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Abstract

Speech is the most important way for human communication and is expected to be used
as a new human-machine communication interface with the emergence of miniature and
speedy computers. Speech synthesis is one of the core technologies of the speech commu-
nication interface, and it is used for text-to-speech (TTS), singing voice synthesis, speech
translation, speech dialogue, etc. State-of-the-art research on speech synthesis is based
on hidden Markov models (HMMs). HMMs are statistical models that are widely used
for speech recognition by well-defined algorithms to estimate model parameters. It is
well known that they have high recognition performance if they are trained with enough
data. HMM-based speech synthesis has also grown in popularity over the last several
years. This framework makes it possible to model different voice characteristics, speak-
ing styles, or emotions without recording a large speech database. Although the quality
of the synthesized voices is high enough in some cases, the core technology needs to be
improved to synthesize high quality voices about the same as human voices. Additionally,
the applications of speech synthesis should be used to make our life more convenient. In
particular, some important functions, such as multilingualization and emotional synthesis
are required by many applications. In this paper, I improve speech synthesis technology
from both sides, i.e. the core technology and the applications.

First, to improve the core technology, I propose a novel approach to integrate spectral fea-
ture extraction and acoustic modeling for HMM-based speech synthesis. The statistical
modeling process of speech waveforms is typically divided into two component modules:
the frame-by-frame feature extraction module and the acoustic modeling module. In the
feature extraction module, the statistical mel-cepstral analysis technique has been used,
and the objective function is the likelihood of mel-cepstral coeflicients for given speech
waveforms. In the acoustic modeling module, the objective function is the likelihood
of model parameters for given mel-cepstral coeflicients. It is important to improve the
performance of each component module in order to achieve higher quality synthesized
speech. However, the final objective of speech synthesis systems is to generate natural
speech waveforms from given text, and improving each component module does not al-
ways lead to an improvement in the quality of synthesized speech. Therefore, ideally, all



objective functions should be optimized on the basis of an integrated criterion that well
represents the subjective speech quality of human perception. In this paper, I propose
an approach to model speech waveforms directly and optimize the final objective func-
tion. Experimental results show that the proposed method outperformed the conventional
methods in objective and subjective measures.

Next, I propose a mel-cepstral analysis technique that restores missing high frequency
components from low-sampling-rate speech. In HMM-based speech synthesis, the sampling-
rate of the synthesized speech depends on that of training speech data. Low-sampling-rate
training speech data degrades the quality of the synthesized speech. Recently, speech
databases have come to be recorded at a high sampling rate, e.g., 48 kHz. The sampling
rates of many speech databases recorded in the past are low. With the popularization of
speech synthesis techniques, the demand for using databases recorded in the past is grow-
ing bigger. Additionally, in some cases, such as speaker adaptive training (SAT), which
trains a model with speech data uttered by different speakers, the amount of the training
data can be increased significantly by using speech databases recorded at different sam-
pling rates. Therefore, I train a model of speech waveforms from a high sampling-rate
speech database in advance and use it for analyzing mel-cepstral coefficients whose high
frequency components are restored from low-sampling-rate speech databases. Experi-
mental results show that the proposed method restored high frequency components and
improved the quality of the synthesized speech.

Finally, as an important function for the applications, the multilingualization for HMM-
based singing voice synthesis is attempted. An English singing voice synthesis system is
proposed and compared with the Japanese one. In this approach, the spectrum, excitation,
and vibrato of singing voices are simultaneously modeled by using context-dependent
HMMs, and waveforms are generated from HMMs themselves. Japanese singing voice
synthesis systems have already been developed and used to create variable musical con-
tent. To expand this system to English, contexts that can be used in Japanese and English
singing voice synthesis systems are designed. Furthermore, methods for matching musi-
cal notes and the pronunciation of English lyrics are proposed and evaluated in subjective
experiments. Then, Japanese and English singing voice synthesis systems are compared.

As described above, in this paper, 1 propose a core technology and an application for
HMM-based speech synthesis, and they are evaluated in objective and subjective experi-
ments.

Keywords: speech synthesis, singing voice synthesis, acoustic modeling, mel-cepstral
analysis, integration model, multilingualization, English singing voice synthesis
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Abstract in Japanese

A, AV a—20/NHE - SR LAY — N T+ OB E RIS, Hilzikvx
YRV UAVET —ARE LT, HAANEICE > TRt FiliimERIETFERTH 5
BEAICEEPEZ > TS, ITE, HHA Y27 2—AD0AT7HEIKO—DTH %
EE OB, 7F A NERE G (text-to-speech; TTS) A 5k, &M BHaR, Xt
VAT LW TR IET TV — g YTRHREEEINTWVWS. BEAGKROTE
T, JEHEEENSIV T T E7 )V (Hidden Markov Model; HMM) I DW= k0D
HZENEAIITONT VA, HMM I CNE TEHA RO E CTIL fHFHLNTET
B0, YT —RICHEDENRT A= Z2HET ZRERSE7IVT) ALMFEL,
TR 7EEB T — 28N G Z DN EOCESRMEREZ RS T EARHIBN TV, HMM
ER AR TIEIITE RIS EFRT A= 7 )V 3 ALZHWTHE
BEFRIRIA—R2 M LUERZERT 578, TNXTOFERTH > ZHNMEHR
BOGEFRERFIE LR LT, BEREGEADELRY, NIA—RE22HT ST
ETHABFHEICEMTES R EDREND 5. SEFDOMEITHRICEK > Tl
FHIZLNIVNCELTWASH, ANBEEMES IZEDOHRGEFRZEKT 5701
X, BARZA7ENOWENNETHS. TDO—)5T, & OROEZ HH AT
MEDFERNCIR B X HNITRNLT TV Tedicid, 77V r—ya vzl oRHESE
TV RENDH B. KRS, ZEEMSRIEEFERE WV TEEREL, SR ERD
BT TV r—y g B nTnEe SN TED, EEMEIEENTNS. T
T T, BEHREROA7EMOEZZEbE T T r— g Vicni e TN 5 EEE
DFRFEVSHEN S, ARICK D SN2 TRt % & G b D FZBITHY
DA TNL.

X9, aVHEEhOm(bE LT, HMM BEASRICET 2 AT MVRHEHIH & 52
TV VT OMEFEZIRET S, TNEXT, BHBIEOMNEET IV, 7
L— LEAOREMM LT TY V7805 2DDAT Yy Fnhn T, K
HEMNDOAT v FCBWTE, HEHNEXIV T T A I LohFESHNENT
BY, BALDNIERIIICHNT 5 XV TA T LOEZHNEKE LT, Z
NZHRKILT B KISV TA ST LREDES N Tz, BTV TD
AT TICBNTIE, GABNIAIVT TA ST MRBICHT 2 ETIVRT A—%
DIz B E LT, ZNZ2RKIET 2K ICETIWSTA—=2MMEEENT
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Wz, BIREHEOMEREA FERDEDICERAT v SICB N TR NET 5 C
ENEHEBLEIN, TNXTEDOREZ FIFTETWVS. LHL, SFFEEKOmK
FaHMETF AN EZ N EICEANEEEKT 2L THD, 2D1ch
SN HBEEEMNICERET B L, 2RREELEVWSBETRTLLE
YcH s LB AV, BAMICIZ 2 TOHMNBEEIZ AR OMBEICEISHEE SN
D FTRIEEENZRNETHS. £ T, SHERZEETTIVEL, Rk
7R HIBEE T H 5 ET V8T A =TT 2 SR IEEOILE 2 it 3 % Fikz
BRI 5. IBREIEE - TEEHMOFEIC BV TIECREX O mWOEEEERT T &
MR E Nz,

KT, FROFEDISHE LT, HMM &5 GO 72 8 OARJEREREA g 7 7 —
2D EE 1B e B LT AV T AN S LM FiEZ2 T 5. HMM &
BEKTIE, ARENS EH ORI, ZEICHWIEER T — X DAL
BEUAKAF L TR, PEBAER T — X OEACEBEMENGE AT, filidhn
e ANV T AT NSk 2 BT 2 2 EMTERNWEYD, G ENbEH
DEBELEFTZTENHBNTWS. JEFETIE, 48kHz FO @A ERET
BHET—22E%T A T L WA TERD, BEKPERI NS ST — 20k
16kHz FDRWEEARIL A CINERE NIz b D E 2. A a0 KIS R,
BEFICEZRRED RO ENEHT, BFOHED5EHT —XN—AZFHL
2N EWSEHIFIRL B> TETWVAS. RS, ERAHICI NIV Bniz7—
AN—AUFZ IEILS, FIChHELELS ETH L2 REIANIDINS. £, B
BB EDE AT — 22 HWTET IV 28T 5558 IEF L % (Speaker Adaptive
Training; SAT) & W o 7eHHHATIE, TNEX THEEHT— X DEARLEPE 2/ — L
THLIREND ST, FIRZEACERB TR ENcEF T —22FHTE 5%
XolkkianX, #ET7T— 2B KB T eNnReL k5. Z2 T, H5ML
DEEA LA TGRS NG F T — 2B ET IV ZZEH L TEBE, ROEAR
LEFEE TR E N ER T — 26 AV TA NI L2t 51, 707
HWTETER T 2180 2 FiE2RE T 5. FEEHMmFZERIC B\ THRESE 2 51
L, mWEelkrEziEl L.

BIBIC, BRART TV —2a Y DOREODIC, LEEMLO—DE LT, HMM
WA G R REEIC IS E B e, HEERE G Z RS T 5. HMM #iE G AT L
X, FEHOIET—RIFEDNT, HENMTDAXRT M, AR, ©75—
k2 HMM IC X D [AIRFICET IUME L TEE, SRERICIE AR U2 WaRE OGS E
HETHMM ZEfE L, #ERERT S, CNFETIC, HAREOEKEN ST FE RS
KT BV AT LPEREN, —fRI—PFIC KB BAIERRDFRDR— 7))V & LU THIF
ENTETCVWS. KX TRRTDOYVAT L, JFEOWFEZERTE S K S ICHLE
T 5D, WEERFEEGROAVTFANEERL, FEEOSHRY & FROFE 2Nt
ST B FEARET 5. TEFHMEFEBRIC K D RERHGRL, Fiz, HAGERES
DRAD) e Y EL T TN TRV
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LED &K SIS, A TIEHFHNTFEICEED S EH MDD DETIVOEFEEAL
ET7 TV — 3 YOFREDIHDLSTEISZITY, FHEFHERIC & O A2 MR
AkY 5.
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Chapter 1

Introduction

Speech is the most important way for human communication, and a number of research
topics for human-machine communication have been proposed. Automatic speech recog-
nition (ASR) [1] and text-to-speech synthesis (TTS) are fundamental technologies for
human-machine communication. The speech generation technology used in TTS is one
of the core technologies, and it is required in many applications such as car navigation
systems, information retrieval over the telephone, voice-mail, singing voice synthesis sys-
tems, and speech-to-speech translation (S2ST) systems. To enable these applications, a
strong core technology and various techniques to apply it to those applications are needed.

Most state-of-art speech synthesis systems are based on large amounts of speech data.
This type of approach is generally called a “corpus-based system”. This approach makes
it possible to dramatically improve the performance compared with early systems such as
the rule-based one. These days, statistical approaches based on hidden Markov models
(HMMs) have been dominant in speech synthesis [2-5] due to their ease of implementa-
tion and modeling flexibility.

In terms of improving the core technology, there are some problems in generating wave-
forms. In general, a TTS system consists of several component modules, e.g., text anal-
ysis, spectral estimation, FO estimation, and acoustic modeling, which are usually op-
timized independently. It is important to improve the performance of each component
module in order to achieve higher quality synthesized speech. However, the final ob-
jective of TTS systems is to generate natural speech waveforms from given text, and
improving each component module does not always lead to improvements in the quality
of synthesized speech. Therefore, ideally, all component modules should be optimized
on the basis of an integrated criterion that well represents the subjective speech quality of
human perception. A similar idea that uses optimization integration has been seen in the
construction of large scale systems, e.g., acoustic and language models of speech recog-



nition systems [6], speech translation systems [7, 8], and spoken dialog systems [9, 10].
For TTS systems, an approach integrating text analysis and acoustic modeling modules
was proposed [11]. By integrating linguistic and acoustic models, the systems became
robust against text analysis errors and improved the quality of synthesized speech. Thus,
optimization integration is an important trend that improves the performance of systems
on the basis of statistical approaches. In this paper, I integrate feature extraction and the
acoustic modeling of HMM-based TTS systems. These modules are typically connected
in series and optimized independently. We optimize them as an integrated generative
model of speech waveforms. As the component modules of feature extraction and acous-
tic modeling, statistical generative model-based approaches that are suitable for the inte-
gration were already proposed for both and used in HMM-based speech synthesis. For
feature extraction, a statistical parametric mel-cepstral analysis [12, 13] has been widely
used. In this method, mel-cepstral coefficients, i.e., frequency transformed cepstral co-
efficients, are regarded as parameters of a generative model, and they are estimated by
using the maximum likelihood criterion based on the likelihood of the waveform domain.
For acoustic modeling, “trajectory HMM” [14, 15] was proposed as a generative model
of static features in consideration of the temporal continuity of feature sequences. It is
well known that an acoustic modeling technique that considers the temporal continuity
of each feature sequence improves the quality of synthesized speech [16]. In the stan-
dard HMM, dynamic features calculated from extracted static features are typically mod-
eled with static features. However, as the proposed method requires a generative model
of only static features, the trajectory HMM should be used. We integrate the statistical
mel-cepstral analysis and the trajectory HMM and redefine them together as a generative
model.

