことから、酸素欠損や Ti の価数による格子定数の違いではないと考えられ る。今回測定した格子定数は中村らの報告 *a*=0.9432, *b*=0.9639, *c*=0.3594 [6] と最も 近い値であった。中村らは固相反応で作製した試料を粉末 X 線回折でリートベルト解 析により求めているが、Norborg らはアークイメージ炉でメルト後固化した試料を単結 晶構造解析による手法で求めており、試料作製、解析方法の違いにより結果が異なった ものと考えられる。

Fig.4-8 Al_2TiO_5 crystals grown at various Al/Ti ratios.

Fig.4-9 Powder XRD patterns of crystals changed Al/Ti ratio. Miller indexes indicate Al₆Ti₂O₁₃[ICDD 04-011-9446].

Fig.4-10 Lattice constant of grown crystals.

4.3.4 熱処理による変化

育成した結晶は黒色で不透明であったため、無色化するための熱処理について検討した。分解温度より高い1300℃、分解が予想される1000℃、および800℃で120h熱処理した後の写真と粉末X線回折パターンをFig.4-11に示す。1300℃では昇降温時に分解温度を通過するため表面が少し白くなっていたが、XRDでアルミナやルチルのピークは認められなかった。しかし黒色は抜けず、透明にはならなかった。1000℃処理の場合は、全体が白色になりXRDでアルミナとルチルのピークが認められ、8-Al₂TiO₅のピークは消失し完全に分解していた。800℃で処理した場合は、表面はわずかに白くなっていたが、透明化はごく先端部分などに限られ、XRDでアルミナ、ルチルは検出されなかった。800℃においては、熱力学的に分解する温度であるが分解反応速度が遅く、ほとんど分解しなかったものと考えられる。これらの結果は、Fig.4-7 (e)に示す第2相が混在している場合や粉末を700℃で処理すると白色化する結果と比べても、結晶内部への酸素拡散は進行が非常に遅いことが考えられる。

800℃では表面が少し白くなったため、750℃、150hの熱処理を試みた。その結果を Fig.4-12 に示す。空気中で熱処理した場合はほとんど色の変化はなく、表面も白色にな らなかった。また、第5章で述べる SrTiO₃の場合と同様、水素が存在する雰囲気での 脱色を試みたが、この場合も色の変化はなく、SrTiO₃ とは異なる機構であることがわ かった。

Fig.4-11 Heat treated boules and its powder XRD patterns.

(a), (b) in air

(c), (d) in H_2 - H_2O/N_2

Fig.4-12 Heat treated boules at 750°C, for 150h. (Sample: Al/Ti=1.02, in O₂ rich atmosphere)

4.3.5 光学特性

本研究においては、透明な試料が得られなかったことから、透過特性については測定 ができなかった。PLの測定結果を Fig. 4-12 に示す。200nm で励起した時には 470nm 付近と 900nm 付近に発光が見られた。250nm など他の波長で励起した場合にもわずか に同様の波長に発光が見られた。SrTiO₃や TiO₂でも近いところに発光が見られたこと から、Ti に起因する発光であることが考えられる。

Fig. 4-13 Photoluminescence of Al₂TiO₅.

4. 4 本章のまとめ

8-Al₂TiO₅単結晶は、異方性を持つ光学材料として有望であるため FFM にて結晶育 成を試みた。Al₂O₃と TiO₂の混合粉を原料として、酸化炎中で育成することにより、 単一相の結晶を得ることができた。堆積した粉末から自由に成長させた場合、その成長 方位は *c*軸方向であり、育成方向と平行に劈開する針状結晶の集合体が得られた。原料 の Al/Ti 比については、単一相が得られる組成範囲は Al/Ti=0.98~1.02 に限定されてい て、Ti リッチ組成では融液の融点が低くなり融液が流れやすく結晶育成が困難であっ た。一方、Al リッチ組成にした場合、外観上ファセットが見られるバルク形状になっ たが、Al₆Ti₂O₁₃ または Al₁₆Ti₅O₃₄ と考えられる異相が生成し、単一相が得られなかっ た。育成した 8-Al₂TiO₅ 単結晶の格子定数を測定した結果、*a、b*は JCPDS41-0258 の 数値より少し小さく、逆に*c*は少し大きな値であった。

このように、針状晶の集合体が得られたが、均質で実用的な大きさを持つバルク結晶 を育成することはできなかった。また、育成した結晶は還元炎中での育成のため黒色を しているため透明化のための熱処理を検討したが、1000℃付近の熱処理で Al₂O₃ と TiO₂に分解するため透明化は困難であることがわかった。

これまで結晶育成をしたという報告はなかったが、本研究により数 mm 程度の結晶 育成ができることがわかった。また本研究において、6-Al₂TiO₅の結晶成長挙動、Al/Ti 比が異なる場合の生成する結晶相、雰囲気の効果など、FFM による結晶育成の可能性 を示すことができ、いくつもの新たな知見を得ることができた。

- S. Hoffmann, S. T. Norberg, M. Yoshimura, J. Solid State Chemistry, 178, 2897-2906 (2005)
- [2] S. Hoffmann, S. T. norberg, M. Yoshimura, J. Electroceram, 16, 327-330 (2006)
- [3] S. T. Norberg, S. Hoffmann, M. Yoshimura, N. Ishizawa, Acta Cryst., C61, i35-i38 (2005)
- [4] S. T. Norberg, N. Ishizawa, S. Hoffmann, M. Yoshimura, Acta Cryst., E61, 1160-1162 (2005)
- [5] B. Morosin, R. W. Lynch, Acta Crystallogr., **B 28**, 1040-1046 (1972)
- [6] Y. Nakamura, Y. Fujimori, Annual Meeting of Japan Society for Molecular Science, 4P010 (2008)
- [7] R. D. Skala, D. Li, I. M. Low, J. European Ceramic Soc., 29, 67-75 (2009)
- [8] I. J. Kim, L. J. Gauckler, J. Ceramic Processing Research, 9, 240-245 (2008)
- [9] I. J. Kim, J. Ceramic Processing Research, 11, 411-418 (2010)
- [10] E. Kato, K. Daimon, J. Takahashi, J. Am. Ceram. Soc., 63, 355-356 (1980)
- [11] V. Buscaglia, P. Nanni, J. Am. Ceram. Soc., 81, 2645-2653 (1998)
- [12] S. Djambazov, D. Lepkova, I. Ivanov, J. materials Science, 29, 2521-2525 (1994)
- [13] T. S. Liu, D. S. Perena, J Materials Science, 33, 995-1001 (1998)
- [14] R. W. Grimes, J. Pilling, J. Materials Science, 29, 2245-2249 (1994)
- [15] I. M. Low, D. Lawrence, R. I. Smith, J. Am. Ceram. Soc., 88, 2957-2961 (2005)
- [16] I. M. Low, W. K. Pang, J. Australian Ceramic Society, 49, 48-52 (2013)
- [17] I. H. Jung, G. Eriksson, P. Wu, A. Pelton, *ISIJ International*, 49, 1290-1297 (2009)
- [18] S. Abali, J. Ceramic Processing Research, 12, 21-25 (2011)
- [19] M. H. Berger, A. Sayir, J. European Ceramic Society, 28, 2411-2419 (2008)
- [20] http://jacg.gakushuin.ac.jp/jacg/
- [21] D. Goldberg, Rev. Int. Hautes Temper. Refract, 5, 181-194 (1968)

