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Abstract

For many years, many researchers of pattern recognition have developed the field of im-
age recognition as the main focus of pattern recognition and various techniques have
been proposed. Especially, statistical approaches based on Principal Component Analysis
(PCA) such as eigenface methods and subspace methods show good recognition perfor-
mance in many applications. However, if images contain geometric variations such as
size, location and rotation, the recognition performance is significantly degraded. There-
fore, normalization processes for such geometric variations are required prior to applying
these methods.

In many image recognition systems, the normalization process is included in the pre-
process part of the classification, and heuristic normalization techniques are used. How-
ever, it is necessary to develop the normalization technique for each task, because such
heuristic techniques usually use task dependent information. Furthermore, in image recog-
nition, the final objective is not to accurately normalize images for human perception but
to achieve a better recognition performance. Therefore, it is natural to use the same cri-
terion for both training classifiers and normalization. This means that the normalization
process should be integrated into classifiers.

HMM based techniques for image recognition have been proposed to reduce the influence
of geometric variations. Geometric matching between input images and model parame-
ters is represented by discrete hidden variables, and the normalization process is included
in calculating probabilities. However, the extension of HMMs to multi-dimensions gen-
erally leads to an exponential increase in the amount of computation for its training al-
gorithm. To deal with this problem, separable lattice 2-D HMMs (SL2D-HMMs) have
been proposed to reduce computational complexity while retaining good properties that
model multi-dimensional data. SL2D-HMMs can perform elastic matching both horizon-
tally and vertically, which makes it possible to model not only invariance to the size and
location of an object but also nonlinear warping in all dimensions. However, the modeling
accuracy is still insufficient because of the following problems:



1) SL2D-HMMs cannot represent rotational variations. Therefore, affine deformation
cannot be modeled completely.

ii) The statistics of each state do not change dynamically.

ii1) The output probability of the observation is conditionally independent, given the
horizontal and vertical states.

In this dissertation, statistical models to improve the recognition performance which can
overcome the above problems of SL2D-HMMs are proposed.

First, a new generative model which can deal with rotational data variations is proposed,
by extending SL2D-HMMs. To reduce the complexity, SL2D-HMMs have only one state
sequence in each direction; this means that all horizontal/vertical lines of an observa-
tion lattice have the same state alignment for each direction. However, to represent the
rotational variations, the models should have a different state alignment for each obser-
vation line and horizontal/vertical state alignments should be changed along with verti-
cal/horizontal direction. Furthermore, it should take account of the dependency of the
state alignments between consecutive observation lines to perform a continuous elastic
matching. In this paper, we introduce additional HMM states which represent the shifts of
the state alignments of the observation lines in a particular direction. In face recognition
experiments the proposed model achieved better results to the images than the conven-
tional SL2D-HMMs. Moreover, the state alignments shows that the proposed model can
normalize not only size and location variations but also rotational variations.

Furthermore, a novel statistical model based on 2-D HMMs is proposed to overcome the
shortcomings of ii) and iii). Although these are the essential assumption inherited from
1-D HMMs, 1-D trajectory HMMs were proposed and successfully applied to speech
recognition and speech synthesis, which can overcome the shortcomings of 1-D HMMs.
This dissertation derives 2-D trajectory HMMs by reformulating the likelihood of SL2D-
HMMs with imposing explicit relationships between static and dynamic features. The
proposed model can overcome the shortcomings of ii) and iii) and efficiently capture
dependencies between adjacent observations without increasing the number of model pa-
rameters. Experimental results show that the proposed model achieved better recognition
performance than the conventional SL2D-HMMs.

Keywords: image recognition, hidden Markov model, separable lattice 2-D HMMs, tra-
jectory HMMs.
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Abstract in Japanese

EFICED, EGEERRDO I/ S 2 —VRkic B 2T H A7 —< & LTE L Ot
HEDFICK>THRIEL, MAGTEMERINTE . b ICEBHETERER2E
MREICARE T NS BT ANCHD HEINE T 70— 13 BRI R8I ERE 2 1D
TENZL DA TRENT VS, LM LEND, RSO BEGDNIEDK
T, RO X S ERENEE 2 Z TGS, AR RKEKTT S, 2n
Z, TNSOFEZEHT BT T DX S R ANETNCEE T 2 EHt ot
ADWRETH %, 2 OEGEHS AT LTEIERL 7 1t 23530 O RS I
FEN, FCTRea—YYRT v 7 ikERIETFENHVWENS. LML, ZOK
3 IFHUETFIEE Z AV HEAZOERE WA ENEE THBDT, {2 A7ITH
LCIEHUL TR ZZ 208D 5. TDS Z, HEBEERICB VT, &ENRE
EEEV S DI ANOFIRICE Ll 2 ER b 57210 Tk <, BHEadailtneZz 2
K5 ETHS. DAICEAZ & IERED 5 THIEDORUER W2 DN EIRT
HB. TOTERERET O ANFBGRICREESNEZRNETHS, LWV»HTkx
KT 5.

Z DX S I APAN IR NN 27 T a—F L LT, Bn~/La7ET)V (Hidden
Markov Model; HMM) ICEE D K FEMNIFRE I N TS, TOFETIEAIIHEIG
EETIVINT A—R L O TR< v F 2 FI3EER A RNERBIC X b £BHE M,
ERET O AEZN5ICBIT 2ROFHEICETENS. LML HMM ZZRtic
PR 2358, —MRIICEE 7L 3 ) XL U CRIEEDMERIICEE KT % L
I DH 5. Z T TABEEEZHIR L DDZXTT — 2 DRWEEZR DD DT
He U, mEDEFIR T 2 Xt HMM (Separable Lattice 2-D HMM; SL2D-HMM)
MEZEEN TS, SL2D-HMM (i - £ 2 DORRNIRRERVIMN SR kG2 A L,
ZNSRYNIAE 15 ETOBROET IEICBWTHAEICHEZ LA S. SL2D-HMM
KT & FEE TR CRINAR Yy F 2 T RITO TN TED 8D, HROMESD
KEZICHETBAZER T TR ZHTMTOIFFEEROTHAZET VLT S &N
TEBZEVHHEDNDHD. LA LaHS, SL2D-HMM IZIZLL FICIEN2 X 5 7
BUSHDMEET 5728, TETIUELOREIIKIRE LTA T2 TH 5.

1. ETFIVEEDRIFID =8I, [HEZF KT 5 LN TERY. LEN- T,
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T T 4 VR SERICETIVIET B T EMNTERL.

2. FHIRNENTHEIRMNEENTHS. 37405, FSREN TR —
ETHO, [ACHKENTHINCZLT 28ZRA S AR NS LT
H%.

3. BRI BT DM T MIVOHHERIE, £ ORFZANCHIES % IRARIC D H
A7 L, BiRORZNCIIET 2 IREBICIIMRF LRV, 2, HarMEoloE
(Conditional Independence Assumption) & P 5.

ARG TIE, SL2D-HMM O el DR 5 72 5 iR U 7z B{GEERR D Tz D K O & MERE
IHETET VO ZHN T 5.

9, ARG T SL2D-HMM ZHEaE U, [l Z88C & WO nTAE & 72 5 #i7z s AR K
TTIVONEZIEERT 5. SL2D-HMM TlIEHREEENIRT % 125750 TIRRERS
1D THolz. THUIE TR EDOBINC BN TETOKYE FEE) Z 12 T
W —DIRET T A VAV N EHT B L0 T eEEWT 5. UL Lnina sz L
TBDIFETNVEENSETA Y ETHRZZIRET FA VAV e FTBNET
HO, IKFEFEE) HHIOIRRET T4 >~ A Y MIIEE OKF) FHaNciho> TELT &
ThHb. EHICHBENTRINES Y F I %iTS I, —HEOBHZ A VT
IREET T A~ A2 N DIREBIRZERIC ANDZEDND B, 7 T TAWNIETIE, b
BREEH T TOEN T A BT BIRET T AV A2 DY T M ERBT 5 HMM
IREERINZFTZITE AT S, ThUCKD, (iE « KETOEH)Z Tk < [BIFEZEH)
ICEAGATREL 722 T EHRFE NS, MEDOKE S DEHZ1) T, [HEEEH)
G EGEERFEBR O R, IERETT/VIF SL2D-HMM &tk U T Bif i aZik i ae
EROC EMNRENTZ. EBIC, KRETSAAY "EAHILT ST & T, IRETT
JNIMIEROKREZE X THRL, MELEZE L ERETE 5 2 & 2R LTz,

EHIC, RS 2. & 3. ZRIRHCSIARS 287 ARG ET V2T 5. Th
5id 1 00 HMM D SR S N A AENEARGE TH S D, 9 TIC 1 Xt HMM DI
BTRMERADEZDICR ST 27 M) HMM BRRINTED, Ao
BRI E NN Z D TS, Rim X T, # N IR 2 5 SR 7
R VEIREEH IR 27 B )L &9 % SL2D-HMM I 0 LT, Ay « BIEMSRE ORE%%
B7RANICEA L, SL2D-HMM Z e b9 5. #RELT, 20tDFFV 27 b
) HMM ZEHA[RETH S T & 2Rd. R ET /U EEE SL2D-HMM DR i
BT BT ENTES. F2, BRETIVOETIVIRT A—Z DO SL2D-HMM D
INT A= EEINT % T 23RV T, BET 2B OMBEZ IR I X
HTEMNRELIx s, HGEERRSFEEROFER KD, EET/VIE SL2D-HMM KD &
BUFRsRitREZ f O T RSNz,

PLEDX ST, AKX T, #aTHEIC X2 BEEERO Tz DI D, Lo
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Chapter 1

Introduction

With the wide spread of computers in recent years, the development of a human interface
that utilize visual and auditory information is expected. It can be used to communicate
with others in the same way as humans. In particular, speech recognition and image
recognition are important basic technologies for this interface and research has been con-
ducted actively. Moreover, with the recent advances of computer hardware and infor-
mation technology, statistical approaches based on huge amounts of data are becoming
the mainstream in many research fields. For speech recognition, Hidden Markov model
(HMM) based techniques have been established [2]. However, in the field of image recog-
nition, various approaches have been mushrooming due to the variety of the recognition
objects and the complexity of data. Therefore, it is valuable to construct the general sta-
tistical models for image recognition similar to HMMs for speech recognition, which can
be applied to various tasks such as face recognition, hand-written character recognition,
gesture recognition, and lip reading.

The previous research of image recognition can be roughly classified into the following
two: 1) techniques developed by utilizing task-dependent information and ii) techniques
considering image recognition as pattern classification problems on multi-dimentional
feature space objectively. The former techniques take account of the practicality and
high recognition performance can be obtained even if a small amount of training data is
available. On the other hand, the latter techniques should be selected when considering
the general framework of image recognition. However, the pre-processings such as seg-
mentation, normalization and feature extraction are still required to deal with the image
recognition problem as pattern classification problem. These pre-processings have not
been considered in many studies on the latter techniques and the heuristic normalization
techniques have been applied. Additionally, the final objective in image recognition is
not to accurately normalize images for human perception but to achieve better recogni-



tion performance. Therefore, it is a good idea to integrate the normalization processes
into classifiers and optimize them based on a consistent criterion to improve recognition
performance.

HMM based techniques for image recognition have been proposed to reduce the influ-
ence of geometric variations [3—13]. Geometric matching between input images and
model parameters is represented by discrete hidden variables, and the normalization pro-
cess is included in calculating probabilities. For an earlier work, Samaria et al. applied
HMMs to human face identification tasks [3]. The observation sequence was composed
of over-lapping window/line blocks extracted from each sample image and modeled by
ergodic/top-to-bottom HMMs, provided that image data had to be treated as if it was 1-D
data sequence. This leads to lack of robustness to geometric variations. It was therefore
natural for many researchers to consider extending HMMs to multi-dimensional ones.

However, the above extension generally leads to an exponential increase in the amount
of computation for its training algorithm. To reduce the computational complexity, the
model structure needs to be constrained by limiting the number of possible alignments and
assuming independence between hidden variables. For such model structures, pseudo 2-D
HMMs [4] (embedded HMMs [5]) were proposed and applied to many image recognition
tasks. A pseudo 2-D HMM has a composite state structure for a better 2-D representa-
tion while avoiding the complexity burden of a fully connected 2-D HMM. The states of
a superior HMM in the horizontal direction are called super-states and each super-state
has a one-dimensional HMM in the vertical direction instead of a probability density func-
tion. This assumption reduces the computational complexity and the maximum likelihood
training algorithm has been proposed [6]. However, the state alignments of consecutive
observation lines in the vertical direction are calculated independently of each other and
this assumption does not always hold true in practice.

Essentially, the studies of 2-D dynamic programming (2D-DP) treat the same problem
of the 2-D HMMs. The main difference between these studies is the definition of the
cost function; The 2D-DP focuses on finding the mapping between two images with a
pre-defined cost function, while the likelihood of 2-D HMM s is defined between an input
image and the distribution which is estimated from multiple training images. Although
some efficient approximation algorithms have been proposed for the 2D-DP problem [14—
17], they still need high complicated costs and prior knowledge to determine the cost
function is required for representing an accurate elastic matching dependently on image
variations.

For another HMM based approach, separable lattice 2-D HMMs (SL2D-HMMs) were
proposed [9] to reduce computational complexity while retaining good properties that
model multi-dimensional data. Furthermore, hidden Markov eigenface models have been



proposed [10] where the eigenface methods are integrated into SL2D-HMMs. SL2D-
HMMs can perform elastic matching both horizontally and vertically, which makes it
possible to model not only invariance to the size and location of an object but also non-
linear warping in all dimensions. However, the modeling accuracy is still insufficient
because of the following problems:

1) SL2D-HMMs cannot represent rotational variations. Therefore, affine deformation
cannot be modeled completely.

ii) The statistics of each state do not change dynamically.

ii1) The output probability of the observation is conditionally independent, given the
horizontal and vertical states.

In the present dissertation, statistical models to improve the recognition performance
which can overcome the above problems of SL2D-HMMs are proposed.

