
Utility Hyper-graphs for Complex Decision Making

by

Rafik HADFI

THESIS

Presented to the

Department of Computer Science and Engineering,

in Partial Fulfillment of the Requirements for the Doctoral Degree

under the Guidance of Professor Takayuki ITO

Nagoya Institute of Technology

March 2015



Abstract

Preferences are fundamental for the analysis of human choices, as well as for the construction

of artificial agents that can make decisions in a rational and autonomous manner. Consequently,

utility models are becoming of increasing importance in many areas such as Multi-agent Systems,

Decision Making, Social Choice, Constraint Satisfaction, Game Theory, and so forth.

Realistic decision making problems are characterized by high-cognitive load, which has a

huge impact on the utility spaces of the agents. Such utility spaces are known to be complex,

nonlinear, and involve a large number of attributes, or issues. These problems are challenging

from two standpoints: the standpoint of the individual agent, whenever she is exploring her own

preferences; and from the standpoint of a group of agents trying to build a consensus. Reaching an

agreement under such constraints becomes more difficult as the search space and the complexity

of the problem grow.

We propose a utility model that is suitable for complex decision making problems. The start-

ing point is adopting a hyper-graphical representation for the utility model of an agent. This

allows a modular decomposition of the issues and the underlying constraints by mapping the util-

ity space into a Utility Hyper-graph (UH). Exploring the utility space reduces then to a message

passing mechanism along the hyper-edges by means of utility propagation. Adopting such rep-

resentation paradigm allows us to rigorously show how complexity arises in complex domains.

To this end, we assess the complexity arising in cognitive graphical models using the concept of

entropy. Being able to assess complexity allows us to improve the message passing algorithm by

adopting a low-complexity propagation scheme. The model is evaluated using a parametric form

of hyper-graphs, or Random Utility Hyper-graphs (RUH). Hence, we show how the new propaga-

tion scheme can optimally handle complex utility spaces while outperforming previous sampling

approaches. Similarly, our proposed approach to quantify complexity allows us to establish the

interplay between complexity, entropy and uncertainty in complex domains.
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Chapter 1

Introduction

1.1 Problem Statement and Goals

The assessment of preferences is a fundamental task for the analysis of human choice behavior

and the design of rational and autonomous agents. This problem is found in many areas of Ar-

tificial Intelligence such as Multi-agent Systems [5], Game Theory [98], Decision Making [61],

Social Choice [56, 7], Constraint Satisfaction [27], and so forth. As the problem domain grows,

this assessment task becomes harder in the sense that even the representation of the available

choices becomes intractable. This is typically found in cognitive tasks with high-information

load [16], where a decision maker builds a preference model that involves a large number of at-

tributes and relationships. It is therefore important to find the right representation as to tackle the

complexity problem found in real-world decision problems.

This complexity is also found whenever we have a group of agents interacting in a strategic

manner, for instance, in a bilateral or multilateral negotiation. In such situations, agents usually

do not share their preferences as to avoid exploitation. It is therefore common that an agent tries

to model the opponent’s behavior in order to predict her behavior. This could allow both agents to

find a mutually satisfactory outcome, measured in terms of social welfare. In this purely strategic

context, it would be interesting to model the opponents’ behavior using a particular mathematical

model that reflects her economic type and her moves.

It is within this perspective that we propose to answer the following questions:

1. How to define complexity as it arises in decision making, as opposed to computational

complexity? We seek a definition that is inherent to the description of the problem itself,

i.e., how the agent builds her choice model and uses it to make decisions.
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2. Is there an interplay between complexity and uncertainty? In other words, how does the

complexity of a given problem domain affect the agent’s uncertainty whenever she is rea-

soning about the best outcomes?

3. How to find one representation of complex utility spaces that takes into consideration all

the existing utility functions’ shapes? And for several economic types, is there a way to

represent them using one unique form?

4. How can we assess complexity in a way that correlates with the notion of utilitarian op-

timality? In other words, how can complexity be tackled in the way that maximizes the

utility of the agent?

5. How to perform efficient search and optimization in complex utility spaces? By “efficient”,

we mean more efficient than the existing sampling-based approaches.

6. How to decompose a complex utility space and exploit its structure, especially when the

problem is hard and involves a strategic encounter? Exploiting the problem structure could

yield better strategies whenever the agents share their similarities during an encounter. This

similarity can for example manifest itself in the constraints.

To address these problems, we set a number of goals to achieve all along this thesis. The

goals are described as following:

1. Analyze and quantify complexity as it arises in challenging decision making problems.

That is, problems that are subject to:

(a) High-information Load, due to the large knowledge domains and the large number of

attributes (issues) to be dealt with.

(b) High uncertainty, as a result of (a). This is due to the increasing number of alternatives

that the agent is facing, which yields more uncertainty about her own choices and the

moves of the opponent.
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The targeted decision making problems are mainly those specific to preferences elicitation.

However, we take the case of complex automated negotiation as an instance of complex

decision making problems that we are interested in investigating using our model. The

quantification of uncertainty will be established using the information theoretic notion of

entropy, for it is the adequate tool to reason about probabilistic settings and uncertainty.

2. Propose the adequate model for complex utility spaces modeling. Particularly, we are

interested in a representation that could shed some light on how issue-interdependence

affects the complexity of a given utility space.

3. Lowering the complexity of a preferences elicitation process using low-cost search in a

complex utility space. This is done by using the recent findings in cognitive sciences and

psychology as to understand “Fast and Frugal Heuristics” and their functioning in decision

making under bounded rationality [45, 44, 43, 16].

4. Proposing a unified form for constraint-based utility functions. Being able to unify all

the well known utility forms with their intrinsic economic characteristics (risk aversion,

indifference, discounting, etc.) could help in the study of random utility hyper-graphs.

Similarly, it allows a more principled opponent modeling approach that is mainly inspired

from Mixture Models in Machine Learning. Additionally, it could help a bounded rational

agent in learning her own preferences whenever she is dealing with large domains.

To reach these goals, we make usage of several analytic tools from multiple domains, summarized

in Figure 1.1.

1.2 Thesis Structure

The abovementioned goals will be investigated all along the thesis according to the general

structure shown in Figure 1.2. First, we propose an overview of the related works, within the

general scope of decision making and preferences elicitation. Additionally, we survey several

3



Figure 1.1: Thesis scope and domains

utility representations as well as their usages, and show the differences with our work (Chapter

2). Second, we provide a study of complexity and show how it arises in cognitive tasks under

high-information load (Chapter 3). Third, we present the main component of the thesis, that

is, a preference representation based on utility hyper-graphs (Chapter 4). Fourth, we use our

complexity study to elaborate a low-complexity search mechanism that can be used in utility

hyper-graphs’ exploration (Chapter 5). Fifth, we provide an application of the utility hyper-graph

model in complex automated negotiation (consensus building) as well as for the approximation

of constraint-based utility functions (Chapter 6). Sixth, we propose an application of the com-

plexity study to preferences elicitation and collaborative design (Chapter 7). Finally, we draw the

conclusions of this thesis and highlight the future works (Chapter 8).
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1.3 Contributions

The main contributions of this thesis are summarized as following:

1. Quantifying cognitive complexity using information entropy (Chapter 3)

We bridge the gap between complexity as perceived in cognitive sciences, i.e., as a cogni-

tive load in cortical areas, occurring during high-information load tasks; and complexity as

it is perceived in decision making, occurring under endogenous bounded rationality. We are

particularly interested in measuring complexity whenever the decision maker is adopting a

graphical representation as a choice model

2. Complexity, entropy and uncertainty in high-information load tasks (Chapter 3)

We study the evolution of cognitive processes with high-information load. This is done

by drawing the interplay between the structural complexity of the cognitive graph of the

decision problem, its entropy, and how the uncertainty of the whole process evolves.

3. Utility hyper-graphs for complex preferences representation (Chapter 4)

We propose a novel representation for nonlinear utility spaces as to tackle the complexity

problem. It has the merit of being modular and parametric, which allows search strategies

evaluation as well as any graph-theoretic analysis. We also propose efficient heuristics for

optimal contracts search based on message passing in the utility hyper-graph.

4. Quantifying the complexity of nonlinear utility spaces. (Chapter 5)

We propose an efficient method to assess the complexity of a nonlinear utility space using

its induced utility hyper-graph. We use the information theoretic concept of entropy applied

to the constraints’ degree distribution.

5. Low-complexity search in utility hyper-graphs. (Chapter 5)

Based on the complexity measure, we provide several search strategies and identify the

optimal strategy that minimizes the search cost. The optimal search strategy allows a low-

complexity traversal of the utility hyper-graph while preserving the contracts optimality.
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6. Using utility hyper-graphs in multilateral negotiation. (Chapter 6)

We provide an evaluation of the hyper-graphic representation in a multilateral mediated

negotiation setting. We show that under high complexity, the collective social welfare

could be greater than the sum of the individual expected best utilities.

7. Unifying constraint-based utility functions. (Chapter 6)

We propose a formula that unifies all known constraint-based (Cubic, Bell, Conic, etc.)

utility functions. The new representation leads us to a parametric model that could be used

for opponent modeling in complex nonlinear negotiations.

8. Asymptotic maximum entropy utility principle. (Chapter 7)

We propose a Maximum Entropy principle for preferences elicitation for utility functions

with a countably infinite number of outcomes. Herein, we study the evolution of pref-

erences (defined as a merging process) defined over an infinite number of outcomes, per-

ceived as a way to describe the high predictive uncertainty that an agent is facing in complex

problems.
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Figure 1.2: Thesis Structure
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Chapter 2

Decision Making and Utility Models

2.1 Introduction

One of the main problems in decision making is the process of utility elicitation or estimation.

That is, how the decision maker can define a utility function that involves his goals and is consis-

tent with the available information. Several techniques of utility representation and assessment

have been proposed. However, depending on the problem’s domain size, some of these techniques

are less efficient than others. Our motivation is to propose the type of analytical framework that

is suitable for domains that are characterized by high-information load.

2.2 Decision Making

2.2.1 Decision with Multiple Attributes and Objectives

Decision making is mainly the cognitive process of assessing a situation, by selecting a choice

among several alternative choices. An important issue in decision making is the availability of

knowledge. In fact, although realistic situations involve incomplete information, decisions must

be made. The most common way to model these decision problems is based on the premise

of multiple attributes (or criteria, goals) and alternatives. Thus, the branch of Decision Making

called Multi-Attribute Decision Making [62], which basically deals with decision problems under

the presence of a number of decision criteria. Given the fact that decisions must often, perhaps

usually, be made in the face of lacking or imperfect information, one solution is to try to reconcile

these uncertainties with the available data. Expected Utility Theory and Risk Analysis could

9



provide some guidelines to tackle this problem and attempt to make decisions.

2.2.2 Decision Making under Uncertainty

In most decision problems, a decision maker does not know the consequences of his choices nor

the probability of each consequence under each choice. For instance, in a given game, a player

will have to reason about his own moves, as well as the other player’s moves. Thus, the strategic

profiles induced from the consequences. In such situation, the decision maker holds subjective

beliefs about the unknown aspects of the problem and attempts to use these beliefs. Such sub-

jective beliefs could be represented by a probability distribution that assigns a likelihood to each

event. Under such assumption, the decision making problem is said to be under uncertainty.

2.2.3 Logical Deduction and Decision

The act of making decisions involves the task of “analysis”, in the sense that the whole problem

is divided into smaller components [3]. This analytical thinking is in fact based on a logical

step-by-step reasoning characterized by two aspects: deduction, and induction.

On the one hand, deductive reasoning is the process of deducing conclusions based on previ-

ously known or assumed facts, and tends to infer from the general to the particular; on the other

hand, inductive reasoning arrives at a conclusion based on a set of observations, which makes it

an invalid method of proof. Consequently, the task that the decision maker is facing will be more

similar to a deduction problem, although optimality is the ultimate goal, rather than provability.

The top-down logic of the deductive reasoning becomes computationally intractable when ap-

plied to complex real-world problems, particularly when uncertainty is involved [91]. Therefore,

we cannot use explicit deductive reasoning based on either inference rules or mental models in

the face of complex problems. These complex real-world problems are usually knowledge-based

and are thus dealt with by the induction of schemas or by connectionist mechanisms which are

known to be very efficient in the human brain [26]. Hence, most of real-world reasoning will be

essentially inductive and implicit, rather than deductive and explicit.
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Herein, we adopt an induction-based mechanism by bridging the gap between modularity

and connectionism in one single framework. Our induction-based mechanisms will operate on

particular topologies and will make usage of heuristic-like principles [45, 44, 43] whenever we

are searching for the optimal choices.

2.2.4 Bounded Rationality

One of the central problems in artificial intelligence is that agents cannot perform unbounded

computations, especially when they are deployed in complex environments. This stems from

the failure of pure rationality as a descriptive model of human behavior. In fact, the limits on

rationality are due to the human cognitive architecture (internal constraints) as well as the ex-

ternal constraints defined by the environment. Bounded rationality comes in hand as to oppose

the assumption of comprehensive rationality found in economic and decision theory models of

choice [86, 25, 57, 89]. Despite the fact that it assumes that actors are goal-oriented, it tends

to take into account the cognitive limitations of the agent in attempting to achieve those goals.

Practically, rather than making assumptions about decision making and modeling the implica-

tions mathematically, it adopts an explicitly behavioral attitude. Herein, we focus on the type of

mental representation that could possibly model the preferences of a bounded rational agent.

2.2.5 Cognition with High-information Load

Real-world problems are known to have high-information load in the sense that they are infor-

mationally demanding [94]. In fact, decision making depends on knowledge-intensive methods

of extracting information from our world as to perform future actions.

Despite this complexity, humans are impeccable at handling these high-information load

problems in a quick and frugal way [16]. The reason could in fact reside in the modular ways we

tend to respond to these problems. Therefore, it is important to account for modularity whenever

we want to reason about agents dealing with decision making problems with high-information

load.
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Generally, any cognitive system is either modular or non-modular [31]. Modular systems

are perceived as “localized psychological faculties” [31] ensuring a domain-specific processing

of independent modules. They are vertical, computationally autonomous and non-interactive.

Most importantly, they are known for the encapsulation of information, i.e., these processing

systems are isolated, content-specific, with independent subsystems that do not make use of other

aspects of cognition. On the other hand, non-modular systems are in principle connectionist,

horizontal, characterizing cognitive processes that are not content specific but rather interactive,

whereby interactions take place in neural networks. Specifically, connectionism refers to the

nonlinear dynamic processing [9, 49] that is taking place. The idea behind connectionism is that

some aspects are not the result of learning but are in fact genetically inherited. For instance, the

architecture of a particular cognitive map could be genetically inherited along with the concepts

and associations. Particularly, whenever it is instantiated as a neural network, the connections’

weights are already learnt.

In our proposed model, we think that preserving such modularity in the way an agent repre-

sents her choices (and preferences), could tackle complexity in the same way humans deal with

high-information load problems. While bearing in mind these aspects of human cognition, we

will attempt to build a modular representation of an agent’s preferences model.

2.3 Preferences Representation

2.3.1 Utility Theory

Utility Theory is the dominant approach to quantify the interests of a decision maker, and pro-

viding his preferences across a set of available options [5, 62]. Moreover, the theory provides a

way to understand how these preferences change when the decision maker is facing uncertainty

with regards to the different outcomes that could be yielded.

Herein, we are interested in a particular type of utility representations, that are inherent to

complex decision making problems. In this case, utility representations are known to be defined
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over a large number of attributes, usually nonlinear, non-monotonic, with an elicitation process

that is subject to uncertainty and high-information load.

2.3.2 Multi-attribute Utility Theory

In the case of decisions involving multiple attributes, the main approach is Multi-attribute utility

theory (MAUT), which has emerged as an important component of modern Decision Making and

Operational Research. As an optimization technique, it has been used in a wide range of areas

such as economics, management, social sciences and engineering. In real life, the evaluation

of multiple and interdependent attributes tends to make the decision problems more complex,

especially when uncertainty is involved. Used with multi-agent systems, MAUT is an efficient

way to design decision making mechanisms where autonomous agents interact to achieve their

objectives. The agents will attempt to reach an agreement and satisfy their contradictory de-

mands through a bargaining process. In real life situations, agents have to take into consideration

multiple attributes simultaneously during their negotiation, for instance, the quality, quantity, de-

livery time, etc. [73]. There have been several works in the context of multi-attribute utility the-

ory as well as its usage in negotiation, commerce and social interactions. Different approaches

and methods were proposed to analyze multi-attribute utilities for contracts construction. For

instance, [96] presented the notion of convex dependence between the attributes as a way to de-

compose utility functions with several attributes. [88] proposed an approach based on utility

graphs for negotiation with multiple binary attributes.

Herein, we focus on this type of multi-issue utility functions for they are inherent to realistic

decision making problem. Additionally, such preferences’ representation could easily be mapped

into the modular architecture mentioned in section 2.2.5, by adopting a graphical model as it was

done, for instance, in [13, 83].
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2.3.3 Probability and Utility Theories

Throughout the provided models of decision analysis, one interesting analogy reflects the sim-

ilarities between probabilities and utilities. The idea of treating utility functions as probability

(density) functions was firstly introduced by [92] through the notion of utility distribution, in

which utilities have the structure of probabilities. Most importantly, a symmetric structure that

includes both probability distributions and utility distributions was developed.

Herein, we adopt the same assumption as to represent a utility function. Most importantly,

and in a larger sense, we adopt the same probabilistic approach when reasoning about the ways

a decision maker reasons about his choices. In fact, we assume that cognition could be described

as a statistical inference in the sense that the decision maker bases his judgments about the world

in terms of probabilities [99]. This view is similar to the idea that cognition acts as some form

of Bayesian inference [72]. Particularly, the individual constructs a range of possible choices

based on some prior knowledge, where each choice is sampled from that knowledge distribution.

Moving from cognition to decision making, we will adopt the same formalism when thinking

about the agent choices, whether it is for the representation of the preferences or whenever the

agent is reasoning about the opponent’s preferences.

2.4 Existing Utility Models

The major problem in decision making is the unavailability of knowledge and, paradoxically, the

abundance of knowledge (high-information load implies higher uncertainty). In fact, although

realistic situations involve these two aspects, decisions must be made. The most common way

to model decision problems is based on the premise of multiple attributes and alternatives. Ad-

ditionally, it is common that the decision criteria are defined in terms of constraints, whereby a

constraint specifies the requirements and the preferences of the decision maker with respect to a

number of interdependent attributes.

In the next section, we survey the existing utility models and highlight the differences they

have with our proposed representation.
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2.4.1 Survey and Assessment

Our goal is to rethink the way preferences could be represented. Adopting the adequate repre-

sentation gives a solid ground to tackle the complexity that arises in real-world problems. This

complexity is clearly projected in the decision makers’ preferences, or utility space. In this case,

nonlinearity arises in the way the attributes interact as to define the overall utility function.

We address this problem by adopting a representation that allows a modular decomposition

of the attributes and the constraints, given the intuition that constraint-based utility spaces are

nonlinear with respect to the issues, but linear with respect to the constraints. This allows us

to rigorously map the utility space into an issue-constraint hyper-graph. Exploring the utility

space reduces then to a message passing mechanism along the hyper-edges by means of utility

propagation. On a higher level, the utility propagation scheme acts like a welfare propagation

scheme that could transcend the agent whenever a mediator is used. However, our main focus is

the agent and her utility maximization, regardless from her environment.

Adopting a graphical representation while reasoning about utilities is not new in the multi-

attribute decision making literature. In fact, [13] proposed a model inspired from Bayesian and

Markov models, through a probabilistic analogy while representing multi-attribute utilities. In

another work by [83], a similar concept was introduced by the notion of Expected Utility Net-

works which includes both utilities and probabilities. [14] proposed a model which takes into

consideration the uncertainties over the utility functions by considering a person’s utility func-

tion as a random variable, with a density function over the possible outcomes.

The idea of utility graphs could potentially help decomposing highly nonlinear utility func-

tions into sub-utilities of clusters of interrelated items, as in [14] or [6]. Similarly, [88] used

utility graphs for preferences elicitation and negotiation over binary-valued issues. [78] adopts

a weighted undirected graph representation of the constraint-based utility space. Particularly, a

message passing algorithm is used to find the highest utility bids by finding the set of unconnected

nodes which maximizes the sum of the nodes’ weights. However, restricting the graph and the

message passing process to constraints’ nodes does not allow the representation to be descriptive
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enough to exploit any potential hierarchical structure of the utility space through a quantitative

evaluation of the interdependencies between both issues and constraints. In [39], issues’ interde-

pendencies are captured by means of similar undirected weighted graphs where a node represents

an issue. This representation is restricted to binary interdependencies while real negotiation sce-

narios involve “bundles” of interdependent issues under one or multiple constraints. In our model,

we do not restrict the interdependency to lower-order constraints but we allow p−ary interdepen-

dencies to be defined as an hyper-edge connecting p issues. An hyper-edge is an adequate way to

assess the level of interdependency between issues.

We note that our representation borrows the graphical aspect found in CP-Nets [12] without

being limited to qualitative preferences. This, while preserving the conditional dependence and

the independence statements through the induced dependence graph of a utility hyper-graph. Ad-

ditionally, our proposed exploration heuristics could significantly reduce the search effort when

executing queries for preferential comparisons, namely, the ordering and the dominance queries.

Adopting such graphical representation with its underlying utility propagation mechanism

comes from the intuition that elicitation, after all, is a cognitive process that involves concepts

and associations, performed by supposedly bounded rational agents. And while bearing in mind

the fact that cognitive processes perform some form of Bayesian inference [72], we chose to adopt

a graphical representation that serves more as an adequate framework for any preference-based

space.

One advantage of using this representation is its scalability in the sense that the problem

becomes harder for a large number of issues and constraints. But if we can decompose the

utility space, we can exploit it more efficiently. Another way to look at this “connectionist”

representation is that it can be clustered in ways that can isolate interdependent components,

thus, allowing them to be treated separately and independently form the rest of the problem. This

“Ceteris Paribus” approach is useful because it can allow the agents to reach an agreement with

respect to subsets of the problem. Once the agents reach a sub-agreement, they can focus on the

parts of the problem that require more negotiation.

Another important motivation behind our hyper-graph representation is that it allows a lay-
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ered, hierarchical view of any given decision making problem. Given such architecture, it is

possible to recursively reason over the different layers of the problem according to a top-down

approach. Even the idea of issue could be abstracted to include an encapsulation of sub-issues,

located in sub-utility spaces and represented by cliques in the hyper-graph. Consequently, search

processes can help identify optimal contracts for improvement at each level. This combination

of separating the system into layers, then using utility propagation to focus attention and search

within a constrained region can be very powerful in the bidding process. A similar idea of recur-

sion in the exploration of utility space was introduced by [79] although it is region-oriented and

does not adopt a graphical representation of the utility space.