5.1 はじめに

チタン酸ストロンチウム(SrTiO₃:以下『STO』)は、ペロブスカイト型の結晶構造 をとり、正方晶から立方晶への転移が 105k 付近であり、室温付近では立方晶として安 定である。そのため STO 単結晶は、超電導、強誘電体、磁気抵抗メモリ、熱電素子、 半導体素子など各種の薄膜成長用基板として広く使用されている[1]。また STO は、光 励起による発光、光電機能、光触媒機能、イオン導電機能等も報告されていて、多くの 研究が盛んに行われている[2-7]。

STO のバンドギャップは 3.2eV(385nm)であり、可視域では吸収がなく透明で絶縁体 であるが、還元雰囲気で処理すると酸素欠損ができやすく n 型半導体となる。また A サイトや B サイトのイオンを他の元素で置換することにより酸化物半導体としては高 い電気伝導性を示すことから各種デバイスへの応用や物性に関する研究がなされてい る[8-13]。さらに、エッチングによる表面構造の制御、酸化雰囲気中のアニールによる SrO や RP 相(Ruddlesden popper phase)の生成についての報告がある。[14-16]。

STO の単結晶は、そのほとんどが火炎溶融法 (Flame-Fusion Method:以下『FFM』) で育成されている[17]。STO は屈折率が 2.407(at 589nm)とダイヤモンドに近く、当初 は模造ダイヤモンド用として結晶が製造された。ルチルと同様 FFM 以外の方法で結晶 を育成することが困難であり、現在もほとんどの結晶は FFM で育成されている。FFM は、育成速度が速く、るつぼを使用しないため高純度化できる、ドープが容易であるな どの特徴を有し、現在、市販品としては、直径約 30mm、長さ約 50mm の結晶が薄膜 成長用基板などに製造されている。

As-grown 結晶は、還元性の H₂-O₂燃焼炎中で育成されることから、酸素欠損を有し 濃青色に着色して導電性がある。その結晶中には酸素空孔、格子間水素、Sr 空孔など の格子欠陥が存在することが考えられ、これらの欠陥や構造、物性に与える影響も議論 されている[18-24]。STO は水素中でのアニールにより無色透明になることが知られて おり[11]、この方法によりほとんどの STO 透明結晶が製造されている。しかし、現在 市販されている STO 原料は、純度が 99.98%であり、さらなる高純度化とコストダウ ンが求められている。

そこで本研究では、出発原料として高純度のSrCO3とTiO2を使用し、固相合成によ

り原料を調製することを試みることとした。FFM 用の原料には、火炎にて溶融しやすいこと、落下量の経時変化が少なく安定していることが求められる。本研究においては、 混合、造粒プロセスの最適化と得られた原料粉末の粉体特性、結晶育成とその特性まで、 系統的に条件を確立することを目的に実験を行った。

さらに本研究では、FFM により育成した結晶を様々な熱処理条件にて処理した場合の光学特性について詳細に調査した。さらに不純物をドープした場合の光学特性についても調査を行った。

5.2 実験方法

5.2.1 原料粉末の調製

Fig.5-1 に実験手順を示す。SrCO₃(純度:99.99%)および TiO₂(純度:99.99%)を出発 原料として使用した。SrCO₃については比較のため純度 99.9%の原料についても評価し た。これらの原料中の GD-MS による不純物を表1に示す。これらを水および分散剤(ポ リカルボン酸アンモニウム塩)とともにボールミルにて混合し、乾燥後 1000℃で焼成す ることにより、SrTiO₃ 原料を調製した。原料粉末の混合、造粒については、工業化の ための造粒実験として、高速攪拌ミル (アジテーションミル:ダルトン製) にて Table 2 に示す直交表配列実験 (タグチメソッド:L8 実験)を実施した。嵩密度、タップ密度、 安息角等の粉体特性はパウダテスタ (ホソカワミクロン製) にて、原料粉末の落下量は 結晶育成に使用するバーナーを使用して1分間の落下量とその経時変化を測定した。

Fig. 5-1 Experimental procedure for granulating.

5.2.2 結晶の育成と光学特性の測定

結晶育成は FFM により、育成方位<001>方向、育成速度約 10mm/h にて実施した。 結晶径が 15~30mm、長さ 30~50mm になるよう、原料落下量、H₂ガス量、O₂ガス量 を調整して行った。育成した結晶は、育成方向と垂直に切断、研削、研磨し、0.5mmt、 2mmt、または 5mmt の板状試料を作製した。

板状試料は、箱形炉または管状炉にて、700°〜1600°C、空気中、 O_2 中、 H_2+N_2 中 等の雰囲気で熱処理を行った。光学特性は、可視〜NIRの透過率を HITACHI U-4100 で、赤外での透過率を JASCO FT/IR4100 で、フォトルミネッセンスの測定は HITACHI F-7000 にてそれぞれ測定した。また X 線回折は RIGAKU Smart Lab にて、不純物分 析は GD-MS(Evans Analytical Group に依頼)および ICP にて、さらに基板表面の原子 間力顕微鏡 (AFM) 観察により結晶の評価を行った。

- 5.3 実験結果および考察
- 5.3.1 FFM 用原料粉末の調製

5.3.1.1 スプレードライヤーによる造粒

Fig. 5-2 にスプレードライヤーによる造粒粉末の FFM での落下量変化を示す。造粒 粉末は約 30~40µm で球形をしているが、落下量は時間とともに減少する結果となり、 経時変化が大きく使用できないことがわかった。そこで以後の造粒実験はボールミルで 基本的な条件探査を行った後、量産化を前提としたアジテーションミルで実施すること にした。

Fig. 5-2 Temporal change in dropping amount of Spray Dried powder.

