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Abstract

Speech is the most important way for human communication and is expected to be used

as a new human-machine communication interface with the emergence of miniature and

speedy computers. Speech synthesis is one of the core technologies of the speech commu-

nication interface, and it is used for text-to-speech (TTS), singing voice synthesis, speech

translation, speech dialogue, etc. State-of-the-art research on speech synthesis is based

on hidden Markov models (HMMs). HMMs are statistical models that are widely used

for speech recognition by well-defined algorithms to estimate model parameters. It is

well known that they have high recognition performance if they are trained with enough

data. HMM-based speech synthesis has also grown in popularity over the last several

years. This framework makes it possible to model different voice characteristics, speak-

ing styles, or emotions without recording a large speech database. Although the quality

of the synthesized voices is high enough in some cases, the core technology needs to be

improved to synthesize high quality voices about the same as human voices. Additionally,

the applications of speech synthesis should be used to make our life more convenient. In

particular, some important functions, such as multilingualization and emotional synthesis

are required by many applications. In this paper, I improve speech synthesis technology

from both sides, i.e. the core technology and the applications.

First, to improve the core technology, I propose a novel approach to integrate spectral fea-

ture extraction and acoustic modeling for HMM-based speech synthesis. The statistical

modeling process of speech waveforms is typically divided into two component modules:

the frame-by-frame feature extraction module and the acoustic modeling module. In the

feature extraction module, the statistical mel-cepstral analysis technique has been used,

and the objective function is the likelihood of mel-cepstral coefficients for given speech

waveforms. In the acoustic modeling module, the objective function is the likelihood

of model parameters for given mel-cepstral coefficients. It is important to improve the

performance of each component module in order to achieve higher quality synthesized

speech. However, the final objective of speech synthesis systems is to generate natural

speech waveforms from given text, and improving each component module does not al-

ways lead to an improvement in the quality of synthesized speech. Therefore, ideally, all

i



objective functions should be optimized on the basis of an integrated criterion that well

represents the subjective speech quality of human perception. In this paper, I propose

an approach to model speech waveforms directly and optimize the final objective func-

tion. Experimental results show that the proposed method outperformed the conventional

methods in objective and subjective measures.

Next, I propose a mel-cepstral analysis technique that restores missing high frequency

components from low-sampling-rate speech. In HMM-based speech synthesis, the sampling-

rate of the synthesized speech depends on that of training speech data. Low-sampling-rate

training speech data degrades the quality of the synthesized speech. Recently, speech

databases have come to be recorded at a high sampling rate, e.g., 48 kHz. The sampling

rates of many speech databases recorded in the past are low. With the popularization of

speech synthesis techniques, the demand for using databases recorded in the past is grow-

ing bigger. Additionally, in some cases, such as speaker adaptive training (SAT), which

trains a model with speech data uttered by different speakers, the amount of the training

data can be increased significantly by using speech databases recorded at different sam-

pling rates. Therefore, I train a model of speech waveforms from a high sampling-rate

speech database in advance and use it for analyzing mel-cepstral coefficients whose high

frequency components are restored from low-sampling-rate speech databases. Experi-

mental results show that the proposed method restored high frequency components and

improved the quality of the synthesized speech.

Finally, as an important function for the applications, the multilingualization for HMM-

based singing voice synthesis is attempted. An English singing voice synthesis system is

proposed and compared with the Japanese one. In this approach, the spectrum, excitation,

and vibrato of singing voices are simultaneously modeled by using context-dependent

HMMs, and waveforms are generated from HMMs themselves. Japanese singing voice

synthesis systems have already been developed and used to create variable musical con-

tent. To expand this system to English, contexts that can be used in Japanese and English

singing voice synthesis systems are designed. Furthermore, methods for matching musi-

cal notes and the pronunciation of English lyrics are proposed and evaluated in subjective

experiments. Then, Japanese and English singing voice synthesis systems are compared.

As described above, in this paper, I propose a core technology and an application for

HMM-based speech synthesis, and they are evaluated in objective and subjective experi-

ments.

Keywords: speech synthesis, singing voice synthesis, acoustic modeling, mel-cepstral

analysis, integration model, multilingualization, English singing voice synthesis
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Abstract in Japanese

近年，コンピュータの小型化・高性能化やスマートフォンの登場を背景に，新たなマ
ンマシンインタフェースとして，我々人間にとって最も身近な情報伝達手段である
音声に注目が集まっている．中でも，音声インタフェースのコア技術の一つである
音声合成技術は，テキスト音声合成 (text-to-speech; TTS)や歌声合成，音声翻訳，対
話システムといった様々なアプリケーションで必要とされている．音声合成の分野
では，近年は隠れマルコフモデル (Hidden Markov Model; HMM)に基づいた手法の
研究が盛んに行われている．HMMはこれまで音声認識の分野で広く使われてきて
おり，学習データに基づきパラメータを推定する実現容易なアルゴリズムが存在し，
十分な学習データ量が与えられれば高い認識性能を示すことが知られている．HMM

音声合成では尤度最大化基準に基づく音声パラメータ生成アルゴリズムを用いて直
接音声パラメータを出力し音声を合成するため，これまでの主流であった単位選択
型の音声合成手法と比較して，素片接続歪みが生じない，パラメータを変換するこ
とで様々な声質に変換できるなどの特徴がある．合成音声の品質は用途によっては
実用的なレベルに達しているが，人間と間違うほどの自然な音声を合成するために
は，更なるコア技術の改善が必要である．その一方で，音声合成の技術を日常生活
がより便利になるように役立てていくためには，アプリケーションをより充実させ
ていく必要がある．特に，多言語対応や感情音声合成といった機能は，音声合成の
様々なアプリケーションにおいて必要とされており，実現が強く望まれている．こ
こでは，音声合成のコア技術の更なる強化とアプリケーションに必要とされる機能
の充実という両面から，人々により豊かな体験を提供する音声合成技術の実現に取
り組んでいく．

まず，コア技術の強化として，HMM音声合成におけるスペクトル特徴抽出と音響
モデリングの統合手法を提案する．これまで，音声波形の統計的なモデル化は，フ
レーム単位の特徴量抽出と音響モデリングという 2つのステップに分かれていた．特
徴量抽出のステップにおいては，統計的なメルケプストラム分析手法が用いられて
おり，与えられた音声波形に対するメルケプストラムの尤度を目的関数として，そ
れを最大化するようにメルケプストラム係数が推定されていた．音響モデリングの
ステップにおいては，与えられたメルケプストラム係数に対するモデルパラメータ
の尤度を目的関数として，それを最大化するようにモデルパラメータが推定されて
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いた．合成音声の品質を向上させるためには各ステップにおいて性能を改善するこ
とが重要とされ，これまで一定の成果を上げてきている．しかし，音声合成の最終
的な目的はテキストが与えられたときに音声波形を生成することであり，2つに分
けられた目的関数を独立に最大化することは，全体最適化という観点で必ずしも適
切であるとは限らない．理想的には全ての目的関数は人間の知覚に基づく統合され
た基準の上で最適化されるべきである．そこで，音声波形を直接モデル化し，最終
的な目的関数であるモデルパラメータに対する音声波形の尤度を最適化する手法を
提案する．提案法は客観・主観評価実験において従来法より高い性能を示すことが
確認された．

次に，上述の手法の応用として，HMM音声合成のための低周波数標本化音声デー
タの高帯域成分復元を考慮したメルケプストラム分析手法を提案する．HMM音声
合成では，合成される音声の標本化周波数は，学習に用いた音声データの標本化周
波数に依存しており，学習用音声データの標本化周波数が低い場合には，抽出され
たメルケプストラムは高帯域成分を再現することができないため，合成される音声
の音質も低下することが知られている．近年では，48kHz等の高い標本化周波数で
音声データを収録することも増えてきたが，過去に収録された音声データの中には
16kHz等の低い標本化周波数で収録されたものも多い．音声合成技術の普及に伴い，
合成音声にも多様性が求められる中で，既存のあらゆる音声データベースを利用し
たいという要望は強くなってきている．特に，音声合成用にラベルが付けられたデー
タベースは多くは無く，新たに構築しようとすると多大なコストがかかる．また，異
なる話者の音声データを用いてモデルを学習する話者正規化学習 (Speaker Adaptive

Training; SAT)といった枠組みでは，これまで学習用データの標本化周波数を統一し
ておく必要があったが，異なる標本化周波数で収録された音声データを利用できる
ようになれば，学習データ量を大幅に増やすことが可能となる．そこで，あらかじ
め高い標本化周波数で収録された音声データからモデルを学習しておき，低い標本
化周波数で収録された音声データからメルケプストラムを抽出する際に，モデルを
用いて高帯域成分を復元する手法を提案する．主観評価実験において提案法を評価
し，高い復元性能を確認した．

最後に，音声合成アプリケーションの充実のために，多言語対応の一つとして，HMM

歌声合成を英語に対応させた，英語歌声合成を提案する．HMM歌声合成システム
は，学習用の歌声データに基づいて，あらかじめスペクトル，基本周波数，ビブラー
トをHMMにより同時にモデル化しておき，合成時には合成したい歌声の楽譜に合
わせてHMMを連結し，歌声を生成する．これまでに，日本語の楽譜から歌声を合
成するシステムが提案され，一般ユーザによる楽曲作成の際のボーカルとして利用
されてきている．本論文ではこのシステムを，英語の歌声を合成できるように拡張
するために，英語歌声合成のコンテキストを定義し，楽譜の音符と実際の発音を対
応付ける手法を提案する．主観評価実験により効果を確認し，また，日本語歌声合
成との比較実験も行った．
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以上のように，本論文では統計的手法に基づく音声合成のためのモデルの高精度化
とアプリケーションの充実のための多言語対応を行い，評価実験により有効性を検
証する．
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Chapter 1

Introduction

Speech is the most important way for human communication, and a number of research

topics for human-machine communication have been proposed. Automatic speech recog-

nition (ASR) [1] and text-to-speech synthesis (TTS) are fundamental technologies for

human-machine communication. The speech generation technology used in TTS is one

of the core technologies, and it is required in many applications such as car navigation

systems, information retrieval over the telephone, voice-mail, singing voice synthesis sys-

tems, and speech-to-speech translation (S2ST) systems. To enable these applications, a

strong core technology and various techniques to apply it to those applications are needed.

Most state-of-art speech synthesis systems are based on large amounts of speech data.

This type of approach is generally called a “corpus-based system”. This approach makes

it possible to dramatically improve the performance compared with early systems such as

the rule-based one. These days, statistical approaches based on hidden Markov models

(HMMs) have been dominant in speech synthesis [2–5] due to their ease of implementa-

tion and modeling flexibility.

In terms of improving the core technology, there are some problems in generating wave-

forms. In general, a TTS system consists of several component modules, e.g., text anal-

ysis, spectral estimation, F0 estimation, and acoustic modeling, which are usually op-

timized independently. It is important to improve the performance of each component

module in order to achieve higher quality synthesized speech. However, the final ob-

jective of TTS systems is to generate natural speech waveforms from given text, and

improving each component module does not always lead to improvements in the quality

of synthesized speech. Therefore, ideally, all component modules should be optimized

on the basis of an integrated criterion that well represents the subjective speech quality of

human perception. A similar idea that uses optimization integration has been seen in the

construction of large scale systems, e.g., acoustic and language models of speech recog-
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nition systems [6], speech translation systems [7, 8], and spoken dialog systems [9, 10].

For TTS systems, an approach integrating text analysis and acoustic modeling modules

was proposed [11]. By integrating linguistic and acoustic models, the systems became

robust against text analysis errors and improved the quality of synthesized speech. Thus,

optimization integration is an important trend that improves the performance of systems

on the basis of statistical approaches. In this paper, I integrate feature extraction and the

acoustic modeling of HMM-based TTS systems. These modules are typically connected

in series and optimized independently. We optimize them as an integrated generative

model of speech waveforms. As the component modules of feature extraction and acous-

tic modeling, statistical generative model-based approaches that are suitable for the inte-

gration were already proposed for both and used in HMM-based speech synthesis. For

feature extraction, a statistical parametric mel-cepstral analysis [12, 13] has been widely

used. In this method, mel-cepstral coefficients, i.e., frequency transformed cepstral co-

efficients, are regarded as parameters of a generative model, and they are estimated by

using the maximum likelihood criterion based on the likelihood of the waveform domain.

For acoustic modeling, “trajectory HMM” [14, 15] was proposed as a generative model

of static features in consideration of the temporal continuity of feature sequences. It is

well known that an acoustic modeling technique that considers the temporal continuity

of each feature sequence improves the quality of synthesized speech [16]. In the stan-

dard HMM, dynamic features calculated from extracted static features are typically mod-

eled with static features. However, as the proposed method requires a generative model

of only static features, the trajectory HMM should be used. We integrate the statistical

mel-cepstral analysis and the trajectory HMM and redefine them together as a generative

model.

There is a diversity of agendas for applications, e.g., TTS, singing voice synthesis, speech

dialogue, and speech translation. One of the shared agendas for speech synthesis applica-

tions is multilingualization. A multilingual contextual structure is required in matters of

singing voice synthesis. Thus, the next subject is about a multilingual singing voice syn-

thesis framework. Singing voice synthesis enables computers to “sing” any song. It has

become especially popular in Japan because of Yamaha’s VOCALOID singing synthe-

sizer [17]. There is now a growing demand for more flexible systems that can sing songs

with various voices as evidenced by the many singer libraries being created and released

on the Internet by users of the UTAU [18] singing voice synthesis software. One ap-

proach to synthesizing singing voices is to use hidden Markov models (HMMs) [19, 20].