The main novelty our work is the efficiency of the new representation when optimizing non-

linear utilities. To the best of our knowledge, our work makes the first attempt to tackle the

complexity of such utility spaces using an efficient search heuristic that works and outperforms

the previously used sampling-based meta-heuristics. Particularly, the novelty is that we exploit

the problem structure (as hyper-graph) as well as randomization. Such performance is required

when facing the scaling issues inherent to complex decision making. We experimentally eval-

uated our model using parametrized and random nonlinear utility spaces, showing that it can

handle large and complex spaces by finding the optimal contracts.

We note that similar constraint-based settings were defined as a Distributed Constraint Opti-

mization Problem (DCOP), particularly, in [81, 63]. However, we assume that the variables and

the n−ary constraints could be shared amongst the agents through mediation. Additionally, we

focus on the utilitarian aspect of the constraints in the sense that we seek a unified form that might

be used to model agents having different economic types. We basically focus on the microscopic

aspect (i.e., the agent) as opposed to the multi-agent and distributed aspects found in DCOP. An-

other analogous example is the decentralized coordination approach found in [27, 28]. We use

the same message passing method based on the max-sum algorithm. Instead of using pruning as

to reduce the computation that agents must perform when using the max-sum algorithm, we use

low-complexity search strategies when performing the message passing in the factor graph. This

allows the agent to find the optimal contract points with a low computation and message passing
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overhead.

Other than the search and optimization aspects of our proposal, we provide a mathematical

model that offers a better understanding of complex utility spaces from the economic perspective.

In this model, an agent’s utility space is built as a composition of sub-utility functions with differ-

ent economic profiles. This reflects the idea that a decision maker uses different economic types

when reasoning about different issues from different domains. Being able to analyze this com-

positional aspect could improve the quality of the outcomes of any strategic encounter between

agents having complex utility spaces.

Particularly, adopting an hyper-graphic representation inspired from factor graphs [70, 76]

allowed us to establish an analogy between probabilistic Mixture Models as they are used in

Machine Learning, and a purely utilitarian Mixture Model for constraint-based utility approxi-

mation. In fact, our proposed Generalized Gaussian Mixture Model (GGMM) could approximate

all constraint-based utility functions using one unified form. This form can be used for opponent

modeling as well as for the generation of parameterized utility spaces.
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Chapter 3

Complexity Study

3.1 Complex Decision Making

We first address a number of questions that will help define complexity as in arises in our decision

making settings.

What do we mean by “Complexity”?

We focus on decision making problems that exhibit endogenous bounded rationality [21]. Com-

plexity is due to the search cost that the decision maker is facing whenever he tries to know

the entire structure of the problem. The cost of the search is inferred from revealed preferences

through choices. We are interested in exploiting the relationship between bounded rationality

arising from the search costs and the actual complexity of the problem, independent of the deci-

sion maker, and translated as structural complexity. The structural complexity will be assessed in

an abstract graphical model representing the decision makers’ mind.

Graphical formalism, why?

Adopting a graphical representation allows us to implement the modular aspects mentioned in

section 2.2.5 as well as the connectionist view of the problems in hand. This accounts for the

high-information load aspect of the problems we are addressing.
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How to measure complexity?

Our way of quantifying and measuring complexity is built on the existing interplay between com-

plexity as it arises in graphical models and complexity in its information theoretic formulation

through the notion of entropy.

In the next section, we establish the interplay by assuming that cognition (decision making in

particular) is a game played between an agent and nature.

3.2 Cognition as a Game of Complexity

3.2.1 Introduction

One of the major characteristics of real-world cognition is the high-information load one is facing,

in the sense that the given tasks are informationally demanding and computationally intractable.

However, humans are capable of handling these high-cognitive load problems despite the com-

plexity and the large number of possibilities [45]. In the context of several cognitive problems,

for instance the Frame Problem [59], the Infinite Regress problem [11], as well as in the case

of Bounded Rationality [57], we argue that the limits of human cognition is due to the infinite

number of concepts that are made available. Under such circumstances, people are considered to

be poor optimizers and ought to use other search strategies [44].

Herein, we pose the problem of modeling an agent’s cognitive model subject to bounded

rationality and high-cognitive load. Cognition is considered as a game of complexity between

nature and the agent, both operating on a cognitive graph. While the first player tries to maxi-

mize the complexity by maximizing the entropy, the second player attempts to minimize it. We

adopt a view of cognition that is both connectionist and topological. Precisely, we chose to con-

sider the whole topology of the problem, rather than studying a particular topological feature with

its finer details (attributes, utilities, probabilities) and the underlying interactions (conditioning,

dependence). For instance, [21] adopted another approach based on the extensive form with its

decision tree representation as a way to model complexity in endogenous bounded rationality.
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The reason why we chose to analyze complexity by considering the topological representation

is due to the enormous information content. In fact, the content of the required probability or

utility distributions may make computational representations infeasible [25] and Bayesian infer-

ence intractable (NP-hard) [72]. Particularly, our topological choice relates to the organization of

the agent’s mental concepts as a graph. Cognition is therefore performed through a mechanism

of activation of concepts, represented by the nodes of the graph [16]. The game of complex-

ity is defined over this graphical structure, with strategies that represent potential probabilistic

representations of the agents cognitive space. Precisely, a strategy could be seen as a probabil-

ity distribution over the degrees of the nodes. Thus the complexity arises implicitly from the

difficulty that the agent is facing when exploring this cognitive graph. Although entropy-based

measures can perfectly capture the complexity of a graph as it was established in [82, 20], we are

mostly interested in the game theoretical rationale behind the usage of such measures. In fact,

we assume that the cognitive complexity relates to the strategic interaction of two players, na-

ture and the agent. The agent executes a task using her cognitive model while trying to minimize

complexity, and nature attempts to make this cognition difficult by increasing the complexity. We

claim that this situation is similar to the information theoretical game studied in [97], whereby

the agent (the physicist) is attempting to describe, or code the outcomes of an alphabet given the

observations of a physical system. After establishing the game theoretical equilibrium of the cog-

nitive process, we show that for the agent, moving from less pertinent concepts towards pertinent

concepts minimizes the complexity of the overall cognitive problem. Consequently, we provide

the family of minimax strategies that minimize the complexity of the agent’s cognition. In fact,

adopting an exploration scheme that follows a power-law distribution tends to lower the cogni-

tive complexity than if the agent adopts a random distribution. This corroborates the general idea

that adopting pre-established, or orthodox ideas takes less effort (cognition) than intellectually

engaging in the exploration of new ideas, namely “Thinking outside the box”.
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3.2.2 The Cognitive Model

Herein, we provide the basics of our graphical cognitive model. We define the concepts, associa-

tions and how cognition is being conducted as a process.

The Concepts

Providing a theory of concepts is beyond the scope of this section. However, we rely on Barsa-

lou’s theory of concepts in his view of conceptual cognition, namely the perceptual symbol sys-

tems (PSS) view of cognition [8]. Our reliance on this view is justified to the extent that it is

related to the file model of cognition. According to the file model, concepts refer to files that

contain information, such as representations and beliefs about the concepts per se, or more pre-

cisely about the entities in the concepts extensions. We adopt a similar representational system,

in the sense that a concept is a general type, category or class, which can undergo any number

of conceptualization with different representations. For instance, a flower can be conceptualized

in several ways with regard to its shape, color, texture, smell, etc. Thus, different representations

will be activated depending on the context and goals of the agent. Once these concepts are es-

tablished in the cognitive graph of the agent, knowledge is accumulated and added to the system.

This process is reinforced with time, through new experiences and belief update.

The Cognitive Associations

The associations between the concepts are used to make inferences on the basis of the availabil-

ity of beliefs related to the concepts and their representations. We can think about it from the

perspective of the file model, as a file system where each file is labeled and additionally contains

notes about the concept. The number of files and their underlying notes can be infinite, although

this number could be bounded if the agent has to consider only few concepts in her perceptual or

cognitive frame. This does not mean, however, that the agent cannot accumulate a large number

of concepts, especially when the cognitive task is performed over a long period of time. As-

sociations are to be understood as the type of assessments that assign causal relations between
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activated concepts when the agent is facing a problem. It could be thought of as the connections

between concepts triggered by the usage of natural language. For instance, thinking about the

concept of a plane might activate other concepts like the crew, pilots or luggage [16]. This type

of association is the one we are about to use according to a connectionist representation. That is,

an association is perceived as an edge that connects two concepts in the cognitive graph. Most

importantly, the existence or the non-existence of an edge is probabilistically defined based on

the strategies of the players.

Cognition Process

Formally, we adopt a graph representation for concepts and associations, and assume that the

cognitive process describes how the agent operates on her cognitive graph in order to make de-

cision, inferences, elicitation or more generally cognition. While bearing in mind the fact that

cognitive processes perform some form of Bayesian inference [72], we chose to adopt a graphical

representation that serves more as an abstraction of any potential quantitative instantiation. For

instance, it could be instantiated as a Bayesian network operating on concepts seen as random

variables, a CP-net operating on attributes and utility functions, etc. The representation we adopt

acts more like an undirected Qualitative Probabilistic Network [101] where an association is de-

fined by one of the influence relations {+,−, 0} and the non-association by {?} (ambiguity) as

in [71]. The choice of the undirected edges is due to the fact that we are only interested in the

topology and the complexity of the conceptual graph rather then the pertinence of its concepts.

Since the cognitive process is evolving over time, the graph will be indexed by t, as in (3.1).

Gt = (Vt, Et) (3.1)

where at t, Vt represents the concepts, and Et represents the associations between the elements

of Vt. The graph could be concretized as an Erdős-Rényi Random Graph [84], characterized by

the degree distribution PII(t) at t, and defined over n concepts. We define a cognitive process as

in Definition 1.
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Definition 1. The cognitive process P , in (3.2), is a stochastic process that operates on a graph

of concepts Gt, and where the concepts and the associations are added dynamically by player II

according to the distribution PII(t).

P = {PII(t) | t ∈ T}. (3.2)

In fact, even though PII describes the degree distribution of G, we do not use it directly for

the evaluation of the pertinence of the concepts. Instead, we consider a function e : V → R that

reflects the importance or energy zII(i) of concept i by assigning the number of nodes connected

to it (number of possible associations). Since we are dealing with distributions, the energy of

each node is normalized w.r.t the overall energies as in (3.3). We can eventually enrich (3.3) to

include the amount of information/uncertainty f(i) of concept i. Herein, we simply take f as

deg, that is, f(i) is the degree of node i. Herein, (3.3) can also be considered as a Boltzmann

(Softmax) distribution.

e(i) =
f(i)∑
j f(j)

(3.3)

Using (3.3) we define another distribution ZII , as in (3.4).

ZII = { e(i) }ni=1 (3.4)

e(i) = zII(i)

The sequence ZII could also be seen as the normalized degree sequence of the concepts. At each

t, the agent executes a number of actions by adding edges between a number of nodes. We say

that the action ~a adds one edge between x, y ∈ V according to PII in the sense that the newly

obtained graph has degree distribution PII . Action ~a will therefore alter the graph G as well as

the sequence ZII . We are interested in the choice of PII that has to be chosen by the agent in

order to add an edge. More precisely, we want to find the distributions that minimize the entropy

of the sequence ZII .
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3.2.3 The Game of Complexity

In the following, we formulate the previous cognition process according to a game theoretic

approach. The ultimate goal is to analyze the equilibrium of this game of complexity from the

entropic standpoint, and provide the optimal strategies.

Game Formulation

The game is a zero-sum (normal form) game between nature (player I) and the agent (player II).

Nature tries to make the agent’s cognition difficult by increasing its complexity while the agent

tries to decrease the complexity of the cognitive process P , defined over the cognitive graph

G(V,E). The cognitive game of complexity G is thus defined as in (3.5).

G = (N, G, S, Φ) (3.5)

N = {I, II} (3.6)

G = G(V,E) (3.7)

S = SI × SII (3.8)

Φ : S → R (3.9)

We adopt the same objective function Φ, as in [97], defined as the measure of complexity between

nature’s strategy ZI ∈ SI and the agent’s strategy ZII ∈ SII as in (3.10).

Φ(ZI‖ZII) = −
n∑
i=1

zI(i) log(zII(i)) (3.10)

(3.10) reflects the difficulty encountered by the agent in exploring the cognitive graph when she

adopts the distribution PII (and its normalized degree sequence ZII) and when nature adopts PI

(and its normalized degree sequence ZI). Now, we define the Φ−entropy SΦ as the minimum

complexity (3.11).

SΦ(ZI) = inf
ZII∈SII

Φ(ZI‖ZII) (3.11)

Thus the entropy is defined as the minimal complexity.
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The strategies

As we have mentioned previously, agent’s strategy Z ∈ SII is a normalized degree sequence

(3.4), but the initial form of Z is defined as the degree distribution P . This is due to the fact that

we are dealing with a graph G and that its topology is better defined by P . Herein, we propose

concrete examples of strategies as well as on how their complexities are found, thus, how players’

optimal strategies are established.

A strategy is a particular way to traverse or explore a graph by moving from a node to another.

For instance, Figure 3.1 shows 5 different ways that can be used to explore a graph composed of

10 nodes. Each exploration strategy corresponds to a particular degree distribution that can be

mapped onto the graph. In this example, we distinguish the complete (or uniform) distribution

(Figure 3.1(a)), the normal distribution (Figure 3.1(b)), the poisson distribution (Figure 3.1(c)),

the power-law distribution (Figure 3.1(d)), and the star distribution (Figure 3.1(e)).

P



P1 = Uniform(n− 1)

P2 = Normal(µ ∈ [2, 4], σ ∈ [0, 2])

P3 = Poisson(λ ∈ [2, 6])

P4 = Power − law(α = 2.3)

P5 = Star

(3.12)

In Figure 3.2(a), we provide another example of 5 degree distributions Pi∈[1,5], defined in (3.12),

and mapped on a graph of 100 nodes. The distribution-color mapping is (P1 : green, P2 :

purple, P3 : blue, P4 : red, P5 : orange). We recall that the strategies Zi∈[1,5] are built from the

degree distributions Pi∈[1,5].

If we take the corresponding normalized degree sequences Zi∈[1,5] and their ordered entropies

H(Zi∈[1,5]), we get Figure 3.2(b). The uniform strategy yields a complete graph (Kn−1) with the

highest complexity, i.e., highest entropy. On the contrary, the star (Sn−1) strategy has the lowest

complexity, which is due to the fact that all concepts are connected to one single pertinent concept

acting like a hub. If we increase the number of hubs to few hubs, we get the power-law strategy

which is ranked right above the star strategy. The normal and poisson strategies fluctuate between
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(a) Complete (K10) (b) Normal (µ = 4.5, σ =

2.6)

(c) Poisson (λ = 1.2)

(d) Power-law (α = 2.3) (e) Star

Figure 3.1: Example of 5 exploration strategies over 10 concepts

P1 and P4 in terms of complexity, relatively to the values of µ, σ and λ. The uniform distribution

P1 and the star distribution P5 act as complexity bounds. Now, if we consider the zero-sum game

G from the perspective of the minimax-maximin viewpoint, both players will behave in opposite

ways. On the one hand, nature tries to achieve high complexity. Therefore, its strategy Z∗I ∈ SI
is optimal if (3.13) holds.

SΦ(Z∗I ) = sup
ZI∈SI

SΦ(ZI) = SmaxΦ (3.13)

where SmaxΦ is the maximal entropy. On the other hand, the agent tries to achieve low complexity

with Φ as her objective function. Therefore, she associates a risk RΦ to any strategy ZII ∈ SII
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(a) The cognitive graph (b) Strategies’ entropies

Figure 3.2: Cognitive Graph and Strategies’ Entropies

as in (3.14).

RΦ(ZII) = sup
ZI∈SI

Φ(ZI‖ZII) (3.14)

The agent’s optimal strategy Z∗II is the minimum risk value Rmin
Φ as in (3.15).

Rmin
Φ = inf

ZII∈SII
RΦ(ZII) = RΦ(Z∗II) (3.15)

Given the two optimal strategies (3.13) and (3.14) we propose to find the equilibrium of G in the

next section.

The equilibrium

Once the strategies are defined, the equilibrium is given by considering both thermodynamical

and game theoretical equilibriums and their consistency with the maximum entropy thinking. If

the minimax-maximin inequality (3.16) holds, then the game is in equilibrium and the common

value is the value of the game. Hence, the maximum entropy value equals the minimum risk
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equals the minimum guaranteed complexity.

SmaxΦ ≤ Rmin
Φ (3.16)

The common value is the complexity that the agent is getting, with its underlying graphical

representation. For instance, let us consider the case where the available strategies of the players

are either uniform or power-law. The basic way to represent this situation is to consider the

random payoff matrix in Table 3.1 where the entries are computed from the generated strategies

ZI , ZII ∈ {Power − law(α), Uniform(n− 1)}.

ZI

ZII

Power-law Uniform

Power-law Φ(ZI‖ZII) Φ(ZI‖ZII)

Uniform Φ(ZI‖ZII) Φ(ZI‖ZII)

Table 3.1: Random payoff matrix

In this setting, nature plays the strategy that yields the highest possible complexity for the

agent, the uniform strategy. On the other hand, the agent will chose the strategy that guaranties

the minimal possible complexity while nature is trying to cause her damage by providing the

most complex configuration. Thus the pure-strategy Nash equilibrium is (Uniform, Power −

law). When more than two strategies are available, the concept of mixed strategies becomes

more compelling than the concept of pure strategies. Then, it is unlikely that the given random

zero-sum game has solutions in pure strategies. That is, assuming that the shared strategies’

support is of dimension m � 2, the probability that the game has saddle point involving pure

strategies is limm→∞ (m!)2/(2m− 1)! = 0 [46]. Now, if players adopt randomized strategies

and choose to pick the one with the highest probability, the agent’s best response will remain the

same while nature’s strategy will be defined according to the λ, µ, σ parameters and their effect

on maximizing the entropy of the corresponding distributions.

The equilibrium point (Uniform, Power − law) reflects the agent’s minimal amount of

complexity necessary for cognition. The underlying game theoretic optimality is consistent with
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the optimal dendritic wiring described by the power-law and the tree-like shapes found in neural

circuits [19]. This relates as well to the self-organized criticality (SOC) in dynamical systems

whereby the system’s macroscopic behavior displays a spatial scale-invariance characteristic of

the critical point. Thus, the emergence of the power-law distribution when the system is in a

self-organized critical state [103].

3.2.4 Optimal Cognition Strategy

In the following section, we propose to find the strategy that minimizes the cognition complexity

for the agent, by finding the right action(s). Moreover, the optimal strategy will be used to

justify the optimality of the power-law strategy provided in the previous section. We start by

considering G(V,E), the cognitive graph, V−, the subset of low degree nodes and V+, the subset

of high degree nodes (3.17). We take ε as a small natural number.

V− = {v ∈ V : |deg(v)− (n− 1)| � ε} (3.17)

V+ = {v ∈ V : |deg(v)− (n− 1)| < ε}

Consider the process of creating a new copy of the graph G(V,E) by adding one edge between

x, y ∈ V , namely the action ~a : (x ∼ y). Let G1(V1, E1) and G2(V2, E2) be the result of such

process with the new sets E1, E2 generated by ~a1 and ~a2, executed on s, a− ∈ V− and a+ ∈ V+,

as in (3.18).

E1 ← E ∪ (s, a−) result of ~a1 : (s ∼ a−) (3.18a)

E2 ← E ∪ (s, a+) result of ~a2 : (s ∼ a+) (3.18b)

Now consider Z, Z1, Z2, as the normalized degree sequences (3.4) relative to G, G1 and G2. The

entropy of Z conditioned on ~a1 and ~a2 gives us the entropies of Z1 and Z2 as in (3.19).

H(Z|s ∼ a−) = H(Z1) (3.19a)

H(Z|s ∼ a+) = H(Z2) (3.19b)

In the following, we establish that H(Z1) > H(Z2), and that ~a2 dominates ~a1.
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Theorem 1. (Choice complexity)

Let G = (V,E) be a cognitive graph with n nodes. Let,

1. Z be the normalized degree sequence of G defined in (3.4)

2. V− and V+ be the subsets defined in (3.17).

3. s, a−, a+ be the different nodes defined as : s, a− ∈ V−, a+ ∈ V+ and (s, a−), (s, a+), (a−, a+) 6∈

E.

If Z|x ∼ y is the normalized degree sequence of G′, image of G by the process of drawing an

edge between x and y, then, the complexity arising from drawing an edge from s to a− is higher

than if we draw an edge from s to a+.

We shall write: H(Z|s ∼ a−) > H(Z|s ∼ a+).

The proof is provided in A.2.

We can interpret Theorem 1 as follows: “In a cognitive graph, moving toward pertinent con-

cepts minimizes the complexity”. Intuitively, it could be seen in the human tendency to quickly

embrace pre-established ideas and belief systems (V+) rather than engaging in the type of re-

flection or investigation that could be tedious, complex and time consuming. Especially, when

some ideas have not yet been investigated (V−). Pre-established ideas act like the accumulated

knowledge or memory of the system, which creates high degree concepts. A game theoretical

and utilitarian way to interpret Theorem 1 is given in Corollary 1.

Corollary 1. (GT interpretation of Theorem 1)

Let G = (N, G, S, Φ) be a cognitive game of complexity and Z the normalized degree sequence

of G. For player i, let ~a1 : (s ∼ a−) and ~a2 : (s ∼ a+). If H(Z|~a1) > H(Z|~a2), then ~a2

dominates ~a1 and ui(~a2) > ui(~a1), with ui defined as player i’s subjective utility function.

Furthermore, it is possible to reinterpret Theorem 1 in the light of the strategies in 3.2. This

is done in Corollary 2.

31



Corollary 2. (Topology of the convergence strategies)

Let G = (N, G, S, Φ) be a cognitive game of complexity and Z the normalized degree sequence

of G. For player i, let ~a1 : (s ∼ a−) and ~a2 : (s ∼ a+). Consider the 2 limits Z1 and Z2 of the

sequence Zt conditioned on ~a1 and ~a2, as in (3.20).

Zi = lim
t→∞

Zt | ~ai ∀i ∈ {1, 2} (3.20)

Then, Z1 describes a randomly distributed graph, while Z2 corresponds to a power-law dis-

tributed graph.

We will describe in the experiments an instance of Corollary 2 whereby nature uses ~a1 and

the agent uses ~a2. The resulting cognitive graph will contain both the random and the power-law

strategies.

3.2.5 Experiments

Experiment Design

Consider the process P ′ whereby (3.1) is built by adding one node at each time step t ∈ [1, T ].

Furthermore, each one of the players will add mt edges according to a specific distribution:

PI(t) for nature and PII(t) for the agent. In the following, we take mt = 5 ∀t and T = 103.

PI(t) and PII(t) are altered and extended at each time step according to a specific attachment

method. The edges in PII(t) are added according to a preferential attachment. That is, we

start by selecting a random node a, then another node b is selected from α% of the high degree

nodes (V+). The edges in PI(t) are added by random selection of nodes without any preferential

attachment. This process is repeatedmt times. At each round t, we propose to measureH(ZII(t))

and H(ZI(t)), the entropies (complexities) of the sequences ZII(t) and ZI(t). We are interested

in the convergence of the sequence ZII(t) mirroring the asymptotic behavior of PII(t) and the

corresponding graph. To this end, we consider D(ZII(t), ZII(t − 1)) where the measure D is

defined as in (3.21).