There is a diversity of agendas for applications, e.g., TTS, singing voice synthesis, speech
dialogue, and speech translation. One of the shared agendas for speech synthesis applica-
tions is multilingualization. A multilingual contextual structure is required in matters of
singing voice synthesis. Thus, the next subject is about a multilingual singing voice syn-
thesis framework. Singing voice synthesis enables computers to “sing” any song. It has
become especially popular in Japan because of Yamaha’s VOCALOID singing synthe-
sizer [17]. There is now a growing demand for more flexible systems that can sing songs
with various voices as evidenced by the many singer libraries being created and released
on the Internet by users of the UTAU [18] singing voice synthesis software. One ap-
proach to synthesizing singing voices is to use hidden Markov models (HMMs) [19, 20].
In this approach, the spectrum, excitation, and vibrato of a singing voice are simultane-
ously modeled, and singing voice parameter trajectories are generated from the HMMs
by using a speech parameter generation algorithm [21]. Systems of HMM-based speech
synthesis [16,22] which is the base of HMM-based singing voice synthesis , usually have



smaller footprints than those of unit-selection synthesis because they store statistics rather
than waveforms. This approach makes it possible to model different voice characteristics,
speaking styles, and emotions without recording large speech databases. Adaptation [23],
interpolation [24], and eigenvoice [25] techniques, for example, have been applied to
HMM-based systems, demonstrating that voice characteristics can be modified. As a
demonstration of HMM-based singing voice synthesis, our research group publicly re-
leased a web service [20,26], and it has been used by many creators. If Japanese singing
voice synthesis systems were extended to support other languages, people all over the
world could also enjoy singing with voice synthesis. I am thus working to extend the
singing voice synthesis technique to other languages, focusing on English as the first step.
Therefore, I present an HMM-based English singing voice synthesis system in addition
to the Japanese one.

For HMM-based speech and singing voice synthesis systems, the above improved tech-
niques were proposed, and systems using these techniques improved their performance.
The rest of the present paper is organized as follows. The next chapter introduces a statis-
tical speech and singing voice synthesis framework based on HMMs. Chapter 3 shows the
integration technique of feature extraction and acoustic modeling, and an application idea
for this technique is shown in Chapter 4. Chapter 5 shows HMM-based English singing
voice synthesis as an important multilingualization application of the HMM-based syn-
thesis framework. Concluding remarks and future plans are presented in the final chapter.



Chapter 2

HMM-based speech and singing voice
synthesis

2.1 Hidden Markov Models

Recently, hidden Markov models (HMMs) are widely used as statistical models for speech
recognition and synthesis. The advantages of using the HMM are that i) it can represent
speech as probability distributions, ii) it is robust, iii) efficient algorithms for estimat-
ing its model parameters are provided. Parameter estimation and calculation of output
probability distributions are described in this section.

2.1.1 Definition of HMM

An HMM [27,28] is a finite state machine which generates a sequence of discrete time
observations. At each frame it changes states according to its state transition probabil-
ity distributions, and then generates an observation at time ¢, o,, according to its output
probability distribution of the current state. Therefore, the HMM is a doubly stochastic
random process model.

J
An J-state HMM consist of state transition probability distributions {ai j}, _,» output prob-
L, ]=
J
ability distributions {b j (0,)} . and initial state probability distributions {ni}{:l. For con-
]:

venience, the compact notation is used to indicate the parameter set of the model A as
follows:

A= [{"ff}ijzl s <'>},J~:1 ’ {"ih’:l] (2.1)

4



arl az? ass

a12 2 a3

v \ v

by (o) by (o) b3 (0r)
(a) A 3-state ergodic model (b) A 3-state left-to-right model

Figure 2.1: Examples of HMM structure.

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic
model, in which every state of the model could be reached from every state of the model
in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state
index increases or stays the same state as time increases. The left-to-right HMMs are
generally used to model speech parameter sequences, since they can appropriately model
signals.

The output probability distributions {b j (-)}J.:1 can be discrete or continuous depending on

the observations. In continuous distributiojn HMM (CD-HMM), each output probability
distribution is usually modeled by a mixture of multivariate Gaussian components [28] as
follows:

M
bi0) =Y win- N (o | tjm Zjn) (2.2)
m=1

where M, wj,,, ;m, and X, are the number of Gaussian components, the mixture weight,
mean vector, and covariance matrix of the m-th Gaussian component of the j-th state,
respectively. Each Gaussian component is defined by

N(o, | Hijm> ij) = ; —1 (Ot - Hjm)T Zj_ni (Oz - ﬂjm)} ; (2.3)

exp {
JerK |2, 2

where symbol T means transpose of vector or matrix, and K is the dimensionality of an

5



M
observation vector o,. For each state, {w jm} X should satisfy the stochastic constraint
m

M
Dww=1, 1<j<J (2.4)
m=1
<J
wim 20, _ ii < M (2.5)

J
so that {b j (-)}j=1 are properly normalized, i.e.,

f bj(o)do,=1. 1<j<J (2.6)
RK

2.1.2 Calculation of output probability
Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence
0 = {0y, 0,,...,07} and a state sequence ¢ = {q1, ¢, ..., qr} is calculated by multiplying
the state transition probabilities and state output probabilities for each state, that is,

T

P(0,q 1) = | | ag by (0), 2.7)

t=1

where a,,, denotes m,,. The total output probability of the observation vector sequence
from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

T
PN =" |ag by (0). (2.8)

all g t=1
The order of 27 - JT calculation is required, since atevery t = 1,2,...,T there are J possi-

ble states that can be reached (i.e., there are J7 possible state sequences). This calculation
is computationally infeasible, even for small values of J and T'; e.g., for J = 5 (states),
T = 100 (observations), there are on the order of 2 - 100 - 5'% ~ 107> computations. For-
tunately, there is an efficient algorithm to calculate Eq. (2.8) using forward and backward
procedures.

Forward-Backward algorithm

The forward-backward algorithm is generally used to calculate P (o | A), which is the
probability of the observation sequence o given the model A. If I directly calculate
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P (O | A), it requires on the order of 2T - JT calculation. The detail of the forward-
backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to 7 and the i-th state
at time ¢, given the HMM A is defined as

(i) = P(01,02,...,0,,q, =1 | N\). (2.9)

a, (i) is calculated recursively as follows:

1. Initialization
a1(i) =mb;(0y), 1<i<J (2.10)

2. Recursion

J
1<j<J
alt(.]) = [Zl al—l(l)alj] b} (ol‘)a f= 2’. ,T (211)
3. Termination

J
P(o|A) =) ar(i). (2.12)

i=1

As the same way as the forward algorithm, backward variables S,(i) are defined as

ﬁt(l) = P(Ot+1’0[+2’-'~a0T | Sy = i’A)’ (213)

that is, the probability of a partial vector observation sequence from time ¢ to 7', given the
i-th state at time ¢ and the HMM A. The backward variables can also be calculated in a
recursive manner as follows:

1. Initialization

Bri)y=1, 1<i<J (2.14)
2. Recursion
\ l<i<J
ﬁt(i) = Z]aijbj(oz+l),81+l(j), t:_T_— 1.1 (2.15)
=
3. Termination
J
P(o|A) =) Bi). (2.16)
i=1
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Figure 2.2: Implementation of the computation using forward-backward algorithm in
terms of a trellis of observations and states.

The forward and backward variables can be used to compute the total output probability
as follows:

J
Plo|A) = Zat(.j)ﬁt(.j)~ l<t<T (2.17)

J=1

The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In
this figure, the x-axis and y-axis represent observations and states of an HMM, respec-
tively. On the trellis, all possible state sequences will re-merge into these J nodes no
matter how long the observation sequence. In the case of the forward algorithm, at time
t = 1, I need to calculate values of a;(i), 1 <i < J. Attimest =2,3,...,T, I need only
calculate values of a,(j), 1 < j < J, where each calculation involves only the N previous
values of a;_1(i) because each of the J grid points can be reached from only the J grid
points at the previous time slot. As a result, the forward-backward algorithm can reduce
order of probability calculation.



2.1.3 Searching optimal state sequence

The single optimal state sequence § = {qi,¢>,...,qr} for a given observation vector
sequence O = {0}, 0,, ..., or}1is useful for various applications (e.g., decoding, initializing
HMM parameters). By using a manner similar to the forward algorithm, which is often
referred to as the Viterbi algorithm [29], I can obtain the optimal state sequence 4. Let
o, (i) be the likelihood of the most likely state sequence ending in the i-th state at time ¢

6[(1) = qma;]X P(qla . th—l,Qt = i7 01" . 70t | A)7 (2'18)
1seesqr—1

and ¥, (i) be the array to keep track. The complete procedure for finding the optimal state
sequence can be written as follows:

1. Initialization

01 (i) = mb; (01) , 1<i<J (2.19)
Y (i) = 0, l<i<J (2.20)
2. Recursion
6,(j) = max[51 (| by (00, 530 @21
Ui (j) = argmax |81 (i) ay . tlleij 7 (2.22)
3. Termination
P= max [87 (i)], (2.23)
qr = argmax [67 ()] (2.24)
4. Back tracking
G =Y (q), t=T-1,...,1 (2.25)

It should be noted that the Viterbi algorithm is similar to the forward calculation of
Egs. (2.10)—(2.12). The major difference is the maximization in Eq. (2.21) over previ-
ous states, which is used in place of the summation in Eq. (2.11). It also should be clear
that a trellis structure efficiently implements the computation of the Viterbi procedure.
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2.1.4 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the
maximum likelihood (ML) criterion to obtain A which maximizes its likelihood P (o | A)
for a given observation sequence o, in a closed form. Since this problem is a high dimen-
sional nonlinear optimization problem, and there will be a number of local maxima, it is
difficult to obtain A which globally maximizes P (o | A). However, the model parameter
set A locally maximizes P (o | A) can be obtained using an iterative procedure such as the
expectation-maximization (EM) algorithm [30], and the obtained parameter set will be
appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the
HMM with discrete output distributions can also be derived in a straightforward manner.

Q-function

In the EM algorithm, an auxiliary function Q (A, A) of the current parameter set A and
the new parameter set A is defined as follows:

Q(A.A) = ZP(q |0.A)logP(0.q|A). (2.26)

all ¢

Each mixture of Gaussian components is decomposed into a substate, and ¢ is redefined
as a substate sequence,

q=1{(q1,51).(q2,52),...,(qr, 57)}, (2.27)

where (g, ;) represents being in the s,-th substate (Gaussian component) of the g,-th state
at time ¢.

At each iteration of the procedure, the current parameter set A is replaced by the new
parameter set A which maximizes Q(A, A). This iterative procedure can be proved to
increase likelihood P (o | A) monotonically and converge to a certain critical point, since
it can be proved that the Q-function satisfies the following theorems:

e Theorem 1

Q(A.A)2Q(A.A) = P(o|A)2P(o|A) (2.28)

e Theorem 2
The auxiliary function Q(A, A) has the unique global maximum as a function of A,
and this maximum is the one and only critical point.
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e Theorem 3

A parameter set A is a critical point of the likelihood P (o | A) if and only if it is a
critical point of the @-function.

Maximization of Q-function

According to Egs. (2.2) and (2.7), log P (0, g | A) can be written as

logP(o,q| A)=1logP(o|q,A)+logP(q|A), (2.29)
T
logP(01g,A) = logN (o | ftg.e Zq,s,) (2.30)
t=1
T T
log P(q | A) =logm,, + ) 10gay, 4+ ) 10gwg,. (2.31)
=2 =1

Hence, Q-function (Eq. (2.26)) can be rewritten as

J
Q(A.A) :Zp(o,q1 =i|A)-logn;

.M\ -

Il
—_
~.

Il
—_

~

M=

+ P(Oa qt = i, ql‘+1 = .]) : log aij

t=1

Mﬂ

P(O’CII =i,85=m | A) : logwim

M= ?Ma

M\]

1

P(o,g,=1,5,=m|A)-log N (0, | fim, Eim) - (2.32)

'D+4&

1l
—_

1l
—_
~
1l
—_

The parameter set A which maximizes the above equation subject to the stochastic con-
straints

J
dm=1, (2.33)
i=1
J
Day=1, 1<i<J (2.34)
=1
M
W =1, 1<i<J (2.35)
m=1

11



can be derived by Lagrange multipliers or differential calculus as follows [31]

i = 710, 1<i<J (2.36)
T
D))
=2 1<i<J
aij = Y > 1 <j<J (2.37)
Yi-1(0)
=2
T
Z yt(i’ m)
= i<J
Wi = S, o= (2.38)
PRZ0!
t=1
T
Z Y(i,m) - o,
-1 1<i<J
Hin = L e (2.39)
> vitimy
=1
T
D vilim) - (0= pin) (0, = in)"
=1 1<i<J
Zim = C oy (2.40)

T
> viti,m)
t=1

where y,(i), y,(i,m), and & (i, j) are the probability of being in the j-th state at time ¢, the
probability of being in the m-th substate of the i-th state at time ¢, and the probability of
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being in the i-th state at time ¢ and j-th state at time ¢ + 1, respectively, that is

Y (D) = P(o,g, =i A)

_ _ a(®B0) 1<i<J (2.41)
’ r=1,... )

J
D @B
j=1
Y (i,m) = P(0,q; = i,s, =m|A)

N 1<i<J
. oy s=
— Ja/t(l)ﬁ(l) . Al/l[)sz (0, Iﬂlm’ zm) , 1 S m S M (242)
. . =1,...,T
Z a,(HB()) Z wiN (0; | pig, Zix) !
j=1 k=1
&G, ) =Po,q=1i,q1 =N

_ az(i)aijbj (041) Br1()) . tl_Sll <J , (2.43)

J J
DD aDanby (001 Bra(m)

=1 n=1

2.2 HMM-based speech synthesis

In this section, statistical speech synthesis framework and the HMM-based speech syn-
thesis system are described.