5.3.1.2 分散剤量と水分量の調査

ボールミルにて分散剤量と水分量を変化させ、その影響について調査した。Fig. 5-3 に分散剤量を変化させたときの初期落下量を示す。落下量は 0.5g/min 程度の落下量に 調整する必要があり、ハンマーの殴打強度、回数、メッシュサイズなどにより調製する ことは可能である。そこで目的の落下量に制御できるよう、0.3g/min 以上をターゲッ トとした。実験の結果、分散剤量は 5%程度必要であることがわかった。

また水分量を変化させたときの初期落下量を Fig. 5-4 に示すが、初期落下量が多すぎ る場合も制御が困難なため、0.3~1.0g/min になることが望ましい。そのため水分量は 3~10%程度で調製する必要があることがわかった。

Fig. 5-3 Initial dropping amount with change the concentration of dispersant. (Water content: 7%)

Fig. 5-4 Initial dropping amount with change the water content. (Dispersant: 5%)

5.3.1.3 アジテーションミルでの造粒

Table 5-1 に示すように因子と水準を取り、Fig. 5-5 に示すアジテーションミルを使 用して造粒実験を行った。Fig. 5-6, Fig. 5-7, Fig. 5-8 にその結果(要因効果図)を示 す。

初期の落下量については、分散剤量と混合時間に交互作用があり、分散剤量に応じた 適当な混合時間があり、分散剤が多い場合は混合時間を長くする必要があることがわか った。また水分量についても有意となり、水分が多いと造粒径が大きくなり、初期落下 量が増加することがわかった(Fig.5-6)。また、回転スピードは4000rpmと6000rpmに おいて有意な違いは認められなかった。他の特性も考慮した最適条件は、水分量10%、 分散剤量7%、混合時間10minであった。

次に、原料粉末の落下量の経時変化を約5時間測定し、1分間あたりの落下量の安定 性を次の指標で評価した。初期に変動が起こりやすいことから、ターゲットは25%以 内とした。

落下安定性 Stability=((max-min) / 2) / Average × 100(%) (5-1)

落下量の経時変化(安定性)については有意な因子はなかったものの、分散剤量、水 分量が多い方が落下量の経時変化が少ないことがわかった。Fig. 5-8 にボールミルおよ び高速攪拌ミルを使用し、各種の条件で造粒した粉末の初期落下量および落下安定性を 粉体の圧縮率と対比して示す。粉体の圧縮率は(5-2 式)に示すように容易に測定でき、 流動性や落下量を示す指標として有用であった。

E縮度 Compressibility = $(TD - BD) / TD \times 100$ (%) (5-2) (TD: Tapped density, BD: Bulk density)

この図からわかるように固相反応法で合成する粉末の場合には、圧縮率が35~45%の 範囲にあることが望ましいことがわかった。

Table 5-1 Gra	nulation	experiment	using	Agitation-mill.	
---------------	----------	------------	-------	-----------------	--

(L8: Taguchi Method)

Factor	Level 1	Level 2
Dispersant amount	$5 { m wt\%}$	$7 \mathrm{wt}\%$
Water content	10wt%	7wt%
Mixing time	5min	10min
Rotating speed	6000rpm	4000rpm

Scraper
 Agitator
 Nozzle

Fig. 5-5 Schematic illustration of granulating machine (Agitation-mill).

(cf: http://www.dalton.co.jp/products/.html)

Fig. 5-6 Initial Dropping amount.

Stability=((max-min)/2)/average ×100%

Target: <25%

Fig. 5-7 Dropping rate (Stability).

Fig. 5-8 Initial Dropping amount and Stability vs. Compressibility
5.3.2 結晶育成および育成した結晶の評価

育成した結晶の写真、およびアニール、脱色後基板にした写真を Fig. 5-9 に示す。また、原料および結晶中の GD-MS による分析結果を Table 5-2 に、ICP 分析の結果を
 Table 5-3 に示す。

出発原料中にはSiなどの不純物が数 ppm 検出されたが、固相反応により、高純度の 原料が調製できたと考えられる。また結晶中にはAl, Nb などの不純物が微量検出され たのみで、高純度の結晶が育成できたと判断した。市販の 3N8 原料(Conventional material)により育成した結晶と固相反応により合成した原料から育成した結晶の ICP による不純物分析の結果を示すが、市販原料と同等以上の純度の結晶を育成することが できたと考える。

Fig. 5-9 Photographs of as grown boule and substrates.

Elements	$\operatorname{SrCO}_{3}(A)$	$\operatorname{SrCO}_{3}(B)$	TiO_2	SrTiO ₃	SrTiO ₃
	(99.99%)	(99.9%)	(99.99%)	(powder)	(crystal)
Al	0.29	0.47	0.29	0.81	1.3
Si	2.2	3.7	5.7	5.9	0.11
Cr	0.9	0.84	1.3	0.81	< 0.5
Fe	1.5	1.3	4.1	2.2	0.62
Со	0.19	< 0.05	< 0.05	0.18	< 0.05
Ni	<0.5	< 0.5	0.28	0.13	< 0.05
Nb	<50	<50	< 0.5	2.7	1.5
Ва	5.7	500	< 0.5	0.69	< 0.5
La	9.6	0.43	<0.1	< 0.5	< 0.5

Table 5-2Major impurities in raw materials and crystal analyzed by GD-MS.(Analyzed by Evans Analytical Group in USA.)

Table 5-3 Impurity of Substrates. (ICP analysis: Typical data)

Impurity	Developed Material	Conventional Material
Ba	4 ppm	$75~{ m ppm}$
Са	9 ppm	6 ppm
Al	3 ppm	7 ppm
Purity	>99.99%	>99.98%

X線ロッキングカーブデータ(XRC)を Fig. 5-10 に示す。また、STEP 基板を作成 したときの表面 AFM 写真を Fig. 5-11 に、Nb ドープ基板の抵抗率を Fig. 5-12 にそれ ぞれ示す。

XRCのデータは市販の原料に比べ結晶性が向上していることを示しており、AFM に より Step-Terrace 構造が観察されていることから結晶性に優れていることがわかる。 また Nb ドープ量と抵抗率が比例していることから、ドープ量に応じたキャリアが生成 していることがわかり、いずれの結果も、従来原料と同等かそれ以上の結晶性であるこ とを確認した。

Fig. 5-10 X-ray Rocking Curves for substrates. (Typical data)

Fig. 5-11 AFM images for STEP substrates produced from new material.

Fig. 5-12 Resistivity of Nb-doped SrTiO₃.