In this approach, the spectrum, excitation, and vibrato of a singing voice are simultane-

ously modeled, and singing voice parameter trajectories are generated from the HMMs

by using a speech parameter generation algorithm [21]. Systems of HMM-based speech

synthesis [16,22] which is the base of HMM-based singing voice synthesis , usually have
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smaller footprints than those of unit-selection synthesis because they store statistics rather

than waveforms. This approach makes it possible to model different voice characteristics,

speaking styles, and emotions without recording large speech databases. Adaptation [23],

interpolation [24], and eigenvoice [25] techniques, for example, have been applied to

HMM-based systems, demonstrating that voice characteristics can be modified. As a

demonstration of HMM-based singing voice synthesis, our research group publicly re-

leased a web service [20, 26], and it has been used by many creators. If Japanese singing

voice synthesis systems were extended to support other languages, people all over the

world could also enjoy singing with voice synthesis. I am thus working to extend the

singing voice synthesis technique to other languages, focusing on English as the first step.

Therefore, I present an HMM-based English singing voice synthesis system in addition

to the Japanese one.

For HMM-based speech and singing voice synthesis systems, the above improved tech-

niques were proposed, and systems using these techniques improved their performance.

The rest of the present paper is organized as follows. The next chapter introduces a statis-

tical speech and singing voice synthesis framework based on HMMs. Chapter 3 shows the

integration technique of feature extraction and acoustic modeling, and an application idea

for this technique is shown in Chapter 4. Chapter 5 shows HMM-based English singing

voice synthesis as an important multilingualization application of the HMM-based syn-

thesis framework. Concluding remarks and future plans are presented in the final chapter.

3



Chapter 2

HMM-based speech and singing voice
synthesis

2.1 Hidden Markov Models

Recently, hidden Markov models (HMMs) are widely used as statistical models for speech

recognition and synthesis. The advantages of using the HMM are that i) it can represent

speech as probability distributions, ii) it is robust, iii) efficient algorithms for estimat-

ing its model parameters are provided. Parameter estimation and calculation of output

probability distributions are described in this section.

2.1.1 Definition of HMM

An HMM [27, 28] is a finite state machine which generates a sequence of discrete time

observations. At each frame it changes states according to its state transition probabil-

ity distributions, and then generates an observation at time t, ot, according to its output

probability distribution of the current state. Therefore, the HMM is a doubly stochastic

random process model.

An J-state HMM consist of state transition probability distributions
{
ai j

}J

i, j=1
, output prob-

ability distributions
{
bj (ot)

}J

j=1
, and initial state probability distributions {πi}Ji=1. For con-

venience, the compact notation is used to indicate the parameter set of the model Λ as

follows:

Λ =

[{
ai j

}J

i, j=1
,

{
bj (·)

}J

j=1
, {πi}Ji=1

]
(2.1)
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Figure 2.1: Examples of HMM structure.

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic

model, in which every state of the model could be reached from every state of the model

in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state

index increases or stays the same state as time increases. The left-to-right HMMs are

generally used to model speech parameter sequences, since they can appropriately model

signals.

The output probability distributions
{
bj (·)

}J

j=1
can be discrete or continuous depending on

the observations. In continuous distribution HMM (CD-HMM), each output probability

distribution is usually modeled by a mixture of multivariate Gaussian components [28] as

follows:

bj (ot) =

M∑
m=1

w jm · N
(
ot

∣∣∣ μ jm,Σ jm

)
(2.2)

where M, w jm, μ jm, and Σ jm are the number of Gaussian components, the mixture weight,

mean vector, and covariance matrix of the m-th Gaussian component of the j-th state,

respectively. Each Gaussian component is defined by

N
(
ot

∣∣∣ μ jm,Σ jm

)
=

1√
(2π)K

∣∣∣Σ jm

∣∣∣ exp

{
−1

2

(
ot − μ jm

)�
Σ−1

jm

(
ot − μ jm

)}
, (2.3)

where symbol � means transpose of vector or matrix, and K is the dimensionality of an
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observation vector ot. For each state,
{
w jm

}M

m=1
should satisfy the stochastic constraint

M∑
m=1

w jm = 1, 1 ≤ j ≤ J (2.4)

w jm ≥ 0,
1 ≤ j ≤ J
1 ≤ m ≤ M (2.5)

so that
{
bj (·)

}J

j=1
are properly normalized, i.e.,∫

RK
b j (ot) dot = 1. 1 ≤ j ≤ J (2.6)

2.1.2 Calculation of output probability

Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence

o = {o1, o2, . . . , oT } and a state sequence q = {q1, q2, . . . , qT } is calculated by multiplying

the state transition probabilities and state output probabilities for each state, that is,

P (o, q | Λ) =

T∏
t=1

aqt−1qtbqt (ot) , (2.7)

where aq0q1
denotes πq1

. The total output probability of the observation vector sequence

from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

P (o | Λ) =
∑
all q

T∏
t=1

aqt−1qtbqt (ot) . (2.8)

The order of 2T · JT calculation is required, since at every t = 1, 2, . . . , T there are J possi-

ble states that can be reached (i.e., there are JT possible state sequences). This calculation

is computationally infeasible, even for small values of J and T ; e.g., for J = 5 (states),

T = 100 (observations), there are on the order of 2 · 100 · 5100 ≈ 1072 computations. For-

tunately, there is an efficient algorithm to calculate Eq. (2.8) using forward and backward

procedures.

Forward-Backward algorithm

The forward-backward algorithm is generally used to calculate P (o | Λ), which is the

probability of the observation sequence o given the model Λ. If I directly calculate
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P (O | Λ), it requires on the order of 2T · JT calculation. The detail of the forward-

backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to t and the i-th state

at time t, given the HMM Λ is defined as

αt(i) = P (o1, o2, . . . , ot, qt = i | Λ) . (2.9)

αt (i) is calculated recursively as follows:

1. Initialization

α1(i) = πibi (o1) , 1 ≤ i ≤ J (2.10)

2. Recursion

αt( j) =

⎡⎢⎢⎢⎢⎢⎣ J∑
i=1

αt−1(i)ai j

⎤⎥⎥⎥⎥⎥⎦ bj (ot) ,
1 ≤ j ≤ J
t = 2, . . . ,T (2.11)

3. Termination

P (o | Λ) =

J∑
i=1

αT (i). (2.12)

As the same way as the forward algorithm, backward variables βt(i) are defined as

βt(i) = P (ot+1, ot+2, . . . , oT | st = i,Λ) , (2.13)

that is, the probability of a partial vector observation sequence from time t to T , given the

i-th state at time t and the HMM Λ. The backward variables can also be calculated in a

recursive manner as follows:

1. Initialization

βT (i) = 1, 1 ≤ i ≤ J (2.14)

2. Recursion

βt(i) =
J∑

j=1

ai jb j (ot+1) βt+1( j),
1 ≤ i ≤ J
t = T − 1, . . . , 1.

(2.15)

3. Termination

P (o | Λ) =

J∑
i=1

β1(i). (2.16)
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Figure 2.2: Implementation of the computation using forward-backward algorithm in

terms of a trellis of observations and states.

The forward and backward variables can be used to compute the total output probability

as follows:

P (o | Λ) =

J∑
j=1

αt( j)βt( j). 1 ≤ t ≤ T (2.17)

The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In

this figure, the x-axis and y-axis represent observations and states of an HMM, respec-

tively. On the trellis, all possible state sequences will re-merge into these J nodes no

matter how long the observation sequence. In the case of the forward algorithm, at time

t = 1, I need to calculate values of α1(i), 1 ≤ i ≤ J. At times t = 2, 3, . . . ,T , I need only

calculate values of αt( j), 1 ≤ j ≤ J, where each calculation involves only the N previous

values of αt−1(i) because each of the J grid points can be reached from only the J grid

points at the previous time slot. As a result, the forward-backward algorithm can reduce

order of probability calculation.
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2.1.3 Searching optimal state sequence

The single optimal state sequence q̂ = {q̂1, q̂2, . . . , q̂T } for a given observation vector

sequence O = {o1, o2, . . . , oT } is useful for various applications (e.g., decoding, initializing

HMM parameters). By using a manner similar to the forward algorithm, which is often

referred to as the Viterbi algorithm [29], I can obtain the optimal state sequence q̂. Let

δt (i) be the likelihood of the most likely state sequence ending in the i-th state at time t

δt(i) = max
q1,...,qt−1

P (q1, . . . , qt−1, qt = i, o1, . . . , ot | Λ) , (2.18)

and ψt (i) be the array to keep track. The complete procedure for finding the optimal state

sequence can be written as follows:

1. Initialization

δ1 (i) = πibi (o1) , 1 ≤ i ≤ J (2.19)

ψ1 (i) = 0, 1 ≤ i ≤ J (2.20)

2. Recursion

δt ( j) = max
i

[
δt−1 (i) ai j

]
bj (ot) ,

1 ≤ i ≤ J
t = 2, 3, . . . , T (2.21)

ψt ( j) = arg max
i

[
δt−1 (i) ai j

]
,

1 ≤ i ≤ J
t = 2, 3, . . . , T (2.22)

3. Termination

P̂ = max
i

[δT (i)] , (2.23)

q̂T = arg max
i

[δT (i)] . (2.24)

4. Back tracking

q̂t = ψt+1 ( ˆqt+1) , t = T − 1, . . . , 1. (2.25)

It should be noted that the Viterbi algorithm is similar to the forward calculation of

Eqs. (2.10)–(2.12). The major difference is the maximization in Eq. (2.21) over previ-

ous states, which is used in place of the summation in Eq. (2.11). It also should be clear

that a trellis structure efficiently implements the computation of the Viterbi procedure.
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2.1.4 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the

maximum likelihood (ML) criterion to obtain Λ which maximizes its likelihood P (o | Λ)

for a given observation sequence o, in a closed form. Since this problem is a high dimen-

sional nonlinear optimization problem, and there will be a number of local maxima, it is

difficult to obtain Λ which globally maximizes P (o | Λ). However, the model parameter

set Λ locally maximizes P (o | Λ) can be obtained using an iterative procedure such as the

expectation-maximization (EM) algorithm [30], and the obtained parameter set will be

appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the

HMM with discrete output distributions can also be derived in a straightforward manner.

Q-function

In the EM algorithm, an auxiliary function Q
(
Λ, Λ̂

)
of the current parameter set Λ and

the new parameter set Λ̂ is defined as follows:

Q
(
Λ, Λ̂

)
=

∑
all q

P (q | o,Λ) log P
(
o, q | Λ̂

)
. (2.26)

Each mixture of Gaussian components is decomposed into a substate, and q is redefined

as a substate sequence,

q = {(q1, s1) , (q2, s2) , . . . , (qT , sT )} , (2.27)

where (qt, st) represents being in the st-th substate (Gaussian component) of the qt-th state

at time t.

At each iteration of the procedure, the current parameter set Λ is replaced by the new

parameter set Λ̂ which maximizes Q
(
Λ, Λ̂

)
. This iterative procedure can be proved to

increase likelihood P (o | Λ) monotonically and converge to a certain critical point, since

it can be proved that the Q-function satisfies the following theorems:

• Theorem 1

Q
(
Λ, Λ̂

)
≥ Q (Λ,Λ) ⇒ P

(
o | Λ̂

)
≥ P (o | Λ) (2.28)

• Theorem 2

The auxiliary function Q(Λ, Λ̂) has the unique global maximum as a function of Λ,

and this maximum is the one and only critical point.

10



• Theorem 3

A parameter set Λ is a critical point of the likelihood P (o | Λ) if and only if it is a

critical point of the Q-function.

Maximization of Q-function

According to Eqs. (2.2) and (2.7), log P (o, q | Λ) can be written as

log P (o, q | Λ) = log P (o | q,Λ) + log P (q | Λ) , (2.29)

log P (o | q,Λ) =

T∑
t=1

logN
(
ot

∣∣∣ μqt st ,Σqt st

)
, (2.30)

log P (q | Λ) = log πq1
+

T∑
t=2

log aqt−1qt +

T∑
t=1

logwqt st . (2.31)

Hence, Q-function (Eq. (2.26)) can be rewritten as

Q
(
Λ, Λ̂

)
=

J∑
i=1

P (o, q1 = i | Λ) · log πi

+

J∑
i=1

N∑
j=1

T−1∑
t=1

P (o, qt = i, qt+1 = j) · log ai j

+

J∑
i=1

M∑
m=1

T∑
t=1

P (o, qt = i, st = m | Λ) · logwim

+

J∑
i=1

M∑
m=1

T∑
t=1

P (o, qt = i, st = m | Λ) · logN (ot | μim,Σim ) . (2.32)

The parameter set Λ which maximizes the above equation subject to the stochastic con-

straints

J∑
i=1

πi = 1, (2.33)

J∑
j=1

ai j = 1, 1 ≤ i ≤ J (2.34)

M∑
m=1

wim = 1, 1 ≤ i ≤ J (2.35)
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can be derived by Lagrange multipliers or differential calculus as follows [31]

πi = γ1(i), 1 ≤ i ≤ J (2.36)

ai j =

T∑
t=2

ξt−1(i, j)

T∑
t=2

γt−1(i)

,
1 ≤ i ≤ J
1 ≤ j ≤ J (2.37)

wim =

T∑
t=1

γt(i,m)

T∑
t=1

γt(i)

,
1 ≤ i ≤ J
1 ≤ m ≤ M (2.38)

μim =

T∑
t=1

γt(i,m) · ot

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ J
1 ≤ m ≤ M (2.39)

Σim =

T∑
t=1

γt(i,m) · (ot − μim) (ot − μim)�

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ J
1 ≤ m ≤ M (2.40)

where γt(i), γt(i,m), and ξt (i, j) are the probability of being in the j-th state at time t, the

probability of being in the m-th substate of the i-th state at time t, and the probability of
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being in the i-th state at time t and j-th state at time t + 1, respectively, that is

γt (i) = P (o, qt = i | Λ)

=
αt(i)β(i)

J∑
j=1

αt( j)βt( j)

,
1 ≤ i ≤ J
t = 1, . . . ,T (2.41)

γt (i,m) = P (o, qt = i, st = m | Λ)

=
αt(i)β(i)

J∑
j=1

αt( j)βt( j)

· wimN (ot | μim,Σim )
M∑

k=1

wikN (ot | μik,Σik )

,

1 ≤ i ≤ J
1 ≤ m ≤ M
t = 1, . . . , T

(2.42)

ξt(i, j) = P (o, qt = i, qt+1 = j | Λ)

=
αt(i)ai jb j (ot+1) βt+1( j)

J∑
l=1

J∑
n=1

αt(l)alnbn (ot+1) βt+1(n)

.
1 ≤ i ≤ J
t = 1, . . . , T (2.43)

2.2 HMM-based speech synthesis

In this section, statistical speech synthesis framework and the HMM-based speech syn-

thesis system are described.