D(p, q) =
1

2

n∑
i=1

| pi − qi | (3.21)
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Results and Discussions

Building Gt with two different attachment methods yields two different distributions PII(t) and

PI(t). Herein, it is possible to relate the current experiment to the previous sections, by noticing

that the agent’s and nature’s attachment methods correspond respectively to ~a1 : (s ∼ a−) and

~a2 : (s ∼ a+) defined in Corollary 2.

The behavior of H(ZII(t)) and H(ZI(t)) is in Figure 3.3(a). Given the choices of the strate-

gies, and as t → T , the complexity of ZII(t) falls below the complexity of ZI(t). The agent’s

representation of G could be looked upon as a process evolving over time and described by the

sequence {ZII(t)|t ∈ [1, T ]}.

(a) H(ZI,II(t)) (b) Convergence of ZII(t)

Figure 3.3: Entropies and Convergence

As it is shown in Figure 3.3(b), the sequence approaches one unique representation as the

graph grows with t. This describes the fact that the pertinent concepts are reinforced with time

and that they start acting like memory hubs, which is inherent to scale-free graphs. However,

in our context, this means that in the limiting strategy Z only a few concepts will be pertinent

33



to the agent. Most importantly, the convergence of the sequence towards a unique topological

representation (3.22) shows that we are certain about reaching this limit, even though the entropy

(uncertainty) of the process is increasing logarithmically as in Figure 3.3(a).

lim
t→∞

D(ZII(t), ZII(t− 1)) = 0 ⇒ lim
t→∞
{ZII(t)} = Z (3.22)

This allows us to reinterpret the process with regard to uncertainty, additionally to cognitive

complexity.

In fact, this uncertainty is about the way we assign the importance, or energy (3.3) to the

concepts. Under uncertainty (or lack of knowledge), we do not know which concept is more im-

portant, therefore the assignment will follow a maximal entropy distribution. This is the situation

of high complexity (chaos, disorder, randomness) discussed above as the goal of nature. The

highest uncertainty value log(n) is achieved in the case of a uniform strategy (complete graph

Kn−1). On the other hand, and under certainty, the entropy of the importance assignments will

be minimized. This reflects the situation of safe certainty and order that the agent is seeking. For

instance, under a star topology (Sn−1), the uncertainty is the lowest with a value of 1
2

log 4(n− 1)

since the total energy is concentrated in one concept 1. Given any strategy Z, its complexity

(respectively uncertainty) is bounded between the lowest complexity of the star topology and the

highest complexity of the complete topology (3.23).

1

2
log 4(n− 1) ≤ H(Z) ≤ log(n) (3.23)

For instance, the distributions P2,3,4 used in section 3.2.3., all fall within this range. Under

bounded rationality, non-complex problems [21] could be explained according to our topolog-

ical rationale of complexity in the sense that the optimal strategy (Uniform, Power − law)

falls within the range (3.23). Most importantly, such problems tree structures are characterized

by a low treewidth, which suffices in solving the Most Simple Explanation (MSE) problem with

a low margin of error [71]. This is corroborated by the fact that scale-free graphs have a lower

treewidth compared to the poisson or complete graphs [41].

1If the hub is vs then e(vs) = n− 1 and e(vi) = 1 ∀i 6= s
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3.2.6 Conclusion

We have modeled cognition as a game of complexity between nature and an agent in situation

of bounded rationality. The complexity as well as the game theoretical equilibrium are defined

in terms of the entropy. We prove that adopting a power-law distribution while exploring the

cognitive graph tends to minimize the cognition cost. Furthermore, we analyze the interplay

between cognitive complexity and uncertainty.

As an important research issue to be further investigated, we think about the case of directed

cognitive graphs, by considering the direction of the concept activation as in [16]. This will

allow us to fully characterize the graphical structures that are likely to trigger “Fast and Frugal”

heuristics [45]. Our work could also relate to [72] in the sense that we could identify the cognitive

topologies involved in the ‘approximation’ models of human cognition. Thus, bridging the gap

between Bayesian computational intractability on the one hand and the ease with which humans

can make the inferences that are modeled by Bayesian models.

3.3 Complexity, Entropy and Uncertainty

3.3.1 Introduction

One of the main characteristics of real-world cognition is the high-information load one is facing,

in the sense that the given tasks are informationally demanding and computationally intractable.

However, humans are capable of handling these high-cognitive-load problems, despite the com-

plexity and the large number of possibilities [43]. In the context of several cognitive problems,

for instance the Frame Problem [59], the Infinite Regress problem [11], as well as in the case

of Bounded Rationality [57], we argue that the limits of human cognition is due to the infinite

number of concepts that are made available.

In this part, we attempt to prove this claim by drawing a relation between uncertainty and

cognition in situations subject to an infinite number of co-activated concepts. The relation is

made in the sense that uncertainty is involved in the cognitive task, with regard to the solution
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to be found and the evolution of the process. More precisely, we investigate the reasons of

this intractability and limits, in the light of a quantitative measure of uncertainty. Through the

evaluation of the entropic behavior of a cognitive process evolving over time, we provide an

insight on the relations between cognitive complexity and the extent to which solutions could be

found. We analytically show that under such assumption of large cognitive space, the uncertainty

of the overall cognitive process will keep on increasing, even though we attain complete certainty

in the final stage of the process.

To this end, we propose a cognitive model with a graphical representation inspired from the

work of [16] on heuristics. In his model, the organization of the mental concepts has a graph-like

structure, and where the cognition is done through a mechanism of activation or priming of the

given concepts. Several viewpoints have been presented in literature addressing different aspects

of the problem of cognition, and how the concept of infinity arises and affects it. For instance, the

frame problem refers to a problem where a cognitive agent faces an infinite supply of potentially

relevant and irrelevant information, and has to process relevant information in an adaptive and

intelligent manner.

The problem of finding the relevant information while ignoring everything else is the main

scope of the frame problem. The issue of framing is an ubiquitous problem in real life, and could

be found in rationality, politics, ethics, especially in situations subject to a high-cognitive load

[94]. Another related situation is the epistemological problem of the infinite regress problem [11]

which generally rises in any situation where a statement has to be justified. Herein, we relate to

the same problem, and more precisely on how knowledge is added over time and how it affects

the uncertainty of the overall cognitive process. By mirroring the notion of infinite regress with

the process of conceptualization and association, we can think about the cases where the agent is

neither constrained by time nor stopped by the undecidability of a problem. In this case, he will

have to face an infinite number of concepts, which makes the problem intractable, and eventually

with complex associations. It is with regard to these limits of human cognition that we evaluate

the entropic behavior of a cognitive process evolving over time. Hence, we provide an insight on

the relations between cognitive complexity and the extent to which solutions could be found. We
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prove that the larger the cognitive space is, and the more uncertain the evolution of the process

can be, despite the certainty of the final outcome.

3.3.2 The Cognitive Model

Concepts

As in the last part, we rely on Barsalou’s theory of concepts in his view of conceptual cognition,

namely the perceptual symbol systems (PSS) view of cognition [8]. Our reliance on this view

is justified to the extent that it is related to the file model of cognition. According to the file

model, concepts refer to files that contain information, such as representations and beliefs about

the concept per se, or more precisely about the entities in the concepts extensions. We adopt a

similar representational system, in the sense that a concept is a general type, category or class,

which can undergo any number of conceptualization with different representations. For instance,

a flower can be conceptualized in several ways with regard to its shape, color, texture, smell, etc.

Thus, different representations will be activated depending on the context and goals of the agent.

Once these concepts are established in the cognitive space (or memory) of the agent, knowledge

is accumulated and added to the system. This process is reinforced through new experiences and

beliefs update.

Associations

The associations between the concepts will be used to make inferences on the basis of the avail-

ability of beliefs related to the concepts and their representations. We can think about it from the

perspective of the file model, as a file system where each file is labeled and additionally contains

notes about the concept. The number of files and their underlying notes can be infinite, although

this number could be bounded if the agent has to consider only few concepts in his perceptual or

cognitive frame. This does not mean, however, that the agent cannot accumulate a large number

of concepts, especially when the given cognitive task is performed over a long period of time. The

association are to be understood as the type of assessments that assign causal relations between
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activated concepts when the agent is facing a problem. It could be though of as the connections

between concepts triggered by the usage of natural language. For instance, thinking about the

concept of a plane, might activate other concepts like the crew, pilots or luggage [16]. This type

of associations is the one we are about to model, based on a graphical representation, as it is the

most intuitive and trivial representation.

To cite another example, we take the situation of utility function assessment as a method for

preferences elicitation [61]. In fact, the same structure of concepts and associations is mirrored,

although in utility assessment, we mostly deal with attributes and dependences. Furthermore,

the notion of infinite regress can be re-defined in an utilitarian way, as to the specification of the

attributes needed for the assessment of a utility function and the description of the consequences.

Therefore, we can state that the usage of an attribute a1 (analytically defining Ua1(a1)), requires

a set π[a1] of attributes upon which a1 depends and hence Ua1(a1) = U(a1|π[a1]). Similarly the

utility of the attribute a2 requires another set π[a2] as to determine Ua2(a2) = U(a2|π[a2]),. . . the

utility of an requires π[an] so that Uan(an) = U(an|π[an]), with n → ∞. Assuming that an

infinite regress arises when the justifications of propositions are required, we can say that in

the case of utility assessment, the proposition to be justified refers to the comprehensibility of

the attribute, .i.e, its appropriateness on theoretical grounds [61]. When adopting this mode of

attributes (concepts) exploration and inference (associations), a question arises as to what extent

this process might be possible when the agent is operating over the concepts recursively and ad

infinitum. Next, we attempt to characterize this situations from the certainty standpoint.

The Formal Model

Formally, we adopt a graph representation for the concepts and the associations, and assume that

the cognitive process operates on this graph. However, unlike the usage of directed graphs in

[16], we assume our representation is undirected, since we are only interested in the complexity

of the conceptual graph rather then the pertinence of its underlying concepts. Since the cognitive
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process is evolving throughout time, the graph will be indexed by t, as in (3.24).

Gt = (Vt, Et) (3.24)

where at time t, the nodes Vt represent the concepts, and the edges Et represent the associations

between the concepts. Our cognitive model will be concretized as an Erdős-Rényi Random Graph

[84], characterized by the degree distribution P a,b
n defined over N concepts. The parametrization

values a, b and n will be justified later for treating the asymptotic case and the entropy. We note

that building our graphs from a general and parametrized degree distribution has the property

of making the number of edges (associations) fluctuate according to the parameters a, b and n.

Thus, it will be devoted to elaborating the characteristics of the cognitive processes with regard

to uncertainty and the behavior of entropy. To this end, we begin by defining a cognitive process

as follows.

Definition 2. A cognitive process P operates on a graph of concepts Gt, where concepts and

associations are added and updated dynamically by the agent. P is a stochastic process defined

by P a,b
n as in (3.25).

P = {P a,b
n (t) | t ∈ T}. (3.25)

We note that during this process, the agent observers an objective world, and constructs his

own model of it, namely Gt, or the object of the process P . We take the hypothesis that the agent

is observing an objective, external set of an infinite number of concepts represented by an infinite

random graph, i.e. an objective cognitive space defined as following.

Definition 3. The objective cognitive space E is the graph G = (V,E) of the real objective

concepts available to the agent, who builds his subjective cognitive graph from it. The size of E

is N = |V |, and tends to infinity.

The graph Gt mentioned in Definition 1 is just the agent’s reduced and subjective representa-

tion of E . We also notice that the agent has a frame, or a window, within which he can identify

and represent the graspable concepts. We define it as following.
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Definition 4. The agent’s cognitive frame F is built given the concepts of E . It is a subset of E

and has n concepts (n� N ). The agent is building F by adding more concepts and associations

as time goes on.

Another notion we will use is the notion of associative potential of an agent, defined as

following.

Definition 5. For a given cognitive task, the associative potential, namely k, is the maximal

number of associations, that an agent could possibly make within his cognitive frame.

The choice of the maximal number of associations is due to the fact that if the agent is capable

of making an association between one concept and k other concepts, he can obviously build k−1,

or k − 2,. . . , or 1 association(s) with the first concept. For instance, if agent 1 has an associative

potential k1 and the agent 2 has an associative potential k2 with k2 > k1, then the agent 2 will

have a higher capacity to create associations, especially if k1 = 1. As we will see in the next

sections, the associative potential could also be defined as the rank of 1 in a deterministic degree

distribution.

3.3.3 Abstract Cognition Algorithm

Herein, we provide an example on how the agent could exploit his cognitive graph in order to

make decision, inferences, elicitation or more generally cognition. We propose an algorithm that

describes a generic heuristic that explores the cognitive subspace F available to the agent. This

heuristic is driven by the importance (pertinence) of each concept, illustrated by its corresponding

degree. Thus, the concepts with high degrees will be considered as Pertinent Concepts [16] to the

task in hand, and must be taken into consideration in the proper cognition task. Herein, we don’t

specify a precise cognitive task, but we define an abstract routine f that could be instantiated as

a specific treatment on a number of concepts in F . For instance, f could be instantiated as a

probability function, whenever the conceptual graph is instantiated as a Bayesian network, and

operating on concepts seen as random variables. It could also be a utility function operating

on attributes with the corresponding outcomes [12], etc. Therefore, Algorithm 1 operates on an
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abstract representation of the concepts, since we are only interested in the topological aspects of

the cognitive process. Initially, the agent starts by activating one concept ι, and then explores

his cognitive space by sequentially activating the surrounding pertinent concepts. The number of

activated pertinent concepts is characterized by the length σ of the Random Walk that starts from

the concept ι. For each concept, the algorithm selects the neighbor m ∈ Nei with the highest

degree. After saving the current concept ι in V n (with V n ⊂ F), the algorithm moves to the

concept m and repeats the same task of finding the neighbor with the highest degree.

Algorithm: Abstract Cognition

Input: Gt(V,E): agent’s conceptual graphs, ι:initially activated concept (ι ∈ V ), σ:number of steps of the algorithm,

f :instantiated routine

Output: Execution’s result of the routine f

1 begin

2 for i← 1 to σ do

3 Nei←Neighbors(ι);

4 Ns←SortByDecreasingDegree(Nei);

5 while True do

6 if Size(Nei) = 0 then

7 Exit;

8 else

9 m← Ns.pop();

10 if m ∈ V n then

11 continue;

12 else

13 break;

14 V n.append(ι);

15 Activate(ι);

16 f(ι | V n\ι);

17 ι← m;

Algorithm 1: Abstract Cognition

The algorithm can be executed at any time t of the evolution of the cognitive process P .

Furthermore, the number of neighbors |Nei| of a concept ι that the agent can apprehend is limited

by the associative potential k of the agent. For instance if k = 5, the agent can at least find 5

neighbors of ι, if they do exist. The way the routine f is executed in line 19 reminds us of the
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example of utility assessment or as in belief propagation in Bayesian updating.

3.3.4 Certainty Evolution

In this section we start by describing the notion of convergence relative to a degree distribution,

given the parametrization defined in (3.25). Then, we define the notion of degree distribution

support which will be used to characterize the entropy measure. Finally, we present the analysis

of the entropy of a cognitive process by showing the behavior of entropy whenever the support

of the degree distribution of the underlying process is countably infinite.

Conceptual Graph Convergence

We assume that the convergence of conceptual graphs is mirrored by the convergence of its rep-

resentative degree distribution. Therefore, we start by defining the distance between two degree

distributions. For this, we could rely on the total variational distance as in (3.26).

DV (P1, P2) =
∑
j

|P1,j − P2,j| (3.26)

where DV stands for the variational distance, and Pi,j is the jth element of Pi. For P1 and P2

having respectively different dimensions m1 and m2, (3.26) becomes (3.27).

DV (P1, P2) =

m1∑
j=1

|P1,j − P2,j|+
m2∑

j=m1+1

|P2,j| (3.27)

We can also use the Kullback-Leibler divergence as in (3.28).

DKL(P1, P2) =
∑
j

P1,j ln(
P1,j

P2,j

) (3.28)

where we adopt the convention DKL(P1, P2) = 0 if P2,k = 0 but P1,k > 0 for some k. Moreover,

based on the Pinsker’s inequality [100] we have (3.29).

1

2
[DV (P1, P2)]2 ≤ DKL(P1, P2) (3.29)
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Both divergence (3.28) and the variational distance (3.26) can be used as measures of the differ-

ence between two degree distributions. However, Pinsker’s inequality has the important implica-

tion that for two degree distributions P1 and P2, if DKL(P1, P2) is small, then so is DV (P1, P2).

Furthermore, for a sequence of degree distributions P(n), as n → ∞, if DKL(P, P(n)) → 0, then

DV (P, P(n)) → 0. In other words, the convergence in divergence is a stronger notion of conver-

gence than the convergence in variational distance. Thus, we will use the convergence measures

(3.28) as to define the continuity of the Shannon entropy, in the sense that we study the conver-

gence of a sequence of degree distribution as well as their entropies. Given a sequence of degree

distributions P(n), we can consider the sequential decision problem in which a Bayesian agent is

observing an objective cognitive space E, and updating his subjective cognitive space represented

by the conceptual graphGt. The graphGt is generated by the successive realizations of a discrete

stochastic process {P(n)| n ∈ T}, indexed by n, and where n varies over a time index set T . We

assume that the process will converge to the limiting degree distribution Pl, as in (3.30).

P(n) −→ Pl (3.30)

This notion of convergence reflects the idea that we expect to see the next degree distribution in

P(n) to become better and better modeled by Pl. The yielded convergence is expressed by the

limit (3.31).

lim
n→∞

P(n) = Pl (3.31)

(3.31) will be used to define the continuity of the Shannon entropy on degree distributions.

Degree Distribution Entropy

The Shannon entropy measures are functions mapping a probability distribution to a real value.

They can be described as the measure of uncertainty about a discrete random variable X having

a probability mass function p. We define it as following.

Definition 6. The entropy H(X) of a random variable X is

H(X) = −
∑
x

p(x) log p(x) (3.32)
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Herein, summation is over the support of the considered degree distributions. Shannon en-

tropy measures the spread of a probability distribution. In the case where the concepts are finite,

the Shannon entropy measures are continuous function. We propose to focus on the case where

the entropy measure is applied to degree distributions with a countably infinite set of concepts.

The focus on the infinite case goes hand in hand with the motivations we have stated in the intro-

duction. That is, the understanding highly complex cognition, concretized by a countably infinite

number of concepts. We are interested in studying the continuity ofH with respect to the distance

measures we established in the section 3.3.4. For instance, entropy is discontinuous with respect

to the Kullback-Leibler divergence [50]. We propose to define the continuity of a function f that

will be lately extended into the entropy measure H .

Definition 7. Let πk be the set of all possible degree distributions on N nodes, and let P ∈ πk.

f : πk → [0, 1] is continuous at P if, given any ε > 0, ∃δ > 0 such that:

∀P ′ ∈ πk : DKL(P, P ′) < δ =⇒ |f(P ′)− f(P )| < ε.

If f fails to be continuous at P , then we say that f is discontinuous at P . Given the no-

tion of convergence we defined in section 3.3.4, we can provide the following definitions of the

discontinuity of the function f .

Definition 8. Let πk be the set of all possible degree distributions on N nodes. Let P ∈ πk.

f : πk → [0, 1] is discontinuous at P if there exists a sequence of degree distributions P(n) ∈ πk
such that:

lim
n→∞

DKL(P(n), P ) = 0 (3.33)

but f(P(n)) does not converge to f(P ), i.e.,

lim
n→∞

f(P(n)) 6= f(P ) (3.34)

Discontinuity

In this section, we establish the discontinuity of H at any degree distribution having a countably

infinite support. Let (3.35) be a sequence of degree distributions with the real parameters a > 1,
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b > 0 and n > a. We will use this sequence to show that H is discontinuous at P1 = (1, 0, 0, . . .).

P a,b
n = {1− (

log a

log n
)b,

1

n
(
log a

log n
)b . . .

1

n
(
log a

log n
)b, 0, 0, . . .} (3.35)

Based on our definition of convergence, we show that the sequence P a,b
n converges to P1 =

(1, 0, 0, . . .). Assuming that:

DKL(P1, P
a,b
n ) = −

(
log(1−

(
log a

log n

)b)
(3.36)

we have P a,b
n −→ P , which is given in (3.37).

lim
n→∞

D(P a,b
n , P1) = 0 (3.37)

Then, the entropy of P a,b
n is given by (3.38).

H(P a,b
n ) = −

[
1−

(
log a

log n

)b]
log

[
1−

(
log a

log n

)b]
− n

[
1

n

(
log a

log n

)b]
log

[
1

n

(
log a

log n

)b]
(3.38)

In order to compute the limit of (3.38), let

H(P a,b
n ) = −

[
1−

(
log a

log n

)b]
log

[
1−

(
log a

log n

)b]
︸ ︷︷ ︸

T1

−n

[
1

n

(
log a

log n

)b]
log

[
1

n

(
log a

log n

)b]
︸ ︷︷ ︸

T2

(3.39)

We have lim
n→∞

T1 = −1× log(1) = 0.

T2 can be written as in (3.40).

T2 =

(
log a

log n

)b
log(n)︸ ︷︷ ︸

T3

+

(
log n

log a

)b
log

((
log a

log n

)b)
︸ ︷︷ ︸

T4

(3.40)

Using L’Hôpital’s rule, we can show that lim
n→∞

T4 = 0, while for T3, we have (3.41).

lim
n→∞

(log(a))b
log(n)

(log(n))b
= lim

n→∞
(log(a)b)(log(n))1−b (3.41)
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Hence,

lim
n→∞

H(P a,b
n ) =


0 if b > 1

log a if b = 1

∞ if 0 < b < 1

(3.42)

From (3.42), we can provide the following proposition.

Proposition 1. Based on Definition 7., and assuming that f = H . If we take a > 1 and 0 < b ≤ 1

in (3.42), we have (3.43)

lim
n→∞

H(P a,b
n ) =∞ 6= H(P1) (3.43)

but lim
n→∞

P a,b
n = P1

Thus, we can state that the entropy H is discontinuous at the degree distribution P1 =

(1, 0, 0, . . .).

3.3.5 Discussion

We start by describing the evolution of the cognitive process P with respect to its parametric

degree distribution. Then, we provide an interpretation of the uncertainty of P , assuming that the

number of concepts is countably infinite. We propose to use the same general degree sequence

(3.35) provided in the previous section.

At the beginning of the cognitive process (3.25), the agent can only grasp a small and limited

number of concepts (nodes). Therefore, there is a low probability that a primed concept will have

a high degree. This is due partially to the fact that the agent starts the cognitive process (at t = 0)

with no prior associations between the concepts. As time goes on, the agent will start creating

and adding associations between the concepts and the degrees of the nodes will start increasing.