5.3.3 SrTiO3単結晶の熱処理による透過率の変化

5.3.3.1 As-grown 結晶の透過率

Fig.5-13 に as-grown 結晶の透過率と測定サンプルの写真を示す。結晶の中心部は濃 青色であるが外周部は色が抜けて透明になっている。これは結晶育成時には還元雰囲気 により酸素欠損が生じ自由電子が生成することで濃青色になるが、冷却時に H₂-O₂燃焼 ガスにより外周部から透明化したためと考えられる。As-grown 結晶の透過率には、 430nm(2.9eV)と 520nm(2.4eV)付近に吸収ピークが見られる。これらの吸収の原因につ いては解明できなかったが、この波長に発光があるという報告[7,11]があり、関連があ るものと思われる。

As-grown 結晶の着色(可視域における吸収)は、長波長になるにつれて吸収が増大していることから自由電子による吸収であると考えられる。結晶育成時の雰囲気は H₂-O₂ 燃焼炎中であり、酸素分圧はエリンガム図より約 10⁻⁶atm 程度である。そのため STO は還元され酸素欠損が生じ、同時に電子が余剰となり、電気伝導性を生じる。一部の Ti は電荷を補償するため Ti⁴⁺から Ti³⁺に変わるものと考えられる(Eq.5-3, Eq.5-4)。

 $\begin{array}{l} \mathbf{O}_{\mathbf{0}}^{\times} \rightarrow \mathbf{V}_{\mathbf{0}}^{\bullet\bullet} + 2\mathbf{e}' + 1/2\mathbf{O}_{2}\uparrow \\ \mathrm{Ti}_{\mathrm{Ti}}^{\times} + \mathbf{O}_{\mathbf{0}}^{\times} \rightarrow \mathbf{V}_{\mathbf{0}}^{\bullet\bullet} + \mathrm{Ti}_{\mathrm{Ti}}' + \mathbf{e}' + 1/2\mathbf{O}_{2}\uparrow \end{array}$ (5-3)

Fig. 5-13 Transmittance of as-grown crystal.

5.3.3.2 空気中熱処理後の透過率

酸素欠損による着色をなくす目的で、開放空気中で温度を変えて熱処理したときの可 視域の透過率を Fig.5-14 に示す。空気中で焼成すると、400~700nm にかけてのブロー ドな吸収が見られ、試料が茶色に着色した。その吸収のピークはおよそ 530nm(2.4eV) 程度である。また、温度を高くするにつれその吸収が増加した。700℃~1300℃の熱処 理ではあまり大きな差は見られないが、1600℃焼成の場合には吸収が大きくなり茶色 が濃くなった。

Fig.5-15 にこれらの試料の IR 域での透過率を示す。IR 域には 2.86µm(3495cm⁻¹)、 2.96µm(3380cm⁻¹)と 2.98µm(3356cm⁻¹)の 3 つの吸収ピークが見られ、1600℃空気中焼 成後、2.96µm(3380cm⁻¹)と 2.98µm(3356cm⁻¹)の吸収が大きくなった。2.86µm (3500cm⁻¹)の吸収は隣接する酸素イオン間に存在する水素イオンとの O-H 結合の伸縮 によるもので、2.96µm (3384cm⁻¹)と 2.98µm (3355cm⁻¹)の吸収は Sr 空孔方向の格子間 に存在する水素イオンとの O-H 結合に起因し、これらの吸収は空気中で熱処理すると 1100℃でほとんど消失するという報告がある[20]。しかし本実験では、1600℃空気中 熱処理でもこれらの吸収は消滅せず、むしろ高温で Sr 空孔方向に存在する水素イオン との O-H 結合に起因するといわれている吸収が増加した。したがって、STO 結晶中で は水素は O·H 結合として格子間にかなり安定に存在しており、高温酸化雰囲気の熱処 理で Sr 空孔が増加し、格子間に存在する水素が Sr 空孔付近に移動することによって 2.96µm(3380cm⁻¹)と 2.98µm(3356cm⁻¹)の吸収が増加したことが考えられる。高温にお いては Sr 空孔が増加し、第2相(たとえば RP 相(n SrTiO3·SrO)や TiO2x相)が生成す るとの報告[26]があるが、これら試料の粉末 XRD 測定の結果では、第2相のピークは 観察されず、格子定数の変化もなかった。しかし、透過率が変化していることから表面 近傍において SrO の析出(Eq.5-5)、第2相の生成が起こっていることも考えられる[15]。

 $\mathrm{Sr}_{\mathrm{Sr}}^{\times} + 0_{\mathrm{O}}^{\times} \to \mathrm{V}_{\mathrm{Sr}}'' + \mathrm{V}_{\mathrm{O}}^{\bullet\bullet} + \mathrm{SrO}$ (5-5)

Fig. 5-14 Transmittance of specimens heat treated in air.

Fig. 5-15 Transmittance of specimens heat treated in air, in IR region,
(a) wide range, (b) at near the 3500cm⁻¹.

Fig.5-16 に 700℃、10h、空気中、O₂中および H₂(10%)-N₂中(以下『H₂-N₂』)で熱処 理した試料の透過率と試料の写真を示す。写真には同時に熱処理した **TiO₂**単結晶(ルチ ル)を比較として示した。

Fig. 5-16 Transmittance of STO heat-treated in air, O_2 and H_2 - N_2 atmosphere at 700°C. Photograph shows specimens compared with TiO₂.

As-grown 結晶は、高温で水素により還元されるため酸素空孔と電子が存在する。さらに Sr 空孔と酸素空孔は生成しやすく、格子中に水素イオンが存在することから、as grown 結晶中に存在する結晶欠陥は、 $V_{Sr}^{\prime\prime}$, $V_{O}^{\circ\bullet}$, Ti'_{Ti} , e', H_{i}^{\bullet} が考えられる。

As-grown 結晶を O_2 中または空気中で熱処理した場合には、酸化により酸素欠損が なくなり自由電子が消滅し、絶縁体となった(Eq.5-6)。

$V_0^{\bullet\bullet} + 2e' + 1/2O_2 \rightarrow 0_0^{\times}$ (5-6)

自由電子の消滅により吸収がなくなることで濃青色は消え透明となったが、 400~700nmにかけてのブロードな吸収(以下『吸収 B』)が見られ茶色く着色した。 STO 中では、酸素空孔と Sr 空孔は生成されやすく、Sr-O のショットキー型の欠陥構 造をとり、Ti 空孔濃度は高くないことが報告されている[25]。また、陽電子消滅による 研究から、酸化雰囲気で熱処理すると Vsr または(Vsr Vo)が増加することが報告されて いる[18]。ここで過剰の酸素空孔が存在していて酸化されたとすると正孔(h・)が生成す ると考えられる(Eq.5-7)。この場合 p 型の半導体にはならないことから、正孔(h・)が Sr 空孔にトラップされるものと考えられ、これがブロードな吸収の原因であると考えられ る(Eq.5-8) [27]。

V ₀ ••	$+ 1/2O_2 \rightarrow O_0^{\times} + 2h^{\bullet}$	(5-7)
V″sr	$+ 2h^{\bullet} \rightarrow V_{Sr}^{\times}$	(5-8)

