
Fast Time-Reversible Algorithm for Rotational
Motion and Its Applications to Molecular Simulation

of Quasi-Liquid Layers on Ice-Ih

（高速な時間反転対称型回転アルゴリズムと、

その氷の疑似液体層シミュレーションへの適用）

by
Yasuhiro Kajima

Submitted to
the Department of Scientific and Engineering Simulation
in partial fulfillment of the requirements for the degree of

Doctor of Engineering
at

Nagoya Institute of Technology

2014

2

Abstract

The importance of atomistic simulations which treat atoms and molecules
explicitly is increasing in various fields such as nanotechnology, atmosphere,
and development of devices. The computational power of supercomputers
is rapidly increasing, and simultaneously, supercomputers are strongly ex-
pected to fully demonstrate their computational power to perform such
atomistic simulation both on larger systems and for longer period than
ever before. Recent supercomputers with many nodes and cores enable
us to perform simulation on large systems by dividing objects. On the
other hand, high speed intramolecular vibration of molecules becomes an
obstacle to take longer time step, and there is no fundamental solution to
overcome the obstacle up to now. However, we can take a longer time step
in simulation by assuming each molecule as a rigid body.

This rigid body molecular dynamics (MD) simulation method ignores
intramolecular vibration/deformation which is the inevitable nature of
molecules. However, we can take even a 5 fs time step by considering
molecules as rigid body; while, on the contrary, if we take into account the
intramolecular motion, we can take a 1 fs at best in such cases as water,
where molecules contain light atoms as hydrogen. The rigid body approx-
imation method enables us to perform MD simulation with long time step
for the cases where intramolecular vibration/deformation is negligible.

Therefore, many numerical algorithms to describe rotational motion of
rigid body have been devised, however, I think that those algorithms are
still insufficient for long time MD simulation. To see this, let me see some
of those algorithms. The angular momentum Verlet (AMV) algorithm pro-
posed by M. Hiyama et al. a few years ago is very simple and the computa-
tion cost is small, however, I find the total energy increases monotonously
in many cases. The symplectic algorithm shows high stability, however,
the algorithm is complicated and requires long computation time. Gear’s
predictor-corrector algorithm is very accurate for a short time step. How-
ever, it is not time-reversible, and becomes unstable or the total energy
increases significantly in a long-time simulation run.

i

So, I firstly proposed an algorithm, named numerically exact time-
reversible (NET) algorithm. The algorithm is time-reversible, stable, and
simpler than others. However, it requires an iteration procedure to get
the angular velocity, which results in arbitrariness in estimating accuracy.
Therefore, I have proposed two kinds of simple iteration-free algorithms
by advancing the NET algorithm, which I call Fast Time-reversible (FT)
algorithms. The FT algorithms are probably the simplest (shortest in the
length of codes) compared with other algorithms for rotational motion,
however, their stability is no less than that of symplectic algorithm. They
are ones of the simplest algorithms and in fact, the computation timings of
the FT algorithms are the minima in existing algorithms in several CPU
architectures. Hence I claim that the FT algorithms are the most suitable
ones for the computation of rotational motion.

As an application of the FT algorithms, I have devised an parallelized
computer code for rigid body molecular dynamics, by adopting MPI li-
braries and the fast-multipole method (FMM) for the computation of the
Coulomb forces. Employing this code, I have performed large-scale simu-
lations of quasi-liquid layers [i.e., liquidlike layer on the surface of ice at
temperatures below the bulk melting point, (QLLs)] of ices-Ih on several
supercomputers. The ices are without dislocation or with screw disloca-
tion, and each of which is put in a vacuum box.

Here, to prepare configurations of hydrogen atoms in ice-Ih with dislo-
cation, I adopted my original method. The largest dimension of the ices
used in our simulation is 0.06 micrometer. I regard each H2O molecule as
a rigid body, and employ the TIP4P intermolecular interaction potential
with an established reputation. Simulations are performed at three tem-
peratures Tm − 23, Tm − 13, and Tm − 1 K where Tm is the melting point
of the TIP4P bulk-ice.

As the results of our simulation, I have found the following: (a) The
QLLs are bumpy with the bump heights as large as a few inter-bilayer dis-
tances of ice (9 to 12 Å), and the widths of trenches surrounding the liquid
bumps reach 100 Å. The liquid bumps fluctuate to form and break at a va-
riety of places in a random manner. (b) At relatively lower temperatures,

ii

the molecules in the second bilayer from the outside are partly melted and
they melt easily when they are located under the trenches. Furthermore,
by the change of the locations of liquid bumps over time, the melted areas
newly covered by thick bumps recrystallize. (c) At a temperature slightly
below the melting point, the second bilayer under the liquid bumps melts
entirely to form a liquid sheet, and the bumps sit on it. (d) Microscopic
properties (i.e., mean squared displacements and O-O distances) of the
liquid bumps differ from those of the liquid sheet.

The present results (a) and (b) will offer a novel picture of surface melt-
ing of sub-micrometer-scale ices, and indicate that the recrystallization will
make environmental hydrophilic (acidic) substances dissolve to be incor-
porated substantially in the layer even if the QLL is thin.

iii

iv

Contents

Abstract i

1 Introduction 1

1.1 Motivation . 2

1.2 First Part - Algorithms for rotation 3

1.3 Second Part - Preparations of ice-Ih 4

1.4 Third Part - Simulation 5

2 Algorithms for rotational motion 7

2.1 Introduction . 7

2.2 Time-reversibility . 9

2.3 Fast time-reversible (FT) algorithm 10

2.3.1 Introduction . 10

2.3.2 FT algorithms . 10

2.3.3 Equations of FT algorithms 11

2.3.4 Determination of centroid position and velocity . . 11

2.3.5 Determination of angular position 11

2.3.6 Determination of angular velocity 17

2.3.7 Ideas to remove iteration procedure 18

2.3.8 Method 1: modification to linear equations 19

2.3.9 Method 2: successive substitution 20

2.3.10 FT algorithm for single time step 21

2.4 Computation results: Comparison among FT1, FT2, sym-
plectic, and NET algorithms 23

2.4.1 Stability of FT1 algorithm 24

v

2.4.2 Stability of FT2 algrithm 25

2.4.3 Computation timings of FT algorithms 27

2.5 Summary and concluding remarks 27

2.6 Addendum - modified FT algorithm 30

3 Making ice-Ih 31

3.1 Introduction . 31

3.2 Basics . 32

3.2.1 Positions of the oxygen atoms 32

3.2.2 Positions of the hydrogen atoms 32

3.3 Construction . 33

3.3.1 The numbering of water molecules 33

3.3.2 The specifications of the directions of water molecules 35

3.3.3 Construction of ice-Ih of the first layer (l = 0) . . . 36

4 Simulations of QLL 41

4.1 Introduction . 41

4.2 Method . 42

4.2.1 System . 42

4.2.2 Simulation program 43

4.3 Results . 44

4.3.1 Settings . 44

4.3.2 Bumpiness of QLL 45

4.3.3 Features of the bumpy QLL 45

4.3.4 Relationship between QLL2.0 Å<z<6.0 Å and QLL6.0 Å<z 49

4.3.5 Recrystallization 49

4.3.6 Ices with screw dislocations 53

4.4 Conclusions . 55

5 Summary 57

A Making ices Ih under the first layer 61

A.1 Determine rot(m, 0, l) and rot(0, n, l) 61

A.1.1 rot(0, 0, l) . 61

vi

A.1.2 rot(0, n, l) . 62
A.1.3 rot(m, 0, l) . 63

A.2 Determine rot(m,n, l) with l=odd 64
A.3 Determine rot(m,n, l) with l=even 65

A.3.1 (1) m+ n=odd . 66
A.3.2 (2) m+ n=even . 66

B Quaternion and its application 71
B.1 Quaternion . 71

B.1.1 Definition . 71
B.1.2 Rotation . 72

B.2 Updating quaternion . 74
B.2.1 Derivative of quaternion 74
B.2.2 Equations for updating quaternion 75

C Modified FT algorithm 79
C.1 Modification of the matrix 79
C.2 Time-reversibility and angular velocity 80
C.3 Modified FT algorithm for single time step 81

C.3.1 Listing of sample subroutines of modified FT algorithm 82
C.3.2 Subroutines of the algorithm 86

C.4 Conclusion . 86

vii

viii

List of Figures

2.1 Local errors, ε(1), and global errors, ε̃, in the water droplet
simulation at T = 300 K in the symplectic, FT1, FT2 (xzy),
and NET algorithms for various values of Δt. 25

2.2 Local errors, ε(1), and global errors, ε̃, in the water droplet
simulation at T = 300 K in the FT2 and NET algorithms
for various values of Δt. 26

3.1 Structure of ice-Ih: Red spheres indicate oxygen atoms and
small black ones hydrogen atoms. 33

3.2 The numbering of the water molecules: z-axis is parallel to
the c-axis. 34

3.3 The numbering of the first and second values of an ice as
seen from z = −∞. 34

3.4 Possible directions of hydrogen atoms for the four types of
oxygen atoms seen from z = −∞. Here, for example, for the
case (1) of (S), one hydrogen atom is just below the oxygen. 35

3.5 The first layer of ice-Ih given by the method presented in
this chapter. 39

4.1 Ice-Ih crystal in a hexagonal prism shape composed of 1,317,600
H2O molecules (61 bilayers × 21,600 molecules). The z-axis
is perpendicular to the basal (0001) surface; x and y denote
the [101̄0] and [1̄21̄0] axes, respectively. We set z = 0 at the
bottom of the third bilayer from the outside. The radius of
the virtual cylinder for analyses is 114 Å. 42

ix

4.2 x− y views of (0001) surfaces of the ice at time tfinal at 205,
215, and 227 K, and the time evolution of the surface at
227 K. The molecules are colored according to the z-positions. 46

4.3 Normalized densities of H2O molecules in the virtual slices
of the ice (see Fig. 1) at (a) 205, (c) 215, and (e) at 227 K.
Mean-squared displacements (Eq. 1) of O’s during 0.1 ns in
the virtual slices at (b) 205, (d) 215, and (f) at 227 K. The
inequality Dxy � Dz holds in the green-hatched z-range;
Dxy ≈ Dz in the red-hatched z-range. 47

4.4 x-y views of molecules in QLL6.0 Å<z and QLL2.0 Å<z<6.0 Å at
time tfinal: (a) and (b) at 227 K; (c) and (d) at 215 K. In
(b) and (d), each molecule is colored red if its displacement
from tfinal − 0.5 ns to tfinal is larger than 2.8 Å, and blue
otherwise. 48

4.5 x-y views of molecules at 215 K. (a), (c), (e), (g), and (i)
correspond respectively to tfinal−2.0 ns, tfinal−1.5 ns, tfinal−
1.0 ns, tfinal−0.5 ns, and tfinal in QLL6.0 Å<z; (b), (d), (f), (h),
and (j) corresponding to the same times in QLL2.0 Å<z<6.0 Å.
The molecules in (b), (d), (f), (h), and (j) are colored red if
they come from the first bilayer of the original ice, and are
blue otherwise. Ellipses are placed in the x-y regions with
relatively high molecular densities in (i). 50

4.6 The side views of water molecules in QLL6.0 Å<z and QLL2.0 Å<z<6.0 Å

around the center of the ice with no defects at 227 K. Those
molecules located in a given horizontal span at 4.0 ns are col-
ored red for molecules in QLL6.0 Å<z or green for QLL2.0 Å<z<6.0 Å.
(a) at 4.0 ns, (b) at 4.1 ns, and (c) at 4.4 ns. 52

4.7 The cut view of the ice at 227 K with the screw disloca-
tion line located on the cut plane. The water molecules are
colored according to the tetrahedral order parameter q. . . 54

A.1 The difficulties to determine the directions of water molecules
for the case l=even and m+ n=even. 67

x

A.2 Snapshot of ice with screw dislocation seen from above. Col-
ored with respect to its height. 68

A.3 Sliced (contain almost two layers) enlarged snapshot of ice
with edge dislocation. (The simulation results of ices with
edge dislocation are not presented in this thesis.) 68

xi

xii

List of Tables

2.1 Computation timings averaged over 106 measurements re-
quired to update angular velocity and angular position on
various machines for various algorithms. 28

xiii

xiv

Chapter 1

Introduction

In the present thesis, I present two results: One is the fast and time-
reversible algorithms for rotational motion that are perhaps ones of the
fastest compared with other existing ones, and the other is detailed analyses
of structures of quasi-liquid layers (QLLs) on ices-Ih through molecular
dynamics (MD) simulation performed with a computer program adopting
one of the FT algorithms. I also present an algorithm that I have used
to make configurations of water molecules of ices-Ih, since it is based on
different method than that in preceding papers.

The first part of this thesis is devoted to developing algorithms for rota-
tional motion, which I call Fast Time-reversible (FT) algorithms (Chapter
2), the second part to an algorithm for making initial configurations of
ice-Ih (Chapter 3 and Appendix A), and the last part to the simulation of
quasi-liquid layers of ices-Ih (Chapter 4). In addition, in Appendix B, we
recall some notion of quaternion which will be helpful to understand the
description of rotation used in preceding chapters, and by which I show
some results concerning to FT algorithm. In appendix C, I show a modi-
fied version of FT algorithm, which has advantage as well as disadvantage
compared with original FT algorithm.

Chapters are mutually related to each other, however they are logically
independent. Thus I describe the motivation and aim of each chapter at
its introduction. In this introduction, I give motivations throughout the
thesis and a brief sketch of the three parts.

1

1.1 Motivation

It is well known that the surface of ice melts below the bulk melting temper-
ature [1]. The properties of the melted layers are similar to liquid, however
they are not quite the same as liquid. Thus we call the layers quasi-liquid
layers (QLLs). The QLLs of ices are thought to play very important roles
in many aspects, e.g., in the skating mechanics while neither pressure melt-
ing nor frictional heating can explain slipperiness [2], and in the acid snow
formation by dissolving acidic substances in the QLL [3]. Hence many
experimental and theoretical studies have been carried out to investigate
the properties of the QLLs. Detailed theoretical studies of the QLL using
the MD simulation method were reported in the literature [4–6]. However,
relatively small slab systems (the numbers of molecules are at most 2,130)
under the periodic boundary conditions were used in those simulations.
There should be phenomena that can be observed only by large-scale sim-
ulation. For instance, it was reported recently through experiments that
there are two different morphologies in QLLs with super-micrometer scales
on an ice [7, 8], which cannot be reproduced by simulation with a small
simulation box.

Therefore, what we have to do in the next step is to perform simulation
of ices as large as possible. Employing the TIP4P intermolecular poten-
tial [9], I planned to create a computer program to perform such large-scale
simulation. Then I found that algorithms for rotational motions were quite
complicated (or unstable) compared to those of translational motion, and
seemed to consume computational time. It is usually the computation of
electrostatic field that takes most of computation time, nevertheless the im-
provement of the algorithm for rotational motion will save computational
time fairly well and enable us to perform longer simulation. In addition, in
the cases where intermolecular forces can be truncated at a limited range,
the long computational time for the rotational motion will be a bottleneck
in computing, and my algorithm may dramatically shorten the simulation
period.

Thus, in this thesis, I begin with proposing novel algorithms for ro-

2

tational motion (FT algorithms). Second, I propose a novel method to
prepare configurations of ice-Ih. Third, I seek possible dynamics in QLLs
of ices through large-scale MD simulation. The simulation is performed
using a computer code adopting the FT algorithm and Fast Multipole
Method [10,11], where I assume that water molecules are rigid and employ
the TIP4P intermolecular interaction potential.

1.2 First Part - Algorithms for rotation

The first part of the thesis is devoted to explaining novel numerical algo-
rithms for rotational motion called Fast Time-reversible (FT) algorithms
(Chapter 2). Previous to the FT algorithms, I firstly devised an algorithm
named Numerically Exactly Time-Reversible (NET) Algorithm [12], where
we determine angular position qn+1 of step-(n+1) of a molecule from its an-
gular velocity ωn and angular position qn using Taylor expansion as usual.
We denote the so obtained angular position qn+1 by qn+1 = Q(qn, ωn,Δt).
(Here I omit writing the force acting on the molecule for simplicity.) Then
the angular velocity ωn+1 is determined so that it satisfies time-reversibility
condition: qn = Q(qn+1, ωn+1,−Δt). In other words ωn+1 is determined so
as to satisfy the following relation:

qn = Q(Q(qn, ωn,Δt), ωn+1,−Δt). (1.1)

The equation (1.1) yields an algebraic equation with respect to ωn+1 whose
degree is higher than five.

The NET algorithm is simpler than other time-reversible algorithms for
rotational motion, however it requires solving this higher degree equation
derived from (1.1). To solve the equation I employed an iteration method
that results in requiring a little longer computation time.

Thus I have improved the NET algorithm to get rid of the iteration
method by modifying the equation (1.1) within the error of the algorithm
(=O(Δt3)). This modification does not violate the time-reversibility at all,
however it reduces the higher degree equation into simple linear equations.
In this way, I have proposed two improved algorithms and I named the

3

algorithms as Fast Time-reversible (FT) algorithms [13]. In spite of the
FT algorithms’ implementation codes being very short, the stability of the
total energy of FT algorithms is comparable to symplectic algorithm.

In Chapter 2, I firstly explain the idea of the NET algorithm and sec-
ondly present the FT algorithms.

In Appendix C, I present modified FT algorithm, which is an improve-
ment of the FT algorithm in a sense, but requires little more computations.

1.3 Second Part - Preparations of ice-Ih

Second, I present the method for making configurations of ice-Ih (Chapter
3). The ices given by the method are used in our simulation (Chapter 4
and [14]).

The positions of oxygen atoms are unique, however those of hydrogen
atoms are not determined in advance. All configurations of hydrogen atoms
are allowed for ice-Ih if and only if they satisfy the Bernal-Fowler rule i.e.,
if and only if there exists a single H per O-O bond and O has just two
adjacent H’s [15].