2.2.1 Statistical speech synthesis

Text-to-speech synthesis system can be viewed as an inverse procedure of speech recogni-

tion system. The goal of a text-to-speech system is acoustic speech waveform generation

from a word sequence. In general, given word sequence w is processed by a text anal-

ysis module. In this part, contextual factors (e.g., accent, lexical stress, part-of-speech,

phrase boundary, etc.) are estimated. Next, a speech waveform is generated by a speech

synthesis module.

The majority of state-of-the-art speech synthesis systems is trained by using a large

amount of speech data. In general, this type of system is called as a corpus-based speech

synthesis system [32]. Compared with the previous speech synthesis systems, corpus-

based one especially improve the naturalness of synthesized speech.

One of the major approaches in the corpus-based speech synthesis is unit selection based

one [33–35]. In this system, the speech waveform is segmented into the small units,
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Figure 2.3: Overview of typical HMM-based speech synthesis system.

phone, di-phone, syllable, etc.. Next, a unit sequence with minimum target and concate-

nation costs is selected [34] and connected.

Another major approach is statistical speech synthesis, such as HMM-based one [5]. This

system generates speech parameter sequence o = {o1, o2, . . . , oT } with the maximum a

posterior (MAP) probability given the sub-word sequence u as follows:

ô = arg max
o

P (o | u) . (2.44)

In speech recognition system, Bayes’ rule is required to use generative models. On the

other hand, generative models can directly be applied in speech synthesis system. The

HMM is the most popular generative models.

2.2.2 HMM-based speech synthesis

Overview

Figure 2.3 shows the HMM-based speech synthesis system [5]. It consists of the training

and synthesis part. In the training part, spectrum and excitation parameters are extracted
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from a speech database. These parameters are modeled by context-dependent HMMs.

State duration models are also estimated. In the synthesis part, a sentence HMM is con-

structed by concatenating the context-dependent HMMs fro a given text to be synthesized.

In synthesis part, the sequences of spectrum and excitation parameters are generated from

the sentence HMM using speech parameter generation algorithm [21, 36, 37]. Finally,

speech waveform is synthesized from a synthesis filter module. One of the advantage

is that voice qualities of synthesized speech can be modified by transforming HMM pa-

rameters. It has been shown that its voice characteristics can be modified by speaker

adaptation [38], speaker interpolation [24], or eigenvoice technique [39].

2.2.3 HMM-based acoustic modeling

The HMMs are used to provide the estimates of P (o | w) in the speech recognition sys-

tems. For isolated word recognition with sufficient training data, an HMM can be trained

for each word. However, for LVCSR tasks, it is unlikely that there are enough training

examples of each word in the dictionary. Therefore, sub-word units such as phone or syl-

lable is used. An HMM is generally trained for each phone. The HMMs corresponding

to the phone sequence may then be concatenated to form a composite model representing

words and sentences.

When the HMMs are trained for the set of phones, it is referred to as a monophone or

context-independent system. However, there is a large amount of variation between real-

izations of the same phone depending on the previous and next phones. Triphones which

take the previous and next phones into account are commonly used as context-dependent

phones. The number of states and model parameters of a triphone system is significantly

higher than a monophone system. However, it is unlikely that sufficient training data is

available for parameter estimation. To avoid this problem, the state output probability

distributions are generally shared.

A phonetic decision tree [40–42] is generally used to construct state tying structure in

context-dependent systems (Figure 2.4). First, all phones are pooled in the root node.

Next, the state clusters are split based on contextual questions. When the number of

training data per state falls below a threshold, the splitting will terminate. A disadvantage

of decision tree-based state clustering is that the splits maximize the likelihood of the

training data locally [43, 44].

Speech parameter generation algorithm

• Problem
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Figure 2.4: Example of a phonetic decision tree for triphone models.

For a sentence HMM Λu corresponding to a given sub-word sequence u, the speech

synthesis problem is to obtain an output vector sequence consisted of spectral and

excitation parameters.

o = {o1, o2, . . . , oT } (2.45)

which maximizes its posterior probability with respect to o, that is

ô = arg max
o

P (o | Λu)

= arg max
o

∑
all q

P (o, q | Λu)

= arg max
o

∑
all q

P (o | q,Λu) P (q | Λu) (2.46)

q = {(q1, s1), (q2, s2), . . . , (qT , sT )} (2.47)

where, q and (qt, st) represent a substate sequence and the st-th substate of the qt-

th state, respectively. This problem is approximated by a Viterbi approximation,

because there is not method to analytically obtain o which maximizes P (o | Λu) in

a closed form. As a result, this maximization problem can be separated into two

stages: finding the best substate sequence q̂ for given Λu and obtaining o which
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maximizes P (o | q,Λu) with respect to o, i.e.,

q̂ = arg max
q

P (q | Λu) , (2.48)

ô = arg max
o

P (o | q̂,Λu) . (2.49)

The optimization of Eq. (2.48) is performed using explicit state duration mod-

els [45] in the HMM-based speech synthesis system. If the output vector ot is

independent from previous and next frames, the output vector sequence o which

maximize P (o | q,Λu) is obtained as a sequence of mean vectors of substates. This

causes discontinuity in the output vector sequence at transitions of substates. To

avoid this problem, dynamic features have been introduced. We assume that the

output vector ot consists of a static feature vector

ct = [ct(1), . . . , ct(K)]� (2.50)

and its dynamic features, that is

ot =
[
c�t ,Δc�t ,Δ

2c�t
]�
, (2.51)

where Δct and Δ2ct are delta and delta-delta coefficients, respectively. They are

calculated as follows:

Δct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, (2.52)

Δ2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ. (2.53)

• Solution for the Problem

First, the output vector sequence o and the static feature vector sequence c can be

rewritten as follows:

o =
[
o�1 , o

�
2 , . . . , o

�
T
]�
, (2.54)

c =
[
c�1 , c

�
2 , . . . , c

�
T
]�
. (2.55)

Then, the relationship between c and o can be expressed in a matrix form (Fig-

ure 2.5) as follows:

o =Wc, (2.56)
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Figure 2.5: An example of the relationship between the static feature vector sequence c
and the speech parameter vector sequence o in a matrix form (the dynamic features are

calculated using L(1)
− = L(1)

+ = L(2)
− = L(2)

+ = 1, w(1)(−1) = −0.5, w(1)(0) = 0.0, w(1)(1) = 0.5,

w(2)(−1) = 1.0, w(2)(0) = −2.0, w(2)(1) = 1.0).

where, W
¯

is a regression window matrix given by

W = [W1,W2, . . . ,WT ]� ⊗ IM×M, (2.57)

Wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
, (2.58)

w(0)
t =

[
0, . . . , 0︸��︷︷��︸

t−1

, 1, 0, . . . , 0︸��︷︷��︸
T−t

]�
, (2.59)

w(1)
t =

[
0, . . . , 0︸��︷︷��︸

t−L(1)
− −1

, w(1)(−L(1)
− ), . . . , w(1)(0), . . . , w(1)(L(1)

+ ), 0, . . . , 0︸��︷︷��︸
T−

(
t+L(1)

+

)
]�
, (2.60)

w(2)
t =

[
0, . . . , 0︸��︷︷��︸

t−L(2)
− −1

, w(2)(−L(2)
− ), . . . , w(2)(0), . . . , w(2)(L(2)

+ ), 0, . . . , 0︸��︷︷��︸
T−

(
t+L(2)

+

)
]�
, (2.61)

The output probability of o conditioned on q is calculated by multiplying the output

probabilities of entire observation vectors,
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(o | q,Λu) =

T∏
t=1

N
(
ot

∣∣∣ μqt st ,Σqt st

)
, (2.62)

where, μqt st and Σqt st are the 3K × 1 mean vector and 3K × 3K covariance matrix,

respectively. Eq. (2.62) can be rewritten as an output probability of o from a single

Gaussian component, that is

P (o | q,Λu) = N
(
o

∣∣∣ μq,Σq

)
, (2.63)

where, μq and Σq are supervector and supermatrix corresponding to entire substate

sequence q, that is

Σq = diag
[
Σq1 s1
,Σq2 s2

, . . . ,Σqt st

]
, (2.64)

μq =
[
μ�q1 s1
,μ�q2 s2

, . . . ,μ�qt st

]�
. (2.65)

Therefore, the logarithm of Eq. (2.62) can be written as

logN
(
o

∣∣∣ μq,Σq

)
= −1

2

{
3KT log 2π + log

∣∣∣Σq
∣∣∣ + (

o− μq

)�
Σ−1

q

(
o− μq

)}
.

(2.66)

Under the condition in Eq. (2.56), maximizing N
(
o

∣∣∣ μq,Σq

)
with respect to o is

equivalent to that with respect to c. By setting

∂ logN
(
o

∣∣∣ μq,Σq

)
∂c

= 0KT , (2.67)

we obtain a set of linear equations

Rqc = rq, (2.68)

where, 0KT is a KT -dimensional zero vector, Rq and rq are given as

Rq =WΣ−1
q W, (2.69)

rq =WΣ−1
q μq. (2.70)

Since Rq is a KT × KT matrix, O(K3T 3) operations are required for solution of

Eq. (2.68). Eq. (2.68) can be solved by the Cholesky with O(K3L2T ) operations by

utilizing the special structure of Rq. Eq. (2.68) can also be solved by an algorithm

derived in [36, 37, 46], which can operate in a time-recursive manner [47].
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Figure 2.6: Overview of HMM-based singing voice synthesis system.

2.3 HMM-based singing voice synthesis

In this chapter, statistical singing voice synthesis system are described.

2.3.1 Overview of HMM-based singing voice synthesis system

Figure 2.6 gives an overview of the HMM-based singing voice synthesis system. [19] [20].

The system consists of training and synthesis parts. Although it is quite similar to the

HMM-based speech synthesis system [16] [22], some specific techniques were introduced

for singing voice synthesis.

The rhythm and tempo of the music are important factors in singing voice synthesis.

Therefore, the start timings of the notes and the phoneme durations for each note must

be determined from the musical score. However, if the musical score is strictly followed,

the synthesized singing voice will be unnatural because of time lags shown in Fig. 2.7.

To overcome this problem, the time lags of individual notes are modeled by Gaussian

distributions [19].
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Figure 2.7: Example of time lag.

Vibrato is also an important singing technique which should be modeled, although it is

not included in the musical score. The timing and power of vibrato vary from singer to

singer. Therefore, vibrato modeling is required for naturalness of synthesized singing

voice. To model vibrato automatically, we introduce a vibrato modeling technique for the

HMM-based singing voice synthesis [48].

2.3.2 Training Part

In the training part, we first extract various parameters to be used as training data from the

waveform of a song in the singing voice database. Training data are mel-cepstral coeffi-

cients, log fundamental frequencies (F0), and vibrato parameters (fluctuation amplitude

by cent and frequency by Hz). Their dynamics features and them are used as the feature

vector for training and these feature vectors are modeled by multi-space probability dis-

tribution (MSD) HMMs [49]. Furthermore, in this system, HMM is extended to a hidden

semi-Markov model (HSMM) [50] in order to model duration explicitly.

Although each HMM models one phoneme in singing voice, same phonemes have dif-

ferent characteristics in connection with pitch, length of note, the relation to the previous

or the next phoneme, etc. These variation factors are called “context.” The HMM con-

sidering contexts is used to model in more detail. Context-dependent models are used

to capture such contextual factors. We should be able to obtain more accurate models

if more combinations of contextual factors are taken into account. However the number

of possible combinations increase exponentially as the number of contextual factors in-

creases. As a result, it is difficult to robustly estimate model parameters because of the

lack of training data. Furthermore, it is impossible for a finite set of training data to cover

every possible combination of contextual factors. To overcome this problem a decision

tree based context-clustering technique [51] has been widely used.
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HMM-based systems for speech synthesis heavily depend on training data in performance

because these systems are “corpus-based”. Therefore, HMMs corresponding to contex-

tual factors that hardly ever appear in the training data cannot be well-trained. Pitch

should especially be correctly covered since generated F0 trajectories have a great impact

on the subjective quality of synthesized singing voices. To overcome this problem, pitch

adaptive training (PAT) [52] that models not pitch of musical notes directly but the differ-

ence between log F0 extracted from the waveform and pitch of a musical note. In Fig. 2.8

shows an example illustrating the difference. Mean μ̂
(p)

i of static features of log F0 in state

i with pitch context p is defined in the pitch adaptive training algorithm as:

μ̂
(p)

i = μi + b(p)

i (2.71)

where μi is the mean of the difference between log F0 extracted from the waveform and

pitch of a musical note. The b(p)

i is log F0 of a musical note that has pitch context p
and includes state i. Since b(p)

i is fixed by the musical score, pitch adaptive training only

estimates the parameter set of HMMs. As a result, singing voices with any pitch are able

to synthesized.