これに対し、H₂-N₂中で処理した場合には、薄い黄色を呈し絶縁体になっていた。透 過率測定の結果、400~550nm にかけての吸収(以下『吸収 Y』)があるため、薄黄色に 着色していることがわかる。同時に熱処理した TiO₂単結晶の場合には H₂存在下で熱処 理しても、濃青色はそのままで導電性を示した。TiO₂の場合は、H₂中で処理すると酸 素空孔が生成し、電子が導電性に寄与する(Eq.5-3, Eq.5-4)。STO の場合も高温では水 素による還元反応が起こっているが、およそ 1000℃以下の温度では、水素を結晶中に 取り込むことで自由電子を消滅させていると考えられる。

水素は格子間に入る場合、前述の通り酸素一酸素の中間付近に格子間イオン(H_i)として存在する場合と、Sr空孔方向に格子間イオン(H_i)として存在する場合があり、これら

は O-H の振動として赤外に吸収が現れる。これに加え、酸素空孔に H-として存在する 場合((H – H)[×]₀)が考えられる。Eq.5-9 は水素がハイドライド (ヒドリド(Hydride: H·)) として酸素空孔に入る場合を表していて[20, 23]、水素により電子が消滅し、絶縁化す ることを示している。

 $V_0^{\bullet\bullet} + 2e' + H_2 \rightarrow (H - H)_0^{\times}$ (5-9)

Fig.5-17 に、700℃において、O₂中熱処理と H₂-N₂中熱処理を交互に繰り返したときの透過率を示す。可逆的に変化していることから、700℃では酸素と水素の吸脱着が交互に起こっていることが考えられる。

V_{Sr}^{\times} + H ₂ $\rightarrow V_{Sr}^{\times}$ + 2H _i [•] + 2e ['] $\rightarrow V_{Sr}''$ + 2H _i [•]	(5-10)
$V_0^{\bullet\bullet} + 2e^{\prime} + H_2 \rightarrow (H - H)_0^{\times}$	(5-11)
$(\mathrm{H}-\mathrm{H})_{0}^{\times} + 1/2\mathrm{O}_{2} \rightarrow 0_{0}^{\times} + 2\mathrm{H}_{i}^{\bullet} + 2e^{'}$	(5-12)
$V_{Sr}'' + 2H_i^{\bullet} + 2e^{\prime} \rightarrow V_{Sr}^{\star} + H_2^{\uparrow}$	(5-13)

Eq.5-10 は水素が取り込まれることにより、Sr 空孔にトラップされた正孔が消費される ことを示しており吸収 B がなくなる。そして水素は酸素空孔にハイドライド(H)として 入ることにより安定となるが、吸収 Y が生じる(Eq.5-11)。酸化される場合にはこの逆 の反応が起こると考えられる(Eq.5-12, Eq.5-13)。

Fig. 5-17 Transmittance after alternative heat treatment in $\rm O_2$ and $\rm H_2\text{-}N_2$, at 700°C. (Sample thickness: 2mm)

Fig.5-18 に、700℃において O₂中と H₂-N₂中の熱処理を繰り返した場合の IR 域の透 過率を示すが、熱処理による吸収に顕著な差は見られなかった。このことから O-H 結 合は酸化雰囲気処理、水素雰囲気処理でほとんど変化せず、700℃の熱処理によって取 り込まれる水素は、O-H 結合ではない形でも結晶内に取り込まれていると考えられる。 最近のシミュレーションによる研究によると、ハイドライド(Hydride: H⁻)として酸素位 置に水素が安定に存在する可能性が報告されている[23]。酸化することなく水素により 絶縁化することから前述の Eq.5-9 のような反応が起こり、水素がハイドライド(H⁻) として導入されていて、これが可視域における吸収 Y の原因であると考えることがで きる。

Fig.5-18 Transmittance of STO repeated heat treatment in O_2 and H_2 - N_2 , in IR region.

5.3.3.4 透過率に及ぼす不純物の影響

Table 5-2 に、原料および育成した結晶の不純物を示すが、原料中には Si、結晶中に は Al, Nb などの不純物がわずかに検出された。そこで不純物による着色の影響につい て検討するため、Nb, Al, Si 等をドープし結晶を育成した。

Fig.5-19 にこれらの元素をドープした場合の透過率を示す。Al, Si をドープした STO は Un-doped STO に比べ吸収 Y が小さくなった。一方、Nb をドープした STO は、As-grown と類似した透過率となった。

Nb はドナーとして働き、自由電子を生成することが知られており、As-grown の場合と類似した透過率を示した。

 $Nb_2O_5 \rightarrow 2Nb_{Ti}^{\bullet} + 40_0^{\times} + 2e' + 1/2O_2 \uparrow$ (5-14)

As-grown、Nb ドープ、W ドープ試料の場合に 425nm(2.9eV)付近と 514nm(2.4eV)付 近に吸収ピークが見られる。同じ波長に吸収が見られ、ドープ元素の種類によらないこ とから、これらの吸収は STO の他の結晶欠陥、たとえば Ti³⁺、Sr 空孔や格子間水素な どの影響が考えられる。また、吸収 Y の吸収ピーク位置は 425nm(2.9eV)付近で、吸収 B の吸収ピーク位置は 514nm(2.4eV)付近であることから、これらとの関連性も考えら れる。

Fig.5-19 において、Al をドープすることによって、Un-doped 試料に比べ吸収 Y が 小さくなった。これは、Al イオンが B サイトに入りアクセプターとして置換すること で酸素空孔が減少したためと考えられる(Eq.5-15)。

 $Al_2O_3 + 3V_0^{\bullet\bullet} + 6e' \rightarrow 2Al_{Ti} + 3O_0^{\times} + 2h^{\bullet}$ (5-15)

吸収 Y がハイドライドによるとすれば、酸素空孔が減少することによって、ハイドラ イドが占有している酸素空孔が減少することにより、吸収 Y が減少したと考えること ができる。Al ドープは吸収 Y の減少に効果があったが、50ppm と 100ppm の違いはあ まりなかった。これはドープ量を増やした場合、電荷を補償するため A サイトにも Al イオンが入ることにより[23]、ドープ量の差がそれほどなかったものと考えられる。

Si をドープした場合も吸収 Y が減少していた。Si は B サイトに置換し、アクセプタ

ーとしては機能していないと考えられることから、不純物によりショットキー型の格子 欠陥がむしろ減少したことが考えられる。

Fig. 5-19 Transmittance of Al, Si, Nb and W doped STO heat treated at 700 $^\circ\!\mathrm{C}$ in H_2-N_2.