There are known some methods to generate the configurations of hydro-
gen atoms of ice-Ih. Perhaps the most used methods give unit cells (large
or small layers) satisfying the Bernal-Fowler rule. We paste together the
cells and get an arbitrarily large ice-Ih (like construction toys, e.g., Lego).
These methods are very useful but they can not be used for making ice-Ih
with dislocation as they are. They can make two kinds of planes (even
layers and odd layers) by fitting together sidewise, and the two planes can
be stuck to each other. However, ices with crystallographic defects can
not be obtained in this way. Since the structures of QLL are considered
to be influenced by dislocation, it is desirable for future use to make an
algorithm that can be used to make ices with dislocation.

Therefore, although I treat ices with dislocation only a little in this
thesis, I have made an algorithm to determine the positions of hydrogen
atoms of ice-Ih without/with dislocation. The configurations of hydrogen
atoms are determined randomly (within the limits of Bernal-Fowler rule)

4

to realize nearly zero macroscopic Coulomb dipole.
In Chapter 3 and Appendix A, I explain the method by which I make

the configurations of water molecules of ice-Ih. In Chapter 3, I restrict
ourselves to the configurations of the first layer of ices, and the rest is left
to Appendix A. However, the outlines of my method are represented in
Chapter 3 except for some complicated cases. I do not show constructions
of ices with dislocation in detail. I think the method shown in Part 2 can
be easily applied to get configurations of ice-Ih with dislocation. Since the
constructions of the algorithm presented in this part can be checked easily
(by brute force), I only state the algorithm without detailed explanations.

1.4 Third Part - Simulation

Lastly, I present in Chapter 4 the method and results of my simulation [14].
I have performed my simulation with a computer code adopting one of
the FT algorithms and the Fast Multipole Method (FMM) on parallel
computers [11]. The FMM is a well-known technique that can reduce
the calculation of forces and potentials into order N in order to make
the time required for simulation small. The weak scaling of the program
code is nearly constant. I employed usual velocity-Verlet algorithm for the
calculations of the translational motion.

The initial configurations of H2O molecules of ices are prepared by the
algorithm explained in Chapter 3 and Appendix A. The ices are made in
a hexagonal prism shape. Each of them is put in a vacuum box where
the z-axis is set perpendicular to the basal (0001) surface of the ice. The
present systems are all composed of 1,317,600 molecules. In the runs, the
temperatures are controlled to T = 205, 215, and 227 K. Since the melting
temperature Tm of TIP4P is about 228 K [16], the three temperatures
correspond to Tm − 23, Tm − 13, and Tm − 1 K.

The main results I have obtained in the simulation are: (a) The QLLs
are bumpy with the bump heights as large as a few inter-bilayer distances
of ice. The liquid bumps fluctuate to form and break at a variety of places
in a random manner. (b) At relatively lower temperatures, the molecules

5

in the second bilayer from the outside are partly melted. The ice molecules
in the second bilayer melt easily when they are located under the trenches
surrounding the liquid bumps. Furthermore, by the change of the locations
of liquid bumps over time, the melted areas newly covered by thick bumps
recrystallize. (c) At a temperature slightly below the melting point, the
second bilayer under the liquid bumps melts entirely to form a liquid sheet,
and the bumps sit on the sheet. (d) Microscopic properties (mean squared
displacements and O-O distances) of the liquid bumps differ from those of
the liquid sheet.

6

Chapter 2

Algorithms for rotational motion

2.1 Introduction

Molecules are often handled as rigid bodies in molecular dynamics simula-
tion. Despite the simplification, in the case of the TIP4P potential [9, 17]
for H2O molecules for instance, one can reproduce various physical proper-
ties of interest with reasonable accuracies such as the freezing and boiling
conditions, the electric permittivity, and the interfacial energy of ice and
water. TIP4P potential provides a qualitatively correct description of the
phase diagram of ice [18] and is widely used for simulation of both water
and ice [19,20]. The simplification by ignoring the fast vibration of consti-
tuting atoms of a molecule is highly effective for taking a long time step to
realize a long-time simulation [21]. Several time-integration algorithms for
rotational motion of rigid body molecules have been deviced, e.g., (i) the
Gear’s predictor-corrector algorithm [21], (ii) the Matubayasi-Nakahara’s
algorithm [22], (iii) the symplectic algorithms [23–27], and (iv) the angular
momentum Verlet (AMV) algorithm [28].

The algorithm (i) is very accurate for a short time step. However, it
is not time-reversible, and becomes unstable or the total energy increases
significantly in a long time simulation run. It is highly unstable for longer
time steps. The algorithm (ii) is time-reversible and non symplectic. It
shows high stability, however, is slightly complicated with its procedure
composed of several parts that use auxiliary functions. The algorithms (iii)

7

have the feature of time-reversibility in addition to the symplecticness and
show very high stability; a conserved quantity that is close to Hamiltonian
exists. However, it is complicated compared with other algorithms. The
algorithm (iv) is easy to understand and interesting since it is constructed
in an analogous manner to the velocity-Verlet algorithm. Although it is
not time reversible in the strict sense, it shows smaller fluctuation in the
total energy than does the leap-flog algorithm [21] when it is applied to the
system of tetrahedral molecules. However, I find the total energy increases
monotonously during the simulation runs for some systems including a
water droplet.

I think that the total energy increase of the AMV algorithm is caused by
its lacking of time-reversibility. Therefore, I sought for simple algorithms
that satisfy time-reversibility to reduce computational time for large scale
simulation. For known time-reversible algorithms, the time-reversibility
comes from its symmetric constructions, and I think that the construc-
tions are the cause of their complexity. On the other hand, the time-
reversibility of our algorithms comes from new constructions. In short,
time-reversibility is not obtained as results, but, on the contrary, we as-
sume its time-reversibility and derive angular velocity as the results of
the time-reversibility as explained below. The algorithms obtained in this
manner turned out to be ones of the shortest and fastest time-reversible
algorithms as results of the novel construction. I named the algorithms
Fast Time-reversible (FT) algorithms.

In §2.2, we recall the notion of velocity-Verlet algorithm and its time-
reversibility. In §2.3, we derive the equations required for our FT algo-
rithms. In §2.4, the FT algorithms will be applied to simulate a water
droplet composed of 499 H2O molecules to demonstrate their stability in
the total energy and computation speeds. §2.5 is devoted to summary and
concluding remarks. The FT algorithms will be fast time-reversible ones for
rigid molecules, since each of which consists of relatively fewer operations
of basic arithmetic and square root (see §2.4.3 and Table 2.1). Simulations
of the FT algorithms will show much greater stability than that of the NET
algorithm, and comparable stability to that of the Matubayasi-Nakahara

8

algorithm and symplectic algorithms.

2.2 Time-reversibility

The well-known velocity-Verlet algorithm [21] is a time-reversible algorithm
for point atoms. It is quite simple and, in fact, shows accurate total energy
conservation. In the velocity-Verlet algorithm, the position and velocity of
an atom at step-(n + 1) are determined from the corresponding values at
step-n as

r(n+1) = r(n) +Δt v(n) +
Δt2

2m
f (n) (2.1)

and

v(n+1) = v(n) +
Δt

2m
(f (n+1) + f (n)), (2.2)

where r, v, f , m, and Δt are the position, velocity, force, mass, and time
step, respectively. Since

r(n) = r(n+1) + (−Δt)v(n+1) +
(−Δt)2

2m
f (n+1) (2.3)

is obtained by substituting eq. (2.2) to eq. (2.1), the algorithm has time
reversibility. In this thesis, considering the above, I propose, for the angular
position, a novel time-reversible algorithm that is as simple as the AMV
algorithm, in close correspondence to the velocity-Verlet algorithm. To
begin, I point out that the combination of eqs. (2.1) and (2.3) gives eq.
(2.2). In other words, the combination of the position formula for the next
step and the time-reversibility condition determines the proper velocity.
The same idea can also be applied to the angular position. In the present
algorithm, we will first calculate the angular position of a molecule at step-
(n+1) using the Taylor series expansion of the position at step-n up to the
2nd order of the time step. Second, we will determine the angular velocity
at step-(n + 1) so as to satisfy the time-reversibility condition explicitly
between the values at step-n and step-(n + 1). To do so, we will need to
solve a non linear equation of the angular velocity at step-(n + 1), which

9

yields an algebraic equation with respect to angular velocities, whose degree
is more than five. The numerically exact time-reversible (NET) algorithm
([12]) determines numerically the angular velocity by solving the equation
by iteration and thus time-reversible. The angular velocities of the FT
algorithm are determined by equations obtained by slightly modifying the
equation, and the modified equations can be solved easily. In the next
section I explain the FT algorithm.

2.3 Fast time-reversible (FT) algorithm

2.3.1 Introduction

The aim of this section is to propose fast and time-reversible algorithms
for rigid body molecules without an iteration procedure indispensable for
the NET algorithm. I call the algorithms Fast Time-reversible (FT) algo-
rithms. I will give two FT algorithms. The difference between them lies
only in the method of eliminating the iteration procedure. In a method,
the three components of the angular velocity vector are treated as a set.
Mutually different treatments are applied to the three components with
the feature of phase-space conservation in the other method.

2.3.2 FT algorithms

The motion of a rigid molecule is decomposed into the translational motion
and the rotational motion around the centroid. In applying FT algorithms
to simulation of water (this chapter and Chapter 4), we employ the velocity-
Verlet algorithm for translational motion. Since we use FT algorithms
always coupled with the velocity-Verlet algorithm, I mention the velocity-
Verlet algorithm again in the following.

The equations of the FT algorithms for the rotational motion are derived
in §2.3.5 − §2.3.9. In §2.3.10 I show the procedure of the FT algorithm.

10

2.3.3 Equations of FT algorithms

For simplicity I present the set of equations common to two FT algorithms
for a single rigid molecule, which is composed of the updates of centroid
position, centroid velocity, angular position and angular velocity. In actual
simulation of a molecular system, the equations will be applied in parallel
to all the rigid molecules.

2.3.4 Determination of centroid position and velocity

In applying FT algorithms to simulation, we always employ the time-
reversible velocity-Verlet algorithm to describe the translational motion
of the centroid of a rigid molecule:

�r(t+Δt) = �r(t) + Δt

(
�v(t) +

Δt

2m
�f(t)

)
, (2.4)

�v(t+Δt) = �v(t) +
Δt

2m
(�f(t) + �f(t+Δt)). (2.5)

Here the vectors �r and �v represent the position and velocity of the centroid,
respectively. The �f is the summation of the forces on the constituting
atoms of the molecule, and m is the mass of the molecule. The force on
each atom is assumed to be a function of the atomic positions only.

2.3.5 Determination of angular position

The angular position of a rigid molecule is described with the quaternion.
The aim of this subsection is to derive Eq. (2.23) below, by which we
update the angular position. We introduce a coordinate frame fixed to a
rigid body molecule so that the moment of inertia tensor is diagonal; that
is, the body-fixed coordinates of a point are obtained as its projections on
the principal axes of inertia. We assume that the origin Ob of the body-
fixed frame coincides with the centroid of the rigid molecule. Similarly the
space-fixed frame is introduced, whose origin is denoted by Os.

Let a matrix
←→
Rq rotate the three axes of the space-fixed frame to be

parallel to that of the body-fixed frame. The
←→
Rq is parametrized by a unit

11

quaternion �q = t(q0, q1, q2, q3) (the superscript ”t” means the transpose
operation) with |�q| = 1:

←→
Rq =

⎛
⎝q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎞
⎠ . (2.6)

We add the superscript ”(b)” or ”(s)” to clarify that the associated vector
is represented as a 3 × 1 matrix in the body-fixed or space-fixed frame,
respectively. Then, for any point P ,

−−→
ObP

(s) =
←→
Rq

−−→
ObP

(b). (2.7)

The quaternion and Euler angles [29] are related to each other through

q0 = cos(θ/2) cos[(φ+ ψ)/2],

q1 = sin(θ/2) cos[(φ− ψ)/2],

q2 = sin(θ/2) sin[(φ− ψ)/2],

and

q3 = cos(θ/2) sin[(φ+ ψ)/2].

Here θ, φ, and ψ are the three Euler angles of the body-fixed frame rela-
tive to the space-fixed one in the standard convention [29, 30]. Hereafter,
we exploit the unit quaternion �q exclusively to represent the rotational
position of a rigid body in the space-fixed frame through Eq. (2.7).

Since we have assumed that the three axes of the body-fixed frame
are the principal axes of inertia, we can write the angular momentum
�L(b) = t(Lx, Ly, Lz) as follows:

Lx = Ixωx(t), Ly = Iyωy(t), Lz = Izωz(t), (2.8)

where Ix, Iy, and Iz are the principal moments of inertia, and �ω(b)(t) =
t(ωx(t), ωy(t), ωz(t)) is the angular velocity of the rigid molecule. Since
angular velocity vectors are always represented in the body-fixed frame in

12

this thesis, we use �ω(t) to mean �ω(b)(t) hereafter. It is known that the
following identity holds [22, 23]:

d

dt

⎛
⎜⎜⎝
q0
q1
q2
q3

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0
ωx

ωy

ωz

⎞
⎟⎟⎠ . (2.9)

Let

←→
A [�ω] =

⎛
⎜⎜⎝

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎞
⎟⎟⎠ (2.10)

and

�q(t) = t(q0(t), q1(t), q2(t), q3(t)). (2.11)

Notice here that
←→
A [�ω] above is not a product of

←→
A and �ω, but a matrix

of �ω. Then Eq. (2.9) is rewritten as ([22])

d

dt
�q(t) =

←→
A

[
1

2
�ω(t)

]
�q(t), (2.12)

and then

d2

dt2
�q(t) =

d

dt

(
d

dt
�q(t)

)

=

(←→
A

[
1

2
�ω(t)

])2
�q(t) +

←→
A

[
1

2

d

dt
�ω(t)

]
�q(t).

Since
(←→
A
[
1
2�ω(t)
])2

= − ∣∣12�ω(t)∣∣2←→E (
←→
E is the identity matrix), the equa-

tion above yields

d2

dt2
�q(t) = −

∣∣∣∣12�ω(t)
∣∣∣∣
2

�q(t) +
←→
A

[
1

2

d

dt
�ω(t)

]
�q(t). (2.13)

13

From Eqs. (2.12) and (2.13),

�q(t) +
d

dt
�q(t)Δt+

1

2

d2

dt2
�q(t)Δt2 = �q(t) +

←→
A

[
1

2
�ω(t)

]
�q(t)Δt

+
1

2

(
−
∣∣∣∣12�ω(t)
∣∣∣∣
2

�q(t) +
←→
A

[
1

2

d

dt
�ω(t)

]
�q(t)

)
Δt2

=

(
1− 1

2

∣∣∣∣12�ω(t)
∣∣∣∣
2

Δt2

)
�q(t)

+
←→
A

[
1

2

(
�ω(t) +

1

2

d

dt
�ω(t)Δt

)
Δt

]
�q(t), (2.14)

where we have used the fact that
←→
A [�ω] is linear with respect to �ω. Let me

define

s = 1− 1

2

∣∣∣∣12�ω(t)
∣∣∣∣
2

Δt2

and
−→
V =

1

2

(
�ω(t) +

1

2

d

dt
�ω(t)Δt

)
Δt. (2.15)

Then, Eq. (2.14) is equal to
(
s
←→
E +

←→
A [

−→
V]
)
�q(t), and thus

�q(t+Δt) = �q(t) +
d

dt
�q(t)Δt+

1

2

d2

dt2
�q(t)Δt2 +O(Δt3)

=
(
s
←→
E +

←→
A [

−→
V]
)
�q(t) +O(Δt3). (2.16)

Since s > 0 and |�V | < 1 for usual time steps [31] (see Addendum of this
chapter and Appendix C, where these assumptions are reoved), it follows
from Eq. (2.16) that

�q(t+Δt) =

(√
1− |−→V |2←→E +

←→
A [

−→
V]

)
�q(t) +O(Δt3). (2.17)

14

Here we have used the fact

s = 1− 1

2

∣∣∣∣12�ω(t)
∣∣∣∣
2

Δt2

= 1− 1

2

∣∣∣∣12�ω(t) + 1

4

d

dt
�ω(t)Δt

∣∣∣∣
2

Δt2 +O(Δt3)

= 1− 1

2
|�V |2 +O(Δt3) =

√
1− |−→V |2 +O(Δt3).

Note that

√
1− |−→V |2←→E +

←→
A [

−→
V] in Eq. (2.17) is an orthogonal matrix,

which conserves the distance or the norm of the quaternion.

We define the orthogonal matrix
←→
R [�v] for a vector �v = t(vx, vy, vz)

(|�v| < 1) as ←→
R [�v] =

√
1− |�v|2←→E +

←→
A [�v]

=

⎛
⎜⎜⎜⎝
√
1− |�v|2 −vx −vy −vz
vx

√
1− |�v|2 vz −vy

vy −vz
√
1− |�v|2 vx

vz vy −vx
√
1− |�v|2

⎞
⎟⎟⎟⎠ . (2.18)

It is easy to see that
←→
R [�v] satisfies

←→
R [�v]

←→
R [−�v] = ←→

E . (2.19)

Using the notations above, we rewrite Eq. (2.17) as

�q(t+Δt) =
←→
R [

−→
V]�q(t) +O(Δt3). (2.20)

Let me define
�φ(t,Δt) = �ω(t) +

1

2

d

dt
�ω(t)Δt. (2.21)

Then we have
−→
V = 1

2
�φ(t,Δt)Δt and Eq. (2.20) yields

�q(t+Δt) =
←→
R

[
1

2
�φ(t,Δt)Δt

]
�q(t) +O(Δt3). (2.22)

15

From Eq. (2.22), we obtain an equation to update the quaternion �q as

�q(t+Δt) =
←→
R

[
1

2
�φ(t,Δt)Δt

]
�q(t). (2.23)

Here
←→
R
[
1
2
�φ(t,Δt)Δt

]
is an orthogonal matrix (i.e., distance conserving),

and hence |�q(t + Δt)| = |�q(t)|. Consequently, the �q is normalized auto-
matically for any Δt.