First, a new generative model which can deal with rotational data variations by extending
SL2D-HMMs. To reduce the complexity, SL2D-HMMs have only one state sequence in
each direction; this means that all horizontal/vertical lines of an observation lattice have
the same state alignment for each direction. However, to represent the rotational varia-
tions, the models should have a different state alignment for each observation line and
horizontal/vertical state alignments should be changed along with vertical/horizontal di-
rection. Furthermore, it should take account of the dependency of the state alignments
between consecutive observation lines to perform a continuous elastic matching. In this
paper, we introduce additional HMM states which represent the shifts of the state align-
ments of the observation lines in a particular direction. The parameters of this proposed
model can be estimated via the expectation maximization (EM) algorithm for approx-
imating the Maximum Likelihood (ML) estimate. However, similar to the training of
SL2D-HMMs, the exact expectation step is computationally intractable. To derive a fea-
sible algorithm, we applied the variational EM algorithm [18] to the our proposed model.
The variational method approximates the posterior distribution over the hidden variables
by a tractable distribution.

Furthermore, in the present dissertation, we derive a novel statistical model based on
SL2D-HMMs to overcome their shortcomings. Due to the model structure of SL2D-
HMMs which consists of two independent 1-D Markov chains, SL2D-HMMs have the
same constraints as 1-D HMMs [19] in that (i) the statistics of each state do not change
dynamically and (ii) the output probability of an observation vector depends only on the
current state, not on any other states nor observations. To overcome the above short-
comings, it has been confirmed that augmenting the dimensionality of an acoustic static
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feature vector (e.g., cepstral coeflicients) by appending its dynamic feature vectors (e.g.,
Ist and 2nd order delta cepstral coefficients) [20] can enhance the performance of HMM-
based speech recognizers. It can be considered that augmented feature vectors can cap-
ture dependencies between adjacent acoustic feature vectors. Based on this knowledge,
SL2D-HMMs can also enhance the recognition performance by appending dynamic fea-
tures [13,21], where first-order derivative coeflicients in horizontal and vertical direction
were applied. However, static and dynamic features are assumed to be independent vari-
ables and the relationships between them are ignored even though these relationships are
essentially deterministic. As a result, inconsistency between the static and dynamic fea-
tures is tolerated.

In previous work [1], trajectory HMMs were proposed and successfully applied to speech
recognition and speech synthesis. The standard HMM is reformulated by imposing the
explicit relationship between static and dynamic features, in order that the constraint of
HMMs such as the conditional independence and the constant statistics in each state can
be relaxed. In this paper, we propose a novel generative model that reformulates SL2D-
HMMs as a trajectory model, referred to as separable lattice trajectory 2-D HMMs (SLT2D-
HMMs). The proposed model can overcome the shortcomings of SL2D-HMMs and cap-
ture the dependencies of adjacent observations, without increasing the number of model
parameters. Consequently, the modeling ability can be significantly improved.

The rest of the present dissertation is organized as follows. The next chapter 3 introduces
basic theories of the 1-D HMM and also describes the model structure of SL2D-HMMs
and their training algorithms based on the EM algorithm and variational EM algorithm.
Chapter 5 extends the model structure of SL2D-HMMs for rotational variations and de-
rives the training algorithm based on variational EM algorithm. Chapter 5 reformulates
SL2D-HMMs by imposing explicit relationship between static and dynamic features and
defines SLT2D-HMMs. Relationships between SLT2D-HMMs and other techniques are
also discussed in this chapter. The training algorithm for SLT2D-HMMs is also described
in this chapter. Concluding remarks and future plans are presented in the final chapter.



Chapter 2

Hidden Markov Models

Hidden Markov models (HMMs) are one of widely used statistical models for repre-
senting time series by well-defined algorithms. They have successfully been applied to
acoustic modeling both in speech recognition and synthesis. This section describes its
basic theories, how to calculate output probabilities of an observation vector sequence,
and how to estimate its parameters.

2.1 Definition of HMM

An HMM [22-24] is a finite state machine which generates a sequence of discrete time
observations. At each frame it changes states according to its state transition probabil-
ity distributions, and then generates an observation at time ¢, O,, according to its output
probability distribution of the current state. Therefore, the HMM is a doubly stochastic
random process model.
N
An N-state HMM consist of state transition probability distributions {ai j}, _,» output prob-
1,j=
v j
. = o
venience, the compact notation is used to indicate the parameter set of the model A as
follows:

ability distributions {b j (OI)} , and initial state probability distributions {ni}f\il. For con-

A = [{aij}szl, {bj(.)};vzl, {n,.}fil] 2.1)

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic
model, in which every state of the model could be reached from every state of the model
in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state
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Figure 2.1: Examples of HMM structure.

index increases or stays the same state as time increases. The left-to-right HMMs are
generally used to model speech parameter sequences, since they can appropriately model
signals.

The output probability distributions {b j (-)}1,\;1 can be discrete or continuous depending on

the observations. In continuous distribution HMM (CD-HMM), each output probability
distribution is usually modeled by a mixture of multivariate Gaussian components [25] as
follows:

M
bj(0) = > Wi N (O | tjm Ej ) (2.2)
m=1

where M, W, ptm, and o j, are the number of Gaussian components, the mixture weight,
mean vector, and covariance matrix of the m-th Gaussian component of the j-th state,
respectively. Each Gaussian component is defined by

I
K |2

where symbol T means transpose of vector or matrix, and K is the dimensionality of an

N(O: | pjms Eim) = exp {—% (0 - ) Z51(0, - u,m)} .23

] M
observation vector O,. For each state, {w jm}
m

| should satisfy the stochastic constraint
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M

ijmzl, 1<j<N (2.4)
m=1
1<j<N
Wim > 0, l<m<M (25)

so that {b j (~)}1iv:l are properly normalized, i.e.,

f bj(0)dO,=1. 1<j<N (2.6)
RK

It is noted that due to the model structure of HMMs, HMMSs have the constraints [19] in
that (i) the statistics of each state do not change dynamically and (ii) the output probability
of an observation vector depends only on the current state, not on any other states nor
observations.

2.2 Calculation of output probability

2.2.1 Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence
0 =1{0,,0,,...,0r} and a state sequence S = {sy, 55, ..., s7} is calculated by multiplying
the state transition probabilities and state output probabilities for each state, that is,

T

P©O,SIA) =] [as,.b, 0, 2.7)

=1

where a,,;, denotes ;. The total output probability of the observation vector sequence
from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

T
POIN) =) [ [asnbs 0. (2.8)

allg t=1
The order of 2T - NT calculation is required, since at every t = 1,2,...,T there are N

possible states that can be reached (i.e., there are N7 possible state sequences). This
calculation is computationally infeasible, even for small values of N and T; e.g., for
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N = 5 (states), T = 100 (observations), there are on the order of 2 - 100 - 5'° ~ 107
computations. Fortunately, there is an efficient algorithm to calculate Eq. (2.8) using
forward and backward procedures.

2.2.2 Forward-Backward algorithm

The forward-backward algorithm is generally used to calcurate P (O | A), which is the
probability of the observation sequence O given the model A. If I directly calculate
P(O|A), it requires on the order of 27 - N calculation. The detail of the forward-
backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to 7 and the i-th state
at time ¢, given the HMM A is defined as

a/t(l) = P(OI’OZ’ cee ’OZ’ S = llA) . (29)

a, (i) is calculated recursively as follows:

1. Initialization
(i) =mb; (0)), 1<i<N (2.10)

2. Recursion

N
. . I<j<N
a(j) = [ZE a’t—l(l)aij} bi@). 5 (2.11)
3. Termination

N
POIA) =) ar(i). (2.12)

i=1

As the same way as the forward algorithm, backward variables S,(i) are defined as

ﬁl(l) = P(0t+1’0[+27'-'90T | St = iaA)’ (213)

that is, the probability of a partial vector observation sequence from time 7 to 7, given the
i-th state at time ¢t and the HMM A. The backward variables can also be calculated in a
recursive manner as follows:

1. Initialization
Bri)=1, 1<i<N (2.14)
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Figure 2.2: Implementation of the computation using forward-backward algorithm in
terms of a trellis of observations and states.

2. Recursion
N

L
Bl = Y ayh; 0w fn(i)s [ Zp50 2.15)

j=1
3. Termination

N
POIA) =) Bili). (2.16)
i=1

The forward and backward variables can be used to compute the total output probability
as follows:

N
POIN) = Z a(PB()). 1<t<T (2.17)
=1

The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In
this figure, the x-axis and y-axis represent observations and states of an HMM, respec-
tively. On the trellis, all possible state sequences will re-merge into these N nodes no
matter how long the observation sequence. In the case of the forward algorithm, at time
t = 1, I need to calculate values of (i), 1 <i < N. Attimes ¢ = 2,3,...,T, I need only
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calculate values of @,(j), I < j < N, where each calculation involves only the N previous
values of a,_(i) because each of the N grid points can be reached from only the N grid
points at the previous time slot. As a result, the forward-backward algorithm can reduce
order of probability calculation.

2.3 Searching optimal state sequence

The single optimal state sequence S = {51, $2,..., st} for a given observation vector se-
quence O = {0, 0, ..., 07} is useful for various applications (e.g., decoding, initializing
HMM parameters). By using a manner similar to the forward algorithm, which is often
referred to as the Viterbi algorithm [26], I can obtain the optimal state sequence S. Let
o, (i) be the likelihood of the most likely state sequence ending in the i-th state at time ¢

(St(l) = max P(Sl,...,st_l, St = i,Ol,...,OtlA), (2.18)

SseeesSt—1

and ¥, (i) be the array to keep track. The complete procedure for finding the optimal state
sequence can be written as follows:

1. Initialization

01 (i) = mb; (0y), 1<i<N (2.19)
Y1 () =0, 1<i<N (2.20)
2. Recursion
. . 1<i<N
6, (j) = max |61 (i) aij] b; (0. s g (2.21)
. . I1<i<N
Ui (j) = argmax |5, (D) ayy . s g (2.22)
3. Termination
P = max [67 ()], (2.23)

st = argmax [o7 (1)] . (2.24)
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4. Back tracking

§l‘ = wl+1 (Sl:-l)’ = T - 1""7 1 (2.25)

It should be noted that the Viterbi algorithm is similar to the forward calculation of
Egs. (2.10)—(2.12). The major difference is the maximization in Eq. (2.21) over previ-
ous states, which is used in place of the summation in Eq. (2.11). It also should be clear
that a trellis structure efficiently implements the computation of the Viterbi procedure.

2.4 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the
maximum likelihood (ML) criterion to obtain A which maximizes its likelihood P (O | A)
for a given observation sequence O, in a closed form. Since this problem is a high dimen-
sional nonlinear optimization problem, and there will be a number of local maxima, it is
difficult to obtain A which globally maximizes P (O | A). However, the model parameter
set A locally maximizes P (O | A) can be obtained using an iterative procedure such as
the expectation-maximization (EM) algorithm [27], and the obtained parameter set will
be appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the
HMM with discrete output distributions can also be derived in a straightforward manner.

2.4.1 Q-function

In the EM algorithm, an auxiliary function Q(A, f\) of the current parameter set A and the
new parameter set A is defined as follows:

QA A) = Z P(q|0,A)log P(O,S | A). (2.26)
all §

Each mixture of Gaussian components is decomposed into a substate, and S is redefined
as a substate sequence,

S = {(Sl’ml)’(SZ’m2)7~' -,(ST, mT)}7 (227)

12



where (s;, m;) represents being in the m,-th substate (Gaussian component) of the s,-th
state at time ¢.

At each iteration of the procedure, the current parameter set A is replaced by the new
parameter set A which maximizes Q(A, A). This iterative procedure can be proved to
increase likelihood P (O | A) monotonically and converge to a certain critical point, since
it can be proved that the Q-function satisfies the following theorems:

e Theorem 1

QA A) > QA A) = PO|A) > PO|N) (2.28)

e Theorem 2
The auxiliary function Q(A, A) has the unique global maximum as a function of A,
and this maximum is the one and only critical point.

e Theorem 3
A parameter set A is a critical point of the likelihood P(O | A) if and only if it is a
critical point of the Q-function.

2.4.2 Maximization of Q-function

According to Egs. (2.2) and (2.7), log P (O, S | A) can be written as

log P(0,S|A) =log P(O|S,A)+log P(S|A), (2.29)
T
log P(O18,A) = > 10g N (O | o s, ) (2.30)
t=1
T T
log P(S|A) =logm,, + Y loga,, ., + Y logwy, (2.31)
=2 =1

Hence, Q-function (Eq. (2.26)) can be rewritten as
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N
QA A) :ZP(O,Sl =i|A)-logn;

i=1

N
+ZZ P(O.s = i,s5. = j)-loga;

[
~
S
X

|

=i,m =m|A)-logw;,

N M T
4D, 0 D PO si=im=mIN) logN O, |t ). (232)

The parameter set A which maximizes the above equation subject to the stochastic con-
straints

N
Z m=1, (2.33)
i=1
N
Day=1, 1<i<N (2.34)
j=1
M
Zw,-m=1, 1<i<N (2.35)
m=1

can be derived by Lagrange multipliers or differential calculus as follows [28]:
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= y1(0), 1<i<N

T
DG ))

=2 1<i<N
4= 7 : 1<j<N
Yi-1(0)
=2
T
Z (i, m)
=l I<N
Wim = T ) <m< M
PR
t=1
T
> vitimy -0,
=1 1<i<N
Him =

N :
> vdim)
t=1

T
D vilim) - (0 = i) (0 = pin)
=1 1 S l S N
T ’ 1<msM

> viti,m)

t=1

Zim =

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

where y,(i), y,(i,m), and & (i, j) are the probability of being in the j-th state at time ¢, the
probability of being in the m-th substate of the i-th state at time ¢, and the probability of

being in the i-th state at time ¢ and j-th state at time 7 + 1, respectively, that is
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Y: () =P(0,q, =i|N)
@, (D)B(I) 1<i<N

=5 t=1,...,T 24D
D @B
j=1

Yi(i;m) = P(0,q; = iy s, = m| A)
Ny 1<i<N

— Na’t(l)ﬁ(l) . A:VimN (Ot Iﬂim’ O-im) i 1 <m< M (242)
N al DBy D waN O, lpoy) T
j=1 k=1

'ft(i’ ]) = P(Oa qt = i’ qt+1 = ] | A)
_ at(i)aijbj (0111 Bis1()) 1<i<N
- N : t=1,...,T (2.43)

N
DD aDanb, (0,:) B ()

=1 n=1

2.5 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), its algorithm
for calculating the output probability (forward-backward algorithm), searching the opti-
mal state sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are
described. Following chapters show the separable lattice 2-D HMMs, one of the HMM
based approach for image recognition.
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Chapter 3

Separable Lattice 2-D Hidden Markov
Models

This chapter describes separable lattice 2-D HMMs (SL2D-HMMs). SL2D-HMMs have
the composite structure of multiple hidden state sequences which interact to model the
observation on a lattice. SL2D-HMMs perform an elastic matching in both horizontal
and vertical directions; this makes it possible to model not only invariance to the size and
location of an object but also nonlinear warping in each dimension.