Thus, the likelihood of the existence of concepts with a high degree within the frame of the agent

will increase. The reason for which we assumed that the degree distribution of the process is

described by (3.35) is the possibility to define a dominant degree. In this case, one degree will

occur with a probability which is higher than the probability of occurrence of the other degrees.
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For instance, the probability of the degree k in the general representation (3.44) will be equal to 1

for n → ∞. In this situation, the associative potential of the agent is k, and reflects the capacity

of agent to make at least k associations. Similarly to what we have stated in Definition 4, the

associative potential of an agent is the rank of
(

1− ( log a
logn

)b
)

, that is, k.

P a,b
n = { 1

n
( log a

logn
)b, . . . , 1

n
( log a

logn
)b,
(

1− ( log a
logn

)b
)
k
, . . . (3.44)

. . . , 1
n
( log a

logn
)b, . . . , 1

n
( log a

logn
)b, 0, 0, . . .}

We note that the term 1
n
( log a

logn
)b is repeated n times in (3.44), and |P a,b

n | = N → ∞. From the

asymptotic degree distribution (3.44) we can describe the evolution of the degrees in Table 3.2.

deg 1 2 3 4 5 6 7

P 2,1
3 .36 .21 .21 .21 0 0 0

P 2,1
4 .5 .125 .125 .125 .125 0 0

P 2,1
5 .569 .086 .086 .086 .086 .086 0

... n→∞

P 2,1
n,1 1 0 0 0 0 0 0

or

P 2,1
n,4 0 0 0 1 0 0 0

Table 3.2: Dominant ranks for k = 1 and k = 4

For a = 2 and b = 1, and for different choices of the associative potentials (k = 1 or k = 4),

the sequence will yield different deterministic distributions. For instance, k = 1 generates (3.45)

and k = 3 yields (3.46).

P a,b
n,1 = {

(
1− ( log a

logn
)b
)

1
, 1
n
( log a

logn
)b, . . . , 1

n
( log a

logn
)b, 0, 0, . . .} (3.45)

P a,b
n,3 = { 1

n
( log a

logn
)b, 1

n
( log a

logn
)b,
(

1− ( log a
logn

)b
)

3
, 1
n
( log a

logn
)b, . . . , 1

n
( log a

logn
)b, 0, 0, . . .} (3.46)
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Figure 3.4: Cognitive Graphs for (4− 8), (6− 8), and (4− 100)

The sequence (3.45) converges to a deterministic distribution P1 = {1, 0, 0, . . .} (similarly, (3.46)

converges to P3 = {0, 0, 1, 0, 0, . . .}). Consequently, the representative graph Gn,1 having a

degree distribution P a,b
n,1 will converge to a graph G1 described by P1. In case we take k = 1 as in

(3.45), we get a Bipartite graph represented by P1. This case is not the most efficient one in the

sense that the agent cannot build more then 1 association for a given concept, which means that

some relevant concepts won’t be connected. As k increases, more associations will be created

and added, and the more k tends to the maximal degree, i.e., the number of nodesN . If k = n+1,

then the graph has n+ 1 nodes with n+ 1 degree each, and the corresponding degree distribution

is defined as in (3.47).

P a,b
n,n+1 = { 1

n
(
log a

log n
)b,

1

n
(
log a

log n
)b,

(
1− (

log a

log n
)b
)
n+1

, 0, 0, . . . , 0, . . .} (3.47)

Hence, the limiting graph is a complete graph Kn+1 of degree k = n + 1. Having a complete

graph of concepts reflects the idea of complete and unbounded associative potential over all the

available concepts within the frame. To illustrate how the evolution of the process affects the

representation of the concepts, we take the examples in Figure 3.4.

Let dn be the associative potential of the graph at state n. For instance, two different situations

in Figure 3.4, (4 − 8) and (6 − 8) reflect that in the first case the associative potential is d8 = 4

while in the second case, it is d8 = 6. Now if we compare (4 − 100) with (4 − 8), we find that
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more nodes are added as time goes on (d100 = 4 ), although the associative potential is the same

(d100 = d8 = 4).

The convergence of the entropy of the process (3.42) over time is defined according to dif-

ferent values of (a, b). For instance, the entropy tends asymptotically to infinity for the values

b = 0.1 and a = 2. This case illustrates the divergence of the entropy proposed in (3.43), and

which seems to be different from the entropy of the limiting distribution P1. It is obvious that

the entropy of he limiting distribution is null (H(P1) = 0), which asserts the certainty of the

agent with regard to the final phase of the cognitive process. However, given (3.43), we can note

that the certainty of the overall process cannot be deduced by considering all the successions of

cognitive updates that the agent is performing. Indeed, even though we are certain that the final

limiting configuration P1 is going to be achieved by the agent, we can not deduce this certainty

from observing the overall process.

3.3.6 Summary

We provided a cognitive model for concepts representation as well as their underlying associa-

tions by adopting an undirected graph structure. The provided topology reflects the complexity of

the conceptual graph. Furthermore, the proposed model describes a cognitive process where an

agent is updating the concepts and the associations. We evaluated the uncertainty of the overall

process with respect to the entropy measure over countably infinite set of concepts. The results

include an interpretation of the evolution of process. Thus, we proved that the larger the cognitive

space is, and the more uncertain the evolution of the process can be, despite the certainty of the

final outcome. This situation recalls the problem of infinite regress as well as the frame problem,

in the sense that we incorporated the concept of infinity while reasoning about cognition.

It is possible to consider the directions of the concepts activation by adopting a directed cog-

nitive map. This case demands a separation between pertinent concepts and referential concepts.

Another issue to be addressed is to fully characterize the graphical structures that are likely to

trigger heuristics in a bounded rational setting, known generally as “Fast and Frugal” heuristics
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[43]. Being able to activate the most pertinent concepts and discard the irrelevant concepts could

improve any search strategy.
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Chapter 4

Utility Hyper-graphs

4.1 Introduction

Automated multi-agent systems could help reaching agreements among heterogenous and dis-

tributed decision makers. In fact, their applications range from coordination and cooperation

[69, 55] to task allocation [67, 60], surplus division [29], and decentralized information services

[68]. In practical, most of the realistic decision making problems are characterized by interde-

pendent issues, which yields complex and nonlinear utility spaces [53]. As the search space and

the complexity of the problem grow, finding optimal contracts becomes intractable for one single

agent. Similarly, reaching an agreement between a group of agents becomes harder.

We propose to tackle the complexity of the utility spaces used in multi-issue decision making

by rethinking the way they are represented. We claim that adopting the adequate representa-

tion gives a solid ground to tackle the scaling problem. We address this problem by adopting a

representation that allows a modular decomposition of the issues-constraints given the idea that

constraint-based utility spaces are nonlinear with respect to issues, but linear with respect to the

constraints. This allows us to map the utility space into an issue-constraint hyper-graph with

the underlying interdependencies. Exploring the utility space reduces then to a message passing

mechanism along the hyper-edges by means of utility propagation.

Adopting a graphical representation while reasoning about utilities is not new in both the

multi-attribute utility and the multi-issue negotiation literatures. Indeed, the idea of utility graphs

could potentially help decomposing highly nonlinear utility functions into sub-utilities of clusters

of inter-related items, as in [14, 6]. Similarly, [88] used utility graphs for preferences elicitation

and negotiation over binary-valued issues. [78] adopts a weighted undirected graph representa-
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tion of the constraint-based utility space. However, restricting the graph and the message passing

process to constraints’ nodes does not allow the representation to be descriptive enough to ex-

ploit any potential hierarchical structure of the utility space through a quantitative evaluation of

the interdependencies between both issues and constraints. In [39], issues’ interdependency are

captured by means of similar undirected weighted graphs where a node represents an issue. This

representation is restricted to binary interdependencies while real negotiation scenarios involve

“bundles" of interdependent issues under one or more specific constraints. In our approach, we

do not restrict the interdependency to lower-order constraints but we allow p−ary interdependen-

cies to be defined as an hyper-edge connecting p issues. The advantage of our representation is

its scalability in the sense that the problem becomes harder for a large number of issues and con-

straints. But if we can decompose the utility space into independent components, we can exploit

it more efficiently using a message passing mechanism.

Another motivation behind the hyper-graph representation is that it allows a layered, hierar-

chical view of any given negotiation problem. Given such architecture, it is possible to recursively

negotiate over the different layers of the problem according to a top-down approach. Even the

idea of issue could be abstracted to include an encapsulation of sub-issues, located in sub-utility

spaces and represented by cliques in the hyper-graph. Consequently, search processes can help

identify optimal contracts for improvement at each level. It is within this perspective that we are

proposing our model. The main novelty our work is the efficiency of the new representation when

optimizing nonlinear utilities. To the best of our knowledge, our work makes the first attempt to

tackle the complexity of such utility spaces using an efficient search heuristic that works and

outperforms the previously used sampling-based meta-heuristics. Particularly, the novelty is that

we exploit the problem structure (as hyper-graph) as well as randomization. Such performance

is required when facing the scaling issues, inherent to complex negotiation. We experimentally

evaluated our model using parametrized and random nonlinear utility spaces, showing that it can

handle large and complex spaces by finding the optimal contracts while outperforming previous

sampling approaches.
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4.2 Nonlinear Utility Spaces

4.2.1 Formulation

We start from the formulation of nonlinear multi-issue negotiation of [52]. That is, N agents are

negotiating over n issues ik∈[1,n] ∈ I, with I = {ik}nk=1, forming an n−dimensional utility space.

The issue k, namely ik, takes its values from a set Ik where Ik ⊂ Z. A contract ~c is a vector of

issue values ~c ∈ I with I = ×nk=1Ik.

An agent’s utility function is defined in terms of constraints, making the utility space a

constraint-based utility space. That is, a constraint cj∈[1,m] is a region of the total n−dimensional

utility space. We say that the constraint cj has value w(cj,~c) for contract ~c if constraint cj is

satisfied by contract ~c. That is, when the contract point ~c falls within the hyper-volume defined

by the constraint of cj , namely hyp(cj). The utility of an agent for a contract ~c is thus defined as

in (4.1).

u(~c) =
∑

cj∈[1,m], ~c∈hyp(cj)

w(cj,~c) (4.1)

In the following, we distinguish three types of constraints: Cubic constraints, Bell constraints and

Plane constraints, shown in Figure 4.1. The constraint-based utility formalism is a practical way

to reason about preferences subject to restrictions. More details about constraint-based utility

spaces and their usage is to be found in [78, 77, 79].

Figure 4.1: Cubic, Bell and Plane Constraints
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Having a large number of constraints produces a “bumpy" nonlinear utility space with high

points whenever many constraints are satisfied and lower points where few or no constraints are

satisfied. Figure 4.2 shows an example of nonlinear utility space for issues i1 and i2 taking values

in I1 = I2 = [0, 100], with m = 500 constraints and where a constraint involves at most 2 issues.

Figure 4.2: 2−dimensional nonlinear utility space

4.2.2 New Representation

The agent’s utility function (4.1) is nonlinear in the sense that the utility does not have a linear

expression against the contract [52]. This is true to the extent that the linearity is evaluated with

regard to the contract ~c. However, from the same expression (4.1) we can say that the utility is

in fact linear, but in terms of the constraints cj∈[1,m]. The utility space is therefore decomposable

according to the cj constraints. This yields a modular representation of the interactions between

the issues and how they locally relate to each other. In fact, hyp(cj) reflects the idea that the

underlying contracts are governed by the bounds defined by cj once the contracts are projected

according to their issues’ components.

54



In this case, the interdependence is not between issues but between constraints. For instance,

two constraints c1 and c2 can have in common one issue ik taking values respectively from an

interval Ik,c1 if it is in c1, and values in Ik,c2 if it is in c2, with Ik,c1 6= Ik,c2 . Finding the value

that maximizes the utility of ik while satisfying both constraints becomes harder due to fact that

changing the value of ik in c1 changes its instance in c2 in a cyclic manner. This gets worse with

an increasing number of issues, their domains’ sizes, and the non-monotonicity of the constraints.

Next, we propose to transform (4.1) into a modular, graphical representation. Since one

constraint can involve one or more multiple issues, we adopt a hyper-graph representation.

4.2.3 From Utility Space To Utility Hyper-graph

We assign to each constraint cj∈[1,m], a factor Φj , with Φ = {Φj}mj=1. We define the hyper-

graph G as G = (I,Φ). Nodes in I define the issues and the hyper-edges in Φ are the factors

(constraints). To each factor Φj we assign a neighbors’ set N (Φj) ⊂ I containing the issues

connected to Φj (involved in cj), with |N (Φj)| = ϕj . In case ϕj = 2 ∀j ∈ [1,m], the problem

collapses to a constraints satisfaction problem in a standard graph.

To each factor Φj corresponds a ϕj−dimensional matrix, MΦj , where the jth dimension is

the discrete interval [ak, bk] = Ik, the domain of issue ik. This matrix contains all the values that

could be taken by the issues in N (Φj). Each factor Φj has a function Φj defined as a sub-utility

function of the issues in N (Φj), as in (4.2).

Φj : N (Φj)
ϕj → R (4.2)

Φj(i1, . . . , ik, . . . , iϕj) 7→ w(cj,~c)

As we are dealing with discrete issues, Φj is defined by the matrixMΦj . That is, Φj(i1, . . . ik, . . . , iϕj)

is simply the (1, ..., k, ..., ϕj)
th entry in MΦj corresponding as well to the value w(cj,~c) men-

tioned in (4.1). It is possible to extend the discrete case to the continuous one by allowing

continuous issue-values and defining Φj as a continuous function.

The mapping from the cartesian representation (utility space) to the hyper-graphical repre-

sentation could for instance be shown as in Figure 4.3. The utility space in Figure 4.3(a) shows
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no clear structure. However, its hyper-graphical counterpart in Figure 4.3(b) represents the total

utility in a structured manner, as an aggregation of factors (4.3) or hyper-edges. The resulting

utility formulation is therefore expressed as in (4.3).

u(~c) =φ1(i1, i2, i6) + φ2(i1, i3, i5, i6, i7)+ (4.3)

φ3(i2, i4, i5) + φ4(i1, i2, i3, i4, i6, i7) + φ5(i3, i6)

As shown in Figure 4.3(b), it is possible to see the interdependencies,

• as existing between the constraints through the intersecting issues. For instance, constraints

Φ2 and Φ5 are interdependent given issues i3 and i6.

• as existing between the different instantiations that one issue can have, depending on where

it is defined, as explained in section 4.2.2. For instance, the issue i6 could have different

domains, depending on the constraints it is defined in (Φ1, Φ2, Φ4, and Φ5).

(a) Utility Space u(i1, . . . , i7) (b) Utility Hyper-graph G(I,Φ)

Figure 4.3: Mapping from u to G

The comparison between the two views of the problem is shown in Table 4.1.
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Cartesian view of the problem Graphical view of the problem

Constraints and issues are entangled Constraints and issues are differentiated

Analytical Representational, Graphical, Connectionist

No apparent structure Well structured, topology can be used

Not intuitive, due to high dimensionally Intuitive, representative of real-world problems

Table 4.1: Cartesian vs. Graphical Representations

Example

To provide an example of our representation, let us consider a 10−dimensional utility space and

propose to represent it in a graphical way. That is, as a hyper-graph defined as G10 = (I,Φ) with

I = {ik}9
k=1, Φ = {Φj}7

j=1 and shown in Figure 4.4.

i0

i6

i7

i3

i4

i8

i1

i2

i5

i9

Φ1 φ1

Φ6

φ6

Φ2

φ2

Φ3

φ3

Φ5

φ5

Φ7φ7

Φ4

φ4

I0,1 = [0, 4]

I6,1 = [5, 9]

I2,2 = [0, 9]

I7,1 = [0, 8]

I1,1 = [5, 9]

I2,1 = [2, 3]

I1,6 = [3, 6] I3,6 = [1, 4]

I8,2 = [2, 5]

I4,5 = [7, 9]

I4,2 = [9]

I4,3 = [2, 7]

I1,3 = [3, 4] I5,5 = [4, 7]

I5,7 = [1, 3]

I9,4 = [1, 3]

Figure 4.4: Issues-Constraints Hyper-graph

Each issue ik has a set Ik =
⋃
ν∈N (k) Ik,ν where Ik,ν is an edge connecting ik to its neighbor

ν ⊂ N (k) ∈ Φ. For example, I1 =
⋃
ν∈{Φ1,Φ3,Φ6} I1,ν = {[5, 9], [3, 4], [3, 6]}.

Constraints can have different types in the sense that each type reflects a particular geometric
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shape. For example, constraints Φ1,2,3,4 could be cubic, Φ5,6 could be defined as planes and Φ7

defined as a bell. Any combination is in fact possible, and depends only on the problem in hand

and how it is being specified. Each constraint is assigned a sub-utility representation used to

compute the utility of a contract if it satisfies the corresponding constraint by being located in the

underlying hyper-volume. For example, the general utility function Φj , defined in (4.2), could

correspond to the functional definition of each constraints, as shown in (4.4).

Φj =


Plane : βj +

∑ϕj
k=1 αj,k × vk(ik) (βj, αj,k) ∈ Z2

Cube : vj

Bell : Vj

(4.4)

A plane constraint will be defined using its ϕj−dimensional equation, while a cubic constraint

will be assigned the value vj in case the contract is in the cube. The computation of the utility Vj

of a bell shaped constraint is performed as in (4.5) (see Figure 4.1). Herein, δ is the Euclidean

distance from the center s of the bell constraint to a contract point ~c. Distances are normalized in

[−1, 1].

Vj =


βj (1− 2δ2) if δ < 0.5 βj ∈ Z

2 βj (1− δ)2 if δ < 1 βj ∈ Z

0 else

(4.5)

It is possible to extend the current constraints’ to involve Cone constraints [37] or any other type

of geometrical shapes.

4.3 Optimal Contracts

The exploration of the utility hyper-graph is inspired from the sum-product message passing algo-

rithm for belief propagation [87]. However, the multiplicative algebra is changed into an additive

algebra to support the utility accumulation necessary for the assessment of the contracts. The

messages circulating in the hyper-graph are nothing other than the contracts we are attempting to

optimize through utility maximization. Next, we develop the message passing (MP) mechanism

operating on the issues and the constraints.
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4.3.1 Message Passing

We consider the issues set I and a contract point ~c = (i1, . . . , ik, . . . , in) ∈ I. We want to find

a contract ~c∗ that maximizes the utility function defined in (4.1). Assuming that Φj is the local

sub-utility of constraint Φj , we distinguish two types of messages: messages sent from issues to

constraints, and messages sent from constraints to issues.

From issue ik to constraint Φj

In (4.6), each message µik→Φj coming from ik to Φj is the sum of the constraints’ messages to ik

coming from constraints other than Φj .

µik→Φj(ik) =
∑

Φj′∈N (ik)\Φj

µΦj′→ik(ik) (4.6)

From constraint Φj to issue ik

Each constraint message (4.7) is the sum of the messages coming from issues other than ik,

plus the constraint value Φj(i1, . . . , ik, . . . , in), summed over all the possible values of the issues

(connected to the constraint Φ) other than the issue ik.

µΦj→ik(ik) = max
i1

. . .max
ik′ 6=k

. . .max
in

[
Φj(i1, . . . , ik, . . . , in) +

∑
ik′∈N (Φj)\ik

µik′→Φj(ik)

]
(4.7)

The MP mechanism starts from the leaves of the hyper-graph, i.e., the issues. At t = 0, the content

of the initial messages is defined according to (4.8), with φ′j(ik) being the partial evaluation of ik

in the factor Φj .

µik→Φj(ik) = 0 (4.8)

µΦj→ik(ik) = φ′j(ik) (4.9)

The partial evaluation φ′j(ik) of issue ik in the factor Φj is the utility of ik using Φj regardless

of any other issue involved in Φj . For instance, for cubic and bell constraints, the evaluation

is simply vj(ik) and Vj(ik) ∀k as described in (4.4). If Φj is a plane constraint, the partial
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evaluation of ik will be αj,k × vk(ik). In this manner, the factor Φj will get all the evaluations

(αj,k × vk(ik)) from its surrounding issues in order to yield the total utility (4.4) as a sum of the

partial evaluations plus the plane constant βj .

Finally, the optimal contract ~c∗ is found by collecting the optimal issues as in (4.10).

~c∗ =

(
arg max

i1

∑
Φj∈N (i1)

µΦj→i1(i1), . . . (4.10)

. . . , arg max
ik

∑
Φj∈N (ik)

µΦj→ik(ik), . . .

. . . , arg max
in

∑
Φj∈N (in)

µΦj→in(in)

)

In a negotiation setting, it is more common that the agent requires a collection, or bundle,

of the optimal contracts rather than one single optimum. In order to find such collection, we

should endow (4.10) with a caching mechanism allowing each node in the hyper-graph to store

the messages that have been sent to it from the other nodes. That is, the cached messages will

contain the summed-up utility values of the underlying node’s instance. This is performed every

time the operation max is called in (4.7) so that we can store the settings of the adjacent utility

(and contract) that led to the maximum. Once ordered, such data structure allows us to generate

an ordered bundle for the bidding process. In the next section, we algorithmically provide the

MP mechanism.

4.3.2 Utility propagation algorithm

Main algorithm

Algorithm 2 operates on the hyper-graph nodes by triggering the MP process. Despite the fact

that we have two types of nodes (issues and constraints), it is possible to treat them abstractly

using MsgPass. The resulting bundle is a collection of optimal contracts with utility greater or

equal to the agent’s reservation value rv.
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Algorithm: Utility Propagation

Input: G = (I,Φ), rv,mode, ρ

Output: Optimal contracts (bundle)

1 begin

2 for i = 1→ (ρ× |I ∪ Φ|) do

3 if mode is Synchronous then

4 foreach νsrc ∈ I ∪ Φ do

5 foreach νdest ∈ νsrc.Neighbors() do

6 νsrc.MsgPass(νdest)

7 bundle← ∅

8 foreach i ∈ I do

9 bundle[i]← ∅

10 ι← ∪j∈i.instances()[j.min, j.max]

11 µ∗ ← k∗ ← −∞

12 µ← i.getmax()

13 foreach k = 1→ |µ| do

14 if µ∗ < µ[k] then

15 µ∗ ← µ[k]

16 k∗ ← k

17 if µ∗ ≥ rv then

18 bundle[i]← bundle[i] ∪ ι[k∗]

19 return bundle

Algorithm 2: Main Algorithm

Issue to Constraint

The issue’s message to a factor (or constraint) is the element-wise sum of all the incoming mes-

sages from other factors, as shown in Algorithm 3.

Constraint to Issue

In Algorithm 4, the factor’s message to a targeted issue is done by recursively enumerating over

all variables that the factor references (4.7), except the targeted issue. This needs to be performed

for each value of the target variable in order to compute the message. If all issues are assigned

(@i : α[i] = −1), the values of the factor and of all other incoming messages are determined,
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Algorithm: MsgPass

Input: G(I,Φ), Φj

Output: Updated message µ

1 begin

2 µ← [0]× |Ik|

3 for ν ∈ N (ik)\Φj do

4 µ← µ+ ν.GetMsg()

5 return µ

Algorithm 3: MsgPass: Issue to constraint

so that their sum term is compared to the prior maximum, as in Algorithm 5. The resulting

messages, stored in bundle, contain the values that maximize the factors’ local utility functions.