There remains the task of calculating �φ(t,Δt). From Eq. (2.21),

φx(t,Δt) = ωx(t) +
1

2

dωx(t)

dt
Δt

φy(t,Δt) = ωy(t) +
1

2

dωy(t)

dt
Δt

φz(t,Δt) = ωz(t) +
1

2

dωz(t)

dt
Δt. (2.24)

Here, the derivatives of the angular velocity are given by the following
Euler’s equation of motion:

dωi

dt
=

Ij − Ik
Ii

ωjωk +
ti
Ii
, (2.25)

where (i, j, k) = (x, y, z), (y, z, x), and (z, x, y), and ti is the component of
the torque �τ (b) = t(tx, ty, tz). Then we have

φx(t,Δt) = ωx(t) + (αωy(t)ωz(t) + δtx(t))Δt

φy(t,Δt) = ωy(t) + (βωx(t)ωz(t) + λty(t))Δt

φz(t,Δt) = ωz(t) + (γωx(t)ωy(t) + μtz(t))Δt, (2.26)

where

α =
Iy − Iz
2Ix

, β =
Iz − Ix
2Iy

, γ =
Ix − Iy
2Iz

,

δ =
1

2Ix
, λ =

1

2Iy
, and μ =

1

2Iz
. (2.27)

We can calculate �φ(t,Δt) with Eq. (2.26), by which we update the angular
position of the rigid molecule with Eq. (2.23).

16

Note that the equations of �φ = t(φx, φy, φz) in Eq. (2.26) will be changed
slightly later within the order of Δt2 to avoid an iteration procedure in
determining angular velocity. Even in that case, the order of error of
updated quaternion remains within Δt3 (see §2.4).

I remark that �φ(t,Δt) introduced in Eq. (2.21) can be regarded as the
angular velocity at the midstep t + 1

2Δt in [22], and that we can derive
Eq. (2.23) also by using the equations in that reference. However, our
derivation above will be helpful to clarify our method.

2.3.6 Determination of angular velocity

The principal aim of this subsection is to derive Eq. (2.32) below that the
updated angular velocity should obey. We determine the updated angular
velocity in the same way as the NET algorithm, that is, we determine it
so as to satisfy the time-reversibility condition [12]. From Eq. (2.23), the
time-reversibility condition gives

←→
R

[
1

2
�φ(t+Δt,−Δt)(−Δt)

]
�q(t+Δt) = �q(t). (2.28)

Combining Eqs. (2.23) and (2.28), we have

←→
R

[
1

2
�φ(t+Δt,−Δt)(−Δt)

]←→
R

[
1

2
�φ(t,Δt)Δt

]
�q(t)

= �q(t). (2.29)

Therefore, we determine �φ(t+Δt,−Δt) by the following equation:

←→
R

[
1

2
�φ(t+Δt,−Δt)(−Δt)

]←→
R

[
1

2
�φ(t,Δt)Δt

]
=

←→
E . (2.30)

Since ←→
R

[
1

2
�φ(t,Δt)(−Δt)

]←→
R

[
1

2
�φ(t,Δt)Δt

]
=

←→
E (2.31)

from Eq. (2.19), we find

�φ(t+Δt,−Δt) = �φ(t,Δt) (2.32)

17

from Eq. (2.30). Using Eqs. (2.26) and (2.32), we obtain the following
equations:

ω+
x − (αω+

y ω
+
z + δt+x)Δt = ωx + (αωyωz + δtx)Δt

ω+
y − (βω+

x ω
+
z + λt+y)Δt = ωy + (βωxωz + λty)Δt

ω+
z − (γω+

x ω
+
y + μt+z)Δt = ωz + (γωxωy + μtz)Δt,

(2.33)

where we mean ωi = ωi(t), ω
+
i = ωi(t+Δt), ti = ti(t), and t+i = ti(t+Δt)

for i = {x, y, z}. Equations (2.33) contain unknown variables ω+
x , ω

+
y , and

ω+
z . If we combine these three equations to obtain a single equation of a

single variable, the degree of the single variable equation is at least 5. It
is difficult to solve it algebraically. In the NET algorithm, we solve similar
equations numerically for every time step by an iteration method.

In [12], we derived the equations similar in meaning to Eqs. (2.23),
(2.26), and (2.32). However, those equations in [12] were formulated suit-
able for iteration procedure. We cannot apply the following iteration-free
method directly to those equations obtained in [12].

2.3.7 Ideas to remove iteration procedure

I propose two methods to determine the updated angular velocity without
iteration. As mentioned before, we modify Eqs. (2.26) slightly within the
order of Δt2. We use the modified equations to evolve quaternion in time
by Eq. (2.23) and to get the updated angular velocity by setting them into
Eq. (2.32). Hereafter, we abbreviate
φx(t,Δt), φy(t,Δt), φz(t,Δt), φx(t+Δt,−Δt), φy(t+Δt,−Δt),
φz(t+Δt,−Δt), ωx(t), ωy(t), ωz(t), ωx(t+Δt), ωy(t+Δt), and ωz(t+Δt)
as

φx(t,Δt) = φx, φy(t,Δt) = φy, φz(t,Δt) = φz,

φx(t+Δt,−Δt) = φ+
x , φy(t+Δt,−Δt) = φ+

y ,

φz(t+Δt,−Δt) = φ+
z ωx(t) = ωx, ωy(t) = ωy, ωz(t) = ωz,

ωx(t+Δt) = ω+
x , ωy(t+Δt) = ω+

y , ωz(t+Δt) = ω+
z ,

18

respectively.

2.3.8 Method 1: modification to linear equations

Instead of Eqs. (2.26), we redefine

�φ(t,Δt) = t(φx, φy, φz)

by the following combined equations:

ω̃x = ωx + δtxΔt, ω̃y = ωy + λtyΔt, ω̃z = ωz + μtzΔt (2.34)

and
φx = ω̃x + αω̃zφyΔt,

φy = ω̃y + βω̃xφzΔt, (2.35)

φz = ω̃z + γω̃yφxΔt.

We solve these linear equations (Eqs. 2.35) to get �φ(t,Δt). The so defined
φx, φy, and φz differ from the original ones within the order of Δt2, which
is easy to see by solving Eqs. (2.34) and (2.35). For example,

φx = (ω̃x + αω̃yω̃zΔt+ αβω̃xω̃
2
zΔt2)/(1− αβγω̃xω̃yω̃zΔt3)

= ωx + (αωyωz + δtx)Δt+O(Δt2).

Therefore, the order of error of the updated quaternion given by Eq. (2.23)
for �φ = t(φx, φy, φz) defined above remains within Δt3.

Then, �φ(t+Δt,−Δt) = t(φ+
x , φ

+
y , φ

+
z) is given similarly by

ω̃+
x = ω+

x − δt+xΔt,

ω̃+
y = ω+

y − λt+y Δt, (2.36)

ω̃+
z = ω+

z − μt+z Δt

and
φ+
x = ω̃+

x − αω̃+
z φ

+
y Δt,

φ+
y = ω̃+

y − βω̃+
x φ

+
z Δt, (2.37)

19

φ+
z = ω̃+

z − γω̃+
y φ

+
xΔt.

Since φ+
x = φx, φ

+
y = φy, and φ+

z = φz from Eq. (2.32), we can calculate
the updated angular velocity t(ω+

x , ω
+
y , ω

+
z) by considering the reverse order

operation of Eqs. (2.36) and (2.37). Equations (2.37) are linear in ω̃+
x , ω̃

+
y ,

and ω̃+
z , which are easy to solve. Then we get the updated angular velocity

t(ω+
x , ω

+
y , ω

+
z) from Eqs. (2.36).

Method 1 requires solving three linear equations for three variables twice
(one for Eq. 2.35 and the other for Eq. 2.37) to get the updated angular
velocity. In the next subsection, a method consisting of substitutions only
but losing symmetry with respect to the three components in Eqs. (2.26)
will be proposed.

2.3.9 Method 2: successive substitution

Instead of Eqs. (2.26), we redefine �φ(t,Δt) = t(φx, φy, φz) successively as
follows. The arrow that is facing left in an equation below stands for
substitution in a computer code. We proceed in the sequence:

φx(1) ← ωx, φy(1) ← ωy, φz(1) ← ωz (2.38)

φx(2) ← φx(1) + δtxΔt,

φy(2) ← φy(1) + λtyΔt, (2.39)

φz(2) ← φz(1) + μtzΔt

φx ← φx(2) + αφy(2)φz(2)Δt (2.40a)

φy ← φy(2) + βφxφz(2)Δt (2.40b)

φz ← φz(2) + γφxφyΔt. (2.40c)

Here, φx, φy, and φz defined in Eqs. (2.40a)-(2.40c) differ from the original
ones within the order of Δt2. Thus the order of error of the updated
quaternion remains within Δt3 as before.

20

Then, �φ(t+Δt,−Δt) = t(φ+
x , φ

+
y , φ

+
z) is given similarly as above, and we

can solve it to get the updated angular velocity t(ω+
x , ω

+
y , ω

+
z) as follows:

φ+
z (2) ← φ+

z + γφ+
x φ

+
y Δt (2.41a)

φ+
y (2) ← φ+

y + βφ+
x φ

+
z (2)Δt (2.41b)

φ+
x (2) ← φ+

x + αφ+
y (2)φ

+
z (2)Δt (2.41c)

φ+
x (1) ← φ+

x (2) + δt+xΔt,

φ+
y (1) ← φ+

y (2) + λt+y Δt, (2.42)

φ+
z (1) ← φ+

z (2) + μt+z Δt

ω+
x ← φ+

x (1), ω+
y ← φ+

y (1), ω+
z ← φ+

z (1). (2.43)

For Eqs. (2.41) φ+
i = φi (i = {x, y, z}) from Eq. (2.32). Note that

Eqs. (2.41) are arranged in the direction opposite to Eqs. (2.40) so that
the time-reversibility holds.

I denote the FT algorithms with Method 1 and 2 as FT1 and FT2 al-
gorithms, respectively. Note that the FT2 algorithm satisfies the following
equation of phase-space conservation (see Eq. 14 in [22]):∣∣∣∣∂(�r(t+Δt), �v(t+Δt), �q(t+Δt), �ω(t+Δt))

∂(�r(t), �v(t), �q(t), �ω(t))

∣∣∣∣ = 1. (2.44)

2.3.10 FT algorithm for single time step

We describe here the procedure for a single time step of the FT algorithm,
especially for FT2, for a single rigid molecule composed of atoms. In actual
simulation of a molecular system, the algorithm will be applied in parallel
to all the rigid molecules. The procedure of the FT1 algorithm is similar.

The procedure of the FT2 algorithm consists of the following eight steps.
They are the steps required to evaluate �r, �v, �q, and �ω at time t+Δt from
that at time t. Step 4 is devoted to the calculation of the quaternion and
Step 8 the angular velocity. These two steps distinguish the FT algorithm

21

from the other ones. The other steps are generally installed in every algo-
rithm for the motion of rigid molecule in the quaternion representation.

Setting: The body-fixed frame is introduced with its axes corresponding
to the principal axes of inertia of a rigid molecule, whose origin coincides
with the centroid of the rigid molecule. We denote its principal moments
of inertia by Ix, Iy, and Iz. Here we use the constants α, β, γ, δ, λ, and μ
defined in Eqs. (2.27) . Take the data at time t of the molecule: the position
of the centroid �r(t)(s), the velocity of the centroid �v(t)(s), the quaternion
of the rigid molecule �q(t), and the angular velocity of the rigid molecule
�ω(t)(b) = t(ωx, ωy, ωz).

Step 1: Calculate the atomic positions of the molecule in the space-fixed
frame by Eqs. (2.6) and (2.7).

Step 2: Calculate the forces on the atoms using the atomic positions
calculated in Step 1. Then calculate the force �f(t)(s) acting on the centroid,
and the torque �τ(t)(b) = t(tx, ty, tz).

Step 3: Determine the updated position of the centroid by Eq. (2.4).

Step 4: Determine �φ(t,Δt) = t(φx(t,Δt), φy(t,Δt), φz(t,Δt)) by Eqs. (2.38)-
(2.40). Set it into Eq. (2.23) to determine the updated quaternion.

Step 5: Calculate the updated positions of the atoms in the space-fixed
frame by Eq. (2.7). (In actual simulation, we install the procedure to
normalize the quaternion every thousand steps to avoid numerical error.
It is not always necessary.)

Step 6: Calculate the updated forces on the atoms. Then obtain the
torque �τ+(b) = t(t+x , t

+
y , t

+
z) and the force �f(t+Δt) acting on the centroid.

Step 7: Determine the updated velocity of the centroid by Eq. (2.5).

Step 8: Determine the updated angular velocity, ω+
x , ω

+
y , and ω+

z , by
Eqs. (2.41)-(2.43) after setting φ+

x = φx, φ
+
y = φy, and φ+

z = φz where
φx, φy, and φz are obtained in Step 4 and t+x , t

+
y , and t+z in Step 6.

Go to Step 3.

Note that if we choose to use the FT1 algorithm, we have only to replace
the equations in Step 4 and Step 8 by Eqs. (2.34) and (2.35) and Eqs. (2.37)

22

and (2.36), respectively. The FT algorithms can also be applied to linear
molecules. For a linear molecule, we set axis-z of the body-fixed frame
along the molecule. Then we have Ix = Iy > 0 and Iz = 0. Here we set
ω3 = 0, α = 1

2 , δ = 1/Ix, β = −1
2 , λ = 1/Iy, γ = 0, μ = 0, and tz = 0.

Under such a setting, the procedure explained above can be used for linear
molecules.

2.4 Computation results: Comparison among FT1,

FT2, symplectic, and NET algorithms

The FT algorithms are applied to a water droplet in vacuum. We choose
to use the TIP4P inter-molecular potential, in which an H2O molecule is
described as a rigid, planar four charged points. It is known that various
physical properties [9,17] are reproduced well in both liquid and crystalline
phases with the TIP4P potential. my purposes of the present application
are to examine the stability and the computation timings of the FT al-
gorithms in realistic settings through comparison of that of existing algo-
rithms.

To prepare a water droplet, we firstly cut, from crystalline ice in Ih-
phase [32], a collection of 499 molecules in spherical shape. Secondly, we
keep the temperature of the system at around T = 300 K by controlling
both translational and angular velocities for more than 1.0 ns to obtain
a water droplet with a diameter of about 3.0 nm in vacuum at thermal
equilibrium; no molecule is detached from the droplet. This preparation
simulation is performed with Δt = 2.5 fs using either FT, symplectic, or
NET algorithm to obtain three initial configurations for each algorithm.

For precise comparison, we follow the method in [22] and introduce the
local error ε(1) and the global error ε̃ (see, below). We define

ε(n) =

〈∣∣∣∣E(i+ n)

E(i)
− 1

∣∣∣∣
〉

, (2.45)

where E(i) is the total energy of the system at step-i and the average
〈· · · 〉 is taken over all possible i and three runs of 105 steps starting from

23

different configurations. The ε(1) gives the relative error of the total energy
after Δt. The global error is defined as ε̃ = limn→∞ ε(n)/n. To reduce the
numerical fluctuation, we, in practice, calculate

ε̃ =
ε(10000)− ε(1000)

9000
. (2.46)

In this section, the symplectic algorithm is coded according to [27] after
removing unnecessary parts as the thermostat part, and the quaternions
are normalized every thousand steps to avoid numerical error as in the case
of the FT algorithm.

2.4.1 Stability of FT1 algorithm

Figure 2.1 shows the local error, ε(1), and the global error, ε̃, for the FT1,
symplectic, and NET algorithms with various Δt [33]. It is seen in Fig. 2.1
that log ε(1) grows linearly with logΔt with the slope of approximately 3
in the three algorithms. It reflects the fact that the algorithms contain
the local errors of order Δt3. We find in Fig. 2.1 that the global error, ε̃,
in the FT1 algorithm is about 10% of that in the NET algorithm and is
intermediate of those in the NET and symplectic algorithms.

I note that there exist other possibilities of modifying Eqs. (2.26) similar
to Eqs. (2.35). One is the way to use the equations below instead of
Eqs. (2.35):

φx = ω̃x + αφzω̃yΔt, φy = ω̃y + βφxω̃zΔt, φz = ω̃z + γφyω̃xΔt. (2.47)

The other is to take the mean of Eqs. (2.35) and (2.47):

φx = ω̃x +
1

2
α(ω̃zφy + φzω̃y)Δt,

φy = ω̃y +
1

2
β(ω̃xφz + φxω̃z)Δt,

φz = ω̃z +
1

2
γ(ω̃yφx + φyω̃x)Δt. (2.48)

These two algorithms give quite similar results for ε(1) and ε̃ to that of the
FT1 algorithm.

24

Figure 2.1: Local errors, ε(1), and global errors, ε̃, in the water droplet simulation at
T = 300 K in the symplectic, FT1, FT2 (xzy), and NET algorithms for various values of
Δt.