2.2.1 Statistical speech synthesis

Text-to-speech synthesis system can be viewed as an inverse procedure of speech recogni-
tion system. The goal of a text-to-speech system is acoustic speech waveform generation
from a word sequence. In general, given word sequence w is processed by a text anal-
ysis module. In this part, contextual factors (e.g., accent, lexical stress, part-of-speech,
phrase boundary, etc.) are estimated. Next, a speech waveform is generated by a speech
synthesis module.

The majority of state-of-the-art speech synthesis systems is trained by using a large
amount of speech data. In general, this type of system is called as a corpus-based speech
synthesis system [32]. Compared with the previous speech synthesis systems, corpus-
based one especially improve the naturalness of synthesized speech.

One of the major approaches in the corpus-based speech synthesis is unit selection based
one [33-35]. In this system, the speech waveform is segmented into the small units,
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Figure 2.3: Overview of typical HMM-based speech synthesis system.

phone, di-phone, syllable, etc.. Next, a unit sequence with minimum target and concate-
nation costs is selected [34] and connected.

Another major approach is statistical speech synthesis, such as HMM-based one [5]. This
system generates speech parameter sequence o = {0y, 0,, ..., 07} with the maximum a
posterior (MAP) probability given the sub-word sequence u as follows:

0=argmaxP(o|u). (2.44)

In speech recognition system, Bayes’ rule is required to use generative models. On the
other hand, generative models can directly be applied in speech synthesis system. The
HMM is the most popular generative models.

2.2.2 HMM-based speech synthesis

Overview

Figure 2.3 shows the HMM-based speech synthesis system [5]. It consists of the training
and synthesis part. In the training part, spectrum and excitation parameters are extracted
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from a speech database. These parameters are modeled by context-dependent HMMs.
State duration models are also estimated. In the synthesis part, a sentence HMM is con-
structed by concatenating the context-dependent HMMs fro a given text to be synthesized.
In synthesis part, the sequences of spectrum and excitation parameters are generated from
the sentence HMM using speech parameter generation algorithm [21, 36, 37]. Finally,
speech waveform is synthesized from a synthesis filter module. One of the advantage
is that voice qualities of synthesized speech can be modified by transforming HMM pa-
rameters. It has been shown that its voice characteristics can be modified by speaker
adaptation [38], speaker interpolation [24], or eigenvoice technique [39].

2.2.3 HMM-based acoustic modeling

The HMMs are used to provide the estimates of P (o | w) in the speech recognition sys-
tems. For isolated word recognition with sufficient training data, an HMM can be trained
for each word. However, for LVCSR tasks, it is unlikely that there are enough training
examples of each word in the dictionary. Therefore, sub-word units such as phone or syl-
lable is used. An HMM is generally trained for each phone. The HMMs corresponding
to the phone sequence may then be concatenated to form a composite model representing
words and sentences.

When the HMMs are trained for the set of phones, it is referred to as a monophone or
context-independent system. However, there is a large amount of variation between real-
izations of the same phone depending on the previous and next phones. Triphones which
take the previous and next phones into account are commonly used as context-dependent
phones. The number of states and model parameters of a triphone system is significantly
higher than a monophone system. However, it is unlikely that sufficient training data is
available for parameter estimation. To avoid this problem, the state output probability
distributions are generally shared.

A phonetic decision tree [40—42] is generally used to construct state tying structure in
context-dependent systems (Figure 2.4). First, all phones are pooled in the root node.
Next, the state clusters are split based on contextual questions. When the number of
training data per state falls below a threshold, the splitting will terminate. A disadvantage
of decision tree-based state clustering is that the splits maximize the likelihood of the
training data locally [43,44].

Speech parameter generation algorithm

e Problem
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Figure 2.4: Example of a phonetic decision tree for triphone models.

For a sentence HMM A,, corresponding to a given sub-word sequence u, the speech
synthesis problem is to obtain an output vector sequence consisted of spectral and
excitation parameters.

o=1{01,0,...,07} (2.45)

which maximizes its posterior probability with respect to o, that is

0=argmax P(o| Ay)

= argmglxz P(o,q| Ay)

all ¢

=argmax » P (0] g, A)P(q] Ay (2.46)
all ¢

q= {(C]h Sl)a (qZ’ SZ)a ) (CIT, ST)} (247)

where, ¢ and (g, ;) represent a substate sequence and the s,-th substate of the g;-
th state, respectively. This problem is approximated by a Viterbi approximation,
because there is not method to analytically obtain 0 which maximizes P (o | A,) in
a closed form. As a result, this maximization problem can be separated into two
stages: finding the best substate sequence § for given A, and obtaining o which
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maximizes P (o | q, A,) with respect to o, i.e.,
g =argmaxP(q | A,), (2.48)
q

o=argmaxP(o| q,A\,). (2.49)

The optimization of Eq. (2.48) is performed using explicit state duration mod-
els [45] in the HMM-based speech synthesis system. If the output vector o, is
independent from previous and next frames, the output vector sequence o which
maximize P (o | g, A,) is obtained as a sequence of mean vectors of substates. This
causes discontinuity in the output vector sequence at transitions of substates. To
avoid this problem, dynamic features have been introduced. We assume that the
output vector o, consists of a static feature vector

¢, =[e(1),...,c(K)]T (2.50)
and its dynamic features, that is

o= e Ac] AT, (2.51)
where Ac, and A’c, are delta and delta-delta coefficients, respectively. They are

calculated as follows:
L
Ac,= Y w (@, (2.52)
r=—1
L(f)_
Ne= 0w (2.53)

r=—L?

Solution for the Problem

First, the output vector sequence o and the static feature vector sequence ¢ can be
rewritten as follows:

o=[o0].0],...,07]", (2.54)
c=[cl.c5,....c7]". (2.55)

Then, the relationship between ¢ and o can be expressed in a matrix form (Fig-
ure 2.5) as follows:

o=Wec, (2.56)
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Figure 2.5: An example of the relationship between the static feature vector sequence ¢
and the speech parameter vector sequence o in a matrix form (the dynamic features are
calculated using L'V = LV = L? = L? = 1, wD(=1) = =0.5, w™(0) = 0.0, w"(1) = 0.5,

w®(=1) = 1.0, w?(0) = ~2.0, w®(1) = 1.0).

where, W is a regression window matrix given by

W= [W,W,,...,Wz]" ® I,

W, = [0, 0,0,

w” =0....,0,1,0....,0| ,
%...010....0

t—1 T—t

w’ =[0.....0.w"(-LD),....wD(0)....

—LV—1

w” =[0,....0.w?(-L?),....w?(0)....

—L?—1

w@?),0,....0]
———
T—(z+L(+”)

wd(L?),0,....,0]
———

T—(z+L(+2))

(2.57)
(2.58)

(2.59)

(2.60)

(2.61)

The output probability of o conditioned on ¢ is calculated by multiplying the output

probabilities of entire observation vectors,
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T
1A =] [N (o | g Zgis) (2.62)
t=1

where, u,,, and X, are the 3K X 1 mean vector and 3K X 3K covariance matrix,
respectively. Eq. (2.62) can be rewritten as an output probability of o from a single
Gaussian component, that is

Polg.A)=N(o]|pZ,). (2.63)

where, p, and X, are supervector and supermatrix corresponding to entire substate
sequence ¢, that is

I, =diag|[Z, . Zpn - Zg | (2.64)
T
Hq = [ﬂ;]rlsl’ﬂ;—zsz’ T ’I“lf-lrrsz] ) (2.65)

Therefore, the logarithm of Eq. (2.62) can be written as

logN(o | Hg, Zq) = —% {3KT log 27 + log |Zq| + (0 — yq)T Z;] (0 - ﬂq)} .
(2.66)

Under the condition in Eq. (2.56), maximizing N (o | Hgs Eq) with respect to o is
equivalent to that with respect to ¢. By setting

0logN(0 |yq,2q)
Oc

= 07, (2.67)

we obtain a set of linear equations

Ryec=r,, (2.68)

where, Ok7 is a KT-dimensional zero vector, R, and r, are given as

R, =WZ,'W, (2.69)
re=Wx,'n,. (2.70)
Since R, is a KT x KT matrix, O(K>T?) operations are required for solution of
Eq. (2.68). Eq. (2.68) can be solved by the Cholesky with O(K>L*T) operations by

utilizing the special structure of R,. Eq. (2.68) can also be solved by an algorithm
derived in [36,37,46], which can operate in a time-recursive manner [47].
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Figure 2.6: Overview of HMM-based singing voice synthesis system.
2.3 HMM-based singing voice synthesis

In this chapter, statistical singing voice synthesis system are described.

2.3.1 Overview of HMM-based singing voice synthesis system

Figure 2.6 gives an overview of the HMM-based singing voice synthesis system. [19] [20].
The system consists of training and synthesis parts. Although it is quite similar to the
HMM-based speech synthesis system [16] [22], some specific techniques were introduced
for singing voice synthesis.

The rhythm and tempo of the music are important factors in singing voice synthesis.
Therefore, the start timings of the notes and the phoneme durations for each note must
be determined from the musical score. However, if the musical score is strictly followed,
the synthesized singing voice will be unnatural because of time lags shown in Fig. 2.7.
To overcome this problem, the time lags of individual notes are modeled by Gaussian
distributions [19].
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Vibrato is also an important singing technique which should be modeled, although it is
not included in the musical score. The timing and power of vibrato vary from singer to
singer. Therefore, vibrato modeling is required for naturalness of synthesized singing
voice. To model vibrato automatically, we introduce a vibrato modeling technique for the
HMM-based singing voice synthesis [48].

2.3.2 Training Part

In the training part, we first extract various parameters to be used as training data from the
waveform of a song in the singing voice database. Training data are mel-cepstral coeffi-
cients, log fundamental frequencies (F), and vibrato parameters (fluctuation amplitude
by cent and frequency by Hz). Their dynamics features and them are used as the feature
vector for training and these feature vectors are modeled by multi-space probability dis-
tribution (MSD) HMMs [49]. Furthermore, in this system, HMM is extended to a hidden
semi-Markov model (HSMM) [50] in order to model duration explicitly.

Although each HMM models one phoneme in singing voice, same phonemes have dif-
ferent characteristics in connection with pitch, length of note, the relation to the previous
or the next phoneme, etc. These variation factors are called “context.” The HMM con-
sidering contexts is used to model in more detail. Context-dependent models are used
to capture such contextual factors. We should be able to obtain more accurate models
if more combinations of contextual factors are taken into account. However the number
of possible combinations increase exponentially as the number of contextual factors in-
creases. As a result, it is difficult to robustly estimate model parameters because of the
lack of training data. Furthermore, it is impossible for a finite set of training data to cover
every possible combination of contextual factors. To overcome this problem a decision
tree based context-clustering technique [51] has been widely used.
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HMM-based systems for speech synthesis heavily depend on training data in performance
because these systems are “corpus-based”. Therefore, HMMs corresponding to contex-
tual factors that hardly ever appear in the training data cannot be well-trained. Pitch
should especially be correctly covered since generated F|, trajectories have a great impact
on the subjective quality of synthesized singing voices. To overcome this problem, pitch
adaptive training (PAT) [52] that models not pitch of musical notes directly but the differ-
ence between log F, extracted from the waveform and pitch of a musical note. In Fig. 2.8
shows an example illustrating the difference. Mean ﬁgp ) of static features of log F in state

i with pitch context p is defined in the pitch adaptive training algorithm as:
A = p; + b (2.71)

where y; is the mean of the difference between log F, extracted from the waveform and
pitch of a musical note. The bf." T log F, of a musical note that has pitch context p
and includes state i. Since bl(.p ) is fixed by the musical score, pitch adaptive training only
estimates the parameter set of HMMs. As a result, singing voices with any pitch are able
to synthesized.

2.3.3 Synthesis Part

In the synthesis part, an arbitrarily given musical score including the lyrics to be synthe-
sized is first converted into a context-dependent label sequence. Next, a state sequence
corresponding to the song is constructed by concatenating the context-dependent HMMs
in accordance with the label sequence. The state durations of the song HMM are then
determined with respect to the state duration models and the time-lag models. Next, the
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speech parameters (spectrum, excitation, and vibrato) are generated by an algorithm [21].
Finally, a singing voice is synthesized directly from the generated parameters by using a
mel log spectrum approximation (MLSA) filter [53].