The rest of this chapter is organized as follows. Section 3.1 reviews the previous works
of HMM-based image recognition techniques. Section 3.2 describes the model definition
of SL2D-HMMs. Section 3.3 derives the training algorithms of SL2D-HMMs.

3.1 Related work

Statistical approaches have been successfully applied in the field of image recognition. In
particular, principal component analysis (PCA) based approaches, such as the eigenface
(eigen-image) method [29] and subspace method [30], attain good recognition perfor-
mance. There are many significant classifiers and feature representations. However, in
the case of conventional methods, some pre-processing for normalizing image variations,
e.g., geometric variations such as size, location, and rotation, is usually applied to input
images because many classifiers cannot deal with such image variations. The accuracy of
these normalization processes affects recognition performance. Task-dependent normal-
ization techniques have thus been developed for each image recognition task. However,
the final objective of image recognition is not to accurately normalize image variations for
human perception but to achieve high recognition performance. It is therefore a good idea
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to integrate the normalization processes into classifiers and optimize them on the basis of
a consistent criterion.

HMM based techniques for image recognition have been proposed to reduce the influ-
ence of geometric variations [3—13]. Geometric matching between input images and
model parameters is represented by discrete hidden variables, and the normalization pro-
cess is included in calculating probabilities. For an earlier work, Samaria et al. applied
HMMs to human face identification tasks [3]. The observation sequence was composed
of over-lapping window/line blocks extracted from each sample image and modeled by
ergodic/top-to-bottom HMMs, provided that image data had to be treated as if it was 1-D
data sequence. This leads to lack of robustness to geometric variations. It was therefore
natural for many researchers to consider extending HMMs to multi-dimensional ones.

In previous work [31], planar hidden Markov models were developed to provide a proba-
bilistic formulation for the planar warping problem. The probability of a particular state
depends only on the state at adjacent observations in both horizontal and vertical direc-
tions. This assumption is a natural extension of the Markov property to a second-order
source and the complexity can be reduced by generalizing the optimality principle as in
the one-dimensional forward-backward and Viterbi algorithms. However, the computa-
tion of planar HMMs is still exponential. Therefore, approximate Viterbi training algo-
rithms (e.g. [32]) and additional assumptions to simplify the model structure (e.g. [6])
have been proposed to solve the problem in polynomial time.

On the other hand, a more restricted structure, pseudo 2-D HMMs (or called embedded
HMMs) have been proposed [4] and applied to many image recognition tasks. Their
extension to pseudo 3-D HMMs has also been developed for image sequence recogni-
tion [33]. A pseudo 2-D HMM has a composite state structure for an efficient 2-D rep-
resentation avoiding the complexity burden of a fully connected 2-D HMM. Figure 3.1
shows the graphical model representation of the pseudo 2-D HMM. The states of a su-
perior HMM in the horizontal direction are called super-states and each super-state has
a one-dimensional HMM in the vertical direction instead of a probability density func-
tion. This assumption reduces the computational complexity and the maximum likelihood
training algorithm has been derived [5]. However, the state alignments of consecutive ob-
servation lines in the vertical direction are calculated independently of each other and this
hypothesis does not always hold true in practice.

Essentially, the studies of 2-D dynamic programming (2D-DP) treat the same problem
of the 2-D HMMs. The main difference between these studies is the definition of the
cost function; The 2D-DP focuses on finding the mapping between two images with a
pre-defined cost function, while the likelihood of 2-D HMM:s is defined between an input
image and the distribution which is estimated from multiple training images. Although
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Figure 3.1: Graphical model representation of the pseudo 2-D HMMs: The states of a
superior HMM in the horizontal direction are called super-states and each super-state has
a one-dimensional HMM in the vertical direction.

some efficient approximation algorithms have been proposed for the 2D-DP problem [14-
17], they still need high complicated costs and prior knowledge to determine the cost
function is required for representing an accurate elastic matching dependently on image
variations.

For another HMM based approach, Separable Lattice 2-D HMMs (SL2D-HMMs) have
been proposed [9] to reduce the computational complexity while retaining the good prop-
erties for modeling multi-dimensional data. The detail of SL2D-HMMs will be described

in the next section.
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3.2 Model definition

Separable lattice 2-D hidden Markov models (SL2D-HMMs) [9] are defined for modeling
two-dimensional data. The observations of two-dimensional data, e.g., pixel values of an
image and image sequence, are assumed to be given on a two-dimensional lattice:

0 ={0,|t = (Y, 1P) e T}, (3.1)

where ¢ denotes the coordinates of the lattice in two dimensional space T and 1™ =
1,...,T" is the coordinate of the m-th dimension. The observation O, is emitted from the
state indicated by the hidden variable S; € K. The hidden variables S; € K can take one of
K = KVYK® states, which are assumed to be arranged on a two-dimensional state lattice

= {(1,1),(1,2),...,(1,K?),(2,1),..., (KD, K®)}. In other words, a set of hidden
variables, {S,|t € T}, represents a segmentation of observations into the K states, and each
state corresponds to a segmented region in which the observation vectors are assumed to
be generated from the same distribution. Since the observation O; is dependent only on
the state S; as in ordinary HMMs, dependencies among hidden variables determine the
properties and the modeling ability of two-dimensional HMMs.

To reduce the number of possible state sequences, we constrain the hidden variables to be
composed of two Markov chains:

S = (SV.s?), (3.2)
S(m) — {S(m), B S;Zlﬂi, . S;ﬁi)} (33)

where S is the Markov chain along with the m-th coordinate and S (2"3 efl,...,Kmy.
In the separable lattice 2-D HMMs, the composite structure of hidden variables is defined
as the product of hidden state sequences: S; = (S ;112, S ﬁé))) This means that the segmented
regions of observations are constrained to be rectangles and this allows an observation
lattice to be elastic in both vertical and horizontal directions. Using this structure, the

number of possible state sequences can be reduced from {[],, K} 7" to [T, {K™}"".

The joint probability of observation vectors O and hidden variables S can be written as

PO,SIA) = POIS,A) | | PS™1A)
m=1,2
T(m
= ]_[P(0,|S,,A)]_[ P IA) [ ] PSS A
m=12 fm—o

(3.4)

where A is the model parameters of SL2D-HMMs. This model parameters of SL2D-
HMMs are summarized as follows:
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Figure 3.2: Model structure of the separable lattice 2-D HMMs: hidden state sequences
are composed of independent two Markov chains.

State transition(horizontal)

State transition(vertical)

e Parameters for state transition probability:
1) I = {ﬂfm)ll < i < K™} : the initial state probability distribution, where
"™ = PES™ =i|A) (3.5)
is the probability of state i at 7™ = 1 in the m-th state sequence S .

2) A™ = {ag@ |1 <i,j< K™} : the transition probability matrix, where

a” =P =j1S0 =i A) (3.6)

1(m) Hm) _1
is the transition probability from state i to state j in the m-th state sequence S .

e Parameters for output probability distribution :

= {br(Oy)|k € K} : the output probability distributions, where b (O;) is the
probability of observation vector O, at the state k on the state lattice K and assumed
to be a single Gaussian distribution :

PO:|S¢ = k) = N(Ov; py, Zi) (3.7

where u; and X; denote the “state level” mean vector and the covariance matrix,
respectively.
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Figure 3.3: Graphical model representation of the separable lattice 2-D HMMs: The
rounded box represents a group of variables and the arrow to the box represents the de-
pendency to all variables in the box instead of drawing arrows to the all variables. The ob-
servations are emitted from the product of horizontal and vertical hidden state sequences.

Using the above shorthand notation, a separable lattice 2-D HMM is defined as

A = {AD,A?PB}, (3.8)
A™ = 1™, Amy, (3.9)

Fig. 3.2 and 3.3 show the model structure of the separable lattice 2-D HMMs and its
graphical model representation, respectively. In Fig. 3.3, the rounded box represents a
group of variables and the arrow to the box represents the dependency to all variables in
the box instead of drawing arrows to the all variables.

The separable 2-D lattice HMMs can be applied to image modeling and perform an elas-
tic matching in both horizontal and vertical directions by assuming the transition prob-
abilities with left-to-right and top-to-bottom topologies. Although the structure of the
proposed model cannot represent rotations of images, it is still useful for image detection
and the framework makes it possible to achieve size- and location-invariant image recog-
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nition. Furthermore, the proposed model can be used for 3-D and higher dimensional
applications, e.g., image sequences, 3-D object models, etc., due to the composite struc-
ture which reduces the complexity of the algorithm while retaining the good properties
for modeling multi-dimensional data.

The main difference between the proposed model and the embedded HMMs is that the
SL2D-HMM have a symmetric structure in vertical and horizontal directions. Therefore,
there is no need to determine which direction of 2-D data should be modeled as the super
states or the embedded states. If the hidden variables of the embedded states also shared
for all observation sequences, an embedded HMM becomes equivalent to a SL2D-HMM.
In the embedded HMMs, the exact EM algorithm can be performed in practice, because
the state transitions of an embedded state sequence depend only on the corresponding
super state. However, in SL2D-HMMs, the state transitions of one direction depend on the
all the hidden variables of the other direction; therefore the exact EM algorithm becomes
infeasible.

In the next section, the training algorithm for the SL2D-HMMs using the variational EM
algorithm and the variational DAEM algorithm and are derived. Although some exten-
sions of SL2D-HMMs have been proposed, e.g., explicit state duration modeling [12],
this dissertation uses an original form of SL2D-HMMs.

3.3 Training algorithm

3.3.1 EM algorithm

The parameters of the proposed model can be estimated via the expectation maximization
(EM) algorithm which is an iterative procedure for approximating the Maximum Like-
lihood (ML) estimate. This procedure maximizes the expectation of the complete data
log-likelihood so called @Q-function:

QAN) = Z P(S|O,A)InP(O,S|N) (3.10)
S

The likelihood of the training data is guaranteed to increase by increasing the value of the
Q-function:

QA N)>QN,AN) = PO|N)=PO|N) (3.11)

The EM algorithm starts with some initial model parameters and iterates between the
following two steps:
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(E-step) : compute QAY, A)
(M-step) : A%V =arg max QAP A)

where k denotes the iteration number. The E-step computes the posterior probabilities
over the hidden states while keeping model parameters fixed to current values. The M-step
uses these probabilities to calculate the expected log-likelihood of the training data as a
function of the parameters and maximize the Q-function with respect to model parameters.
In this procedure, each step increases the value of the Q-function; hence the likelihood of
the training data is also guaranteed to increase or remain unchanged on each iteration.

By maximizing the Q-function with respect to model parameters A, the re-estimation
formula in the M-step can be easily derived as follows:

”Em) — <S(1m),i> (3.12)
T(m)
2. (st i) (7. 1)
af) = (3.13)
Z (st.i)
1) =
D (8.k)0,
= ——_ (3.14)
S S
t
D S0 10 (0 = )0, — )
r = - (3.15)

PREND

where (-) denotes the expectation with respect to the posterior distribution over the hidden
variables. These expectations are computed in the E-step by the following equations.

(sm.i)) = > PS10,M8S5. 1) (3.16)
S

(st Li)(sim. )y = Do PS10,M685% S5, ) (3.17)
S

Seky = (S V)T k) (3.18)

In the case of a 1-D HMM, the forward-backward algorithm is applied to calculate the ex-
pectations efficiently. Even though the Markov chains of SL2D- are independent a-priori,
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they become conditionally dependent given the observations and the computation of ex-
pectations become infeasible. If we compute expectations in the exact E-step directly
according to Eqgs.(3.16)—(3.18), we need to consider summations over all the combina-
tions of states and the complexity of the E-step is O (Hm{K (’")}T(m)). As in one-dimensional
HMMs, the complexity of SL2D-HMMs can be reduced by using forward-backward al-
gorithm. The Q-function can be rewritten with respect to one of Markov chains " as
follows:

Z P(S|0,A)InP(S,0|N)
S

- Z ZP(S(”) 15,0, \)PS|0,A)InP(S™,01S,A)

Ses\s™ s™

- Z P(S|0,N) x ZP(SW|§,0,A)1nP(S<">,0|§,A)

Ses\s™ s
+ Z P(§ |O,A)InP(S|A) (3.19)
Ses\s™

where the term in the square bracket is the Q-function associated with $* given S and
that can be calculated by the forward-backward algorithm. Hence the complexity of the
exact E-step can be reduced to O({K™}2T™1L,,..,{K™}™"). However, the calculation of
the posterior distribution P(S |0, A) in the E-step is computationally intractable due to the
combination of hidden variables. To derive a feasible problem, we applied the variational
EM algorithm [18] to the training algorithm of SL2D-HMMs.

3.3.2 Variational EM algorithm

The variational methods approximate the posterior distribution over the hidden variables
by a tractable distribution. Any distribution over the hidden variables defines a lower
bound on the log-likelihood

PO,S|AN)
In S
ZQ( Tl

PO,S|A)
S)In
ZQ( =5

? (Q,N) (3.20)

InP(O|A)

\%

where Jensen’s inequality has been applied. The difference between In P(O | A) and ¥
is given by the KL divergence between Q(S) and the posterior distribution of the hidden
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variables P(S | O, A):

PO.S|A)
JA) = S)In
F(Q,A) ZQ( =
~ P(S|0,A)
= ZS:Q(SlA)lnP(OlA)+ZS:Q(S) In TR
= InPO|A)-KLQ| P) (3.21)

Since the true log-likelihood In P(O | A) is independent of Q(S), maximizing the lower
bound ¥ is equivalent to minimizing the KL divergence. If we allow Q(S) to have com-
plete flexibility then we see that the optimal Q(S) distribution is given by the true posterior
P(S | O, A), in the case where the KL divergence is zero and the bound becomes exact.
In order to yield a tractable algorithm, it is necessary to consider a more restricted struc-
ture of Q(S) distributions. Given the structure, the parameters of Q(S) are varied so as to
obtain the tightest possible bound, which maximizes 7.