Fig.5-20 に SrCO₃原料を B に変更した場合、Ba をドープした場合の透過率を示す。 SrCO₃ 原料 B の不純物分析結果を Table 5-2 に示すが、Ba が主な不純物で約 500ppm(wt)含まれていた。Ba が不純物として存在することで吸収 Y は小さくなり、 Ba を 500ppm(at)ドープした試料でも、吸収 Y が小さくなった。

Ba や Si が不純物として存在する場合に、これらはそれぞれ A サイト、B サイトに 置換すると考えられる。不純物がサイトを占有することによって、Sr-O の結晶欠陥の 生成が抑制され、その結果酸素空孔とそこに取り込まれる水素が減少し、吸収 Y も減 少したと考えられる。

以上のことから、吸収 Y は不純物によるものではなく結晶欠陥によるもので、酸素 空孔に取り込まれたハイドライドがその原因の1つとして考えられる。

Fig. 5-20 Transmittance of STOs from different raw materials and Ba 500ppm doped, heat-treated in $\rm H_2$ -N₂, at 700°C.

5.4 本章のまとめ

SrCO₃とTiO₂原料を使用し、固相反応でFFM用のSTO原料を調製した。FFMに おいては、原料落下量の制御が結晶育成をする上で重要な因子となるが、水分量、分散 剤量等を調製することで、FFMに適した原料を調製することが可能となった。原料の 落下特性を簡易に評価する指標として、粉体の圧縮率を35~45%に制御すれば、安定し た落下特性が得られることがわかった。そして、固相反応原料で育成した結晶は、高純 度で優れた結晶性を有していた。

as・grown 結晶は、H₂・O₂ 燃焼炎中で育成することから酸素欠損に起因する導電性を 示し、濃青色をしていた。これを酸化雰囲気で焼成すると茶色になり、導電性はなくな った。これは酸素が供給されることにより自由電子が消滅し、ショットキー型の欠陥を 構成していた Sr 空孔に正孔(h・)がトラップされたためと考えられ、これが吸収 B(400~700nmのブロードな吸収)の原因と考えられる。一方、水素が存在する雰囲気下 で焼成するとごく薄い黄色となり、導電性はなく絶縁体となった。これは水素が供給さ れることにより、水素が酸素空孔にハイドライド(H)として導入されることにより、自 由電子が消滅し導電性がなく透明になったためと考えられる。これが可視域における吸 収 Y(400~550nm のわずかな吸収)の原因の1つとして考えられる。

出発原料の純度が低い場合、Al, Siをドープした場合に、吸収 Y が減少する結果が得られたが、これは不純物が存在することによって、Sr-O の欠陥が減少し、酸素サイト に取り込まれる水素が減少することにより吸収 Y が減少したためと考えられる。

また、赤外域に吸収をもたらす O-H 結合は 2 種類存在し、空気中で熱処理した場合、 雰囲気を変えて熱処理した場合も吸収が存在していることから、STO 結晶中で格子間 水素は比較的安定に存在していると考えられる。

このように、STO 結晶の光透過特性は、Sr 空孔にトラップされた正孔や酸素位置に 取り込まれた水素、格子間水素など、結晶格子欠陥に起因する光吸収が影響しているこ とが明らかとなった。

参考文献(第5章)

- [1] http://lippmaa.issp.u-tokyo.ac.jp/
- [2] S. Mochizuki, F. Fujishiro and S. Minami, J. Phys.; Condens. Matter, 17, 923-948
 (2005)
- [3] K. X. Jin, B. C. Luo, Y. F. Li, C. L. Chen and T. Wu, *J. Appl. Phys.*, **114**, 033509 (2013)
- [4] S. Mochizuki, S. Minami and F. Fujishiro, J. Luminescence, 112, 267-270 (2005)
- [5] S. Mochizuki, F. Fujishiro, K. Ishiwata and K. Shibata, *Physica*, B 376-377, 816-819 (2006)
- [6] F. Fujishiro and S. Mochizuki, J. Phys.; Conference Series, 21, 142-148 (2005)
- [7] D. Kan, T. Terashima, R. Kanda, A. Masuno, K. Tanaka, S. Chu, H. Kan, A. Ishizumi,
 Y. Kanemitsu, Y. Shimakawa, and M. Takano, *Nature Materials*, 4, 816-819 (2005)
- [8] M. E. Zvanut, S. Jeddy, E. Towett, G. M. Janowski, C. Brooks and D. Schlom, J. Appl. Phys., 104, 064122 (2008)
- [9] E. Ertekin, V. Srinivasan, J. Ravichandran, P. B. Rossen, W. Siemons, A. Majumdar, R. Ramesh and J. C. Grossman, *Physical Review*, **B85**, 195460 (2012)
- [10] A. Frye, R.H. French and D. A. Bonnell, Z. Metallkd. 94, 226-232 (2003)
- [11] S. Mochizuki, F. Fujishiro, K. Shibata, A. Ogi, T. Konya and K. Inaba, *Physica*, B 401-402, 433-436 (2007)
- [12] N. A. Kulagin and E. Hieckmann, Optics and Spectroscopy, 112, 79-86 (2012)
- [13] C. Lenser, A. Kalinko, A. Kuzmin, D. Berzins, J.Purans, K. Szot, R. Waser, and R. Dittmann, *Phys. Chem. Chem. Phys.*, **13**, 20779-20786 (2013)
- [14] M. Kareev, S. Prosandeev, J. Liu, C. Gan, A. Kareev, J. W. Freeland, M. Xiao, and J. Chakhalian, *Appl. Phys. Lett.*, **93**, 061909 (2008)
- [15] K. Szot and W. Speier, *Physical Review B*, **60**, 5909-5926 (1999)
- [16] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, *Physical Review Letters*, 88, 075508 (2002)
- [17] H. J. Scheel, J. G. Bednorz, and P. Dill, Ferroelectrics, 13, 507-509 (1976)
- [18] A. S. Hamid, A. Uedono, T. Chikyou, K. Uwe, K. Mochizuki, and S. Kawaminami, phys. stat. sol.,(a) 203, 300-305 (2006)

