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Abstract

For many years, many researchers of pattern recognition have developed the field of im-

age recognition as the main focus of pattern recognition and various techniques have

been proposed. Especially, statistical approaches based on Principal Component Analysis

(PCA) such as eigenface methods and subspace methods show good recognition perfor-

mance in many applications. However, if images contain geometric variations such as

size, location and rotation, the recognition performance is significantly degraded. There-

fore, normalization processes for such geometric variations are required prior to applying

these methods.

In many image recognition systems, the normalization process is included in the pre-

process part of the classification, and heuristic normalization techniques are used. How-

ever, it is necessary to develop the normalization technique for each task, because such

heuristic techniques usually use task dependent information. Furthermore, in image recog-

nition, the final objective is not to accurately normalize images for human perception but

to achieve a better recognition performance. Therefore, it is natural to use the same cri-

terion for both training classifiers and normalization. This means that the normalization

process should be integrated into classifiers.

HMM based techniques for image recognition have been proposed to reduce the influence

of geometric variations. Geometric matching between input images and model parame-

ters is represented by discrete hidden variables, and the normalization process is included

in calculating probabilities. However, the extension of HMMs to multi-dimensions gen-

erally leads to an exponential increase in the amount of computation for its training al-

gorithm. To deal with this problem, separable lattice 2-D HMMs (SL2D-HMMs) have

been proposed to reduce computational complexity while retaining good properties that

model multi-dimensional data. SL2D-HMMs can perform elastic matching both horizon-

tally and vertically, which makes it possible to model not only invariance to the size and

location of an object but also nonlinear warping in all dimensions. However, the modeling

accuracy is still insufficient because of the following problems:

i



i) SL2D-HMMs cannot represent rotational variations. Therefore, affine deformation

cannot be modeled completely.

ii) The statistics of each state do not change dynamically.

iii) The output probability of the observation is conditionally independent, given the

horizontal and vertical states.

In this dissertation, statistical models to improve the recognition performance which can

overcome the above problems of SL2D-HMMs are proposed.

First, a new generative model which can deal with rotational data variations is proposed,

by extending SL2D-HMMs. To reduce the complexity, SL2D-HMMs have only one state

sequence in each direction; this means that all horizontal/vertical lines of an observa-

tion lattice have the same state alignment for each direction. However, to represent the

rotational variations, the models should have a different state alignment for each obser-

vation line and horizontal/vertical state alignments should be changed along with verti-

cal/horizontal direction. Furthermore, it should take account of the dependency of the

state alignments between consecutive observation lines to perform a continuous elastic

matching. In this paper, we introduce additional HMM states which represent the shifts of

the state alignments of the observation lines in a particular direction. In face recognition

experiments the proposed model achieved better results to the images than the conven-

tional SL2D-HMMs. Moreover, the state alignments shows that the proposed model can

normalize not only size and location variations but also rotational variations.

Furthermore, a novel statistical model based on 2-D HMMs is proposed to overcome the

shortcomings of ii) and iii). Although these are the essential assumption inherited from

1-D HMMs, 1-D trajectory HMMs were proposed and successfully applied to speech

recognition and speech synthesis, which can overcome the shortcomings of 1-D HMMs.

This dissertation derives 2-D trajectory HMMs by reformulating the likelihood of SL2D-

HMMs with imposing explicit relationships between static and dynamic features. The

proposed model can overcome the shortcomings of ii) and iii) and efficiently capture

dependencies between adjacent observations without increasing the number of model pa-

rameters. Experimental results show that the proposed model achieved better recognition

performance than the conventional SL2D-HMMs.

Keywords: image recognition, hidden Markov model, separable lattice 2-D HMMs, tra-

jectory HMMs.
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Abstract in Japanese

長年に渡り，画像認識の分野はパターン認識における主要なテーマとして多くの研
究者の手によって発展し，様々な手法が提案されてきた．とくに固有顔法や部分空
間法に代表される主成分分析に基づく統計的なアプローチは良好な認識性能を持つ
ことが多くの応用分野で示されている．しかしながら，認識対象の画像が位置や大
きさ，回転のような幾何学的変動を含む場合，認識性能が大きく低下する．それゆ
え，これらの手法を適用する前にはそのような幾何学的変動に関する正規化プロセ
スが必要である．多くの画像認識システムでは正規化プロセスは識別の前処理部に
含まれ，そこではヒューリスティックな正規化手法が用いられる．しかし，そのよ
うな正規化手法はタスク依存の情報を用いることが通常であるので，各タスクに関
して正規化手法を考える必要がある．そのうえ，画像認識においては，最終的な目
標というのは人間の知覚に関し画像を正規化するだけでなく，良好な認識性能を達
成することである．ゆえに識別器と正規化の両方で共通の基準を用いるのが自然で
ある．このことは正規化プロセスが識別器に統合されるべきである，ということを
意味する．

そのような幾何学的な変動に対するアプローチとして，隠れマルコフモデル (Hidden

Markov Model; HMM)に基づく手法が近年提案されている．この手法では入力画像
とモデルパラメータとの幾何学的なマッチングは離散的な隠れ変数により表現され，
正規化プロセスはそれらにおける確率の計算に含まれる．しかしHMMを多次元に
拡張する場合，一般的に学習アルゴリズムに関して計算量が指数的に増大するとい
う問題がある．そこで計算量を削減しつつ多次元データの良い性質を保つための手
法として，近年分離型格子 2次元 HMM (Separable Lattice 2-D HMM; SL2D-HMM)

が提案されている．SL2D-HMMは縦・横 2つの隠れ状態系列からなる構造を有し，
それら系列は格子点上での観測のモデル化において相互に影響し合う．SL2D-HMM

は水平方向と垂直方向で柔軟なマッチングを行うことができるため，対象の位置や
大きさに関する不変量だけでなく各方向での非線形なひずみをモデル化することが
できるという利点がある．しかしながら，SL2D-HMMには以下に述べるような問
題点が存在するため，モデル化の精度は依然として不十分である．

1. モデル構造の制約のために，回転変動を表現することができない．したがって，
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アフィン変換を完全にモデル化することができない．

2. 各状態内で統計量が定常的である．すなわち，各状態内では出力確率分布が一
定であり，同じ状態内で動的に変化する観測を捉えることが困難ということで
ある．

3. 各時刻における観測ベクトルの出力確率は，その時刻に滞在する状態にのみ
依存し，前後の時刻に滞在する状態には依存しない．これは，独立性の仮定
(Conditional Independence Assumption)と呼ばれる．

本論文では，SL2D-HMMの上記の問題点を克服した画像認識のためのより高性能
な統計モデルの提案を目的とする．

まず，本論文では SL2D-HMMを拡張し，回転変動にも対応可能となる新たな生成
モデルの構造を提案する．SL2D-HMMでは計算量を削減するため各方向で状態系列
は 1つだけであった．これは格子点上の観測において全ての水平 (垂直)ライン上で
同一の状態アラインメントを有するということを意味する．しかし回転変動を表現
するためにはモデルはそれらライン上で異なる状態アラインメントを有するべきで
あり，水平 (垂直)方向の状態アラインメントは垂直 (水平)方向に沿って変化すべき
である．さらに連続的で柔軟なマッチングを行うためには，一連の観測ライン間で
状態アラインメントの依存関係を考慮に入れる必要がある．そこで本研究では，あ
る特定方向での観測ラインに関する状態アラインメントのシフトを表現するHMM

状態系列を新たに導入する．これにより，位置・大きさの変動だけでなく回転変動
にも対応可能となることが期待される．位置や大きさの変動だけでなく，回転変動
を含む画像認識実験の結果，提案モデルは SL2D-HMMと比較して良好な認識性能
を持つことが示された．さらに，状態アライメントを可視化することで，提案モデ
ルは位置や大きさだけでなく，回転変動を正しく正規化できることを確認した．

さらに，上記問題点 2. と 3. を同時に克服する新たな統計モデルを提案する．これ
らは 1次元HMMから継承される本質的な仮定であるが，すでに 1次元HMMの場
合では問題解決のためにトラジェクトリHMMが提案されており，音声認識や音声
合成に適用され成功を収めている．本論文では，静的及び動的特徴を含む特徴ベク
トルを状態出力ベクトルとする SL2D-HMMに対して，静的・動的特徴間の関係を
明示的に導入し，SL2D-HMMを再定式化する．結果として，2次元のトラジェクト
リHMMを導出可能であることを示す．提案モデルは上記 SL2D-HMMの問題点を
避けることができる．また，提案モデルのモデルパラメータの数は SL2D-HMMの
パラメータ数から増加することはないので，隣接する観測間の相関を効率よく捉え
ることが可能となる．画像認識実験の結果より，提案モデルは SL2D-HMMよりも
良好な認識性能を持つことが示された．

以上のように，本論文では，統計的手法による画像認識のための汎用的かつ，より
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高精度なモデル化手法を提案し，これらの手法の有効性を示す．
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Chapter 1

Introduction

With the wide spread of computers in recent years, the development of a human interface

that utilize visual and auditory information is expected. It can be used to communicate

with others in the same way as humans. In particular, speech recognition and image

recognition are important basic technologies for this interface and research has been con-

ducted actively. Moreover, with the recent advances of computer hardware and infor-

mation technology, statistical approaches based on huge amounts of data are becoming

the mainstream in many research fields. For speech recognition, Hidden Markov model

(HMM) based techniques have been established [2]. However, in the field of image recog-

nition, various approaches have been mushrooming due to the variety of the recognition

objects and the complexity of data. Therefore, it is valuable to construct the general sta-

tistical models for image recognition similar to HMMs for speech recognition, which can

be applied to various tasks such as face recognition, hand-written character recognition,

gesture recognition, and lip reading.

The previous research of image recognition can be roughly classified into the following

two: i) techniques developed by utilizing task-dependent information and ii) techniques

considering image recognition as pattern classification problems on multi-dimentional

feature space objectively. The former techniques take account of the practicality and

high recognition performance can be obtained even if a small amount of training data is

available. On the other hand, the latter techniques should be selected when considering

the general framework of image recognition. However, the pre-processings such as seg-

mentation, normalization and feature extraction are still required to deal with the image

recognition problem as pattern classification problem. These pre-processings have not

been considered in many studies on the latter techniques and the heuristic normalization

techniques have been applied. Additionally, the final objective in image recognition is

not to accurately normalize images for human perception but to achieve better recogni-
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tion performance. Therefore, it is a good idea to integrate the normalization processes

into classifiers and optimize them based on a consistent criterion to improve recognition

performance.

HMM based techniques for image recognition have been proposed to reduce the influ-

ence of geometric variations [3–13]. Geometric matching between input images and

model parameters is represented by discrete hidden variables, and the normalization pro-

cess is included in calculating probabilities. For an earlier work, Samaria et al. applied

HMMs to human face identification tasks [3]. The observation sequence was composed

of over-lapping window/line blocks extracted from each sample image and modeled by

ergodic/top-to-bottom HMMs, provided that image data had to be treated as if it was 1-D

data sequence. This leads to lack of robustness to geometric variations. It was therefore

natural for many researchers to consider extending HMMs to multi-dimensional ones.

However, the above extension generally leads to an exponential increase in the amount

of computation for its training algorithm. To reduce the computational complexity, the

model structure needs to be constrained by limiting the number of possible alignments and

assuming independence between hidden variables. For such model structures, pseudo 2-D

HMMs [4] (embedded HMMs [5]) were proposed and applied to many image recognition

tasks. A pseudo 2-D HMM has a composite state structure for a better 2-D representa-

tion while avoiding the complexity burden of a fully connected 2-D HMM. The states of

a superior HMM in the horizontal direction are called super-states and each super-state

has a one-dimensional HMM in the vertical direction instead of a probability density func-

tion. This assumption reduces the computational complexity and the maximum likelihood

training algorithm has been proposed [6]. However, the state alignments of consecutive

observation lines in the vertical direction are calculated independently of each other and

this assumption does not always hold true in practice.

Essentially, the studies of 2-D dynamic programming (2D-DP) treat the same problem

of the 2-D HMMs. The main difference between these studies is the definition of the

cost function; The 2D-DP focuses on finding the mapping between two images with a

pre-defined cost function, while the likelihood of 2-D HMMs is defined between an input

image and the distribution which is estimated from multiple training images. Although

some efficient approximation algorithms have been proposed for the 2D-DP problem [14–

17], they still need high complicated costs and prior knowledge to determine the cost

function is required for representing an accurate elastic matching dependently on image

variations.

For another HMM based approach, separable lattice 2-D HMMs (SL2D-HMMs) were

proposed [9] to reduce computational complexity while retaining good properties that

model multi-dimensional data. Furthermore, hidden Markov eigenface models have been
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proposed [10] where the eigenface methods are integrated into SL2D-HMMs. SL2D-

HMMs can perform elastic matching both horizontally and vertically, which makes it

possible to model not only invariance to the size and location of an object but also non-

linear warping in all dimensions. However, the modeling accuracy is still insufficient

because of the following problems:

i) SL2D-HMMs cannot represent rotational variations. Therefore, affine deformation

cannot be modeled completely.

ii) The statistics of each state do not change dynamically.

iii) The output probability of the observation is conditionally independent, given the

horizontal and vertical states.

In the present dissertation, statistical models to improve the recognition performance

which can overcome the above problems of SL2D-HMMs are proposed.

First, a new generative model which can deal with rotational data variations by extending

SL2D-HMMs. To reduce the complexity, SL2D-HMMs have only one state sequence in

each direction; this means that all horizontal/vertical lines of an observation lattice have

the same state alignment for each direction. However, to represent the rotational varia-

tions, the models should have a different state alignment for each observation line and

horizontal/vertical state alignments should be changed along with vertical/horizontal di-

rection. Furthermore, it should take account of the dependency of the state alignments

between consecutive observation lines to perform a continuous elastic matching. In this

paper, we introduce additional HMM states which represent the shifts of the state align-

ments of the observation lines in a particular direction. The parameters of this proposed

model can be estimated via the expectation maximization (EM) algorithm for approx-

imating the Maximum Likelihood (ML) estimate. However, similar to the training of

SL2D-HMMs, the exact expectation step is computationally intractable. To derive a fea-

sible algorithm, we applied the variational EM algorithm [18] to the our proposed model.

The variational method approximates the posterior distribution over the hidden variables

by a tractable distribution.

Furthermore, in the present dissertation, we derive a novel statistical model based on

SL2D-HMMs to overcome their shortcomings. Due to the model structure of SL2D-

HMMs which consists of two independent 1-D Markov chains, SL2D-HMMs have the

same constraints as 1-D HMMs [19] in that (i) the statistics of each state do not change

dynamically and (ii) the output probability of an observation vector depends only on the

current state, not on any other states nor observations. To overcome the above short-

comings, it has been confirmed that augmenting the dimensionality of an acoustic static
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feature vector (e.g., cepstral coefficients) by appending its dynamic feature vectors (e.g.,

1st and 2nd order delta cepstral coefficients) [20] can enhance the performance of HMM-

based speech recognizers. It can be considered that augmented feature vectors can cap-

ture dependencies between adjacent acoustic feature vectors. Based on this knowledge,

SL2D-HMMs can also enhance the recognition performance by appending dynamic fea-

tures [13, 21], where first-order derivative coefficients in horizontal and vertical direction

were applied. However, static and dynamic features are assumed to be independent vari-

ables and the relationships between them are ignored even though these relationships are

essentially deterministic. As a result, inconsistency between the static and dynamic fea-

tures is tolerated.

In previous work [1], trajectory HMMs were proposed and successfully applied to speech

recognition and speech synthesis. The standard HMM is reformulated by imposing the

explicit relationship between static and dynamic features, in order that the constraint of

HMMs such as the conditional independence and the constant statistics in each state can

be relaxed. In this paper, we propose a novel generative model that reformulates SL2D-

HMMs as a trajectory model, referred to as separable lattice trajectory 2-D HMMs (SLT2D-

HMMs). The proposed model can overcome the shortcomings of SL2D-HMMs and cap-

ture the dependencies of adjacent observations, without increasing the number of model

parameters. Consequently, the modeling ability can be significantly improved.

The rest of the present dissertation is organized as follows. The next chapter 3 introduces

basic theories of the 1-D HMM and also describes the model structure of SL2D-HMMs

and their training algorithms based on the EM algorithm and variational EM algorithm.