The variational EM algorithm iteratively maximizes ¥ with respect to the Q and A hold-
ing the other parameters fixed:

(E-step) : Q®V = argmax7(Q,A%)
QeC

M-step) : A®D = argmaxF(Q*Y, A)
A

where C is the set of constrained distributions. In this procedure, the lower bound ¥ is
guaranteed to increase instead of the value of the Q-function.

The complexity and the approximation property of the variational EM algorithm are de-
pendent on a constraint to the posterior distribution Q(S) and it should be determined for
each structure of graphical models. Here we consider a constrained family of variational
distributions for the proposed model by assuming that Q(S) factorizes over subset S of
the variables in S, so that

o) = 08"0oEs?) (3.22)

where Q(S) are the posterior distribution over S and » g 0"y =1, m = 1,2. To make
the bound as tight as possible, we use elementary calculus of variations to take functional
derivatives of the lower bound with respect to Q(S"™). In this case, the Euler-Lagrange
equation can be solved simply by taking partial derivatives with respect to one of the
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distributions:
oF
40 (S(n) — S(ﬂ)’)
= > | ]es™mPw©,5,5" |1 A)-InQE™) -1
EES\S(") m#n

Z 1—[ OS™)In PO |5, , A) + In P(S™') — In Q(§™") + const. (3.23)

Se S\ s m#n

The maximum of ¥ occurs at a critical point subject to the constraint that 3 ¢m Q(S™) =
1, and can be found using a Lagrange multiplier A”. By setting for each of state sequence
S™_ following Euler-Lagrange equation can be obtained.

oF

30 +1" =0. (3.24)
The optimal distributions can be derived as
T
Q(S™) = %P(S(")IA) H h(t™,S) (3.25)
=1
A, sy = > [[eE™) D P08, S, A) (3.26)
Ses\s™ m#n fet\1™

= >0 > | S8k In PO lSs = kS5 A (3.27)

kek\k tet\t) m#n

where Z™ is a normalization constant including A”. By inspection, this distribution is
Ef))) corre-

Therefore,

the same structure as the posterior of standard HMMs: the expectation h(£™, S

sponds to the observation probability associated with the state variable Sig

the forward-backward algorithm can be used to compute the following expectations effi-

ciently:

((sE-0)) = > o™y (3.28)

§im
(S ) (s 4)) = D as™ese s, ) (3.29)

sim

M
(k) = | J«si iy (3.30)

m=1

The complexity of E-step with the variational approximation becomes O(M [],, K™ T )
owing to the computation of In A(#", S f("))) Note that the computational cost can be sig-

nificantly reduced from the exact EM algorithm to polynomial time complexity.
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Using these expectations, the re-estimation formula of the proposed model in the M-step
are derived as follows:

™ = ((s§m>,i)>, (3.31)
T
2 (s 512.)
4 o= =2 — , (3.32)
> ((st2.9)
tm=1
D (8,10,
! (3.33)

S S

D S6 k) 00— O, — )T

t

X, = (3.34)

RN

t

3.3.3 Variational DAEM algorithm

The EM algorithm has the problem that the solution converges to a local optimum and the
convergence point depends on the initial model parameters. In the variational EM algo-
rithm for SL2D-, the decoupled posterior distributions are updated individually based not
only on the initial model parameters but also on the other distributions, both of which are
unreliable at an early stage of training. To avoid this problem, the deterministic anneal-
ing EM (DAEM) algorithm [34] can be applied to the algorithm derived in the previous
section and it is shown that the expectations with respect to the decoupled posterior dis-
tributions for the DAEM can also be calculated by the forward-backward procedure.

In the DAEM algorithm, the problem of maximizing the log-likelihood is reformulated as
minimizing the thermodynamic free energy defined as

Ly = —é In > P(S,01AY (3.35)
S

where 1/f called the “temperature” and this cost function can be rewritten by using
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Jensen’s inequality:

P(S,O|A
Ly = - mZ Qﬁ(s)(Q—(;'))ﬁ
P(S, 0lAF
> = S)In
> Z 0u()In =55
= D 0PSO - - LS 04810 04(S) (3.36)
3 3
= F5(0s,A) (3.37)

where —%3(0g, A) is the same form as the free energy in statistical physics, and maxi-
mizing F3(0gs, A) with a fixed temperature can be interpreted as the approach to thermo-
dynamic equilibrium. In the algorithm, the temperature is gradually decreased and the
function is deterministically optimized at each temperature. The procedure of the DAEM
algorithm can be summarized as follows:

1 Give an initial model and set 8 = 3,

2 Iterate EM-steps with § fixed until Fz converged:

(E step) : Q(k”) = argmax F5(Qp, AV)
QﬁEC

(Mstep) = A®*D = argmax F5(Q) ", A)
A

3 Increase .

4 If B > 1, stop the procedure. Otherwise go to step 2.

where 1/,,, 1s an initial temperature and should be chosen as a high enough value that
the EM-steps can achieve a single global maximum of #5. At the initial temperature,
the entropy of Qs(S) is intended to be maximized rather than the @ function (the first
term of equation (3.36)); therefore Qs(S) becomes closer to uniform distribution. While
the temperature is decreasing, the form of Qp($) changes from uniform to the original
posterior and at the final temperature 1/8 = 1, the negative free energy ¥ becomes equal
to the lower bound ¥, accordingly the DAEM algorithm agrees with the original EM
algorithm.

If the distribution Qp(S) have complete flexibility, the optimal distribution which maxi-
mizes g is given by
P(0,S|INY

Sl A (3.38)
Z P(O, S|A
S

1
0s(S) = Z—ﬁP(O,SV\)ﬁ =
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where Zg is the normalization constant. In SL2D-HMMs, decoupled approximate distri-
butions can be derived as

(n)
1 . \
Qu(S"™) = — PSINY | | ha®. s )
Zﬁ 1m=1
(3.39)
and the normalization constant is given by
7
7 = > PSUIAY | | ne, s (3.40)

S =1

The expectations with respect to this distribution can also be calculated by the forward-
backward algorithm with using P(S™|A)? and h(:™, S ") as the transition probabilities

1(n)
and the observation probabilities, respectively.

3.4 Disadvantage

It must be noted that the modeling accuracy of SL2D-HMMs is still insufficient because
of the following two assumptions, which are inherited from 1-D HMMs: i) the stationary
statistics within each state and ii) the conditional independent assumption of state output
probabilities. Moreover, SL2D-HMMs cannot deal with affine deformation completely.
In other words, SL2D-HMMs cannot represent rotational variations. This is because the
model structure composed of two independent (horizontal and vertical) Markov chains.

3.5 Summary

In this chapter, separable lattice 2-D hidden Markov models (SL2D-HMMs) have been
defined, in which multiple hidden state sequences interact to model the observations on
a lattice. it is focused on the case of 2-D lattices, with a horizontal and vertical Markov
chain, and their application to modeling images. SL2D-HMMs can perform an elastic
matching in both horizontal and vertical directions; this makes it possible to model in-
variances to the size and location of an object. A training algorithm for SL2D-HMMs
based on a variational approximation have been presented. Moreover, the deterministic
annealing EM (DAEM) algorithm have been applied to the training of SL2D-HMMs with
a variational approximation. However, the modeling accuracy of SL2D-HMMs is still
insufficient. The next chapter will describe an extension of SL2D-HMMs for rotational

30



variations. In Chapter 5 reformulates SL2D-HMMs by imposing explicit relationship
between static and dynamic features to overcome these shortcomings.
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Chapter 4

An extension of separable lattice 2-D
HMDMs for rotational variations

In the previous chapter, the model definition and the training algorithm for SL2D-HMMs
were described. Although SL2D-HMMs can perform an elastic matching in both hori-
zontal and vertical directions, SL2D-HMMs cannot deal with rotational variations. This
chapter derives an extension of separable lattice 2-D HMMs for rotational variations. The
training algorithm for the proposed model based variational EM algorithm is also derived.

4.1 Model structure representing rotational variations

To reduce the complexity, SL2D-HMMs have only one state sequence in each direction;
this means that all horizontal/vertical lines of an observation lattice have the same state
alignment for each direction. However, to represent the rotational variations, the models
should have a different state alignment for each observation line and horizontal/vertical
state alignments should be changed along with vertical/horizontal direction. In this the-
sis, we propose a new model structure with additional HMM states which represent the
shifts of the state alignments of observation lines in a particular direction. Since the de-
gree of the shift is controlled by the Markov chains, the proposed model can represent
the dependency of the state alignments between consecutive observation lines. There-
fore, the proposed model can perform a continuous elastic matching including rotational
transformations. Figure 4.1 and 4.2 show the model structure of the proposed model and
graphical representation for the proposed model, respectively.
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The likelihood function of the proposed model is defined as follows:

P(0,S,d| A PO|S,d,A)-P(S|A)-P(d]|A)

[ [Poispa,my| | Ps™iny-| [Pa™in @
t m m

where S represents the reference state sequences corresponding to the state sequences
of SL2D-HMMs and d represents the shift state sequences and consists of two Markov
chains for each dimension:

d = {d",a) (42)
m _ m m (m)
dam = {d", 4", ... d¥) 4.3)
dn e (Do DI+ 1, ... DY, n#m

4.4)

™ and D%)x represent the minimum and maximum shift of the m-th coordinate

min

respectively, and S7 is the shifted state defined as

where D

(1 2 1) 2
S; = (s ?3, S ;23) - (5( S§<2:+d<2> ) (4.5)

(1) >
D, A1)
where the following boundary conditions are assumed:

. 1 (<o
S;m)) - { K™ Ez(m) > T)(m)) (4.6)

Figure 4.3 shows an example of the state alignment of the proposed model where mono-
tonic alignment can be obtained by using shift states.

Model parameters of the proposed model are summarized as follows:

e Parameters for state transition probability of reference states S:

1) Hg’”) = {ﬂgml.)ll < i < K™} : the initial state probability distribution, where
7" = P(S™ = i|A) is the probability of state i at £ = 1 in the m-th state

sequence S™.

2) AV = {ag’f'l.)j |1 < i,j < K™} : the transition probability matrix, where

aé”:..),. = P(S) = jIS\,_, = i,A) is the transition probability from state i to

state j in the m-th state sequence S".
e Parameters for state transition probability of shift states d :
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State transition(horizontal)

Shift-State transition(vertical)
State transition(vertical)

K‘ State transition(horizontal) ~ Shift-State transition(horizontal)

. Sea SO N
,

State transition(vertical)
Shift-State transition(vertical)

Shift-State transition(horizontal)

Figure 4.1: Model structure of the proposed model: The horizontal/vertical state align-
ments is changed along with vertical/horizontal state direction to represent the rotational
variations.

1) H(m) = {n' . l)ll <i< Kg")} . the initial state probability distribution, where

ﬂ(d”? P(dim) = i|A) is the probability of state i at #” = 1 in the m-th state

sequence d™.

2) (m) — { a(m) | D(m)

d,ij" " min —

ag'g P(dt((,':’)) ]ldt((nm))_ | =1, A) is the transition probability from state i to state
(m)

<ij< D™} - the transition probability matrix, where
Jj in the m-th state sequence d

e Parameters for output probability distribution :
= {b(Oy)|k € K} : the output probability distributions, where b (O;) is the
probability of observation vector O, at the state k on the state lattice K and assumed
to be a single Gaussian distribution : P(O|S; = k) = N(Oy; pu;, Xx) where p, and
Y are the mean vector and the covariance matrix, respectively.
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Figure 4.2: Graphical representation of the proposed model: The shift sequence affects
the all data on the same observed line.

Using the above shorthand notation, the proposed model is defined as

— (1D A@) A AQ2)
A = AV AD AV AY B, 4.7)
AP = (g, AP, (4.8)
AP = i, ANy (4.9)

The proposed model has potential to perform an continuous elastic matching beyond ro-
tational variations. However, in this dissertation, the topology and the shift amounts are
constrained to a special form which is expected to represent the continuous rotational vari-
ations. The example of the form for the m-th dimension where D%;)z = —2 and DE,'Z?X =2
is shown in figure 4.4.
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SL2D-HMMs 11 2 233 Reference states
101223 3| »(1.1,2233)
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............................................. —(1,1,1,1,2,2)
171017172 2]—(1,1,1,1,2,2)

Shift state transitions

08880

Figure 4.3: An example of state alignment of the proposed model for reference states and
shifted states in horizontal direction: Without shift states (SL2D-HMMs), rectangle state
alignments can be obtained while with shift states, monotonically shifted state alignments
can be obtained in the proposed model.

4.2 Training algorithm

The parameters of the proposed model can be estimated via the expectation maximization
(EM) algorithm which is an iterative procedure for approximating the Maximum Like-
lihood (ML) estimate. This procedure maximizes the expectation of the complete data
log-likelihood so called Q-function:

QAN) = ZP(S,d |O,A)In P(O,S,d|N\) (4.10)
S.d

By maximizing the Q-function with respect to model parameters A, the re-estimation
formula in the M-step can be easily derived. However, the calculation of the posterior
distribution P(S,d | O, A) in the E-step is computationally intractable due to the combi-
nation of hidden variables. To derive a feasible problem, we applied the variational EM
algorithm [18] to the training algorithm of the proposed model.