2.3.3 Synthesis Part

In the synthesis part, an arbitrarily given musical score including the lyrics to be synthe-

sized is first converted into a context-dependent label sequence. Next, a state sequence

corresponding to the song is constructed by concatenating the context-dependent HMMs

in accordance with the label sequence. The state durations of the song HMM are then

determined with respect to the state duration models and the time-lag models. Next, the
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speech parameters (spectrum, excitation, and vibrato) are generated by an algorithm [21].

Finally, a singing voice is synthesized directly from the generated parameters by using a

mel log spectrum approximation (MLSA) filter [53].

2.4 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), and HMM-

based speech and singing voice synthesis framework are described. Algorithm for calcu-

lating the output probability (forward-backward algorithm), searching the optimal state

sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are shown in

section 2.1. In section 2.2, the acoustic modeling and the speech parameter generation

algorithm are described. In section 2.3, particular algorithm for the singing voice syn-

thesis is described. Following chapters show an improvement of core technology and an

application for HMM-based synthesis framework.
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Chapter 3

Integration of spectral feature
extraction and modeling for
HMM-based speech synthesis

In HMM-based TTS systems, spectral envelope, F0, and duration are modeled simulta-

neously based on generative models, i.e., MSD-HSMM (Multi-Space Probability Distri-

bution Hidden Semi-Markov Models) [49] [50]. However, this technique focuses only on

the spectral modeling based on the standard HMMs (or trajectory HMMs). When a target

text is given to the TTS system, the spectral parameter sequence is generated from HMMs,

and a speech waveform is finally synthesized from them via the source-filter based pro-

duction model. In the training process, the spectral feature extraction followed by the

training HMMs is firstly performed. The statistical mel-cepstral analysis [12], [13] which

regards mel-cepstral coefficients as the model parameters is widely used in the standard

HMM-based TTS systems, and the mel-cepstral coefficients are estimated from a given

input signal x in the maximum likelihood (ML) sense:

ĉt = argmax
ct

P (xt|ct) (3.1)

The training of HMMs using extracted mel-cepstrum sequences c = (c1, · · · , cT ) is also

performed based on the ML criterion

Λ̂ = argmax
Λ

P (c|w,Λ) (3.2)

where Λ̂ is a set of the model parameters of HMMs and w is a text corresponding to

the training data (w is omitted in the following formulas for simplicity). In this paper,

trajectory HMMs are used for acoustic modeling instead of standard HMMs, because

the standard HMMs generate step-wise parameter sequences with discontinuity at state
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boundaries due to the shortcoming of model structures while training HMMs. To over-

come this problem, the consistency between static and dynamic features that causes the

smooth trajectory is considered in the spectral parameter generation. In the rest of this

section, the mel-cepstral analysis and trajectory HMMs will be briefly reviewed.

3.1 Mel-cepstral analysis

In the mel-cepstral analysis, the synthesis filter H (z) is represented by mel-cepstral coeffi-

cients c = [c (0) , · · · , c (K − 1)]� 1 defined as frequency-transformed cepstral coefficients:

H (z) = exp

K−1∑
k=0

c (k) z̃−k (3.3)

z̃−1 =
z−1 − α

1 − αz−1
, |α| < 1 (3.4)

where α is a frequency warping parameter. If α = 0, mel-cepstral coefficients are equiv-

alent to standard cepstral coefficients. Figure 3.1 shows the frequency warping function

with varying α. The vertical axis gives the warped frequencies. If α > 0, the system

1In section 3.1, x and c correspond to not an utterance but a frame. The frame index t is abbreviated.
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function defined as Eq. (3.3) has a high resolution at low frequencies, and if α < 0, it has

a high resolution at high frequencies.

For a given input signal, x = [x (0) , · · · , x (N − 1)]�, the mel-cepstral coefficients are

determined by minimizing a spectral evaluation function with respect to c [54],

E (x, c) =
1

2π

∫ π

−π

{
exp R (ω) − R (ω) − 1

}
dω (3.5)

where

R (ω) = log IN (ω) − log
∣∣∣∣H (

e jω
)∣∣∣∣2 (3.6)

and IN (ω) is the modified periodogram of weakly stationary process x (n) with a time

window w (n) of length N:

IN (ω) =

∣∣∣∑N−1
n=0 w (n) x (n) e− jωn

∣∣∣2∑N−1
n=0 w

2 (n)
(3.7)

Mel-cepstral coefficients are determined easily by using an iterative algorithm (e.g., the

Newton-Raphson method) because E (x, c) is convex with respect to c.

When x (n) is assumed to be a zero-mean Gaussian process, the log likelihood can be

approximated by

log P (x|c) � −N
2

[
log (2π) +

1

2π

∫ π

−π

{
log

∣∣∣∣H (
e jω

)∣∣∣∣2 + IN (ω)

|H (e jω)|2
}

dω
]

(3.8)

There are some techniques to approximate time series signals by a zero-mean Gaussian

process [55]. The approximation used in this paper is shown in 6. Accordingly, the

minimization of E (x, c) corresponds to the maximization of P (x|c). It should be noted

that the spectral evaluation function of mel-cepstral analysis has the same form as that

of LPC analysis [56]. Furthermore, taking the gain factor outside from H
(
e jω

)
indicates

that the minimization of E (x, c) with respect to c is equivalent to both minimization of

residual energy and maximization of the prediction gain. Mel-log spectrum approxima-

tion (MLSA) filter [53] is generally used to re-synthesize speech from the mel-cepstral

coefficients.

3.2 Trajectory HMM

In HMM-based speech synthesis systems, observation vector sequences are quasi-stationary

and each stationary part is represented by a state of the HMMs. The statistics of each
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Figure 3.2: Example of observation sequence, mean sequence of HMMs and that of tra-

jectory HMMs.

state do not change dynamically, and intra-state time-dependency cannot be represented.

Therefore, a technique that augments the dimensionality of an acoustic static feature vec-

tor by appending its dynamic feature vectors is widely used. The standard HMMs with

static and dynamic features are improper in the sense of statistical modeling because they

model the static and dynamic features independently. By imposing the explicit relation-

ship between them, the standard HMMs are naturally translated into trajectory HMMs.

The trajectory HMMs can overcome the impropriety in the standard HMM framework

without any additional parameters, and be a consistent generative model of the static fea-

ture sequences. Figure 3.2 shows an example of the observation sequence, the mean

sequence of HMMs and that of trajectory HMMs.

Let a spectral feature vector sequence be o =
[
o�1 , · · · , o�T

]�
, where ot =

[
c�t ,Δc�t ,Δ2c�t

]�
includes not only static but also dynamic features. Mel-cepstral coefficients ct are a K
dimensional vector, and T is the number of frames. In the standard model, the proba-

bility density of o is shown as P (o|q,Λ) and assumed as a Gaussian distribution, where

q = (q1, q2, · · · , qT ) is a state sequence of HMMs. By imposing an explicit relationship

between static and dynamic features, which is given by o =Wc, where W is a 3KT × KT
window matrix as shown in Fig. 2.5, the standard HMM is reformed as the trajectory

HMM as:

P (c|Λ) =
∑
∀q

P (c|q,Λ) P (q|Λ) (3.9)

P (c|q,Λ) = N
(
c|c̄q, Pq

)
=

1

Z
P (o|q,Λ) (3.10)

P (q|Λ) = P (q1|Λ)

t∏
t=2

P (qt|qt−1,Λ) (3.11)

where Z is a normalization term. In Eq. (3.10), c̄q and Pq are the KT × 1 mean vector and
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the KT × MT covariance matrix given by q, respectively. They are represented as:

Z =

√
(2π)KT

∣∣∣Pq
∣∣∣√

(2π)3KT
∣∣∣Σq

∣∣∣ exp

{
−1

2

(
μ�qΣ

−1
q μq − r�q Pqrq

)}
(3.12)

Rqc̄q = rq (3.13)

Rq = W�Σ−1
q W = P−1

q (3.14)

rq = W�Σ−1
q μq (3.15)

μq =
[
μ�q1
, · · · ,μ�qT

]�
(3.16)

Σq = diag
[
Σ�q1
, · · · ,Σ�qT

]�
(3.17)

μqt and Σqt are the 3K×1 mean vector and the 3K×3K covariance matrix associated with

the state qt, respectively. The elements of W are given as regression window coefficients

to calculate delta and delta-delta features as follows:

Δd ct =

L(d)
+∑

τ=−L(d)
−

w(d) (τ) ct+τ, d = 1, 2 (3.18)

W = [W1,W2, . . . ,WT ]� ⊗ IK×K (3.19)

Wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
(3.20)

w(d)
t =

[
0, . . . , 0︸��︷︷��︸

t−L(d)
− −1

, w(d)(−L(d)
− ), . . . , w(d) (0) ,

. . . , w(d)(L(d)
+ ), 0, . . . , 0︸��︷︷��︸

T−
(
t+L(d)

+

)
]�
, d = 0, 1, 2 (3.21)

where L(0)
− = L(0)

+ = 0,w(0) = 1, and ⊗ denotes the Kronecker product for matrices.

Note that c is modeled by a Gaussian distribution whose dimensionality is KT , and the

covariance matrices Pq are generally full. As a result, the trajectory HMMs can overcome

the drawback of the HMMs. It is also noted that the parameterization of the trajectory

HMMs is completely the same as that of the HMMs with the same model topology.

3.3 Integration of acoustic modeling and mel-cepstral anal-
ysis

In the conventional method, the statistical modeling processes for feature extraction and

acoustic modeling are connected in series. However, the essential problem of constructing
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Figure 3.3: Basic idea of proposed approach

TTS systems is to comprehensively estimate models that can generate speech waveforms

from texts. In this paper, we propose a technique to directly model speech waveforms as

a statistical model. The statistical mel-cepstral model P (x|c) and the statistical acoustic

model P (c|Λ) are integrated as:

P (x|Λ) =

∫
P (x, c|Λ) dc

=

∫
P (x|c) P (c|Λ) dc (3.22)

The original point of this model structure is that two statistical modeling processes are

connected with the marginalization of mel-cepstral coefficients, and the proposed model

is a generative model of speech waveforms. Figure 3.3 shows the generative process. In

the conventional model structure, there is the strong constraint that only one mel-cepstral

sequence is used to convey useful information from the feature extraction module to the

acoustic modeling module. As the proposed method can avoid this constraint, we expect

that the proposed method improve the quality of synthesized speech. The integration part

of the proposed system is remarked in Fig. 3.4.

In the standard mel-cepstral analysis technique, mel-cepstral coefficients are estimated

frame-by-frame. However, it is well known that considering the temporal continuity of

mel-cepstral coefficients improves the quality of synthesized speech. Thus, we use the

trajectory HMM to consider the temporal continuity as a statistical model of mel-cepstral

coefficients.

To train the proposed model, a lower bound of log marginal likelihood F is maximized
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Figure 3.4: Overview of proposed system. Spectral parameter estimation and training of

HMMs are integrated.

instead of the true likelihood. The lower bound F is defined by using Jensen’s inequality:

L (x|Λ) = log P (x|Λ)

= log
∑
∀q

∫
P (x|c) P (c, q|Λ) dc

= log
∑
∀q

∫
Q (c, q)

P (x|c) P (c, q|Λ)

Q (c, q)
dc

= log
∑
∀q

∫
Q (c)Q (q)

P (x|c) P (c, q|Λ)

Q (c)Q (q)
dc

≥
∑
∀q

∫
Q (c)Q (q) log

P (x|c) P (c, q|Λ)

Q (c)Q (q)
dc

= F (3.23)

To overcome the difficulty of optimization, it is assumed that c and q are conditionally

independent. The optimal posterior distributions can be obtained by maximizing the ob-
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jective function F with the variational method [57] as:

Q (c) =
1

Zc
P (x|c) exp

∑
∀q

Q (q) log P (c|q,Λ) (3.24)

Q (q) =
1

Zq
P (q|Λ) exp

∫
Q (c) log P (c|q,Λ) dc (3.25)

where Zc and Zq are the normalization terms of Q (c) and Q (q), respectively.

Zc =

∫
P

(
x|c′) exp

∑
∀q

Q (q) log P
(
c′|q,Λ)

dc′ (3.26)

Zq =
∑
∀q′

P
(
q′|Λ)

exp

∫
Q (c) log P

(
c|q′,Λ)

dc (3.27)

These optimizations can be effectively performed by iterative calculations as the Expec-

tation and Maximization (EM) algorithm, which increases monotonically the value of

objective function F at each iteration until convergence.

3.3.1 Posterior Probabilities of Mel-cepstral coefficients

It is difficult to calculate the integral of c in Eq. (3.25) because of its high computational

cost. Therefore, Q (c) is assumed as a Gaussian probability distribution by using the

Laplace approximation [58]. The unnormalized probability in Q (c) is defined by Q∗ (c)

as:

Q∗ (c) = P (x|c) exp
∑
∀q

Q (q) log P (c|q,Λ) (3.28)

Taking the first three terms of the Taylor series expansion around c = c̃ then the logarithm

of Eq. (3.28) becomes:

logQ∗ (c) � logQ∗ (c̃) +

(
∂

∂c
log Q∗ (c) |c=c̃

)
(c − c̃)

+
1

2
(c − c̃)�

(
∂2

∂c∂cT log Q∗ (c) |c=c̃

)
(c − c̃) (3.29)

where

c̃ = argmax
c

Q (c) (3.30)
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As the first derivation of logQ∗ (c) at c̃ is equal to 0, Eq. (3.29) can be represented as:

logQ∗ (c) � logQ∗ (c̃) − 1

2
(c − c̃)� A (c − c̃) (3.31)

A = − ∂2

∂c∂cT logQ∗ (c) |c=c̃

=
N
2

H |c=c̃ +
∑
∀q

Q (q) P−1
q (3.32)

The Hessian matrix H is represented as follows:

H = − 2

N
∂2

∂c∂c�
log P (x|c)

= diag
([

H�1 ,H
�
2 , · · · ,H�T

]�)
(3.33)

where Ht is the Hessian matrix of the spectral evaluation function E (xt, ct) in Eq. (3.5) at

time t:

Ht =
∂2

∂ct∂c�t
E (xt, ct) = − 2

N
∂2

∂ct∂c�t
log P (xt|ct) (3.34)

In order to approximate Q (c) by a Gaussian probability distribution, the normalization

term Zc is approximated as:

Zc � Q∗ (c̃)

√
(2π)KT

∣∣∣A−1
∣∣∣ (3.35)

By using a Laplace approximation, Q (c) is represented as:

Q (c) � N
(
c|c̃, A−1

)
(3.36)

As the matrix A is a (4LK + 1)-diagonal band symmetric matrix where L is the window

length, the inverse matrix A−1 can be calculated in realistic time.