Chapter 5 extends the model structure of SL2D-HMMs for rotational variations and de-

rives the training algorithm based on variational EM algorithm. Chapter 5 reformulates

SL2D-HMMs by imposing explicit relationship between static and dynamic features and

defines SLT2D-HMMs. Relationships between SLT2D-HMMs and other techniques are

also discussed in this chapter. The training algorithm for SLT2D-HMMs is also described

in this chapter. Concluding remarks and future plans are presented in the final chapter.
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Chapter 2

Hidden Markov Models

Hidden Markov models (HMMs) are one of widely used statistical models for repre-

senting time series by well-defined algorithms. They have successfully been applied to

acoustic modeling both in speech recognition and synthesis. This section describes its

basic theories, how to calculate output probabilities of an observation vector sequence,

and how to estimate its parameters.

2.1 Definition of HMM

An HMM [22–24] is a finite state machine which generates a sequence of discrete time

observations. At each frame it changes states according to its state transition probabil-

ity distributions, and then generates an observation at time t, Ot, according to its output

probability distribution of the current state. Therefore, the HMM is a doubly stochastic

random process model.

An N-state HMM consist of state transition probability distributions
{
ai j

}N

i, j=1
, output prob-

ability distributions
{
bj (Ot)

}N

j=1
, and initial state probability distributions {πi}Ni=1. For con-

venience, the compact notation is used to indicate the parameter set of the model Λ as

follows:

Λ =

[{
ai j

}N

i, j=1
,
{
bj (·)

}N

j=1
, {πi}Ni=1

]
(2.1)

Figure 2.1 shows examples of the HMM structure. Figure 2.1(a) shows a 3-state ergodic

model, in which every state of the model could be reached from every state of the model

in a single step, and Figure 2.1(b) shows a 3-state left-to-right model, in which the state
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Figure 2.1: Examples of HMM structure.

index increases or stays the same state as time increases. The left-to-right HMMs are

generally used to model speech parameter sequences, since they can appropriately model

signals.

The output probability distributions
{
bj (·)

}N

j=1
can be discrete or continuous depending on

the observations. In continuous distribution HMM (CD-HMM), each output probability

distribution is usually modeled by a mixture of multivariate Gaussian components [25] as

follows:

bj (Ot) =

M∑
m=1

wjm · N
(
Ot

∣∣∣ μ jm,Σ jm

)
, (2.2)

where M, wjm, μ jm, and σ jm are the number of Gaussian components, the mixture weight,

mean vector, and covariance matrix of the m-th Gaussian component of the j-th state,

respectively. Each Gaussian component is defined by

N
(
Ot

∣∣∣ μ jm,Σ jm

)
=

1√
(2π)K

∣∣∣Σ jm

∣∣∣ exp

{
−1

2

(
Ot − μ jm

)�
Σ−1

jm

(
Ot − μ jm

)}
, (2.3)

where symbol � means transpose of vector or matrix, and K is the dimensionality of an

observation vector Ot. For each state,
{
wjm

}M

m=1
should satisfy the stochastic constraint
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M∑
m=1

wjm = 1, 1 ≤ j ≤ N (2.4)

wjm ≥ 0,
1 ≤ j ≤ N
1 ≤ m ≤ M (2.5)

so that
{
bj (·)

}N

j=1
are properly normalized, i.e.,

∫
RK

b j (Ot) dOt = 1. 1 ≤ j ≤ N (2.6)

It is noted that due to the model structure of HMMs, HMMs have the constraints [19] in

that (i) the statistics of each state do not change dynamically and (ii) the output probability

of an observation vector depends only on the current state, not on any other states nor

observations.

2.2 Calculation of output probability

2.2.1 Total output probability of an observation vector sequence

When a state sequence is determined, a joint probability of an observation vector sequence

O = {O1,O2, . . . ,OT } and a state sequence S = {s1, s2, . . . , sT } is calculated by multiplying

the state transition probabilities and state output probabilities for each state, that is,

P (O,S | Λ) =

T∏
t=1

ast−1 stbst (Ot) , (2.7)

where as0 s1
denotes πs1

. The total output probability of the observation vector sequence

from the HMM is calculated by marginalizing Eq. (2.7) over all possible state sequences,

P (O | Λ) =
∑
all q

T∏
t=1

ast−1 stbst (Ot) . (2.8)

The order of 2T · NT calculation is required, since at every t = 1, 2, . . . ,T there are N
possible states that can be reached (i.e., there are NT possible state sequences). This

calculation is computationally infeasible, even for small values of N and T ; e.g., for
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N = 5 (states), T = 100 (observations), there are on the order of 2 · 100 · 5100 ≈ 1072

computations. Fortunately, there is an efficient algorithm to calculate Eq. (2.8) using

forward and backward procedures.

2.2.2 Forward-Backward algorithm

The forward-backward algorithm is generally used to calcurate P (O | Λ), which is the

probability of the observation sequence O given the model Λ. If I directly calculate

P (O | Λ), it requires on the order of 2T · NT calculation. The detail of the forward-

backward algorithm is described in the following part.

The probability of a partial observation vector sequence from time 1 to t and the i-th state

at time t, given the HMM Λ is defined as

αt(i) = P (O1,O2, . . . ,Ot, st = i | Λ) . (2.9)

αt (i) is calculated recursively as follows:

1. Initialization

α1(i) = πibi (O1) , 1 ≤ i ≤ N (2.10)

2. Recursion

αt( j) =

⎡⎢⎢⎢⎢⎢⎣
N∑

i=1

αt−1(i)ai j

⎤⎥⎥⎥⎥⎥⎦ bj (Ot) ,
1 ≤ j ≤ N
t = 2, . . . , T (2.11)

3. Termination

P (O | Λ) =

N∑
i=1

αT (i). (2.12)

As the same way as the forward algorithm, backward variables βt(i) are defined as

βt(i) = P (Ot+1,Ot+2, . . . ,OT | st = i,Λ) , (2.13)

that is, the probability of a partial vector observation sequence from time t to T , given the

i-th state at time t and the HMM Λ. The backward variables can also be calculated in a

recursive manner as follows:

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N (2.14)
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Figure 2.2: Implementation of the computation using forward-backward algorithm in

terms of a trellis of observations and states.

2. Recursion

βt(i) =
N∑

j=1

ai jb j (Ot+1) βt+1( j),
1 ≤ i ≤ N
t = T − 1, . . . , 1.

(2.15)

3. Termination

P (O | Λ) =

N∑
i=1

β1(i). (2.16)

The forward and backward variables can be used to compute the total output probability

as follows:

P (O | Λ) =

N∑
j=1

αt( j)βt( j). 1 ≤ t ≤ T (2.17)

The forward-backward algorithm is based on the trellis structure shown in Figure 2.2. In

this figure, the x-axis and y-axis represent observations and states of an HMM, respec-

tively. On the trellis, all possible state sequences will re-merge into these N nodes no

matter how long the observation sequence. In the case of the forward algorithm, at time

t = 1, I need to calculate values of α1(i), 1 ≤ i ≤ N. At times t = 2, 3, . . . ,T , I need only
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calculate values of αt( j), 1 ≤ j ≤ N, where each calculation involves only the N previous

values of αt−1(i) because each of the N grid points can be reached from only the N grid

points at the previous time slot. As a result, the forward-backward algorithm can reduce

order of probability calculation.

2.3 Searching optimal state sequence

The single optimal state sequence Ŝ = {ŝ1, ŝ2, . . . , ŝT } for a given observation vector se-

quence O = {O1,O2, . . . ,OT } is useful for various applications (e.g., decoding, initializing

HMM parameters). By using a manner similar to the forward algorithm, which is often

referred to as the Viterbi algorithm [26], I can obtain the optimal state sequence Ŝ. Let

δt (i) be the likelihood of the most likely state sequence ending in the i-th state at time t

δt(i) = max
s1,...,st−1

P (s1, . . . , st−1, st = i,O1, . . . ,Ot | Λ) , (2.18)

and ψt (i) be the array to keep track. The complete procedure for finding the optimal state

sequence can be written as follows:

1. Initialization

δ1 (i) = πibi (O1) , 1 ≤ i ≤ N (2.19)

ψ1 (i) = 0, 1 ≤ i ≤ N (2.20)

2. Recursion

δt ( j) = max
i

[
δt−1 (i) ai j

]
bj (Ot) ,

1 ≤ i ≤ N
t = 2, 3, . . . , T (2.21)

ψt ( j) = arg max
i

[
δt−1 (i) ai j

]
,

1 ≤ i ≤ N
t = 2, 3, . . . , T (2.22)

3. Termination

P̂ = max
i

[δT (i)] , (2.23)

ŝT = arg max
i

[δT (i)] . (2.24)
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4. Back tracking

ŝt = ψt+1 ( ˆst+1) , t = T − 1, . . . , 1. (2.25)

It should be noted that the Viterbi algorithm is similar to the forward calculation of

Eqs. (2.10)–(2.12). The major difference is the maximization in Eq. (2.21) over previ-

ous states, which is used in place of the summation in Eq. (2.11). It also should be clear

that a trellis structure efficiently implements the computation of the Viterbi procedure.

2.4 Maximum likelihood estimation of HMM parameters

There is no known method to analytically obtain the model parameter set based on the

maximum likelihood (ML) criterion to obtain Λ which maximizes its likelihood P (O | Λ)

for a given observation sequence O, in a closed form. Since this problem is a high dimen-

sional nonlinear optimization problem, and there will be a number of local maxima, it is

difficult to obtain Λ which globally maximizes P (O | Λ). However, the model parameter

set Λ locally maximizes P (O | Λ) can be obtained using an iterative procedure such as

the expectation-maximization (EM) algorithm [27], and the obtained parameter set will

be appropriately estimated if a good initial estimate is provided.

In the following, the EM algorithm for the CD-HMM is described. The algorithm for the

HMM with discrete output distributions can also be derived in a straightforward manner.

2.4.1 Q-function

In the EM algorithm, an auxiliary function Q(Λ, Λ̂) of the current parameter set Λ and the

new parameter set Λ̂ is defined as follows:

Q(Λ, Λ̂) =
∑
all S

P(q | O,Λ) log P(O,S | Λ̂). (2.26)

Each mixture of Gaussian components is decomposed into a substate, and S is redefined

as a substate sequence,

S = {(s1,m1) , (s2,m2) , . . . , (sT ,mT )} , (2.27)
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where (st,mt) represents being in the mt-th substate (Gaussian component) of the st-th

state at time t.

At each iteration of the procedure, the current parameter set Λ is replaced by the new

parameter set Λ̂ which maximizes Q(Λ, Λ̂). This iterative procedure can be proved to

increase likelihood P (O | Λ) monotonically and converge to a certain critical point, since

it can be proved that the Q-function satisfies the following theorems:

• Theorem 1

Q(Λ, Λ̂) ≥ Q(Λ,Λ) ⇒ P(O | Λ̂) ≥ P(O | Λ) (2.28)

• Theorem 2

The auxiliary function Q(Λ, Λ̂) has the unique global maximum as a function of Λ,

and this maximum is the one and only critical point.

• Theorem 3

A parameter set Λ is a critical point of the likelihood P(O | Λ) if and only if it is a

critical point of the Q-function.

2.4.2 Maximization of Q-function

According to Eqs. (2.2) and (2.7), log P (O, S | Λ) can be written as

log P (O,S | Λ) = log P (O | S,Λ) + log P (S | Λ) , (2.29)

log P (O | S,Λ) =

T∑
t=1

logN
(
Ot

∣∣∣ μstwt ,Σstwt

)
, (2.30)

log P (S | Λ) = log πq1
+

T∑
t=2

log ast−1 st +

T∑
t=1

log wst st . (2.31)

Hence, Q-function (Eq. (2.26)) can be rewritten as
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Q(Λ, Λ̂) =

N∑
i=1

P (O, s1 = i | Λ) · log πi

+

N∑
i=1

N∑
j=1

T−1∑
t=1

P (O, st = i, st+1 = j) · log ai j

+

N∑
i=1

M∑
m=1

T∑
t=1

P (O, st = i,mt = m | Λ) · log wim

+

N∑
i=1

M∑
m=1

T∑
t=1

P (O, st = i,mt = m | Λ) · logN (Ot | μim,Σim ) . (2.32)

The parameter set Λ which maximizes the above equation subject to the stochastic con-

straints

N∑
i=1

πi = 1, (2.33)

N∑
j=1

ai j = 1, 1 ≤ i ≤ N (2.34)

M∑
m=1

wim = 1, 1 ≤ i ≤ N (2.35)

can be derived by Lagrange multipliers or differential calculus as follows [28]:
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πi = γ1(i), 1 ≤ i ≤ N (2.36)

ai j =

T∑
t=2

ξt−1(i, j)

T∑
t=2

γt−1(i)

,
1 ≤ i ≤ N
1 ≤ j ≤ N (2.37)

wim =

T∑
t=1

γt(i,m)

T∑
t=1

γt(i)

,
1 ≤ i ≤ N
1 ≤ m ≤ M (2.38)

μim =

T∑
t=1

γt(i,m) · Ot

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m ≤ M (2.39)

Σim =

T∑
t=1

γt(i,m) · (Ot − μim) (Ot − μim)�

T∑
t=1

γt(i,m)

,
1 ≤ i ≤ N
1 ≤ m ≤ M (2.40)

where γt(i), γt(i,m), and ξt (i, j) are the probability of being in the j-th state at time t, the

probability of being in the m-th substate of the i-th state at time t, and the probability of

being in the i-th state at time t and j-th state at time t + 1, respectively, that is
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γt (i) = P (O, qt = i | Λ)

=
αt(i)β(i)

N∑
j=1

αt( j)βt( j)

,
1 ≤ i ≤ N
t = 1, . . . , T (2.41)

γt (i,m) = P (O, qt = i, st = m | Λ)

=
αt(i)β(i)

N∑
j=1

αt( j)βt( j)

· wimN (Ot | μim,σim )
M∑

k=1

wikN (Ot | μik,σik )

,

1 ≤ i ≤ N
1 ≤ m ≤ M
t = 1, . . . , T

(2.42)

ξt(i, j) = P (O, qt = i, qt+1 = j | Λ)

=
αt(i)ai jb j (Ot+1) βt+1( j)

N∑
l=1

N∑
n=1

αt(l)alnbn (Ot+1) βt+1(n)

.
1 ≤ i ≤ N
t = 1, . . . ,T (2.43)

2.5 Summary

In this chapter, the basic theories of the hidden Markov models (HMMs), its algorithm

for calculating the output probability (forward-backward algorithm), searching the opti-

mal state sequence (Viterbi algorithm), and estimating its parameters (EM algorithm) are

described. Following chapters show the separable lattice 2-D HMMs, one of the HMM

based approach for image recognition.
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Chapter 3

Separable Lattice 2-D Hidden Markov
Models

This chapter describes separable lattice 2-D HMMs (SL2D-HMMs). SL2D-HMMs have

the composite structure of multiple hidden state sequences which interact to model the

observation on a lattice. SL2D-HMMs perform an elastic matching in both horizontal

and vertical directions; this makes it possible to model not only invariance to the size and

location of an object but also nonlinear warping in each dimension.

The rest of this chapter is organized as follows. Section 3.1 reviews the previous works

of HMM-based image recognition techniques. Section 3.2 describes the model definition

of SL2D-HMMs. Section 3.3 derives the training algorithms of SL2D-HMMs.

3.1 Related work

Statistical approaches have been successfully applied in the field of image recognition. In

particular, principal component analysis (PCA) based approaches, such as the eigenface

(eigen-image) method [29] and subspace method [30], attain good recognition perfor-

mance. There are many significant classifiers and feature representations. However, in

the case of conventional methods, some pre-processing for normalizing image variations,

e.g., geometric variations such as size, location, and rotation, is usually applied to input

images because many classifiers cannot deal with such image variations. The accuracy of

these normalization processes affects recognition performance. Task-dependent normal-

ization techniques have thus been developed for each image recognition task. However,

the final objective of image recognition is not to accurately normalize image variations for

human perception but to achieve high recognition performance. It is therefore a good idea
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to integrate the normalization processes into classifiers and optimize them on the basis of

a consistent criterion.

HMM based techniques for image recognition have been proposed to reduce the influ-

ence of geometric variations [3–13]. Geometric matching between input images and

model parameters is represented by discrete hidden variables, and the normalization pro-

cess is included in calculating probabilities. For an earlier work, Samaria et al. applied

HMMs to human face identification tasks [3]. The observation sequence was composed

of over-lapping window/line blocks extracted from each sample image and modeled by

ergodic/top-to-bottom HMMs, provided that image data had to be treated as if it was 1-D

data sequence. This leads to lack of robustness to geometric variations. It was therefore

natural for many researchers to consider extending HMMs to multi-dimensional ones.