- [19] B. Jalan, R. Engel-Herbert, T. E. Mates and S. Stemmer, *Appl. Phys. Lett.* 93, 052907 (2008)
- [20] M. C. Tarun and M. D. McCluskey, J. Appl. Phys., 109, 063706 (2011)
- [21] N. Bork, N. Bonanos, J. Rossmeisi, and T. Vegge, J. Appl. Phys., 109, 033702 (2011)
- [22] J. Y. Dai, W. P. Chen, G. K. H. Pang, P. F. Lee, H. K. Lam, W. B. Wu, H. L. W. Chan, and C. L. Choy, *Appl. Phys. Lett.*, 82, 3296-3298 (2003)
- [23] Y. Iwazaki, Y. Gohda, and S. Tsuneyuki, Apl, Materials, 2, 012102 (2014)
- [24] L. Villamagua, R. Barreto, L. M. Procel, and A. Stashans, *Phys. Scr.*, **75**, 374-378 (2007)
- [25] M. J. Akhtar, Z. Akhtar, R. A. Jackson, and C. R. A. Catlow, J. Am. Ceram. Soc., 78, 421-428 (1995)
- [26] U. Balachandran and N. G. Eror, J. Electrochem. Soc., 129, 1021-1026 (1982)
- [27] S. Kawaminami, K. Mochizuki, S. Hashimoto, N. Adachi and T. Ota, J. Asian Ceram. Soc., 1, 362-367 (2013)

第6章 総括

酸化物単結晶は化学的に安定であり、電磁気的、機械的、熱的特性など、特徴的な機 能を有し、入手しやすく取り扱いやすい材料であるため、今後も様々な機能材料として 利用が拡大すると思われる。単結晶材料がセラミックス(多結晶体)と大きく異なるの は、次の二つの性質である。一つは、原子(イオン)が規則正しく並んでいてエピ薄膜 成長用の基板材料や振動子などの機能性材料として適している点、もう一つは、透明で 光学機能材料として応用できるという点である。そのため単結晶材料は今後も重要な材 料であり、用途開発が進むものと考えられる。その中でもアルミナ単結晶であるサファ イア(α-Al₂O₃:鉱物名「コランダム」)は、ほとんどの特性において傑出した存在で あり、市場も拡大している。また SrTiO₃や Al₂TiO₅などのチタネート単結晶は薄膜用 基板、光学材料として有用な材料である。そこで本研究では、サファイアとチタネート 単結晶に着目し、結晶育成と光学特性についての詳細な検討を実施した。

まず、サファイアについて FFM にて各種の元素をドープした場合の光学特性、特に Tiをドープした場合のカラーセンターの生成について研究を行った。続いて需要拡大 を背景とした大型サファイアの要求に応えるべく、新規に開発した TSMG 法で大型結 晶を育成し、その光学特性の調査および紫外域での透過率改善を行った。また、FFM による結晶育成技術向上を目的に、新規結晶として Al₂TiO₅ 単結晶の育成を試みた。さ らに FFM で育成した結晶の品質向上を目的に、高純度の SrTiO₃原料の調製方法の開 発、および SrTiO₃単結晶の熱処理による透過率の変化を詳細に調査し、結晶欠陥と透 過率の関係について考察を行った。

以下、各章ごとに総括する。

第1章 緒言

第1章では、酸化物単結晶の工業的利用状況と酸化物単結晶の主な育成方法を概観し、 成長著しいアルミナ単結晶(サファイア)と FFM により育成される SrTiO₃、Al₂TiO₅ のチタネート単結晶を研究対象として選択する意義について述べた。そして本研究にお いて、サファイアおよびチタネート単結晶の育成技術向上を図ること、結晶中の格子欠 陥と光学特性の関連について調査を行うことは、学術的、工業的に重要であることを明 確にした。 第2章 火炎溶融法によるサファイアの育成とその光学特性

第2章では、FFM にて各種の元素をドープしたサファイアを育成し、着色や PL な どの光学特性を調査することを目的に研究を行った。特に Ti をドープした場合、酸化 処理した試料において UV 照射により着色する現象を実験により詳細に調査し、その原 因は、正孔(ホール)が Al 空孔にトラップされてできるカラーセンターによると推論 した。そして欠陥生成のメカニズムを解明し、Fe や Mg ドープの場合にもホールがト ラップされてカラーセンターが生成すること、Ti と Fe、Ti と Mg を共ドープすること でカラーセンターの生成が抑制されることを明らかにした。

第3章 大型サファイアの育成とその紫外域での光学特性

第3章では、白色発光ダイオード(LED)等の基板として需要が拡大しているサファイ アの育成とその光学特性について述べた。大型サファイアの育成方法として新たに開発 した TSMG(Top Seeded Melt Growth)法の特徴と、育成した結晶が LED 用 8 インチウ ェハに対応できるサイズと品質を備えていることを述べた。この大型サファイアは還元 雰囲気中で育成されることから、酸素欠損に起因するカラーセンターが生成し、主に紫 外域で吸収が生じることを明らかにした。そして紫外域での光透過特性を改善するため の熱処理条件について検討した結果、酸素欠損型のカラーセンターを解消し、透過率を 改善する熱処理条件として、酸水素炎中の熱処理が効果的であることを見いだし、 150nm 以上の波長で吸収係数 α<1 cm⁻¹と真空紫外域(VUV)で有用な透過材料が得られ た。

第4章 火炎溶融法による Al₂TiO₅ 単結晶の育成

第4章では、耐火材料、低熱膨張材料として実用化されているチタネート結晶である Al₂TiO₅の結晶育成の結果について述べた。8-Al₂TiO₅は結晶の異方性が大きく、1000℃ 前後の温度でAl₂O₃とTiO₂に分解することから、これまでに単結晶を育成したという 報告がないが、FFM は育成速度が速く、急冷も可能なことから結晶を育成できる可能 性があると考えられたため結晶育成を試みた。その結果、針状結晶の集合体で、*c*軸方 向に成長した結晶を得ることに成功した。Al₂TiO₅は屈折率が大きく異方性があること から光学材料として有望であったが、透明化のための熱処理で分解が起こり、透明な結 晶を得ることはできなかった。

第5章 SrTiO3単結晶の育成とその光学特性

第5章では、チタネート結晶として各種の薄膜成長用基板として利用されている SrTiO₃(STO)の結晶成長とその光学特性について調査した結果について述べた。固相反 応により合成した原料粉末は高純度であり、育成した結晶は優れた結晶性を有していた。 また FFM により育成された STO は、還元雰囲気中での育成であるため as-grown では 濃青色をしていた。これを酸化雰囲気で熱処理すると茶色に着色し、水素存在雰囲気で 熱処理すると薄い黄色になり、ともに絶縁体となった。そのメカニズムについて検討し た結果、酸化処理による着色は、Sr 空孔にトラップされた正孔(ホール)によるブロ ードな吸収によるものであり、薄い黄色の着色は、酸素空孔にハイドライド(H)として 存在する水素によるものであると推論された。また、STO 結晶中に水素は格子間イオ ン(H+)としても取り込まれ、O-H 結合として比較的安定に存在することがわかった。