2.4.2 Stability of FT2 algrithm

Here we compare both local and global errors of the FT2 algorithm with
that of other algorithms. In §2.3.9 we have obtained φx, φy, and φz by
substituting successively as Eqs. (2.38)-(2.40). However, the sequential
order of Eqs. (2.40a), (2.40b), and (2.40c) can be different. There are
3! = 6 ways of permuting Eqs. (2.40a), (2.40b), and (2.40c). I perform the
simulations for all six cases, to find no significant differences. Here I show
three simulations of the six cases. For the case denoted as (xyz), the order
is Eqs. (2.40a), (2.40b),and (2.40c). For (yzx), the order is Eqs. (2.40b),
(2.40c), and (2.40a). For (xzy), the order is Eqs. (2.40a), (2.40c), and
(2.40b). In each case, Eqs. (2.41a)-(2.41c) are arranged in the direction

25

Figure 2.2: Local errors, ε(1), and global errors, ε̃, in the water droplet simulation at
T = 300 K in the FT2 and NET algorithms for various values of Δt.

opposite to Eqs. (2.40a)-(2.40c). In the present setting, the magnitudes of
the principal moment of inertia are Ix > Iz > Iy.

Figure 2.2 shows the local error, ε(1), and the global error, ε̃, of the
simulations with the FT2 and NET algorithms for various Δt [33]. We
find in Fig. 2.2 that the three global errors, ε̃(xyz), ε̃(yzx), and ε̃(xzy), in
the FT2 algorithm are only about 10% of that in the NET algorithm.

Figure 2.1 also shows that the global errors of the FT1 and FT2 (we com-
pare here especially FT2(xzy)) algorithms. The global errors are almost
the same between the two algorithms and are inferior to the symplectic
algorithm by about an order of magnitude.

26

2.4.3 Computation timings of FT algorithms

In this subsection, we discuss computation timings of various time-reversible
algorithms of rotational motion that use quaternion to represent angular
position. To compare computation timings of such algorithms, we com-
pare the required timings of the parts that update quaternion and angular
velocity of a rigid molecule. We assume the remaining part is almost same
in every algorithm using quaternion representation.

Table 2.1 shows computation timings averaged over 106 measurements
and numbers of operations [34] of the FT1, FT2, symplectic, Matubayasi-
Nakahara, and NET algorithms required for updating angular velocity and
quaternion. The number of iteration in the NET algorithm is set to one,
which is not realistic, but gives us the lower limit of its computation tim-
ings. Computation timings are measured on 3.1GHz Intel Core i7, 2.5GHz
Fujitsu SPARC64VII, and 3.0GHz Intel Xeon E5472. The FT2 algorithm
requires less than 100 operations and all of the operations are four basic
arithmetic operations except for one square root operation.

As is seen in Table 2.1, computation timings depend on machines and
the order can be reversed. However, we see that the computation timing
for updating angular velocity and quaternion of the FT2 algorithm is no
more than that of the FT1, symplectic, Matubayasi-Nakahara, and NET
algorithms. Thus assuming the remaining part of algorithm is almost same
for every time-reversible one, we think that the FT2 algorithm is a fast
algorithm in the time-reversible ones using quaternion representation.

2.5 Summary and concluding remarks

I have proposed the Fast Time-reversible (FT1 and FT2) simulation algo-
rithms for rigid molecules. The stability of the FT algorithms for various
values of the time step is compared with that of the NET and symplectic
algorithms, through demonstrative simulation of a water droplet composed
of 499 molecules at 300 K.

The global errors of the FT algorithms are only about 10% of that of

27

Table 2.1: Computation timings averaged over 106 measurements required to update
angular velocity and angular position on various machines for various algorithms.

Computation timing (10−8 sec.) Number of operations
algorithm Core i7a SPARCb Xeonc four rulesd trigonometrice square root

FT1 7.2 20 9.5 154 0 1
FT2 5.7 19 8.8 82 0 1

Symplectic 21 52 29 274 10 0
MNf 11 65 15 166 18 1
NETg 7.5 26 12 169 0 1

a3.1GHz Intel Core i7 950 with Intel Fortran compiler Ver. 12.0, option=”-fast”
b2.5GHz Fujitsu SPARC64VII with Fujitsu Fortran compiler, option=”-Kfast”
c3.0GHz Intel Xeon E5472 with Intel Fortran compiler Ver. 11.1, option=”-fast”
dthe four rules of arithmetic, i.e., addition, subtraction, multiplication (including exponentiation),

division
etrigonometric functions
fMatubayasi-Nakahara algorithm [22]
gNET algorithm with one time iteration [12]

the NET algorithm. I think that the smallness is caused by various factors
including the elimination of accumulation error in the iteration. The local
and global errors of the FT algorithms are almost the same as that of
Matubayasi-Nakahara [22] algorithm.

It may seem that the FT algorithms are similar to Matubayasi-Nakahara
algorithm. However, there are differences between the two algorithms. The
main difference lies in the choice of equations to be modified in order to
get the updated angular velocity. To get the updated angular velocity,
Matubayasi and Nakahara modified differential equations for the angular
velocity, and got several differential equations. They integrated them one
by one, determined the angular velocity at the midstep t+ 1

2Δt, integrated
these equations in reverse order, and then determined the angular velocity
at time t + Δt. The error involved in the algorithm is Δt3. In the FT
algorithms, on the other hand, we have introduced temporally (algebraic)
equations by which we update the quaternion within the error of Δt3, and
have modified these equations within Δt3. Then, we have solved these
equations conversely to get the angular velocity at time t+Δt.

Noteworthy features of the FT algorithms are the following: (i) The
FT2 algorithm will be a fast time-reversible algorithm for rotational mo-

28

tion comparable to other fast time-reversible ones using quaternion. (ii)
From the viewpoint of total energy conservation, the FT algorithms are
superior to the NET algorithm, and are comparable to the Matubayasi-
Nakahara algorithm. (iii) Even if the equations of dynamics involve the
friction term or an external force field, the FT algorithms are useful by
interpreting the force appropriately for negative time step −Δt. (iv) The
FT2 algorithm satisfies Eq. (2.44) as the Matubayasi-Nakahara algorithm
does.

Finally, I comment on the stability of the symplectic algorithm. The
global errors in the symplectic algorithm increase significantly for Δt ≥
6 fs approaching to the FT1 results as seen in Fig. 2.1. I do not know the
reason of this, but I think that it is because the trajectory of the conserved
quantity H̃ of Miller’s algorithm assured by the symplectic method may
not be contained in an restricted area of (q, p) phase space or may not
converge for some large Δt. For example, let us consider a simple case, a
one-dimensional harmonic oscillator whose hamiltonian is given by H =
1
2(p

2+q2). Then, q′ = q+τp, p′ = p−τq′ gives a symplectic transformation

and conserves H̃ = 1
2(p

2 + q2) + 1
2τpq. If τ is sufficiently small, say, τ=1,

H̃=const. means that p and q are on an ellipse close to H. On the other
hand, if τ is large, H̃=const. is not an ellipse but a hyperbola (if τ > 2).
In this case, ‘H̃ is conserved’ those not mean that ‘H − H̃ is small’. Of
course H − H̃ = 1

2τpq and τ is fixed, however, on the hyperbola, pq can be
infinitely large (the asymptotic lines are not x- and y-axes). For example,
let const.=1

2 and τ = 4. Then, H̃=const. is equivalent to p2+q2+4pq = 1,
and the discriminant of the quadratic equation for p is D = 4q2−(q2−1) =
3q2 + 4 > 0. Thus we can find for arbitrary large q a solution p, q of the
equation H̃=const., which implies that H = 1

2(p
2 + q2) > 1

2q
2 can be

infinitely large.

In addition, symplectic algorithm theory assures that there is a formal
power series that is conserved. However, as far as I know, the convergence
of the series is not proved. If H̃ does not converge, the H̃ conservation is
meaningless. Therefore, even in symplectic algorithm, there may be time

29

steps that the convergence of total energy fail.

2.6 Addendum - modified FT algorithm

Just below the Eq.(2.16), I have stated that |�V | < 1 for usual time step. As
shown in the reference [31], |�V | < 1 is always satisfied in normal situations.
However, if there is a danger of |�V | > 1, we can take the following alterna-
tive (modified FT algorithm): Replace all the diagonal elements

√
1− |�v|2

in the definition of
←→
R [�v] in Eq.(2.18) by 1 − 1

2 |�v|2, and then, normalize
the quaternion obtained by Eq.(2.23) every step. This modified algorithm
removes the danger of computing square root of a negative number at the
expense of increase of some additional operations. It can be shown that
the so modified FT algorithm is time-reversible, and the stability is no
less than original FT algorithm. Since the condition |�V | < 1 holds in usual
temperature, I have presented the simpler method in [13]. However, if there
is a danger of |�V | > 1 (i.e., in such cases that some particles may become
extremely high temperature), it may be better to employ this modified FT
algorithm to avoid computer crash.

The proof of the validity of this modification can be found in Ap-
pendix C.

30

Chapter 3

Making ice-Ih

3.1 Introduction

The purpose of this chapter is to describe the construction of the configura-
tions of ice-Ih (=configurations of hydrogen atoms), especially for the first
(bi)layer. The constructions of the layers below the first layer are given
in Appendix A. Although the main difficulties to determine configurations
of ice-Ih lie in determining the lower layers, the explanations given in this
chapter will be helpful to understand the method of my construction of the
algorithm.

There are already known some algorithms to generate initial configura-
tions of ice-Ih without dislocation [35–38]. These methods, roughly speak-
ing, give some examples of rectangle shaped configurations of hydrogen
atoms of the first and second layers that can be connected to each other
both horizontally, vertically, and ahead, by which we can make arbitrary
large configurations. (There are some modified method: In [35, 36], the
Monte Carlo method is employed.) Although the rectangle shaped config-
urations are random to some extent, the configurations given in the above
works have connectable properties. These methods are simple and easy to
use, however, it is difficult to make configurations of ices with dislocation
by these methods as they are. Since actual ices are considered to contain
dislocations and the dislocations will probably play important roles in sur-
face melting [7, 8], it is desirable to prepare an algorithm that can make

31

configurations of ices with dislocation. Therefore, I devised an versatile
algorithm to make configurations of ices with/without dislocation. The
construction method is not so difficult, but I could not find similar meth-
ods like mine. I give in this chapter and in Appendix A the construction
method of ice-Ih.

3.2 Basics

In this section, we recall some basics well-known on ice-Ih following [32,39].

3.2.1 Positions of the oxygen atoms

The basic structural features of ordinary hexagonal ice-Ih are well estab-
lished. Every oxygen atom is at the center of a tetrahedron formed by four
oxygen atoms each about 2.76 Å away. Every water molecule is hydrogen-
bonded to its four nearest neighbors: its O-H bonds are directed towards
lone-pairs of electrons on two of these neighbors, forming two O-H· · ·O
hydrogen bonds; in turn, each of its lone-pairs is directed towards an O-H
bond of one of the other neighbors, forming two O· · ·H-O hydrogen bonds.
It can be seen from Fig. 3.1 that the lattice consists of puckered layers
perpendicular to the c-crystal axis, containing hexagonal rings of water
molecules that have the conformation of the ‘chair’ form of cyclohexane.

3.2.2 Positions of the hydrogen atoms

The essential feature of ice model is that there is no long-range order in
the orientations of the H2O molecules or of the hydrogen bonds. The dis-
order in the three dimensional structure is shown in Fig. 3.1. There are
two possible hydrogen sites on each bond and four of these sites adjacent
to each oxygen. The disorder of the hydrogens over these sites satisfies the
two ice rules (Bernal-Fowler’s rule [15]), which are:

32

C

Figure 3.1: Structure of ice-Ih: Red spheres indicate oxygen atoms and small black ones
hydrogen atoms.

1. There are two hydrogens adjacent to each oxygen.
2. There is only one hydrogen per bond.

In the following, we consider an algorithm that determines the configu-
rations of ice-Ih randomly within the limits of the Bernal-Fowler’s rule.

3.3 Construction

3.3.1 The numbering of water molecules

In order to construct configurations of hydrogen atoms, we begin with
numbering each water molecule in an ice. We assign each water molecule
(or, equivalently, oxygen atom) three non-negative integers as shown in
Fig. 3.2. The third elements of the triplets of water molecules on the
top puckered horizontal (bi)layer are set to zero, and those of the k-th
horizontal layer are k − 1, i.e., the assigned triplets of water molecules are
of the form (, , k−1). The first and second elements of water molecules on
each layer are also determined as in Fig. 3.2. Figure. 3.3 indicates the first
and second values which helps us understand the way of the numbering.

33

(0,0,0)

(0,1,0)
(0,2,0)

(1,2,0)

(1,1,0)
(1,0,0)

(0,0,1)

(0,0,2)

(0,1,1)

(0,1,2)

(1,0,1)

(1,0,2)

(0,2,1)

(0,2,2)

(1,1,1)

(1,1,2)

(1,2,1)

(1,2,2)

X

Y

Z

Figure 3.2: The numbering of the water molecules: z-axis is parallel to the c-axis.

(0,3)
(0,2)

(0,1)

(0,4) (0,0)

(1,0)
(1,1)

(1,2)

(1,3)
(1,4)

Figure 3.3: The numbering of the first and second values of an ice as seen from z = −∞.

34

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(1) (2) (3) (4) (5) (6)

(P)

(Q)

(R)

(S)

Figure 3.4: Possible directions of hydrogen atoms for the four types of oxygen atoms seen
from z = −∞. Here, for example, for the case (1) of (S), one hydrogen atom is just below
the oxygen.

3.3.2 The specifications of the directions of water molecules

In ice-Ih, each oxygen atom is classified into four types with respect to the
possibility of direction of hydrogen atoms belonging to it. For example,
(1, 0, 0) water molecule and (0, 1, 0) water molecule have the same possi-
ble directions (here we ignore the configurations of the nearest four water
molecules). Figure 3.4 shows the possible directions of the four types of
oxygen atoms as seen from z = −∞ (top view). Some water molecules
seem to have only one hydrogen atom, say (1) of (P). The hidden hydro-
gen atom is just below the oxygen atom and thus we cannot see it from
above .

Let (m,n, l) be the triplet assigned to an oxygen atom. Then the four
figures (P), (Q), (R), and (S) in Fig. 3.4 correspond to the four types of
oxygen atoms in the following manner:
(P) gives the possible directions for l =even, m+ n=even,
(Q) gives the possible directions for l =even, m+ n=odd,
(R) gives the possible directions for l =odd, m+ n=even,
(S) gives the possible directions for l =odd, m+ n=odd,

35

respectively.
If a water molecule is assigned to (m,n, l), then we denote by rot(m,n, l)

the number of its direction determined by Fig. 3.4. For example, rot(1, 2, 3) =
2 means that the direction of the molecule assigned to (1,2,3) is given by
(2) of (S). Hereafter, we use rot(m,n, l) to indicate the directions of water
molecules via Fig. 3.4.

3.3.3 Construction of ice-Ih of the first layer (l = 0)

To construct the first layer of ice-Ih, we proceed as follows:
(1): Determine the positions of two hydrogen atoms belonging to the (0,0,0)
oxygen, that is to say, determine rot(0, 0, 0).
(2): Determine rot(0, n, 0) n ≥ 1 successively.
(3): Determine rot(m, 0, 0) m ≥ 1 successively.

Here we have determined all directions of water molecules on the x- and
y-axes (= on the wavy lines close to the x- and y-axes).
(4): ‘Determine rot(m,n, 0) successively for n ≥ 1’ successively for m ≥ 1.

Specifically, the construction above is carried out as follows:

(1): rot(0, 0, 0)

rot(0, 0, 0) = {1, 2, 3, 4, 5, 6}.
The above expression implies that we select a number from {1,2,3,4,5,6},
and define rot(0, 0, 0) by the selected number.

(2): rot(0, n, 0)
(2-1) If n=even; then

rot(0, n, 0) =

{
1, 2, 5 (rot(0, n− 1, 0) = 2, 4, 5)

3, 4, 6 (rot(0, n− 1, 0) = 1, 3, 6)

Here, this means that if rot(0, n− 1, 0) =2,4, or 5, then we determine
the direction rot(0, n, 0) by selecting a number from {1,2,5}. In
the following, we use the similar notation as this.

36

This and the followings are obtained by observing Fig. 3.2.
(2-2) If n=odd; then

rot(0, n, 0) =

{
2, 3, 5 (rot(0, n− 1, 0) = 2, 5, 6)

1, 4, 6 (rot(0, n− 1, 0) = 1, 3, 4)

(3): rot(m, 0, 0)
(3-1) If m=even; then

rot(m, 0, 0) = {1, 2, 3, 4, 5, 6}.
(3-2) If m=odd; then

rot(m, 0, 0) =

{
1, 2, 4 (rot(m− 1, 0, 0) = 1, 4, 5)

3, 5, 6 (rot(m− 1, 0, 0) = 2, 3, 6)

(4): rot(m,n, 0)
(4-1) If m+ n=even; then

rot(m,n, 0) =

{
3, 4, 6 (rot(m,n− 1, 0) = 1, 3, 6)

1, 2, 5 (rot(m,n− 1, 0) = 2, 4, 5)

(4-2) If m+ n=odd; then

rot(m,n, 0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6

{
rot(m− 1, n, 0)=2,3,6
rot(m,n− 1, 0)=1,3,4

3,5

{
rot(m− 1, n, 0)=2,3,6
rot(m,n− 1, 0)=2,5,6

1,4

{
rot(m− 1, n, 0)=1,4,5
rot(m,n− 1, 0)=1,3,4

2

{
rot(m− 1, n, 0)=1,4,5
rot(m,n− 1, 0)=2,5,6

37

In (4), we determine rot(m,n, 0) in the way as follows:

do m = 1, widthx

do n = 1, widthy

determine rot(m,n, 0)
end do

end do

where widthx and widthy are widths of ice of interest in x-direction and
y-direction, respectively. In this chapter and Appendix A, in constructing
the configurations of inner ice (namely, (m,n, l) m ≥ 1 or n ≥ 1), we
proceed as in the way as above: That is, we always determine rot(m,n, l)
for a given m in the direction parallel to the y-axis from n=1 to the widthy,
and m runs through from 1 to widthx.