In previous work [31], planar hidden Markov models were developed to provide a proba-

bilistic formulation for the planar warping problem. The probability of a particular state

depends only on the state at adjacent observations in both horizontal and vertical direc-

tions. This assumption is a natural extension of the Markov property to a second-order

source and the complexity can be reduced by generalizing the optimality principle as in

the one-dimensional forward-backward and Viterbi algorithms. However, the computa-

tion of planar HMMs is still exponential. Therefore, approximate Viterbi training algo-

rithms (e.g. [32]) and additional assumptions to simplify the model structure (e.g. [6])

have been proposed to solve the problem in polynomial time.

On the other hand, a more restricted structure, pseudo 2-D HMMs (or called embedded

HMMs) have been proposed [4] and applied to many image recognition tasks. Their

extension to pseudo 3-D HMMs has also been developed for image sequence recogni-

tion [33]. A pseudo 2-D HMM has a composite state structure for an efficient 2-D rep-

resentation avoiding the complexity burden of a fully connected 2-D HMM. Figure 3.1

shows the graphical model representation of the pseudo 2-D HMM. The states of a su-

perior HMM in the horizontal direction are called super-states and each super-state has

a one-dimensional HMM in the vertical direction instead of a probability density func-

tion. This assumption reduces the computational complexity and the maximum likelihood

training algorithm has been derived [5]. However, the state alignments of consecutive ob-

servation lines in the vertical direction are calculated independently of each other and this

hypothesis does not always hold true in practice.

Essentially, the studies of 2-D dynamic programming (2D-DP) treat the same problem

of the 2-D HMMs. The main difference between these studies is the definition of the

cost function; The 2D-DP focuses on finding the mapping between two images with a

pre-defined cost function, while the likelihood of 2-D HMMs is defined between an input

image and the distribution which is estimated from multiple training images. Although
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Figure 3.1: Graphical model representation of the pseudo 2-D HMMs: The states of a

superior HMM in the horizontal direction are called super-states and each super-state has

a one-dimensional HMM in the vertical direction.

some efficient approximation algorithms have been proposed for the 2D-DP problem [14–

17], they still need high complicated costs and prior knowledge to determine the cost

function is required for representing an accurate elastic matching dependently on image

variations.

For another HMM based approach, Separable Lattice 2-D HMMs (SL2D-HMMs) have

been proposed [9] to reduce the computational complexity while retaining the good prop-

erties for modeling multi-dimensional data. The detail of SL2D-HMMs will be described

in the next section.
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3.2 Model definition

Separable lattice 2-D hidden Markov models (SL2D-HMMs) [9] are defined for modeling

two-dimensional data. The observations of two-dimensional data, e.g., pixel values of an

image and image sequence, are assumed to be given on a two-dimensional lattice:

O = {Ot |t = (t(1), t(2)) ∈ T}, (3.1)

where t denotes the coordinates of the lattice in two dimensional space T and t(m) =

1, . . . , T (m) is the coordinate of the m-th dimension. The observation Ot is emitted from the

state indicated by the hidden variable St ∈ K. The hidden variables St ∈ K can take one of

K = K(1)K(2) states, which are assumed to be arranged on a two-dimensional state lattice

K = {(1, 1), (1, 2), . . . , (1,K(2)), (2, 1), . . . , (K(1),K(2))}. In other words, a set of hidden

variables, {St |t ∈ T}, represents a segmentation of observations into the K states, and each

state corresponds to a segmented region in which the observation vectors are assumed to

be generated from the same distribution. Since the observation Ot is dependent only on

the state St as in ordinary HMMs, dependencies among hidden variables determine the

properties and the modeling ability of two-dimensional HMMs.

To reduce the number of possible state sequences, we constrain the hidden variables to be

composed of two Markov chains:

S = {S(1),S(2)}, (3.2)

S(m) = {S (m)

1
, . . . , S (m)

t(m) , . . . , S
(m)

T (m)}, (3.3)

where S(m) is the Markov chain along with the m-th coordinate and S (m)

t(m) ∈ {1, . . . ,K(m)}.
In the separable lattice 2-D HMMs, the composite structure of hidden variables is defined

as the product of hidden state sequences: St = (S (1)

t(1) , S
(2)

t(2) ). This means that the segmented

regions of observations are constrained to be rectangles and this allows an observation

lattice to be elastic in both vertical and horizontal directions. Using this structure, the

number of possible state sequences can be reduced from {∏m K(m)}∏m T (m)

to
∏

m{K(m)}T (m)

.

The joint probability of observation vectors O and hidden variables S can be written as

P(O,S | Λ) = P(O | S,Λ)
∏

m=1,2

P(S(m) | Λ)

=
∏

t

P(Ot | St ,Λ)
∏

m=1,2

⎡⎢⎢⎢⎢⎢⎢⎣P(S (m)

1
| Λ)

T (m)∏
t(m)=2

P(S (m)

t(m) | S (m)

t(m)−1
,Λ)

⎤⎥⎥⎥⎥⎥⎥⎦
(3.4)

where Λ is the model parameters of SL2D-HMMs. This model parameters of SL2D-

HMMs are summarized as follows:
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Figure 3.2: Model structure of the separable lattice 2-D HMMs: hidden state sequences

are composed of independent two Markov chains.

• Parameters for state transition probability:

1) Π(m) = {π(m)
i |1 ≤ i ≤ K(m)} : the initial state probability distribution, where

π(m)
i = P(S (m)

1
= i | Λ) (3.5)

is the probability of state i at t(m) = 1 in the m-th state sequence S(m).

2) A(m) = {a(m)
i j | 1 ≤ i, j ≤ K(m)} : the transition probability matrix, where

a(m)
i j = P(S (m)

t(m) = j | S (m)

t(m)−1
= i,Λ) (3.6)

is the transition probability from state i to state j in the m-th state sequence S(m).

• Parameters for output probability distribution :

B = {bk(Ot)|k ∈ K} : the output probability distributions, where bk(Ot) is the

probability of observation vector Ot at the state k on the state lattice K and assumed

to be a single Gaussian distribution :

P(Ot | St = k) = N(Ot;μk,Σk) (3.7)

where μk and Σk denote the “state level” mean vector and the covariance matrix,

respectively.
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Figure 3.3: Graphical model representation of the separable lattice 2-D HMMs: The

rounded box represents a group of variables and the arrow to the box represents the de-

pendency to all variables in the box instead of drawing arrows to the all variables. The ob-

servations are emitted from the product of horizontal and vertical hidden state sequences.

Using the above shorthand notation, a separable lattice 2-D HMM is defined as

Λ = {Λ(1),Λ(2)B}, (3.8)

Λ(m) = {Π(m), A(m)}. (3.9)

Fig. 3.2 and 3.3 show the model structure of the separable lattice 2-D HMMs and its

graphical model representation, respectively. In Fig. 3.3, the rounded box represents a

group of variables and the arrow to the box represents the dependency to all variables in

the box instead of drawing arrows to the all variables.

The separable 2-D lattice HMMs can be applied to image modeling and perform an elas-

tic matching in both horizontal and vertical directions by assuming the transition prob-

abilities with left-to-right and top-to-bottom topologies. Although the structure of the

proposed model cannot represent rotations of images, it is still useful for image detection

and the framework makes it possible to achieve size- and location-invariant image recog-
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nition. Furthermore, the proposed model can be used for 3-D and higher dimensional

applications, e.g., image sequences, 3-D object models, etc., due to the composite struc-

ture which reduces the complexity of the algorithm while retaining the good properties

for modeling multi-dimensional data.

The main difference between the proposed model and the embedded HMMs is that the

SL2D-HMM have a symmetric structure in vertical and horizontal directions. Therefore,

there is no need to determine which direction of 2-D data should be modeled as the super

states or the embedded states. If the hidden variables of the embedded states also shared

for all observation sequences, an embedded HMM becomes equivalent to a SL2D-HMM.

In the embedded HMMs, the exact EM algorithm can be performed in practice, because

the state transitions of an embedded state sequence depend only on the corresponding

super state. However, in SL2D-HMMs, the state transitions of one direction depend on the

all the hidden variables of the other direction; therefore the exact EM algorithm becomes

infeasible.

In the next section, the training algorithm for the SL2D-HMMs using the variational EM

algorithm and the variational DAEM algorithm and are derived. Although some exten-

sions of SL2D-HMMs have been proposed, e.g., explicit state duration modeling [12],

this dissertation uses an original form of SL2D-HMMs.

3.3 Training algorithm

3.3.1 EM algorithm

The parameters of the proposed model can be estimated via the expectation maximization

(EM) algorithm which is an iterative procedure for approximating the Maximum Like-

lihood (ML) estimate. This procedure maximizes the expectation of the complete data

log-likelihood so called Q-function:

Q(Λ,Λ′) =
∑

S

P(S | O,Λ) ln P(O,S | Λ′) (3.10)

The likelihood of the training data is guaranteed to increase by increasing the value of the

Q-function:

Q(Λ,Λ′) ≥ Q(Λ,Λ) ⇒ P(O | Λ′) ≥ P(O | Λ) (3.11)

The EM algorithm starts with some initial model parameters and iterates between the

following two steps:
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(E-step) : compute Q(Λ(k),Λ)

(M-step) : Λ(k+1) = arg max
Λ
Q(Λ(k),Λ)

where k denotes the iteration number. The E-step computes the posterior probabilities

over the hidden states while keeping model parameters fixed to current values. The M-step

uses these probabilities to calculate the expected log-likelihood of the training data as a

function of the parameters and maximize theQ-function with respect to model parameters.

In this procedure, each step increases the value of the Q-function; hence the likelihood of

the training data is also guaranteed to increase or remain unchanged on each iteration.

By maximizing the Q-function with respect to model parameters Λ, the re-estimation

formula in the M-step can be easily derived as follows:

π(m)
i =

〈
S (m)

1
, i
〉

(3.12)

a(m)
i j =

T (m)∑
t(m)=2

〈(
S (m)

t(m)−1
, i
) (

S (m)

t(m) , j
)〉

T (m)∑
t(m)=2

〈
S (m)

t(m) , i
〉 (3.13)

μk =

∑
t

〈St , k〉Ot

∑
t

〈St , k〉
(3.14)

Σk =

∑
t

〈St , k〉 (Ot − μk)(Ot − μk)�

∑
t

〈St , k〉
(3.15)

where 〈·〉 denotes the expectation with respect to the posterior distribution over the hidden

variables. These expectations are computed in the E-step by the following equations.

〈(
S (m)

t(m) , i
)〉
=

∑
S

P(S | O,Λ)δ(S (m)

t(m) , i) (3.16)

〈(
S (m)

t(m)−1
, i
) (

S (m)

t(m) , j
)〉
=

∑
S

P(S | O,Λ)δ(S (m)

t(m)−1
, i)(S (m)

t(m) , j) (3.17)

〈St , k〉 =
〈
S (1)

t(1) , k
(1)
〉 〈

S (2)

t(2) , k
(2)
〉

(3.18)

In the case of a 1-D HMM, the forward-backward algorithm is applied to calculate the ex-

pectations efficiently. Even though the Markov chains of SL2D- are independent a-priori,
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they become conditionally dependent given the observations and the computation of ex-

pectations become infeasible. If we compute expectations in the exact E-step directly

according to Eqs.(3.16)–(3.18), we need to consider summations over all the combina-

tions of states and the complexity of the E-step is O
(
Πm{K(m)}T (m)

)
. As in one-dimensional

HMMs, the complexity of SL2D-HMMs can be reduced by using forward-backward al-

gorithm. The Q-function can be rewritten with respect to one of Markov chains S(n) as

follows:

∑
S

P(S | O,Λ) ln P(S,O | Λ′)

=
∑

S∈S\S(n)

∑
S(n)

P(S(n) | S,O,Λ)P(S | O,Λ) ln P(S(n),O | S,Λ)

=
∑

S∈S\S(n)

P(S | O,Λ) ×
⎡⎢⎢⎢⎢⎢⎢⎣
∑
S(n)

P(S(n) | S,O,Λ) ln P(S(n),O | S,Λ)

⎤⎥⎥⎥⎥⎥⎥⎦
+

∑
S∈S\S(n)

P(S | O,Λ) ln P(S | Λ) (3.19)

where the term in the square bracket is the Q-function associated with S(n) given S and

that can be calculated by the forward-backward algorithm. Hence the complexity of the

exact E-step can be reduced to O({K(n)}2T (n)Πm+n{K(m)}T (m)

). However, the calculation of

the posterior distribution P(S |O,Λ) in the E-step is computationally intractable due to the

combination of hidden variables. To derive a feasible problem, we applied the variational

EM algorithm [18] to the training algorithm of SL2D-HMMs.

3.3.2 Variational EM algorithm

The variational methods approximate the posterior distribution over the hidden variables

by a tractable distribution. Any distribution over the hidden variables defines a lower

bound on the log-likelihood

ln P(O | Λ) = ln
∑

S

Q(S)
P(O, S | Λ)

Q(S)

≥
∑

S

Q(S) ln
P(O,S | Λ)

Q(S)

= F (Q,Λ) (3.20)

where Jensen’s inequality has been applied. The difference between ln P(O | Λ) and F
is given by the KL divergence between Q(S) and the posterior distribution of the hidden
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variables P(S | O,Λ):

F (Q,Λ) =
∑

S

Q(S) ln
P(O,S | Λ)

Q(S)

=
∑

S

Q(S|Λ) ln P(O | Λ) +
∑

S

Q(S) ln
P(S | O,Λ)

Q(S)

= ln P(O | Λ) − KL(Q || P) (3.21)

Since the true log-likelihood ln P(O | Λ) is independent of Q(S), maximizing the lower

bound F is equivalent to minimizing the KL divergence. If we allow Q(S) to have com-

plete flexibility then we see that the optimal Q(S) distribution is given by the true posterior

P(S | O,Λ), in the case where the KL divergence is zero and the bound becomes exact.

In order to yield a tractable algorithm, it is necessary to consider a more restricted struc-

ture of Q(S) distributions. Given the structure, the parameters of Q(S) are varied so as to

obtain the tightest possible bound, which maximizes F .

The variational EM algorithm iteratively maximizes F with respect to the Q and Λ hold-

ing the other parameters fixed:

(E-step) : Q(k+1) = arg max
Q∈C

F (Q,Λ(k))

(M-step) : Λ(k+1) = arg max
Λ

F (Q(k+1),Λ)

where C is the set of constrained distributions. In this procedure, the lower bound F is

guaranteed to increase instead of the value of the Q-function.

The complexity and the approximation property of the variational EM algorithm are de-

pendent on a constraint to the posterior distribution Q(S) and it should be determined for

each structure of graphical models. Here we consider a constrained family of variational

distributions for the proposed model by assuming that Q(S) factorizes over subset S(m) of

the variables in S, so that

Q(S) = Q(S(1))Q(S(2)) (3.22)

where Q(S) are the posterior distribution over S and
∑

S(m) Q(S(m)) = 1, m = 1, 2. To make

the bound as tight as possible, we use elementary calculus of variations to take functional

derivatives of the lower bound with respect to Q(S(m)). In this case, the Euler-Lagrange

equation can be solved simply by taking partial derivatives with respect to one of the
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distributions:

∂F
∂Q

(
S(n) = S(n)′

)
=

∑
S∈S\S(n)

∏
m�n

Q(S(m)) ln P(O,S, S(n)′ | Λ) − ln Q(S(n)′) − 1

=
∑

S∈S\S(n)

∏
m�n

Q(S(m)) ln P(O | S,S(n)′ ,Λ) + ln P(S(n)′) − ln Q(S(n)′) + const. (3.23)

The maximum of F occurs at a critical point subject to the constraint that
∑

S(n) Q(S(n)) =

1, and can be found using a Lagrange multiplier λ(n). By setting for each of state sequence

S(n), following Euler-Lagrange equation can be obtained.