第6章 総括

第6章では本論文を総括した。

本研究は、サファイアやチタネート単結晶の結晶成長と光学特性に関わる研究である。 サファイアやSrTiO₃についてはこれまでにも多くの報告があるが、その多くは、エピ タキシャル薄膜成長用の基板としての使用、あるいは結晶の物性を測定することが目的 のものである。そのため、出発原料、結晶育成時の条件やその後の熱処理、加工など、 結晶の履歴が十分に把握されているとは言えないものもある。また結晶基板上に薄膜を 成長させる場合においても、結晶の履歴や表面特性など、特性に影響を与えると思われ る因子について十分に検討されていないこともある。

本研究は、結晶を育成し供給する立場から行っており、不純物やドープ元素、育成環 境や熱処理が結晶の特性にどのような影響を与えるかを調査したものであり、基礎的な 物性の把握、結晶欠陥の生成過程、光学特性の変化などを述べている。結晶育成のプロ セス開発を中心に行っている研究者の論文であるため、物性については稚拙な考察にと どまっているところも多いが、この点はお許しいただきたい。また時間の制約、分析機器の制約などから、今後の研究課題として残った項目も多く存在する。引き続き、これらの解明に努めていきたいと考える。

最後に、本研究が今後の酸化物単結晶の用途拡大につながり、産業に少しでも貢献で きることを期待しつつ、総括としたい。 [1] "Coloration of Ti-doped sapphire grown by the Flame-Fusion Method",
 <u>Shuichi Kawaminami</u>, Keisuke Mochizuki, Shinobu Hashimoto, Nobuyasu
 Adachi and Toshitaka Ota,
 Journal of Asian Ceramic Societies, 1, 362-367 (2013)

[2]「火炎溶融法による 8-Al₂TiO₅ 単結晶の育成」
"Crystal Growth of 8-Al₂TiO₅ by the Flame-Fusion Method",
<u>川南修一</u>,高橋真紀,望月圭介,安達信泰,太田敏孝,
Journal of Flux Growth, 8, 66-70 (2013)

[3] "Crystal Growth of Large Sapphire and its optical properties",
 <u>Shuichi Kawaminami</u>, Keisuke Mochizuki, Nobuyasu Adachi and Toshitaka Ota,
 Journal of the Ceramic Society of Japan, 122, 695-700 (2014)

[4]「火炎溶融法による SrTiO3 単結晶の育成とその光透過特性」

 $^{\rm v}Crystal$ Growth of SrTiO $_3$ by the Flame-Fusion Method and their optical transmittance",

<u>川南修一</u>, 浅賀翔平, 亀田佳和, 望月圭介, 橋本忍, 安達信泰, 太田敏孝, Journal of Flux Growth, (投稿中)

関連論文リスト

- [1] "火炎溶融法で育成したサファイアについて(総説)"、<u>川南修一</u>、安達信泰、太田 敏孝、名古屋工業大学先進セラミックス研究センター年報, vol. 1, 3-8 (2012)
- [2] "サファイア単結晶およびサファイア単結晶用原料"、<u>川南修一</u>、山本博文、村田 豊、豊島二郎、植芳織里、公開特許公報、P2004-123467A(2004 年)
- [3] "サファイア単結晶の製造方法"、望月圭介、志村恒、<u>川南修一</u>、特許第 4810346
 号、2006 年 8 月出願、2011 年 8 月特許)
- [4] "Vacancy-type defects and electronic structure of perovskite-oxide SrTiO₃ from positron annihilation", A. S. Hamid, A. Uedono, T. Chikyow, K. Uwe, K. Mochizuki, and <u>S. Kawaminami</u>, Phys. Status Solidi, A **203**, 300 (2006).

学会発表

[1]"火炎溶融法にて育成した Ti ドープサファイアの光学特性"、<u>川南修一</u>、安達信泰、 太田敏孝、日本セラミックス協会第 51 回セラミックス基礎科学討論会(2013 年 1 月、仙台)

[2] "Crystal Growth of SrTiO3 by Flame-Fusion Method and Preparation of its Raw material", <u>Shuichi Kawaminami</u>, Yoshikazu Kameda, Nobuyasu Adachi and Toshitaka Ota, 12th International Conference on Ceramic Processing Science (ICCPS-12), Aug. 2013, Portland USA (Poster Session)

[3] "サファイアの紫外線透過特性"、<u>川南修一</u>、木下智嗣、浅賀翔平、望月圭介、安 達信泰、太田敏孝、日本セラミックス協会第26回秋季シンポジウム(2013年9月、 長野)

- [4] "熱処理・UV 照射によるサファイアの色の変化"、川南修一、望月圭介、浅賀翔 平、安達信泰、太田敏孝、日本セラミックス協会第52回セラミックス基礎科学討論 会(2014年1月、名古屋)
- [5] "火炎溶融法による SrTiO₃単結晶の育成と熱処理による色の変化"、<u>川南修一</u>、亀田佳和、浅賀翔平、望月圭介、安達信泰、太田敏孝、日本セラミックス協会第 27 回 秋季シンポジウム(2014年9月、鹿児島)

本研究の遂行にあたり、終始適切なご助言とご指導をいただきました名古屋工業大学、 太田敏孝教授に心より感謝の意を表します。

本論文をまとめるにあたり、有益なご助言、ご指導をいただきました名古屋工業大学、 安達信泰准教授、橋本忍准教授に感謝いたします。

本研究を進めるにあたり、温かい励ましとアドバイスをいただきました名古屋工業大 学、石澤伸夫教授、武津典彦教授にお礼申し上げます。また実験を遂行するにあたりご 協力いただいた、名古屋工業大学先進セラミックス研究センターの教職員、学生のみな さまに感謝いたします。

本研究の遂行に必要な結晶育成などの実験は主として株式会社信光社において実施 しましたが、実験を遂行するにあたり、実験装置、原材料の提供など種々のサポートを いただきました株式会社信光社、米澤勝之社長に厚く感謝の意を表します。

業務面でご配慮いただきました株式会社信光社舘野晃男常務取締役、竹内淳常務取締 役に感謝いたします。また、英文のチェックをしていただきました水野義弘部長にお礼 申し上げます。

実験やディスカッションにおいて、様々な配慮と有益なアドバイスをいただきました 株式会社信光社結晶開発部部長、望月圭介博士に心からお礼申し上げます。また、一緒 に議論し、実験を進めるにあたり様々なご協力をいただきました結晶開発部、石井誉氏、 鈴木尚志氏、鴨下三奈美氏、高橋真紀氏、亀田佳和氏、浅賀翔平氏、木下智嗣氏に感謝 申し上げます。さらに試料作製等にご協力いただきました結晶開発部の皆様に感謝申し 上げます。

最後に、私の我が儘を許してくれ、いつも私を支えてくれた妻、清美に心から感謝い たします。