The variational methods approximate the posterior distribution over the hidden variables

36



Figure 4.4: The example of topology of the transition probabilities of the m-th dimension
shift states where Dfr's; = —2 and D" = 2; from this topology, monotonically increasing
or decreasing sequence of the shift amount can be obtained and clockwise or counter-
clockwise rotational variations can be represented.

by a tractable distribution. Any distribution over the hidden variables defines a lower
bound on the log-likelihood

InP(O|A)

P@O,S,d|A)
S.d
ZZQ( s

P(OSdIA)
S.d)In
ZZQ() o5 d

= T(Q, A) (4.11)

%

where Jensen’s inequality has been applied. The difference between In P(O | A) and ¥ is
given by the KL divergence between Q(S, d) and the posterior distribution of the hidden
variables P(S,d | O, ) :

PO,S.d| A
F(Q.A) = ZZQ(S a)in o d; )
= P(S.d|0.N)
= ;;Q(S,dlA)lnP(OlA)+;;Q(s,d)ln TR
= InPO|A)-KLQ| P) (4.12)

Since the true log-likelihood In P(O | A) is independent of Q(S, d), maximizing the lower
bound ¥ is equivalent to minimizing the KL divergence. If we allow Q(S, d) to have
complete flexibility then we see that the optimal Q(S, d) distribution is given by the true
posterior P(S, d|0O, A), in the case where the KL divergence is zero and the bound becomes
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exact. In order to yield a tractable algorithm, it is necessary to consider a more restricted
structure of Q(S, d) distributions. Given the structure, the parameters of Q(S, d) are varied
so as to obtain the tightest possible bound, which maximizes 7.

The variational EM algorithm iteratively maximizes ¥ with respect to the Q and A hold-
ing the other parameters fixed:

(E-step) : Q®V = argmax7(Q,A%)
QeC

M-step) : AXD = argmaxF(Q*Y, A)
A

where C is the set of constrained distributions. In this procedure, the lower bound ¥ is
guaranteed to increase instead of the value of the Q-function.

The complexity and the approximation property of the variational EM algorithm are de-
pendent on a constraint to the posterior distribution Q(S, d) and it should be determined
for each structure of graphical models. Here we consider a constrained family of varia-
tional distributions for the proposed model by assuming that Q(S, d) factorizes over subset
S™ and d"™ of the variables in S and d, so that

08D = A0 (4.13)
]_[ o(s™) H o@d™) (4.14)

m=1

where Q(S) and Q(d) are the posterior distribution over S and d, respectively. Also,
Sgm QS™) = 1 and ¥ yw Q(d™) = 1, m = 1,..., M. The optimal distributions of the
subsets are obtained by maximizing ¥ independently while keeping the other distribu-
tions fixed:

O™y o« P(S™ | A) exp Z o(d) Z HQ(S(")) InP(O1S,d,N)

d S\S(’") n#m
(4.15)
Q™) o« PA™ |A) exp Z o) > | [e@mpP@1s,d A
d\d(’”) n¥m
(4.16)

The detail of the derivation will be described in appendix A.1. The E-step consists of the
updates of oS, 0(S?), 0(d™") and Q(d®), which interact through the expectations.
By inspection, the distribution oS, 0(S?), 0(d") and O(d®) have the same structure
as the posterior of standard HMMs. Therefore, the forward-backward algorithm can be
used to compute the following expectations efficiently:
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S(m)

(. i)y = > o@™awd), (4.19)
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(i@ g)) = >\ o@™sd) s, j) (4.20)
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<(S oo+ K )) (a1 ’)> = 31> 08")0d™) %
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1) 4™
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(m) (m) (m)  3(m)
(1))
n

m

(4.22)

where n # m. Using these expectations, the re-estimation formula of the proposed model
in the M-step are derived as follows.

msy = {(570) (4.23)
r = (") (4.24)
T0m
| %<(S§Zfi_l,,-)(5m’j)>
N t > (4.25)
WZ;AI (s )
7™
Z <(df<nm>)_1, i)(d;,,”?, ])>
TS (4.26)
,;1 (a0 1))

PR ER AN
_ 1
S S (Se b )
t 1
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D ((Se kdy, D)
tl
(4.28)

The derivation of the above formulas will be described in appendix A.2.

4.3 Experiments

4.3.1 Experimental conditions

To demonstrate the modeling ability of the proposed model, face recognition experiments
on the XM2VTS database [35] were conducted. we prepared eight images of 100 subjects;
seven images are used for training and one image for testing. The face images were
extracted form the original images (720 x 576 pixels and transformed into gray-scale) and
then sub-sampled to 64 x 64 pixels. In this process, we prepared four sets of data:

e “dataset 17 : the size- and location-normalized data. The original database does not
include much variations of size and location, hence the center of the original images
was used as the face location and the size was fixed to 550 x 550 pixels.

e “dataset 27 : data with size and location variations. The sizes and locations were
randomly generated by Gaussian distributions almost within the location shift of
40 x 20 pixels from the center and the range of size 500 x 500 ~ 600 x 600 with
fixed aspect.

e “dataset 3” : data with rotational variations. The rotation angles are randomly
generated within —10 ~ 10 degrees from Gaussian distribution with 0.0 mean and
5.0 standard deviation.

e ‘“dataset 4” : data with size, location and rotational variations. The size and location
variations were generated as well as “dataset 2” and the rotational variations were
generated as well as “dataset 3.

Figure 4.5 shows the examples of four datasets. Although it was already confirmed that
the recognition performance was significantly improved with appropriate feature vectors
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(a) no variation (b) size and location variations

(¢) rotational variations (d) size, location and rotational
variations

Figure 4.5: Examples of training data; with no variation (a) and with variations of size
and location (b), with rotational variations (c) and with variations of size, location and
rotations (d).

such as 2-D discrete cosine transform coefficients or linear regression coefficients of im-
ages, the pixel intensity values were used as features in this dissertation. This is because
the objective of this experiment was not to obtain the best performance of the proposed
model but to demonstrate the property of the proposed model to normalize rotational
variations. For the purpose of improving the recognition performance, the SL2D-HMMs
were extended by integrating with a linear feature extraction such as probabilistic PCA
or factor analyzers [10]. In the dissertation, it was confirmed that SL2D-HMMs and their
extensions exceed the eigenface methods and subspace methods in face recognition exper-
iments. The structure proposed in this dissertation can be easily integrated with a linear
feature extraction as [10] for improving recognition performance.

The number of reference states was 24 x 24 and the number of shift states was varied
among 6 X 6, 10 x 10, 14 x 14, 18 x 18 and 22 x 22, corresponding to the conditions
that —Df:l% = DE,',';)X = 1,2, 3, 4 and 5, respectively. The number of reference states was
previously optimized to give the best recognition performance on SL2D-HMMs. The
transition probabilities for each sequence of reference states were assumed to be a left-to-
right and top-to-bottom no skip topology and the transition probabilities for each sequence

of shift states were assumed to be the topology as shown in figure 4.4.
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4.3.2 Experimental results

Recognition performance

Figure 4.6(a), 4.6(b), 4.6(c) and 4.6(d) show the recognition rates of the test dataset with
no variation (a), with variations of size and location (b), with rotational variations (c) and
with variations of size, location and rotations (d), respectively. In the figures, plain boxes
and meshed ones represent the recognition rates of the models trained from the dataset
with no variation and the same variation as the test dataset, respectively.

From figure 4.6(b), it can be seen that the proposed model possesses the comparable
normalization ability to the SL2D-HMMs for size and location variations. Also, from
figure 4.6(c), it can be seen that SL2D-HMMs degrade the recognition performance when
they were trained and tested on ‘“dataset3” where rotational variations were included,
while the proposed model improves the recognition performance significantly compared
with the SL2D-HMMs (meshed boxes). Especially, the highest recognition rate of 81%
was obtained at 14 x 14 and 22 x 22 shift states, which is comparable to the recognition
rate of SL2D-HMMs on “dataset 1.” This means that the proposed model can normalize
rotational variations appropriately. It also can be seen that the proposed model improves
the performance to rotational variations from figure 4.6(d) (meshed boxes). Particularly,
the recognition rates of 79% at 6 x 6, 10 x 10, 14 X 14 and 22 x 22 shift states were
obtained, which also indicates that the proposed model can normalize not only the size
and location variations but also the rotational variations accurately.

Comparing the models trained from no variation datasets (plain boxes) and matched vari-
ation datasets (meshed boxes), the recognition rates of the matched variation were higher
than those of the no variation datasets, even though no variation datasets were appropri-
ately normalized. This is because the models over-fitted to the variation of the training
datasets. However, from another point of the view, the proposed model can preserve the
information of variation in the training data. It might be useful for some classification
tasks, e.g., the model can use a kind of information that some target objects tend to rotate
and the others are not for classification.

State alignments

Figure 4.7 and figure 4.8 show the examples of mean vectors of SL2D-HMMs and the
proposed model, and the visualized state alignments obtained by the Viterbi algorithm,
respectively. In figure 4.7, the number of shift states of the proposed model is 22 x 22.
The mean vectors were estimated from “dataset 1,” “dataset 2,” “dataset 3,” and “dataset
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Figure 4.6: Recognition rates of the SL2D-HMMs and proposed model for each shift
states tested on the dataset with no variation (a), with variations of size and location
(b), with rotational variations (¢) and with variations of size, location and rotations (d),
respectively. In the figures, plain boxes and meshed ones represent the recognition rates
of the models trained from the dataset with no variation and the same variation as the test
dataset, respectively.
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4, respectively. The state alignments are represented by the mean vectors of the states
corresponding to the observations of the test data. The values below the images represent
the averaged log-likelihoods of the observation per pixel given the best alignments. When
the visualized alignment is similar to the test data, it means that the model appropriately
normalized the variations of the test data. The likelihood of the test data can also be
regarded as an objective measure of the similarity; higher likelihood means that more
preferable matching was obtained in terms of the maximum likelihood criterion.

From the results, we can observe that SL2D-HMMs could not deal with the rotational
variations due to the constraint of the model structure. The likelihood of the test data was
also significantly decreased with increasing the rotational angle of the test data. Contrary
to this, when the rotational angle of the test data was —10, 0 or 10 degrees, the rotational
variations of the data can be represented by the proposed model and the differences of the
likelihood between 0 degree and 10, —10 degrees were smaller than those of the SL2D-
HMMs. It seemed that the maximum value of the shift amount obtained by the proposed
model was sufficient to represent the rotational angle +10 degrees. For the model (c) and
(d), the maximum/minimum value of the rotational angle in the corresponding training
dataset was between +10 degrees. This also led to the preferable results. On the other
hand, when the rotational angle was larger, i.e. £20 degrees, the shift amount provided
by the proposed model was not sufficient, so that the proposed model could not deal
rotational variations compared to the results as the angle was +10. Similarly, the proper
state alignment of the reference state was not obtained. This is because, as shown in
eq. (4.15) and (4.16), the reference state sequences and the shift state sequences are
dependent on each other through the variational distributions. Therefore it was difficult
to estimate the proper reference state sequences once the improper shift state sequences
were estimated from the test data. From these results, it was suggested that the number of
shift states need to be determined according to the degree of rotational variation.

4.4 Summary

This chapter has derived an extension of separable lattice 2-D HMMs to deal with rota-
tional data variations. The proposed model has additional HMM states which represent
the shifts of the state alignments of observation lines in a particular direction. In face
recognition experiments on the XM2VTS database, the proposed model achieved better
results to the images than the conventional SL2D-HMMs. Moreover, the state alignments
shows that the proposed model can normalize not only size and location variations but
also rotational variations. The next chapter will derive a novel statistical model, named
as separable lattice trajectory 2-D HMM by imposing explicit relationship between static
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(1) SL2D-HMMs; (11)-(b) proposed model;
no variations size and location variations
(i1)-(a) proposed model; (i1)-(c) proposed model;
no variations rotational variations

(i1)-(d) proposed model;
size, location and rotational
variations

Figure 4.7: Example of mean vectors: (i) is the mean vectors of the SL2D-HMMs. (ii) is
the mean vectors of the proposed model. The number of shift state of (ii) is 22 X 22. They
were estimated from the normalized data (“dataset 17).
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0=10"°
test data B
F =-3.54 F =-3.13 F =-3.81 F =-4.60
ExSL2D %
(a)
F =-332 F=-3.12 F=-329 | F=-397
ExSL2D
(b)
F=-345 | F=-311 | F=-351 | F=-4.14
ExSL2D
()
F=-327 | F=-305 | F=-338 | F=-444
ExSL2D
(d)
F=-368 | F=-328 | F=-312 | F=-339 | F =-4.19

Figure 4.8: Examples of test data and the visualized state alignments on the dataset with
no variation (a), with variations of size and location (b), with rotational variations (c) and
with variations of size, location and rotations (d), respectively. The 6 means the rotational
angle for each test data. The ¥ means the estimated log-likelihood to test data.



and dynamic features into separable lattice 2-D HMMs.
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Chapter 5

Separable lattice trajectory 2-D HMMs

In Chapter 3, we described the structure of SL2D-HMMs, where the hidden variables are
composed of two independent 1-D Markov chains. Therefore, similar to the 1-D HMMs,
the following two limitations are imposed on SL2D-HMMs [19]:

i) The statistics of each state do not change dynamically.

i1) The output probability of the observation is conditionally independent, given the
horizontal and vertical states.