3.3.2 Posterior Probabilities of State Sequences

The Forward-Backward algorithm is generally applied to the standard HMM in E-step.

However, it cannot be applied to the trajectory HMM, and the delayed decision Viterbi al-

gorithm [15], [59] is applied instead. Thus, we derive a delayed decision Viterbi algorithm

for the proposed model similarly.
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By using Eq. (3.36), the expectation with respect to c in Eq. (3.25) is given by∫
Q (c) log P (c|q,Λ) dc

�
∫
N

(
c|c̃, A−1

)
logN

(
c|c̄q, Pq

)
dc

= logN
(
c̃|c̄q, Pq

)
− 1

2
tr

(
Rq A−1

)
= log P (c̃|q,Λ) − 1

2
tr

(
Rq A−1

)
(3.37)

In Eq. (3.12), although
∣∣∣Σq

∣∣∣ and μT
qΣqμq can be computed time-recursively, it is difficult

to recursively compute
∣∣∣Pq

∣∣∣ and r�q Pqrq because of the temporal full-covariance matrix

Pq. However, by using the special structure of Pq, “trajectory likelihood”(Eq. (3.9)) can

be computed in a time-recursive manner. When Δc̃t and Δ2 c̃t are computed as regression

coefficients from (c̃t−L, · · · , c̃t+L), Rq becomes a (4LK + 1)-diagonal band symmetric pos-

itive definite matrix. Accordingly, Rq can be decomposed by Cholesky decomposition:

Rq = U�q Uq (3.38)

where Uq is an upper (2LK + 1)-band triangular matrix. From Eq. (3.38),
∣∣∣Pq

∣∣∣ can be

rewritten as:

∣∣∣Pq
∣∣∣ = ∣∣∣Rq

∣∣∣−1
=

∣∣∣U�q Uq
∣∣∣−1
=

∣∣∣Uq
∣∣∣−2
=

T∏
t=1

∣∣∣U(t,t)
qt+L

∣∣∣−2
(3.39)

where qt+L = (q1, · · · , qt+L). Since U(t,t)
qt+L depends only on the state sequence from time

1 to t + L,
∣∣∣Pq

∣∣∣ can be computed time-recursively. From Eqs. (3.13), (3.14), and (3.38),

r�q Pqrq can be rewritten by

r�q Pqrq = r�q P�q Rq Pqrq = c̄�q U�q Uqc̄q

= g�qgq

(
g = Uqc̄q = U−1

q rq

)
=

T∑
t=1

(
g(t)

qt+L

)�
g(t)

qt+L
(3.40)

where gq is a vector computed from Uq and rq by forward substitutions. Since g(t)
qt+L

depends only on the state sequence from time 1 to t + L, r�q Pqrq can be also computed

time-recursively. As a result, “trajectory likelihood” can be computed time-recursively as

follows:

P (c̃|q,Λ) =

T∏
t=1

1

Z(t)
qt+L

P (õt|qt,Λ) (3.41)
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where

Z(t)
qt+L
=

√
(2π)K

∣∣∣U(t,t)
qt+L

∣∣∣−2√
(2π)3K

∣∣∣Σqt

∣∣∣ × exp

[
−1

2

{
μ�qt
Σ−1

qt
μqt −

(
g(t)

qt+L

)�
g(t)

qt+L

}]
(3.42)

From Eq. (3.38), submatrices of Rq A−1 in Eq. (3.37) can be rewritten as:

(
Rq A−1

)(t,t)
=

(
U�q Uq A−1

)(t,t)
=

(
Uq A−1U�q

)(t,t)

=

t+2L∑
i=t

t+2L∑
j=t

U(t,i)
qt+2L

(
A−1

)(i, j)
U(t, j)

qt+2L (3.43)

Since U(t, j)
qt+2L depends only on the state sequence from time 1 to t + 2L, Rq A−1 can be

computed time-recursively. Therefore, Eq. (3.37) is represented as:∫
Q (c) log P (c|q,Λ) dc

�
T∑

t=1

[
log

1

Zq(t)
t+L

N
(
Wc̃t|μqt ,Σqt

)
− 1

2

t+2L∑
i=t

t+2L∑
j=t

tr
{
U(t,i)

qt+2L

(
A−1

)(i, j)
U(t, j)

qt+2L

}]
(3.44)

Thus, the proposed method can use the delayed decision Viterbi algorithm.

3.3.3 Update Model Parameters

Model parameters m and φ are defined by concatenating the mean vectors and covariance

matrices of all unique Gaussian components in the model set as:

m =
[
μ�1 ,μ

�
2 , · · · ,μ�D

]�
(3.45)

φ =
[
Σ�1 ,Σ

�
2 , · · · ,Σ�D

]�
(3.46)

where μd and Σd are the mean vector and covariance matrix of the d-th unique Gaussian

component in the model set, and D is the total number of Gaussian components in the

model set, respectively.

By setting the partial derivative of F with respect to m to 0, a set of linear equations for

determining m maximizing F are obtained as:∑
∀q

Q (q) S�q W PqW�SqΦ
−1m =

∑
∀q

Q (q) S�q Wc̃ (3.47)
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Figure 3.5: Relationships between μq and m, and Σq and φ in matrix form.

where

μq = Sqm (3.48)

Φ−1 = diag(φ) (3.49)

Σ−1
q = diag(Sqφ) (3.50)

SqΦ
−1 = Σ−1

q Sq (3.51)

In the above equations, Sq is a 3KT × 3KT matrix whose elements are 0 or 1 determined

by the Gaussian component sequence q. Figure 3.5 shows the relationships between μq

and m, and Σq and φ in matrix form.

For maximizing F with respect to φ, a gradient method is applied by using its partial

derivative

∂F
∂φ

�
∑
∀q

Q (q)

[
1

2
S�q diag−1

{
W PqW� −W A−1W�

−Wc̃c̃�W� + 2μq c̃�W� +Wc̄qc̄�q W� − 2μq c̄�q W�}] (3.52)

because Eq. (3.52) is not a quadratic function of φ. As explained above, the parameter-

ization of the proposed model is completely the same as that of the standard HMM and

trajectory HMM.

3.3.4 Related work

As mentioned above, the proposed method integrates the spectral estimation process and

the spectral modeling process and the generative model is defined on the waveform do-

main. Some similar approaches have been found in previous researches. The vocal tract
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transfer function (VTTF) estimation of a speech signal based on a factor analyzed (FA)

trajectory HMMs [60] is closely related to the proposed method in terms of the direct

modeling of speech observation. In this method, mel-cepstral coefficients are regarded

as factors and the harmonic components are represented by using linear transformation

with the time-varying factor loading matrix. The likelihood function is defined in the

log spectral domain and measured only on voiced frames of speech while the likelihood

function of the proposed method is defined in the waveform domain. Furthermore, as

the proposed method is based on the conventional acoustic model structure, the proposed

method has an advantage that reasonable initial model parameters can be given by the

conventional method and many techniques are regarded for the conventional models, e.g.

speaker adaptation, can be applied.

In another related approach, the mel-cepstral analysis was integrated into the estimation

of Gaussian mixture model (GMM) for modeling a quasi-stationary Gaussian process [?].

It can represent mel-cepstral coefficients stochastically with mixture weights of GMM.

However, mel-cepstral coefficients are constant because each mixture has no variance

parameters, and the temporal continuity of mel-cepstral coefficients is also not considered.

Contrary to this, the proposed method assumes mel-cepstral coefficients as latent variables

with variances and marginalizes out to form a single generative model. Additionally, the

temporal continuity is represented by using the trajectory HMMs.

The joint estimation of the acoustic and excitation model parameters [61] is similar to

the proposed method. The distance between natural and synthesized speech waveforms is

minimized in the time domain by updating the cepstral sequences, the trajectory HMMs,

and the excitation models iteratively. Although the proposed method treats the cepstral

coefficients as probabilistic variables and estimate their distributions, the method in [61]

uses only single cepstral coefficient vectors as an approximation. Furthermore, the state

sequence is fixed through the entire training process in [61]. On the other hand, in the

proposed method, the modified delayed decision Viterbi algorithm are derived and the

state sequence can be optimized for the integrated objective function.

3.3.5 Computational cost

The computational cost to train the proposed models with 50 sentences was more than

1000 hours. The large computational cost is mainly caused by following processes,

(1) Searching the best state sequences with the delayed decision Viterbi algorithm, (2) It-

erative updates for estimating the covariance matrices, and (3) EstimatingQ (c) in Eq. (3.24).

Although the process (1) and (2) are required for both the trajectory HMM and the pro-

posed method, (3) is necessary only for the proposed method, because all mel-cepstral
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coefficients in each utterance have to be estimated simultaneously. For a large scale ex-

periment, we reduced the computational cost in (3) by changing the optimization method

from the Newton-Raphson method to the RPROP [62] method and using the distributed

processing in the estimation of Q (c).

3.4 Experiments

To evaluate the effectiveness of the proposed method, objective comparison tests on the

likelihood measure and subjective comparison tests on the mean opinion score (MOS)

were conducted. For training, two data sets which contain different number of sentences

from the phonetically balanced 503 sentences of the ATR Japanese speech database (Set

B) [63] recorded in NITech were used.

• Small data set: 50 sentences

• Large data set: 450 sentences

Fifty other sentences were used for evaluation. The speech data was recorded at 48 kHz

and windowed at a frame rate of 5-ms by using a 25-ms Hamming window. The windowed

waveforms were used as the input data in the proposed method, and 35 mel-cepstral

coefficients, which include the zero coefficient estimated with the mel-cepstral analysis

technique [12], and their delta and delta-delta coefficients were used in the conventional

method. The dimension of the hidden mel-cepstral coefficients of the proposed method

was set to the same as that of the conventional method. The excitation parameter vectors

consisted of log F0 and its delta and delta-delta. The frequency warping parameter α was

set to 0.55. A five-state, left-to-right, no-skip structure was used for the HMMs. The ex-

citation parameters were modeled with multi-space probability distributions HMMs [49]

in both the proposed and conventional methods. Each state output probability distribution

was modeled by a single Gaussian distribution with a diagonal covariance matrix.

The standard HMMs were estimated as context-dependent models [64] and applied the

decision tree based context clustering technique [65]. The minimum description length

(MDL) criterion was used to determine the size of the decision trees [51]. After estimating

the standard HMMs, the trajectory HMMs and proposed models were re-estimated by

using the standard HMMs as their initial models in accordance with the training procedure

described in Section 3.3. The number of delayed frames in the delayed decision Viterbi

algorithm was set to seven.
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Figure 3.6: Log likelihood per frame for close and open data sets (Small data set)

In the subjective test, ten subjects were asked to rate the naturalness of the synthesized

speech on a MOS with a scale from 1 (poor) to 5 (good). Fifteen randomly selected

sentences were presented to each subject. The experiments were carried out in a sound-

proof room.

3.4.1 Experiments on Small Data Set

In the experiments on the small data set, an iteration of the proposed embedded training

was decided as follows: (Step A) Estimating Q (c), and (Step B) estimating Q (q) by

delayed decision Viterbi algorithm were repeated three times, and then (Step C) the model

parameters were updated. The embedded training process was repeated 5 times.

Figure 3.6 shows the difference of likelihood P (x|Λ) for the training data set (close) and

the test data set (open). The vertical axis shows the average log likelihood per frame. All

likelihoods were measured with the proposed model likelihood P (x|Λ) in the waveform

domain (Eq. (3.22)). The proposed model outperformed the others for both data sets.

This means that speech waveforms rather than mel-cepstrum were modeled appropriately

in the proposed method. Although the trajectory HMMs was expected to obtain a higher

likelihood than HMMs, similar likelihoods were actually obtained. This result indicates

that improvement of each component does not always achieve better modeling in terms

of the final objective measure. Figure 3.7 shows the subjective listening test results. In

Fig. 3.7, the MOS of the proposed method was better than that of the standard HMMs and

similar to or better than that of the trajectory HMMs.

38



 2.6

 2.7

 2.8

 2.9

 3.0

 3.1

 3.2

ProposedTrajectory HMMHMM

M
O

S

95% confidence interval
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trajectory HMMs and proposed model (Small data set)

3.4.2 Experiments on Large Data Set

In the experiments on the large data set, the best state sequences were previously deter-

mined by using the delayed decision Viterbi algorithm, and the state sequences and the

duration models were fixed to reduce the computational cost while the trajectory HMMs

and the proposed models were trained. The training process of the proposed models,

(Step A) estimating Q (c) and (Step C) updating the model parameters, was repeated 5

times. As a result, the total computational time was about 1000 hours. Actually, the com-

putational time was reduced by parallel processing of Step A using multiple computers.

Figure 3.8 shows the subjective listening test results. The MOS of the proposed method

was significantly better than the others. The reason why the trajectory HMMs obtained

a slightly worth MOS than the standard HMMs might be that the state sequences were

fixed through the embedded training of the trajectory HMMs to reduce the computational

cost. Figure 3.9 shows examples of spectrum sequences generated by these models. The

state duration for all models was aligned to the natural spectrum sequence so as to com-

pare these spectra easily. It can be observed that the proposed model generated sharper

spectra than the other models, especially in the low frequency band. It might contribute

to naturalness of the generated voices in the proposed method.