2.4 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), and HMM-
based speech and singing voice synthesis framework are described. Algorithm for calcu-
lating the output probability (forward-backward algorithm), searching the optimal state
sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are shown in
section 2.1. In section 2.2, the acoustic modeling and the speech parameter generation
algorithm are described. In section 2.3, particular algorithm for the singing voice syn-
thesis is described. Following chapters show an improvement of core technology and an
application for HMM-based synthesis framework.
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Chapter 3

Integration of spectral feature
extraction and modeling for
HMM-based speech synthesis

In HMM-based TTS systems, spectral envelope, FO, and duration are modeled simulta-
neously based on generative models, i.e., MSD-HSMM (Multi-Space Probability Distri-
bution Hidden Semi-Markov Models) [49] [50]. However, this technique focuses only on
the spectral modeling based on the standard HMMs (or trajectory HMMs). When a target
text is given to the TTS system, the spectral parameter sequence is generated from HMMs,
and a speech waveform is finally synthesized from them via the source-filter based pro-
duction model. In the training process, the spectral feature extraction followed by the
training HMMs is firstly performed. The statistical mel-cepstral analysis [12], [13] which
regards mel-cepstral coefficients as the model parameters is widely used in the standard
HMM-based TTS systems, and the mel-cepstral coefficients are estimated from a given
input signal x in the maximum likelihood (ML) sense:

¢, = argmax P (x/]c,) (3.1)

The training of HMMs using extracted mel-cepstrum sequences ¢ = (¢, -+, ¢r) 1s also
performed based on the ML criterion

~

A = argmax P (clw,A) 3.2)
A

where A is a set of the model parameters of HMMs and w is a text corresponding to
the training data (w is omitted in the following formulas for simplicity). In this paper,
trajectory HMMs are used for acoustic modeling instead of standard HMMs, because
the standard HMMs generate step-wise parameter sequences with discontinuity at state
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boundaries due to the shortcoming of model structures while training HMMs. To over-
come this problem, the consistency between static and dynamic features that causes the
smooth trajectory is considered in the spectral parameter generation. In the rest of this
section, the mel-cepstral analysis and trajectory HMMs will be briefly reviewed.

3.1 Mel-cepstral analysis

In the mel-cepstral analysis, the synthesis filter H (z) is represented by mel-cepstral coeffi-

cientsc = [c(0), - ,c(K —1)]" ! defined as frequency-transformed cepstral coefficients:
K-1
H(iz) = exp Z c(k)z™ (3.3)
k=0
-1 _
o= 27 < (3.4)
1 —az!

where « is a frequency warping parameter. If @ = 0, mel-cepstral coefficients are equiv-
alent to standard cepstral coefficients. Figure 3.1 shows the frequency warping function
with varying . The vertical axis gives the warped frequencies. If @ > 0, the system

'In section 3.1, x and ¢ correspond to not an utterance but a frame. The frame index ¢ is abbreviated.
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function defined as Eq. (3.3) has a high resolution at low frequencies, and if @ < 0, it has
a high resolution at high frequencies.

For a given input signal, x = [x(0),---,x(N — 1)]", the mel-cepstral coefficients are
determined by minimizing a spectral evaluation function with respect to ¢ [54],

E(x,¢) = %Tfﬂ{epr(w)—R(w)—l}dw (3.5)

74

where
R(w) = logly(w)-log ‘H(ej‘”)r (3.6)

and Iy (w) is the modified periodogram of weakly stationary process x(n) with a time
window w (n) of length N:

1SN0 w () x (n) eien|”
1 = 3.7
v Tco w? () G

Mel-cepstral coefficients are determined easily by using an iterative algorithm (e.g., the

Newton-Raphson method) because E (x, ¢) is convex with respect to c.

When x(n) is assumed to be a zero-mean Gaussian process, the log likelihood can be
approximated by

T 2

log P (xle) =~ —g [log (27) + % f n{log |H(ej“’)‘ + %}dw] (3.8)
There are some techniques to approximate time series signals by a zero-mean Gaussian
process [55]. The approximation used in this paper is shown in 6. Accordingly, the
minimization of E (x, ¢) corresponds to the maximization of P (x|c). It should be noted
that the spectral evaluation function of mel-cepstral analysis has the same form as that
of LPC analysis [56]. Furthermore, taking the gain factor outside from H (ej‘“) indicates
that the minimization of E (x, ¢) with respect to ¢ is equivalent to both minimization of
residual energy and maximization of the prediction gain. Mel-log spectrum approxima-
tion (MLSA) filter [53] is generally used to re-synthesize speech from the mel-cepstral
coeflicients.

3.2 Trajectory HMM

In HMM-based speech synthesis systems, observation vector sequences are quasi-stationary
and each stationary part is represented by a state of the HMMs. The statistics of each
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Figure 3.2: Example of observation sequence, mean sequence of HMMs and that of tra-
jectory HMMs.

state do not change dynamically, and intra-state time-dependency cannot be represented.
Therefore, a technique that augments the dimensionality of an acoustic static feature vec-
tor by appending its dynamic feature vectors is widely used. The standard HMMs with
static and dynamic features are improper in the sense of statistical modeling because they
model the static and dynamic features independently. By imposing the explicit relation-
ship between them, the standard HMMs are naturally translated into trajectory HMMs.
The trajectory HMMs can overcome the impropriety in the standard HMM framework
without any additional parameters, and be a consistent generative model of the static fea-
ture sequences. Figure 3.2 shows an example of the observation sequence, the mean
sequence of HMMs and that of trajectory HMMs.

Let a spectral feature vector sequence be 0 = [olT, i ,o}r, where o, = [c;, Ac/, AzctT]T
includes not only static but also dynamic features. Mel-cepstral coefficients ¢; are a K
dimensional vector, and 7T is the number of frames. In the standard model, the proba-
bility density of o is shown as P (0|q, A) and assumed as a Gaussian distribution, where
q = (q1,92, -+ ,qr) 1s a state sequence of HMMs. By imposing an explicit relationship
between static and dynamic features, which is given by o = We, where W is a 3KT X KT
window matrix as shown in Fig. 2.5, the standard HMM is reformed as the trajectory
HMM as:

P(clA) = > P(clg. A)P(glA) (3.9)
Yq
1
P(clg.A) = N(cleg. Py)= —P(olg. A) (3.10)
PgA) = P@IN ]| [P@lg1, M) (3.11)
t=2

where Z is a normalization term. In Eq. (3.10), ¢, and P, are the KT X 1 mean vector and
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the KT X MT covariance matrix given by g, respectively. They are represented as:

e TP, 1o ]

Z=———exp {—5 (g Zg 1y — 1y qu,,)} (3.12)
’(27T)3KT |Zq|
R, = r, (3.13)
R, = WX/'w=pP, (3.14)
re = WZ'p, (3.15)
T

ue = lugoeng (3.16)

. T
r, = diag|z] .- Z] | (3.17)

H,, and X, are the 3K X 1 mean vector and the 3K X 3K covariance matrix associated with
the state g,, respectively. The elements of W are given as regression window coefficients
to calculate delta and delta-delta features as follows:

LY
Ale, = > W@ e d=1,2 (3.18)
Sy
W = [W,Wy,...,Wrl" & Ixuk (3.19)
W= [0 w? (3.20)
w” = [0,...,0wLD),...,w©0),
—L9-1
e @?),0,...,0] .d=0,1,2 (3.21)
——

T—(+L{")
where L = Lg?) =0,w? = 1, and ® denotes the Kronecker product for matrices.

Note that ¢ is modeled by a Gaussian distribution whose dimensionality is K7, and the
covariance matrices P, are generally full. As a result, the trajectory HMMs can overcome
the drawback of the HMMs. It is also noted that the parameterization of the trajectory
HMMs is completely the same as that of the HMMs with the same model topology.

3.3 Integration of acoustic modeling and mel-cepstral anal-
ysis

In the conventional method, the statistical modeling processes for feature extraction and
acoustic modeling are connected in series. However, the essential problem of constructing
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Proposed : Maximize original likelihood directly

Figure 3.3: Basic idea of proposed approach

TTS systems is to comprehensively estimate models that can generate speech waveforms
from texts. In this paper, we propose a technique to directly model speech waveforms as
a statistical model. The statistical mel-cepstral model P (x|c) and the statistical acoustic
model P (c|A) are integrated as:

P (x|A)

fP(x, c|A)dc

f P (xle) P (c|A)dc (3.22)

The original point of this model structure is that two statistical modeling processes are
connected with the marginalization of mel-cepstral coefficients, and the proposed model
is a generative model of speech waveforms. Figure 3.3 shows the generative process. In
the conventional model structure, there is the strong constraint that only one mel-cepstral
sequence is used to convey useful information from the feature extraction module to the
acoustic modeling module. As the proposed method can avoid this constraint, we expect
that the proposed method improve the quality of synthesized speech. The integration part
of the proposed system is remarked in Fig. 3.4.

In the standard mel-cepstral analysis technique, mel-cepstral coeflicients are estimated
frame-by-frame. However, it is well known that considering the temporal continuity of
mel-cepstral coefficients improves the quality of synthesized speech. Thus, we use the
trajectory HMM to consider the temporal continuity as a statistical model of mel-cepstral
coefficients.

To train the proposed model, a lower bound of log marginal likelihood ¥ is maximized
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Figure 3.4: Overview of proposed system. Spectral parameter estimation and training of
HMMs are integrated.

instead of the true likelihood. The lower bound ¥ is defined by using Jensen’s inequality:

L(xIA) = logP(x|A)
= log ) f P (xle) P (c, q|A) de
Yq

= log Z f Q. q)P(xIC)P(c,qIA) e
Yq

Q(c.q)

P (x|c) P(c, qIA)
= log fQ (0)Q(q) dc
% Q(c)Q(q)

P (x|c) P(c, q|A)
> %f&(c)&(q)log Q0QW@ dc

= F (3.23)

To overcome the difficulty of optimization, it is assumed that ¢ and g are conditionally
independent. The optimal posterior distributions can be obtained by maximizing the ob-
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jective function ¥ with the variational method [57] as:

1

Q) = Z—P(xlc) epoQ(q) log P (c|q,A) (3.24)
¢ Vg

Qg = ZLP(qIA) exp fQ(c) log P (c|q,A)dc (3.25)
q

where Z, and Z, are the normalization terms of Q (¢) and Q (g), respectively.

Z, = fP(xlc’) exp Z Q(q)log P (c'lq,A)dc’ (3.26)
Yq
Z, = Z P(q'IA) expr(c) log P(clq’,A)dc (3.27)
Vq'

These optimizations can be effectively performed by iterative calculations as the Expec-
tation and Maximization (EM) algorithm, which increases monotonically the value of
objective function ¥ at each iteration until convergence.

3.3.1 Posterior Probabilities of Mel-cepstral coefficients

It is difficult to calculate the integral of ¢ in Eq. (3.25) because of its high computational
cost. Therefore, Q(c) is assumed as a Gaussian probability distribution by using the
Laplace approximation [58]. The unnormalized probability in Q(c) is defined by Q* (¢)
as:

Q' (¢) = P(x|¢)exp Z Q(g)log P(clg, A) (3.28)

Yq

Taking the first three terms of the Taylor series expansion around ¢ = ¢ then the logarithm
of Eq. (3.28) becomes:

d .
log@Q (¢) =~ logQ (¢)+ (% log 0" (¢) Ic:a) (¢c—-2¢)
2

dcocT

+% (c-0F ( log 0" (¢) |c:é) (c—-¢) (3.29)

where
¢ = argmax Q(c) (3.30)

c
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As the first derivation of log Q" (c) at ¢ is equal to 0, Eq. (3.29) can be represented as:

logQ (¢) =~ logQ" (¢)— % (c—&"A(c—-29) (3.31)
82
N
= SHlc+ PNEIC (3.32)
A

The Hessian matrix H is represented as follows:

2
H = -= log P
N dcoc™ og P (xle)
= diag([H[.H].--- .H;]) (3.33)

where H, is the Hessian matrix of the spectral evaluation function E (x,, ¢,) in Eq. (3.5) at
time 7:

2 2

0 2 0
H = ——=E(x,¢)=——-——=logP 3.34
! dc,0c; (x5, €1) N dc,0c; og P (xile,) ( )

In order to approximate Q(c) by a Gaussian probability distribution, the normalization
term Z, is approximated as:

Z. = Q (&) |k |A] (3.35)

By using a Laplace approximation, Q (¢) is represented as:
Q) = N(cle.A™) (3.36)

As the matrix A is a (4LK + 1)-diagonal band symmetric matrix where L is the window
length, the inverse matrix A~! can be calculated in realistic time.