The above conditions in (4-2) mean, for example, that if rot(m−1, n, 0)=2,3,6
and rot(m,n−1, 0)=1,3,4, then rot(m,n, 0)=6, and if rot(m−1, n, 0)=2,3,6
and rot(m,n− 1, 0)=2,5,6, then rot(m,n, 0)=3 or 5. In the later case, we
select a number from {3,5}.

We can now determine the first layer of ice-Ih. Figure 3.5 is the example
made by the method above.

For the layers below the first layer, I have summarized the method in
the Appendix A. It can be understood by observing Fig. 3.1.

38

Figure 3.5: The first layer of ice-Ih given by the method presented in this chapter.

39

40

Chapter 4

Simulations of QLL

4.1 Introduction

It is well known that the surface of ice melts below the bulk melting tem-
perature to form a quasi-liquid layer (QLL) [1] since it was first predicted
by Faraday [40]. The QLL of ice is considered to play very important roles
in many aspects, e.g., in the skating mechanics while neither pressure melt-
ing nor frictional heating can explain slipperiness [2] and in the acid snow
formation by dissolving acidic substances in the QLL [3]. Hence many ex-
perimental and theoretical studies have been carried out to investigate the
properties of the QLLs (e.g., [41–43]). Detailed theoretical studies of the
QLL using the molecular dynamics (MD) simulation method were reported
in the literature [4–6]. However, relatively small slab systems (the num-
bers of molecules are at most 2,130) under periodic boundary conditions
were used in those simulations. There should be phenomena that can be
observed only by large-scale simulation. For instance, it has been reported
recently through experiments that there are two different morphologies in
QLLs with super-micrometer scales on ice [7, 8], which cannot be repro-
duced by simulation with a small simulation box. The purpose of this
chapter is to seek possible dynamics in QLLs of ices through large-scale
MD simulation and investigate the properties of the QLLs.

In this chapter I perform the MD simulation runs of sub-micrometer-
scale ice-Ih in a vacuum at various temperatures to unveil the characteris-

41

1

268

219

z

2nd bilayer

0

x

y

z

1st bilayer

3rd bilayer

basal surface

2nd bilayer oxygen
hydrogen

6

Figure 4.1: Ice-Ih crystal in a hexagonal prism shape composed of 1,317,600 H2Omolecules
(61 bilayers × 21,600 molecules). The z-axis is perpendicular to the basal (0001) surface;
x and y denote the [101̄0] and [1̄21̄0] axes, respectively. We set z = 0 at the bottom of
the third bilayer from the outside. The radius of the virtual cylinder for analyses is 114
Å.

tics of the QLLs formed on a (0001) surface.

4.2 Method

4.2.1 System

The initial configuration of H2O molecules in the present simulation is
prepared as follows. We first set the O positions of the ice-Ih with a
hexagonal prism shape, as depicted in Fig. 4.1. Second, we determine
the H positions randomly following Bernal-Fowler rules [15] as stated in
Chapter 3, that is, there exists a single H per O-O bond and each O has
just two adjacent H’s, to realize a nearly zero macroscopic Coulomb dipole.
The z-axis is set perpendicular to the basal (0001) surface of the ice. The
present system is composed of 1,317,600 molecules.

42

4.2.2 Simulation program

We reduce the computation cost by regarding an H2O molecule as a rigid
body and by employing the TIP4P intermolecular interaction potential [9].
The bulk melting temperature Tm = 228 K [16] for the TIP4P potential
deviates considerably from the experimental value of 273 K; however, as
I stated in the previous chapter, the potential provides a qualitatively
correct description of the phase diagram of ice [18] and is also widely used
for simulations of the melting of ice, the nucleation of a droplet, and the
freezing of water [19,20]. We adopt the Fast Time-reversible algorithm [13]
for the time integration of the rotational motion of molecules and the
Velocity-Verlet algorithm for the calculation of translational motion.

I also installed the parallelized FMM program coded by Prof. Ogata [11]
on my simulation program by modifying slightly. As is well-known, the
Fast Multipole Method (FMM) was first established by Greengard and
Rokhlin [10]. FMM reduces the N-body problem to an order O(N). Mul-
tipole expansion represents potential energy by expansion with respect to
Legendre’s associated function. The expansions are in themselves known
before Greengard and Rokhlin, however, they introduced local expansions
induced by multipole expansion and summed up the coefficients of multi-
pole/local expansions for a given order in an ingenious manner to reduce
the calculation of the total potential energy caused by particles each other
farther than a (conveniently given) distance d to an order O(N). The force
acting on an atom is calculated by differentiating the potential energy with
respect to the position of the atom. The higher the order of multipoles,
the accuracy and the computation cost increase. The potential energy and
the force caused by near particles (within the given distance d) is calcu-
lated directly, which is obviously O(N). In this way, the N-body problem
is reduced to O(N).

In my simulation program, the maximum order of multipoles is set to
six and the Coulomb interactions are calculated directly between charged
points within at least 8.9 Å. The Lennard-Jones potential part in the
TIP4P is truncated continuously. The system is decomposed spatially

43

to 256, 512, or 1024 compute-nodes for parallel machines. The time step
is 4.0 fs and the Lennard-Jones potential part in the TIP4P is truncated
continuously at 7.9 Å. The system temperature is kept to a given value
by simply multiplying an appropriate number to both translational and
angular velocities every 1,000 steps.

4.3 Results

4.3.1 Settings

In the runs, the temperatures are controlled to T = 205, 215, and 227 K.
The temperatures correspond to Tm−23, Tm−13, and Tm−1 K; that is, the
reduced undercooling (T −Tm)/Tm = −10.0, −5.6, and −0.4%. Regarding
the depth of the QLL, no substantial differences exist between a variety of
potential models at the same reduced undercooling [44]. It suggests that
if we regard Tm − 1 K=272 K, it makes almost no difference. At each
temperature, the system is thermalized for more than 1.0 ns. After the
thermalization, the simulation runs are performed for 3.0, 4.0, and 5.0 ns
at 205, 215, and 227 K. We denote the final time as tfinal for all the runs.

I confirm that the QLL depths in the virtual cylindrical region, illus-
trated in Fig. 4.1, are almost stable after tfinal − 2.0 ns. Here, the depth is
measured using the tetrahedral order parameter qi for oxygen-i defined by

qi =

⎡
⎣1− 3

8

3∑
j=1

4∑
k=j+1

(
cos(θi,j,k) +

1

3

)2⎤⎦ ,
where i, j, and k are indices for the O atoms. The angle θi,j,k is formed
by two of the four nearest O atoms O-j and O-k of O-i. This parameter
is defined so that it is unity when four nearest-neighbor O’s of the O-
i form a regular tetrahedron [44, 45]. Each water molecule is regarded
as icelike if q > 0.91, as was done in Fig. 1 of [44]. In the literature,
M. M. Conde et al. investigated the thickness of QLLs and discussed on
the parameter q to show that the parameter works well to classify water

44

molecules as being either icelike or liquidlike. I got in my simulation that
the depths at 205, 215, and 227 K measured by the parameter are 4.8,
6.3, and 9.4 Å, respectively. They agree reasonably well with the results
shown in Fig. 7 of [44]. I do not use the total energy to judge whether the
simulation period is sufficient for analyses because the edges of the present
ice continue melting for a longer period, as observed in [45]. (Hexagonal
ice with 9600 water molecules at 215 K continued melting for about 30 ns.)
I note that the numbers of molecules in the virtual cylindrical region (see
Fig. 1) remain almost unchanged throughout the runs and the thicknesses
are almost the same as above after tfinal-2.0 ns.

4.3.2 Bumpiness of QLL

Figure 4.2 depicts the top views of QLLs formed on the (0001) surface of
the ice at tfinal at (a) 205, (b) 215, and (c) 227 K. The molecules are colored
according to the z-positions, where z = 0 corresponds to the bottom of the
third bilayer (see Fig. 4.1). We find in Fig. 4.2 that the QLLs in all the
runs are bumpy, that is, composed of bumps and trenches, and that both
the vertical and horizontal sizes of the bumps (i.e., red regions around the
center) increase significantly with the rise of temperature. The average
heights of the liquid bumps reach ∼ 9, ∼ 10, and ∼ 12 Å at 205, 215,
and 227 K, respectively. The prism surfaces, which we do not discuss here,
are also bumpy. Figures 2(d) and 2(e) depict the time evolution of liquid
bumps at 227 K at (d) 5.0 and (e) 4.5 ns. We therein find that the locations
of liquid bumps change significantly after 0.5 ns. Similar time evolutions
of the liquid bumps are also observed at 205 and 215 K. The behaviors of
bumps and trenches are almost stable for time t > tfinal − 2.0 ns.

4.3.3 Features of the bumpy QLL

We now investigate the z-dependences of the structure and dynamics of the
QLLs. To this end, we define a virtual slice S(z) with its center located
at z = {−5,−4, · · · , 15 Å} as depicted in Fig. 4.1. Figures 4.3(a), 4.3(c),
and 4.3(e) show the normalized densities of the molecules in S(z) at all the

45

(d)

12 8 0

(a) 205 K

< 2_

z () (c) 227K

(e)

(b) 215 K 5.0 ns

4.5 ns

Figure 4.2: x− y views of (0001) surfaces of the ice at time tfinal at 205, 215, and 227 K,
and the time evolution of the surface at 227 K. The molecules are colored according to
the z-positions.

46

10
 8
 6
 4
 2
 0

2

-5 0 5 10 -5 0 5 10 -5 0 5 10

N
or

m
al

iz
ed

de

ns
ity

 0

 1

Figure 4.3: Normalized densities of H2O molecules in the virtual slices of the ice (see
Fig. 1) at (a) 205, (c) 215, and (e) at 227 K. Mean-squared displacements (Eq. 1) of O’s
during 0.1 ns in the virtual slices at (b) 205, (d) 215, and (f) at 227 K. The inequality
Dxy � Dz holds in the green-hatched z-range; Dxy ≈ Dz in the red-hatched z-range.

temperatures. Since the density assumes distinct minima at z = 6.0, 2.0,
and −1.5 Å at all three temperatures, we decompose the QLL into the fol-
lowing three z-regions: QLL6.0 Å<z, QLL2.0<z<6.0 Å, and QLL−1.5 Å<z<2.0 Å,
which correspond respectively to the first, second, and third bilayers of the
original ice. We call the regions QLL because they are melted locally, at
least, as we will see below.

Figures 4.3(b), 4.3(d), and 4.3(f) show the the mean-squared displace-
ments (MSDs) of O’s in S(z) during 0.1 ns defined as

Dα(z) ≡ 1

2

〈
(Oi,α(t+ 0.1ns)−Oi,α(t))

2
〉
,

where Oi,α(t) ∈ S(z), α = {x, y, z}
Dxy(z) ≡ 1

2
(Dx(z) +Dy(z)) , (4.1)

Dxyz(z) ≡ 1

3
(Dx(z) +Dy(z) +Dz(z)) ,

where Oi,α(t) is the position of O-i at time t in the α-coordinate. The aver-

47

50

227

z
=

2~
6

215

z
>

 6

50

z=
 2

~
6

227 K 215 K
(c)

(d)

(a)

(b)

Figure 4.4: x-y views of molecules in QLL
6.0 Å<z

and QLL
2.0 Å<z<6.0 Å

at time tfinal: (a)

and (b) at 227 K; (c) and (d) at 215 K. In (b) and (d), each molecule is colored red if its
displacement from tfinal − 0.5 ns to tfinal is larger than 2.8 Å, and blue otherwise.

age 〈. . .〉 in Eq. (4.1) is taken over all O(t)’s in S(z), where t runs through
[tfinal−0.6 ns, tfinal−0.1 ns] with an interval of 8.0 ps. In Fig. 4.3, we confirm
that the molecules in QLL6.0 Å<z melt at all the temperatures. Dxy � Dz

holds for QLL6.0 Å<z at all the temperatures, which is a reflection of the
bumpy nature. At 227 K, we find that the molecules in QLL2.0 Å<z<6.0 Å are
in the liquid phase and satisfy Dxy ≈ Dz [see Fig. 3(f)]. Ikeda-Fukazawa
and Kawamura reported that the MSDs in the QLL satisfy Dc > Da and
Dc > Db (where a, b, and c denote the [112̄0], [101̄0], and [0001] axes,
respectively) [4], which contradicts the present results. I consider that
their simulation box was so small that the molecular motion in the a- and
b-directions was inhibited artificially.

48

4.3.4 Relationship between QLL2.0 Å<z<6.0 Å and QLL6.0 Å<z

Figure 4.4 shows a comparison of the x-y configurations of molecules in
QLL2.0 Å<z<6.0 Å and in QLL6.0 Å<z at 227 and 215 K. Here, each molecule
in Figs. 4.4(b) and 4.4(d) is colored red if its displacement during 0.5 ns
exceeds 2.8 Å (≈ the O-O distance in water) and blue otherwise. We
regard such red molecules as assuming the liquid phase. In Figs. 4.4(a)
and 4.4(c), we observe the liquid bumps and trenches of the QLLs. As seen
in Fig. 4.4(b), the molecules in QLL2.0 Å<z<6.0 Å (i.e., the second bilayer)
melt completely to form a liquid sheet at 227 K. At 205 and 215 K, on
the other hand, the molecules in this region are partly melted, as seen in
Fig. 4.4(d) for 215 K. In QLL−1.5 Å<z<2.0 Å (i.e., the third bilayer), nearly
complete crystalline structures are seen at 205 and 215 K, while partially
melted areas are seen at 227 K.

As seen in Figs. 4.4(a) and 4.4(b), the trenches (or hollows) in QLL6.0 Å<z

do not affect the molecular structures in QLL2.0 Å<z<6.0 Å at 227 K. At
215 K, on the other hand, we find in Figs. 4.4(c) and 4.4(d) that the melted
areas in QLL2.0 Å<z<6.0 Å nearly coincide with the locations of trenches in
QLL6.0 Å<z. This coincidence is confirmed through detailed investigations
of several configurations of molecules at either 205 or 215 K. Since the
horizontal locations of the trenches in QLL6.0 Å<z change over time, the
tendency suggests that the melted area of the second bilayer should re-
crystallize when it is covered with the liquid bumps.

4.3.5 Recrystallization

Let me confirm the mechanism through the time evolution of the molec-
ular snapshots at 215 K in QLL6.0 Å<z and QLL2.0 Å<z<6.0 Å, as depicted
in Fig. 4.5. I specify four x-y regions with relatively high molecular den-
sities in Fig. 4.5(i) by ellipses 1-4. In the bottom panels of Fig. 4.5, a
molecule is colored red if it resides initially in the first bilayer, while it is
blue otherwise. We see in Figs. 4.5(b), 4.5(d), 4.5(f), 4.5(h), and 4.5(j)
that the percentage of crystalline molecules coming from the first bilayer
increases monotonically over time. We also find a substantial correlation

49

50

(c)

(g)

(i)

(e)

z > 6

(a)

1

2
3

4

(f)

(h)

(d)

(j)

z= 2~6

(b)

Figure 4.5: x-y views of molecules at 215 K. (a), (c), (e), (g), and (i) correspond respec-
tively to tfinal−2.0 ns, tfinal−1.5 ns, tfinal−1.0 ns, tfinal−0.5 ns, and tfinal in QLL

6.0 Å<z
; (b),

(d), (f), (h), and (j) corresponding to the same times in QLL
2.0 Å<z<6.0 Å

. The molecules

in (b), (d), (f), (h), and (j) are colored red if they come from the first bilayer of the
original ice, and are blue otherwise. Ellipses are placed in the x-y regions with relatively
high molecular densities in (i).

50

between the locations of the liquid bumps in QLL6.0 Å<z and those of re-
crystallization in QLL2.0 Å<z<6.0 Å. To see this, let me observe the molecules
in region1 in Fig. 4.5(i). The molecules under them [see region1 in Fig.
4.5(j)] have crystalline order. They are in disorder in Figs. 4.5(d) and
4.5(f) and slightly disordered in Fig. 4.5(h). We find hollows in region1
in Figs. 4.5(c) and 4.5(e). I therefore state that the molecules in region1
in QLL2.0 Å<z<6.0 Å recrystallize when they are covered with molecules of
QLL6.0 Å<z. A similar statement applies to regions2 and 3. In region4, the
molecules maintain the crystalline order in QLL2.0 Å<z<6.0 Å [Figs. 4.5(b)-
4.5(j)]. I consider that they do not fall into disorder because the molecules
in region4 in QLL6.0 Å<z have a high density throughout the simulation run
[except for Fig. 4.5(e), where there is a small hole]. Putting these results
and those shown in the preceding paragraphs (the locations of trenches
change; the molecules under the trenches melt; the total number of melted
molecules is almost stable) together, we conclude that a local area in the
second bilayer melts easily when the trenches move on it and that the
melted area recrystallizes when the liquid bumps cover it. It is observed
that a larger disordered area appears to require a longer time to recrys-
tallize under the liquid bumps. I will investigate the relation in future
work.

Let me consider the possibility that the molecules in a liquid bump
diffuse collectively. From Fig. 4.3, the MSD of molecules in xy-directions
during 0.1 ns is 10 Å2 at most, which implies the squared migration length
of a molecule in xy-directions during 0.1 ns is less than 4×10 = 40 Å2 (here
the multiplier 4 comes from the definition of Dxy in Eq. 4.1). Thus the
migration length is less than

√
40 ≈ 6.3 Å. Therefore a molecule moves in

xy-directions during 0.5 ns by 6.3×√0.5/0.1 ≈ 14Å at most. On the other
hand, we find in Figs. 4.2(d) and 4.2(e) that the typical migration distances
of liquid bumps (if they move in one united body) are much larger than
14 Å. Moreover, it is confirmed through x-z views of the virtual cut surfaces
that the molecules in the liquid bumps, trenches, and QLL2.0 Å<z<6.0 Å mix
at both 205 and 227 K. Fig. 4.6 illustrates the side views of water molecules
around the center of the ice at 227 K. I therefore state that the molecules

51

z=0
z=6

(a) 4.0 ns

(b) 4.1 ns

(c) 4.4 ns

20

Figure 4.6: The side views of water molecules in QLL
6.0 Å<z

and QLL
2.0 Å<z<6.0 Å

around
the center of the ice with no defects at 227 K. Those molecules located in a given horizontal
span at 4.0 ns are colored red for molecules in QLL

6.0 Å<z
or green for QLL

2.0 Å<z<6.0 Å
.