Algorithm: MsgPass

Input: G(I,Φ), ik

Output: Updated message µ

1 begin

2 α← [−1]× ϕj
3 ι← πik (Φj)

4 if ι = ∅ then

5 µ← ik.GetMsg()

6 for i = 1→ len(µ) do

7 α[ι]← i

8 µ[i]← Sum(α, ik)

9 return µ

Algorithm 4: MsgPass: Constraint to Issue

Optimal issue-values

At any time of the utility propagation process, it is possible to collect the current optimal con-

tract(s) by individual concatenation of all the optimal issue-values i∗k, defined in (4.10). Par-

ticularly, the summation in (4.10) is performed as to only include the overlapping evaluations

depending on how the issue domains are defined for different factors. For instance, Figure 4.5

shows how issue ik has three possible evaluations depending on Ik,1, Ik,j and Ik,m.

The maximization objective (4.10) will attempt to find the combination(s) of v1,i, vk,i and vm,i
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Algorithm: Sum

Input: G(I,Φ), α, ik

Output: max

1 begin

2 ι← {i | i ∈ [1, ϕj ] ∧ α[i] = −1}

3 if ι = ∅ then

4 ρ←MΦj
[α]

5 for ν ∈ N (Φj)\ik do

6 µ← ν.GetMsg()

7 ρ← ρ+ µ[α[i]]

8 return ρ

9 else

10 max← −∞

11 for i = 1→ dim(MΦj
(ι)) do

12 α[ι]← i

13 σ ← Sum(α, ik)

14 if σ > max then

15 max← σ

16 return max

Algorithm 5: Sum: recursive summing

that maximize the sum. An optimal combination is an optimal issue-value i∗k.

Mechanism

The full message passing mechanism could be described as following:

• Constructing the utility hyper-graph using the available issues and constraints. Issue do-

mains will have to be specified, and constraints’ functions will have to be defined for each

constraint and the issues involved in it.

• Injecting the initial values for the issues (4.8) and the constraints (4.9).

• Depending on the propagation strategy being used (synchronous or asynchronous), the al-

gorithms picks a node (deterministically or randomly) from the issue and constraint nodes.

This is the propagation source for the current round.
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Evaluations of issue ik ik ∈ hyp(cj)

ik
i 0 1 2 3 4 5 6 7 8 9

vk,i 0 vk,1 vk,2 vk,3 vk,4 0 0 0 0 0

i 0 1 2 3 4 5 6 7 8 9

vm,i 0 0 vm,2 vk,3 vk,4 vk,5 vk,6 vk,7 0 0

i 0 1 2 3 4 5 6 7 8 9

v1,i v1,0 v1,1 v1,2 0 0 0 0 0 0 0

ΦjIk,j = [1, 4]

Φ1
Ik,1 = [0, 2]

ΦmIk,m = [2, 7]

Figure 4.5: Finding the optimal issue-values

• For each chosen node (issue or constraint), the algorithm will propagate the messages to a

neighboring node according to the exploration strategy being used.

• The propagation process continuous while computing the utilities for the evaluations and

storing the issue-evaluations that maximize the utility. Optimal contracts will be stored in

a bundle whenever their utility is greater than a specific reservation value.

• The process will eventually converge when we reach the required optimal bundle size.

4.4 Experiments

4.4.1 Settings

Before evaluating the utility propagation algorithm, we identify the criteria that could affect the

complexity of the utility space and thus the probability of finding optimal contract(s). Other than

n and m, we distinguish p, defined as the maximal number of issues involved in a constraint. p

can be unary (p = 1), binary (p = 2), ternary (p = 3), or p-ary in the general case.

The parametrized generation of a utility space (or utility hyper-graph) should meet the con-

sistency condition p ≤ n ≤ m× p, with n,m, p ∈ N+, to avoid problems like attempting to have

an 8−ary constraints in a 5−dimensional utility space.
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4.4.2 Discussion

After the generation of the hyper-graph using Algorithm 6, the message passing routines will be

evaluated and analyzed microscopically from the agent perspective.

Algorithm: ParamRandHGen

Input: n,m, p

Output: G(I,Φ)

1 begin

2 [βmin, βmax]← [1, 100] // constants

3 [αmin, αmax]← [0, 1] // slopes

4 [bmin, bmax]← [0, 9] // bounds

5 Φ← [∅]×m // init constraints set

6 for k = 1→ m do

7 Φ[k].θ ← rand({cube, plane, bell})

8 if Φ[k].θ = plane then

9 α← [0]× n

10 α[j]← rand([αmin, αmax]) ∀i ∈ [1, n]

11 Φ[k].α← α

12 if Φ[k].θ ∈ {bell, cube} then

13 // refer to (4.4) or (4.5)

14 Φ[k].β ← rand([βmin, βmax])

15 µ← rand([1, n]) , I← ∅

16 while |I| 6= µ do

17 ι← rand([1, p])

18 if ι /∈ I then

19 I← I ∪ ι

20 for j = 1→ µ do

21 I[j].a← rand([bmin, bmax]) I[j].b← rand([I[j].a+ ε, bmax])

22 Φ[k].I← I

23 return Φ

Algorithm 6: Utility Hyper-graph Generation

We will compare the MP mechanism in terms of utility and duration to the Simulated An-

nealing (SA) approach in [52] for optimal contract finding. The SA optimizer will be randomly

sampling from the regions that correspond to an overlap of constraints. For instance, generating

a random contract satisfying cj is performed backwardly through random generation of values
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from Ij,k ∀ik ∈ N (Φj). Our comparison criteria is based on the utility/duration performed on a

set of profiles of the form (n,m, p), with 100 trials for each profile. Figure 4.6 illustrates the per-

(a) Utility

(b) Durations ∆SA and ∆SynchMP for m ∈ {10, 20, 30}

Figure 4.6: SynchMP vs. SA for the profile (10, [10, 20, 30], 5)

formance of SynchMP for (10, [10, 20, 30], 5). That is, we take the case of utility spaces involving

10 issues, with constraints having cardinalities in {10, 20, 30}. Each constraint involves at most 5

issues. From Figure 4.6(a), we can see that the synchronous message passing (SynchMP) always

finds the high-utility contracts, as opposed to SA. However, from Figure 4.6(b), we can see that

SynchMP takes a lot of time when searching for the optimal contracts.
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The deterministic aspect of the synchronous message passing algorithm (SynchMP) makes it

very slow (∆SA << ∆SynchMP ) compared to its SA counterpart which exploits the randomiza-

tion, allowing it to perform “jumps" in the search space. To avoid the enumeration over the local

nodes of G, it is possible to add randomization to the way nodes are selected. To introduce an

asynchronous mode, AsynchMP, we add another condition after the synchronous mode condition

in Algorithm 2, as follows:

if mode is Asynchronous then

νsrc, νdest ← rand2([1, |V |]), νdest 6= νsrc

νsrc.MsgPass(νdest)

For (40, [20, . . . , 100], 5), Figure 4.7 shows the resulting difference in the performance of

AsynchMP compared to SA. As shown in Figure 4.7(a), the message passing is still better than

the sampling-based search for optimal contracts. In terms of duration, Figure 4.7(b) shows that

the new asynchronous mechanism (AsynchMP) is on average faster than the SA mechanism,

which is due to the usage of randomization when choosing the nodes. In fact, the randomization

allows the algorithm to converge faster by covering the utility space regions in a short period of

time. Another advantage is that the message passage mechanism has a self-organization property

that cannot be found in the sampling-based approaches. This property allows the algorithm to

treat different components of the hyper-graph is an independent manner according to the prox-

imity relationships between the constraint and issue nodes. This self-organizing aspect could be

improved by running several parallel instances of the algorithm, in the sense that each instance

will treat each component of the hyper-graph as an independent problem.

4.5 Conclusion

A new and modular representation for nonlinear utility spaces is proposed. The exploration and

search for optimal contracts is performed based on a message passing mechanism in the hyper-

graph. Results show that the proposed mechanism outperforms the sampling-based optimizers.
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(a) Utility

(b) Durations ∆SA and ∆ASynchMP

Figure 4.7: AsynchMP vs. SA for the profile (40, [20, . . . 100], 5)

As future work, we intend to exploit the structure of the hyper-graphs for hierarchical negotiation.

Additionally, we think about studying the interdependence and correlation of the issues based on

the structure of the utility hyper-graph.
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Chapter 5

Low-complexity Search in Utility

Hyper-graphs

5.1 Introduction

The propagation, or circulation of the messages in a utility hyper-graph could be defined accord-

ing to a particular strategy with respect to the hyper-graph topology. For example, the simplest

way to propagate the messages could be a systematic, deterministic, synchronous way of choos-

ing the nodes. Another mode could correspond to a randomized, non-deterministic, asynchronous

way of selecting the sources and the destinations. In the next sections, we will adopt the asyn-

chronous mode of messages transmission.

5.2 Parametric Random Utility Hyper-graph

Herein, we redefine the utility hyper-graphs using a set of parameters that could potentially affect

the problem in hand. This is our proposed analytical way for the study of complex domains. The

parameters could carefully be chosen as to generate random utility hyper-graphs with a particular

configuration.

It is important to identify the criteria that could affect the complexity of the utility space and

thus the probability of finding optimal contract(s). To this end, we start by defining the parameters

that could have an impact on the complexity of the preference spaces. These parameters are also

used for the generation of the scenarios.

• n: number of issues, attributes, or concepts.
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• m: number of constraints, hyper-edges, or factors.

• π: a constraint-distribution. For a constraint cj and its factor Φj , π(Φj) refers to the num-

ber of issues involved in Φj , making it unary (π(Φj) = 1), binary (π(Φj) = 2), ternary

(π(Φj) = 3), or π(Φj)-ary in the general case. π is defined as in (5.1),

π : Φ→ [1, n] (5.1)

Φj 7→ N (Φj)︸ ︷︷ ︸
πj

, j ∈ [1,m]

with the resulting sequence (5.2).

π = (π1, . . . , πj, . . . , πm) (5.2)

• Constraints’ weights distribution, or the way the total utility is distributed amongst the

constraints. This could be done by defining a function ψ that assigns a weight to each

constraint, as in (5.3).

ψ : Φ→ R (5.3)

Φj 7→ wj

• Constraints monotonicity, usually governed by the underlying utility functions: bell-shaped,

cubic, planar or conic.

• Domain sizes of the issues
∏n

k=1 |Ik| as well as the domains’ types (discrete and/or contin-

uous).

The most important criteria is the distribution π. In fact, it correlates with the computation

time necessary for an algorithm to perform, as we will show in the next subsections. A practical

way to evaluate different distributions is to define a utility space profile as a tuple (n,m, π). This

parametrization will be used in the study of the complexity. It is important to note that a profile

(n,m, π) must meet the consistency condition (5.4).

πj ≤ n ≤ m× πj, ∀j ∈ [1,m] (5.4)
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Such condition prevents cases like attempting to have 12−ary constraints in a 7−dimensional

utility space.

Next, we show how to quantitatively assess complexity using the entropy measure. This will

allow us to define the optimal search strategies.

5.3 Improvement using Low-complexity Search

5.3.1 Complexity Evaluation using Entropy

In the probabilistic sense, the sequence (5.2) could follow any distribution law. Furthermore,

each distribution will have a complexity mirrored by the underlying utility hyper-graph, which

will certainly affect the performance of any search algorithms. In the general case, this is known

as the degree distribution of a graph. The complexity of a particular profile (n,m, π) is assessed

using the information theoretical notion of entropy (5.5).

H(π) = −
m∑
j=1

πj log(πj) (5.5)

Entropy could in fact be used to measure the complexity of cognitive graphical models [47, 48],

including any representation that uses the idea of degree distribution (5.2). Herein, entropy is

meant to reflect complexity from a temporal standpoint.

As a general example, suppose that π is taking different forms πi∈[1,5], shown in (5.6).

π



π1 = Uniform(m− 1)

π2 = Normal(µ ∈ [2, 4], σ ∈ [0, 2])

π3 = Poisson(λ ∈ [2, 6])

π4 = Power − law(α = 2.3)

π5 = Star

(5.6)

The idea behind the distributions is that it is possible to traverse a graph according to different

distributions πi∈[1,5]. Exploring the graph corresponds to a specific way of moving from one

node to another as to perform any type of optimization. For example let us take a graph with

71



m = 100 nodes, represented in Figure 3.2(a), with different distributions (π1:green, π2:purple,

π3:blue, π4:red and π5:orange). For instance, traversing the graph based on a star distribution (π5,

in orange) corresponds to moving from the central node to a peripheral node, then back to the

central node, etc. The exploration based on a uniform distribution gives a complete graph (π1,

in green) where we explore based on all the nodes, uniformly. The same logic applies for other

distributions.

These distributions differ in their topologies, but most importantly in terms of complexity,

or as we refer to it here, entropy. As shown previously in Figure 3.2(b), uniform strategy has

the highest entropy and generates a complete graph (Km−1). On the contrary, the star (Sm−1)

strategy has the lowest entropy, with nodes connected to one single node acting like a hub. If

we increase the number of hubs to few hubs, we get the power law strategy which is ranked

right above the star strategy. Normal and poisson distributions fluctuate between π1 and π4 in

terms of complexity, relatively to the values of µ, σ and λ. The uniform π1 and the star π5 act as

complexity bounds.

Our usage of the entropy as a measure of the complexity is in fact another quantification of

the level of interdependency between the issues and between the constraints. In this sense, how

complexity arises could be assessed by the interdependency rate used in [40]. For instance, Table

5.1 illustrates how the interdependency rate changes for different strategies (Complete, Power-

law, and Random). For all constraints, it increases as the number of constraints (m) grows.

Additionally, we can see that on average, the complete distribution has the highest average in-

terdependency rate. The random distribution comes second, and power-law comes third. This is

also corroborated by the usage of entropy as to rank these distributions according to their com-

plexities.

We will see in the next subsection how entropy, complexity and performance (time) relate to

each other.
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5.3.2 Complexity and Performance

Now, let us take a concrete example of exploration strategies and their underlying distributions,

and let us evaluate the interplay between the entropy and the computation time needed by the

search algorithm to find the optimal contract(s).

For instance, let us assume that we have 10 strategies πk∈[0,9] where each πk is either a uniform

distribution U , a deterministic distribution D or a power-law distribution PL. If the search algo-

rithm is taken to be AsynchMP, then the computation time and the complexity of the underlying

strategies are illustrated in Figure 5.1. The first observation is that both entropy and computation

time fluctuate similarly, describing the same topology of the underlying strategy. Secondly, U is

the most complex structure, since it possess the highest entropy and computation time as opposed

to D and PL.

It is possible to think about the complexity of strategy U from two standpoints. An analyt-

ical or cartesian view of the problem reduces the complexity to high-dimensionally [24]. From

a graphical viewpoint, the distribution is perceived as representing a complete graph with one

strong component having the highest number of possible connections. Both views reflect the

difficulty of the search problem.

5.3.3 Optimal Strategy

Instead of the asynchronous mode of AsynchMP (randomly picking νsrc and νdest), we propose

to use the distribution π as a prior, allowing us to optimize the message passing algorithm by

taking into consideration certian topologies. For example, adopting a strategy π ∼ PL allows

us to focus on the hubs of the hypergrpah, i.e., the factors with large numbers of issues. Let us

call the new strategy AsynchMPi, which consists in performing the message passing within a set

σ1 ⊂ (Φ
⋃
I) of high degree nodes.

For a specific profile (n,m, π), and for two strategies AsynchMP and AsynchMPi, the idea

is to see which one converges to the optimium faster, while being certain that both will find this

optimum. That is, the same profile will be traversed and explored with different distributions
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Figure 5.1: H(πj) and ∆(πj) for πj∈[0,9] ∈ {U ,D,PL}

throughout time.

In the following, we show how the set σ1 is constructed.

1. Start by generating the sequence cj , defined as in (5.7). The sequence cj has the property

of having the majority of its points clustered in the upper portion of the domain. It will be

used to map the set of high degree nodes.

cj =


1
2

if j = 0

1
2

+ 1
2
× c2

j−1 if j ∈ [1, (n+m)× 10]

(5.7)

2. Uniformly sample r points from cj . The result is U(cj)

3. Generate the sequence sπ containing {π(νi)}i by decreasing order (5.8). The sequence sπ

approximates a power-law distribution.

sπ = {i, . . . , n′ | π(νi) ≤ · · · ≤ π(νn′)} (5.8)
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4. Generate the set sσ according to Algorithm (7).

Input: Sequences U(cj) and sπ

Output: Set sσ of high connectivity nodes

1 begin

2 sσ ← ∅

3 for c ∈ U(cj) do

4 if c < dce − 1
2

then

5 sσ ← sσ ∪ dce − 1

6 else

7 sσ ← sσ ∪ dce

8 return sσ

Algorithm 7: Generation of high degree nodes sσ

5.3.4 Discussion

The generation of the hyper-graph is performed using Algorithm 6. Depending on the nature

of π, a particular topology will be generated. A uniform π generates a complete hyper-graph, a

power-law π generates a scale-free hyper-graph and so on.

In the following we evaluate AsynchMP and AsynchMPi for 6 profiles (100, 100, πi), i ∈

{5, 6, 7, 8, 9, 10}. The profiles have decreasing complexity defined as πi(Φj) ≤ i ∀j.

It is important to make sure that both strategies give the same expected optimal utilities, as

shown in Figure 5.3(a). That is, for the different profiles specified by i ∈ {5, 6, 7, 8, 9, 10} on

the x axis, both strategies give the same optimal utility values, shown on the y axis. However,

Figure 5.3(b) shows that restricting the message passing process to the high degree nodes (hubs)

results in a drastic decrease in the computation time (in seconds) for the same profiles specified

by i ∈ {5, 6, 7, 8, 9, 10}.
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Figure 5.2: Generation of sσ for n,m, p, r = (10, 50, 5, 17)

The way we can restrict the search to hubs is shown in Figure 5.2. That is, we sort the nodes

νi∈[0,59] by decreasing degree (π(νi) is the degree of node νi) and we randomly sample from this

sequence according to the process described in section 5.3.3. The resulting sequence of high

degree nodes is shown as blue triangles in Figure 5.2.

We additionally observe that for small connectivity values (π1 = π2), the search process

takes approximately the same amount of time despite the large number of issues and constraints

n = m = 100. In fact, assessing the complexity of a utility space (respectively utility hypergrpah)

must take into consideration the connectivity function π. In this sense, neither the dimension n

nor the number of constraints m could objectively reflect this complexity. For instance, a profile

(100, 100, 1) is less complex than a profile (10, 10, 2). In fact, (100, 100, 1) is not a nonlinear

utility space because π(Φj) = 1 ∀j. That is, each constraint contains one unique issue, i.e., the

whole utility is reduced to a sum of the partial utilities of the individual issues with, n = m.
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Thus, the whole problem becomes linear with the utility function (5.9),

u(i1, . . . , ij, . . . , in) =
n∑
j=1

φj(ij) (5.9)

with φj being the utility corresponding to constraint cj . We note that the previous case is a

degenerate case, and that generally, we ought to generate constraints with cardinalities greater or

equal to 2.

5.3.5 Summary

We introduced a new modular representation of utility spaces based on hyper-graphs. The ex-

ploration and search for optimal contracts is performed based on a message passing mechanism

outperforming the sampling-based optimizers. Additionally, the model was evaluated in terms of

complexity assessment showing that power-law topologies have lower complexity. Consequently,

we provided an exploration strategy that searches the hyper-graph based on a power-law topol-

ogy. Results show that such strategy outperforms drastically the synchronous message passing

strategy.

As a future work, we intend to exploit the structure of the hyper-graphs by proposing an hier-

archical exploration scheme and evaluate it in a hierarchical negotiation scenario. Additionally,

we intend to study the interdependence between the issues as to assess their importance and in-

fluence on the contracts optimality. Being able to assess the issues importance could in fact be

used to simplify complex negotiation scenarios by focusing on the most important sub-contracts.
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Table 5.1: Average interdependency rates for different profiles (n,m, π)

Strategy (π) Number of issues (n) Number of constraints (m) Interdependency Rate
Complete 10 1 0.25
Complete 10 10 2.5
Complete 10 50 12.5
Complete 10 100 25
Complete 50 1 0.25
Complete 50 10 2.5
Complete 50 50 12.5
Complete 50 100 25
Complete 100 1 0.25
Complete 100 10 2.5
Complete 100 50 12.5
Complete 100 100 25
Power-law 10 1 0.25
Power-law 10 10 0.944
Power-law 10 50 1.688
Power-law 10 100 2.688
Power-law 50 1 0.25
Power-law 50 10 1.0912
Power-law 50 50 2.161
Power-law 50 100 3.692
Power-law 100 1 0.25
Power-law 100 10 0.901
Power-law 100 50 1.707
Power-law 100 100 3.692
Random 10 1 0.25
Random 10 10 0.961
Random 10 50 5.244
Random 10 100 8.338
Random 50 1 0.25
Random 50 10 0.842
Random 50 50 4.572
Random 50 100 7.450
Random 100 1 0.25
Random 100 10 0.816
Random 100 50 3.949
Random 100 100 7.980
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(a) Utility

(b) Computation time

Figure 5.3: AsynchMP vs. AsynchMPi
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Chapter 6

Applications in Complex Automated

Negotiation

6.1 Introduction

In the following, we are interested in evaluating the behavior of a whole group of agents from

the standpoint of social welfare [7, 90]. That is, we take the multilateral formulation of the

problem where agents use our model as to represent their preferences as well as to bid in a

multilateral multi-round mediated negotiation. This approach of the problem relates more to a

consensus making situation [85], rather than the agreement-oriented approach found in bilateral

negotiations. We show that under high complexity, the collective social welfare could be greater

than the sum of the individual agents’ best utilities.

6.2 Multilateral Negotiation (Consensus Building)

6.2.1 Setting

In the following we assume that N agents are bidding over n issues. Each agent i, i ∈ [1, N ],

possesses an n−dimensional utility space. A contract, or a bid, is a vector of issue-values. The

bid number 1 of agent i at round t is noted as bit,1. Each agent will be sampling from her utility

space using a particular algorithm. We use the same type of utility spaces described in section

4.2.1.

Let us assume that the N agents are using the AsynchMP algorithm for bidding over n issues
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with varying constraints (m) and cardinalities (p).

The general mediation protocol involves a mediator M receiving a bundle Bi
t from agent

i ∈ [1, N ] at time t ∈ [0, T ]. At round t, agent i’s bundle, described in (6.1), contains nit bids.

Bi
t = {bit,1, . . . , bit,k, . . . , bit,nit} (6.1)

A bundle must respect a preference ordering � with regard to the agent’s subjective utility, as it

is shown in (6.2).

bit,1 � · · · � bit,k � · · · � bit,nit
(6.2)

The feedback ofM at t is a contract point xtM that the agents choose to accept or to ignore by

providing a new bundle Bi
t+1. The process is repeated until reaching the deadline T with final

contract x∗M.