These results suggested that the proposed method appropriately modeled speech wave-

forms directly, even though the proposed model have exactly the same number of param-

eters as the baseline system. Further improvement is expected by applying the integrated

optimization not only to parameter estimation but also to the model structure selection,

e.g., context clustering in future work.
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3.5 Summary

In this chapter, I proposed a novel technique for modeling speech waveforms directly

by integrating the mel-cepstral analysis and the acoustic modeling. A generative model

representing the TTS problem was constructed and optimized, in which mel-cepstrum co-

efficients were treated as latent variables and the statistical mel-cepstral analysis and the

statistical acoustic model were integrated with marginalizing over mel-cepstral sequences.

In the objective experiment, the proposed method outperformed the conventional meth-

ods. In addition, the subjective evaluation score of the proposed method was slightly

better than that of the conventional methods. These results suggested that the proposed

method improves the quality of synthesized speech. Future work includes experiments

and evaluation on larger data set with searching the best state sequences by the delayed

decision Viterbi algorithm, and constructing a parameter tying structure based on the ob-

jective function of the proposed method. Furthermore, the use of other features rather

than mel-cepstral coefficients in the proposed framework will also be future work.
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trajectory HMMs and proposed model. (Large data set)
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Chapter 4

Mel-cepstral analysis technique
restoring missing high frequency
components from low-sampling-rate
speech

A spectral analysis technique based on statistical waveform modeling for HMM-based

speech synthesis is described in this chapter. In HMM-based speech synthesis, a spectral

envelope, F0, and duration are modeled simultaneously on the basis of generative mod-

els. The quality of the synthesized speech strongly depends on the training data because

HMM-based speech synthesis is a “corpus-based” method. The sampling rate of the train-

ing speech data is one of the factors that affect the quality of the synthesized speech. Al-

though speech data has recently come to be recorded at a high sampling rate, e.g., 48 kHz,

a lot of old speech data were recorded at a low sampling rate, e.g., 16 kHz. Furthermore,

although some approaches that use speech data stored on the Internet as training data

are becoming common, that kind of data is not always recorded at a high sampling rate.

Low-sampling-rate speech data degrades the quality of the synthesized speech. However,

recording voices and labeling them for a new speech database requires a huge cost. Thus,

these low-sampling-rate speech databases should be used effectively. Restoring the high

frequency components from low-sampling-rate speech data is expected to improve the

quality of the synthesized speech. Additionally, in some cases such as speaker adaptive

training (SAT) [66], which trains a model with speech data uttered by multiple speakers,

the amount of the training data can be increased significantly by using speech databases

recorded at different sampling rates.

Mel-cepstral coefficients are widely used as the spectral features, and low-sampling-rate
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speech data mainly affects the spectral features in HMM-based speech synthesis, We pro-

pose a mel-cepstral analysis technique that restores missing high frequency components

from low-sampling-rate speech data by using a statistical method in the framework of the

optimization integration. The idea of using the optimization integration has been seen in

the construction of large scale systems, e.g., speech recognition systems [6], speech trans-

lation systems [7, 8], and spoken dialog systems [9]– [10]. In the previous chapter, I pro-

posed a technique for integrating feature extraction and acoustic modeling and optimizing

them as an integrated generative model of speech waveforms for TTS systems [67, 68].

The optimization integration is an important trend for improving the performance of sys-

tems on the basis of statistical approaches.

In this chapter, I propose a method to estimate mel-cepstral coefficients that restores

high frequency components from low-sampling-rate speech. Statistical models of speech

waveforms are employed as prior distributions for mel-cepstral analysis. The proposed

method consists of two parts, a modeling part and a restoring part. In the modeling part,

speech waveforms are modeled directly as Gaussian mixture models (GMMs) from high-

sampling-rate speech waveforms. This modeling technique can be regarded as an ap-

plication of the integration technique of acoustic modeling and mel-cepstral analysis for

HMM-based speech synthesis [67, 68], which we have already proposed as a technique

for modeling speech waveforms. In the restoring part, they are used as prior distributions

to estimate mel-cepstral coefficients from low-sampling-rate speech.

In the rest of this chapter, the technique for modeling speech speech waveforms directly

and the technique for restoring high frequency components from a low-sampling-rate

speech are derived. Then, difference from related work is discussed, and experimental

results are presented.

4.1 Mel-cepstral analysis restoring high frequency com-
ponents

The goal of this paper is to estimate mel-cepstral coefficients that restores high frequency

components from low-sampling-rate speech. To accomplish this goal, we employ statis-

tical models of speech waveforms as prior distributions for mel-cepstral analysis. The

proposed method consists of two parts, a modeling part and a restoring part. In the mod-

eling part, speech waveforms are modeled directly as GMMs from high-sampling-rate

speech waveforms. This modeling technique can be regarded as an application of the

integration technique of acoustic modeling and mel-cepstral analysis for HMM-based

speech synthesis [67, 68], which we have already proposed as a technique for modeling
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speech waveforms. In the restoring part, they are used as prior distributions to estimate

mel-cepstral coefficients from low-sampling-rate speech.

4.1.1 Technique for modeling speech waveforms

In the modeling part, speech waveforms x sampled at a high frequency are used to train the

model. The model parameters Λ̃ are estimated by maximizing the following likelihood,

Λ̃ = argmax
Λ

P (x|Λ)

= argmax
Λ

∑
∀h

∫
P (x, c, h|Λ) dc, (4.1)

where c is a mel-cepstral coefficient sequence and h is a mixture index sequence of

GMMs. To overcome the difficulty of the optimization of Eq. (4.1), a Q function is

defined and maximized to estimate Λ by using the EM algorithm [30].

Q
(
Λ, Λ̂

)
=

∑
∀h

∫
Q (c, h) log P

(
x, c, h|Λ̂

)
dc, (4.2)

where Q (c,w) is assumed as Q (c|w)Q (w) and the optimal posterior distributions are

obtained by maximizing the objective Q function as:

Q (c|h)=
1

Zc
P (x, c|h,Λ) , (4.3)

Q (h)=
1

Zh
P (h|Λ) exp

∫
Q (c|h)(

log P (x, c|h,Λ) − logQ (c|h)
)
dc, (4.4)

where Zc and Zh are the normalization terms of Q (c|h) and Q (h), respectively. These

optimizations can be effectively performed by iterative calculations as the EM algorithm,

which increases monotonically the value of the objective Q function at each iteration

until convergence. Although the posterior distribution Q (c|h) should be ideally estimated

with consideration for neighboring frames, it is estimated frame-by-frame to simplify the

computation and reduce the computational complexity.

Q (c|h) =

T∏
t=1

Q (ct|ht) (4.5)

It is difficult to calculate the integral of c in Eq. (4.4) because of its high computational

cost. Thus,Q (ct|ht) is assumed as a Gaussian probability distribution by using the Laplace

approximation [58]. The posterior distribution Q (ct|ht) is represented by the unnormal-

ized probability Q∗ (ct|ht) as:
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Q (ct|ht) =
1

Zct

Q∗ (ct|ht) , (4.6)

where

Q∗ (ct|ht) = P (xt, ct|ht,Λ) , (4.7)

Zct =

∫
Q∗ (c′t |ht

)
dc′t . (4.8)

Taking the first three terms of the Taylor series expansion around ct = c̃t, the logarithm of

Q∗ (ct|ht) then becomes:

logQ∗ (ct|ht)

� logQ∗ (c̃t|ht) +

(
∂

∂ct
logQ∗ (ct|ht) |ct=c̃t

)

−1

2
(ct − c̃t)

�
(
∂2

∂ct∂c�t
logQ∗ (ct|ht) |ct=c̃t

)
(ct − c̃t) ,

(4.9)

where

c̃t = argmax
ct

Q (ct|ht) . (4.10)

As the first derivation of log Q∗ (ct|ht) at c̃t is equal to zero, Eq. (4.9) can be represented

as:

logQ∗ (ct |ht)

� logQ∗ (c̃t|ht) − 1

2
(ct − c̃t)

� At (ct − c̃t) , (4.11)

At = − ∂2

∂ct∂cT
t

logQ∗ (ct|ht) |ct=c̃t

= − ∂2

∂ct∂cT
t

log P (xt|ct) |ct=c̃t

− ∂2

∂ct∂cT
t

log P (ct|ht,Λ) |ct=c̃t

=
N
2

Ht |ct=c̃t +Σ
−1
ht
, (4.12)

where Σht is the ht-th covariance matrix of the GMMs, and Ht is the Hessian matrix of the

spectral evaluation function E (xt, ct) in Eq. (3.5) at time t:

Ht=
∂2

∂ct∂c�t
E (xt, ct) = − 2

N
∂2

∂ct∂c�t
logP (xt|ct) . (4.13)
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To approximate Q (ct|ht) by a Gaussian probability distribution, the normalization term

Zct is approximated as:

Zct � Q∗ (c̃t|ht)

√
(2π)M

∣∣∣A−1
t

∣∣∣. (4.14)

By using the Laplace approximation, Q (ct|ht) is represented as:

Q (ct|ht) � N
(
ct|c̃t, A−1

t

)
. (4.15)

From the above, the posterior distribution Q(c, h) can be calculated.

4.1.2 Technique for restoring high frequency components

In the restoring part, the mel-cepstral coefficients c̃ with the high frequency components

restored from the low-sampling-rate speech waveform x(L) and the model parameter Λ are

estimated by maximizing the posterior probability for the given speech waveform xL as

follows:

c̃= argmax
c

P
(
c|x(L),Λ

)
= argmax

c
P

(
x(L)|c

)
P (c|Λ)

= argmax
c

{
log P

(
x(L)|c

)
+ log

∑
∀h

P (c, h|Λ)
}

(4.16)

The probability P (c|Λ) of mel-cepstral coefficients is expected to work as the prior dis-

tribution of mel-cepstral coefficients. When c is estimated by maximizing only P
(
x(L)|c

)
,

the high frequency components of the spectral envelope from the estimated c are not al-

ways appropriate because high frequency components cannot be considered in P
(
x(L)|c

)
.

However, P (c|Λ) leads the high frequency components of the spectral envelope to the

reasonable curve. The probability P
(
x(L)|c

)
of speech waveforms is calculated from the

low-sampling-rate periodogram. If the log likelihood function of the partial periodgram

from l1-th to l2-th dimension is defined as:

D(l1, l2) = −1

2

{
(l2 − l1 + 1) log (2π)

+

l2∑
i=l1

(
log

∣∣∣∣H (
e jωi

)∣∣∣∣2 + IN(ωi)

|H (e jωi)|2
)}
, (4.17)

the original log likelihood function is represented by

log P (xt|ct) = D(0,N − 1)

= D(0, Ñ − 1) + D(Ñ,N − 1)

= log P
(
x(L)

t |ct

)
+ log P

(
x(H)

t |c
)
, (4.18)
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where x(L)
t and x(H)

t are the low and high frequency components of a speech waveform,

and Ñ is a dimension of the boundary between them. The likelihood of the low and high

frequency components can be calculated separately.

Equation (4.16) is converted by using Jensen’s inequality:

log P
(
x(L)|c

)
+ log

∑
∀h

P (c, h|Λ)

≥ log P
(
x(L)|c

)
+

∑
∀h

Q′(h) log
P (c, h|Λ)

Q′(h)
, (4.19)

where

Q′(h) = P (h|c,Λ)

=
P (c, h|Λ)∑
∀h′ P (c, h′|Λ)

. (4.20)

To maximize P
(
c|x(L),Λ

)
, c̃ and Q′(h) are updated alternately. The mel-cepstral coeffi-

cients c̃ can be estimated by using an optimization algorithm such as Rprop [62].

4.1.3 Avoidance of local maxima problem

The estimated mel-cepstral coefficients c depend heavily on the initial value. To overcome

the serious local maxima problem, an annealing technique hardly depending on the initial

value is used. It is similar to the deterministic annealing EM (DAEM) algorithm [69].

Two terms related to c in Eq. (4.19) are shown as:

F = log P
(
x(L)|c

)
+ log P (c|Λ) . (4.21)

It is modified by using a parameter β that decides the ratio between two terms.

Fβ = β log P
(
x(L)|c

)
+ (2 − β) log P (c|Λ) . (4.22)

If β = 1, Fβ becomes equal to the original objective function. The parameter β is gradually

changed in the estimation of c̃ according to the following function.

β =
( s
S

)r
(s = 1, 2, · · · , S ) , (4.23)

where s denotes the iteration number of updates.

4.2 Related work

As mentioned above, the proposed method restores missing high frequency components

from low-sampling-rate speech. Some similar approaches have been found in previous
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pieces of research. One famous method converts low-sampling-rate speech into high-

sampling-rate speech by using the voice conversion (VC) method [70, 71]. In the VC-

based method, the feature extraction and restoration of the high frequency components

are independent. Furthermore, as the trained model depends on the sampling rate of input

speech, different models are required for different sampling rates of input speech. In

contrast to the VC-based methods, the feature extraction and the restoration of the high

frequency components are integrated and optimized on the basis of the unified criterion

in the proposed method. Also, as the sampling rate of the input speech does not depend

on the model, only one model is required for any sampling-rate of input speech.

4.3 Experiments

To evaluate the effectiveness of the proposed method, two types of subjective comparison

tests were conducted.

4.4 Experiments of degradation

To evaluate the degradation from the original 48-kHz sampling-rate speech, a subjec-

tive comparison test on the degradation mean opinion score (DMOS) for the analysis-

synthesis speech was conducted. For the speech database, 503 phonetically balanced

sentences from the ATR Japanese speech database (Set B) [63] uttered by a male speaker

were used. The following three methods were compared in the evaluation.

• 48 kHz (Original): Use mel-cepstrum extracted from original 48-kHz sampling-rate

speech.