∂F
∂Q((n))

+ λ(n) = 0. (3.24)

The optimal distributions can be derived as

Q(S(n)) =
1

Z(n)
P(S(n)|Λ)

T (n)∏
t(n)=1

h(t(n), S (n)

t(n) ) (3.25)

ln h(t(n), S (n)

t(n) ) =
∑

S̄∈S\S(n)

∏
m�n

Q(S̄(m)
)
∑

t̄∈t\t(n)

ln P(Ot̄,t(n) |S̄, S (n)

t(n) ,Λ) (3.26)

=
∑

k̄∈k\k(n)

∑
t̄∈t\t(n)

∏
m�n

〈(S (m)

t̄(m) , k̄
(m))〉 ln P(Ot̄,t(n) |St̄ = k̄, S (n)

t(n) ,Λ) (3.27)

where Z(n) is a normalization constant including λ(n). By inspection, this distribution is

the same structure as the posterior of standard HMMs: the expectation h(t(n), S (n)

t(n) ) corre-

sponds to the observation probability associated with the state variable S (n)

t(n) . Therefore,

the forward-backward algorithm can be used to compute the following expectations effi-

ciently: 〈(
S (m)

t(m) , i
)〉
=

∑
S(m)

Q(S(m))δ(S (m)

t(m) , i) (3.28)

〈(
S (m)

t(m)−1
, i
) (

S (m)

t(m) , j
)〉
=

∑
S(m)

Q(S(m))δ(S (m)

t(m)−1
, i)δ(S (m)

t(m) , j) (3.29)

〈(St , k)〉 =
M∏

m=1

〈(S (m)

t(m) , k
(m))〉 (3.30)

The complexity of E-step with the variational approximation becomes O(M
∏

m K(m)T (m))

owing to the computation of ln h(t(n), S (n)

t(n) ). Note that the computational cost can be sig-

nificantly reduced from the exact EM algorithm to polynomial time complexity.
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Using these expectations, the re-estimation formula of the proposed model in the M-step

are derived as follows:

π(m)
i =

〈(
S (m)

1
, i
)〉
, (3.31)

a(m)
i j =

T (m)∑
t(m)=2

〈(
S (m)

t(m)−1
, i
) (

S (m)

t(m) , j
)〉

T (m)∑
t(m)=1

〈(
S (m)

t(m) , i
)〉 , (3.32)

μk =

∑
t

〈St , k〉Ot

∑
t

〈St , k〉
(3.33)

Σk =

∑
t

〈St , k〉 (Ot − μk)(Ot − μk)�

∑
t

〈St , k〉
(3.34)

3.3.3 Variational DAEM algorithm

The EM algorithm has the problem that the solution converges to a local optimum and the

convergence point depends on the initial model parameters. In the variational EM algo-

rithm for SL2D-, the decoupled posterior distributions are updated individually based not

only on the initial model parameters but also on the other distributions, both of which are

unreliable at an early stage of training. To avoid this problem, the deterministic anneal-

ing EM (DAEM) algorithm [34] can be applied to the algorithm derived in the previous

section and it is shown that the expectations with respect to the decoupled posterior dis-

tributions for the DAEM can also be calculated by the forward-backward procedure.

In the DAEM algorithm, the problem of maximizing the log-likelihood is reformulated as

minimizing the thermodynamic free energy defined as

Lβ = −1

β
ln
∑

S

P(S,O|Λ)β (3.35)

where 1/β called the “temperature” and this cost function can be rewritten by using
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Jensen’s inequality:

−Lβ = 1

β
ln
∑

S

Qβ(S)
P(S,O|Λ)β

Qβ(S)

≥ 1

β

∑
S

Qβ(S) ln
P(S,O|Λ)β

Qβ(S)

=
∑

S

Qβ(S) ln P(S,O|Λ) − 1

β

∑
S

Qβ(S) ln Qβ(S) (3.36)

= Fβ(Qβ,Λ) (3.37)

where −Fβ(Qβ,Λ) is the same form as the free energy in statistical physics, and maxi-

mizing Fβ(Qβ,Λ) with a fixed temperature can be interpreted as the approach to thermo-

dynamic equilibrium. In the algorithm, the temperature is gradually decreased and the

function is deterministically optimized at each temperature. The procedure of the DAEM

algorithm can be summarized as follows:

1 Give an initial model and set β = βmin

2 Iterate EM-steps with β fixed until Fβ converged:

(E step) : Q(k+1)
β = argmax

Qβ∈C
Fβ(Qβ,Λ

(k))

(M step) : Λ(k+1) = argmax
Λ

Fβ(Q(k+1)
β ,Λ)

3 Increase β.

4 If β > 1, stop the procedure. Otherwise go to step 2.

where 1/βmin is an initial temperature and should be chosen as a high enough value that

the EM-steps can achieve a single global maximum of Fβ. At the initial temperature,

the entropy of Qβ(S) is intended to be maximized rather than the Q function (the first

term of equation (3.36)); therefore Qβ(S) becomes closer to uniform distribution. While

the temperature is decreasing, the form of Qβ(S) changes from uniform to the original

posterior and at the final temperature 1/β = 1, the negative free energy Fβ becomes equal

to the lower bound F , accordingly the DAEM algorithm agrees with the original EM

algorithm.

If the distribution Qβ(S) have complete flexibility, the optimal distribution which maxi-

mizes Fβ is given by

Qβ(S) =
1

Zβ
P(O,S|Λ)β =

P(O,S|Λ)β∑
S

P(O,S|Λ)β
(3.38)
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where Zβ is the normalization constant. In SL2D-HMMs, decoupled approximate distri-

butions can be derived as

Qβ(S(n)) =
1

Z(n)
β

P(S(n)|Λ)β
T (n)∏

t(n)=1

h(t(n), S (n)

t(n) )
β

(3.39)

and the normalization constant is given by

Z(n)
β =

∑
S(n)

P(S(n)|Λ)β
T (n)∏

t(n)=1

h(t(n), S (n)

t(n) )
β (3.40)

The expectations with respect to this distribution can also be calculated by the forward-

backward algorithm with using P(S(n)|Λ)β and h(t(n), S (n)

t(n) )
β as the transition probabilities

and the observation probabilities, respectively.

3.4 Disadvantage

It must be noted that the modeling accuracy of SL2D-HMMs is still insufficient because

of the following two assumptions, which are inherited from 1-D HMMs: i) the stationary

statistics within each state and ii) the conditional independent assumption of state output

probabilities. Moreover, SL2D-HMMs cannot deal with affine deformation completely.

In other words, SL2D-HMMs cannot represent rotational variations. This is because the

model structure composed of two independent (horizontal and vertical) Markov chains.

3.5 Summary

In this chapter, separable lattice 2-D hidden Markov models (SL2D-HMMs) have been

defined, in which multiple hidden state sequences interact to model the observations on

a lattice. it is focused on the case of 2-D lattices, with a horizontal and vertical Markov

chain, and their application to modeling images. SL2D-HMMs can perform an elastic

matching in both horizontal and vertical directions; this makes it possible to model in-

variances to the size and location of an object. A training algorithm for SL2D-HMMs

based on a variational approximation have been presented. Moreover, the deterministic

annealing EM (DAEM) algorithm have been applied to the training of SL2D-HMMs with

a variational approximation. However, the modeling accuracy of SL2D-HMMs is still

insufficient. The next chapter will describe an extension of SL2D-HMMs for rotational
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variations. In Chapter 5 reformulates SL2D-HMMs by imposing explicit relationship

between static and dynamic features to overcome these shortcomings.
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Chapter 4

An extension of separable lattice 2-D
HMMs for rotational variations

In the previous chapter, the model definition and the training algorithm for SL2D-HMMs

were described. Although SL2D-HMMs can perform an elastic matching in both hori-

zontal and vertical directions, SL2D-HMMs cannot deal with rotational variations. This

chapter derives an extension of separable lattice 2-D HMMs for rotational variations. The

training algorithm for the proposed model based variational EM algorithm is also derived.

4.1 Model structure representing rotational variations

To reduce the complexity, SL2D-HMMs have only one state sequence in each direction;

this means that all horizontal/vertical lines of an observation lattice have the same state

alignment for each direction. However, to represent the rotational variations, the models

should have a different state alignment for each observation line and horizontal/vertical

state alignments should be changed along with vertical/horizontal direction. In this the-

sis, we propose a new model structure with additional HMM states which represent the

shifts of the state alignments of observation lines in a particular direction. Since the de-

gree of the shift is controlled by the Markov chains, the proposed model can represent

the dependency of the state alignments between consecutive observation lines. There-

fore, the proposed model can perform a continuous elastic matching including rotational

transformations. Figure 4.1 and 4.2 show the model structure of the proposed model and

graphical representation for the proposed model, respectively.
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The likelihood function of the proposed model is defined as follows:

P(O,S, d | Λ) = P(O | S, d,Λ) · P(S | Λ) · P(d | Λ)

=
∏

t

P(Ot | St , dt ,Λ)
∏

m

P(S(m) | Λ) ·
∏

m

P(d(m) | Λ) (4.1)

where S represents the reference state sequences corresponding to the state sequences

of SL2D-HMMs and d represents the shift state sequences and consists of two Markov

chains for each dimension:

d =
{
d(1), d(2)

}
(4.2)

d(m) =
{
d(m)

1
, d(m)

2
, . . . , d(m)

T (n)

}
(4.3)

d(m)

t(n) ∈
{
D(m)

min, D(m)
min + 1, . . . , D(m)

max

}
, n � m

(4.4)

where D(m)
min and D(m)

max represent the minimum and maximum shift of the m-th coordinate

respectively, and St is the shifted state defined as

St =

(
S (1)

t(1) , S (2)

t(2)

)
=

(
S (1)

t(1)+d(1)

t(2)

, S (2)

t(2)+d(2)

t(1)

)
(4.5)

where the following boundary conditions are assumed:

S (m)

t(m) =

⎧⎪⎪⎨⎪⎪⎩ 1
(
t(m) ≤ 0

)
K(m)

(
t(m)

> T (m)
) (4.6)

Figure 4.3 shows an example of the state alignment of the proposed model where mono-

tonic alignment can be obtained by using shift states.

Model parameters of the proposed model are summarized as follows:

• Parameters for state transition probability of reference states S:

1) Π(m)
S = {π(m)

S ,i |1 ≤ i ≤ K(m)} : the initial state probability distribution, where

π(m)
S ,i = P(S (m)

1
= i|Λ) is the probability of state i at t(m) = 1 in the m-th state

sequence S(m).

2) A(m)
S = {a(m)

S ,i j | 1 ≤ i, j ≤ K(m)} : the transition probability matrix, where

a(m)
S ,i j = P(S (m)

t(m) = j|S (m)

t(m)−1
= i,Λ) is the transition probability from state i to

state j in the m-th state sequence S(m).

• Parameters for state transition probability of shift states d :
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Figure 4.1: Model structure of the proposed model: The horizontal/vertical state align-

ments is changed along with vertical/horizontal state direction to represent the rotational

variations.

1) Π
(m)

d = {π(m)

d,i |1 ≤ i ≤ K(m)

d } : the initial state probability distribution, where

π(m)

d,i = P(d(m)

1
= i|Λ) is the probability of state i at t(n) = 1 in the m-th state

sequence d(m).

2) A(m)

d = {a(m)

d,i j|D(m)
min ≤ i, j ≤ D(m)

max} : the transition probability matrix, where

a(m)

d,i j = P(d(m)

t(n) = j|d(m)

t(n)−1
= i,Λ) is the transition probability from state i to state

j in the m-th state sequence d(m).

• Parameters for output probability distribution :

B = {bk(Ot)|k ∈ K} : the output probability distributions, where bk(Ot) is the

probability of observation vector Ot at the state k on the state lattice K and assumed

to be a single Gaussian distribution : P(Ot |St = k) = N(Ot;μk,Σk) where μk and

Σk are the mean vector and the covariance matrix, respectively.
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Figure 4.2: Graphical representation of the proposed model: The shift sequence affects

the all data on the same observed line.

Using the above shorthand notation, the proposed model is defined as

Λ = {Λ(1)
S ,Λ(2)

S ,Λ(1)

d ,Λ(2)

d , B}, (4.7)

Λ
(m)
S = {Π(m)

S , A(m)
S }, (4.8)

Λ
(m)

d = {Π(m)

d , A(m)

d }. (4.9)

The proposed model has potential to perform an continuous elastic matching beyond ro-

tational variations. However, in this dissertation, the topology and the shift amounts are

constrained to a special form which is expected to represent the continuous rotational vari-

ations. The example of the form for the m-th dimension where D(m)
min = −2 and D(m)

max = 2

is shown in figure 4.4.
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Figure 4.3: An example of state alignment of the proposed model for reference states and

shifted states in horizontal direction: Without shift states (SL2D-HMMs), rectangle state

alignments can be obtained while with shift states, monotonically shifted state alignments

can be obtained in the proposed model.

4.2 Training algorithm

The parameters of the proposed model can be estimated via the expectation maximization

(EM) algorithm which is an iterative procedure for approximating the Maximum Like-

lihood (ML) estimate. This procedure maximizes the expectation of the complete data

log-likelihood so called Q-function:

Q(Λ,Λ′) =
∑
S,d

P(S, d | O,Λ) ln P(O,S, d | Λ′) (4.10)

By maximizing the Q-function with respect to model parameters Λ, the re-estimation

formula in the M-step can be easily derived. However, the calculation of the posterior

distribution P(S, d | O,Λ) in the E-step is computationally intractable due to the combi-

nation of hidden variables. To derive a feasible problem, we applied the variational EM

algorithm [18] to the training algorithm of the proposed model.

The variational methods approximate the posterior distribution over the hidden variables
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Figure 4.4: The example of topology of the transition probabilities of the m-th dimension

shift states where D(m)
min = −2 and D(m)

max = 2; from this topology, monotonically increasing

or decreasing sequence of the shift amount can be obtained and clockwise or counter-

clockwise rotational variations can be represented.

by a tractable distribution. Any distribution over the hidden variables defines a lower

bound on the log-likelihood

ln P(O | Λ) = ln
∑

S

∑
d

Q(S, d)
P(O,S, d | Λ)

Q(S, d)

≥
∑

S

∑
d

Q(S, d) ln
P(O,S, d | Λ)

Q(S, d)

= F (Q,Λ) (4.11)

where Jensen’s inequality has been applied. The difference between ln P(O | Λ) and F is

given by the KL divergence between Q(S, d) and the posterior distribution of the hidden

variables P(S, d | O,Λ) :

F (Q,Λ) =
∑

S

∑
d

Q(S, d) ln
P(O,S, d | Λ)

Q(S, d)

=
∑

S

∑
d

Q(S, d|Λ) ln P(O | Λ) +
∑

S

∑
d

Q(S, d) ln
P(S, d | O,Λ)

Q(S, d)

= ln P(O | Λ) − KL(Q || P) (4.12)

Since the true log-likelihood ln P(O | Λ) is independent of Q(S, d), maximizing the lower

bound F is equivalent to minimizing the KL divergence. If we allow Q(S, d) to have

complete flexibility then we see that the optimal Q(S, d) distribution is given by the true

posterior P(S, d|O,Λ), in the case where the KL divergence is zero and the bound becomes
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exact. In order to yield a tractable algorithm, it is necessary to consider a more restricted

structure of Q(S, d) distributions. Given the structure, the parameters of Q(S, d) are varied

so as to obtain the tightest possible bound, which maximizes F .

The variational EM algorithm iteratively maximizes F with respect to the Q and Λ hold-

ing the other parameters fixed:

(E-step) : Q(k+1) = arg max
Q∈C

F (Q,Λ(k))

(M-step) : Λ(k+1) = arg max
Λ

F (Q(k+1),Λ)

where C is the set of constrained distributions. In this procedure, the lower bound F is

guaranteed to increase instead of the value of the Q-function.

The complexity and the approximation property of the variational EM algorithm are de-

pendent on a constraint to the posterior distribution Q(S, d) and it should be determined

for each structure of graphical models. Here we consider a constrained family of varia-

tional distributions for the proposed model by assuming that Q(S, d) factorizes over subset

S(m) and d(m) of the variables in S and d, so that

Q(S, d) = Q(S)Q(d) (4.13)

=

M∏
m=1

Q(S(m))

M∏
m=1

Q(d(m)) (4.14)

where Q(S) and Q(d) are the posterior distribution over S and d, respectively. Also,∑
S(m) Q(S(m)) = 1 and

∑
d(m) Q(d(m)) = 1, m = 1, . . . , M. The optimal distributions of the

subsets are obtained by maximizing F independently while keeping the other distribu-

tions fixed:

Q(S(m)) ∝ P(S(m) | Λ) exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

d

Q(d)
∑

S\S(m)

∏
n�m

Q(S(n)) ln P(O | S, d,Λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.15)

Q(d(m)) ∝ P(d(m) | Λ) exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

S

Q(S)
∑

d\d(m)

∏
n�m

Q(d(n)) ln P(O | S, d,Λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.16)

The detail of the derivation will be described in appendix A.1. The E-step consists of the

updates of Q(S(1)), Q(S(2)), Q(d(1)) and Q(d(2)), which interact through the expectations.