3.3.2 Posterior Probabilities of State Sequences

The Forward-Backward algorithm is generally applied to the standard HMM in E-step.
However, it cannot be applied to the trajectory HMM, and the delayed decision Viterbi al-
gorithm [15], [59] is applied instead. Thus, we derive a delayed decision Viterbi algorithm
for the proposed model similarly.
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By using Eq. (3.36), the expectation with respect to ¢ in Eq. (3.25) is given by
fQ (¢)log P(clgq,A)dc
~ f N (cle, A™")log N (cle,, P,) de

= log N (¢l¢,. P,) - %tr (R,A™)

1
= log P (lg. A) - 5 tr (R,A™") (3.37)

In Eq. (3.12), although |Eq| and unguq can be computed time-recursively, it is difficult
to recursively compute |Pq| and r, P,r, because of the temporal full-covariance matrix
P,. However, by using the special structure of P,, “trajectory likelihood”(Eq. (3.9)) can
be computed in a time-recursive manner. When A€, and A€, are computed as regression
coeflicients from (¢,_;,- -+ , ¢,1), R, becomes a (4LK + 1)-diagonal band symmetric pos-
itive definite matrix. Accordingly, R, can be decomposed by Cholesky decomposition:

R,=U;U, (3.38)
where U, is an upper (2LK + 1)-band triangular matrix. From Eq. (3.38), Pq| can be
rewritten as:

1 1 : T 2
|Pfl| = |Rq| = |U;1qu| = |Uq| = n |Uf,t,’f)L (3.39)
=1

where ¢q,.; = (g1, ,qr1). Since Uﬁ;ﬁ depends only on the state sequence from time

ltor+ L, |Pq| can be computed time-recursively. From Egs. (3.13), (3.14), and (3.38),
r, P,r, can be rewritten by

T _ L TpT _ =TyrTy7 A
ryPerq = ryP,RPyry=c¢,U,Uzc,

9,9, (9=U,,=U,'r,)
T
> (95.) g, (3.40)

t=1

where g, is a vector computed from U, and r, by forward substitutions. Since gf}t)%

depends only on the state sequence from time 1 to 7 + L, r, P,r, can be also computed
time-recursively. As a result, “trajectory likelihood” can be computed time-recursively as
follows:

T

1
P(@lg.A) = | | =P @i, A) (3.41)

t=1 qr+L
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where

K |y |-
(27() |U‘IIr+[L

1
Zt(l?% = X exp[ B {ﬂqtzqt Hg, — (ggltr)+L) gs}?%}} (3.42)

Jeo¥ g,

From Eq. (3.38), submatrices of RqA‘l in Eq. (3.37) can be rewritten as:

()

(R,A™)" = (ju,a™)" = (U,a7'U})

t+2L t+2L

@) j
— (t i) —1 (.))
- Z Z qu-ZL UlIt+2L (3.43)

i=t j=t

Since U;IQL depends only on the state sequence from time 1 to 7 + 2L, R,A™" can be

computed time-recursively. Therefore, Eq. (3.37) is represented as:

fQ (¢c)log P(clq,A)dc

Sl

=1

t+2L t+2L

1 ¥ <J> (t.)
- (Wctluq,, q, ZZtr{UﬁItt )ZL th,fn}] (3.44)

qt+L =t J=t

Thus, the proposed method can use the delayed decision Viterbi algorithm.

3.3.3 Update Model Parameters

Model parameters m and ¢ are defined by concatenating the mean vectors and covariance
matrices of all unique Gaussian components in the model set as:

m=[pl, 13, upl’ (3.45)
¢=[x7.2],---.57]" (3.46)

where u,; and X, are the mean vector and covariance matrix of the d-th unique Gaussian
component in the model set, and D is the total number of Gaussian components in the
model set, respectively.

By setting the partial derivative of # with respect to m to 0, a set of linear equations for
determining m maximizing ¥ are obtained as:

ZQ(q)STWP W'S,® 'm= ZQ(q)STWc (3.47)

Yq
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Figure 3.5: Relationships between u, and m, and X, and ¢ in matrix form.

where
g = S,m (3.48)
@' = diag(e) (3.49)
x,! = diag(S,9) (3.50)
S, @' = X'S, (3.51)

In the above equations, S, is a 3KT x 3KT matrix whose elements are 0 or 1 determined
by the Gaussian component sequence ¢. Figure 3.5 shows the relationships between p,
and m, and X, and ¢ in matrix form.

For maximizing ¥ with respect to ¢, a gradient method is applied by using its partial
derivative
97 Ler oo o -
W - ; Q(g) [ES; diag™' (WP,WT - WA™'WT
q

~WEETWT + 2,8 W + We, el W — 2uqe;WT}] (3.52)

because Eq. (3.52) is not a quadratic function of ¢. As explained above, the parameter-
ization of the proposed model is completely the same as that of the standard HMM and
trajectory HMM.

3.3.4 Related work

As mentioned above, the proposed method integrates the spectral estimation process and
the spectral modeling process and the generative model is defined on the waveform do-
main. Some similar approaches have been found in previous researches. The vocal tract
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transfer function (VTTF) estimation of a speech signal based on a factor analyzed (FA)
trajectory HMMs [60] is closely related to the proposed method in terms of the direct
modeling of speech observation. In this method, mel-cepstral coefficients are regarded
as factors and the harmonic components are represented by using linear transformation
with the time-varying factor loading matrix. The likelihood function is defined in the
log spectral domain and measured only on voiced frames of speech while the likelihood
function of the proposed method is defined in the waveform domain. Furthermore, as
the proposed method is based on the conventional acoustic model structure, the proposed
method has an advantage that reasonable initial model parameters can be given by the
conventional method and many techniques are regarded for the conventional models, e.g.
speaker adaptation, can be applied.

In another related approach, the mel-cepstral analysis was integrated into the estimation
of Gaussian mixture model (GMM) for modeling a quasi-stationary Gaussian process [?].
It can represent mel-cepstral coefficients stochastically with mixture weights of GMM.
However, mel-cepstral coeflicients are constant because each mixture has no variance
parameters, and the temporal continuity of mel-cepstral coefficients is also not considered.
Contrary to this, the proposed method assumes mel-cepstral coefficients as latent variables
with variances and marginalizes out to form a single generative model. Additionally, the
temporal continuity is represented by using the trajectory HMMs.

The joint estimation of the acoustic and excitation model parameters [61] is similar to
the proposed method. The distance between natural and synthesized speech waveforms is
minimized in the time domain by updating the cepstral sequences, the trajectory HMMs,
and the excitation models iteratively. Although the proposed method treats the cepstral
coefficients as probabilistic variables and estimate their distributions, the method in [61]
uses only single cepstral coefficient vectors as an approximation. Furthermore, the state
sequence is fixed through the entire training process in [61]. On the other hand, in the
proposed method, the modified delayed decision Viterbi algorithm are derived and the
state sequence can be optimized for the integrated objective function.

3.3.5 Computational cost

The computational cost to train the proposed models with 50 sentences was more than
1000 hours. The large computational cost is mainly caused by following processes,
(1) Searching the best state sequences with the delayed decision Viterbi algorithm, (2) It-
erative updates for estimating the covariance matrices, and (3) Estimating Q (¢) in Eq. (3.24).
Although the process (1) and (2) are required for both the trajectory HMM and the pro-
posed method, (3) is necessary only for the proposed method, because all mel-cepstral
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coeflicients in each utterance have to be estimated simultaneously. For a large scale ex-
periment, we reduced the computational cost in (3) by changing the optimization method
from the Newton-Raphson method to the RPROP [62] method and using the distributed
processing in the estimation of Q (c).

3.4 Experiments

To evaluate the effectiveness of the proposed method, objective comparison tests on the
likelihood measure and subjective comparison tests on the mean opinion score (MOS)
were conducted. For training, two data sets which contain different number of sentences
from the phonetically balanced 503 sentences of the ATR Japanese speech database (Set
B) [63] recorded in NITech were used.

e Small data set: 50 sentences

e Large data set: 450 sentences

Fifty other sentences were used for evaluation. The speech data was recorded at 48 kHz
and windowed at a frame rate of 5-ms by using a 25-ms Hamming window. The windowed
waveforms were used as the input data in the proposed method, and 35 mel-cepstral
coefficients, which include the zero coefficient estimated with the mel-cepstral analysis
technique [12], and their delta and delta-delta coefficients were used in the conventional
method. The dimension of the hidden mel-cepstral coefficients of the proposed method
was set to the same as that of the conventional method. The excitation parameter vectors
consisted of log F and its delta and delta-delta. The frequency warping parameter @ was
set to 0.55. A five-state, left-to-right, no-skip structure was used for the HMMs. The ex-
citation parameters were modeled with multi-space probability distributions HMMs [49]
in both the proposed and conventional methods. Each state output probability distribution
was modeled by a single Gaussian distribution with a diagonal covariance matrix.

The standard HMMs were estimated as context-dependent models [64] and applied the
decision tree based context clustering technique [65]. The minimum description length
(MDL) criterion was used to determine the size of the decision trees [51]. After estimating
the standard HMMs, the trajectory HMMs and proposed models were re-estimated by
using the standard HMMs as their initial models in accordance with the training procedure
described in Section 3.3. The number of delayed frames in the delayed decision Viterbi
algorithm was set to seven.
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Figure 3.6: Log likelihood per frame for close and open data sets (Small data set)

In the subjective test, ten subjects were asked to rate the naturalness of the synthesized
speech on a MOS with a scale from 1 (poor) to 5 (good). Fifteen randomly selected
sentences were presented to each subject. The experiments were carried out in a sound-
proof room.

3.4.1 Experiments on Small Data Set

In the experiments on the small data set, an iteration of the proposed embedded training
was decided as follows: (Step A) Estimating Q(c), and (Step B) estimating Q(q) by
delayed decision Viterbi algorithm were repeated three times, and then (Step C) the model
parameters were updated. The embedded training process was repeated 5 times.

Figure 3.6 shows the difference of likelihood P (x|A) for the training data set (close) and
the test data set (open). The vertical axis shows the average log likelihood per frame. All
likelihoods were measured with the proposed model likelihood P (x|A) in the waveform
domain (Eq. (3.22)). The proposed model outperformed the others for both data sets.
This means that speech waveforms rather than mel-cepstrum were modeled appropriately
in the proposed method. Although the trajectory HMMs was expected to obtain a higher
likelihood than HMMs, similar likelihoods were actually obtained. This result indicates
that improvement of each component does not always achieve better modeling in terms
of the final objective measure. Figure 3.7 shows the subjective listening test results. In
Fig. 3.7, the MOS of the proposed method was better than that of the standard HMMs and
similar to or better than that of the trajectory HMMs.
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Figure 3.7: Mean opinion scores for synthesized speech obtained by standard HMMs,
trajectory HMMs and proposed model (Small data set)

3.4.2 Experiments on Large Data Set

In the experiments on the large data set, the best state sequences were previously deter-
mined by using the delayed decision Viterbi algorithm, and the state sequences and the
duration models were fixed to reduce the computational cost while the trajectory HMMs
and the proposed models were trained. The training process of the proposed models,
(Step A) estimating Q(c) and (Step C) updating the model parameters, was repeated 5
times. As a result, the total computational time was about 1000 hours. Actually, the com-
putational time was reduced by parallel processing of Step A using multiple computers.

Figure 3.8 shows the subjective listening test results. The MOS of the proposed method
was significantly better than the others. The reason why the trajectory HMMs obtained
a slightly worth MOS than the standard HMMs might be that the state sequences were
fixed through the embedded training of the trajectory HMMs to reduce the computational
cost. Figure 3.9 shows examples of spectrum sequences generated by these models. The
state duration for all models was aligned to the natural spectrum sequence so as to com-
pare these spectra easily. It can be observed that the proposed model generated sharper
spectra than the other models, especially in the low frequency band. It might contribute
to naturalness of the generated voices in the proposed method.

These results suggested that the proposed method appropriately modeled speech wave-
forms directly, even though the proposed model have exactly the same number of param-
eters as the baseline system. Further improvement is expected by applying the integrated
optimization not only to parameter estimation but also to the model structure selection,
e.g., context clustering in future work.
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3.5 Summary

In this chapter, I proposed a novel technique for modeling speech waveforms directly
by integrating the mel-cepstral analysis and the acoustic modeling. A generative model
representing the TTS problem was constructed and optimized, in which mel-cepstrum co-
efficients were treated as latent variables and the statistical mel-cepstral analysis and the
statistical acoustic model were integrated with marginalizing over mel-cepstral sequences.
In the objective experiment, the proposed method outperformed the conventional meth-
ods. In addition, the subjective evaluation score of the proposed method was slightly
better than that of the conventional methods. These results suggested that the proposed
method improves the quality of synthesized speech. Future work includes experiments
and evaluation on larger data set with searching the best state sequences by the delayed
decision Viterbi algorithm, and constructing a parameter tying structure based on the ob-
jective function of the proposed method. Furthermore, the use of other features rather
than mel-cepstral coeflicients in the proposed framework will also be future work.
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Chapter 4

Mel-cepstral analysis technique
restoring missing high frequency
components from low-sampling-rate
speech

A spectral analysis technique based on statistical waveform modeling for HMM-based
speech synthesis is described in this chapter. In HMM-based speech synthesis, a spectral
envelope, FO, and duration are modeled simultaneously on the basis of generative mod-
els. The quality of the synthesized speech strongly depends on the training data because
HMM-based speech synthesis is a “corpus-based” method. The sampling rate of the train-
ing speech data is one of the factors that affect the quality of the synthesized speech. Al-
though speech data has recently come to be recorded at a high sampling rate, e.g., 48 kHz,
a lot of old speech data were recorded at a low sampling rate, e.g., 16 kHz. Furthermore,
although some approaches that use speech data stored on the Internet as training data
are becoming common, that kind of data is not always recorded at a high sampling rate.
Low-sampling-rate speech data degrades the quality of the synthesized speech. However,
recording voices and labeling them for a new speech database requires a huge cost. Thus,
these low-sampling-rate speech databases should be used effectively. Restoring the high
frequency components from low-sampling-rate speech data is expected to improve the
quality of the synthesized speech. Additionally, in some cases such as speaker adaptive
training (SAT) [66], which trains a model with speech data uttered by multiple speakers,
the amount of the training data can be increased significantly by using speech databases
recorded at different sampling rates.