Due to the randomized nature of the utility spaces, we will make the mediatorM use a family

xM of sampling algorithms (6.3) that attempt to take into consideration the geometrical topology

of the received bundles in order to generate candidate contracts. Herein, we are interested in

evaluating the Social Welfare [4, 90] yielded by the individual usages of AsynchMP coupled

with the sampling algorithms xM.

We start by defining the family of algorithms (6.3).

xM



x1
M = c({bi

t,nit
, i ∈ [1, N ]})

x2
M = c({N (bi

t,nit
), i ∈ [1, N ]})

x3
M = c({c(Ci

t), ∀i ∈ [1, N ]})

x4
M = c({f(Ci

t), ∀i ∈ [1, N ]})

(6.3)

with Ci
t being the convex hull of bundle Bi

t and N (x) the neighbor set of x in Rn. Functions are

defined as following: c returns the centroid of a convex hull of a set of contract points; f , defined

in (6.4), randomly picks a contract within a convex hull x ⊂ Rn; g, defined in (6.5), returns a

random point from a segment [x, y] ∈ Rn×2; and h picks a random simplicial facet from a convex
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hull.

f(x) =

 x if x ∈ Rn

g(c(x), (f ◦ h)(x)) else
(6.4)

g(x, y) = αx+ (1− α)y, α ∈ [0, 1] (6.5)

If the final contract is x∗M, we want to evaluate the social welfare using a set of social welfare

functions (SWF). Particularly, (6.6a) as well as (6.6b) assigning high weights to low utilities and

low weights to high utilities. Most importantly, we define a differential SWF in (6.6d). WD

evaluates the difference between what the mediator proposes to the agents (x∗M) and what the

agents’ subjective best options (x∗i , ∀i ∈ [1, N ]) are.

WU =
N∑
i=1

ui(x
∗
M) (6.6a)

WαU =
N∑
i=1

αiui(x
∗
M) (6.6b)

WD =
N∑
i=1

ui(x
∗
M)−

N∑
i=1

ui(x
∗
i ) (6.6c)

= WU −Wparts (6.6d)

6.2.2 Discussion

We take N = 100 agents, bidding over n = 10 issues with (m, p) = (50, 5) ∀i ∈ [1, N ], and

whereM is using x1
M, x2

M, x3
M and x4

M. Figure 6.1 illustrates the obtained SWFs. It is interesting

to notice that WD > 0 ∀xjM, j = 1, 3, 4, reflecting the fact that on average, the agents get more

than what they were expecting to get, with WU > Wparts. This is due in fact to the complexity

of the individual utility spaces and that one single agent cannot entirely explore her utility space

to find all the high utility bids. However, using the mediation mechanism, all the agents’ bids

are collectively filtered by the mediator as to find optimal bids that increase the social welfare.
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Figure 6.1: Social Welfare

In other words, the problem becomes as if the agents are searching in the same utility space and

attempting to find all the Pareto-dominant bids.

In case WU ≤ Wparts, agents get less then expected on average, due to individual concessions

or to bad contracts being reinforced byM and depending on the used algorithm (x2
M). Generally,

WU 6= Wparts corroborates the assumption of nonlinearity by reflecting the idea that the nonlin-

earity of the (individual) agent’s utility spaces is propagated from the issue-constraint level up to

the agreement level through means of mediation (operators xM).

The convex aspects of the algorithms (6.3) and the nonlinearity of the utility spaces could

in fact show the lack of structure and correlation between the different SWFs in Figure 6.1.

This is to say that adopting a convex representation when searching for the optimal contracts is

not appropriate whenever the utility space is highly nonlinear despite the efficiency of the local
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optimizers (AsynchMP).

6.3 Towards Opponent Modeling using GGMM

6.3.1 Introduction

In strategic encounters, agents usually do not share their preferences as to avoid exploitation. It

is therefore common that an agent tries to model the opponent’s behavior in order to predict her

future offers. This could allow both agents to find a mutually satisfactory outcome, measured

in terms of utility gain. In the case were we are certain that the utility space of the opponent is

constraint-based, it would be interesting to find the parametrization that governs the opponent’s

utility model, despite the multitude of constraints’ representations. This could in fact allow us to

find the parameters that best fit the opponent offers and therefore her real preferences.

In this section, we provide a canonical and compact form for constraint-based utility functions

that unifies a number of well known constraint-based utility functions, that is, cubic, bell and

conic constraints. This leads us to new insights on how to model the preferences of opponents

with constraint-based utilities.

Particularly, we propose a parametric representation that can fit any possible shape and that

is defined as a Mixture of Generalized Gaussians. The new approximation is compact, unified

and could reduce the complexity of the optimal contracts search as well as the generation of

negotiation scenarios. Additionally, having a parametric form of this type of utility functions

could in fact help in modeling the topology of the opponent’s utility space by defining prior

distributions on the unknown opponent’s model and use Machine Learning techniques to predict

the opponent moves [22]. This of course comes with the assumption that the agents’ utility spaces

are constraint-based, which is at least true for the non-linear negotiation domains of the ANAC

competition [32, 75] in its fifth year.
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6.3.2 Preliminaries

We start from the general setting of the non-linear multi-issue negotiation of [52]. That is, N

agents are negotiating over n issues ik∈[1,n] ∈ I, with I = {ik}nk=1, forming an n−dimensional

utility space. The issue k, namely ik, takes its values from a set Ik where Ik ⊂ Z. A contract ~x is

a vector of issue values ~x ∈ I with I = ×nk=1Ik.

An agent’s utility function is defined in terms of constraints, making the utility space a

constraint-based utility space. That is, a constraint cj∈[1,m] is a region of the total n−dimensional

utility space. We say that the constraint cj has value w(cj, ~x) for contract ~x if cj is satisfied by ~x.

That is, when the contract point ~x falls within the hyper-volume defined by cj , namely hyp(cj).

The utility of an agent for a contract ~x is thus defined as in (6.7).

u(~x) =
∑

cj∈[1,m], ~x∈hyp(cj)

w(cj, ~x) (6.7)

In the following, we distinguish three types of constraints: Cubic constraints, Bell constraints and

Conic constraints, shown previously in Figure 4.1. More details about constraint-based utility

spaces and their usage could be found in [78, 77, 79].

6.3.3 Canonical Utility Representation

We start from the intuition that the Generalized Gaussian Distribution (6.8) could in fact rep-

resent a multitude of geometric shapes that could approximate the constraints’ shapes we are

dealing with. Precisely, the exponent ρ in (6.8) controls the asymptotic behavior of the function

branches (right and left, in the one dimensional case). For the moment, we only focus on the one

dimensional case before generalizing into higher dimensions.

g(x; ρ, µ, β) =
ρ

2βΓ(1
ρ
)
e−(

|x−µ|
β

)
ρ

(6.8)

Γ being the gamma function. As it is shown in Figure 6.2, choosing ρ = 2 gives the classical

bell curve, or Gaussian distribution. If ρ→ +∞ with 2|ρ, the previously Gaussian-shaped curve

will morph into square wave. Similarly, if ρ ∈ [1, 2], we get a single-peacked function [18]
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Figure 6.2: GGD for Constraints Representation

that could approximate a conic-shaped constraint in its one dimensional case. Thus, depending

on the exponent ρ, it is possible to reproduce the three different structures (Cube, Cone, Bell).

Particularly, let us take the angle ϕ defining the slope of the left branch (conversely −ϕ for the

right branch) as shown in Figure 6.3. The exponent ρ could in fact affects ϕ and thus contribute

in morphing the shape of the bell. For instance, if ρ grows asymptotically, the general form (6.8)

will look like a square curve with (ϕ = π
2
) and as shown in (6.9).

lim
ρ→+∞

2|ρ

ϕ =
π

2
(6.9)

Next, we propose the general parametric form we will be using, based on (6.8).

From (6.8) we construct a parametric form that corresponds to the partial weight termw(cj, ~x)

in (6.7). By exchanging the parametrization (2ρ−1βΓ(1
ρ
), β, µ) with (γj, βj, ζj), we re-scale the

width, length, height for the n dimensions of the constraint, yielding (6.10). For example, if

the contract point ~x is located in the hyper-volume (or concavity) defined by the n-dimensional
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Figure 6.3: Controlling the shape using ϕ

function fj , we get fj(~x; πj) > 0.

fj(~x; πj) = γj + βje
−

∑n
i=1 |ζj,ixi−µj,i|

ρj (6.10a)

πj = ρj, βj, γj, δj, µj, ζj (6.10b)

~x = (x1, . . . , xi, . . . , xn) (6.10c)

If we take all the m constraints into account, we get the total utility function, defined as a mixture

of Generalized Gaussians (6.11), and compatible with its constraint-based counterpart (6.7).

u(~x) =
m∑
j=1

fj(~x; πj) (6.11)

In the next section, we show how we can approximate the three types of constraints with regard

to several dimensions.

6.3.4 Constraint’s Approximation

It is important to find the right correspondence between the constraint and its fitting function f

from the geometric characteristics of the constraint. Firstly, we take the two dimensional case.
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To this end, we start from the general form (6.12).

f(x; ρ, β, γ, δ, µ, ζ) = γ + βeδ−|ζx−µ|
ρ

(6.12)

Depending on constraint shape, we mainly rely on ρ to firstly define the general shape, as in

(6.13), and then we need to adjust few parameters in f in order to map the correct constraint’s

dimensions.

f(x; ρ, β, γ, δ, µ, ζ)


1 ≤ ρ ≤ 2 if Conic

ρ = 2 if Bell

100 ≤ ρ, 2|ρ if Cubic

(6.13)

Let us take these cases one by one. Cubic:

In the following, we take the example of a 2−dimensional cube, i.e., a square. From (6.12) we

compute the two bounds (6.14) that delimit the square according to the x axis. These specific

points are in fact the inflection points provided from the derivative(s) of f . They need to be

determined in order to fit the length (6.15) and height (β) of the square.

x1 =
1

ζ
(
ρ− 1

ρ
)1/ρ − µ

ζ
(6.14a)

x2 = −1

ζ
(
ρ− 1

ρ
)1/ρ − µ

ζ
(6.14b)

And the length l is defined as in (6.15).

l = |2
ζ

(
ρ− 1

ρ
)1/ρ| (6.15)

We assume that in the example shown in Figure 6.4, the square in red is delimited by four points

[a, b, c, d]. Given the square length l = 19.38, height h = 4.19 and its location in R2, we get

the following parameterization: ρ = 102, β = 1.5, γ = −2, δ = 0, µ = 0.432 and ζ = 0.103.

In order to compare the accuracy of the fit we can measure the areas (6.16a) for the constraint

(square [a, b, c, d]) and its approximation f .

Asquare = h× l = da× ab (6.16a)
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Figure 6.4: Square Approximation

Af =

∫ −µ
ζ

+L
2

−µ
ζ
−L

2

f(x)− γ dx (6.16b)

The result is Af = 203.328 and Al×h = 203.49, which can lead us to (6.17).

lim
ρ→∞
Af = Asquare (6.17)

Bell:

The bell shape is preserved by taking ρ = 2 and by defining the width, radius and height based

on (β, ζ, µ). Cone:

The branches are straight segments, therefore (6.12) needs to be linear for those branches. Since

the exponential component of (6.12) is of the form eg(x), g(x) should be logarithmic to yield a

linear representation. However, since we are restricted to the general form of (6.12) we ought to

represent the logarithmic function as Taylor series. We start from the simple case (6.18).

log(x) = −
∞∑
ρ=1

ρ−1(1− x)ρ (6.18)
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Rewriting (6.10) according to (6.18) gives (6.19).

f(x; β, γ, δ, µ, ζ) = γ + βe
δ−
∞∑
ρ=1

ρ−1|ζx−µ|ρ
(6.19)

It is possible to linearize the branches and lower the two bottom inflection points by removing

the ρ−1 term under the summation in (6.19) and preserve the general form (6.10), as shown in

Figure 6.5. Additionally, the 1 in (6.18) is removed to fit the mean µ/ζ of the cone. The resulting

approximation of two dimensional cone of height β, an apex angle proportional to ζ , and a center

µ/ζ is given in (6.20).

f(x; β, γ, δ, µ, ζ) = γ + βe
δ−
∞∑
ρ=1
|ζx−µ|ρ

(6.20)

Figure 6.5: Taylor expansion with and without ρ−1

Now, we take the general case of n−dimensional utility space with a contract point (6.10c).

Most of constraints are symmetrical with respect to the dimensions, which is due to the absolute
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value in (6.10a). Hence, we assume that δ = 0 ∀xi, i ∈ [1, n]. Similarly, we assume that ζ is

invariant for all dimensions, although it could be defined in a specific way for each dimension

and therefore yield a parallelepiped instead of a cube. Let us now take the constraints one by one.

Cubic

For an n−dimensional utility space, a cube-constraint utility function is represented as in (6.21).

It relies only on the exponent ρ as it should be large (ρ ' 103) and even. In this case, ρ could

control the precision of the fit by flexibly adjusting ϕ to any right angle of the cube.

f(~x; ρ, β, γ, δ, µ, ζ) = γ + βe
−

n∑
i=1
|ζxi−µi|ρ

(6.21)

We note that for cubes, β acts like the height of the cube and is equivalent to the utility that will

be assigned to any contract contained in the cube.

Bell

We need to choose an exponent ρ = 2 as to fit an n−dimensional Gaussian distribution. It is

important that the result in (6.22) is adequately fitted to the real dimensions of the bell to be

approximated. This could be done by finding the right relationship between the width, radius,

center of the bell and the parameters ζ and µ. For instance, by assuming that the width of the bell

is equal to 2σ
√
log(2), σ being the standard deviation of (6.22).

f(~x; β, γ, δ, µ, ζ) = γ + βe
−

n∑
i=1
|ζxi−µi|2

(6.22)

Cone

For an n−dimensional utility space, a cone-constraint utility function is represented as in (6.23).

f(~x; β, γ, δ, µ, ζ) = γ + βe
−
∞∑
ρ=1

n∑
i=1
|ζxi−µi|ρ

(6.23)

We can clearly see the Taylor expansion in the exponent (6.23) necessary for the linearization of

the exponential form.
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6.3.5 Experimental Analysis

In this section, we propose few examples of 3−dimensional cubic and conic constraints, and

show how they could be approximate based on the general form (6.10). For each example, the

constraint and its fitting function are visualized. Herein, we evaluate the alignment, or the fitting,

between the constraints and their functional approximations. The bell constraint is unchanged,

whether it is defined using our functional parametric form, or as a Bell, Gaussian or Normal

distribution in the large sense. To this end, we use two approaches: one is by random sampling

from the constraint and then counting the contracts that fall within the concavity of f by getting

f(~x) > 0. The second approach computes the volumes of the constraint and compares it to the

integral of the approximated function. If the approximation is adequate, bother measures should

coincide.

For the cubes, we start by randomly selecting n contracts from the cube constraint. One

contract ~x = (x1, x2, x3) is selected by picking each xi, i ∈ [1, 2, 3], within the bounds defined

by the width, length and height of the cube.

Figure 6.6 provide an example of such evaluation, where the 100% of the contracts fall in

both the cube and the function f concavity. Now, we compute the volume of f as in (6.24).

Vf =

∫ θ+µ1

x=−θ+µ1

∫ θ+µ2

y=−θ+µ2

f(x; ρ, β, γ, δ, µ, ζ) dy dx (6.24)

with θ = 1
ζ
(ρ−1

ρ
)1/ρ.

We find that both volumes coincide by yielding Vf = 635.797 and Vcube = 636.0. We also

note that in this case, ρ affects largely the precision of the approximation as in (6.25).

lim
ρ→∞
Vf = Vcube (6.25)

In the case of a conic constraint, random n contracts are selected from the cone constraint using

Algorithm 8. As shown in Figure 6.7, performing the evaluation for n = 100 contracts gives

93% of contracts, with Vcone = 50.26 integral of f Vf = 31.62.

It is possible to enhance this precision by adjusting the ζ of the function until it covers the

relatively important parts of the cone. Particularly, this is done by breaking the ζ into {ζi}1≤i≤n
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Figure 6.6: 3−dimensional cubic constraint and its approximation

as to define a linear approximation of the cones sides, yielding the new approximation (6.26).

However, this method requires additional sampling from the initial cone in order to define the

new coefficients.

f(~x; β, γ, δ, µ, ζ) = γ + βe
−
∞∑
ρ=1

n∑
i=1
|ζixi−µi|ρ

(6.26)

6.3.6 Summary

We have provided a practical way to approximate a family of constraint-based utility function

based on one unified parametric form. The new representation reduces the complexity inherent

to the definition of the constraints and adds more flexibility when hard constraints are present.

Moreover, the new form allows an approximation of the existing utility functions as to reflect

several economic types. This stems from the fact that any utility function could be translated into

a wavelet-like transform built from a generalized Gaussian mixture.
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Algorithm: RandFromCone

Input: Center o(ox, oy, 0), radius r, height h

Output: One random contract in the cone

1 begin

2 s← (ox, oy, h) // Apex s ∈ R3

3 α← RandomFrom(0, 1)

4 return αRandomFromDisk(o, r) + s(1− α)

Algorithm 8: Random Contract from Cone

Algorithm: RandomFromDisk

Input: Center o(ox, oy, 0), radius r

Output: One random contract from the Cone disk

1 begin

2 o′ ← RandomOnCricle(o, r) // Apex o′ ∈ R2

3 α, β ← RandomFrom(0, 1)

4 rx ← o′xα + ox(1− α)

5 ry ← o′yβ + oy(1− β)

6 return (rx, ry, 0)

Algorithm 9: Random Contract from Cone Disk

As a future direction to be investigated, we are thinking about using the current parametric

form for Opponent Modeling. In fact, we have shown how the constraints’ descriptions could

collapse to fewer parameters (6.10b) that could potentially be defined using prior distributions

and the underlying hyper-parameters. Particularly, these parameters could be estimated using

well known Machine Learning techniques, for instance as a Generalized Gaussian Process similar

to [102]. Additionally, it is possible to extend the current canonical form to embed risk aversion

and discounting for their importance in real negotiation settings. Added to (6.10b), discounting

and risk aversion parameters could improve predicting the opponent’s behavior.
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Algorithm: RandomOnCricle

Input: Center o(ox, oy, 0), radius r

Output: One random contract on a circle

1 begin

2 ψ ← 2πRandomFrom(0, 1)

3 r′ ← rRandomFrom(0, 1)

4 x← ox + r′cos(ψ)

5 y ← oy + r′sin(ψ)

6 return (rx, ry, 0)

Algorithm 10: Random Contract from Circle

Figure 6.7: 3−dimensional cone constraint and its approximation
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Chapter 7

Applications in Preferences Elicitation and

Collaborative Design

7.1 Asymptotic ME Principle for Preferences Elicitation

7.1.1 Introduction

Decision making involves generally two principal components. One dealing with the judgements

about the uncertainties in the given world, whereas the other is related to the preferences over

a set of possible consequences or outcomes. Several techniques have been proposed to help the

decision maker in his analysis, by suggesting ways of formalization of the preferences as well as

the assessment of the uncertainties. Although these techniques are established and proven to be

mathematically sound, experience has shown that in certain situation we tend to avoid the formal

approach by acting intuitively [62]. Especially, when the decision involves a large number of

attributes and outcomes. In this case, most of the decision makers tend to use pragmatic and

heuristic simplifications such as considering only the most important attributes and omitting the

others [43].

Herein, we provide a model for decision making in situations subject to a partially available

information and with a large predictive uncertainty with regards to the outcomes. We provide a

formulation of this situation using an Information Theory approach and more precisely through

the Maximum Entropy (ME) principle for preferences elicitation [2]. The considered situation

is characterized by a “High-cognitive Load” [94, 16] or Bounded Rationality [89]. In fact, we

think that the bounded rationality or the cognitive limits of the mind (of the decision maker,
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or the agent) could be re-interpreted as the inability to grasp the large number of alternatives,

attributes, outcomes and uncertainties. Thus, the bounded-rationality is caused by the unbounded

possibilities that the decision maker is facing, which yields a huge amount of information to be

considered. This amount of information is intractable and yet infinite for a simple optimization

technique that seeks an optimal choice given the available information. Especially, when the

decision has to be made in a finite amount of time despite the infinite number of possibilities. It

is worth mentioning that this problem could be seen as an instance of the Frame Problem [80], in

the context of preferences elicitation. In such situations, the elicitation of a good utility function

is not a realistic option and one should resort to other, less quantitative forms of preference

representation. For instance, adopting a Ceteris Paribus preferential statements might be an

option, as it was widely discussed in Philosophical Logic and Artificial Intelligence [23]. In fact,

we ought to focus on what needs to be known (and represented) about a given environment and

to omit what can be safely omitted. It is under such Ceteris Paribus assumption that we will

propose our model to deal with the infinity of outcomes. Our main result could be seen as an

extension of the ME principle whenever the set of prospects is countably infinite, and involving

uncertainties. We think that using entropy methods enables us to capture the characteristics of

such decision problems, as well as to the way solutions are realistically established by humans.

In the context of utility representation, several models were provided. For instance, [14] pro-

posed a model which takes into consideration the uncertainties over the utilities by considering a

person’s utility function as a random variable, with a density function over the possible outcomes.

In the work of [2], probability and utility are considered with some analogy, thus yielding the no-

tion of joint utility density function for multiple attributes. The application of Information Theory

to Utility Theory gave a new interpretation of the notion of utility dependence, but most impor-

tantly, it allowed the elaboration of the MEU principle [2] as a way to assign utility values when

only partial information is available. The same author assumed a continuous entropy measure on

a continuous bounded domain of outcomes, which is true when the support of the distribution is

finite. However, this continuity hypotheses does not hold when the support is countably infinite,

which makes the information measure discontinuous in all probability distributions with count-
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ably infinite support [50]. In other words, when the number of plausible outcomes that could be

elicited by the ME utility function is countably infinite. In our approach, we adopted the same

ME utility elicitation, but after establishing the behavior of the entropy with regard to the infinity

of the outcomes.

7.1.2 Convergence of preferences

We start by providing our main framework, by adopting the utility-probability analogy and its

usage for entropy maximization. We also provide a utility-based interpretation of the notion of

convergence. Therefore, we start by stating it probabilistically, and then use utility increment

vectors to define the utility convergence. Then, we define the continuity of the Shannon entropy

with respect to a distance metric DU . These are the first steps before treating in the next section

the ME principal for countably infinite prospects.

Probability-Utility analogy

The analogy between probability distributions and utility was established in [2]. Therefore, we

use the same formalism as to name the utility vectors and the utility density functions. As in

[2], we assume that the utility values are represented as a vector, namely a utility increment

vector ∆Ui referring to a discrete utility function with one attribute i. As in (7.1), the vector ∆Ui

contains the utility values {∆uj}kj=0 of the k + 1 ordered and discrete outcome {xj}kj=0, starting

from the lowest outcome x0 to the highest outcome xk, named x∗. We also define the sequence

∆U(n) of n utility increment vectors as in (7.2).