By inspection, the distribution Q(S(1)), Q(S(2)), Q(d(1)) and Q(d(2)) have the same structure

as the posterior of standard HMMs. Therefore, the forward-backward algorithm can be

used to compute the following expectations efficiently:
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〈(
S (m)

t(m) , i
)〉
=

∑
S(m)

Q(S(m))δ(S (m)

t(m) , i) (4.17)

〈(
S (m)

t(m)−1
, i
) (

S (m)

t(m) , j
)〉
=

∑
S(m)

Q(S(m))δ(S (m)

t(m)−1
, i)δ(S (m)

t(m) , j) (4.18)

〈(
d(m)

t(n) , i
)〉
=

∑
d(m)

Q(d(m))δ(d(m)

t(n) , i) (4.19)

〈(
d(m)

t(n)−1
, i
) (

d(m)

t(n) , j
)〉
=

∑
d(m)

Q(d(m))δ(d(m)

t(n)−1
, i)δ(d(m)

t(n) , j) (4.20)

〈(
S (m)

t(m)+d(m)

t(n)

, k(m)

) (
d(m)

t(n) , l
(m)
)〉
=

∑
S(m)

∑
d(m)

Q(S(m))Q(d(m)) ×

δ(S (m)

t(m)+d(m)

t(n)

, k(m))δ(d(m)

t(n) , l
(m)) (4.21)

〈(St , k)(dt , l)〉 =
∏

m

〈(
S (m)

t(m)+d(m)

t(n)

, k(m)

) (
d(m)

t(n) , l
(m)
)〉

(4.22)

where n � m. Using these expectations, the re-estimation formula of the proposed model

in the M-step are derived as follows.

π(m)
S ,i =

〈(
S (m)

1
, i
)〉

(4.23)

π(m)

d,i =
〈(

d(m)

1
, i
)〉

(4.24)

a(m)
S ,i j =

T (m)∑
t(m)=2

〈(
S (m)

t(m)−1
, i)(S (m)

t(m) , j
)〉

T (m)∑
t(m)=1

〈(
S (m)

t(m) , i
)〉 (4.25)

a(m)

d,i j =

T (n)∑
t(n)=2

〈(
d(m)

t(n)−1
, i)(d(m)

t(n) , j
)〉

T (n)∑
t(n)=1

〈(
d(m)

t(n) , i
)〉 (4.26)

μk =

∑
t

∑
l

〈(St , k)(dt , l)〉Ot

∑
t

∑
l

〈(St , k)(dt , l)〉
(4.27)
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Σk =

∑
t,l

〈(St , k)(dt , l)〉 (Ot − μk)(Ot − μk)�

∑
t,l

〈(St , k)(dt , l)〉

(4.28)

The derivation of the above formulas will be described in appendix A.2.

4.3 Experiments

4.3.1 Experimental conditions

To demonstrate the modeling ability of the proposed model, face recognition experiments

on the XM2VTS database [35] were conducted. we prepared eight images of 100 subjects;

seven images are used for training and one image for testing. The face images were

extracted form the original images (720×576 pixels and transformed into gray-scale) and

then sub-sampled to 64 × 64 pixels. In this process, we prepared four sets of data:

• “dataset 1” : the size- and location-normalized data. The original database does not

include much variations of size and location, hence the center of the original images

was used as the face location and the size was fixed to 550 × 550 pixels.

• “dataset 2” : data with size and location variations. The sizes and locations were

randomly generated by Gaussian distributions almost within the location shift of

40 × 20 pixels from the center and the range of size 500 × 500 ∼ 600 × 600 with

fixed aspect.

• “dataset 3” : data with rotational variations. The rotation angles are randomly

generated within −10 ∼ 10 degrees from Gaussian distribution with 0.0 mean and

5.0 standard deviation.

• “dataset 4” : data with size, location and rotational variations. The size and location

variations were generated as well as “dataset 2” and the rotational variations were

generated as well as “dataset 3”.

Figure 4.5 shows the examples of four datasets. Although it was already confirmed that

the recognition performance was significantly improved with appropriate feature vectors
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(a) no variation

(c) rotational variations

(b) size and location variations

(d) size, location and rotational

variations

Figure 4.5: Examples of training data; with no variation (a) and with variations of size

and location (b), with rotational variations (c) and with variations of size, location and

rotations (d).

such as 2-D discrete cosine transform coefficients or linear regression coefficients of im-

ages, the pixel intensity values were used as features in this dissertation. This is because

the objective of this experiment was not to obtain the best performance of the proposed

model but to demonstrate the property of the proposed model to normalize rotational

variations. For the purpose of improving the recognition performance, the SL2D-HMMs

were extended by integrating with a linear feature extraction such as probabilistic PCA

or factor analyzers [10]. In the dissertation, it was confirmed that SL2D-HMMs and their

extensions exceed the eigenface methods and subspace methods in face recognition exper-

iments. The structure proposed in this dissertation can be easily integrated with a linear

feature extraction as [10] for improving recognition performance.

The number of reference states was 24 × 24 and the number of shift states was varied

among 6 × 6, 10 × 10, 14 × 14, 18 × 18 and 22 × 22, corresponding to the conditions

that −D(m)
min = D(m)

max = 1, 2, 3, 4 and 5, respectively. The number of reference states was

previously optimized to give the best recognition performance on SL2D-HMMs. The

transition probabilities for each sequence of reference states were assumed to be a left-to-

right and top-to-bottom no skip topology and the transition probabilities for each sequence

of shift states were assumed to be the topology as shown in figure 4.4.
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4.3.2 Experimental results

Recognition performance

Figure 4.6(a), 4.6(b), 4.6(c) and 4.6(d) show the recognition rates of the test dataset with

no variation (a), with variations of size and location (b), with rotational variations (c) and

with variations of size, location and rotations (d), respectively. In the figures, plain boxes

and meshed ones represent the recognition rates of the models trained from the dataset

with no variation and the same variation as the test dataset, respectively.

From figure 4.6(b), it can be seen that the proposed model possesses the comparable

normalization ability to the SL2D-HMMs for size and location variations. Also, from

figure 4.6(c), it can be seen that SL2D-HMMs degrade the recognition performance when

they were trained and tested on “dataset3” where rotational variations were included,

while the proposed model improves the recognition performance significantly compared

with the SL2D-HMMs (meshed boxes). Especially, the highest recognition rate of 81%

was obtained at 14 × 14 and 22 × 22 shift states, which is comparable to the recognition

rate of SL2D-HMMs on “dataset 1.” This means that the proposed model can normalize

rotational variations appropriately. It also can be seen that the proposed model improves

the performance to rotational variations from figure 4.6(d) (meshed boxes). Particularly,

the recognition rates of 79% at 6 × 6, 10 × 10, 14 × 14 and 22 × 22 shift states were

obtained, which also indicates that the proposed model can normalize not only the size

and location variations but also the rotational variations accurately.

Comparing the models trained from no variation datasets (plain boxes) and matched vari-

ation datasets (meshed boxes), the recognition rates of the matched variation were higher

than those of the no variation datasets, even though no variation datasets were appropri-

ately normalized. This is because the models over-fitted to the variation of the training

datasets. However, from another point of the view, the proposed model can preserve the

information of variation in the training data. It might be useful for some classification

tasks, e.g., the model can use a kind of information that some target objects tend to rotate

and the others are not for classification.

State alignments

Figure 4.7 and figure 4.8 show the examples of mean vectors of SL2D-HMMs and the

proposed model, and the visualized state alignments obtained by the Viterbi algorithm,

respectively. In figure 4.7, the number of shift states of the proposed model is 22 × 22.

The mean vectors were estimated from “dataset 1,” “dataset 2,” “dataset 3,” and “dataset
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(d) size, location and rotational variations

Figure 4.6: Recognition rates of the SL2D-HMMs and proposed model for each shift

states tested on the dataset with no variation (a), with variations of size and location

(b), with rotational variations (c) and with variations of size, location and rotations (d),

respectively. In the figures, plain boxes and meshed ones represent the recognition rates

of the models trained from the dataset with no variation and the same variation as the test

dataset, respectively.
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4,” respectively. The state alignments are represented by the mean vectors of the states

corresponding to the observations of the test data. The values below the images represent

the averaged log-likelihoods of the observation per pixel given the best alignments. When

the visualized alignment is similar to the test data, it means that the model appropriately

normalized the variations of the test data. The likelihood of the test data can also be

regarded as an objective measure of the similarity; higher likelihood means that more

preferable matching was obtained in terms of the maximum likelihood criterion.

From the results, we can observe that SL2D-HMMs could not deal with the rotational

variations due to the constraint of the model structure. The likelihood of the test data was

also significantly decreased with increasing the rotational angle of the test data. Contrary

to this, when the rotational angle of the test data was −10, 0 or 10 degrees, the rotational

variations of the data can be represented by the proposed model and the differences of the

likelihood between 0 degree and 10, −10 degrees were smaller than those of the SL2D-

HMMs. It seemed that the maximum value of the shift amount obtained by the proposed

model was sufficient to represent the rotational angle ±10 degrees. For the model (c) and

(d), the maximum/minimum value of the rotational angle in the corresponding training

dataset was between ±10 degrees. This also led to the preferable results. On the other

hand, when the rotational angle was larger, i.e. ±20 degrees, the shift amount provided

by the proposed model was not sufficient, so that the proposed model could not deal

rotational variations compared to the results as the angle was ±10. Similarly, the proper

state alignment of the reference state was not obtained. This is because, as shown in

eq. (4.15) and (4.16), the reference state sequences and the shift state sequences are

dependent on each other through the variational distributions. Therefore it was difficult

to estimate the proper reference state sequences once the improper shift state sequences

were estimated from the test data. From these results, it was suggested that the number of

shift states need to be determined according to the degree of rotational variation.

4.4 Summary

This chapter has derived an extension of separable lattice 2-D HMMs to deal with rota-

tional data variations. The proposed model has additional HMM states which represent

the shifts of the state alignments of observation lines in a particular direction. In face

recognition experiments on the XM2VTS database, the proposed model achieved better

results to the images than the conventional SL2D-HMMs. Moreover, the state alignments

shows that the proposed model can normalize not only size and location variations but

also rotational variations. The next chapter will derive a novel statistical model, named

as separable lattice trajectory 2-D HMM by imposing explicit relationship between static
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(i) SL2D-HMMs;

no variations

(ii)-(a) proposed model;

no variations

(ii)-(b) proposed model;

size and location variations

(ii)-(c) proposed model;

rotational variations

(ii)-(d) proposed model;

size, location and rotational

variations

Figure 4.7: Example of mean vectors: (i) is the mean vectors of the SL2D-HMMs. (ii) is

the mean vectors of the proposed model. The number of shift state of (ii) is 22×22. They

were estimated from the normalized data (“dataset 1”).
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θ = 20° θ = 10° θ = 0° θ = −10° θ = −20°

test data

SL2D

F = -4.56 F = -3.54 F = -3.13 F = -3.81 F = -4.60

ExSL2D

(a)

F = -3.83 F = -3.32 F = -3.12 F = −3.29 F = −3.97

ExSL2D

(b)

F = −4.17 F = −3.45 F = −3.11 F = −3.51 F = −4.14

ExSL2D

(c)

F = −3.77 F = −3.27 F = −3.05 F = −3.38 F = −4.44

ExSL2D

(d)

F = −3.68 F = −3.28 F = −3.12 F = −3.39 F = −4.19

Figure 4.8: Examples of test data and the visualized state alignments on the dataset with

no variation (a), with variations of size and location (b), with rotational variations (c) and

with variations of size, location and rotations (d), respectively.The θ means the rotational

angle for each test data. The F means the estimated log-likelihood to test data.
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and dynamic features into separable lattice 2-D HMMs.
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Chapter 5

Separable lattice trajectory 2-D HMMs

In Chapter 3, we described the structure of SL2D-HMMs, where the hidden variables are

composed of two independent 1-D Markov chains. Therefore, similar to the 1-D HMMs,

the following two limitations are imposed on SL2D-HMMs [19]:

i) The statistics of each state do not change dynamically.

ii) The output probability of the observation is conditionally independent, given the

horizontal and vertical states.

To overcome these shortcomings, augmenting the dimensionality of static feature vectors

(e.g., pixel values) by appending their dynamic feature vectors (e.g., delta and delta-delta

coefficients) [20] to capture dependencies between adjacent observations can enhance the

performance of the HMM-based speech recognizers [36]. Generally, dynamic features

are calculated as regression coefficients from their neighboring static features and can be

represented as a linear combination of static features. In other words, the relationship

between static and dynamic features is linear, and therefore, deterministic. However, this

relationship is ignored and static and dynamic features are modeled as independent sta-

tistical variables in the standard HMM framework. Before deriving the proposed model,

applications of dynamic feature in 1-D and 2-D case will be described in the next sec-

tion. Then, in Section 5.2, the proposed model will be derived in order to avoid the above

problem.
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5.1 Applications of dynamic features

5.1.1 Dynamic features for speech data

This section describes dynamic features for acoustic features (e.g., Mel-Frequency Cep-

stral Coefficients) which were developed in 1-D time-domain. This have often been used

to model speech signals by HMMs. Let o = [o1, o2, . . . , oT ] be the sequence of speech

parameter vectors, where ot is a speech parameter vector at time t. In a typical speech

recognition system, it is assumed that the speech parameter vector ot is a 3M × 1 vector

consisting of an M-dimensional acoustic static feature

ct = [ct(1), ct(2), . . . , ct(M)] (5.1)

and its first and second order dynamic feature vectors, Δct and Δ2ct, that is

ot =
[
c�t ,Δc�t ,Δ

2c�t
]
. (5.2)

The dynamic features are often calculated as regression coefficients from their neighbor-

ing static features, i.e.,

Δct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, (5.3)

Δ2ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ, (5.4)

where {w(d)(τ)}τ=−L(d)
− ,...,L(d)

+
are window coefficients to calculate the d-th order dynamic

feature. Usually, the maximum window length L is set to 1–4. The relationship be-

tween the observation vector sequence o =
[
o�1 , o�2 , . . . , o�T

]�
and static feature sequence

c =
[
c�1 , c

�
2 . . . , c�T

]�
can be arranged in a matrix form as

o =Wc, (5.5)

where W is a 3MT × MT window matrix and the elements of W are given as follows:

W =
[

W1 . . . Wt . . . WT

]� ⊗ IM×M, (5.6)

Wt =
[
w(0)

t ,w(1)
t ,w(2)

t

]
, (5.7)

w(d)
t =

[
0, . . . , 0︸��︷︷��︸

t−L(d)
− −1

,w(d)(−L(d)
− ), . . . ,w(d)(0),

. . . ,w(d)(L(d)
+ ), 0, . . . , 0︸��︷︷��︸

T−
(
t+L(d)

+

)
]�
, d = 0, 1, 2 (5.8)
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Figure 5.1: An example of relationship between the observation vector sequence o and the

static feature vector sequence c in a matrix form [1], where the dynamic feature vectors are

calculated using Eqs. (5.3) and (5.4) with L(1)
− = L(1)

+ = L(2)
− = L(2)

+ = 1, w(1)(−1) = −0.5,

w(1)(0) = 0.0, w(1)(1) = 0.5, w(2)(−1) = 1.0, w(1)(0) = −2.0, w(2)(1) = 1.0.

where L(0)
− = L(0)

+ = 0, w(0) = 1, and ⊗ denotes the Kronecker product for matrices. An

example of the relationship is shown in Figure 5.1.