Mel-cepstral coefficients are widely used as the spectral features, and low-sampling-rate
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speech data mainly affects the spectral features in HMM-based speech synthesis, We pro-
pose a mel-cepstral analysis technique that restores missing high frequency components
from low-sampling-rate speech data by using a statistical method in the framework of the
optimization integration. The idea of using the optimization integration has been seen in
the construction of large scale systems, e.g., speech recognition systems [6], speech trans-
lation systems [7, 8], and spoken dialog systems [9]— [10]. In the previous chapter, I pro-
posed a technique for integrating feature extraction and acoustic modeling and optimizing
them as an integrated generative model of speech waveforms for TTS systems [67, 68].
The optimization integration is an important trend for improving the performance of sys-
tems on the basis of statistical approaches.

In this chapter, I propose a method to estimate mel-cepstral coefficients that restores
high frequency components from low-sampling-rate speech. Statistical models of speech
waveforms are employed as prior distributions for mel-cepstral analysis. The proposed
method consists of two parts, a modeling part and a restoring part. In the modeling part,
speech waveforms are modeled directly as Gaussian mixture models (GMMs) from high-
sampling-rate speech waveforms. This modeling technique can be regarded as an ap-
plication of the integration technique of acoustic modeling and mel-cepstral analysis for
HMM-based speech synthesis [67, 68], which we have already proposed as a technique
for modeling speech waveforms. In the restoring part, they are used as prior distributions
to estimate mel-cepstral coeflicients from low-sampling-rate speech.

In the rest of this chapter, the technique for modeling speech speech waveforms directly
and the technique for restoring high frequency components from a low-sampling-rate
speech are derived. Then, difference from related work is discussed, and experimental
results are presented.

4.1 Mel-cepstral analysis restoring high frequency com-
ponents

The goal of this paper is to estimate mel-cepstral coeflicients that restores high frequency
components from low-sampling-rate speech. To accomplish this goal, we employ statis-
tical models of speech waveforms as prior distributions for mel-cepstral analysis. The
proposed method consists of two parts, a modeling part and a restoring part. In the mod-
eling part, speech waveforms are modeled directly as GMMs from high-sampling-rate
speech waveforms. This modeling technique can be regarded as an application of the
integration technique of acoustic modeling and mel-cepstral analysis for HMM-based
speech synthesis [67, 68], which we have already proposed as a technique for modeling
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speech waveforms. In the restoring part, they are used as prior distributions to estimate
mel-cepstral coefficients from low-sampling-rate speech.

4.1.1 Technique for modeling speech waveforms

In the modeling part, speech waveforms x sampled at a high frequency are used to train the
model. The model parameters A are estimated by maximizing the following likelihood,

A = argmax P (x|A)
A

argmax Z fP (x,c,hlA) dc, 4.1)
A

where ¢ is a mel-cepstral coefficient sequence and h is a mixture index sequence of
GMMs. To overcome the difficulty of the optimization of Eq. (4.1), a Q function is
defined and maximized to estimate A by using the EM algorithm [30].

Q(A.A) = ; f Q(c. h)log P(x.c. h|A)de, (4.2)

where Q (¢, w) is assumed as Q(clw)Q (w) and the optimal posterior distributions are
obtained by maximizing the objective Q function as:

Q(clh):ZiP(x,clh,A), 4.3)

Q(h):ZiP(mA)exp f Q (clh)
h
(log P (x,clh,A) —log Q(clh))dc, 4.4)

where Z, and Z;, are the normalization terms of Q(c|h) and Q (h), respectively. These
optimizations can be effectively performed by iterative calculations as the EM algorithm,
which increases monotonically the value of the objective Q function at each iteration
until convergence. Although the posterior distribution Q (c|k) should be ideally estimated
with consideration for neighboring frames, it is estimated frame-by-frame to simplify the
computation and reduce the computational complexity.

T
Qely = | |@eln) (4.5)
=1

It is difficult to calculate the integral of ¢ in Eq. (4.4) because of its high computational
cost. Thus, Q (¢,|h,) is assumed as a Gaussian probability distribution by using the Laplace
approximation [58]. The posterior distribution Q (¢,|/,) is represented by the unnormal-
ized probability Q* (c,|h;) as:
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1
Q(c/lh,) = Z_Q* (c/lhy), (4.6)

Ct

where

Q (c/|hy) P (x;, cilh, A), 4.7)
Z., = fQ* (C;V’l,) dc;. 4.8)

Taking the first three terms of the Taylor series expansion around ¢, = ¢,, the logarithm of
Q* (¢,|h,) then becomes:

log Q" (c/|hy)
0 .
= 10g Q* (gllhl) + (% log Q* (ctlh'[) |Ct:Z't)
t

1 0?
_E (¢, — Et)T(W log Q (c¢/|hy) |c,=5,)(ct -C),
4.9)

where

¢, = argmax Q (c/h,) . (4.10)

Ct

As the first derivation of log Q" (¢,|h,) at ¢, is equal to zero, Eq. (4.9) can be represented
as:

log Q" (c¢lhy)
. 1 _ _
~log Q" (&/h;) - 3 (c,—¢)" A (e, — &), 4.11)
2
A, = _8ct8cf 10gQ (cilhy) |c,=5,
82
= ——log P(x/cy) | =&
8ctactT gP (x| t)|, )
2
- log P (¢, A) |¢=¢
actaCtT g P (c/|h, )l, .
N
= EH, lerme, +2 (4.12)

where X, is the h,-th covariance matrix of the GMMs, and H, is the Hessian matrix of the
spectral evaluation function E (x,, ¢;) in Eq. (3.5) at time #:
0? 2 &

E(x,¢)=—~
dc,0c; (x1. €1) N dc,0c;

H, = logP (x/|c;) . (4.13)
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To approximate Q (c,|h,) by a Gaussian probability distribution, the normalization term

Ze, = Q @lh) \J@mM ][], (4.14)

By using the Laplace approximation, Q (c;|h,) is represented as:
Qelh) = N(elé.A). (4.15)

Z,, is approximated as:

From the above, the posterior distribution Q(c, h) can be calculated.

4.1.2 Technique for restoring high frequency components

In the restoring part, the mel-cepstral coefficients ¢ with the high frequency components
restored from the low-sampling-rate speech waveform x‘© and the model parameter A are
estimated by maximizing the posterior probability for the given speech waveform x; as
follows:

¢ = argmax P (c|x(L), A)

c

=argmax P (x(L)lc) P(c|A)

c

= argmax{log P (x(L)lc) + log Z P(c, hlA)} (4.16)
¢ Vh

The probability P (c|A) of mel-cepstral coefficients is expected to work as the prior dis-
tribution of mel-cepstral coefficients. When c is estimated by maximizing only P (x(L)|c),
the high frequency components of the spectral envelope from the estimated ¢ are not al-
ways appropriate because high frequency components cannot be considered in P (x(L)Ic).
However, P (c|A) leads the high frequency components of the spectral envelope to the
reasonable curve. The probability P (x(L)lc) of speech waveforms is calculated from the
low-sampling-rate periodogram. If the log likelihood function of the partial periodgram
from [/;-th to /,-th dimension is defined as:

1
D(ly, 1) = —5{(12 — I + 1) log (27)

N oL Iv)
+Z(log ‘H(ef )‘ +ﬁ)} (4.17)

i=l
the original log likelihood function is represented by
log P(x/c;) = DO,N-1)
= DO,N-1)+DNN,N-1)
= logP(xﬁL)lct) + logP(xEH)Ic), (4.18)
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where xEL) and xgH) are the low and high frequency components of a speech waveform,

and N is a dimension of the boundary between them. The likelihood of the low and high
frequency components can be calculated separately.

Equation (4.16) is converted by using Jensen’s inequality:
log P (x(L)lc) + log Z P(c,h|A)
Vi

P(c,hlA)

> log P (xVc) + ; Q' (h) log TR (4.19)
where
Q'(h) = P(hlc,A)
P(c, h|A)
. 4.20
S P(e.1']A) (420)

To maximize P (clx(L), A), ¢ and Q’(h) are updated alternately. The mel-cepstral coeffi-
cients ¢ can be estimated by using an optimization algorithm such as Rprop [62].

4.1.3 Avoidance of local maxima problem

The estimated mel-cepstral coefficients ¢ depend heavily on the initial value. To overcome
the serious local maxima problem, an annealing technique hardly depending on the initial
value is used. It is similar to the deterministic annealing EM (DAEM) algorithm [69].
Two terms related to ¢ in Eq. (4.19) are shown as:

F =1log P(x®|c) + log P (clA). (4.21)
It is modified by using a parameter (5 that decides the ratio between two terms.
Fp = Blog P(xV|c) + (2 - B)log P (c|A) . (4.22)

If 8 = 1, ¥5 becomes equal to the original objective function. The parameter 3 is gradually
changed in the estimation of ¢ according to the following function.

B = (%) (s=1,2,---.,9), (4.23)

where s denotes the iteration number of updates.

4.2 Related work

As mentioned above, the proposed method restores missing high frequency components
from low-sampling-rate speech. Some similar approaches have been found in previous
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pieces of research. One famous method converts low-sampling-rate speech into high-
sampling-rate speech by using the voice conversion (VC) method [70,71]. In the VC-
based method, the feature extraction and restoration of the high frequency components
are independent. Furthermore, as the trained model depends on the sampling rate of input
speech, different models are required for different sampling rates of input speech. In
contrast to the VC-based methods, the feature extraction and the restoration of the high
frequency components are integrated and optimized on the basis of the unified criterion
in the proposed method. Also, as the sampling rate of the input speech does not depend
on the model, only one model is required for any sampling-rate of input speech.

4.3 Experiments

To evaluate the effectiveness of the proposed method, two types of subjective comparison
tests were conducted.

4.4 Experiments of degradation

To evaluate the degradation from the original 48-kHz sampling-rate speech, a subjec-
tive comparison test on the degradation mean opinion score (DMOS) for the analysis-
synthesis speech was conducted. For the speech database, 503 phonetically balanced
sentences from the ATR Japanese speech database (Set B) [63] uttered by a male speaker
were used. The following three methods were compared in the evaluation.

¢ 48 kHz (Original): Use mel-cepstrum extracted from original 48-kHz sampling-rate
speech.

¢ 16 kHz (Conventional): Use mel-cepstrum extracted from 16-kHz sampling-rate speech.
It was prepared by downsampling original 48-kHz sampling-rate speech to 16-kHz
sampling-rate speech.

e Proposed: Use mel-cepstrum estimated from 16-kHz sampling-rate speech by the pro-
posed method. To train GMMs to restore the high frequency components, speech wave-
forms recorded at a sampling rate of 48 kHz were used. The numbers of mixture com-
ponents of GMMs were set to 256. The output probability distribution was modeled
with a diagonal covariance matrix. The parameter r in Eq. (4.23) was varied as r = 2"
and decided to r = 27* which obtained the best likelihood for the test data.
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Figure 4.1: Degradation mean opinion score for analysis-synthesis speech.

In this experiment, mel-cepstral coefficients were estimated by using the above three
methods. and speech waveforms were reconstructed from them. For the proposed meth-
ods, 450 sentences were used for training models. The speech data was windowed at a
frame rate of 5 ms by using a 25-ms Hamming window. The windowed waveforms were
used as the input data for training GMMs and restoring high frequency components in the
proposed method, and 35 mel-cepstral coefficients including the zero coeflicient, which
are estimated with the standard mel-cepstral analysis technique, were used for other meth-
ods. The dimension of the hidden mel-cepstral coefficients of the proposed method was
set to the same as that of the original. The frequency warping parameter @ was set to
0.55. The evaluation data was prepared by downsampling each speech waveform from
the 48-kHz sampling rate to the 16-kHz sampling rate. Speech Signal Processing Toolkit
(SPTK) [72] was used for downsampling. The other 53 sentences were used for eval-
uation. Ten subjects were asked to rate the naturalness of the synthesized speech on a
DMOS with a scale from 1 (Degradation is very annoying) to 5 (Degradation is inaudi-
ble). Ten randomly selected sentences were presented to each subject. The experiments
were carried out in a sound-proof room.

Figure. 4.1 shows the results of DMOS evaluation. The 48-kHz sampling-rate speech
was used as the reference, and the speech waveforms generated from the mel-cepstrum
estimated by the proposed method were compared to those of the conventional method.
The proposed method obtained the significant improvement compared to the conventional
16-kHz sampling-rate analysis-synthesis speech.