(a) at 4.0 ns, (b) at 4.1 ns, and (c) at 4.4 ns.

52

in a liquid bump do not diffuse collectively. The liquid bumps repeatedly
form and break in a random manner at variety of places.

I have explained in a preceding paragraph that the liquid bumps and
liquid sheet at 227 K differ in molecular diffusivity. In addition, I give here
for reference the roughly estimated averages of O-O distances. They are
about 2.82 Å for the liquid bumps and 2.80 Å for the liquid sheet. The
O-O distance is 2.78 Å (2.81 Å) for ice-Ih at 227 K (bulk water at 230
K) at zero pressure in my simulation. Note that, though the distance in
the ice is shorter than that in water, the ice density is less than the water
density because of the orientation ordering of molecules. We find that
the intermolecular distance in the liquid sheet has an intermediate value
between those in the ice and water, and that the distance in the liquid
bumps is larger than that in water.

I comment that the liquid bumps and liquid sheet at 227 K are re-
spectively similar to the α- and β-phases of the QLL found on the (0001)
surface in recent experiments [7, 8] of the hundreds of micrometer-scale
ice. Hemispherical α-QLLs with a micrometer size emerges at a relatively
wide range of temperatures, and a flat β-QLL appears under the α-QLL
at temperatures slightly below the melting point. As explained above, the
present simulation of the sub-micrometer-scale ice has demonstrated that
a liquid sheet appears under the liquid bumps on the (0001) surface when
the temperature is raised to just 1 K below the melting point. Although
the liquid bumps are not round and their heights are as small as 10 Å (see
Fig. 4.2), there may be some connections between the liquid bumps and
the α-QLL and between the liquid sheet and the β-QLL.

4.3.6 Ices with screw dislocations

I have performed simulation runs for ices each with a screw dislocation for
3.0, 4.0, and 5.0 ns at 205, 215, and 227 K, respectively, similar to the ices
with no defects explained in §4.2. Although α-QLLs always appeared from
the outcrops of the screw dislocations in the experiments [7, 8], I cannot
find a significant relationship between the screw dislocation and bumps

53

q
1.0

0.8

0.9

q
1.0

0.9

0.8< 0.8_

Figure 4.7: The cut view of the ice at 227 K with the screw dislocation line located on the
cut plane. The water molecules are colored according to the tetrahedral order parameter
q.

in the runs. In the following I mention mainly the simulation results at
227 K. Figure 4.7 shows a cut view of the ice with the dislocation line
located on the cut plane. The water molecules are colored according to
the tetrahedral order parameter q [18]. The differences I find between such
views of the ices with and without dislocation at 227 K are summarized
below (similar differences are observed with lesser extents at 205 K and
215 K):

(1) The QLL near the outcrop of the dislocation is thicker compared to
that at other places. However the influence of the dislocation is limited
within a radius of 25 Å from the outcrop of the dislocation on the basal
surface.

(2) The ices around the dislocation line melt partly. However it is limited
within a radius of 15 Å from the dislocation line.

(3) The QLL is thicker (by 2 times at most) near the steps of the screw
dislocation on the basal surface.

A possible reason for the qualitative differences with respect to the ef-
fects of the screw dislocation on the formation of QLL between the present

54

results and experimental observations [7, 8] is the following. The present
ice is put in a vacuum while the ice in the experiment is put in a super-
saturated water vapor environment. The QLL in the experiment might
form by vapor deposition. Another possible reason is that the present ice
with a screw dislocation is much smaller than the experimental one. The
concentration of external stress, that is inevitable in experiments, around
the dislocation line might be significant, resulting in spouting of melted
water formed around the dislocation line.

4.4 Conclusions

To summarize, I have performed the MD simulation of a sub-micrometer-
scale ice-Ih crystal with no defects for 3.0, 4.0, and 5.0 ns at 205, 215,
and 227 K (= −10.0, −5.6, and −0.4% lower than Tm) by employing the
TIP4P potential. I thereby found the following:
(i) At all the temperatures, the QLLs formed on the (0001) surface are
bumpy and the liquid bumps repeatedly form and break in a random man-
ner at a variety of places on the second bilayer. The average height of
the liquid bumps increases as the temperature is raised: ∼ 9 Å at 205 K,
∼ 10 Å at 215 K, and ∼ 12 Å at 227 K. The diffusivity of molecules in
the liquid bumps is much larger along the xy-directions than along the
z-direction.
(ii) At 205 and 215 K, the local areas of the second bilayer of ice under
the trenches (i.e., thin QLL areas) fluctuate to melt easily. Following the
change in the locations of the liquid bumps over time, the melted areas
newly covered by the liquid bumps tend to recrystallize. The third bilayer
preserves the crystalline structure.
(iii) The melted areas of the second bilayer become wider with increasing
temperature, and the second bilayer becomes a liquid sheet at 227 K. The
liquid bumps sit on the liquid sheet.
(iv) At 227 K, the diffusivity of molecules in the liquid sheet becomes
isotropic. The melted areas of the third bilayer are uncorrelated with the
locations of the liquid bumps. The fourth bilayer preserves the crystalline

55

structure.
I could not find experimental results corresponding to (ii) above. How-

ever, I think that the recrystallization in the inner bilayer under the QLL
will make environmental hydrophilic substances dissolve to be incorporated
substantially in the bilayer even if the QLL is thin, and that a fine mea-
surement about such environmental adsorption will probably confirm the
recrystallization.

I have also performed simulation for an ice with a screw dislocation.
Influence of the screw dislocation on the melting and formation of QLL
has been limited to a nearby region around the dislocation line as follows:
(v) The QLL near the outcrop of the dislocation is thicker compared to
that at other places. However the influence of the dislocation is limited
within a radius of 25 Å from the outcrop of the dislocation on the basal
surface.
(vi) The ices around the dislocation line melt partly. However it is limited
within a radius of 15 Å from the dislocation line.
(vii) The QLL is thicker (by 2 times at most) near the steps of the screw
dislocation on the basal surface.

Note

The simulations above have been performed by several super computers,
especially by PRIMERGY at Research Center for Computational Science
(Okazaki). The total computation time required was more than 2400 hours
with 16 nodes.

56

Chapter 5

Summary

In this thesis, I have presented the first time-reversible (FT) algorithms and
performed large-scale molecular dynamic simulation of quasi-liquid layers
of ices-Ih with or without dislocation. In order to perform the simulation,
I have devised a parallelized rigid body molecular dynamics computer code
adopting one of the FT algorithms for the time-integration of the rotational
motion. Employing this code, I have performed large-scale simulation of
quasi-liquid layers of ices-Ih with or without dislocation, each put in a
vacuum box by using several supercomputers. In addition, I have also
presented an algorithm for making configurations of ices Ih, which can be
used for making ices with dislocation as well.

Let me summarize the results obtained in this thesis as follows:

I. I have proposed novel time-reversible algorithms for rotational motion,
the Fast Time-Reversible (FT) algorithms. They are time-reversible
and perhaps the simplest (fastest) numerical algorithm for rotational
motion.

II. I have shown an algorithm to make configurations of ice-Ih. It makes
configurations of water molecules in ice randomly within the limits of
Bernal-Fowler’s rule, and can be used to make ice even with disloca-
tion.

57

III. As an application of the FT algorithm, I have devised a parallelized
rigid body molecular dynamics computer code using MPI libraries,
adopting the FT algorithm and fast multipole method (FMM) for
the time-integration of the rotational motion and computation of the
Coulomb forces. I regard a water molecule as a rigid body, and employ
the TIP4P intermolecular interaction potential with an established
reputation.

IV. Employing this code, I have performed large-scale simulation of quasi-
liquid layers (liquidlike layers on the surface of ices at temperatures
below the bulk melting point: QLLs) of ices-Ih (without dislocation
and with screw dislocation) each put in a vacuum box by using sev-
eral supercomputers. The largest dimension of the ices used in our
simulation is 0.06 micrometer. Simulations have been performed at
three temperatures Tm − 23, Tm − 13, and Tm − 1 K for ices without
dislocation and with screw dislocation, where Tm is the melting point
of the TIP4P bulk-ice. In ices with screw dislocation, the disloca-
tion line is parallel to z-axis and the magnitude of the Burgers vector
is about 7.4 Å. As results of our simulation, I have found the following:

◦ Ice without dislocation:

(a) The QLLs are bumpy with the bump heights as large as a few
inter-bilayer distances of ice (9 to 12 Å), and the widths of trenches
reach 100Å. The liquid bumps fluctuate to form and break at a
variety of places in a random manner.

(b) At relatively lower temperatures, the molecules in the second bi-
layer from the outside are partly melted. The ice molecules in
the second bilayer melt easily when they are located under the
trenches surrounding the liquid bumps. Furthermore, by the
change of the locations of liquid bumps over time, the melted
areas newly covered by thick bumps recrystallize.

(c) At a temperature slightly below the melting point, the second

58

bilayer under the liquid bumps melts entirely to form a liquid
sheet.

(d) Microscopic properties (i.e., mean squared displacement and O-
O distance) of the liquid bumps differ from that of the liquid sheet.

◦ Ices with screw dislocation:

(e) The properties of QLL are almost the same as those of ices without
dislocation. Influence of the screw dislocation on the melting and
formation of QLL has been limited to a nearby region around the
dislocation line. Though α-QLL with a hemispherical shape al-
ways appeared from the outcrops of the screw dislocations in the
experiments [7], I could not have found a relationship between
the sites of the screw dislocation and those of the bumps in the
simulation. A possible reason for the qualitative differences with
respect to the effects of the screw dislocation on the formation
of QLL between the present results and experimental observa-
tions [7, 8] is the following. The present ice is put in a vacuum
while the ice in the experiment is put in a supersaturated water
vapor environment. The QLL in the experiment might form by
vapor deposition. Another possible reason is that the present ice
with a screw dislocation is much smaller than the experimental
one. The concentration of external stress, that is inevitable in
experiments, around the dislocation line might be significant, re-
sulting in spouting of melted water formed around the dislocation
line.

The present results (a) and (b) will offer a novel picture of surface melt-
ing of sub-micrometer-scale ice, and indicate that the recrystallization will
make environmental hydrophilic (acidic) substances dissolve to be incor-
porated substantially in the layer even if the QLL is thin.

In addition to the results above, I mention some other results obtained
by simple observations and make some comments. In the cases where

59

T = Tm − 23 and T = Tm − 13 K, the third bilayer preserves crystalline
structure. In the case where Tm-1 K, it is partly melted and I could not
find any relations between the partly melted regions of the third bilayer
and the locations of the trenches (Here the second layer is a liquid sheet).
However, it is likely that there exist some relations between them. In the
future work, I will investigate the relations between trenches and the third
bilayer in detail. I will challenge to perform simulation in future work to
evaluate the absorption caused by recrystallization. The results will help
us to understand the formation of acid snow.

60

Appendix A

Making ices Ih under the first layer

We have shown the method to determine the directions of the water molecules
of the first layer (i.e., rot(m,n, 0)) in Chapter 3. In this appendix, I give
a method to determine those of the molecules under the first layer. I give
only a few explanations for the method, since it can be obtained only by
observing Fig. 3.2 with a brute force method.

A.1 Determine rot(m, 0, l) and rot(0, n, l)

In this section, we determine the directions of water molecules on two ver-
tical sides of the form (m, 0, l) and (0, n, l) where m and n are non-negative
integers and l ≥ 1. First of all, we determine the directions of molecules
on the intersection of the two sides, i.e., rot(0, 0, l). It is determined suc-
cessively as follows:

A.1.1 rot(0, 0, l)

(1) If l=even, then

rot(0, 0, l) = {1, 2, 3, 4, 5, 6}.
61

(2) If l=odd, then

rot(0, 0, l) =

{
4, 5, 6 (rot(0, 0, l − 1) = 1, 2, 3)

1, 2, 3 (rot(0, 0, l − 1) = 4, 5, 6).

As in Chapter 3, The expression above means that if rot(0, 0, l− 1) =1, 2,
or 3, we can take rot(0, 0, l) in {4, 5, 6}, and so on.

A.1.2 rot(0, n, l)

Here and in A.1.3, we determine the directions of the two sides. We define
rot(0, n, l) successively as follows:

do l = 1, widthz

do n = 1, widthy

determine rot(0, n, l)

end do

end do

where the rot(0, n, l)’s are determined by the following conditions:

(1) If n=even and l=even, then

rot(0, n, l) =

{
3, 4, 6 (rot(0, n− 1, l − 1) = 1, 3, 6)

1, 2, 5 (rot(0, n− 1, l − 1) = 2, 4, 5).

(2) If n=even and l=odd, then

rot(0, n, l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

{
rot(0, n− 1, l)=1,3,6
rot(0, n, l − 1)=4,5,6

1,2

{
rot(0, n− 1, l)=2,4,5
rot(0, n, l − 1)=4,5,6

4,6

{
rot(0, n− 1, l)=1,3,6
rot(0, n, l − 1)=1,2,3

5

{
rot(0, n− 1, l)=2,4,5
rot(0, n, l − 1)=1,2,3

62

(3) If n=odd and l=even, then

rot(0, n, l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

{
rot(0, n− 1, l)=1,3,4
rot(0, n, l − 1)=4,5,6

4,6

{
rot(0, n− 1, l)=1,3,4
rot(0, n, l − 1)=1,2,3

2,3

{
rot(0, n− 1, l)=2,5,6
rot(0, n, l − 1)=4,5,6

5

{
rot(0, n− 1, l)=2,5,6
rot(0, n, l − 1)=1,2,3

(4) If n=odd and l=odd, then

rot(0, n, l) =

{
1, 4, 6 (rot(0, n− 1, l − 1) = 1, 3, 4)

2, 3, 5 (rot(0, n− 1, l − 1) = 2, 5, 6).

A.1.3 rot(m, 0, l)

We define rot(m, 0, l) successively as follows:

do l = 1, widthz

do m = 1, widthx

determine rot(m, 0, l)

end do

end do

where the rot(m, 0, l)’s are determined by the following conditions:

(1) If m=even and l=even, then

rot(m, 0, l) = {1, 2, 3, 4, 5, 6}.
(2) If m=even and l=odd, then

rot(m, 0, l) =

{
4, 5, 6 (rot(m, 0, l − 1) = 1, 2, 3)

1, 2, 3 (rot(m, 0, l − 1) = 4, 5, 6).

63

(3) If m=odd and l=even, then

rot(m, 0, l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

{
rot(m− 1, 0, l)=2,3,6
rot(m, 0, l − 1)=4,5,6

1,2

{
rot(m− 1, 0, l)=1,4,5
rot(m, 0, l − 1)=4,5,6

5,6

{
rot(m− 1, 0, l)=2,3,6
rot(m, 0, l − 1)=1,2,3

4

{
rot(m− 1, 0, l)=1,4,5
rot(m, 0, l − 1)=1,2,3

(4) If m=odd and l=odd, then

rot(m, 0, l) =

{
3, 5, 6 (rot(m− 1, 0, l) = 3, 2, 6)

1, 2, 4 (rot(m− 1, 0, l) = 1, 4, 5).

A.2 Determine rot(m,n, l) with l=odd

So far, we have determined the first layer and the vertical two sides of an
ice. Next we determine the directions of water molecules layer by layer
under the condition that rot(m, 0, l), rot(0, n, l), and rot(m,n, l − 1) have
been already determined. (They have been determined in the previously.)
In this section, we determine rot(m,n, l) for the case where l=odd. It is
not so difficult compared with the case where l=even (l ≥ 2), which will
be treated in the next section.
We proceed as

do m = 1, widthx

do n = 1, widthy

determine rot(m,n, l)

end do

end do

as before, where the rot(m,n, l)’s are determined by the following con-

64

ditions (we consider l is fixed):

(1) If m+ n=even, then

rot(m,n, l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

{
rot(m,n− 1, l)=1,3,6
rot(m,n, l − 1)=4,5,6

1,2

{
rot(m,n− 1, l)=2,4,5
rot(m,n, l − 1)=4,5,6

5

{
rot(m,n− 1, l)=2,4,5
rot(m,n, l − 1)=1,2,3

4,6

{
rot(m,n− 1, l)=1,3,6
rot(m,n, l − 1)=1,2,3

(2) If m+ n=odd, then

rot(m,n, l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6

{
rot(m− 1, n, l)=2,3,6
rot(m,n− 1, l)=1,3,4

3,5

{
rot(m− 1, n, l)=2,3,6
rot(m,n− 1, l)=2,5,6

2

{
rot(m− 1, n, l)=1,4,5
rot(m,n− 1, l)=2,5,6

1,4

{
rot(m− 1, n, l)=1,4,5
rot(m,n− 1, l)=1,3,4

A.3 Determine rot(m,n, l) with l=even

In this section, we determine rot(m,n, l) for the case where l=even under
the condition that rot(m, 0, l), rot(0, n, l), and rot(m,n, l − 1) have been
already determined.