5.1.2 Dynamic features for image data

In 2-D image case, the observation vector Ot is assumed to consist of the M-dimensional

static feature vector

Ct = [C t(1),C t(2), . . . ,C t(M)]� (5.9)

and horizontal/vertical dynamic feature vectors, Δ(H)Ct and Δ(V)Ct , that is 1

Ot =
[
C�t ,Δ

(H)C�t ,Δ
(V)C�t

]�
, (5.10)

1Using higher-order dynamic features is straightforward. Moreover, dynamic features in other direc-

tions, e.g., diagonal dynamic features can be adopted easily.
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where t =
(
t(1), t(2)

)
. Likewise 1-D case described in the previous section, these dynamic

features are calculated as regression coefficients from their neighboring static features:

Δ(H)Ct =

L(H)
+∑

τ=−L(H)
−

w(H)(τ)C(t(1)+τ,t(2)), (5.11)

Δ(V)Ct =

L(V)
+∑

τ=−L(V)
−

w(V)(τ)C(t(1),t(2)+τ), (5.12)

where
{
w(H)(τ)

}
τ=−L(H)

− ,...,L(H)
+

and
{
w(V)(τ)

}
τ=−L(V)

− ,...,L(V)
+

are window coefficients to calculate

the horizontal and vertical dynamic features, respectively. The observation vectors and

static feature vectors on the 2-D lattice can be rewritten in MT (1)T (2) size vector forms as

O =
[

O�(1,1) . . . O�t . . . O�
(T (1),T (2))

]�
, (5.13)

C =
[

C�(1,1) . . . C�t . . . C�
(T (1),T (2))

]�
, (5.14)

where both elements of O and C are aligned in raster order of the 2-D lattice.

A linear relationship between O and C in 2-D case, which is similar to Eq. (5.5) in 1-D

case, can be obtained as

O =WC, (5.15)

where W is a 3MT (1)T (2) × MT (1)T (2) window matrix given as

W =
[

W(1,1) . . . Wt . . . W(T (1),T (2))

]�⊗ IM×M,

(5.16)

Wt =
[
w(S )

t ,w(H)
t ,w(V)

t

]
, (5.17)

where w(S )
t , w(H)

t , and w(V)
t are T (1)T (2) size vectors. They are defined so that following

relationships are satisfied based on Eqs. (5.10), (5.11), (5.12) and (5.17):

Ct =
(
w(S )

t
� ⊗ IM×M

)
C, (5.18)

ΔC(H)
t =

(
w(H)

t
� ⊗ IM×M

)
C, (5.19)

ΔC(V)
t =

(
w(V)

t
� ⊗ IM×M

)
C, (5.20)

Ot =
(
W�

t ⊗ IM×M
)

C. (5.21)

The functions of window vectors w(S )
t , w(H)

t , and w(V)
t can be explained as follows: From

Eq. (5.18), w(S )
t is a vector which extract the static feature vector at t =

(
t(1), t(2)

)
from

image data. Furthermore, from Eqs. (5.19) and (5.20), w(H)
t and w(V)

t are vectors which

extract the gradients of horizontal and vertical direction centered at t, respectively. Exam-

ples of w(S )
t , w(H)

t , and w(V)
t are shown in Figure 5.2, where the maximum window length

L = 1 and M = 1 for simplicity.

51



Figure 5.2: Examples of w(S )
t , w(H)

t , and w(V)
t , where L(H)

− = L(H)
+ = L(V)

− = L(V)
+ = 1,

w(H)(−1) = w(V)(−1) = −0.5, w(H)(0) = w(V)(0) = 0.0, w(H)(1) = w(V)(1) = 0.5 from

Eqs. (5.11) and (5.12). The circles in the top box represent the static features. Also, the

squares in the bottom box represent the elements of each window vector. The arrow from

the top to the bottom represents a multiplication between the corresponding static feature

vector and the element of window vector. The resultants of those sums are dynamic

feature vectors as shown in Eqs. (5.18), (5.19), and (5.20).

5.2 Model definition

In order to avoid the problem described in the beginning of Chapter 5, that is, the in-

consistency between the static and dynamic feature vectors, SL2D-HMMs should be re-

formulated as the function of C because the original observation is C rather than O. Based

on the relationship O and C in Eq. (5.15), the definition of the proposed model can be de-

rived.

The output probability P(O | S,Λ) of SL2D-HMMs is given by

P(O | S,Λ) = N(O | μS,ΣS) =
∏

t

N(Ot | μSt ,ΣSt ), (5.22)

whereN(· |μ,Σ) denotes the Gaussian distribution with a mean vector μ and a covariance

matrix Σ, and μS and ΣS are the “image level” mean vector and covariance matrix given

52



(a) Covariance matrix of SL2D-HMMs (b) Covariance matrix of SLT2D-HMMs

Figure 5.3: Examples of covariance matrix. (a) shows the covariance matrix ΣS of

SL2D-HMMs in Eq. (5.24) and (b) shows the covariance matrix PS of SLT2D-HMMs

in Eq. (5.28) where static, 1st order horizontal and vertical dynamic feature vectors were

applied. They were estimated from pixel values of face images where the size of the face

images was 32 × 32. The rows and columns are aligned in raster order of the 2-D lattice

(see Fig. 3.3).

state sequences S, respectively. They are constructed by concatenating the “state level”

mean vectors and covariance matrices in accordance with state sequences S:

μS =

[
μ�S(1,1)

. . . μ�St
. . . μ�S

(T (1),T (2))

]�
, (5.23)

ΣS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΣS(1,1)
0

. . .

ΣSt
. . .

0 ΣS
(T (1),T (2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.24)

However, Eq. (5.22) becomes an invalid probabilistic distribution over C because the

integral of Eq. (5.22) over C is not equal to 1. Namely, Eq. (5.22) is not normalized as the

probability distribution of C. To yield a valid probability distribution over C, Eq. (5.22)

can be re-normalized and written as

P(C | S,Λ) =
1

ZS
N(WC | μS,ΣS) = N(C | CS, PS), (5.25)

ZS =

∫
N(WC | μS,ΣS) dC (5.26)

=

√
(2π)MT (1)T (2) |PS|√
(2π)3MT (1)T (2) |ΣS|

exp

{
−1

2

(
μ�SΣ

−1
S μS − r�S PSrS

)}
, (5.27)
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where ZS is a normalization term, and CS and PS are the MT (1)T (2) mean vector and the

MT (1)T (2) × MT (1)T (2) covariance matrix, respectively. Also, rS, CS and PS are given as

RS = W�Σ−1
S W = P−1

S , (5.28)

rS = W�Σ−1
S μS, (5.29)

CS = PSrS. (5.30)

Please refer Appendix B for detail. Using the above distribution, the joint distribution of

static feature vectors C and hidden variables S can be written as:

P(C, S | Λ) = P(C | S,Λ)
∏

m=1,2

P(S(m) | Λ). (5.31)

In the proposed model, the hidden variables are composed of two independent Markov

chains, similar to SL2D-HMMs. Therefore, P(S |Λ) can be factorized into the product of

horizontal and vertical state transition probabilities, as shown in Eq. (5.31). By marginal-

izing P(C,S | Λ) over all possible state sequences S, SL2D-HMMs can be re-defined as

follows:

P(C | Λ) =
∑

S

P(C, S | Λ)

=
∑

S

P(C | S,Λ)
∏

m=1,2

P(S(m) | Λ), (5.32)

P(C | S,Λ) =
1

ZS

∏
t

N(WCt | μSt ,ΣSt ) (5.33)

=
1

ZS
N(WC | μS,ΣS) (5.34)

= N(C | CS, PS), (5.35)

where Λ is a set of model parameters of the proposed model. In this paper, the proposed

model is referred to as separable lattice trajectory 2-D HMMs (SLT2D-HMMs). The term

“trajectory” suggests that the above formalization of the proposed model is analogous to

that of 1-D trajectory HMMs and the advantageous properties will also be inherited to

the proposed model as well. It should be noted that the summation over S in Eq. (5.32)

can be performed by O
(∏

m{K(m)}T (m)
)
, which is the exactly same order as SL2D-HMMs.

Therefore, similar to SL2D-HMMs, the evaluation of the exact likelihood of the proposed

model is computationally intractable. In Section 4, a strategy will be described to make

this problem computationally tractable. It should be also noted that covariance matrix

PS is generally full even when using the completely same model parameter set as SL2D-

HMMs. Therefore, the inter-pixel correlation can be modeled by the covariance matrix

PS. As a result, the proposed model can mitigate the limitations of SL2D-HMMs.
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Figure 5.3 shows examples of covariance matrix ΣS of SL2D-HMMs and covariance ma-

trix PS of SLT2D-HMMs in which static, 1st order horizontal and vertical dynamic feature

vectors were applied. The covariance matrix was estimated from pixel values of face im-

ages, where the size of the face images was 32 × 32. The detail of the training data and

conditions will be described in Section 5.5.1. Note that both the rows and columns are

aligned in raster order of the 2-D lattice (see Eq. (3.1) and Fig. 3.3), because the rows of

C in Eq. (5.14) are aligned in raster order. In both figures, white color represents higher

value and black color represents lower value. It can be observed from Fig.5(a) that only

diagonal elements have higher value. On the other hand, from Fig.5(b), it can be observed

that not only diagonal elements but also non-diagonal, especially, band-diagonal elements

have higher value. This is the one of the evidences that SLT2D-HMMs can capture the

correlation of adjacent observations, while SL2D-HMMs cannot capture it.

5.3 Relation to other statistical models

It has been discussed in [37] that there exists the relationship between the trajectory

HMMs [1] and the product of experts (PoE) [38], especially, product of Gaussian ex-

perts (PoG) [39]. PoE combines multiple models by taking their product in the likelihood

and normalizing it to form a new likelihood function. It can be viewed as an intersection

of all distribution while MoE [40] which combines each models by summation can be

viewed as a union of all models. PoG is a particular case of PoE where each expert is an

unnormalized Gaussian, and Gaussian Mixture model (GMM) [41] is a particular case of

MoE where each expert is a normalized Gaussian. According to [37], PoE (PoG) is an

efficient way of represent high-dimensional data which simultaneously satisfies many dif-

ferent low-dimensional constraints. In Eq. (5.33), N(WCt | μSt ,ΣSt ) is an unnormalized

Gaussian as a probability distribution of Ct . The output probability of SLT2D-HMMs

can be viewed as PoG where the relationship between static and dynamic features are

modeled by Gaussian experts. The normalization term ZS in Eq. (5.33) can be repre-

sented in a closed form as Eq. (5.27), without any approximation. Therefore, the output

probability P(C | S,Λ) can be evaluated strictly and this helps the great simplification of

model training, compered to the general case of PoE. This is an advantageous property of

SLT2D-HMMs.

SLT2D-HMMs can also be viewed as hidden Gaussian Markov random fields [42] from

the interesting discussion of the relationship between 1-D trajectory HMMs and Markov

random fields in [37]. The graphical model representation of SLT2D-HMMs can be spec-

ified by the window matrix W, where clique potential functions are given by Gaussian

distributions and edges depend on cliques that are specified by the window coefficients.
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By changing the window matrix according to the situation, the graphical model structure

of SLT2D-HMMs can be changed. This is also an advantageous property of SLT2D-

HMMs.

5.4 Training algorithm

The parameters of the proposed model can be estimated via the expectation maximization

(EM) algorithm [27] which is an iterative procedure for approximating the Maximum

Likelihood (ML) estimate. This algorithm maximizes the expectation of the complete

data log-likelihood so called Q-function:

Q(Λ,Λ′) =
∑

S

P(S | C,Λ) log P(C,S | Λ′). (5.36)

By maximizing the Q-function with respect to model parameters Λ, the re-estimation

formula in the M-step can be easily derived. However, the evaluation of the posterior dis-

tribution P(S |C,Λ) over all possible state sequences S is computationally intractable due

to its combination of hidden variables. In this paper, the single-path Viterbi approxima-

tion was applied to make this problem computationally tractable. As a result, the problem

is broken down into the following two maximization problems:

Smax = arg max
S

P(C,S | Λ), (5.37)

Λ̂ = arg max
Λ

P(C,Smax | Λ). (5.38)

However, it is still difficult to solve the problem of Eq. (5.37) because the inter-frame

covariance matrix PS is generally full.

5.4.1 Estimation of sub-optimum state sequence

In this section, the Viterbi approximation [26] to solve the maximization problem of

Eq. (5.37) is described. This approximation is based on the following relationship

Smax = arg max
S

P(C,S | Λ) (5.39)

= arg max
S

P(C | S,Λ)P(S | Λ) (5.40)

= arg max
S

1

ZS
N(O | μS,ΣS)P(S | Λ) (5.41)

≈ arg max
S
N(O | μS,ΣS)P(S | Λ), (5.42)
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where the Viterbi approximation is applied in Eq. (5.42). Let Ssub =
(
S(1)

sub,S
(2)

sub

)
be a sub-

optimum state sequence for SLT2D-HMMs. In order to obtain Ssub from all possible state

sequence, following approximation strategy was adopted in this paper:

Step 1 Initialize Ssub with the Viterbi state sequence Svit =
(
S(1)

vit ,S
(2)
vit

)
of SL2D-HMMs.

Step 2 Add small variations on each boundary of S(1)

sub and S(2)

sub and collect resulting state

sequences as candidates. In this paper, the small variations were shift of ±1 of

bounding position.

Step 3 Select the best state sequence from the candidates in the sense that the likelihood

function is most increased.

Step 4 Replace the current state sequence with the best state sequence.

Step 5 If the log-likelihood function has not converged, return to Step 2. Otherwise, stop

the iteration.

5.4.2 Estimation of model parameters

In this section, the maximization problem of Eq. (5.38) is described. The problem is

equivalent to maximizing the log-likelihood

log P(C | S,Λ)

= −1

2

{
MT (1)T (2) log(2π) − log |RS| + C�RSC + r�S PSrS − 2r�S C

}
(5.43)

with respect to a supervector m and supermatrix φ which are defined by concatenating the

mean vectors and precision matrices of all independent states, that is

m =
[
μ�(1,1) . . . μ�k . . . μ�

(K(1),K(2))

]�
, (5.44)

φ =
[
Σ−1

(1,1) . . . Σ−1
k . . . Σ−1

(K(1),K(2))

]�
. (5.45)

We define a 3MT (1)T (2) × MK(1)K(2) matrix FS whose elements are 0 or 1 determined

according to the state sequence S so that the following relationships are satisfied:

μS = FSm, Σ−1
S = diag[FSφ]. (5.46)

By using FS, Eqs. (5.28) and (5.29) can be written as

RS = W� · diag[FSφ] ·W = P−1
S , (5.47)

rS = W� · diag[FSφ] · FSm. (5.48)
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According to (5.47) and (5.48), Eq. (5.43) can be re-written as

log P(C | S,Λ) = −1

2

{
MT (1)T (2) log(2π) − log

∣∣∣W�diag[FSφ]W
∣∣∣

+C�W�diag[FSφ]WC
+m�F�S (diag[FSφ])W�PSW(diag[FSφ])FSm
−2m�F�S (diag[FSφ])W�C

}
. (5.49)

Therefore, a partial derivative of Eq. (5.43) with respect to m and φ can be written as

∂ log P(C | S,Λ)

∂m
= F�SΣ

−1
S W

(
C − CS

)
, (5.50)

∂ log P(C | S,Λ)

∂φ
=

1

2
F�S diag−1

[
WGSW� + 2μS(C − CS)�W�] , (5.51)

where GS = PS+CSC
�
S −CC� and diag−1 denotes the extraction of only diagonal elements

from a square matrix. By setting Eq. (5.50) equals to 03MK(1)K(2) and solving the resultant

linear equation, the following re-estimation formula for the supervector m maximizing

Eq. (5.43) can be obtained:

m̂ = A−1b, (5.52)

where A and b are defined as

A = G�SΣ
−1
S WPSW�Σ−1

S GS, (5.53)

b = G�SΣ
−1
S WC. (5.54)

Please refer Appendix C for detail of the above formula. For maximizing Eq. (5.43) with

respect to φ, a gradient method can be applied using its first derivative of Eq. (5.51).

5.4.3 Training procedure

The training procedure of SLT2D-HMMs can be summarized as follows:

Step 1 Initialize the model parameters and the state sequences of SLT2D-HMMs using

the parameters and Viterbi state sequences of SL2D-HMMs, respectively.

Step 2 Update m and φ.

Step 3 Search sub-optimal state sequences in accordance with the procedure as summa-

rized in Section 5.4.1.

Step 4 If the Viterbi-approximated Q-function has not converged, return to Step 2. Oth-

erwise, stop the iteration.
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5.5 Experiments

5.5.1 Experimental conditions

To demonstrate the effectiveness of the proposed model, experiments on modeling faces

from the XM2VTS database [35] were conducted. The face images were extracted from

the original images (720 × 576 pixels and transformed into gray-scale) and then sub-

sampled to 16× 16 and 32× 32 pixels. The images of 16× 16 pixels were used for image

recognition experiments and the images of 32 × 32 pixels were used for state alignment

experiments. Two datasets were prepared with this process:

• “dataset 1”: size-location normalized data (the original size and location in the

database are used).