Figure 4.2 shows an example of the periodgram and spectral envelopes corresponding
to a frame. For reference, the periodgram of the 48-kHz sampling-rate speech is shown
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Figure 4.2: Periodgram of the original speech and spectral envelopes obtained by mel-
cepstrum.

by the orange line, and the spectral envelope obtained from the original 48 kHz mel-
cepstrum is shown by the green line. The periodgram of 16-kHz sampling-rate speech
is shown by the purple line. It was prepared by upsampling to be shown in the same
graph as other lines. SPTK was used for upsampling. Therefore, the log magnitude of the
frequency components higher than about 300-th point of the frequency is near zero. In
addition, two spectral envelopes obtained by the proposed methods with 1 mixture (gray)
and 256 mixtures (red) were shown. In the case of 1 mixture, the spectral envelope of
the proposed method (gray) were over smoothed in many frames, because the number
of model parameters was too small. On the other hand, in the case of 256 mixtures,
the spectral envelope of the proposed method (red) is similar that of the original spectral
envelope (green).

50



4.5 Experiments of naturalness

To evaluate the naturalness of the synthesized voices, subjective comparison tests on the
mean opinion score (MOS) for the analysis-synthesis and HMM-based speech synthesis
were conducted. For the speech database, 503 phonetically balanced sentences from the
ATR Japanese speech database (Set B) [63] uttered by a male speaker were used. The
following three methods were compared in the evaluation.

e 48 kHz (Original): Use mel-cepstrum extracted from original 48-kHz sampling-rate
speech.

e Conventional: Use mel-cepstrum converted from a sampling rate of 16 kHz to that of
48 kHz in the mel-cepstrum domain by using the VC-based method [73,74]. The joint
feature vectors of the mel-cepstral coefficients of the 16 kHz and 48-kHz sampling rates
were modeled as GMMs. The number of mixture components of GMMs was set to 64,
and each distribution was modeled with a cross covariance matrix.

e Proposed: Use mel-cepstrum estimated from 16-kHz sampling-rate speech by the pro-
posed method. To train GMMs to restore the high frequency components, speech wave-
forms recorded at a sampling rate of 48 kHz were used. The numbers of mixture com-
ponents of GMMs were set to 64. The output probability distribution was modeled with
a diagonal covariance matrix. The parameter r in Eq. (4.23) was varied as r = 2" and
decided to » = 273 which obtained the best likelihood for the test data.

Experiments of analysis-synthesis

In this experiment, mel-cepstral coefficients were estimated by using the above three
methods, and 48-kHz sampling-rate speech waveforms were reconstructed from them.
For the conventional and proposed methods, 200 sentences were used for training mod-
els. The speech data was windowed at a frame rate of 5 ms by using a 25-ms Ham-
ming window. The windowed waveforms were used as the input data for training GMMs
and restoring high frequency components in the proposed method, and 35 mel-cepstral
coeflicients including the zero coefficient, which are estimated with the standard mel-
cepstral analysis technique, were used for other methods. The dimension of the hidden
mel-cepstral coefficients of the proposed method was set to the same as that of the other
methods. The frequency warping parameter a was set to 0.55. The evaluation data was
prepared by downsampling each speech waveform from the 48-kHz sampling rate to the
16-kHz sampling rate. For the conventional method, mel-cepstral coeflicients estimated
from the 16-kHz sampling-rate speech were used as the input of the conversion process.
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Figure 4.3: Mean opinion scores for analysis-synthesis speech

SPTK was used for downsampling. The other 53 sentences were used for evaluation. Ten
subjects were asked to rate the naturalness of the synthesized speech on a MOS with a
scale from 1 (poor) to 5 (good). Ten randomly selected sentences were presented to each
subject. The experiments were carried out in a sound-proof room.

Figure 4.3 shows the results of MOS evaluation for analysis-synthesis speech. The pro-
posed method obtained a significant improvement compared with the conventional method.
The score of the proposed method was almost the same as that of the original 48-kHz one.
Thus, the proposed method seems to be able to restore the missing high frequency com-
ponents.

Experiments of HMM-based speech synthesis

Next, speech synthesized by HMM-based speech synthesis was evaluated. To train HMMs,
250 sentences not included in the training data of GMMs were used. Mel-cepstral coef-
ficients of these sentences were prepared by using the above three methods. A five-state,
left-to-right, no-skip structure was used for the HMMs. The excitation parameters were
modeled with multi-space probability distribution HMMs [49]. Each state output prob-
ability distribution was modeled by using a single Gaussian distribution with a diagonal
covariance matrix. The HMMs were estimated as context-dependent models [64] and ap-
plied the decision tree based context clustering technique [65]. The minimum description
length (MDL) criterion was used to determine the size of the decision trees [S1]. Each
probability distribution was modeled with a diagonal covariance matrix. The setting of
the MOS evaluation was the same as that of analysis-synthesis.

Figure 4.4 shows the results of MOS evaluation for speech synthesized by the HMM-
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Figure 4.4: Mean opinion scores for speech synthesized by HMM-based speech synthesis

based speech synthesis. The trend of the results was almost the same as that of analysis-
synthesis. Thus, the effectiveness of the proposed method for HMM-based speech syn-
thesis was shown.

4.6 Summary

In this chapter, a mel-cepstral analysis technique restoring missing high frequency com-
ponents from low-sampling-rate speech was proposed. The feature extraction process and
the modeling process of these features were integrated, and the models of speech wave-
forms were used as the prior models to restore the high frequency components. In subjec-
tive experiments, the degradation and naturalness of the speech by analysis-synthesis and
HMM-based speech synthesis was significantly improved by using the proposed method.
Future work includes objective evaluations and experiments with speaker-independent
models.
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Chapter 5

HMM-based English singing voice
synthesis

In this chapter, HMM-based speech synthesis and its application to Japanese and English
are described. Japanese singing voice synthesis systems have already been developed
and used to create variable musical contents. To extend this system to English, language
independent contexts are designed. Furthermore, methods for matching musical notes
and pronunciation of English lyrics are presented and evaluated in subjective experiments.
Then, Japanese and English singing voice synthesis systems are compared.

5.1 English Singing Voice Synthesis

5.1.1 Lyrics of English musical scores

Lyrics in Japanese musical scores are generally written in kana characters, which can be
converted into labels by using a mora-to-phonemes table. On the other hand, English
lyrics are generally written in words, and a word-to-phonemes table is not sufficient for
words, like “the” and “lead” for which the pronunciation depends on the context. Thus,
morphological analysis is needed to convert the word sequence into syllable and phoneme
sequences. A musical phrase that is an uttered part between musical rests is regarded as a
sentence and analyzed. A syllable consists of a vowel (syllable nucleus) and consonants
around it. Tables 5.1 and 5.2 show the relationships between strings and pronunciation in
Japanese and English respectively. In these tables, vowels are indicated by red boldface.

Contexts for English singing voice synthesis are designed by expanding contexts for
Japanese one [20]. First, all contexts are classified into the language dependent and inde-
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Figure 5.1: An example of English score.
Table 5.1: Relationships between Japanese strings and pronunciation.
String Mora Al | DR | X ||| |Z2]|T|A
Pronunciation | Mora ge | N | ko |[tsu|ya|ma|no|ta|nu]|ki|sa|N
Phoneme ||g|e| N [k[ o[ts| uly| a|m[ a[n] o[t] a[n[ ulk] i[s] a| N

pendent groups. Then, English syllables and Japanese moras are allocated to a common
level in the context design to standardize contexts of these languages. In addition, a new
area is appended to the context design to address language dependent contexts, e.g. stress
and accent, which are used only in English. The proposed context design is presented in
Table 5.3. The context dependent contexts are indicated by red bold text in the Table 5.3.

In this paper, the Flite [75] is used for morphological analysis, and the CMU pronouncing
dictionary [76] is used as the word dictionary. The phoneme set consists of phonemes in
CMU pronouncing dictionary, long silence “sil”, silence neighboring uttered parts “pau”,
and breath “br”.

Table 5.2: Relationships between English strings and pronunciation.
String Word rhythm of | the classical music
Syllable || rhy thm of | the clas si | cal mu sic
Pronunciation |Syllable || rih | dhaxm | ahv | dhax | klae | sih | kaxl | myuw | zihk
Phoneme r\ ih dh\ax\m ah\v dh\ax k\ | \ae s\ih k\ax\l m\y\uw z\ih\k
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Table 5.3: Proposed context design. English syllables and Japanese moras are allocated to
common level, and new area for language dependent context is appended. The proposed
area is indicated by boldface.

Phoneme

Quinphone. (Phoneme within the context of two immediately preceding and suc-
ceeding phonemes)

Syllable
(Mora)

Number of phonemes in {previous, current, next} syllable.

Position of {previous, current, next} syllable in note.

Language dependent context in {previous, current, next} syllable.
(English: with or without {accent, stress}, Japanese: undefined)

Note

Musical {tone, key, beat, tempo, and length} of {previous, current, next} note.

Position of current note in {measure, phrase}.

With or without a slur between current and {previous, next} note.

Dynamics to which current note belongs.

Difference in pitch between current note and {previous, next} note.

Distance between current note and {next, previous} {accent, staccato}.

Position of current note in current {crescendo, decrescendo}.

Phrase

Number of {syllables, notes} in {previous, current, next} phrase.

Song

Number of {syllables, notes} / Number of measures.

Number of phrases.

5.1.2 Syllable allocation methods

The number of syllables for each word is obtained by morphological analysis. However,
it is not always equal to the number of corresponding notes. Therefore, a method for

allocating syllables to notes is required. Here we propose two methods.

1: Left-to-right allocation

In this method, syllables in a word are allocated to corresponded notes one-by-one from
the head note. If the number of syllables is not equal to that of notes, the remaining
syllables are allocated to the tail note or each of all remaining notes receives a syllable

duplicated from the last syllable.

2: Score-based allocation

In this method, syllables in a word are allocated to corresponded notes based on the

number of characters in each note. Each note that has no syllable receives a syllable
duplicated from the syllable of previous note. The allocation procedure comprises three

steps.

Step 1: Count number of characters corresponding to each note

First, the number of characters corresponding to each note is counted. A character
denotes a letter in a lyric string in Table 5.2. Since many syllables should be allocated
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every - thing
1: [eh] [v, r, iy | th, ih, ng]
2:[eh]|v,r, iy] [th, ih, ng]

Figure 5.2: Two methods for syllable allocation.
to notes that have many vowels (syllable nucleus), we count “a”, “e”, “1”, “0”, and “u”,
which tend to be vowels, as two characters in this paper. Table 5.2 shows an example.

(13444
1

The word “classical” has two “a” and one “1”, and they are allocated to three syllables

one-by-one as vowels. Similarly, one of the exceptions to “a”, “e”, “i”, “0”, and “u”
being vowels is “rhythm” in Table 5.2. Although it contains none of these letters, its

pronunciation includes some vowel sounds.
Step2: Calculate score for each note
The score w,, of a note n is defined as
Sc
Wy = =, (5.1)
Zn’ =1 Cn’

where c¢,, N and S denote the number of characters corresponding to note n, the number

of notes in a word, and the number of syllables obtained by morphological analysis
respectively. The summation of all scores is equal to the number of syllables.

Step3: Determine allocation of syllables to notes

Finally, the number k,, of syllables allocated to each note n is determined. The numbers
are initialized to 0. The note with the highest score, 7, is selected, and k; and w; are
updated to k; = k; + 1 and w; = w; — 1. The k, for all n are obtained after S iterations
of this procedure. Note that at least one syllable has to be allocated to the head note of
a word.

Figure 5.2 shows an example illustrating these two methods. The word “everything” is
converted into three syllables “eh | v, r, iy | th, ih, ng”. The symbol “|” represents a syllable
boundary. If the word corresponds to two notes, method 1 allocates syllables one-by-one
from the head note and allocates all remaining syllables to the tail note. As a result,
one syllable “eh” is allocated to the first note, and two syllables “v, r, iy | th, ih, ng” are
allocated to the second note. In method 2, because of § = 3, ¢; = 7, and ¢, = 5, the score
for each note is obtained as

Bx7)/(T+5)=1.75, (5.2)
(3x5)/(7T+5)=1.25. (5.3)

Wy

wy
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Table 5.4: Diphthong duplication rules.
Original ey ay ow aw oy
Duplicated || eh, ey | aa, ay | ao, ow | aa, aw | ao, oy

One note Two notes
smile smi - le
[s, m, ay, I] a:[s, m,ay] [ay, ]

b: [s, m,aa] [ay, ]

Figure 5.3: Two methods for duplicating syllables.

Thus, two syllables, “eh | v, r, 1y”, are allocated to the first note, and one syllable, “th, ih,
ng”, is allocated to the second note.

5.1.3 Syllable duplication methods

If the number of notes is smaller than that of syllables, there are some notes without a
syllable. We propose two methods for allocating a syllable to each of these notes by
duplicating the syllable of the previous note.

a: Simple duplication
In this method, the nucleus of the syllable allocated to the previous note is simply
duplicated, and the syllable is divided.

b: Rule-based duplication

Consecutive diphthongs due to duplication may degrade the continuity of a singing
voice, so we defined the duplication rules for diphthongs shown in Table 5.4.