• 16 kHz (Conventional): Use mel-cepstrum extracted from 16-kHz sampling-rate speech.

It was prepared by downsampling original 48-kHz sampling-rate speech to 16-kHz

sampling-rate speech.

• Proposed: Use mel-cepstrum estimated from 16-kHz sampling-rate speech by the pro-

posed method. To train GMMs to restore the high frequency components, speech wave-

forms recorded at a sampling rate of 48 kHz were used. The numbers of mixture com-

ponents of GMMs were set to 256. The output probability distribution was modeled

with a diagonal covariance matrix. The parameter r in Eq. (4.23) was varied as r = 2n

and decided to r = 2−4 which obtained the best likelihood for the test data.
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Figure 4.1: Degradation mean opinion score for analysis-synthesis speech.

In this experiment, mel-cepstral coefficients were estimated by using the above three

methods. and speech waveforms were reconstructed from them. For the proposed meth-

ods, 450 sentences were used for training models. The speech data was windowed at a

frame rate of 5 ms by using a 25-ms Hamming window. The windowed waveforms were

used as the input data for training GMMs and restoring high frequency components in the

proposed method, and 35 mel-cepstral coefficients including the zero coefficient, which

are estimated with the standard mel-cepstral analysis technique, were used for other meth-

ods. The dimension of the hidden mel-cepstral coefficients of the proposed method was

set to the same as that of the original. The frequency warping parameter α was set to

0.55. The evaluation data was prepared by downsampling each speech waveform from

the 48-kHz sampling rate to the 16-kHz sampling rate. Speech Signal Processing Toolkit

(SPTK) [72] was used for downsampling. The other 53 sentences were used for eval-

uation. Ten subjects were asked to rate the naturalness of the synthesized speech on a

DMOS with a scale from 1 (Degradation is very annoying) to 5 (Degradation is inaudi-

ble). Ten randomly selected sentences were presented to each subject. The experiments

were carried out in a sound-proof room.

Figure. 4.1 shows the results of DMOS evaluation. The 48-kHz sampling-rate speech

was used as the reference, and the speech waveforms generated from the mel-cepstrum

estimated by the proposed method were compared to those of the conventional method.

The proposed method obtained the significant improvement compared to the conventional

16-kHz sampling-rate analysis-synthesis speech.

Figure 4.2 shows an example of the periodgram and spectral envelopes corresponding

to a frame. For reference, the periodgram of the 48-kHz sampling-rate speech is shown
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Figure 4.2: Periodgram of the original speech and spectral envelopes obtained by mel-

cepstrum.

by the orange line, and the spectral envelope obtained from the original 48 kHz mel-

cepstrum is shown by the green line. The periodgram of 16-kHz sampling-rate speech

is shown by the purple line. It was prepared by upsampling to be shown in the same

graph as other lines. SPTK was used for upsampling. Therefore, the log magnitude of the

frequency components higher than about 300-th point of the frequency is near zero. In

addition, two spectral envelopes obtained by the proposed methods with 1 mixture (gray)

and 256 mixtures (red) were shown. In the case of 1 mixture, the spectral envelope of

the proposed method (gray) were over smoothed in many frames, because the number

of model parameters was too small. On the other hand, in the case of 256 mixtures,

the spectral envelope of the proposed method (red) is similar that of the original spectral

envelope (green).
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4.5 Experiments of naturalness

To evaluate the naturalness of the synthesized voices, subjective comparison tests on the

mean opinion score (MOS) for the analysis-synthesis and HMM-based speech synthesis

were conducted. For the speech database, 503 phonetically balanced sentences from the

ATR Japanese speech database (Set B) [63] uttered by a male speaker were used. The

following three methods were compared in the evaluation.

• 48 kHz (Original): Use mel-cepstrum extracted from original 48-kHz sampling-rate

speech.

• Conventional: Use mel-cepstrum converted from a sampling rate of 16 kHz to that of

48 kHz in the mel-cepstrum domain by using the VC-based method [73, 74]. The joint

feature vectors of the mel-cepstral coefficients of the 16 kHz and 48-kHz sampling rates

were modeled as GMMs. The number of mixture components of GMMs was set to 64,

and each distribution was modeled with a cross covariance matrix.

• Proposed: Use mel-cepstrum estimated from 16-kHz sampling-rate speech by the pro-

posed method. To train GMMs to restore the high frequency components, speech wave-

forms recorded at a sampling rate of 48 kHz were used. The numbers of mixture com-

ponents of GMMs were set to 64. The output probability distribution was modeled with

a diagonal covariance matrix. The parameter r in Eq. (4.23) was varied as r = 2n and

decided to r = 2−3 which obtained the best likelihood for the test data.

Experiments of analysis-synthesis

In this experiment, mel-cepstral coefficients were estimated by using the above three

methods, and 48-kHz sampling-rate speech waveforms were reconstructed from them.

For the conventional and proposed methods, 200 sentences were used for training mod-

els. The speech data was windowed at a frame rate of 5 ms by using a 25-ms Ham-

ming window. The windowed waveforms were used as the input data for training GMMs

and restoring high frequency components in the proposed method, and 35 mel-cepstral

coefficients including the zero coefficient, which are estimated with the standard mel-

cepstral analysis technique, were used for other methods. The dimension of the hidden

mel-cepstral coefficients of the proposed method was set to the same as that of the other

methods. The frequency warping parameter α was set to 0.55. The evaluation data was

prepared by downsampling each speech waveform from the 48-kHz sampling rate to the

16-kHz sampling rate. For the conventional method, mel-cepstral coefficients estimated

from the 16-kHz sampling-rate speech were used as the input of the conversion process.

51



 2.0

 2.5

 3.0

 3.5

 4.0

48 kHz Conventional Proposed

M
O

S
95% confidence intervals

Figure 4.3: Mean opinion scores for analysis-synthesis speech

SPTK was used for downsampling. The other 53 sentences were used for evaluation. Ten

subjects were asked to rate the naturalness of the synthesized speech on a MOS with a

scale from 1 (poor) to 5 (good). Ten randomly selected sentences were presented to each

subject. The experiments were carried out in a sound-proof room.

Figure 4.3 shows the results of MOS evaluation for analysis-synthesis speech. The pro-

posed method obtained a significant improvement compared with the conventional method.

The score of the proposed method was almost the same as that of the original 48-kHz one.

Thus, the proposed method seems to be able to restore the missing high frequency com-

ponents.

Experiments of HMM-based speech synthesis

Next, speech synthesized by HMM-based speech synthesis was evaluated. To train HMMs,

250 sentences not included in the training data of GMMs were used. Mel-cepstral coef-

ficients of these sentences were prepared by using the above three methods. A five-state,

left-to-right, no-skip structure was used for the HMMs. The excitation parameters were

modeled with multi-space probability distribution HMMs [49]. Each state output prob-

ability distribution was modeled by using a single Gaussian distribution with a diagonal

covariance matrix. The HMMs were estimated as context-dependent models [64] and ap-

plied the decision tree based context clustering technique [65]. The minimum description

length (MDL) criterion was used to determine the size of the decision trees [51]. Each

probability distribution was modeled with a diagonal covariance matrix. The setting of

the MOS evaluation was the same as that of analysis-synthesis.

Figure 4.4 shows the results of MOS evaluation for speech synthesized by the HMM-
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Figure 4.4: Mean opinion scores for speech synthesized by HMM-based speech synthesis

based speech synthesis. The trend of the results was almost the same as that of analysis-

synthesis. Thus, the effectiveness of the proposed method for HMM-based speech syn-

thesis was shown.

4.6 Summary

In this chapter, a mel-cepstral analysis technique restoring missing high frequency com-

ponents from low-sampling-rate speech was proposed. The feature extraction process and

the modeling process of these features were integrated, and the models of speech wave-

forms were used as the prior models to restore the high frequency components. In subjec-

tive experiments, the degradation and naturalness of the speech by analysis-synthesis and

HMM-based speech synthesis was significantly improved by using the proposed method.

Future work includes objective evaluations and experiments with speaker-independent

models.
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Chapter 5

HMM-based English singing voice
synthesis

In this chapter, HMM-based speech synthesis and its application to Japanese and English

are described. Japanese singing voice synthesis systems have already been developed

and used to create variable musical contents. To extend this system to English, language

independent contexts are designed. Furthermore, methods for matching musical notes

and pronunciation of English lyrics are presented and evaluated in subjective experiments.

Then, Japanese and English singing voice synthesis systems are compared.

5.1 English Singing Voice Synthesis

5.1.1 Lyrics of English musical scores

Lyrics in Japanese musical scores are generally written in kana characters, which can be

converted into labels by using a mora-to-phonemes table. On the other hand, English

lyrics are generally written in words, and a word-to-phonemes table is not sufficient for

words, like “the” and “lead” for which the pronunciation depends on the context. Thus,

morphological analysis is needed to convert the word sequence into syllable and phoneme

sequences. A musical phrase that is an uttered part between musical rests is regarded as a

sentence and analyzed. A syllable consists of a vowel (syllable nucleus) and consonants

around it. Tables 5.1 and 5.2 show the relationships between strings and pronunciation in

Japanese and English respectively. In these tables, vowels are indicated by red boldface.

Contexts for English singing voice synthesis are designed by expanding contexts for

Japanese one [20]. First, all contexts are classified into the language dependent and inde-
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Figure 5.1: An example of English score.

Table 5.1: Relationships between Japanese strings and pronunciation.
String Mora げ ん こ つ や ま の た ぬ き さ ん
Pronunciation Mora ge N ko tsu ya ma no ta nu ki sa N

Phoneme g e N k o ts u y a m a n o t a n u k i s a N

pendent groups. Then, English syllables and Japanese moras are allocated to a common

level in the context design to standardize contexts of these languages. In addition, a new

area is appended to the context design to address language dependent contexts, e.g. stress

and accent, which are used only in English. The proposed context design is presented in

Table 5.3. The context dependent contexts are indicated by red bold text in the Table 5.3.

In this paper, the Flite [75] is used for morphological analysis, and the CMU pronouncing

dictionary [76] is used as the word dictionary. The phoneme set consists of phonemes in

CMU pronouncing dictionary, long silence “sil”, silence neighboring uttered parts “pau”,

and breath “br”.

Table 5.2: Relationships between English strings and pronunciation.
String Word rhythm of the classical music

Syllable rhy thm of the clas si cal mu sic

Pronunciation Syllable rih dhaxm ahv dhax klae sih kaxl myuw zihk

Phoneme r ih dh ax m ah v dh ax k l ae s ih k ax l m y uw z ih k
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Table 5.3: Proposed context design. English syllables and Japanese moras are allocated to

common level, and new area for language dependent context is appended. The proposed

area is indicated by boldface.
Phoneme Quinphone. (Phoneme within the context of two immediately preceding and suc-

ceeding phonemes)
Syllable Number of phonemes in {previous, current, next} syllable.

(Mora) Position of {previous, current, next} syllable in note.

Language dependent context in {previous, current, next} syllable.
(English: with or without {accent, stress}, Japanese: undefined)

Note Musical {tone, key, beat, tempo, and length} of {previous, current, next} note.

Position of current note in {measure, phrase}.
With or without a slur between current and {previous, next} note.

Dynamics to which current note belongs.

Difference in pitch between current note and {previous, next} note.

Distance between current note and {next, previous} {accent, staccato}.
Position of current note in current {crescendo, decrescendo}.

Phrase Number of {syllables, notes} in {previous, current, next} phrase.

Song Number of {syllables, notes} / Number of measures.

Number of phrases.

5.1.2 Syllable allocation methods

The number of syllables for each word is obtained by morphological analysis. However,

it is not always equal to the number of corresponding notes. Therefore, a method for

allocating syllables to notes is required. Here we propose two methods.

1: Left-to-right allocation

In this method, syllables in a word are allocated to corresponded notes one-by-one from

the head note. If the number of syllables is not equal to that of notes, the remaining

syllables are allocated to the tail note or each of all remaining notes receives a syllable

duplicated from the last syllable.

2: Score-based allocation

In this method, syllables in a word are allocated to corresponded notes based on the

number of characters in each note. Each note that has no syllable receives a syllable

duplicated from the syllable of previous note. The allocation procedure comprises three

steps.

Step 1: Count number of characters corresponding to each note
First, the number of characters corresponding to each note is counted. A character

denotes a letter in a lyric string in Table 5.2. Since many syllables should be allocated
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every         -         thing

1:       [eh]

2: [eh | v, r, iy]

[v, r, iy | th, ih, ng]

[th, ih, ng]

Figure 5.2: Two methods for syllable allocation.

to notes that have many vowels (syllable nucleus), we count “a”, “e”, “i”, “o”, and “u”,

which tend to be vowels, as two characters in this paper. Table 5.2 shows an example.

The word “classical” has two “a” and one “i”, and they are allocated to three syllables

one-by-one as vowels. Similarly, one of the exceptions to “a”, “e”, “i”, “o”, and “u”

being vowels is “rhythm” in Table 5.2. Although it contains none of these letters, its

pronunciation includes some vowel sounds.

Step2: Calculate score for each note
The score wn of a note n is defined as

wn =
S cn∑N
n′=1 cn′

, (5.1)

where cn, N and S denote the number of characters corresponding to note n, the number

of notes in a word, and the number of syllables obtained by morphological analysis

respectively. The summation of all scores is equal to the number of syllables.

Step3: Determine allocation of syllables to notes
Finally, the number kn of syllables allocated to each note n is determined. The numbers

are initialized to 0. The note with the highest score, n̂, is selected, and kn̂ and wn̂ are

updated to kn̂ = kn̂ + 1 and wn̂ = wn̂ − 1. The kn for all n are obtained after S iterations

of this procedure. Note that at least one syllable has to be allocated to the head note of

a word.