To overcome these shortcomings, augmenting the dimensionality of static feature vectors
(e.g., pixel values) by appending their dynamic feature vectors (e.g., delta and delta-delta
coeflicients) [20] to capture dependencies between adjacent observations can enhance the
performance of the HMM-based speech recognizers [36]. Generally, dynamic features
are calculated as regression coefficients from their neighboring static features and can be
represented as a linear combination of static features. In other words, the relationship
between static and dynamic features is linear, and therefore, deterministic. However, this
relationship is ignored and static and dynamic features are modeled as independent sta-
tistical variables in the standard HMM framework. Before deriving the proposed model,
applications of dynamic feature in 1-D and 2-D case will be described in the next sec-
tion. Then, in Section 5.2, the proposed model will be derived in order to avoid the above
problem.
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5.1 Applications of dynamic features

5.1.1 Dynamic features for speech data

This section describes dynamic features for acoustic features (e.g., Mel-Frequency Cep-
stral Coefficients) which were developed in 1-D time-domain. This have often been used
to model speech signals by HMMs. Let o = [0y, 0,,...,0r] be the sequence of speech
parameter vectors, where o, is a speech parameter vector at time ¢. In a typical speech
recognition system, it is assumed that the speech parameter vector o, is a 3M X 1 vector
consisting of an M-dimensional acoustic static feature

ct = [Cl(l)’ Ct(2),...,C[(M)] (51)
and its first and second order dynamic feature vectors, Ac, and A’c,, that is
0, = ¢ Ac] A¢]|. (5.2)

The dynamic features are often calculated as regression coefficients from their neighbor-
ing static features, i.e.,

L

Ae, = ) wP@e, (5.3)
r=—1
LY

AZC[ = Z W(Z)(T)ct+7'a (5.4)

where {w(7)},__;@ @ are window coefficients to calculate the d-th order dynamic
feature. Usually, the maximum window length L is set to 1-4. The relationship be-

. T .
tween the observation vector sequence o0 = [olT, o; e 0}] and static feature sequence
T
c = [clT, c5 ..., c;] can be arranged in a matrix form as
o=We, (5.5)

where Wis a 3MT x MT window matrix and the elements of W are given as follows:

.
W= [Wi ... W, . Wr| Ly (5.6)
W= W ww?, (5.7)
w = [0, 0w =LY, . w0,
L1
W OLD)0,...,0], d=0,1,2 (5.8)
—
T—(t+L{")
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Figure 5.1: An example of relationship between the observation vector sequence o and the
static feature vector sequence ¢ in a matrix form [1], where the dynamic feature vectors are
calculated using Eqs. (5.3) and (5.4) with L = L = L® = LY = 1, w)(=1) = -0.5,
w(0) = 0.0, w(1) = 0.5, wP(=1) = 1.0, w(0) = =2.0, w2 (1) = 1.0.

where L = Lﬂf)) =0, w® = 1, and ® denotes the Kronecker product for matrices. An
example of the relationship is shown in Figure 5.1.

5.1.2 Dynamic features for image data

In 2-D image case, the observation vector O, is assumed to consist of the M-dimensional
static feature vector

C, = [C(1),C,(2),...,CMD]" (5.9)

and horizontal/vertical dynamic feature vectors, A®C; and A"V C,, that is !

0, =|c7.A"cT. A"y (5.10)

!Using higher-order dynamic features is straightforward. Moreover, dynamic features in other direc-
tions, e.g., diagonal dynamic features can be adopted easily.
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where t = (t(”, t(2)). Likewise 1-D case described in the previous section, these dynamic
features are calculated as regression coeflicients from their neighboring static features:
L
AC, = Z W(H)(T)C(,(1>+T,,<2>), (5.11)
r=—1
L
AVC, = Z W(V)(T)C(t(l),,a)”), (5.12)

S—

where {W(H)(T)}T L and {W(V)(T )}T=—L£‘”

the horizontal and vertical dynamic features, respectively. The observation vectors and

Lo L) are window coeflicients to calculate
=L +

..........

static feature vectors on the 2-D lattice can be rewritten in MTVT® size vector forms as
0 = [ ay .- O .. (TT<1>,T<2)) ]T, (5.13)
C = [ a,l) L G C(TT<1>,T(2>) ]T ) (5.14)
where both elements of O and C are aligned in raster order of the 2-D lattice.

A linear relationship between O and C in 2-D case, which is similar to Eq. (5.5) in 1-D
case, can be obtained as

0 =WC(C, (5.15)
where W is a SMTOT® x MTMT® window matrix given as
.
W = [ W(l,l) o W ol W(T(l),T(Z)) ] Iyt
(5.16)
W, = [P w], (5.17)

where w(ts ), wEH), and wiv) are TWT? size vectors. They are defined so that following

relationships are satisfied based on Egs. (5.10), (5.11), (5.12) and (5.17):

C = (W @I C. (5.18)

AC = (W @ Iy C. (5.19)

ACY = (W @ Ly C, (5.20)

0, = W, ®Ixu)C. (5.21)

The functions of window vectors wis ), wﬁH), and wiv) can be explained as follows: From

Eq. (5.18), wis) is a vector which extract the static feature vector at ¢ = (t“), 1(2)) from
image data. Furthermore, from Egs. (5.19) and (5.20), wEH) and wﬁV) are vectors which
extract the gradients of horizontal and vertical direction centered at ¢, respectively. Exam-
ples of wgs), wﬁH), and wﬁv) are shown in Figure 5.2, where the maximum window length

L =1and M =1 for simplicity.
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Figure 5.2: Examples of wis), wEH), and wgv), where L) = LﬁrH) =LY = L(+V) =1,

w(=1) = w"(=1) = -0.5, w?©0) = w"(0) = 0.0, w?(1) = w"(1) = 0.5 from
Egs. (5.11) and (5.12). The circles in the top box represent the static features. Also, the
squares in the bottom box represent the elements of each window vector. The arrow from
the top to the bottom represents a multiplication between the corresponding static feature
vector and the element of window vector. The resultants of those sums are dynamic
feature vectors as shown in Egs. (5.18), (5.19), and (5.20).

5.2 Model definition

In order to avoid the problem described in the beginning of Chapter 5, that is, the in-
consistency between the static and dynamic feature vectors, SL2D-HMMs should be re-
formulated as the function of C because the original observation is C rather than 0. Based
on the relationship O and C in Eq. (5.15), the definition of the proposed model can be de-
rived.

The output probability P(O | S, A) of SL2D-HMMs is given by

POS,A) = N(O | g, Bs) = [ [ NO1 | s, B, (5.22)
t

where N (- |u, X) denotes the Gaussian distribution with a mean vector g and a covariance
matrix X, and pug and Xg are the “image level” mean vector and covariance matrix given
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(a) Covariance matrix of SL2D-HMMs (b) Covariance matrix of SLT2D-HMMs

Figure 5.3: Examples of covariance matrix. (a) shows the covariance matrix Xg of
SL2D-HMMs in Eq. (5.24) and (b) shows the covariance matrix Pg of SLT2D-HMMs
in Eq. (5.28) where static, 1st order horizontal and vertical dynamic feature vectors were
applied. They were estimated from pixel values of face images where the size of the face
images was 32 X 32. The rows and columns are aligned in raster order of the 2-D lattice
(see Fig. 3.3).

state sequences S, respectively. They are constructed by concatenating the “state level”
mean vectors and covariance matrices in accordance with state sequences S:

T
T T

[ T
Hg = _ ”S(l,l) . ”St PN ”S(T(l),T(Z)) s

Zs(l,l) 0

(5.23)

Y = Xs, : (5.24)

0 Xg

(T(l),TQ)) ]
However, Eq. (5.22) becomes an invalid probabilistic distribution over C because the
integral of Eq. (5.22) over C is not equal to 1. Namely, Eq. (5.22) is not normalized as the
probability distribution of C. To yield a valid probability distribution over C, Eq. (5.22)
can be re-normalized and written as

1 —
P(C|S,A) = Z_SN(WC | g, Xs) = N(C| Cs, Py), (5.25)

Zs

f N(WC | pg, L) dC (5.26)

_ NeoMTUTO|P [
B \/(2")3MT(1)T(2)|ZSI €xp ) (ﬂs X g — Ty Ps"s) ) (5.27)
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where Zg is a normalization term, and Cg and Pg are the MTVT® mean vector and the
MTOT® x MTOT® covariance matrix, respectively. Also, rg, Cs and Pg are given as

Ry = W'LJ'w =Py, (5.28)
rs = W'Xdus, (5.29)
Cs = Pgrs. (5.30)

Please refer Appendix B for detail. Using the above distribution, the joint distribution of
static feature vectors C and hidden variables S can be written as:

P(C,S|A) = P(ClS,A)l_[P(S(’")lA). (5.31)

m=1,2

In the proposed model, the hidden variables are composed of two independent Markov
chains, similar to SL2D-HMMs. Therefore, P(S | A) can be factorized into the product of
horizontal and vertical state transition probabilities, as shown in Eq. (5.31). By marginal-
izing P(C,S | A) over all possible state sequences S, SL2D-HMMs can be re-defined as
follows:

P(C|A) = ZP(C,SlA)
S
- ZP(ClS,A)nP(S(”’)lA), (5.32)
S m=1,2
|
P(C|S.A) = Z—SHN(WCtlpSt,ZSt) (5.33)
t
1
= S NWC| . Z) (5.34)
S
= N(C|Cs, Py), (5.35)

where A is a set of model parameters of the proposed model. In this paper, the proposed
model is referred to as separable lattice trajectory 2-D HMMs (SLT2D-HMMs). The term
“trajectory” suggests that the above formalization of the proposed model is analogous to
that of 1-D trajectory HMMs and the advantageous properties will also be inherited to
the proposed model as well. It should be noted that the summation over S in Eq. (5.32)
can be performed by O (Hm{K (’”)}T(m)), which is the exactly same order as SL2D-HMMs.
Therefore, similar to SL2D-HMMs, the evaluation of the exact likelihood of the proposed
model is computationally intractable. In Section 4, a strategy will be described to make
this problem computationally tractable. It should be also noted that covariance matrix
Py is generally full even when using the completely same model parameter set as SL.2D-
HMMs. Therefore, the inter-pixel correlation can be modeled by the covariance matrix
Pg. As aresult, the proposed model can mitigate the limitations of SL2D-HMMs.
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Figure 5.3 shows examples of covariance matrix Xg of SL2D-HMMs and covariance ma-
trix Pg of SLT2D-HMMs in which static, 1st order horizontal and vertical dynamic feature
vectors were applied. The covariance matrix was estimated from pixel values of face im-
ages, where the size of the face images was 32 X 32. The detail of the training data and
conditions will be described in Section 5.5.1. Note that both the rows and columns are
aligned in raster order of the 2-D lattice (see Eq. (3.1) and Fig. 3.3), because the rows of
C in Eq. (5.14) are aligned in raster order. In both figures, white color represents higher
value and black color represents lower value. It can be observed from Fig.5(a) that only
diagonal elements have higher value. On the other hand, from Fig.5(b), it can be observed
that not only diagonal elements but also non-diagonal, especially, band-diagonal elements
have higher value. This is the one of the evidences that SLT2D-HMMs can capture the
correlation of adjacent observations, while SL2D-HMMs cannot capture it.

5.3 Relation to other statistical models

It has been discussed in [37] that there exists the relationship between the trajectory
HMMs [1] and the product of experts (PoE) [38], especially, product of Gaussian ex-
perts (PoG) [39]. PoE combines multiple models by taking their product in the likelihood
and normalizing it to form a new likelihood function. It can be viewed as an intersection
of all distribution while MoE [40] which combines each models by summation can be
viewed as a union of all models. PoG is a particular case of POE where each expert is an
unnormalized Gaussian, and Gaussian Mixture model (GMM) [41] is a particular case of
MOoE where each expert is a normalized Gaussian. According to [37], PoE (PoG) is an
efficient way of represent high-dimensional data which simultaneously satisfies many dif-
ferent low-dimensional constraints. In Eq. (5.33), N(WC; | Hs, Xs,) is an unnormalized
Gaussian as a probability distribution of C;. The output probability of SLT2D-HMMs
can be viewed as PoG where the relationship between static and dynamic features are
modeled by Gaussian experts. The normalization term Zg in Eq. (5.33) can be repre-
sented in a closed form as Eq. (5.27), without any approximation. Therefore, the output
probability P(C | S, A) can be evaluated strictly and this helps the great simplification of
model training, compered to the general case of PoE. This is an advantageous property of
SLT2D-HMMs.

SLT2D-HMMs can also be viewed as hidden Gaussian Markov random fields [42] from
the interesting discussion of the relationship between 1-D trajectory HMMs and Markov
random fields in [37]. The graphical model representation of SLT2D-HMMs can be spec-
ified by the window matrix W, where clique potential functions are given by Gaussian
distributions and edges depend on cliques that are specified by the window coefficients.
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By changing the window matrix according to the situation, the graphical model structure
of SLT2D-HMMs can be changed. This is also an advantageous property of SLT2D-
HMMs.

5.4 Training algorithm

The parameters of the proposed model can be estimated via the expectation maximization
(EM) algorithm [27] which is an iterative procedure for approximating the Maximum
Likelihood (ML) estimate. This algorithm maximizes the expectation of the complete
data log-likelihood so called Q-function:

QAN) = Z P(S|C,AN)log P(C,S | \'). (5.36)
S

By maximizing the @-function with respect to model parameters A, the re-estimation
formula in the M-step can be easily derived. However, the evaluation of the posterior dis-
tribution P(S | C, A) over all possible state sequences S is computationally intractable due
to its combination of hidden variables. In this paper, the single-path Viterbi approxima-
tion was applied to make this problem computationally tractable. As a result, the problem
is broken down into the following two maximization problems:

Smax

arg msax P(C,S | A), (5.37)
A

arg mf.X P(C,S,uc | N). (5.38)

However, it is still difficult to solve the problem of Eq. (5.37) because the inter-frame
covariance matrix Pg is generally full.

5.4.1 Estimation of sub-optimum state sequence

In this section, the Viterbi approximation [26] to solve the maximization problem of
Eq. (5.37) 1s described. This approximation is based on the following relationship

Spax = arg msalx P(C,S|A) (5.39)
= argmax P(C|S,NP(S|A) (5.40)
1
= arg mSa\X Z—N(O | g, Xs)P(S | A) (5.41)
S
~ arg mSaX N@O | g, Es)P(S | A), (5.42)
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sub® ™ sub

where the Viterbi approximation is applied in Eq. (5.42). Let Sy, = (S ) be a sub-
optimum state sequence for SLT2D-HMMs. In order to obtain S, from all possible state
sequence, following approximation strategy was adopted in this paper:

Step 1 Initialize S;,, with the Viterbi state sequence S,;, = (S(l) S(z)) of SL2D-HMMs.

vit > vit

Step 2 Add small variations on each boundary of Sﬁlu)b and Si)b and collect resulting state
sequences as candidates. In this paper, the small variations were shift of +1 of
bounding position.

Step 3 Select the best state sequence from the candidates in the sense that the likelihood
function is most increased.

Step 4 Replace the current state sequence with the best state sequence.

Step 5 If the log-likelihood function has not converged, return to Step 2. Otherwise, stop
the iteration.