Figure 5.3 shows an example illustrating these syllable duplication methods. The word
“smile” has one syllable, “s, m, ay, 1, and it corresponds to two notes. In method a, “ay”
is simply duplicated as ‘s, m, ay” and “ay, 1”. In method b, the “ay” of the first note is
converted to “ah” by using a duplication rule.
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5.2 Experiments

To evaluate the effectiveness of the proposed methods and compare Japanese and En-
glish singing voice synthesis, we conducted objective and subjective experiments. In
the subjective experiments, twenty English songs sung by a female singer who was a
bilingual student were used for training English models, and five songs were used for
evaluation. For comparison, 17 Japanese songs sung by the same singer were used for
training Japanese models, and five songs were used for evaluation. The total length of the
voiced parts was adjusted to about 30 minutes for each training data set. Singing voice
signals were sampled at a rate of 48 kHz and windowed with a 5-ms shift. The feature
vectors were the spectral, excitation, and vibrato feature vectors. The spectrum parameter
vector consisted of 49 STRAIGHT [77] mel-cepstral coefficients including the zero-th
coeflicient. The excitation parameter vector consisted of log F,. The vibrato parameter
vector consisted of fluctuation amplitude and frequency. In addition to these parameters,
their deltas and delta-deltas were used.

A seven-state (including the beginning and ending null states), left-to-right, no-skip struc-
ture was used for the MSD-HSMM [50] [49]. The phoneme alignment results for the
training data obtained by using the deterministic annealing EM (DAEM) [69] algorithm
were used as the initial phoneme boundary labels. A decision-tree-based context-clustering
technique was separately applied to the distributions for the spectrum, excitation, vibrato,
state duration, and time lag. The MDL criterion [51] was used to control the size of the
decision trees. The heuristic weight a for the penalty term in Equation (1) in [51] was
3.0. Ten English subjects or ten Japanese subjects were asked to evaluate the natural-
ness of the synthesized singing voices. Each English subject is a national of a majority
English-speaking country or holds a degree that was taught in English and is equivalent
to a UK bachelor’s degree. And all of them had been living in UK. Each Japanese subject
is a native Japanese speaker. The English subjects were asked to evaluate the synthesized
English singing voices, and the Japanese subjects were asked to evaluate both of the syn-
thesized English and Japanese singing voices. Each subject was presented 10 randomly
selected musical phrases from 30 musical phrases, and evaluated the naturalness on Mean
Opinion Score (MOS) with a scale from 1 (poor) to 5 (good). The average length of the
musical phrases was 8.1 seconds. The experiments by the English and Japanese subjects
were carried out in a silent room (noise was less than 35db) and a sound-proof room
respectively.
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Table 5.5: The comparison of (A)ccuracy rate, (C)orrect, (I)nserted, (D)eleted, and
(S)witched phonemes of phoneme sequence for each note.

Method | A (%) | C I |D| S

I-a 92.19 | 3149 | 33 | 35 | 196
1-b 9598 | 3277 | 33 | 35| 68
2-a 95.56 | 3230 | 0 | 2 | 148
2-b 99.41 | 3360 | O | 2 | 18

5.2.1 Experiment of syllable allocation and duplication

In this experiment, combinations of syllable allocation and duplication methods were
compared. The syllable allocation methods were defined as follows.

1: Left-to-right allocation

2: Score-based allocation
The syllable duplication methods were defined as follows.

a: Simple duplication,

b: Rule-based duplication.

The four possible combinations (1-a, 1-b, 2-a, and 2-b) were evaluated in terms of the
generated phoneme sequences and the MOS.

First, the generated phoneme sequences of five songs for the evaluation were compared
to the hand-labeled phoneme sequences per note. The results are shown in Fig. 5.5. The
method 2 reduced the inserted and deleted errors, and the method b reduces the switched
errors. The combination 2-b obtained 92% error reduction rate.

Next, the results of the MOS are shown in Fig. 5.4. Both of the syllable allocation and
duplication methods did not make significant difference in the MOS. However, the English
subjects tended to give higher scores to the method b, and the Japanese subjects tended to
give higher scores to the method 2 and b. The numbers of the inserted and deleted errors
were smaller than that of the switched errors in Fig. 5.5, and it seems to be the reason why
the difference between the method 1 and 2 was small. Figure 5.5 shows an example of
the differences between a natural singing voice and two synthesized singing voices with
combinations 1-a and 2-b for “rainbow”. The phoneme alignments of the natural singing
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Figure 5.4: Effect of syllable allocation and duplication methods.

voice were obtained by hand labeling, and those of the synthesized singing voices were
obtained when the singing voices were synthesized. The word “rainbow” consists of two
syllables, “r, ey, n” and “b, ow”. With combination 1-a, two syllables were allocated to
the head and center notes, and the syllable “b, ow” was duplicated into “b, ow” and “ow”.
With combination 2-b, two syllables were allocated to the head and tail notes, and the
syllable “r, ey, n”” was duplicated into “r, eh” and “ey, n” on the bases of the duplication
rule. As a result, combination 2-b produced a singing voice similar to the natural singing
voice and was thus used in the next two experiments.

5.2.2 Experiment of time lag

In this experiment, the effect of time-lag modeling and where the time-lag should be
measured from were evaluated for Japanese and English singing voice synthesis '. The
following three methods were compared.

A: Without time-lag models

B: With time-lag (from head phoneme) models

C: With time-lag (from syllable nucleus) models
Synthesized voices were played with a click for every quarter note synchronized to the
corresponding musical score (only in this experiment).

Figure 5.6 shows the results of MOS evaluation. Improvement with time-lag modeling
was evident for both languages. In Japanese, method B obtained a little higher score
than method C. In English, method C obtained higher score than method B. A possible

!The obtained results are not comparable in absolute value across languages because these experiments
were conducted independently.
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Figure 5.5: Comparison of waveforms in terms of differences in syllable allocation and
duplication methods for “rainbow”. Natural voice is shown in the first waveform, and
synthesized waveforms by combination 1-a and 2-b are shown in the second and the third
waveforms respectively.

explanation for this is that, since two or more consonants can appear in front of the syllable
nucleus in English, the phoneme durations before the first vowel may fluctuate widely.
Method C, which achieved the best score for English, was used in the last experiment.

5.2.3 [Experiment of data size

In this experiment, the relationships between training data size and the naturalness of the
synthesized voices were compared between Japanese and English singing voice synthesis.
There were three sizes for the data (length of voiced part):
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Figure 5.7: Effect of the amount of training data. S: 8 minutes, M: 15 minutes, L: 30
minutes.

S: 8 min. (5 Japanese songs, 5 English songs)
M: 15 min. (9 Japanese songs, 10 English songs)

L: 30 min. (17 Japanese songs, 20 English songs)

As shown in Fig. 5.7, naturalness improved for both languages with an increasing amount
of training data. Moreover, the scores for English varied widely, probably because English
is not the native language for subjects.

5.3 Summary

In this chapter, HMM-based English singing voice synthesis was described. Language
independent/dependent contexts were defined for both languages, and syllable allocation
and duplication methods for matching English syllables to musical notes were described
and evaluated in the objective and subjective experiments. The accuracy rates of the
generated phoneme sequences were improved in the objective experiment. Furthermore,
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other experiments clarified the effects of time-lag modeling and the relationships between
the amount of training data and the naturalness of the synthesized voice in English and
Japanese singing voice synthesis. Each of them showed a largely similar trend in both
languages. Future work includes additional experiments by using other singer voices, and
expansion of singing voice synthesis to other languages, e.g., Mandarin.
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Chapter 6

Conclusions

I described a statistical approach to HMM-based speech and singing voice synthesis. Sta-
tistical speech synthesis frameworks based on HMMs were presented in Chapter 2. In
Chapter 3, the integration of feature extraction and acoustic modeling for HMM-based
speech synthesis was proposed. A generative model representing the TTS problem was
constructed and optimized, in which mel-cepstrum coefficients were treated as latent vari-
ables and the statistical mel-cepstral analysis and the statistical acoustic model were in-
tegrated by marginalizing over mel-cepstral sequences. In an objective experiment, the
proposed method outperformed the conventional methods. In addition, the subjective
evaluation score of the proposed method was slightly better than that of the conventional
methods. These results suggested that the proposed method improves the quality of syn-
thesized speech. In Chapter 5, HMM-based singing voice synthesis and its application to
Japanese and English were described. Language independent contexts were defined for
both languages, and syllable allocation and duplication methods for matching English syl-
lables to musical notes were described and evaluated in the subjective experiments. Other
experiments clarified the effects of time-lag modeling and the relationships between the
amount of training data and the naturalness of the synthesized voice in Japanese and
English singing voice synthesis. Each of them showed a largely similar trend in both
languages.
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Appendix A

Likelihood Function of Mel-cepstrum

It has been shown in literatures (e.g., [S5]) that the following equation approximates the

log likelihood function of a zero-mean Gaussian process when N — oo:

log P (x|c) = —%[log (2m)

1 (" n? . Iv(w)

As a result, it can be seen that the minimization of Eq. (3.5) is equivalent to maximizing

P (x|c).

This appendix shows that Eq. (3.8) approximates the log likelihood function with an as-

sumption that windowed signal

x = [x(0),xX(),--- ,X(N-1D]" (A.2)

, f N
xX'(n) = mw(n)x(n) (A.3)

is generated by circular convolution of white Gaussian process

where

e = [e(0),e(1), -+ ,e(N—-1]" (A.4)
whose variance is unity and
i = [hO). (1), AN = D] (A.5)
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where

. 15w iun i
hn) = ;H(ef Nelvn,w; = ~ (A.6)
that is , e is obtained by circular convolution of x” and
g = [9(0),g(1),--- ,g(N = D] (A7)
where
=
[ —1 "w,- ‘w,-n
gn) = ;H () e! (A.8)

It is noted that x’(n) is normalized so that the energy of x(n) is preserved, and windowing

can reduce the effect of replacing convolution by circular convolution.

From the assumption, the likelihood is written as

1 1
P(x'|c) = ———exp (——x’TU_lx’) (A.9)
veo© o\ 2
where
u@ u@d) -+ uN-1
v=| v u«® : (A.10)
: u(l)
u(N=1 - u() u)
and
1 N-1 )
jw; jwik
(k) = N;‘H(a’ )‘ ¢ (A.11)
We can show
Iy (@)
XU 'Y = N (A.12)
;W(efwi)ﬁ
and
Nl N
U = H‘H(e]‘”")‘ (A.13)

Consequently, it can be shown
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N
log P(x'|c) = —5[log (27m)
1 N_l{ w\P I (W) }]
+— log|H (/)| + —— (A.14)
N Zo el () [H (i)
where Iy(w) is given by Eq. (3.7). By replacing the summation by an integration, we

obtain

N
log P (x’|c) =~ —5[log (27)

L oL v ()
o j:ﬂ{log |H(eJ )' +ﬁ}dw} (A.15)

Thus, maximizing P (x’|c), i.e., maximizing Eq. (A.15) with respect to ¢ is equivalent to

the minimization of Eq. (3.5) with respect to c.
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Appendix B

Applications of HMM-based Singing
Voice Synthesis
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Enzlish / Japanese

Sinsy

HMM-based Singing Voice Synthesis System

Siney iz an HWM-bazed zinging voice synthesis system. You can generate a zinging  Terms of Use
voice sample by uploading the rmusical score (MusicKML) to this website. Demo videos

Lanzuage Enelish * YouTube

\ocal 002 : Hiare-Lirg (Enelish) « #; Micovhlicn tiatigs

Giender param. 055 (08 % x = 08, default: 055 Users videos

Wibrato intersity | (00 %% 20, default: 1.0) *. Zoubiltie

® Mico Mico D
Fitch shift 0 (=24 £ » = 24, default: 0] P

* PIAPRO
s MUSIC TRACK

Mugical score (xmi)

* soundcloud
How to use videos
* YouTube
* Nico Nico Douga
Character design
Associated information
Mews
= ® 25 Dec. 2012 [Ver. 3.3]
Abo""t Slnsy Englizh version was
Samples released.
* Genkotsu yama no tanuki-san (in Japanese) sl way

Wocal: f001] Gender param.: 055 Vibato intensity: 1.0 Pitch shift: 0.0]
i

* My grandfather’s clock xml way

[Wocal: f002e Gender pararn. 055 Vibrato intensity: 1.0 Pitch shift: 0.0)

Options
* Feminine/Mascline-like singing voice can be synthesized by changing the
gender parameter value small/bie.

® The pitch of the synthezized sinzing woice can be controlled in half—tone by

Figure B.1: Web service (http://www.sinsy.jp).
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| File Edit View Tool Help
‘BEQ@a|B T

| P 00:00:00 o0
:
3

N N e A
| [ 1 [ | [ | - || || || [ 1 [ |
. L I
1 [ | [ e [ | [ [ [ | [ [ | e [ [ | [ | [ [ | | m

Db |
4 C | [nalppy | ... oy || | | | | | py [day] | | [halpp
_EEI.--------- | 1 [ [ [ [ |

Figure B.2: Stand alone application.
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