• “dataset 2”: data with size and location variations. The sizes and locations were

randomly generated by Gaussian distributions almost within the location shift of

40 × 20 pixels from the center and the range of sizes 500 × 500 ∼ 600 × 600 with a

fixed aspect ratio.

Figure 5.4 shows the examples of two datasets where the size of face image is 16 × 16.

The output distribution for each state was single-Gaussian distribution. The transition

probabilities for each state sequence were assumed to be a left-to-right and top-to-bottom

no skip topology. The observation vectors O were constructed by appending (i) the 1st

order horizontal and vertical dynamic feature vectors and (ii) the 1st order horizontal,

vertical and diagonal dynamic feature vectors to the static features C. In the case of (ii),

an observation vector Ot can be constructed as

Ot =
[
Δ(S )C�t ,Δ

(H)C�t ,Δ
(V)C�t ,Δ

(D1)C�t ,Δ
(D2)C�t

]�
, (5.55)

where Δ(D1)Ct and Δ(D2)Ct are diagonal dynamic feature vectors defined as

Δ(D1)Ct =

L(D1)
+∑

τ=−L(D1)
−

w(D1)(τ)C(t(1)−τ,t(2)+τ), (5.56)

Δ(D2)Ct =

L(D2)
+∑

τ=−L(D2)
−

w(D2)(τ)C(t(1)+τ,t(2)+τ). (5.57)

For each case, the corresponding window matrix W was designed to satisfy Eq. (5.15). In

the case of (i),

L(H)
+ = L(H)

− = L(V)
+ = L(V)

− = 1.0, (5.58)
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w(H)(−1) = w(V)(−1) = −0.5, (5.59)

w(H)(0) = w(V)(0) = 0.0, (5.60)

w(H)(1) = w(V)(1) = 0.5. (5.61)

Additionally, in the case of (ii),

L(D1)
+ = L(D1)

− = L(D2)
+ = L(D2)

− = 1.0, (5.62)

w(D1)(−1) = w(D2)(−1) = −0.5, (5.63)

w(D1)(0) = w(D2)(0) = 0.0, (5.64)

w(D1)(1) = w(D2)(1) = 0.5. (5.65)

Although it was already confirmed that the recognition performance was significantly im-

proved with appropriate feature vectors such as 2-D discrete cosine transform coefficients,

the pixel intensity values were used as features in this paper. This is because the objective

of this experiment was not to obtain the best performance of the proposed model but to

demonstrate the property of the proposed model to normalize size and location variations.

For the purpose of improving the recognition performance, the SL2D-HMMs were ex-

tended by integrating with a linear feature extraction such as probabilistic PCA or factor

analyzers [10]. In the paper, it was confirmed that SL2D-HMMs and their extensions ex-

ceed the eigenface methods and subspace methods in face recognition experiments. The

structure proposed in this paper can be integrated with a linear feature extraction as [10]

for improving recognition performance.

The model parameters of SLT2D-HMMs were estimated in accordance with the training

procedure as summarized in Section 5.4. To make the concatenated covariance matrix φ

be positive, log (φ) was used in optimizing φ, where log(·) denotes elementwise logarithm

operator. The Rprop method [43], a first order gradient-based optimization method, was

adopted for optimizing log (φ) in this paper.

5.5.2 Face recognition experiments

Face recognition experiments on the XM2VTS database were conducted. We prepared

eight images (two images × four sessions) of 100 subjects; six images (three sessions)

were used for training and two images (remaining one session) for testing. Based on 4-

fold cross validation method by alternating the sessions for training and testing, all the

recognition rates were evaluated. In this experiment, the size of face images was 16 × 16

and they were modeled by SL2D-HMMs and SLT2D-HMMs with 4×4, 6×6, 8×8, 10×10,

and 12× 12 states. Fig. 5.5 shows recognition rates of SL2D-HMMs and SLT2D-HMMs.
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(a) No variation

(b) Size and location variations

Figure 5.4: Examples of training data; with no variation (a) and with variations of size

and location (b). The size of face image is 16 × 16.

Fig. 5.5(a) and (b) show the results on “dataset1” and “dataset2,” in which 1st order hori-

zontal and vertical dynamic features were applied, respectively. Fig. 5.5(c) and (d) show

the results on “dataset1” and “dataset2,” in which not only horizontal and vertical features

but also diagonal features were applied, respectively. In these figures, “SL2D” means

SL2D-HMMs, and “NoUpdate” means SLT2D-HMMs with the same model parameters

as SL2D-HMMs, which were equivalent to the initial parameters of SLT2D-HMMs. In

other words, their parameters were not optimized for SLT2D-HMMs. “ParamUpdate”

means SLT2D-HMMs with the state sequences fixed, while “FullUpdate” means SLT2D-

HMMs with both the model parameters and the state sequences. In “ParamUpdate” and

“FullUpdate,” the initial model parameters were the same as “SL2D”.

First, the recognition rates in Fig. 5.5(b) were higher than those in Fig. 5.5(a) as a whole.

Especially, in Fig. 5.5(a), the recognition rate of 51.5% was obtained at 8 × 8 states of

“ParamUpdate,” while, in Fig. 5.5(b), the highest recognition rate of 54.3% was obtained

at the same states of “ParamUpdate.” Similar tendency could be observed from Fig. 5.5(c)

and Fig. 5.5(d). This indicates that both SL2D-HMMs and SLT2D-HMMs could success-

fully reduce the influence of the variations due to the ability to normalize the size and

location variations. Moreover, from our further inspection, it could be observed that the

values of the variance parameters estimated from dataset 2 were bigger than that from

dataset 1 as a whole. This fact suggests that the moderate variance parameters were esti-

mated due to the size and location variations and over-fitting was slightly mitigated, and

also helps to understand the reason why the recognition rates on dataset 2 were better than

that on dataset 1. It can also be seen that “NoUpdate” was lower than “SL2D,” though

the same model parameters were used between them. This is obviously because the pa-

rameters were not optimized for the likelihood function of the SLT2D-HMMs. After
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Figure 5.5: Recognition rates of SL2D-HMMs and SLT2D-HMMs. Two figures on the

top , (a) and (b) show the results on “dataset1” and “dataset2,” in which 1st order hori-

zontal and vertical dynamic features were applied, respectively. On the other hand, two

figures on the bottom, (c) and (d) show the results on “dataset1” and “dataset2,” in which

not only horizontal and vertical features but also diagonal features were applied, respec-

tively. The size of face image is 16 × 16.

the model parameters were optimized, “ParamUpdate” and “FullUpdate” achieved better

results than “SL2D” and “NoUpdate.” However, when comparing “ParamUpdate” and

“FullUpdate,” significant improvement of the performance could not be obtained. The

reason for this result can be explained as follows: Since the observations depend on hor-

izontal and vertical state sequences, it must be taken into account that the combinations

of both state sequences affect the likelihood at the re-estimation stage for state sequences.

Nevertheless, the search algorithm for state sequences as summarized in Section 5.4.1 is

strongly approximated in the sense that it finds only one state boundary from all of the

candidates of the horizontal and vertical state boundary at one time. Ideally, for each

candidate of state boundary, small variations should be added to the other boundaries and

the likelihood should be evaluated over all of these combinations. However, much more
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computational time will be required in this strategy.

From Fig. 5.5(a) and (c), it can be seen that the recognition rates in Fig. 5.5(c) were

slightly lower than those in Fig. 5.5(a). In particular, the highest recognition rate of 50.0%

at 8 × 8 states of “FullUpdate” in Fig. 5.5(c) was lower than that of 51.6% at the same

states of “FullUpdate” in Fig. 5.5(a). This is partly because the model over-fitted to the

training data with size and location variations.

5.5.3 State alignment experiments

To demonstrate the advantageous property of SLT2D-HMMs for image recognition, an

state alignment experiment was conducted on “dataset1” and “dataset2,” where the size

of the face images was 32 × 32 and the number of HMM-states was 16 × 16. Figure 5.6

shows the test image and its state alignments of SL2D-HMMs and SLT2D-HMMs on

“dataset 1” and “dataset 2,” respectively. The alignments of SL2D-HMMs are represented

by the images that each pixel value of the input images is replaced with the mean value

of the aligned states. The numerical values below the images represent the estimated

log-likelihoods of the test data per pixel given the optimized state alignments. When

the visualized alignment is similar to the test data, it means that the model appropriately

normalized the variations of the test data. The likelihood of the test data can also be re-

garded as an objective measure of the similarity; higher likelihood means more preferable

matching was obtained in terms of the maximum likelihood criterion.

From “SL2D” of Fig. 5.6(a), it can be seen that a rectangular state alignment was obtained

by using the SL2D-HMMs, because of the constraint that the statistics within a state do not

change dynamically. In comparison, it can be seen that the mean vector CS of “NoUpd”

seemed smoother than the state alignment of “SL2D”. This indicates that the constraint of

the SL2D-HMMs of constant statistics was mitigated. However, the detailed parts of the

test data (e.g., eyes and nose) became blurred in “NoUpd”, since the model parameters

were not optimized for SLT2D-HMMs. After the model parameters were optimized, it

can be observed that the details became clearer in “ParamUpd” of Fig. 5.6(a). Moreover,

it can also be seen from “SL2D” of Fig. 5.6(b) that SL2D-HMMs could deal with size and

location variation by changing the each state duration. From “NoUpd” and “ParamUpd”

of Fig. 5.6(b), this property also holds true in SLT2D-HMMs. These results also explain

the improvement of the recognition performance.

From both Fig. 5.6(a) and (b), the log-likelihoods of “ParamUpd” were higher than “NoUpd”

as a whole. This fact indicates that the model parameters were optimized properly and

kept the generalization ability to the test data. The one reason why the log-likelihoods

of “SL2D” were lower than that of “NoUpd”and “ParamUpd” on the whole was that the
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constant statistics within each state of SL2D-HMMs. The another reason was that the ob-

servation vectors O in SL2D-HMMs were composed of the static and dynamic features,

while the observation vectors in SLT2D-HMMs were the only static features C. Since the

negative log-likelihood to the test data represents roughly the squared error between the

test data and aligned mean vectors considering the covariance, the error itself will be in-

creased by augmenting the dimensionality of the observation. As a result, this leads to an

decrease in the likelihood of SL2D-HMMs. The fact that the log-likelihoods of “SL2D”

in Fig. 5.6(a) and (b) on the right side (horizontal, vertical and diagonal) were lower than

that on the left side (horizontal and vertical) also follows the same reason.

5.6 Summary

In this chapter, a novel statistical model based on 2-D HMMs for image recognition has

been derived. It has been known that SL2D-HMMs have the shortcomings inherited from

standard HMMs, that is, the stationary statistics within each state and the conditional in-

dependent assumption of state output probabilities. To overcome these shortcomings of

SL2D-HMMs, the proposed model can be derived by reformulating SL2D-HMMs and

imposing explicit relationships between static and dynamic features. As a result, the pro-

posed model can capture the dependencies of adjacent observations, without increasing

the number of model parameters. Experiments on image recognition and state alignment

were conducted on the XM2VTS database. The proposed model achieved better results

than the SL2D-HMMs.
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test data
SL2D NoUpd ParamUpd

horizontal and vertical horizontal, vertical and diagonal

SL2D NoUpd ParamUpd

8.82 L = −

8.17 L = −

8.08 L = −

8.03 L = −

3.03 L = −

3.05 L = −

2.68 L = −

2.82 L = −

2.64 L = −

2.75 L = −

2.51 L = −

2.52 L = −

14.95 L = −

13.66 L = −

12.86 L = −

13.59L = −

3.58 L = −

3.79L = −

3.14 L = −

3.57 L = −

2.79 L = −

3.01 L = −

2.54 L = −

2.71 L = −

(a) No variation

test data SL2D NoUpd ParamUpd

horizontal and vertical horizontal, vertical and diagonal

SL2D NoUpd ParamUpd

8.35 L = −

8.52 L = −

8.49 L = −

9.12 L = − 3.19 L = − 2.85 L = −

3.30L = −

3.02 L = −

2.81 L = −

2.91 L = −

2.79 L = −

2.60 L = −

14.88L = −

14.04 L = −

13.78 L = −

13.92 L = −

3.57 L = −

3.91 L = −

3.51 L = −

3.90 L = −

3.13L = −

3.08 L = −

2.89 L = −

3.03L = −

(b) Size and location variations

Figure 5.6: Visualization of state alignment with no variation (a) and with variations of

size and location (b). “SL2D” means the state alignments of SL2D-HMMs to the test

data. “NoUpd” means the mean vectors of SLT2D-HMMs without parameters optimized.

“ParamUpd” means the mean vectors of SLT2D-HMMs with parameters optimized. The

size of face image is 32 × 32 and the number of states is 16 × 16. The L means the

estimated log-likelihood per pixel to test data.
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Chapter 6

Conclusions

6.1 Summary

The present dissertation described novel statistical models based on separable lattice 2-D

HMMs for image recognition.

Basic theories and fundamental algorithms of the HMM were reviewed in Chapter 2 and

Chapter 3 described the model definition and the training algorithm of separable lattice 2-

D HMMs. SL2D-HMMs have the composite structure of multiple hidden state sequences

which interact to model the observation on a lattice. SL2D-HMMs perform an elastic

matching in both horizontal and vertical directions; this makes it possible to model not

only invariance to the size and location of an object but also nonlinear warping in each

dimension. Although the training algorithm of SL2D-HMMs based on EM algorithm can

be derived, the complexity of the exact E-step become an exponential order and there-

fore, it is computationally intractable. To derive a feasible problem, the variational EM

algorithm and variational DAEM algorithm can be derived. In the both algorithms, the

complexity of the E-step can be reduced to a polynomial order.

In Chapter 4, an extension of SL2D-HMMs for rotational variations was proposed. Al-

though the proposed model has potential to perform an continuous elastic matching be-

yond rotational variations, the topology and the shift amounts are constrained to a special

form which is expected to represent the continuous rotational variations in this disserta-

tion. For model training, the variational EM algorithm can also be applied to the proposed

model. In face recognition experiments on the XM2VTS database, the proposed model

achieved better results to the images than the conventional SL2D-HMMs. Moreover, the

state alignments shows that the proposed model can normalize not only size and location

variations but also rotational variations.
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In Chapter 5, the separable lattice 2-D trajectory HMMs (SLT2D-HMMs) were derived.

It has been known that SL2D-HMMs have the shortcomings which are inherited from

standard HMMs. To overcome these shortcomings of SL2D-HMMs, the present disser-

tation derives 2-D trajectory HMMs by reformulating the likelihood of SL2D-HMMs

with imposing explicit relationships between static and dynamic features. The proposed

model can efficiently capture dependencies between adjacent observations without any

additional model parameters. The effectiveness of the proposed model was evaluated in

face recognition experiments on XM2VTS database. The proposed model achieved better

results than the SL2D-HMMs.

6.2 Future work

For an extension of SL2D-HMMs to deal with rotational variations, integration with a

linear feature extraction as [10] to improve recognition performance will be future work.

For SLT2D-HMMs, we are to plan to append not only 1st order dynamic features, but also

more higher order dynamic features. Extending SLT2D-HMMs for rotational variations

will be future work. Moreover, implementing more precise search algorithms such as the

delayed decision Viterbi algorithm [1] will be also future work. For both proposed mod-

els, applying the Bayesian criterion [44] is to be investigated. Conducting experiments

on various image recognition tasks and with other statistical methods, e.g., support vector

machines [45], neural networks [46], and MRFs [47] will also be future work to evaluate

the effectiveness of the proposed model over these methods.
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Appendix A

Derivation of training algorithm for an
extension of separable lattice 2-D
HMMs for rotational variations

A.1 Derivation of approximated posterior distributions

For this derivation, following abbreviations are adopted.