∆Ui = (∆u0, . . . ,∆uj, . . . ,∆uk), (7.1)
k∑
j=0

∆uj = 1, ∆uj ≥ 0 ∀j ∈ [0, k]

∆U(n) = {∆Ui}ni=1 (7.2)

A sequence of utility increment vectors can be compared to a sequence of random variables. It

is built according to an analogy with a probability mass function P = (p1, . . . , pk). Each discrete
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utility increment vector ∆Ui corresponds to a normalized utility Ui(x) function as in (7.3).

Ui(x) =

∫ x

x0

ui(x) dx (7.3)

ui(x) =
d

dx
Ui(x) (7.4)

That is, for a given prospect x ∈ [x0, x∗], Ui(x) is determined by integrating the utility density

function ui(x) [2] from the least preferred prospect x0 up to the prospect x (the accumulated wel-

fare from x0 to x). The normalized utility function Ui(x) has the same mathematical properties

as a cumulative distribution function (CDF) as both are non-decreasing and range from zero to

one (7.5).

0 ≤ Ui(x) ≤ 1 (7.5)

d

dx
Ui(x) ≥ 0 ∀x

All along the next sections, we will make usage of these notions of utility increment vector ∆U ,

the sequence of utility increment vectors ∆U(n) as well as the utility density function u(x).

Distance measure

The distance between two utility functions is defined based on the notion of similarity that could

exist between them. By similarity, we mean the strategic equivalence [62], i.e., two utility func-

tions u1 and u2 are strategically equivalent, written u1 ∼ u2, if and only if they imply the same

preference ranking for any two lotteries. For instance, to compare two utility functions we can

define the total variational distance that reflects the difference between the accumulated welfare

all along the considered prospects. In the discrete case of two utility increment vectors, it is

reduced to the L1-norm as it is shown in (7.6).

DV (∆U1,∆U2) =
∑
j

|∆U1,j −∆U2,j| (7.6)

where DV stand for the variational distance, and ∆Ui,j is the jth element of ∆Ui. In case we are

comparing two utility increment vectors ∆U1 and ∆U2 having respectively different dimensions
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L and M , (7.7) becomes:

DV (∆U1,∆U2) =
L∑
j=1

|∆U1,j −∆U2,j|+
M∑

j=L+1

|∆U2,j| (7.7)

We can also use the divergence between two utility density functions (7.4) based on the Kullback-

Leibler divergence given in (7.8), for both discrete and continuous cases.

DU(∆U1,∆U2) =
∑
j

∆U1,j ln(
∆U1,j

∆U2,j

) (7.8a)

Du(u1, u2) = DKL(u1||u2) =

∫
x

u1(x) ln(
u1(x)

u2(x)
) (7.8b)

where we adopt the convention Du(u1, u2) = 0 if u2(x) = 0 but u1(x) > 0 for some x.

Moreover, based on the Pinsker’s inequality [100] we have (7.9).

1

2
[DV (∆U1,∆U2)]2 ≤ DU(∆U1,∆U2) (7.9)

Both divergence (7.8) and the variational distance (7.6) can be used as measures of the differ-

ence between two utility increment vectors (respectively utility density functions) defined on the

same set of prospects. However, once applied to utility functions, Pinsker’s inequality has the

important implication that for two utility increment vectors ∆U1 and ∆U2 defined on the same

set of prospects, if DU(∆U1,∆U2) (or DU(∆U2,∆U1)) is small, then so is DV (∆U1,∆U2) (or

DV (∆U2,∆U1)). Furthermore, for a sequence of utility increment vectors ∆U(n), as n → ∞, if

DU(∆U,∆Un) → 0, then DV (∆U,∆Un) → 0, i.e., the convergence in divergence is a stronger

notion of convergence than the convergence in variational distance. Thus, we will use the di-

vergence measures (7.8) as to define the continuity of the Shannon entropy, in the sense that we

study the convergence of a sequence of utility increment vectors as well as their entropies. Using

(7.8) fits better with the idea of maximum likelihood estimation we might use in order to use the

MEU.
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Utility Convergence

From a probabilistic viewpoint, we say that a sequence Pn, (with a CDF Fn), is converging in

distribution to a distribution P (with a CDF F), and noted as in (7.10).

Pn
d−→ P (7.10)

with lim
n→∞

Fn(x) = F (x) ∀x ∈ R (7.11)

where F is continuous in x. As we mentioned in section 7.1.2, a utility function can be repre-

sented by a CDF as in (7.3). If we assume that:

F (x) =

∫ x

xmin

f(x)dx (7.12)

and if (7.3) is an analogy with (7.12), then what is the utilitarian significance of the sequence

Fn(x) ? To understand this setting, we rely on Merging Theory [93] [74], which studies whether

the beliefs of an agent, once updated after successive realizations of the process, converge to

the true distribution. Now, we can interpret a sequence of preferences ∆U(n) as a process over

time. In fact, we can consider the sequential decision problem as in the case of a Bayesian agent

observing the successive realizations of a discrete stochastic process {∆U(n)| n ∈ T} on the

space of outcomes, indexed by n, and where n varies over a time index set T . The evolution

of the process is announced round after round to the observer who observes a true distribution

and holds an a priori preferences’ belief on the process. We consider the preferences merging,

namely, the convergence of this sequence of preferences ∆U(n) to the limiting preferences ∆U .

Firstly, let’s assume that the decision maker is given the task of assessing a utility increment

vector (7.13) for k + 1 outcomes at time n.

∆U(n) = (∆u0
(n), . . . ,∆uk

(n)) (7.13)

For instance, the assessment of the preferences ∆U(n+1) is different from ∆U(n), to the extent

that new information have been made available to the decision maker, and used to update the

preferences. A sequence ∆U(n) converging to ∆U can be written as in (7.14).

∆U(n)
U−→ ∆U (7.14)
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This notion of utility convergence reflects the idea that we expect to see the next outcome in a

sequence of utility increment vectors ∆U(n) to become better and better modeled by ∆U . The

yielded convergence is expressed by the limit (7.15), for the discrete case.

lim
n→∞

∆U(n) = ∆U (7.15)

This notion of convergence will be used to define the continuity of the Shannon entropy with

regard to utility.

7.1.3 Asymptotic MEU

In this section, we provide the MEU principle, in the case of a countably infinite support. We

start by providing the definition of the support of utility function (respectively a utility increment

vector). Let a utility function u defined on the outcomes set D. The set of all the values that u

could take is {u(x)|x ∈ D}.

Definition 9. The support of u denoted by Su, is the set of all the outcomes x in a set D, such

that u(x) > 0.

Su = {x|x ∈ D, u(x) > 0} (7.16)

If Su = D, we say that u is strictly positive. Otherwise, u contain null utility values, which

correspond to the undesirable, unwanted outcomes. The support of a discrete utility function will

be used in the case of a large number of outcomes, literally approaching infinity. It is the case of

utility functions that vanish for a certain number of outcomes (u(xj) = 0), while being strictly

positive for another infinite number of outcomes (u(xi 6=j) > 0). In the discrete case we have:

Definition 10. The support of ∆U is the set of all the indexes j such as ∆uj ∈ ∆U and ∆uj > 0.

S∆U = {j ∈ N, ∆uj ∈ ∆U | ∆uj > 0} (7.17)
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Problem Statement and Method

Before stating the problem, let’s give an example of situations, where the notion of infinity could

arise while considering the outcomes. Let’s consider a multi-attribute utility function u over a set

of attributes a = {a1, . . . , aj, . . . , an}, with Domain(aj) = Dj . We want to define a preference

ranking over the complete assignments on a.

Each complete assignment to a corresponds to a possible outcome of the decision makers

action. Given the sizes of the attributes’ domains, we can compute the number of possible as-

signments as np =
∏n

j=1 card(Dj). Now, let’s define another utility function u′, over the domain

D = ×nj=1Dj . It is obvious that the complexity of the assessment of u′ grows up exponentially

as the domains’ sizes of the n attributes aj are growing up.

Now, consider the case of complex systems subcontracting and manufacturing, for example,

a Boeing 747-400, which is made in 33 countries and contains 6× 106 parts [51]. Let’s consider

that each part of the plane is an attribute, therefore, designing the plane is reduced to finding and

instantiating the attributes by assigning values from their domains. In the end, the best design

will be chosen amongst all the possible instantiations, in other words, the outcomes. While

keeping in mind the goal of providing efficient and automated tools for preference elicitation, we

can highlight the considerable effort and complexity that will arise if we want to build a utility

function over such possible set of outcomes. Given 6 × 106 interdependent attributes with a

maximal size domain d, even if d = 2 (which is unlikely since we are dealing with complex

systems), the number of possible combinations is np = 26×106 , which is too large to be treated

quantitatively (np ∼ ∞).

It is under such assumptions of infinity that we will adopt a Ceteris Paribus preferential state-

ment, notably statements in which “all else being equal", and by varying a number of variables

(in our case, [1, . . . , L]) while holding the others ([L+ 1, . . . ,M ]) constant [23]. In other words,

we will reduce the actual frame of M infinite outcomes (∆U ) to L outcomes (∆U ′), which could

be reasonably assessed, under Ceteris Paribus.

In our case, we are assessing a utility increment vector ∆Umeu containing all the preferences
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as discrete elements (7.1). We also take the support S∆U as countably infinite, which makes the

assessment process more difficult, as we mentioned in the previous example. The idea here is to

use another utility increment vector ∆U ′ to contain the reasonably assessed preferences of the

decision maker, according to his subjective belief. Then, we try to estimate ∆U with a new utility

increment vector ∆Umeu with respect to the ME principle and by minimizing DU(∆U,∆U ′),

described in (7.8).

Let ∆U = (∆u1, . . . ,∆uM) be the true utility increment vector to be assessed, where M is a

large number that tends to infinity. We can see M as the number np we provided in the example

above. Let ∆U ′ = (∆u′1, . . . ,∆u
′
L) be the utility increment vector that the decision maker was

able to assess, due to the reduction of the number of outcomes to L (L < M ), under Ceteris

Paribus. We propose then to find the entropy maximization utility increment vector with respect

to the minimal possible distance between ∆U and ∆U ′, that is, DU(∆U,∆U ′) ≤ ε. One way to

solve this maximization problem is to adopt the approach used in [2], by finding the continuous

utility function u∗ that maximizes the entropy (7.18).

u∗(x) = arg max
u(x)

H(u(x)) (7.18)

Since S∆U is countably infinite, (18) cannot be solved with Lagrange multipliers and simple

derivation methods. In fact H(∆U) is discontinuous whenever S∆U is countably infinite, and

most importantly when the continuity measure is based on the KL-distance [50].

In the next section, we introduce the Shannon entropy and define its continuity as well as its

discontinuity whenever the considered utility increment vector has an infinite support.

Continuity of the Entropy Measures

The Shannon entropy measures are functions mapping a probability distribution to a real value.

They can be described as the measure of uncertainty about a discrete random variable X having

a probability mass function p.
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Definition 11. The entropy H(X) of a random variable X is:

H(X) = −
∑
x

p(x) log p(x) (7.19)

We adopt the convention that summation is over the support of the given probability distribu-

tion, in order to avoid undefined cases. An important characteristics of Shannon entropy, is that

it measures the spread of a probability distribution and therefore, achieves its maximum value

when the distribution assigns equal probabilities to all the outcomes. This concept was used as

a method to assign prior probability distributions that maximize Shannon entropy measure un-

der partial information constraints. It is possible to apply Shannon entropy measures to a utility

increment vector reflecting the spread of the prospects [2] as in (7.20).

H(∆u1, . . . ,∆un) = −
n∑
i=1

∆ui log(∆ui) (7.20)

In the case where the outcomes are finite, the Shannon entropy measures are continuous func-

tion. We propose to focus on the case where the entropy measure H is applied to utility increment

vectors ∆U with countably infinite elements, situation reflecting the high uncertainty. More pre-

cisely we are interested in studying the continuity of H with respect to the distance measures

we established in the section 7.1.2. For instance, entropy is discontinuous with respect to the

Kullback-Leibler divergence [50]. We should highlight that the underlying utility functions fol-

low the axioms of normative utility functions [98], which gives (7.21).∫
x

u(x) = 1 (7.21)

We propose to define the continuity of a function f that will be lately extended into the entropy

measure H .

Definition 12. Let πX be the set of all utility density functions on the set of outcomes X and let

u ∈ πX . f : πX → [0, 1] is continuous at u if, given any ε > 0, ∃δ > 0 such that: ∀u′ ∈ πX :

Du(u, u
′) < δ =⇒ |f(u′)− f(u)| < ε.

For the discrete case, we have the following definition.

106



Definition 13. Let πk be the set of all utility increment vectors defined for k outcomes, and let

∆U ∈ πk.

f : πk → [0, 1] is continuous at ∆U if, given any ε > 0, ∃δ > 0 such that: ∀∆U ′ ∈ πk :

DU(∆U,∆U ′) < δ =⇒ |f(∆U ′)− f(∆U)| < ε.

If f fails to be continuous at the utility density function u (resp. ∆U ), then we say that f is

discontinuous at u (resp. ∆U ). Given the notion of convergence we defined in section 7.1.2, we

can provide the following definitions of the discontinuity of the function f .

Definition 14. Let πX be the set of all utility density functions on the set of prospects X and let

u ∈ πX . A function f : πX → [0, 1] is discontinuous at u if there exists a sequence of utility

density functions u(n) ∈ πX such that :

lim
n→∞

Du(u(n), u) = 0 (7.22)

but f(u(n)) does not converge to f(u), i.e.,

lim
n→∞

f(u(n)) 6= f(u) (7.23)

Similarity, for the discrete case we have:

Definition 15. Let πk be the set of all utility increment vectors defined for k prospects. Let

∆U ∈ πk.

A function f : πk → [0, 1] is discontinuous at ∆U if there exists a sequence of utility increment

vectors ∆U(n) ∈ πk such that :

lim
n→∞

DU(∆U(n),∆U) = 0 (7.24)

but f(∆U(n)) does not converge to f(∆U), i.e.,

lim
n→∞

f(∆U(n)) 6= f(∆U) (7.25)
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Discontinuity

In this section, we establish the discontinuity of H at any utility increment vector ∆U having

a countably infinite support. Let ∆U
(a,b)
(n) be a sequence of utility increment vectors with the

real parameters a and b. We will use this sequence to show that H is discontinuous at ∆U1 =

(1, 0, 0, . . .).

For fixed real numbers a and b and an integer n, such as a > 1 and b > 0 and n > a. We define

∆U
(a,b)
(n) as in (7.26).

∆U
(a,b)
(n) = {1− (

log a

log n
)b,

1

n
(
log a

log n
)b, . . . ,

1

n
(
log a

log n
)b, 0, 0, . . .} (7.26)

Based on our definition of convergence in section 7.1.2, we show that the sequence {∆U (a,b)
(n) }

converges to ∆U1 = (1, 0, 0, . . .). Computing the distance between the vector ∆U1 and the

parametrized vector ∆U
(a,b)
(n) gives (7.27).

DU(∆U1,∆U
(a,b)
(n) ) = −

(
log(1−

(
log a

log n

)b)
(7.27)

We have ∆U
(a,b)
(n)

U−→ ∆U , which is given in (7.28).

lim
n→∞

DU(∆U
(a,b)
(n) ,∆U1) = 0 (7.28)

Then, the entropy of ∆U
(a,b)
(n) is given by (7.29).

H(∆U
(a,b)
(n) ) = −

[
1−

(
log a

log n

)b]
log

[
1−

(
log a

log n

)b]

−n

[
1

n

(
log a

log n

)b]
log

[
1

n

(
log a

log n

)b]
(7.29)

Hence, we have (7.30). The proof is provided in A.1.

lim
n→∞

H(∆U
(a,b)
(n) ) =


0 if b > 1

log a if b = 1

∞ if 0 < b < 1

(7.30)
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Proposition 1. Based on Definition 7. and if we take f = H , a > 1 and 0 < b ≤ 1 in (7.30), we

have:

lim
n→∞

H(∆U
(a,b)
(n) ) =∞ 6= H(∆U1) (7.31)

but lim
n→∞

∆U
(a,b)
(n) = ∆U1 (7.32)

Therefore, we can state thatH is discontinuous at the utility increment vector ∆U1 = (1, 0, 0, . . .).

Bound and Majorization

Given (7.30), we propose to find a bound to η in (7.33).

η = |H(∆U)−H(∆U ′)| (7.33)

with ∆U and the ∆U ′ the utility increment vectors we provided at the beginning of section 7.1.3.

In fact, if the dimension M of ∆U is finite and known, (7.33) is also finite and we propose to find

its upper bound (7.34).

sup
∆U
|H(∆U)−H(∆U ′)| (7.34)

Since the utility increment vector ∆U ′ is available to the decision maker (assessed under Ceteris

Paribus as we mentioned above), we will start by solving (7.35).

sup
∆U
|H(∆U ′)| (7.35)

subject to DU(∆U,∆U ′) ≤ ε

With a finite value of M , (7.35) is reduced to finding (7.36).

max
∆U

D∆U (∆U,∆U ′)≤ε

H(∆U) (7.36)

Now we can think about the majorization of (7.36) and thus providing the solution ∆Umeu.

Let γ =
∑L

i=1 ∆ui. We can write ∆U as in (7.37).

∆U = (∆u1, . . . ,∆uM) (7.37a)

∆U ′ = (
∆u1

γ
, . . . ,

∆uL
γ

) (7.37b)

∆U ′′ = (
∆uL+1

(1− γ)
, . . . ,

∆uM
(1− γ)

) (7.37c)
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Therefore, H(Q) can be written as in (7.38).

H(∆U) = h(γ) + γ ∗H(∆U ′) + (1− γ) ∗H(∆U ′′) (7.38)

with h the binary entropy function (7.39).

h(x) = −x log(x)− (1− x) log(1− x) (7.39)

Since #(∆U ′′) = (M − L), we can define an upper bound for H(∆U ′′) [104], as in (7.40).

H(∆U ′′) ≤ log(M − L) (7.40)

(7.38) and (7.40) give (7.41)

max
∆U

D∆U (∆U,∆U ′)≤ε

H(∆U) ≤ (7.41)

h(γ) + γ ∗H(∆U ′) + (1− γ) ∗ log(M − L)

Therefore, the maximum value that could be reached by the entropy H is shown in (7.42).

H(∆U∗) = h(γ) + γ ∗H(∆U ′) + (1− γ) ∗ log(M − L) (7.42)

The utility increment vector that achieves this maximum is ∆Umeu (7.43).

∆Umeu =

(
∆u0, . . . ,∆uL,

(1− γ)

(M − L)
, . . . ,

(1− γ)

(M − L)

)
(7.43)

The solution (7.43) is the optimal utility increment vector that ensures the ME with respect to the

given information (7.37b). The specified preferences ∆U ′ could be characterized by a utility den-

sity function, while the rest of the vector ∆Umeu will be a uniformly distributed utility increment

vector.

7.1.4 Realization of the Process

In this section we provide an example illustrating a situation of high uncertainty as well as the

asymptotic behavior of Shannon entropy as to the feasibility of the solutions treated above.

110



In fact, we consider a symmetric one-dimensional random walk representing the evolution

of the decision maker’s preferences through time. We propose to study the way the sequence

of utility increment vectors behaves asymptotically when the given number of states if countable

infinite Let a discrete-time Markov chain with an infinite number of transient states, and where all

the states communicate with each other, except for the absorbing state. This example corresponds

to the Gambler’s ruin problem, as represented in Figure 7.1.
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Figure 7.1: The Gambler’s Ruin Random Walk

We consider the corresponding symmetric one-dimensional random walk, where ∆U(n) rep-

resents the state of the system at time n, and where the state 0 is an absorbing state. Let p = 1/2

be the sequence’s probability of taking a step to the right or to the left.

We start by finding the probability p(∆U(n) 6= 0), reflecting that the fact that system is some-

where on the sequence but not in the state 0. Assuming that ∆U(n) 6= 0 means that the system

has never been in the state 0, therefore we can write (7.44).

p(∆U(n) 6= 0) (7.44)

= p(∆U(n) 6= 0,∆U(n−1) 6= 0)

= p(∆U(n) 6= 0|∆U(n−1) 6= 0) p(∆U(n−1) 6= 0)

= p(∆Un 6= 0|∆U(n−1) 6= 0) p(∆U(n−1) 6= 0,∆U(n−2) 6= 0)

= p(∆Un 6= 0|∆U(n−1) 6= 0) p(∆U(n−1) 6= 0|∆U(n−2) 6= 0)

. . . p(∆U1 6= 0|∆U0 6= 0) p(∆U0 6= 0)

=
1

2n

Where for n=0 we have (7.45).

∆U(n) = 1⇒ p(∆U0 6= 0) = 1 (7.45)
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From (7.45) we have (7.46).

p(∆U(n) = 0) = 1− p(∆U(n) 6= 0) (7.46a)

= 1− 1

2n
(7.46b)

In order to evaluate the asymptotic behavior of the system and how it will reach the absorbing

state we compute the limit (7.47).

lim
n→∞

p(∆U(n) = 0) = 1 (7.47)

Thus, we are certain that the system will converge to a deterministic distribution and therefore be

absorbed in state 0 with a probability 1, written as in (7.48).

∆U(n)
U−→ ∆U = {1, 0} (7.48)

After finding the limit of the sequence ∆U(n), we propose to check the behavior of the entropy

in accordance to the behavior of ∆U(n). By plotting the different values taken by H
(
∆U(n)

)
for

different states’ bounds, we obtain the plot in Figure 7.2. We can check that the approximation

(7.49) holds,

P
(
∆U(4000) = 0

)
≈ 1 (7.49)

while the entropy H
(
∆U(n=4000)

)
does not end at H(1). The entropy of the limiting distribution

is (7.50).

H
(
∆U(4000)

)
≈ 1.08817 6= H(1) (7.50)

In the case of a discrete-time Markov chain with countably infinite states, the uncertainty about

the overall process (sequence of increment vectors) does not reflect the behavior of the limiting

distribution.

7.1.5 Summary

We consider the maximum entropy principle for utility elicitation in the case of high uncertainty,

i.e., when the decision maker is facing a large number of outcomes while having a small number
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Figure 7.2: Entropy of the sequence ∆U(n)

of training sets. Despite its practical importance, as to understand how decisions are made by

humans in bounded rationality, this problem has not been studied from the perspective of entropy

maximization in the asymptotic case. To address this problem, we assumed that this situation of

high uncertainty could be translated into a countably infinite number of prospects. The decision

maker is asked to provide a related utility function that maximizes the entropy, given the available

information. For instance, solving this type of problems could rely on a Lagrange multipliers

method. But, like we have shown, this method, and general derivation-based methods could

not be used due to the discontinuity of the Shannon entropy whenever the considered support is

infinite. Therefore, we proposed another method based on finding a limiting least upper bound

of the entropy, and thus giving a utility increment vector that maximizes it.