65

A.3.1 (1) m+ n=odd

The case m+ n=odd is not difficult. It is given by the following:

rot(m,n, l)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

{
rot(m− 1, n, l)=2,3,6
rot(m,n, l − 1)=4,5,6

5

⎧⎨
⎩
rot(m− 1, n, l)=2,3,6
rot(m,n, l − 1)=1,2,3
rot(m,n− 1, l)=2,5,6

6

⎧⎨
⎩
rot(m− 1, n, l)=2,3,6
rot(m,n, l − 1)=1,2,3
rot(m,n− 1, l)=1,3,4

4

{
rot(m− 1, n, l)=1,4,5
rot(m,n, l − 1)=1,2,3

1

⎧⎨
⎩
rot(m− 1, n, l)=1,4,5
rot(m,n, l − 1)=4,5,6
rot(m,n− 1, l)=1,3,4

2

⎧⎨
⎩
rot(m− 1, n, l)=1,4,5
rot(m,n, l − 1)=4,5,6
rot(m,n− 1, l)=2,5,6

A.3.2 (2) m+ n=even

The case m+n=even is a little troublesome. Thus far, we could determine
the directions successively. However, in the case where m + n=even, we
must take into account some additional conditions. Roughly speaking, if
we proceed as in the way described before, there can occur the situation
that we cannot determine the direction. To see this, let us see Fig. A.1.
Suppose that there occurred the situation as shown in Fig. A.1(a). Then,
if we determine the direction of (1,1,2) water molecule as in Fig. A.1(b),
we cannot determine the direction of the (1,2,2) water molecule. We could
fortunately determine the directions successively so far, it was because that
whatever direction of each molecule in the possible options we chose, there

66

(0,0,0)

(0,1,0)
(0,2,0)

(1,2,0)

(1,1,0)
(1,0,0)

(0,0,1)

(0,0,2)

(0,1,1)

(0,1,2)

(1,0,1)

(1,0,2)

(0,2,1)

(0,2,2)

(1,1,1)

(1,1,2)

(1,2,1)

(1,2,2)

X

Y

Z (0,0,0)

(0,1,0)
(0,2,0)

(1,2,0)

(1,1,0)
(1,0,0)

(0,0,1)

(0,0,2)

(0,1,1)

(0,1,2)

(1,0,1)

(1,0,2)

(0,2,1)

(0,2,2)

(1,1,1)

(1,1,2)

(1,2,1)

(1,2,2)

X

Y

Z

(a) (b)

Figure A.1: The difficulties to determine the directions of water molecules for the case
l=even and m+ n=even.

was a possibility to choose direction of the next molecule.

To avoid such inextricable maze, we have to take into account of the
directions of the nearest neighbor molecules of the molecule which will be
determined in the next step. We proceed as follows:

(2) If m+ n=even, then we consider the following two conditions:
(A) rot(m,n+ 1, l − 1)={4,5,6} and rot(m− 1, n+ 1, l − 1)={1,2,3}
(B) rot(m,n+ 1, l − 1)={1,2,3} and rot(m− 1, n+ 1, l − 1)={4,5,6}.

I. If (A) is satisfied, then

rot(m,n, l) =

{
2, 5 if rot(m,n− 1, l) = 2, 4, 5

6 if rot(m,n− 1, l) = 1, 3, 6.

67

Figure A.2: Snapshot of ice with screw dislocation seen from above. Colored with respect
to its height.

Figure A.3: Sliced (contain almost two layers) enlarged snapshot of ice with edge dis-
location. (The simulation results of ices with edge dislocation are not presented in this
thesis.)

68

II. If (B) is satisfied, then

rot(m,n, l) =

{
1 if rot(m,n− 1, l) = 2, 4, 5

3, 4 if rot(m,n− 1, l) = 1, 3, 6.

III. Otherwise,

rot(m,n, l) =

{
1, 2, 5 if rot(m,n− 1, l) = 2, 4, 5

3, 4, 6 if rot(m,n− 1, l) = 1, 3, 6.

The above are the list of conditions necessary to make configurations of
ice-Ih. In choosing numbers, we use a random generator.

Here I comment the way to generate ices with screw dislocation. They
can be obtained by sticking two rectangular horizontally, and stacking the
layers. The rectangles are made so that the half of their edges fit with
the neighbor rectangles, and the left half edge fit with lower (or upper)
rectangles. The method explained above can be applied to make such
layers easily. Also for the case of edge dislocation, we can proceed similarly.
Figures A.2 and A.3 present the snapshots of the ices with screw dislocation
and with edge dislocation made by the present method.

69

70

Appendix B

Quaternion and its application

The notion of quaternions was first announced by William Hamilton and
has been used to describe rotation of points in three dimensional spaces.
The original definition of quaternion together with its multiplication is not
presented in most of the books on dynamics except for some large books,
however, the use of quaternion in that sense has an advantage that we can
treat linear transformations as numbers. Therefore we recall some notion
of quaternion and reconsider some results obtained in the previous chapters
from the viewpoint of quaternion. The basic facts on quaternion can be
found in standard textbooks on algebra such as [46].

B.1 Quaternion

B.1.1 Definition

We consider the four dimensional vector space over the real numbers spanned
by four linearly independent basis {1,i, j, k}. The four basis commutes with
real numbers and the multiplications of the basis are given as follows:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (B.1)

We call each element of the space as quaternion together with its multi-
plication. In this appendix, we understand that quaternions are combined
with the multiplication.

71

Quaternions are written as q = q0 + q1i + q2j + q3k where q0, q1, q2,
and q3 are real numbers. We define the conjugate of a quaternion q =
q0 + q1i+ q2j + q3k by

q = q0 − q1i− q2j − q3k. (B.2)

Then qq = q20 + q21 + q22 + q23 is a non-negative real number and we define
the norm of q by

N(q) =
√
qq =
√
q20 + q21 + q22 + q23. (B.3)

It is easy to see that
N(qr) = N(q)N(r) (B.4)

and
qr = r q, (B.5)

for any quaternions q and r, and N(q) = 0 holds if and only if q = 0.
Therefore, for q �= 0 the inverse of q exists and is given by

q−1 =
q

N(q)2
, (B.6)

which implies that we can carry out divisions by every quaternion other
than 0 (i.e., quaternions form a field). Here note that q = N(q)2q−1 and the
conjugate of a unit quaternion (N(q) = 1) is equal to its inverse (q = q−1).

B.1.2 Rotation

We identify a point P = (xP , yP , zP) of the three dimensional Euclidean
space E3 with a quaternion qP through

qP = xP i+ yP j + zPk. (B.7)

Note that qP = −qP .
Let us consder the mapping

qP −→ qqP q
−1 (= qqP q

1

N(q)2
). (B.8)

72

The real part of qqP q is equal to 0 since qqP q = q qP q = −qqP q (by
Eq.(B.5)), and so qqP q

−1 is identified with a point in E3 through Eq.(B.7).

Thus we can see that qP −→ qqP q
−1 is a mapping from E3 to E3 and it is

easy to see that the mapping is a linear transformation which is represented
by

1

N(q)2

⎛
⎝q20 + q21 − q22 + q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎞
⎠
⎛
⎝xPyP
zP

⎞
⎠ .

(B.9)
The transformation is distance-preserving.

Let us take a unit quaternion (N(q) = 1) defined by qi = cos θ
2 + sin θ

2i.
It can be seen that the quaternion qi yields the rotation of points around
the x-axis by the angle of θ by conjugation:

qP −→ qiqP q
−1
i . (B.10)

Similarly, we can show that qj = cos θ
2 + sin θ

2j and qk = cos θ
2 + sin θ

2k
rotate points around the y- and z-axes, respectively. These are verified by
straightforward calculation.

Let us take a quaternion q1 such that

q1iq
−1
1 = uxi+ uyj + uzk (B.11)

for a given unit vector (ux, uy, uz). We can find such q1 by multiplying two
of qi, qj and qk. Since

N(uxi+ uyj + uzk) = N(q1iq
−1
1) = N(q1)N(i)N(q−1

1) = N(i) = 1, (B.12)

we assumed the vector (ux, uy, uz) to be a unit vector.
Then, the rotation around the unit vector (ux, uy, uz) by the angle of θ is
given by

qP −→ q1qiq
−1
1 qP q1q

−1
i q−1

1 = (q1qiq
−1
1)qP (q1qiq

−1
1)−1 (B.13)

73

from Eq.(B.11) and i = q−1
1 (uxi + uyj + uzk)q1, where qi = cos θ

2 + sin θ
2i.

Here we have

q1qiq
−1
1 = q1(cos

θ

2
+ sin

θ

2
i)q−1

1 = q1 cos
θ

2
q−1
1 + q1 sin

θ

2
iq−1

1 (B.14)

= cos
θ

2
+ sin

θ

2
(uxi+ uyj + uzk). (B.15)

Hence the unit quaternion r defined by

r ≡ cos
θ

2
+ sin

θ

2
(uxi+ uyj + uzk) (B.16)

rotates points in the space around the unit vector (ux, uy, uz) by the angle
of θ through

qP −→ rqr−1(= rqr). (B.17)

B.2 Updating quaternion

In this section, we reconsider the results obtained in previous chapters from
the view point of quaternion.

B.2.1 Derivative of quaternion

In the following, we consider two frames; body-fixed frame and space
(laboratory)-fixed frame, and the body-fixed frame is so chosen as to co-
incide with principal moments of inertia of the rigid of interest. For a
point in either of the frames, we add the quaternion qP superscript ”(b)”

or ”(s)” as q
(b)
P or q

(s)
P respectively to clarify the frame in which the point

is represented.
Let us consider the rotation along an angular velocity vector �ω, and

put q
(b)
ω = ω1i + ω2j + ω3k. For the sake of simplicity, we put Ω ≡ q

(b)
ω =

ω1i + ω2j + ω3k. Then, the position of a rotated point P at a time t is
represented as (see Eq.(B.16))

q
(b)
P −→ rω,tq

(b)
P r−1

ω,t (B.18)

74

where

rω,t = cos
|ω|t
2

+

(
sin

|�ω|t
2

)
ω1i+ ω2j + ω3k

|�ω| . (B.19)

Take a quaternion qt that maps q(b) to q(s) at time t, i.e.,

q(b) −→ q(s) = qtq
(b)q−1

t . (B.20)

Then, since qt+Δt = qtrω,Δt +O(Δt2) for some ω, we have

dqt
dt

=
1

2
qtΩ (B.21)

where Ω = ω1i + ω2j + ω3k. If we write down the relation above, we get
the well-known formula:

d

dt

⎛
⎜⎜⎝
q0
q1
q2
q3

⎞
⎟⎟⎠ =

1

2

⎛
⎜⎜⎝
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0
ωx

ωy

ωz

⎞
⎟⎟⎠ (B.22)

where qt = q0 + q1i+ q2j + q3k. Accordingly, we have

d2qt
dt2

=
1

2

dqt
dt

Ω +
1

2
qt
dΩ

dt
=

1

2
qt

(
1

2
Ω2 +

dΩ

dt

)
. (B.23)

B.2.2 Equations for updating quaternion

Now we define the time evolution of the quaternion by

qt+Δt ≡ qt +Δt
dqt
dt

+
1

2
Δt2

d2qt
dt2

= qt

(
1 +

1

2
ΔtΩ +

1

4
Δt2
(
1

2
Ω2 +

dΩ

dt

))
. (B.24)

Put

Ω̃+ = 1 +
1

2
ΔtΩ +

1

4
Δt2
(
1

2
Ω2 +

dΩ

dt

)
= Ω̃1 + Ω̃xi+ Ω̃yj + Ω̃zk. (B.25)

75

Since Ω2 is a real number and Ω and dΩ
dt are pure imaginary (real part

= 0), we have

Ω̃1 = 1 +
1

8
Ω2Δt2 = 1− 1

8
N(Ω)2Δt2 = 1− 1

8
(ω2

x + ω2
y + ω2

z)Δt2

and

Ω̃xi+ Ω̃yj + Ω̃zk =
1

2
Δt

(
Ω +Δt

1

2

dΩ

dt

)
.

Then using Euler’s equations for rigid body, we have

Ω̃x =
Δt

2

(
ωx +Δt

(
I2 − I3
2I1

ωyωz +
tx
2I1

))
=

Δt

2
φx (B.26)

Ω̃y =
Δt

2

(
ωy +Δt

(
I3 − I1
2I2

ωxωz +
ty
2I2

))
=

Δt

2
φy (B.27)

Ω̃z =
Δt

2

(
ωz +Δt

(
I1 − I2
2I3

ωxωy +
tz
2I3

))
=

Δt

2
φz, (B.28)

where we understand the φx, φy, φz are defined by the equations above.
The φx, φy, φz can be written as

φx = ω(n)
x + (αω(n)

y ω(n)
z + δt(n)x)Δt

φy = ω(n)
y + (βω(n)

x ω(n)
z + λt(n)y)Δt (B.29)

φz = ω(n)
z + (γω(n)

x ω(n)
y + μt(n)z)Δt

where α, β, γ, δ, λ, μ are the same as defined in Eq.(2.27) in Chapter 2

and t
(n)
x , t

(n)
y , t

(n)
z are components of torque vector and the superscript (n)

is added to specify that the variables are of n-th time step. The equations
above are the same as Eqs.(2.26).

We slightly modify Ω̃1 as follows

Ω̃1 =
√

1− (Ω̃2
x + Ω̃2

y + Ω̃2
z). (B.30)

The difference between the modified Ω̃1 and the original Ω̃1 is within
O(Δt3).

76

We time evolve qt by
qt+Δt = qtΩ̃

+, (B.31)

where Ω̃+ = Ω̃1 + Ω̃xi + Ω̃yj + Ω̃zk. Since N(Ω̃+) = 1, qt+Δt is a unit
quaternion.

We now determine angular velocity �ω(n+1) at n+1-th step so as to satisfy
time-reversibility:

qt+ΔtΩ̃
− = qt, (B.32)

where Ω̃− is obtained by replacing Δt by −Δt and the data of n-th step
by n+ 1-th step in Eqs.(B.26)∼(B.29). Then we have

Ω̃− ≡ Ω̃−
1 + Ω̃−

x i+ Ω̃−
y j + Ω̃−

z k = Ω̃−
1 − Δt

2
φ−
x i−

Δt

2
φ−
y j −

Δt

2
φ−
z k (B.33)

where
φ−
x = ω(n+1)

x − (αω(n+1)
y ω(n+1)

z + δt(n+1)
x)Δt

φ−
y = ω(n+1)

y − (βω(n+1)
x ω(n+1)

z + λt(n+1)
y)Δt (B.34)

φ−
z = ω(n+1)

z − (γω(n+1)
x ω(n+1)

y + μt(n+1)
z)Δt

and

Ω̃−
1 =
√

1− ((Ω̃−
x)

2 + (Ω̃−
y)

2 + (Ω̃−
z)

2). (B.35)

Eq.(B.32) is satisfied if

Ω̃− = Ω̃+. (B.36)

The equation is equivalent to

φx = φ−
x , φy = φ−

y , φz = φ−
z . (B.37)

We determine ω
(n+1)
x , ω

(n+1)
y , ω

(n+1)
z to be the solutions of these equa-

tions (these equations are the same as Eq.(2.33) in Chapter 2), and the so
obtained angular velocity vector �ω(n+1) satisfies time-reversibility.

77

78

Appendix C

Modified FT algorithm

In the last of Chapter 2, I have mentioned that I can modify FT algorithm
to remove square root used in updating angular velocity (except for cal-
culations for normalizing quaternion). When the simulation is performed
in abnormally high temperature or very long time-step, there is a danger
that the value in the square root may be a negative number and the com-
puter may crash. Therefore, it is desirable to remove such a square root
in FT algorithm. Thus I show in this appendix the FT algorithm without
the square root. I call the algorithm modified FT algorithm. I present the
method of this modified FT algorithm below, which can also be obtained
even by using quaternion algebra introduced in Appendix B.

C.1 Modification of the matrix

We first modify the matrix in Eq.(2.18) as below.

←→
R [�v] =

⎛
⎜⎜⎝
1− 1

2 |�v|2 −vx −vy −vz
vx 1− 1

2 |�v|2 vz −vy
vy −vz 1− 1

2 |�v|2 vx
vz vy −vx 1− 1

2 |�v|2

⎞
⎟⎟⎠ . (C.1)

Note that we have
t←→R [�v] =

←→
R [−�v] (C.2)

as in the original matrix. The differences between this matrix and the
original one lie only in diagonal elements, which are within O(Δt3). The

79

matrix in Eq.(2.18) is orthogonal, on the other hand, the modified matrix
above is not orthogonal but satisfies

←→
R [�v] t←→R [�v] = (1 +

1

4
|�v|4)←→E , (C.3)

which implies that the matrix
←→
R [�v] is ”(orthogonal matrix) × (constant)”.

C.2 Time-reversibility and angular velocity

In the modified FT algorithm, we update the quaternion through

�q(t+Δt) =
←→
R

[
1

2
�φ(t,Δt)Δt

]
�q(t) (C.4)

as in Chapter 2 where �φ is the same as defined in that chapter. The angular
velocity vector �ω+ = (ω+

x , ω
+
y , ω

+
z) of the next step is determined by the

following equation
�φ(t+Δt,−Δt) = �φ(t,Δt) (C.5)

as before.
I show in the following that the angular velocity vector �ω+ = (ω+

x , ω
+
y ,

ω+
z) obtained as above satisfies time-reversibility. From Eq.(C.5), we have

←→
R

[
1

2
�φ(t+Δt,−Δt)(−Δt)

]
=

←→
R

[
1

2
�φ(t,Δt)(−Δt)

]
. (C.6)

Since ←→
R

[
1

2
�φ(t,Δt)(−Δt)

]←→
R

[
1

2
�φ(t,Δt)Δt

]
= c

←→
E (C.7)

from Eqs.(C.2) and (C.3), we have

←→
R

[
1

2
�φ(t+Δt,−Δt)(−Δt)

]←→
R

[
1

2
�φ(t,Δt)Δt

]
= c

←→
E . (C.8)

Since we update the quaternion through

�q(t+Δt) =
←→
R

[
1

2
�φ(t,Δt)Δt

]
�q(t), (C.9)

80

the �qt′ obtained by time-reversing �qt+Δt for −Δt is, or in other words, by
operating the matrix

←→
R

[
1

2
�φ(t+Δt,−Δt)(−Δt)

]
(C.10)

is, not equal to �qt but equal to c′�qt for some scalar c′. Hence the normalized
quaternion coincides with �qt. Therefore we conclude that by taking the
solution �ω+ = (ω+

x , ω
+
y , ω

+
z) of Eq.(C.5) as the angular velocity vector of

the next step, the modified FT algorithm (where we normalize quaternions
every step) satisfies time-reversibility. (If �qt+Δt is normalized, c′ �= c in
general.)