Figure 5.2 shows an example illustrating these two methods. The word “everything” is

converted into three syllables “eh | v, r, iy | th, ih, ng”. The symbol “|” represents a syllable

boundary. If the word corresponds to two notes, method 1 allocates syllables one-by-one

from the head note and allocates all remaining syllables to the tail note. As a result,

one syllable “eh” is allocated to the first note, and two syllables “v, r, iy | th, ih, ng” are

allocated to the second note. In method 2, because of S = 3, c1 = 7, and c2 = 5, the score

for each note is obtained as

w1 = (3 × 7) / (7 + 5) = 1.75, (5.2)

w2 = (3 × 5) / (7 + 5) = 1.25. (5.3)

57



Table 5.4: Diphthong duplication rules.

Original ey ay ow aw oy

Duplicated eh, ey aa, ay ao, ow aa, aw ao, oy

smile smi     -     le

One note Two notes

[s, m, ay, l] a: [s, m, ay]

b: [s, m, aa]

[ay, l]

[ay, l]

Figure 5.3: Two methods for duplicating syllables.

Thus, two syllables, “eh | v, r, iy”, are allocated to the first note, and one syllable, “th, ih,

ng”, is allocated to the second note.

5.1.3 Syllable duplication methods

If the number of notes is smaller than that of syllables, there are some notes without a

syllable. We propose two methods for allocating a syllable to each of these notes by

duplicating the syllable of the previous note.

a: Simple duplication

In this method, the nucleus of the syllable allocated to the previous note is simply

duplicated, and the syllable is divided.

b: Rule-based duplication

Consecutive diphthongs due to duplication may degrade the continuity of a singing

voice, so we defined the duplication rules for diphthongs shown in Table 5.4.

Figure 5.3 shows an example illustrating these syllable duplication methods．The word

“smile” has one syllable, “s, m, ay, l”, and it corresponds to two notes. In method a, “ay”

is simply duplicated as “s, m, ay” and “ay, l”. In method b, the “ay” of the first note is

converted to “ah” by using a duplication rule.
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5.2 Experiments

To evaluate the effectiveness of the proposed methods and compare Japanese and En-

glish singing voice synthesis, we conducted objective and subjective experiments. In

the subjective experiments, twenty English songs sung by a female singer who was a

bilingual student were used for training English models, and five songs were used for

evaluation. For comparison, 17 Japanese songs sung by the same singer were used for

training Japanese models, and five songs were used for evaluation. The total length of the

voiced parts was adjusted to about 30 minutes for each training data set. Singing voice

signals were sampled at a rate of 48 kHz and windowed with a 5-ms shift. The feature

vectors were the spectral, excitation, and vibrato feature vectors. The spectrum parameter

vector consisted of 49 STRAIGHT [77] mel-cepstral coefficients including the zero-th

coefficient. The excitation parameter vector consisted of log F0. The vibrato parameter

vector consisted of fluctuation amplitude and frequency. In addition to these parameters,

their deltas and delta-deltas were used.

A seven-state (including the beginning and ending null states), left-to-right, no-skip struc-

ture was used for the MSD-HSMM [50] [49]. The phoneme alignment results for the

training data obtained by using the deterministic annealing EM (DAEM) [69] algorithm

were used as the initial phoneme boundary labels. A decision-tree-based context-clustering

technique was separately applied to the distributions for the spectrum, excitation, vibrato,

state duration, and time lag. The MDL criterion [51] was used to control the size of the

decision trees. The heuristic weight α for the penalty term in Equation (1) in [51] was

3.0. Ten English subjects or ten Japanese subjects were asked to evaluate the natural-

ness of the synthesized singing voices. Each English subject is a national of a majority

English-speaking country or holds a degree that was taught in English and is equivalent

to a UK bachelor’s degree. And all of them had been living in UK. Each Japanese subject

is a native Japanese speaker. The English subjects were asked to evaluate the synthesized

English singing voices, and the Japanese subjects were asked to evaluate both of the syn-

thesized English and Japanese singing voices. Each subject was presented 10 randomly

selected musical phrases from 30 musical phrases, and evaluated the naturalness on Mean

Opinion Score (MOS) with a scale from 1 (poor) to 5 (good). The average length of the

musical phrases was 8.1 seconds. The experiments by the English and Japanese subjects

were carried out in a silent room (noise was less than 35db) and a sound-proof room

respectively.
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Table 5.5: The comparison of (A)ccuracy rate, (C)orrect, (I)nserted, (D)eleted, and

(S)witched phonemes of phoneme sequence for each note.

Method A (%) C I D S

1-a 92.19 3149 33 35 196

1-b 95.98 3277 33 35 68

2-a 95.56 3230 0 2 148

2-b 99.41 3360 0 2 18

5.2.1 Experiment of syllable allocation and duplication

In this experiment, combinations of syllable allocation and duplication methods were

compared. The syllable allocation methods were defined as follows.

1: Left-to-right allocation

2: Score-based allocation

The syllable duplication methods were defined as follows.

a: Simple duplication,

b: Rule-based duplication.

The four possible combinations (1-a, 1-b, 2-a, and 2-b) were evaluated in terms of the

generated phoneme sequences and the MOS.

First, the generated phoneme sequences of five songs for the evaluation were compared

to the hand-labeled phoneme sequences per note. The results are shown in Fig. 5.5. The

method 2 reduced the inserted and deleted errors, and the method b reduces the switched

errors. The combination 2-b obtained 92% error reduction rate.

Next, the results of the MOS are shown in Fig. 5.4. Both of the syllable allocation and

duplication methods did not make significant difference in the MOS. However, the English

subjects tended to give higher scores to the method b, and the Japanese subjects tended to

give higher scores to the method 2 and b. The numbers of the inserted and deleted errors

were smaller than that of the switched errors in Fig. 5.5, and it seems to be the reason why

the difference between the method 1 and 2 was small. Figure 5.5 shows an example of

the differences between a natural singing voice and two synthesized singing voices with

combinations 1-a and 2-b for “rainbow”. The phoneme alignments of the natural singing
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Figure 5.4: Effect of syllable allocation and duplication methods.

voice were obtained by hand labeling, and those of the synthesized singing voices were

obtained when the singing voices were synthesized. The word “rainbow” consists of two

syllables, “r, ey, n” and “b, ow”. With combination 1-a, two syllables were allocated to

the head and center notes, and the syllable “b, ow” was duplicated into “b, ow” and “ow”.

With combination 2-b, two syllables were allocated to the head and tail notes, and the

syllable “r, ey, n” was duplicated into “r, eh” and “ey, n” on the bases of the duplication

rule. As a result, combination 2-b produced a singing voice similar to the natural singing

voice and was thus used in the next two experiments.

5.2.2 Experiment of time lag

In this experiment, the effect of time-lag modeling and where the time-lag should be

measured from were evaluated for Japanese and English singing voice synthesis 1. The

following three methods were compared.

A: Without time-lag models

B: With time-lag (from head phoneme) models

C: With time-lag (from syllable nucleus) models

Synthesized voices were played with a click for every quarter note synchronized to the

corresponding musical score (only in this experiment).

Figure 5.6 shows the results of MOS evaluation. Improvement with time-lag modeling

was evident for both languages. In Japanese, method B obtained a little higher score

than method C. In English, method C obtained higher score than method B. A possible

1The obtained results are not comparable in absolute value across languages because these experiments

were conducted independently.
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Natural

singing voice

1-a

2-b

rain bow-

Hand labeling

Synthesized

singing voice

Synthesized

singing voice

owbneyr

owowbneyr

owbneyehr

Figure 5.5: Comparison of waveforms in terms of differences in syllable allocation and

duplication methods for “rainbow”. Natural voice is shown in the first waveform, and

synthesized waveforms by combination 1-a and 2-b are shown in the second and the third

waveforms respectively.

explanation for this is that, since two or more consonants can appear in front of the syllable

nucleus in English, the phoneme durations before the first vowel may fluctuate widely.

Method C, which achieved the best score for English, was used in the last experiment.

5.2.3 Experiment of data size

In this experiment, the relationships between training data size and the naturalness of the

synthesized voices were compared between Japanese and English singing voice synthesis.

There were three sizes for the data (length of voiced part):
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Figure 5.6: Effect of the time-lag modeling. A: Without time-lag models, B: With head-

phoneme-based time-lag models, C: With syllable-nucleus-based time-lag models.
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Figure 5.7: Effect of the amount of training data. S: 8 minutes, M: 15 minutes, L: 30

minutes.

S: 8 min.（5 Japanese songs, 5 English songs）

M: 15 min.（9 Japanese songs, 10 English songs）

L: 30 min.（17 Japanese songs, 20 English songs）

As shown in Fig. 5.7, naturalness improved for both languages with an increasing amount

of training data. Moreover, the scores for English varied widely, probably because English

is not the native language for subjects.

5.3 Summary

In this chapter, HMM-based English singing voice synthesis was described. Language

independent/dependent contexts were defined for both languages, and syllable allocation

and duplication methods for matching English syllables to musical notes were described

and evaluated in the objective and subjective experiments. The accuracy rates of the

generated phoneme sequences were improved in the objective experiment. Furthermore,
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other experiments clarified the effects of time-lag modeling and the relationships between

the amount of training data and the naturalness of the synthesized voice in English and

Japanese singing voice synthesis. Each of them showed a largely similar trend in both

languages. Future work includes additional experiments by using other singer voices, and

expansion of singing voice synthesis to other languages, e.g., Mandarin.
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Chapter 6

Conclusions

I described a statistical approach to HMM-based speech and singing voice synthesis. Sta-

tistical speech synthesis frameworks based on HMMs were presented in Chapter 2. In

Chapter 3, the integration of feature extraction and acoustic modeling for HMM-based

speech synthesis was proposed. A generative model representing the TTS problem was

constructed and optimized, in which mel-cepstrum coefficients were treated as latent vari-

ables and the statistical mel-cepstral analysis and the statistical acoustic model were in-

tegrated by marginalizing over mel-cepstral sequences. In an objective experiment, the

proposed method outperformed the conventional methods. In addition, the subjective

evaluation score of the proposed method was slightly better than that of the conventional

methods. These results suggested that the proposed method improves the quality of syn-

thesized speech. In Chapter 5, HMM-based singing voice synthesis and its application to

Japanese and English were described. Language independent contexts were defined for

both languages, and syllable allocation and duplication methods for matching English syl-

lables to musical notes were described and evaluated in the subjective experiments. Other

experiments clarified the effects of time-lag modeling and the relationships between the

amount of training data and the naturalness of the synthesized voice in Japanese and

English singing voice synthesis. Each of them showed a largely similar trend in both

languages.
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Appendix A

Likelihood Function of Mel-cepstrum

It has been shown in literatures (e.g., [55]) that the following equation approximates the

log likelihood function of a zero-mean Gaussian process when N → ∞:

log P (x|c) � −N
2

[
log (2π)

+
1

2π

∫ π

−π

{
log

∣∣∣∣H (
e jω

)∣∣∣∣2 + IN (ω)

|H (e jω)|2
}

dω
]

(A.1)

As a result, it can be seen that the minimization of Eq. (3.5) is equivalent to maximizing

P (x|c).

This appendix shows that Eq. (3.8) approximates the log likelihood function with an as-

sumption that windowed signal

x′ =
[
x′(0), x′(1), · · · , x′(N − 1)

]�
(A.2)

where

x′(n) =

√
N∑N−1

n=0 w
2(n)
w(n)x(n) (A.3)

is generated by circular convolution of white Gaussian process

e = [e(0), e(1), · · · , e(N − 1)]� (A.4)

whose variance is unity and

h̃ =
[
h̃(0), h̃(1), · · · , h̃(N − 1)

]�
(A.5)

76



where

h̃(n) =
1

N

N−1∑
i=0

H
(
e jwi

)
e jwin, wi =

2πi
N

(A.6)

that is , e is obtained by circular convolution of x′ and

g =
[
g(0), g(1), · · · , g(N − 1)

]�
(A.7)

where

g(n) =
1

N

N−1∑
i=0

H−1
(
e jwi

)
e jwin (A.8)

It is noted that x′(n) is normalized so that the energy of x(n) is preserved, and windowing

can reduce the effect of replacing convolution by circular convolution.

From the assumption, the likelihood is written as

P
(
x′|c) = 1√

(2π)N |U|
exp

(
−1

2
x′�U−1x′

)
(A.9)

where

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
u (0) u (1) · · · u (N − 1)

u (1) u (0)
. . .

...
...

. . .
. . . u (1)

u (N − 1) · · · u (1) u (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (A.10)

and

u (k) =
1

N

N−1∑
i=0

∣∣∣∣H (
e jωi

)∣∣∣∣2 e jωik (A.11)

We can show

x′�U−1x′ =
N−1∑
i=0

IN (ωi)

|H (e jωi)|2 (A.12)

and

|U| =
N−1∏
i=0

∣∣∣∣H (
e jωi

)∣∣∣∣2 (A.13)

Consequently, it can be shown
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log P
(
x′|c) = −N

2

[
log (2π)

+
1

N

N−1∑
i=0

{
log

∣∣∣∣H (
e jωi

)∣∣∣∣2 + IN (ωi)

|H (e jωi)|2
}]

(A.14)

where IN(ω) is given by Eq. (3.7). By replacing the summation by an integration, we

obtain

log P
(
x′|c) � −N

2

[
log (2π)

+
1

2π

∫ π

−π

{
log

∣∣∣∣H (
e jω

)∣∣∣∣2 + IN (ω)

|H (e jω)|2
}

dω
]

(A.15)

Thus, maximizing P (x′|c), i.e., maximizing Eq. (A.15) with respect to c is equivalent to

the minimization of Eq. (3.5) with respect to c.
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Appendix B

Applications of HMM-based Singing
Voice Synthesis
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Figure B.1: Web service (http://www.sinsy.jp).
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Figure B.2: Stand alone application.
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