5.4.2 Estimation of model parameters

In this section, the maximization problem of Eq. (5.38) is described. The problem is
equivalent to maximizing the log-likelihood

log P(C | S, A)

1
= - {MTOT® log(2m) - log|Rs| + C"RsC + r§ Psrs = 2rfC}  (5.43)

with respect to a supervector m and supermatrix ¢ which are defined by concatenating the
mean vectors and precision matrices of all independent states, that is

.

m o= [ Bl o B Hoge | - (5.44)
_ _ _ T

¢ = [2(1{1) U Y 2(,;1),,((2))] . (5.45)

We define a 3MTOTP x MKDK?® matrix Fg whose elements are 0 or 1 determined
according to the state sequence S so that the following relationships are satisfied:

pg = Fgm, X' = diag[Fso). (5.46)
By using Fyg, Egs. (5.28) and (5.29) can be written as

Ry = W' -diag[Fs¢] W = Py, (5.47)
WT - diag[Fs@] - Fsm. (5.48)

rs
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According to (5.47) and (5.48), Eq. (5.43) can be re-written as

log P(C|S,A) = —% {MT<1>T<2> log(27) — log |W™ diag[Fs¢]W|
+C"W'diag[Fs¢|WC
+m' F(diag[Fs¢])W' PsW(diag[Fsp])Fsm
—2m" F§(diag[Fs¢)W'C}. (5.49)
Therefore, a partial derivative of Eq. (5.43) with respect to m and ¢ can be written as
dlog P(C| S, A)

pP. = F{I'w(C-Cs), (5.50)
dlog P(C | S, A 1 -
0g ;‘p' ) _ SFidiag™ [WGW™ +2u(C—Co)'WT],  (551)

where Gg = Pg +Z’SE; —CC" and diag™' denotes the extraction of only diagonal elements
from a square matrix. By setting Eq. (5.50) equals to 03,,x0x@ and solving the resultant
linear equation, the following re-estimation formula for the supervector m maximizing
Eq. (5.43) can be obtained:

m = A'b, (5.52)

where A and b are defined as
= GgX'WPsW'E(' Gy, (5.53)
b = Ggxj'WC. (5.54)

Please refer Appendix C for detail of the above formula. For maximizing Eq. (5.43) with
respect to ¢, a gradient method can be applied using its first derivative of Eq. (5.51).

5.4.3 Training procedure

The training procedure of SLT2D-HMMs can be summarized as follows:

Step 1 Initialize the model parameters and the state sequences of SLT2D-HMMs using
the parameters and Viterbi state sequences of SL2D-HMMs, respectively.

Step 2 Update m and ¢.

Step 3 Search sub-optimal state sequences in accordance with the procedure as summa-
rized in Section 5.4.1.

Step 4 If the Viterbi-approximated @-function has not converged, return to Step 2. Oth-
erwise, stop the iteration.
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5.5 Experiments

5.5.1 Experimental conditions

To demonstrate the effectiveness of the proposed model, experiments on modeling faces
from the XM2V'TS database [35] were conducted. The face images were extracted from
the original images (720 X 576 pixels and transformed into gray-scale) and then sub-
sampled to 16 x 16 and 32 x 32 pixels. The images of 16 x 16 pixels were used for image
recognition experiments and the images of 32 x 32 pixels were used for state alignment
experiments. Two datasets were prepared with this process:

e “dataset 17”: size-location normalized data (the original size and location in the
database are used).

e “dataset 2”: data with size and location variations. The sizes and locations were
randomly generated by Gaussian distributions almost within the location shift of
40 x 20 pixels from the center and the range of sizes 500 x 500 ~ 600 x 600 with a
fixed aspect ratio.

Figure 5.4 shows the examples of two datasets where the size of face image is 16 X 16.
The output distribution for each state was single-Gaussian distribution. The transition
probabilities for each state sequence were assumed to be a left-to-right and top-to-bottom
no skip topology. The observation vectors O were constructed by appending (i) the Ist
order horizontal and vertical dynamic feature vectors and (ii) the Ist order horizontal,
vertical and diagonal dynamic feature vectors to the static features C. In the case of (ii),
an observation vector O, can be constructed as

0, = [A(S)C:,A(H)C;r, AVCT, APICT, A(Dz)C;l']T , (5.55)

where APV, and AP C, are diagonal dynamic feature vectors defined as
L(Dl)
APYC, = Y WPOC0 g, (5.56)

D
T:—L(_ 8

L

APIC, = 3 WPIOC 0o, (5.57)

By

For each case, the corresponding window matrix W was designed to satisfy Eq. (5.15). In
the case of (1),
LY==V =1"=10, (5.58)
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wh(=1) = w"(=1) = -0.5, (5.59)

w0) = w"(0) = 0.0, (5.60)
w (1) =w¥(1) =0.5. (5.61)
Additionally, in the case of (ii),
LPY = [P0 = [P - [P0 0, (5.62)
wP(=1) = wP)(-1) = -0.5, (5.63)
wP0) = wP2(0) = 0.0, (5.64)
wP(1) = wP2(1) = 0.5. (5.65)

Although it was already confirmed that the recognition performance was significantly im-
proved with appropriate feature vectors such as 2-D discrete cosine transform coeflicients,
the pixel intensity values were used as features in this paper. This is because the objective
of this experiment was not to obtain the best performance of the proposed model but to
demonstrate the property of the proposed model to normalize size and location variations.
For the purpose of improving the recognition performance, the SL2D-HMMs were ex-
tended by integrating with a linear feature extraction such as probabilistic PCA or factor
analyzers [10]. In the paper, it was confirmed that SL2D-HMMs and their extensions ex-
ceed the eigenface methods and subspace methods in face recognition experiments. The
structure proposed in this paper can be integrated with a linear feature extraction as [10]
for improving recognition performance.

The model parameters of SLT2D-HMMs were estimated in accordance with the training
procedure as summarized in Section 5.4. To make the concatenated covariance matrix ¢
be positive, log (¢) was used in optimizing ¢, where log(-) denotes elementwise logarithm
operator. The Rprop method [43], a first order gradient-based optimization method, was
adopted for optimizing log (@) in this paper.

5.5.2 Face recognition experiments

Face recognition experiments on the XM2VTS database were conducted. We prepared
eight images (two images X four sessions) of 100 subjects; six images (three sessions)
were used for training and two images (remaining one session) for testing. Based on 4-
fold cross validation method by alternating the sessions for training and testing, all the
recognition rates were evaluated. In this experiment, the size of face images was 16 X 16
and they were modeled by SL2D-HMMs and SLT2D-HMMs with 4x4, 6x6, 8x8, 10x10,
and 12 x 12 states. Fig. 5.5 shows recognition rates of SL2D-HMMs and SLT2D-HMMs.

60



(a) No variation

(b) Size and location variations

Figure 5.4: Examples of training data; with no variation (a) and with variations of size
and location (b). The size of face image is 16 X 16.

Fig. 5.5(a) and (b) show the results on “dataset1” and “dataset2,” in which 1st order hori-
zontal and vertical dynamic features were applied, respectively. Fig. 5.5(c) and (d) show
the results on “dataset]1” and “dataset2,” in which not only horizontal and vertical features
but also diagonal features were applied, respectively. In these figures, “SL2D” means
SL2D-HMMs, and “NoUpdate” means SLT2D-HMMs with the same model parameters
as SL2D-HMMs, which were equivalent to the initial parameters of SLT2D-HMMs. In
other words, their parameters were not optimized for SLT2D-HMMs. “ParamUpdate”
means SLT2D-HMMs with the state sequences fixed, while “FullUpdate” means SLT2D-
HMMs with both the model parameters and the state sequences. In “ParamUpdate” and
“FullUpdate,” the initial model parameters were the same as “SL2D”.

First, the recognition rates in Fig. 5.5(b) were higher than those in Fig. 5.5(a) as a whole.
Especially, in Fig. 5.5(a), the recognition rate of 51.5% was obtained at 8 X 8 states of
“ParamUpdate,” while, in Fig. 5.5(b), the highest recognition rate of 54.3% was obtained
at the same states of “ParamUpdate.” Similar tendency could be observed from Fig. 5.5(c)
and Fig. 5.5(d). This indicates that both SL2D-HMMs and SLT2D-HMMs could success-
fully reduce the influence of the variations due to the ability to normalize the size and
location variations. Moreover, from our further inspection, it could be observed that the
values of the variance parameters estimated from dataset 2 were bigger than that from
dataset 1 as a whole. This fact suggests that the moderate variance parameters were esti-
mated due to the size and location variations and over-fitting was slightly mitigated, and
also helps to understand the reason why the recognition rates on dataset 2 were better than
that on dataset 1. It can also be seen that “NoUpdate” was lower than “SL2D,” though
the same model parameters were used between them. This is obviously because the pa-
rameters were not optimized for the likelihood function of the SLT2D-HMMs. After
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not only horizontal and vertical features but also diagonal features were applied, respec-

Figure 5.5: Recognition rates of SL2D-HMMs and SLT2D-HMMs.
tively. The size of face image is 16 x 16.

zontal and vertical dynamic features were applied
reason for this result can be explained as follows:

top , (a) and (b) show the results
izontal and vertical state sequences,

figures on the bottom,

results
“FullUpdate

estimation stage for state sequences.

candidate of state boundary, small variations should be added to the other boundaries and
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strongly approximated in the sense that it finds only one state boundary from all of the
candidates of the horizontal and vertical state boundary at one time. Ideally, for each
the likelihood should be evaluated over all of these combinations. However, much more

Nevertheless, the search algorithm for state sequences as summarized in Section 5.4.1 is

of both state sequences affect the likelihood at the re-



computational time will be required in this strategy.

From Fig. 5.5(a) and (c), it can be seen that the recognition rates in Fig. 5.5(c) were
slightly lower than those in Fig. 5.5(a). In particular, the highest recognition rate of 50.0%
at 8 x 8 states of “FullUpdate” in Fig. 5.5(c) was lower than that of 51.6% at the same
states of “FullUpdate” in Fig. 5.5(a). This is partly because the model over-fitted to the
training data with size and location variations.

5.5.3 State alignment experiments

To demonstrate the advantageous property of SLT2D-HMMs for image recognition, an
state alignment experiment was conducted on “dataset]” and “dataset2,” where the size
of the face images was 32 X 32 and the number of HMM-states was 16 x 16. Figure 5.6
shows the test image and its state alignments of SL2D-HMMs and SLT2D-HMMs on
“dataset 1 and “dataset 2,” respectively. The alignments of SL2D-HMMs are represented
by the images that each pixel value of the input images is replaced with the mean value
of the aligned states. The numerical values below the images represent the estimated
log-likelihoods of the test data per pixel given the optimized state alignments. When
the visualized alignment is similar to the test data, it means that the model appropriately
normalized the variations of the test data. The likelihood of the test data can also be re-
garded as an objective measure of the similarity; higher likelihood means more preferable
matching was obtained in terms of the maximum likelihood criterion.

From “SL2D” of Fig. 5.6(a), it can be seen that a rectangular state alignment was obtained
by using the SL2D-HMMs, because of the constraint that the statistics within a state do not
change dynamically. In comparison, it can be seen that the mean vector Cs of “NoUpd”
seemed smoother than the state alignment of “SL2D”. This indicates that the constraint of
the SL2D-HMMs of constant statistics was mitigated. However, the detailed parts of the
test data (e.g., eyes and nose) became blurred in “NoUpd”, since the model parameters
were not optimized for SLT2D-HMMs. After the model parameters were optimized, it
can be observed that the details became clearer in “ParamUpd” of Fig. 5.6(a). Moreover,
it can also be seen from “SL2D” of Fig. 5.6(b) that SL2D-HMMs could deal with size and
location variation by changing the each state duration. From “NoUpd” and “ParamUpd”
of Fig. 5.6(b), this property also holds true in SLT2D-HMMs. These results also explain
the improvement of the recognition performance.

From both Fig. 5.6(a) and (b), the log-likelihoods of “ParamUpd” were higher than “NoUpd”
as a whole. This fact indicates that the model parameters were optimized properly and
kept the generalization ability to the test data. The one reason why the log-likelihoods
of “SL2D” were lower than that of “NoUpd”and “ParamUpd” on the whole was that the
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constant statistics within each state of SL2D-HMMs. The another reason was that the ob-
servation vectors O in SL2D-HMMs were composed of the static and dynamic features,
while the observation vectors in SLT2D-HMMs were the only static features C. Since the
negative log-likelihood to the test data represents roughly the squared error between the
test data and aligned mean vectors considering the covariance, the error itself will be in-
creased by augmenting the dimensionality of the observation. As a result, this leads to an
decrease in the likelihood of SL2D-HMMs. The fact that the log-likelihoods of “SL2D”
in Fig. 5.6(a) and (b) on the right side (horizontal, vertical and diagonal) were lower than
that on the left side (horizontal and vertical) also follows the same reason.

5.6 Summary

In this chapter, a novel statistical model based on 2-D HMMs for image recognition has
been derived. It has been known that SL2D-HMMs have the shortcomings inherited from
standard HMMs, that is, the stationary statistics within each state and the conditional in-
dependent assumption of state output probabilities. To overcome these shortcomings of
SL2D-HMMs, the proposed model can be derived by reformulating SL2D-HMMs and
imposing explicit relationships between static and dynamic features. As a result, the pro-
posed model can capture the dependencies of adjacent observations, without increasing
the number of model parameters. Experiments on image recognition and state alignment
were conducted on the XM2VTS database. The proposed model achieved better results
than the SL2D-HMMs.
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(b) Size and location variations

Figure 5.6: Visualization of state alignment with no variation (a) and with variations of
size and location (b). “SL2D” means the state alignments of SL2D-HMMs to the test
data. “NoUpd” means the mean vectors of SLT2D-HMMs without parameters optimized.
“ParamUpd” means the mean vectors of SLT2D-HMMs with parameters optimized. The
size of face image is 32 X 32 and the number of states is 16 X 16. The £ means the
estimated log-likelihood per pixel to test data.
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Chapter 6

Conclusions

6.1 Summary

The present dissertation described novel statistical models based on separable lattice 2-D
HMMs for image recognition.