IQ(S(m)) = −
∑
S(m)

Q(S(m)) ln Q(S(m)) (A.1)

IQ(d(m)) = −
∑
d(m)

Q(d(m)) ln Q(d(m)) (A.2)

JP(S(m)) =
∑
S(m)

Q(S(m)) ln P(S(m)|Λ(m)
S ) (A.3)

JP(S(1), S(2), d(1), d(2)) =
∑
S(1)

∑
S(2)

∑
d(1)

∑
d(2)

Q(S(1))Q(S(2))Q(d(1))Q(d(2))

· ln P(O|S(1),S(2), d(1), d(2),Λ) (A.4)

Using above abbreviations, the lower bound F in Eq. (4.11) can be re-written as follows:
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F (Q,Λ) =
∑

S

∑
d

Q(S, d) ln P(O,S, d|Λ) −
∑

S

∑
d

Q(S, d) ln Q(S, d)

=
∑

S

∑
d

Q(S, d) ln P(O|S, d,Λ) +
∑

S

∑
d

Q(S, d) ln P(S, d|Λ)

−
∑

S

∑
d

Q(S, d) ln Q(S, d)

=
∑

S

∑
d

Q(S)Q(d) ln P(O|S, d,Λ) +
∑

S

Q(S) ln P(S|Λ)

+
∑

d

Q(d) ln P(d|Λ) −
∑

S

∑
d

Q(S)Q(d) ln Q(S)Q(d) (A.5)

= JP(S(1),S(2), d(1), d(2))

+
∑

m=1,2

{
JP(S(m)) + JP(d(m)) + IQ(S(m)) + IQ(d(m))

}
(A.6)

The optimal variable function Q(S, d) to maximize the functional F (Q,Λ) are constrained

under the following equations:

∑
S(m)

Q(S(m)) = 1,
∑
d(m)

Q(d(m)) = 1 (A.7)

From the method of Language multiplier, it is enough to maximize the following G:

G = F (Q,Λ) −
∑

m=1,2

λS ,m

⎛⎜⎜⎜⎜⎜⎜⎝
∑
S(m)

Q(S(m)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠ −
∑

m=1,2

λd,m

⎛⎜⎜⎜⎜⎜⎜⎝
∑
d(m)

Q(d(m)) − 1

⎞⎟⎟⎟⎟⎟⎟⎠
= JP(S(1),S(2), d(1), d(2))

+
∑

m=1,2

⎧⎪⎪⎪⎨⎪⎪⎪⎩JP(S(m)) + λS ,m

∑
S(m)

Q(S(m)) + JP(d(m)) + λd,m

∑
d(m)

Q(d(m))

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+
∑

m=1,2

{
IQ(S(m)) + IQ(d(m))

}
+ λS ,1 + λS ,2 + λd,1 + λd,2 (A.8)

where λS ,m，λd,m are Lagrange multiplier. To optimize G, it is needed to solve the Euler-

Lagrange equations. Since G contains no differential terms of Q, it is enough to solve

following equations for each variable functions Q(S(m)), Q(d(m)):

∂F
∂Q(S(m))

+ λ(m)
S ,m = 0, (A.9)

∂F
∂Q(d(m))

+ λ(m)

d,m = 0. (A.10)
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From Eq. (A.6),

∂F
∂Q(S(m)′)

=
∑
S(n)

∑
d(1)

∑
d(2)

Q(S(n))Q(d(1))Q(d(2)) ln P(O|S(m)′ ,S(n), d(1), d(2),Λ)

+ ln P(S(m)′ |ΛS ,m) − ln Q(S(m)′) − 1, (A.11)

∂F
∂Q(d(m)′)

=
∑
S(1)

∑
S(2)

∑
d(n)

Q(S(1))Q(S(2))Q(d(n)) ln P(O|S(1), S(2), d(m)′ , d(n),Λ)

+ ln P(d(m)′ |ΛS ,m) − ln Q(d(m)′) − 1. (A.12)

Therefore,

ln Q(S(m)′) =
〈
ln P(O|S(m)′ ,S(n), d(1), d(2),Λ)

〉
Q(S(n))Q(d(1))Q(d(2))

+ ln P(S(m)′)

+const

⇔ Q(S(m)) ∝ P(S(m)) exp
〈
ln P(O|S(m),S(n), d(1), d(2),Λ)

〉
Q(S(n))Q(d(1))Q(d(2))

(A.13)

ln Q(d(m)′) =
〈
ln P(O|S(1),S(2), d(n),Λ)

〉
Q(S(1))Q(S(2))(Q(d(n))

+ ln P(d(m)′)

+const

⇔ Q(d(m)) ∝ P(d(m)) exp
〈
ln P(O|S(m), S(n), d(1), d(2),Λ)

〉
Q(S(1))Q(S(2))(Q(d(n))

(A.14)

where proportional symbol ’∝’ can be placed into equality sign ’=’ by introducing a

normalizing constant for each of them.

A.1.1 Detail of approximated posterior distributions

In the following, the detail of Q(S(m)) is described. From the linearity of the expectation,

it can be written as〈 T (1)∑
t(1)=1

T (2)∑
t(2)=1

ln P(Ot(1)t(2) |S (1)

t(1)+d(1)

t(2)

, S (2)

t(2)+d(2)

t(1)

,Λ)

〉
Q(S(2))Q(d(1))Q(d(2))

=

T (1)∑
t(1)=1

T (2)∑
t(2)=1

〈
ln P(Ot(1)t(2) |S (1)

t(1)+d(1)

t(2)

, S (2)

t(2)+d(2)

t(1)

,Λ)

〉
Q(S(2))Q(d(1))Q(d(2))

. (A.15)

New variables γ(m) and η(m) are introduced and can be defined as follows:

γ(m)(t(m), i) =
∑
S(m)

Q(S(m))δ(S (m)

t(m) , i) (A.16)

η(m)(t(n), i) =
∑
d(m)

Q(d(m))δ(d(1)

t(n) , i), n � m (A.17)
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Using the above variables, the expectation in Eq. (A.15) can be written as follows:

〈
ln P(Ot(1)t(2) |S (1)

t(1)+d(1)

t(2)

, S (2)

t(2)+d(2)

t(1)

,Λ)

〉
Q(S(2))Q(d(1))Q(d(2))

=
∑
S(2)

∑
d(1)

∑
d(2)

Q(S(2))Q(d(1))Q(d(2)) ln P(Ot(1)t(2) |S (1)

t(1)+d(1)

t(2)

, S (2)

t(2)+d(2)

t(1)

,Λ)

=
∑
S(2)

∑
d(1)

∑
d(2)

K(2)∑
j=1

Q(S(2))Q(d(1))Q(d(2))δ(S (2)

t(2)+d(2)

t(1)

, j) ln P(Ot(1)t(2) |S (1)

t(1)+d(1)

t(2)

, j,Λ)

=

K(2)∑
j=1

∑
d(1)

∑
d(2)

Q(d(1))Q(d(2))γ(2)(t(2) + d(2)

t(1) , j) ln P(Ot(1)t(2) |S (1)

t(1)+d(1)

t(2)

, j,Λ) (A.18)

Next, Eq. (A.18) can be re-written as follows.

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

∑
d(1)

∑
d(2)

Q(d(1))Q(d(2))δ(d(1)

t(2) , k)δ(d(2)

t(1) , l)γ
(2)(t(2) + l, j)

· ln P(Ot(1)t(2) |S (1)

t(1)+k
, j,Λ)

=

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

η(1)(t(2), k)η(2)(t(1), l)γ(2)(t(2) + l, j) ln P(Ot(1)t(2) |S (1)

t(1)+k
, j,Λ)

To simplify notation, following variable g is introduced.

g(t(1), t(2), k, l, i, j) = η(1)(t(2), k)η(2)(t(1), l)γ(2)(t(2) + l, j) ln P(Ot(1)t(2) |i, j,Λ).

As a result, Eq. (A.15) can be written temporarily as

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

η(1)(t(2), k)η(2)(t(1), l)γ(2)(t(2) + l, j) ln P(Ot(1)t(2) |S (1)

t(1)+k
, j,Λ)

=
∑
t(1)

∑
t(2)

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

δ(t(1), t(1) + k)δ(t(2), t(2) + l)g(t(1), t(2), k, l, i, j).

(A.19)
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Next, a part of summation in Eq. (A.19) can be written as

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

δ(t(1), t(1) + k)δ(t(2), t(1) + l)g(t(1), t(2), k, l, i, j)

=

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

δ(t(1), t(1) + k)δ(t(2), t(1) + l)η(1)(t(2), k)η(2)(t(1), l)γ(2)(t(2), j)

· ln P(Ot(1)t(2) |i, j,Λ)

=

K(2)∑
j=1

η(1)(t(2), t(1) − t(1))η(2)(t(1), t(2) − t(2))γ(2)(t(2), j) ln P(Ot(1)t(2) |i, j,Λ)

Finally, Eq. (A.19) can be obtained as

∑
t(1)

∑
t(2)

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(1)
d∑

k=1

K(2)
d∑

l=1

K(2)∑
j=1

δ(t(1), t(1) + k)δ(t(2), t(1) + l)g(t(1), t(2), k, l, i, j)

=
∑
t(1)

∑
t(2)

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(2)∑
j=1

η(1)(t(2), t(1) − t(1))η(2)(t(1), t(2) − t(2))γ(2)(t(2), j) (A.20)

· ln P(Ot(1)t(2) |i, j,Λ)

=
∑
t(1)

ln h(1)
S (t(1), S (1)

t(1)
= i), (A.21)

where

ln h(1)
S (t(1), i) =

∑
t(2)

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(2)∑
j=1

η(1)(t(2), t(1) − t(1))η(2)(t(1), t(2) − t(2))γ(2)(t(2), j)

· ln P(Ot(1)t(2) |i, j,Λ). (A.22)

Using the above ln h(m)
S (·, ·), Q(S(m)) can be obtained as

Q(S(m)) =
1

Z(m)
S

P(S(m)|Λ(m))
∏
t(m)

h(m)
S (t(m), S (m)

t(m)
= i), (A.23)

where Z(m)
S is normalizing constant. Q(d(m)) can be written in a similar form as Q(S(m)).
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A.2 Derivation of re-estimation formulas

The lower bound F in Eq. (A.5) can be factorized as

F (Q,Λnew) =
∑

S

∑
d

Q(S)Q(d) ln P(O|S, d,Λnew) +
∑

S

Q(S) ln P(S|Λnew)

+
∑

d

Q(d) ln P(d|Λnew) −
∑

S

∑
d

Q(S)Q(d) ln Q(S)Q(d)

= Fb(Q,Λnew) +
∑

m=1,2

(FS ,π(m) (Q,Λnew) + Fd,π(m) (Q,Λnew)

+FS ,a(m) (Q,Λnew) + Fd,a(m) (Q,Λnew)
) −∑

S

∑
d

Q(S)Q(d) ln Q(S)Q(d),

where

FS ,π(m) (Q,Λnew) =
∑

S

Q(S)

K(m)∑
i=1

δ(S (m)

1
, i) ln π(m)

S ,i (A.24)

=

K(m)∑
i=1

〈
S (m)

1
, i
〉
· ln π(m)

S ,i , (A.25)

Fd,π(m) (Q,Λnew) =
∑

d

Q(d)

K(m)
d∑

i=1

δ(d(m)

1
, i) ln π(m)

d,i (A.26)

=

K(m)
d∑

i=1

〈
d(m)

1
, i
〉
· ln π(m)

d,i , (A.27)

FS ,a(m) (Q,Λnew) =
∑

S

Q(S)

T (m)∑
t(m)=2

K(m)∑
i=1

K(m)∑
j=1

δ(S (m)

t(m)−1
, i)δ(S (m)

t(m) , j) ln a(m)
S ,i j (A.28)

=

T (m)∑
t(m)=2

K(m)∑
i=1

K(m)∑
j=1

〈
(S (m)

t(m)−1
, i)(S (m)

t(m) , j)
〉
· ln a(m)

S ,i j, (A.29)

Fd,a(m) (Q,Λnew) =
∑

d

Q(d)

T (n)∑
t(n)=2

K(m)
d∑

i=1

K(m)
d∑

j=1

δ(d(m)

t(n)−1
, i)δ(d(m)

t(n) , j) ln a(m)

d,i j (A.30)

=

T (n)∑
t(n)=2

K(m)
d∑

i=1

K(m)
d∑

j=1

〈
(d(m)

t(m)−1
, i)(d(m)

t(m) , j)
〉

ln a(m)

d,i j, (A.31)
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Fb(Q,Λnew) = −1

2

∑
S,d

Q(S, d)

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(1)∑
i=1

K(2)∑
j=1

K(1)
d∑

k=1

K(2)
d∑

l=1

δ(S t(1)+d(1)

t(2)
, i)

·δ(S t(2)+d(2)

t(1)
, j)δ(d(1)

t(2) , k)δ(d(2)

t(1) , l)
[
ln(2π)D + ln |Σi j|

+ (Ot(1)t(2) − μi j)
′Σ−1

i j (Ot(1)t(2) − μi j)
]

= −1

2

T (1)∑
t(1)=1

T (2)∑
t(2)=1

K(1)∑
i=1

K(2)∑
j=1

K(1)
d∑

k=1

K(2)
d∑

l=1

〈
S (1)

t(1)+k
, i
〉 〈

S (2)

t(2)+l
, j
〉 〈

d(1)

t(2) , k
〉

〈
d(1)

t(2) , l
〉 [

ln(2π)D + ln |Σi j| + (Ot(1)t(2) − μi j)
′Σ−1

i j (Ot(1)t(2) − μi j)
]
.

The re-estimation formulas of the transition probability can be obtained by maximizing

the corresponding F based on the method of Lagrange multiplier. The re-estimation for-

mulas of μi j and Σi j can be obtained by taking partial derivatives of Fb for each parameters

and put them equal to 0.

81



Appendix B

Derivation separable lattice trajectory
2-D HMMs

By imposing the explicit relationships between static and dynamic features represented

by Eq. (5.15), Eq. (5.22) can be re-normalized and written as

N (
WC | μS,ΣS

)
=

1√
(2π)3MT |ΣS|

exp

{
−1

2

(
WC − μS

)�
ΣS

(
WC − μS

)}
(B.32)

=
1√

(2π)3MT |ΣS|
exp

{
−1

2

(
μ�SΣ

−1
S μS + C�W�Σ−1

S WC − 2μ�SΣ
−1
S WC

)}

(B.33)

=
1√

(2π)3MT |ΣS|
exp

{
−1

2

(
μ�SΣ

−1
S μS + C�RSC − 2r�S C

)}
(B.34)

=
1√

(2π)3MT |ΣS|
exp

[
−1

2

{(
C − CS

)�
RS

(
C − CS

)
− r�S PSrS + μ

�
SΣ
−1
S μS

}]

(B.35)

=

√
(2π)MT |PS|√
(2π)3MT |ΣS|

exp

{
−1

2

(
μ�SΣ

−1
S μS − r�S PSrS

)}

× 1√
(2π)MT |PS|

exp

{
−1

2

(
C − CS

)�
RS

(
C − CS

)}
(B.36)

= ZS · N
(
C | CS, PS

)
, (B.37)

where T = T (1)T (2), RS =W�Σ−1
S W = P−1

S , rS =W�Σ−1
S μS, and CS = PSrS.

Based on the above relationship and Eq. (5.31), SL2D-HMMs can be re-defined as fol-
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lows:

P(C | Λ) =
∑

S

P(C,S | Λ) =
∑

S

P(C | S,Λ)P(S | Λ) (B.38)

=
∑

S

P(C | S,Λ)
∏

m=1,2

P(S(m) | Λ), (B.39)

where P(C | S,Λ) = N
(
C | CS, PS

)
.
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Appendix C

Derivation of reestimation formula for
the concatenated mean vector m

From Eq. (5.49), the log-likelihood (Eq. (5.43)) can be written as follows:

log P(C | S,Λ) ≈ −1

2

{
m�F�SΣ

−1
S W�PSWΣ−1

S FSm− 2m�F�SΣ
−1
S W�C

}
, (C.40)

where the terms not containing m are omitted. By taking a partial derivative of m, the

gradient function of m can be obtained as

∂ log P(C | S,Λ)

∂m
= −F�SΣ

−1
S W�PSWΣ−1

S FSm+ F�SΣ
−1
S W�C (C.41)

= F�SΣ
−1
S W

(
C − PSWΣ−1

S FSm
)

(C.42)

= F�SΣ
−1
S W

(
C − PSWΣ−1

S μS

)
(C.43)

= F�SΣ
−1
S W (C − PSrS) (C.44)

= F�SΣ
−1
S W

(
C − CS

)
(C.45)

By setting Eq. (C.41) equal to 03MK(1)K(2) , the re-estimation formula of m can be obtained

as follows:

−F�SΣ
−1
S W�PSWΣ−1

S FSm+ F�SΣ
−1
S W�C = 03MK(1)K(2) (C.46)

F�SΣ
−1
S W�PSWΣ−1

S FSm = F�SΣ
−1
S W�C (C.47)

∴ m̂ = A−1b, (C.48)
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where A and b are defined as

A = G�SΣ
−1
S WPSW�Σ−1

S GS, (C.49)

b = G�SΣ
−1
S WC. (C.50)
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