C.3 Modified FT algorithm for single time step

We describe here the procedure for a single time step of the modified FT
algorithm especially for FT2, as in Chapter 2. The deferences between
modified and non-modified FT algorithm are only in the step 4, and de-
noted by bold-face letters.

Step 1: Calculate the atomic positions of the molecule in the space-fixed
frame by Eqs. (2.6) and (2.7).

Step 2: Calculate the forces on the atoms using the atomic positions
calculated in Step 1. Then calculate the force �f(t)(s) acting on the centroid,
and the torque �τ(t)(b) = t(tx, ty, tz).

Step 3: Determine the updated position of the centroid by Eq. (2.4).
Step 4: Determine �φ(t,Δt) = t(φx(t,Δt), φy(t,Δt), φz(t,Δt)) by Eqs. (2.38)-

(2.40). Set it into Eq. (C.9) to determine the updated quaternion and
normalize the quaternion.

Step 5: Calculate the updated positions of the atoms in the space-fixed
frame by Eq. (2.7).

Step 6: Calculate the updated forces on the atoms. Then obtain the
torque �τ+(b) = t(t+x , t

+
y , t

+
z) and the force �f(t+Δt) acting on the centroid.

Step 7: Determine the updated velocity of the centroid by Eq. (2.5).

81

Step 8: Determine the updated angular velocity, ω+
x , ω

+
y , and ω+

z , by
Eqs. (2.41)-(2.43) after setting φ+

x = φx, φ
+
y = φy, and φ+

z = φz where
φx, φy, and φz are obtained in Step 4 and t+x , t

+
y , and t+z in Step 6.

Go to Step 3.

C.3.1 Listing of sample subroutines of modified FT algorithm

Here we show listing of two sample subroutines of modified FT algorithm,
q_update and angv_update, for a particle. In actual simulation of a molec-
ular system, the subroutines will be applied in parallel to all the rigid
molecules. The motions of centroids are calculated separately for all parti-
cles in a usual manner. The subroutine q_update updates angular velocity
vectors, and the subroutine angv_update calculate angular velocity vectors
at the next time step.

C.3.1.1 subroutine q_update

c----- This subroutine updates angular velocities.

subroutine q_update(qua,omega,phi,torque,dt,ai)

implicit none

real*8 qua(4), omega(3), torque(3), tb(3)

real*8 Ain(1:3,1:3),ai(3), aa,c,e

real*8 qqq,trans(4),dt,ppp

real*8 omegax(3),phi(3),b,d,f,qqua(4)

integer i

c----- The subroutine below get matrix Ain from quaternion.

c----- qua is a quaternion, where qua(1)=q_0, qua(2)=q_1,

c----- qua(3)=q_2, qua(4)=q_3. (p.12)

c----- Ain (=(2.6)) is a matrix, which transform the coordinates

c----- of a vector represented in space-fixed system to that

c----- in the body-fixed coordinates.

c----- Ain is the inverse of matrix (2.6). (p.12)

call matrix(qua, Ain)

c----- (torque(1),torque(2),torque(3)) is a torque vector

c----- represented in space-fixed frame which is calculated

82

c----- by other subroutine. (p.16).

c----- tb(3) is the torque vector represented in body-fixed

c----- frame.

tb(1)=Ain(1,1)*torque(1)+Ain(1,2)*torque(2)

& +Ain(1,3)*torque(3)

tb(2)=Ain(2,1)*torque(1)+Ain(2,2)*torque(2)

& +Ain(2,3)*torque(3)

tb(3)=Ain(3,1)*torque(1)+Ain(3,2)*torque(2)

& +Ain(3,3)*torque(3)

c----- ai are principal moment of inertia, ai(1)=I_x=1.9167,

c----- ai(2)=I_y=0.66632, and ai(3)=I_z=1.25037. (p.12)

c----- aa,c, and e are equal to \alpha, \beta, and \gamma,

c----- defined in p.16.

b=tb(1)/(2d0*ai(1))

d=tb(2)/(2d0*ai(2))

f=tb(3)/(2d0*ai(3))

aa=(ai(2)-ai(3))/(2d0*ai(1))

c=(ai(3)-ai(1))/(2d0*ai(2))

e=(ai(1)-ai(2))/(2d0*ai(3))

c----- omega is an angular velocity vector, omega(1)=\phy_x

c----- and so on. See (2.39). (p.12)

omegax(1)=omega(1)+b*dt

omegax(2)=omega(2)+d*dt

omegax(3)=omega(3)+f*dt

c----- (2.40).

omegax(1)=omegax(1)+aa*omegax(2)*omegax(3)*dt

omegax(2)=omegax(2)+c*omegax(1)*omegax(3)*dt

omegax(3)=omegax(3)+e*omegax(1)*omegax(2)*dt

c----- Vector phi is used to get

c----- angular velocity at the next time step. (C.5)

do i=1,3

phi(i)=omega(i)

end do

83

c----- See (C.4), where we multiply phi by dt*0.5.

trans(1)=omega(1)*dt*0.5d0

trans(2)=omega(2)*dt*0.5d0

trans(3)=omega(3)*dt*0.5d0

trans(4)=1d0-(trans(1)**2+trans(2)**2+trans(3)**2)*0.5d0

c----- (C.4)

qqua(1)=qua(1)*trans(4)

& -qua(2)*trans(1)-qua(3)*trans(2)-qua(4)*trans(3)

qqua(2)=qua(1)*trans(1)

& +qua(2)*trans(4)+qua(3)*trans(3)-qua(4)*trans(2)

qqua(3)=qua(1)*trans(2)

& -qua(2)*trans(3)+qua(3)*trans(4)+qua(4)*trans(1)

qqua(4)=qua(1)*trans(3)

& +qua(2)*trans(2)-qua(3)*trans(1)+qua(4)*trans(4)

qua(1)=qqua(1)

qua(2)=qqua(2)

qua(3)=qqua(3)

qua(4)=qqua(4)

ppp=dsqrt(qua(1)**2+qua(2)**2+qua(3)**2+qua(4)**2)

c----- Normalize quaternion.

qua(1)=qua(1)/ppp

qua(2)=qua(2)/ppp

qua(3)=qua(3)/ppp

qua(4)=qua(4)/ppp

return

end

C.3.1.2 subroutine angv_update

c-----This subroutine calculate angular velocity vector of the next step.

subroutine angv_update(torque,nextomega,phi,dt,ai)

implicit none

real*8 torque(3),dt,ai(3),nextomega(3)

real*8 phi(3),aa,b,c,d,e,f

84

aa=(ai(2)-ai(3))/(2d0*ai(1))

c=(ai(3)-ai(1))/(2d0*ai(2))

e=(ai(1)-ai(2))/(2d0*ai(3))

b=torque(1)/(2d0*ai(1))

d=torque(2)/(2d0*ai(2))

f=torque(3)/(2d0*ai(3))

om(1)=phi(1)

om(2)=phi(2)

om(3)=phi(3)

c----- (2.41)

phi(3)=phi(3)+e*phi(1)*phi(2)*dt

phi(2)=phi(2)+c*phi(1)*phi(3)*dt

phi(1)=phi(1)+aa*phi(2)*phi(3)*dt

c----- (2.42)

phi(1)=phi(1)+b*dt

phi(2)=phi(2)+d*dt

phi(3)=phi(3)+f*dt

c----- (2.43)

nextomega(1)=phi(1)

nextomega(2)=phi(2)

nextomega(3)=phi(3)

return

end

Thus getting the angular positions, we calculate the coordinates of atoms
in the space-fixed frame by adding the coordinate of the centroid of each
molecule to the coordinates of each atom in the molecule in the space-
parallel frame (with its origin coincides with the centroid of the molecule),
which is obtained as the image of the atom in the body-fixed frame by the
operation of inverse matrix of Ain. Then we can calculate the force acting
on atoms.

85

C.3.2 Subroutines of the algorithm

Time-evolution of a molecule is performed by updating the quaternion qua,
position of the centroid cent, the angular velocity omega, and velocity of
the centroid v. One step time-evolution from step n to step n + 1 is exe-
cuted mainly by the following subroutines, which correspond to steps from
3 to 8 in the beginning of C.3.

We assume that we know already qua, position of each atom r, cent,
omega, v, force F, and torque torque, at step n. We add superscript + to
indicate that the corresponding data is of step n+ 1.
(1) c_update(r,F,v,cent,cent+dt): Update the position of centroid
cent of each molecule from the force F and velocity v.
(2) q_update(qua,qua+,omega,phi,torque,dt,ai): Update the quater-
nion of molecule.
(3) qua2pos(qua+,cent+,r+): Get the position of each atom r+ by the
quaternion qua+ and the position of the centroid cent+ of the molecule
containing the atom.
(4) getforce(r+,F+): Calculate force F+ acting on each atom from the
positions of atoms r+.
(5) gettorque(r+,F+,torque+): Calculate torque torque+ from the force.
(6) v_update(F,F+,v,v+,dt): Update the velocity of centroid v using the
force F and F+.
(7) angv_update(torque+,omega+,phi,dt,ai): Update angular velocity.
(omega+ is equal to nextomega in C.3.1.2.)

C.4 Conclusion

The modified FT algorithm differs from original one in the following two
points:

I. We modify the matrix Eq.(2.18) in FT algorithm as Eq.(C.1) and time
evolve quaternion by this matrix.

86

II. Normalize the quaternion above every step in the FT algorithm.

The modification of the modified FT algorithm yields the increase of
number of operations. Eleven operations are required for the modification,
nevertheless the number of operations are least of all the other algorithms
(see table 2.1). I performed simulations with this modified FT algorithm
with timestep=2 fs and 4 fs for 100,000 steps, the stability was no less than
FT algorithm.

87

88

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Shuji
Ogata, for his guidance throughout my studies. I wish to thank Dr. M.
Hiyama, Dr. R. Kobayashi, Dr. T. Tamura and the members of Ogata
Laboratory in Nagoya Institute of Technology for helpful discussions.

The computations were performed using Fujitsu FX10 and Hitachi HA8000
at Information Technology Center of Univ. of Tokyo, Fujitsu FX10 at In-
stitute for Solid State Physics of Univ. of Tokyo, Hitachi SR16000 at
Institute of Material Research of Tohoku Univ., Fujitsu FX1 and FX10
at Information Technology Center of Nagoya Univ., the K computer at
RIKEN AICS, and Fujitsu PRIMERGY at Research Center for Computa-
tional Science (Okazaki).

I thank these facilities/institutions for giving us allowances to use the
supercomputers.

89

90

Bibliography

[1] Y. Li and Q. A. Somorjai, J. Phys. Chem. C 111, 9631 (2007).

[2] R. Rosenberg, Phys. Today 58, 12 (2005).

[3] K. Diehl, S. K. Mitra, and H. R. Pruppacher, Atmos. Environ. 29,
975 (1995).

[4] T. Ikeda-Fukazawa and K. Kawamura, J. Chem. Phys. 120, 1395
(2004).

[5] K. Bolton and J. B. C. Petterson, J. Phys. Chem. B 104, 1590 (2000).

[6] C. L. Bishop, D. Pan, L. M. Liu, G. A. Tribello, A. Michaelides, E.
G. Wang, and B. Slater, Faraday Discuss 141, 277 (2009).

[7] G. Sazaki, H. Asakawa, K. Nagashima, S. Nakatsubo, and Y. Fu-
rukawa, Cryst. Growth & Des. 13, 1761 (2013).

[8] G. Sazaki, S.Zepeda, S. Nakatsubo, M. Yokomine, and Y. Furukawa,
Proc. Natl. Acad. Sci. 109, 1052 (2012).

[9] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and
M. L. Klein, J. Chem. Phys. 79, 926 (1983).

[10] L. Greengard and V. Rokhlin, J. Comp. Phys. 73, 325-348 (1987).

[11] S. Ogata, T. J. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, and
S. Vemparala, Comput. Phys. Commun. 153, 445 (2003).

[12] Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn.
80, 114002 (2011).

91

[13] Y. Kajima, M. Hiyama, S. Ogata, R. Kobayashi, and T. Tamura, J.
Chem. Phys. 136, 234105 (2012).

[14] Y. Kajima, S. Ogata, R. Kobayashi, M. Hiyama, and T. Tamura, J.
Phys. Soc. Jpn. 83, 83601 (2014).

[15] J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

[16] R. G. Fernandez, J. L. F. Abascal, and C. Vega, J. Chem. Phys. 124,
144506 (2006).

[17] A. Leach, Molecular Modelling: Principles and Applications, 2nd Ed.
(Prentice Hall, NJ, U.S.A., 2001).

[18] E. Sanz, C. Vega, J. L. F. Abascal, and L. G. MacDowell, Phys. Rev.
Lett. 92, 255701 (2004).

[19] M. Matsumoto, S. Saito, and I. Ohmine, Nature 416, 409 (2002).

[20] K. Mochizuki, M. Matsumoto, and I. Ohmine, Nature 498, 350
(2013).

[21] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford Univ. Press, Oxford, U.K., 1987).

[22] N. Matubayasi and M. Nakahara, J. Chem. Phys. 110, 3291 (1999).

[23] T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns,
and G. J. Martyna, J. Chem. Phys. 116, 8649 (2002).

[24] A. Koi, B. B. Laird, and B. J. Leimkuhler, J. Chem. Phys. 107, 2580
(1997).

[25] A. Dullweber, B. Leimkuhler, and R. McLachlan, J. Chem. Phys.
107, 5840 (1997).

[26] R. van Zon and J. Schofield, Phys. Rev. E 75, 056701 (2007) .

[27] H. Okumura, S. G. Itoh, and Y. Okamoto, J. Chem. Phys. 126,
084103 (2007).

92

[28] M. Hiyama, T. Kinjo, and S. Hyodo, J. Phys. Soc. Jpn. 77, 064001
(2008).

[29] H. Goldstein, Classical Mechanics, 2nd Ed. (Addison-Wesley, MA,
U.S.A., 1980).

[30] In Ref. 11, we used (ξ, η, ζ, χ) instead of (q0, q1, q2, q3). The relations
are, q0 = χ, q1 = η, q2 = −ξ, and q3 = ζ.

[31] If s = 1 − 1
2

∣∣1
2�ω(t)
∣∣2Δt2 < 0, it implies that |�ω(t)|Δt > 2

√
2 > 2π

3 .
Roughly speaking, it means that three steps make one rotation. It
is the time step too long for a molecular dynamics simulation to be
applied. Actually, in our simulation, 1 ≥ s > 0.99 (Δt=2fs), and
1 ≥ s > 0.75 (Δt=10fs). The situation of s < 0 never happened in
our simulations. Similarly, if |�V | > 1, we have |�ω(t)+ 1

2
d
dt�ω(t)Δt|Δt >

2 ≈ 2π
3 (= 2.09 · · ·). Since �ω(t) + 1

2
d
dt�ω(t)Δt is roughly equal to the

mean of angular velocities of the present step and the next time step,
|�V | < 1 is always satisfied in actual simulation.

[32] D. Eisenberg and W. Kauzman, The Structure and Properties of Wa-
ter (Oxford Univ. Press, Oxford, U.K., 2005).

[33] Since the system temperature increases significantly after 105 steps
for Δt =7.0 fs, we calculate ε(1) in a short run of 103 steps, and
regard (ε(2000)− ε(100))/(2000− 100) in a run of 5000 steps as ε̃ in
such a case.

[34] We define the number of operations by the sum of mathematical
operations appeared in the algorithm for updating angular velocity
and quaternion of a rigid molecule. Here mathematical operations
are addition, subtraction, multiplication, division, exponentiation,
trigonometric function, and square root, and each of these opera-
tions is counted as one operation. Substitution is not considered as
operation. For example, the number of operations of Eqs. (2.39) is 9.
Operations in the FT2 algorithm mean the operations appeared in

93

Eqs. (2.38)-(2.43), and (2.23), and operations in the symplectic algo-
rithm are operations appeared in Eqs. (58)-(84) in Ref. 8, omitting
operations concerning with thermostat and translational motion.

[35] A. Rahman and F. H. Stillinger, J. Phys. Chem. 57, 4009 (1972)

[36] V. Buch, P. Sandler, and J. Sadlej, J. Phys. Chem. 102, 8641 (1998)

[37] E. Cota and W. G. Hoover, J. Chem. Phys. 67, 3839 (1977)

[38] J. A. Hayward and J. R. Reimers, J. Chem. Phys. 106, 1518 (1997)

[39] V. F. Petrenko and R. W. Whiteworth, Physics of ice (Oxford Univ.
Press, Oxford, U.K., 1999).

[40] M. Faraday, Proc. R. Soc. London 10, 440 (1860).

[41] A. Kouchi, Y. Furukawa, and T. Kuroda, J. Phys. Colloq. 48, C1-675
(1987).

[42] Y. Furukawa, M. Yamamoto, and T. Kuroda, J. Cryst. Growth. 82,
665 (1987).

[43] Y. Furukawa and H. Nada, J. Phys. Chem. B 101, 6167 (1997).

[44] M. M. Conde, C. Vega, and A. Patrykiejew, J. Chem. Phys. 129,
014702 (2008).

[45] D. Pan, L-M. Liu, B. Slater, A. Michaelides, and E. Wang, ACS
Nano. 5, 4562 (2011).

[46] Serge Lang, Algebra (Graduate Texts in Mathematics, Springer,
2005).

94