Basic theories and fundamental algorithms of the HMM were reviewed in Chapter 2 and
Chapter 3 described the model definition and the training algorithm of separable lattice 2-
D HMMs. SL2D-HMMs have the composite structure of multiple hidden state sequences
which interact to model the observation on a lattice. SL2D-HMMs perform an elastic
matching in both horizontal and vertical directions; this makes it possible to model not
only invariance to the size and location of an object but also nonlinear warping in each
dimension. Although the training algorithm of SL2D-HMMs based on EM algorithm can
be derived, the complexity of the exact E-step become an exponential order and there-
fore, it is computationally intractable. To derive a feasible problem, the variational EM
algorithm and variational DAEM algorithm can be derived. In the both algorithms, the
complexity of the E-step can be reduced to a polynomial order.

In Chapter 4, an extension of SL2D-HMMs for rotational variations was proposed. Al-
though the proposed model has potential to perform an continuous elastic matching be-
yond rotational variations, the topology and the shift amounts are constrained to a special
form which is expected to represent the continuous rotational variations in this disserta-
tion. For model training, the variational EM algorithm can also be applied to the proposed
model. In face recognition experiments on the XM2VTS database, the proposed model
achieved better results to the images than the conventional SL2D-HMMs. Moreover, the
state alignments shows that the proposed model can normalize not only size and location
variations but also rotational variations.
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In Chapter 5, the separable lattice 2-D trajectory HMMs (SLT2D-HMMs) were derived.
It has been known that SL2D-HMMs have the shortcomings which are inherited from
standard HMMs. To overcome these shortcomings of SL2D-HMMs, the present disser-
tation derives 2-D trajectory HMMs by reformulating the likelihood of SL2D-HMMs
with imposing explicit relationships between static and dynamic features. The proposed
model can efficiently capture dependencies between adjacent observations without any
additional model parameters. The effectiveness of the proposed model was evaluated in
face recognition experiments on XM2VTS database. The proposed model achieved better
results than the SL2D-HMMs.

6.2 Future work

For an extension of SL2D-HMMs to deal with rotational variations, integration with a
linear feature extraction as [10] to improve recognition performance will be future work.
For SLT2D-HMMs, we are to plan to append not only 1st order dynamic features, but also
more higher order dynamic features. Extending SLT2D-HMMs for rotational variations
will be future work. Moreover, implementing more precise search algorithms such as the
delayed decision Viterbi algorithm [1] will be also future work. For both proposed mod-
els, applying the Bayesian criterion [44] is to be investigated. Conducting experiments
on various image recognition tasks and with other statistical methods, e.g., support vector
machines [45], neural networks [46], and MRFs [47] will also be future work to evaluate
the effectiveness of the proposed model over these methods.
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Appendix A

Derivation of training algorithm for an

extension of separable lattice 2-D
HMMs for rotational variations

A.1 Derivation of approximated posterior distributions

For this derivation, following abbreviations are adopted.

IQ(S(m))

- > 0™ In Q(s™)

Sm)

Io@d™) = = Qd™)InQ@d™)

dm

JP(S(m)) — Z Q(S(m)) In P(S(m)lAém))

S(m)

JP(S(I),S(Z), d(l), d(Z)) — Z Z Z Z Q(S(l))Q(S(Z))Q(d(l))Q(d(Z))

S(l) S(2) d(l) d(2)
- InP(OISV, 8%, dV, d?, A)

(A.1)

(A.2)

(A.3)

(A4)

Using above abbreviations, the lower bound ¥ in Eq. (4.11) can be re-written as follows:
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F(O,N)

D) 0. dInPO.S,diN) - Y > 0(S,d)In O(S. d)
S d S d

Z Z O, d)In P(O|S, d, A) + Z Z O(S, d)In P(S, d|A)
S d S d

- > 0(8,d)In O(S, d)
S d

= > > 090 InPOIS,d, A) + > O(S)In P(SIA)
S d N

+ > 0@ InPEA) - > > 0S)Q(d)In O(S)0(d) (A3)
d S d
— Jp(S(l), S(Z), d(l), d(Z))
# TS+ Tp(@d™) + 1o(S™) + Io(d™)] (A.6)
m=1,2

The optimal variable function Q(S, d) to maximize the functional #(Q, A) are constrained

under the following equations:

D,08™ =1, > 0@d™ =1 (A7)

Sim dm

From the method of Language multiplier, it is enough to maximize the following G:

G = FQN- D A, (Z o(s™) - 1} - > Aim (Z 0@d™) - 1]

m=1,2 §0m m=1,2 dm

— JP(S(I) §@ g4 d(2))

) {Jp<s<'">> A5 ) QS™) + Tp(@d™) + A ) Q(d(’”))}

m=1 ,2 S(m) d(m)
+ > {1o(8™) + Io(d@™)} + s + Az + Ay + Ao (A.8)
m=1,2

where Ag,,, A4, are Lagrange multiplier. To optimize G, it is needed to solve the Euler-
Lagrange equations. Since G contains no differential terms of Q, it is enough to solve

following equations for each variable functions Q(S"™), Q(d"™):

oF + A 0 (A.9)
aQ(s™y = ’ '
oF A0 0. (A.10)

=+
9Q@™) "
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From Eq. (A.6),

= S S 0650w )o@ In POIS™ 57, d,d®, A)
aQ(S ) s g g2
+1In P(S™'|As,,) — In Q(§") - 1, (A.11)
or 1 2 D @ gmy g
= = (S8 0d™)In P(OISV, 82, d"™",d™, A)
+1n P(d™ |As,,) — In Q(d™) — 1. (A.12)
Therefore,
nQES™) = (InPOIS™.8".d",d?, A)>Q(s<n>)Q<d<1>)Q<d<z>) +In P(S™)
+const
© Q™) o« P (S(m))eXP<lnP (Ols(m)’s(n)’d(l)’d(Z)’A)>Q(s<n>)Q(d<”)Q(d(2>) (A.13)
(myy — 1 ¢@ ) (m)’
Q™) = (InPOISV, S, d".N)) | i s g, T MPE™)
+const
(m) (m) (m) ¢(n) (1) 4(2)
& 0d™) o« P@A™)exp(InPOIS™,S",d".d ’A)>Q(S‘”)Q(S(Z))(Q(d(")) (A.14)

where proportional symbol ‘o’ can be placed into equality sign =" by introducing a

normalizing constant for each of them.

A.1.1 Detail of approximated posterior distributions

In the following, the detail of Q(S") is described. From the linearity of the expectation,

it can be written as
T T

) ()
[5: S w0t 2.0}
D=1 =1 Q(S(z))Q(d(l))Q(d(z))
T 7@
=> > <1nP(0,<1>,<2>|S<(3 e g ,A)> (A.15)
AD=1 221 0 0(8) (M) 0(d?)
New variables y™ and 5™ are introduced and can be defined as follows:
YA = Y O™ i) (A.16)
S
N = 0™, D, n#Em (A17)
dm
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Using the above variables, the expectation in Eq. (A.15) can be written as follows:

(1) > ) )
el d @4 d(l) >Q(S(2))Q(d(l))Q(d(2))

= 22,0, 980@ 0@ n POweIS,) S o M)
s@ g 4@
K®
= >0, 08)0@™0d™)s a2 DIMPORISL i)
SO g g j=1 M 2
K@
= >3 0@dM0@ 2 +dS), in POmels") ., iA)  (AI8)
(2

j=1 g g®

<ln P(Ot(l)t(Z) |S S @

Next, Eq. (A.18) can be re-written as follows.

K( D K(Z) [

Z Z D0 0@y, s, hy® + 1, j)

klll/ld(l)d(z)
-1nP(O,<1>,(2)|S Dk’ ]7 A)

M (@
KD K ko

= D P o6, iy P + 1, In POalS <, 0 J A

=1 =1 j=1
To simplify notation, following variable g is introduced.
g, 12k, Li, j) = n V@, on? @,y P + 1, ) In POwoli, j, A).

As aresult, Eq. (A.15) can be written temporarily as

70 1@ K KP ko

Z Z Z Z Z n(l)(t(Z)’ k)nm(t(l), 1)7(2)(t(2) +1,j)In P(Ot(l)t(2)|S§<11))+k, JA)

M=12=1 k=1 I=1 j=1

0 10 KV KP ko

SDIIIDININ I W AR NPT IINCR A

M @ H=112=1 k=1 I=1 j=1

(A.19)
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Next, a part of summation in Eq. (A.19) can be written as

K kP ko

D766, 10 + ko, 10 + DV, 1, k, L, j)

k=1 I=1 j=1
(1) (2
K,” K;” k@

D60, + 6@, 1V + Dy, k@, hy (@, j)

k=1 =1 j=1
. ln P(O[(l)t(z)h" j, A)
K@
_ Z n(l)(t(Z), () — t(l))n(z)(t(w’ @ — tQ))y(z)(t(z), HIn P(O,m0li, j,A)
j=1

Finally, Eq. (A.19) can be obtained as

0 1@ K\ KP k@

Y Y I S 6,V + k5@, £V + Dg(t, 12,k L, )

D @ (V=1/@=1 k=1 =1 j=1

7O 7@ K2

DI D00, — Oy, 1@ — (DA, ) (A20)

I(T) l‘(T) h=1 =1 j=1

‘In P(O,m0li, j, )
= > I, s =, (A21)
- D

[

where
7 7@ K2

A D, = NN 0@, 10 — Oy, @ - @)y 2@, j)

1‘(72) h=1 =1 j=1

‘In P(O,moli, J, A). (A.22)
Using the above In hg’")(-, ), Q(S(’")) can be obtained as

m 1 m m m)m) < (m .
o(s™) = ﬁp(y WA [ ] A (@, 5 = i), (A.23)
S

where Zé’") is normalizing constant. Q(d"™) can be written in a similar form as Q(S").
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A.2 Derivation of re-estimation formulas

The lower bound ¥ in Eq. (A.5) can be factorized as

FQAN) = > > 080 InPOIS,d,A"") + > O(S)In P(SIA™)
S d N

+ >0 InPEA") = > " 0(8)Q(d) In O(S)Q(d)
d S d

Fi(Q A"+ Y (Fs o (Qs A™) + Foon(Q, ")

m=1,2

s (0 A™) + Fy (0, A"™) = " 0(8)0(d) In O(S)Q(d),
S d

where

Fsam(Q, A™)

Fanm(Q, A7)

F5.am(Q, A*)

Faam(Q, A7)

-
Do) KZ 88", i) Inx"
Z <S(1m), z> In ﬂgtli),

i=1 K(m)

Z o(d) Z 8(d", i) In 7l
Kgm

Z (d™.i) - In7y?,

i=1

Tm  gOm) gim)

Z oS) Y D, D8 L hacs i,

(m=2 i=1 j=1

Tm  gm) g(m)

2 22 2 A0 ) nag,

m=2 i=1 j=1

7o K9 K

=2 i=1 j=1

(n) K(m) K(m)

2O o ) )

m=2 i=1 j=1
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(m)
S.ij

Z o) )’ Z Z 5™ O™, Hlndl

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)



0 7@ g0 g@ KV KP

waZZZZZwaw>

D=1/2=1 i=l j=1 k=1 I=1
S8 140 » DOy, (), |In@m)” + In |2,
+ (O — ;) E (O —.Uij)]

0 7@ g0 g@ K KP

=D IDIDIIIP NI IC 1Y

M=1=] i=l j=1 k=1 I=1

Fp(Q, A™)

(d2). 1) [In@m)® +In 2] + O - ) 2 Ooer — ;)]

The re-estimation formulas of the transition probability can be obtained by maximizing
the corresponding F based on the method of Lagrange multiplier. The re-estimation for-
mulas of g;; and X;; can be obtained by taking partial derivatives of ; for each parameters

and put them equal to 0.
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Appendix B

Derivation separable lattice trajectory
2-D HMMs

By imposing the explicit relationships between static and dynamic features represented

by Eq. (5.15), Eq. (5.22) can be re-normalized and written as

1 1
N(WC | ug, X5) = —exp{——(WC—u)TE (WC—y)} (B.32)
P e s\ 2 o ’
1 [ TyyTy -1 Ty-1
= —————expy—= (peZg g+ C W ESWC -2u X WC
e {5 (e SWC - 2055 We)
(B.33)
1 1 Ty -1 T T
= ————expy—= (UeXg ug+ C RsC - 2r C (B.34)
N { 3 (5x3'ns )
1 1 —\T —
= ——————exp ——{C—C Rs(C - Cs) — r§ Psr +;1T):_]u}]
x0T L] [ 316~ C) RelC=Co)=riPors 15 s
(B.35)
V@) |P] { Lvon o }
= ———————expy—= (ugXg ug — r¢ Psrg
N 3 (5255 = o)
1 1 _ _
X————exp {—— (€-Cs) Rs(C- CS)} (B.36)
V@M | Pl 2
= Zs-N(C|Cs.Ps). (B.37)

where T = TOT®, Ry = WTEG'W = P!, rg = WX g, and Cs = Pgrs.
Based on the above relationship and Eq. (5.31), SL2D-HMMs can be re-defined as fol-
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lows:

P(C|A) = Z P(C,S|A) = Z P(C|S,NP(S|A) (B.38)
S S

- ZP(ClS,A) ]—[ P(S™ | A), (B.39)
S m=1,2

where P(C|S,A) = N (C | Cs, PS).
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Appendix C

Derivation of reestimation formula for
the concatenated mean vector m

From Eq. (5.49), the log-likelihood (Eq. (5.43)) can be written as follows:
1
log PCIS,A) ~ -3 {m"F{Zg'WT PsWES' Fsm — 2m" F{Z'WTC}, (C.40)

where the terms not containing m are omitted. By taking a partial derivative of m, the

gradient function of m can be obtained as

dlog P(C|S,A)

. = —F{X'WTPsWES'Fym+ FgX'W'C (C.41)
= F{X'W(C - PsWEg' Fsm) (C.42)
= FiIg'w(C- PsWxg'uy) (C.43)
= F{X'W(C - Pgrs) (C.44)
= F{X'W(C-Cs) (C.45)

By setting Eq. (C.41) equal to 033,xn g, the re-estimation formula of m can be obtained

as follows:

—F{X'WTPWES' Fsm + F{E'WTC = 0350050 (C.46)
F{X'WTPsWES'Fsm = F{Xg'W'cC (C.47)
i o= A7'b, (C.48)
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where A and b are defined as

A = GgX'WPW'XE('Gy, (C.49)
b = Ggxy'WC. (C.50)
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