As an application, we give the example of a symmetric one-dimensional random walk on

a discrete-time Markov chain representing the evolution of the decision maker’s preferences

throughout time. In this example, we show how the entropy of the limiting preferences’ dis-

tribution is different from the overall entropy of the Markov chain.

As an important research issue to be further investigated, is the interpretation of this asymp-
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totic behavior of the uncertainty in the case of a Markov process. In fact, we seek a relation

between the increase of uncertainty that underlies the whole process and the uncertainty with

regard to the final, limiting, preference distribution. Furthermore, we think about considering the

case of multi-attribute utility increment vectors, and therefore generalize the univariate asymp-

totic case for the multivariate case. We also seek to characterize the MEU solution, in the case of

a composed utility increment vector illustrating the case of multiple knowledge. In other words,

finding a multivariate description of the different available utility distributions, for instance, as a

Dirichlet utility increment distribution.

7.2 Complex Collaborative Design

7.2.1 Introduction

Over the past few decades, the Internet has experienced a significant expansion on multiple levels.

Consequently, it has had a huge impact on economics and the Internet-based business models.

Moreover, thanks to the decrease of transactions’ costs, large communities of people have become

connected, and therefore, many types of commercial relationships were created. Individuals

have more access to advanced technologies due to the use of powerful softwares and performant

computers.

At the same time, the new advances of the Web 2.0 [17] gave the users more visual and

interactive experiences by using Rich Internet Applications (RIA) [17, 1]. Several electronic

commerce (e-commerce) business models were proposed for a wide range of applications and

services [15].

Customer-to-Business (C2B) is a business model characterized by the inversion of roles

known in the traditional business models [15]. In this model, costumers can develop and of-

fer products or services to companies. Given the potential of an open and peer-to-peer environ-

ment, a C2B model can be efficiently implemented as a multi-agent framework. In this scheme,

customers will interact with agents to develop their products, and the agents will negotiate the
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product with a given company.

On another level, collaboration and negotiation mechanisms have been studied widely and

represent an exciting field of research [64, 66]. Especially, when the negotiation involves multiple

and interdependent issues [34, 36, 30, 42] as it is the case of many real-world decision making

problem. Several works have been done to deal with nonlinear utilities [53, 38, 35] and also to

reveal possible utilities representations [30, 88, 14].

Most of real-word consensus making problems involve interdependent issues, which makes

optimal contracts finding difficult. For instance, complex design is an example of domains in-

volving a large number of issues governed by nonlinear relationships. Despite the multitude of

models for multi-issue negotiation in nonlinear settings, none of the above works had proposed a

concrete solution that could be deployed for a real-world problem. In fact, most of the proposed

models are restricted to monetary domains that do not fully reflect the real challenges found in

complex consensus making.

It is within this perspective that we propose our framework to show the possible interplay

between the utilitarian nonlinearity found in the previous formulations and its analogous formu-

lation found in complex design. It is our belief that it is possible to extend the constraint-based

formulation of utility spaces into the constraint-based definition of the geometrical design space.

In the following, we will develop a collaboration architecture for products’ design, according

to a C2B scheme, and through the collaboration of an agent for the negotiation and the use of a

3D client application for the design of the product. At the same time, we will investigate possible

representations of a specific type of contracts, representing a 3D object. We will also highlight

the existing semantics between attributes and therefore establish possible assumptions related to

general contracts modeling.

7.2.2 Collaborative Design System

The system is an online collaboration framework allowing users to design a given product (C2B

scheme). Users can acquire the initial template of a model from a mediator and can use a 3D
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modeling IDE to propose their designs. The initial template is defined in terms of constraints,

specified by the the mediator on the behalf of a company.

The end-user will have to specify his preferences by providing the design of the shapes and

eventually some technical details of the model. Once the user has specified all his preferences,

a bidding process will start and all the contracts related to the users’ products will be sent to the

mediator [34, 36].

An auction-like business logic will be deployed on the mediator. It will accept contracts from

clients up to the final bidding time for the current product. Hence, a time limit must be specified

for each design session. During this period, users will design their products and the agents might

negotiate over the resulting contracts. Each bid from a user must be accompanied by a relevant

product identifier which might be selected by the user to avoid the submission of an invalid code.

The design and bidding operations will be done through the collaboration of the human user

and the agent. The user will have to design the product and the agent will negotiate the provided

contract with the mediator. The mediator will synthesize all the received contracts into a unified

group consensus. Then, an agreement might be made based on the assumption that the final

contract will satisfy all the users’ expectations.

A final contract ensures that the agents’ choices hold and coincide with the constrained initial

model of the product, i.e., the template. After designing his product, each user will be expecting

that hopefully the final contract will correspond to his design. The mediator will have to find the

contract that represents all the individuals’ preferences, therefore the best design of the product.

In our context, an optimal contract will have to satisfy all the agents’ bids and users’ expectations.

More generally, the overall models of the agents will code the users’ preferences just as if

they are voting for the best product. For example, if the users are designing a specific type of

toy, an elephant for instance. The mediator will try to maximize the expected number of designs

(contracts) which represent elephants by finding the intersections between all the provided models

and by maximizing the most common features or attributes.
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Figure 7.3: Architecture

7.2.3 System Architecture

Description

Our framework is based on a client/server model, where a client is represented by both the 3D user

interface for the design and the automated agent. The server represents the mediator where we

implement the business logic used for the consensus making. Several agents will be participating

in the design process guided by their interface agents.

As indicated in Figure 7.3, the coupling of the UI and the agent was done to separate tasks

during the Human-Agent interaction phase. The main purpose of the UI is the acquisition of the
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user’s preferences (4) through means of 3D shapes modifications. Initially, the agent is used for

the acquisition of the product template provided by the mediator (1). The template will be issued

to the UI from the agent (2), allowing the user to design his product according to his viewpoint

(4). The agent will assist the user by allowing him to specify a parametrized description of the

templates. And based on this parametrization, the agent will recursively generate the structure of

the model.

Once the new product is available (5), the agent will prepare a contract (3) specifying the

product attributes and will send it back to the mediator (6). Eventually, the agent can generate

several contracts and start a negotiation with multiple bids (8) [53, 78, 65].

The mediator will collect all the contracts issued from the clients and try to find a combination

of bids that maximizes social welfare (7).

In the case where the initial constraints are not satisfied by all the agents, a back-and-forth

process might be used (8). In addition, the mediator will have to change slightly the initial

template by modifying the constraints’ bounds in the way that eases the design for the agents

(users). In this case, all the submitted contracts will converge to a unique contract which satisfies

both of the mediator constraints and the clients’ preferences.

Since the agents are negotiating over contracts based on an initial model (template), there

will be no possible conflicts between the agents on the designed product: all the chosen values

for each attribute will fall within the constrained shapes specified initially by the mediator in the

template.

This whole negotiation process will yield a better design of the product at each iteration. Once

the time limit is reached, the final contract will be adopted by the mediator and sent to the users.

The time limit must ensure enough time for the clients to design their products, and also for the

agents to negotiate the contracts. In this way, the negotiation process will converge and yield the

optimal contract.
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Contract Construction

In our work, we focus on a specific type of contracts, representing a product as a 3D model. As we

will show later, these types of contracts share common characteristics which make them different

from other studied contracts [96, 38, 14], in the way attributes are represented and connected

[38, 88, 14].

Therefore, we introduce the concept of graphical and non-graphical attributes. A graphical

attribute corresponds to a variable which can be modeled and manipulated by the user in a three

dimensional space. A 3D shape will be represented as a collection of graphical attributes, includ-

ing points, colors and so forth. A non-graphical attribute is related to an abstract type of attribute,

that cannot be represented in 3D space. For example, the type of an engine, the class of a fuel,

the category of a metal, the price of a chair, are non-graphical attributes.

In our modeling, we adopt the X3D standard [17, 1] as a framework to represent our designed

products. In addition, all our graphical objects will be defined using the IndexedFaceSet (IFS)

geometry node [1]. This component allows the encapsulation of a set of attributes in the same

entity, which will be identified as a group. A group will contain a number of interdependent

attributes describing the same entity and sharing the same space.

As we can see in Figure 7.4, a graphical attribute vi can be represented by a vertex vi(xi, yi, zi)

in a 3D space. However, it might also be a color, an opacity indicator or any other graphical

element [1].

A group of graphical attributes is an IFS composed of a finite number of vertices, connected

under the assumption that these vertices will describe a compact and unique simplex. Ultimately,

the whole designed product will be a collection of groups, assembled to form the global 3D prod-

uct. This structure can be generalized using a multilayered structure with a recursive definition.

After designing the product i.e. the design of graphical and non graphical attributes, the final

contract will be defined as a collection of the whole attributes grouped according to a certain

logic. Therefore, a contract ~s containing n groups, can be represented as in (7.51).

~s = ( G1, . . . , Gi, . . . , Gn ) (7.51)
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Figure 7.4: An IFS representation

where every group Gj is a collection of attributes:

Gi = (

Graphical attributes︷ ︸︸ ︷
vi,1, vi,2, . . . , vi,ni︸ ︷︷ ︸

V ertices

, ci, si, . . .,

Non−graphical attributes︷ ︸︸ ︷
ai,1, ai,2, . . . , ai,mi ) (7.52)

A group Gi has ni vertices and mi non graphical attributes. Other graphical attributes can be

added to the group, for example, the color ci and the shininess si.

Groups Decomposition

As we have stated above, the negotiation process starts when the template of the product is sent

to the client. Then, the user will have to modify it according to his conception under the guidance

of the agent which proposes ways of generating the new transformations. In fact, the agent will

recursively alter the initial template given the parametrization chosen by the user.
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Initially, the template is represented as an XML document including the X3D graphical rep-

resentation of the product as well as additional information. In other words, the template is a

simple, minimalistic, unfinished representation of the product. The XML representation of the

product must be converted into an appropriate format. For this purpose, we provide an algorithm

that disassembles the XML representation of the product into more atomic components, in order

to be manipulated by the user through the UI. The product is represented by an object which can

be described by the relation (7.53).

Object =
m⋃
j=1

IFSj (7.53)

=
m⋃
j=1

n⋃
i=1

vji (x
j
i , y

j
i , z

j
i )

Initially, the algorithm will parse the template and extract all the m groups i.e. the IFSs. During

the design of the product, the user will alter the attributes of the product according to his prefer-

ences. In parallel, the new configuration of the object is computed and updated dynamically.

As we can see in the procedure Desing_shape, the input is the X3D template to change (Ob-

ject), and the output is the new product. The whole process is executed on 4 matrices T, F, E and

R. The process is described as following.

• Tn,3 : is build based on the product template. It contains all the attributes of the product

(the graphical and non graphical).

• Fm,3 : is built based on T by removing redundant vertices. Those redundancies are due to

the representation of the faces of an object by vertices’ indexing [1].

• Em,3 : contains the modifications made by the user for m vertices. The ith entry in E,

corresponds to the new coordinate of the vertex vi.

• Rn,3: the resulting matrix, containing the newly designed product.

• procedure Design_shape(Object)
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Extract all the IFSj from Object.

for each IFSi ∈ Object do

Extract vertexes vi(xi, yi, zi) ∈ IFSi

Tn,3 :=
n⋃
i=1

vi(xi, yi, zi)

Fm,3 := Remove_Redundant_V ertexes(Tn,3)

E := F // Initialization.

for each modification ei(xei , y
e
i , z

e
i ) on vi(xi, yi, zi) do

E[i] := E[i] - ei(xei , y
e
i , z

e
i ) // New Positon.

Rn,3 := f(T, F, E) // New Object.

View the new Object in the UI.

return Rn,3.

7.2.4 Consensus Making

Some assumptions regarding the way the mediator operates to find the optimal contract must be

introduced. In our adopted model [34, 36, 33], neither the agents nor the users do share their

preferences with other designers.

It is also important to mention that the way contracts are represented is governed by a constraint-

based viewpoint that is coherent with the usage of the X3D representation (IFSs).

We note that in our model the design space is considered according to two different view-

points. One viewpoint is static, purely geometrical, defined as the 3D design space of the user. In

other words, it is the visible configuration or choice space that the user is perceiving.

The second viewpoint is dynamical, and is governed by the user’s preferences that may

change during the consensus making process. In fact, a chosen shape or vertex will be assigned

a specific utility value. Even if the user is unaware of these assignments, it is important to keep
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in mind that the agent will have to perform some preferences elicitation during the interaction

with both the user and the mediator. Hence the necessity to assign evaluations to the different

possibilities that are given to the user.

The design space is defined in terms of constraints, making the utility space a constraint-based

utility space. That is, all the models are built based on an aggregation of shapes according to the

cube constraints ck∈[1,m] defined in the mediator’s template as sub-regions of the total R3 design

space. We say that the cube ck has value w(ck, ~s) for contract ~s iff ck is satisfied by ~s. That

is, when the contract point ~s falls within the sub-space of ck. This is the case where the user’s

chosen shape falls in the bounds of the cubic constraint defined by the mediator. The utilitarian

evaluation of a possible design ~s is thus defined as in (7.54).

ui(~s) =
∑

ck∈[1,m], ~s∈ck

w(ck, ~s) (7.54)

Figure 7.5: Cubic constraint

The mediator will gather all the submitted bids from the agents, and search for the optimal

contract(s). In our architecture, maximizing the negotiation outcome is finding the contract ~s∗

that corresponds the most to the clients’ expectations. Therefore, the objective function can be

described as in (7.55).

~s∗ = arg max
~s

∑
i∈N

ui(~s) (7.55)
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The used protocol tries to find the contract ~s∗ that maximizes social welfare, i.e., the total

utilities for all agents [53, 38]. In our model, utilities represent the users’ preferences which are

specified through the design process. The utilities specified by a client as a set of preferences will

also represent the same utilities ui of the agent.

In case the agents are proposing bundles of models instead of one single contract, we will be

using the approach [53] illustrated in search_solution. That is, the mediator starts by finding all

the combinations of bids, one from each agent that are mutually consistent.

Ag: A set of agents

B: A set of Bid-set of each agent (B = {B0, B1, . . . , BN})

The set of bids from agent i is Bi = {bi,0, bi,1, . . . , bi,m}

procedure search_solution(B)

SC :=
⋃
j∈B0
{b0,j}

i := 1

while i < |Ag| do

SC ′ := ∅

for each s ∈ SC do

for each bi,j ∈ Bi do

s′ := s ∪ bi,j

if s′ is consistent

then SC ′ := SC ′ ∪ s′

SC := SC ′, i := i+ 1

maxSolution = getMaxSolution(SC)

return maxSolution
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The resulting bids represent the contract that satisfies the constraints set by the mediator for

designs’ election. The mediator employs an averaging method that maximizes social welfare.

The averaging method has the ability to cancel conflicting preferences and provide a centered

estimation of the group preferences.

7.2.5 Experimental Results

The implemented architecture is composed of the agent and the mediator. Herein, the agent is

nothing more then a Python-coded plugin deployed under the Blender 3D environment. Figure

7.7 shows the main interface of Blender as well as the user interface of the agent (red square).

Once Blender is launched, the agent interface will be visible in the Tools panel. The user will

firstly connect to the mediator in order to load the template and launch the agent. When started,

the agent will start generating the proposed parametric changes while acknowledging the user’s

modifications of the 3D model.

The adopted parametric design is described by a number of constraints or initial parameters

specified by the mediator through the template. For instance, in Figure 7.7, we are designing

the structure of a four-legged animal based on multiple parameterizations of the model’s parts:

the body, the 4 legs, the feet, the neck, the forehead and the head. Each user will have to pick

specific values for these parameters, and the agent will start building the structure of the model

recursively through means of geometric extrusion.

The parametrized recursive extrusion performed in Figure 7.6 are performed as following.

1. The agent starts by creating an initial cube, the seed, corresponding to an example of initial

constraint. An example of such constraints is represented in Figure 7.5 and relating to a

two-dimensional attribute-space with a particular utility value vk.

2. Recursively, and depending on the user’s specified parameters for the body, the agent will

extrude the cube into a line of cubes. Then, the line will be extruded again into a plane

of cubes, and the same plane into a bigger structure until forming the main body of the

animal.
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3. The agent will then pick four distinct cubes located under the structure and perform an

extrusion towards the bottom. These extruded lines will form the legs. Similarly, the feet

will be extruded by taking the faces of the bottom of each leg. All these operations are

governed by the dimensions specified by the user.

4. The neck of the structure will be extruded by picking a cube on the top of the body. The

head and the forehead are generated in a similar manner based on the parameters specified

by the user.

Figure 7.6: Parametrized Extrusion

It is important to highlight that such choice of parametrized generative design gives more au-

tonomy to the interface agent through the recursive generation. Indeed, the recursion and the

parametrization will generate an initial structure that the user can elaborate upon until finding his

ideal design. Additionally, this generative method makes the design process easier for an inex-

perienced user, especially in the presence of complex 3D design environment like Blender. The

way the design is parametrized will basically relate the user’s preferences. Since There are many

agents involved in the design process, we should find the right mechanism yielding the final col-
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Figure 7.7: Interface Agent under Blender

lective design. Satisfying both the mediator constraints as well as the conflicting user-preferences

is the objective.

7.2.6 Discussion

Adopted Formalism

Besides the implementation of the collaborative architecture for 3D design, our work revealed a

number of points which might be investigated and generalized. In fact, we focus on a specific

type of contracts, where we design a product by providing all its attributes and also by specifying

the inter-dependencies between them. What makes this design easy compared to contracts char-

acterized with nonlinear utilities [53, 78, 65], is the fact that the attributes are well structured and

assembled according to a certain logic. This logic is defined by the geometrical topology of the

manipulated attributes as part of a 3D object.

The interdependency relations can be understood while modifying a vertex in a group. Chang-
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ing the coordinates of a vertex will consequently alter the configuration of the surrounding ver-

tices of the same group. Altering a vertex vi,j from a group Gj will not affect any vertex vi,k from

another group Gk. We say that vi,j and vi,k are independent. More generally, for any contract,

dependencies between attributes could be represented in the same way, and consequently, decom-

posed into groups under a certain hypothesis. The decomposition hypothesis relate to the type

of the problem in hand as well as the objectives. For instance, a negotiation problem concerned

with monetary prospect will be decomposed based on how partial components of the problem

relate to each other internally as to maximize an internal utility function. In our model, the hy-

pothesis were defined by the geometry of the 3D shapes we are manipulating. Plus, the nature of

the utility space being explored, which can be described as the union of two subspaces : a three

dimensional space for graphical attributes (3D design), and another subspace for non graphical

attributes. After considering the nature of the manipulated contracts, we can assume that, unlike

the other ways of grouping attributes into clusters [88, 14], this representation retraces more the

hierarchical and graphical coupling and cohesion between attributes. As long as the encapsula-

tion between groups is respected, the same way of composition for 3D objects can be adopted to

decompose multi-attributed contracts into groups, or eventually recursive groups. For instance,

the IFS formalism could be extended to other domains, only by specifying the issues and the

constraints that govern them. In the same way and IFS is a constrained collection of graphical

attributes. Graphical modeling of issues is a realistic way to understand and analyze attributes’

dependencies, by positioning our product in the adequate utility space. In this way, constraints

could be identified easily and optimal contracts could be designed. We assume that the separation

between the graphical 3D structure of a product and the non graphical features is more intuitive

than manipulating attributes without taking into consideration the possible correlations between

them.

Consensus Model

Once the user has finished his design, the agent will submit the produced model to the mediator.

After collecting the models as IFS collections, the mediator will perform an averaging over all
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the vertices forming the faces of the models. The goal is to find the locations that describe the

general tendency of the agents’ design as well as attempt to discard bad designs by giving the

priority to uniform distributions amongst the clouds of points. For instance, Figure 7.8 provide an

example of designs taken amongst 6 agents. The advantage of the adopted parametrized method

is that it allows an extrusion diversity. By adopting the averaging mechanism mentioned above,

Figure 7.8: Submitted Models

the resulting model for Figure 7.8 is given in Figure 7.9. It is important to highlight the advantage

of the averaging in its ability to smoothen the rugged faces of the IFSs by providing aligned faces’

edges.

The collective behavior of the users, coupled with the recursive extrusion-based assistance of

the agents is reflected in the final model. This aggregation of the wisdom of the users [95] was

allowed given the geometrical nature of the problem in hand as well as the usage of recursion

in the way models are generated. The recursive and parametrized way of generating the models

provides a compact designing method and a way of simulating distinct human users’ behaviors.

7.2.7 Conclusion

We developed an agent-based architecture for 3D graphical design of products throughout a col-

laborative process. The negotiated contracts are different from the previously studied ones, in the
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Figure 7.9: Consensus Model

way attributes are classified. In fact, in our case a contract represents a 3D object, designed by

the user as to reflect his preferences. The whole process can be described as an agent-user inter-

action as well as a users-users collaboration. The agent-user interaction takes advantage from a

parametrized and recursive generation method used to guide the user in his design.

Furthermore, we have investigated the possible representations of graphical contracts by

studying the existing relationships between attributes, and therefore established possible assump-

tions related to general contracts modeling.

The next step will be an improvement of the constraints’ management methods for non graph-

ical attributes by allowing monetary attributes to be involved in the assessment process.
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Chapter 8

Conclusion and Future Works

The goal of this thesis was to contribute to the area of decision making with complex domains,

and particularly, when modeling preferences. The contributions of the work as well as the future

directions are summarized the next sections.

8.1 Summary and Contributions

1. Quantifying cognitive complexity using information entropy. (Chapter 3)

We propose to bridge the gap between complexity as perceived in cognitive sciences, i.e., as

a cognitive load in cortical areas [10], usually occurring during high-information load tasks

[16]; and complexity as it is perceived in decision making, occurring under endogenous

bounded rationality [21].

We start by introducing a general model whereby cognition is performed on an abstract

graphical representation that could be instantiated as a Neural Network, Bayesian net-

work, Markov Random Field, CP-Net, Qualitative Probabilistic Network [101], and so

forth. Then, we take cognition to be a graphical game of complexity between nature and

an agent. Complexity is assessed based on the search cost in the problem structure and its

underlying graphical topology. Particularly, we use the information theoretical notion of

entropy as to evaluate the degree of spread of the concepts’ degrees, reflecting the concepts

(nodes, attributes, or issues) importance to the task in hand. This gives a method to assess

the complexity of an exploration algorithm and its computational cost when used in a real

decision making problem.
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2. Complexity, entropy and uncertainty in high-information load tasks. (Chapter 3)

We are interested in studying the evolution of cognitive processes with high-information

load. This is done by drawing the interplay between the structural complexity of the cog-

nitive graph of the decision problem, its entropy, and how the uncertainty of the whole

process evolves.

We show that the larger the cognitive space is, and the more uncertain the evolution of

the process can be, despite the certainty of the final outcome. This is in fact due to the

discontinuity of entropy whenever the cognitive graph has a countably infinite number of

concepts. This counterintuitive situation recalls the problem of infinite regress as well as

the frame problem in the sense that we incorporated the concept of infinity while reasoning

about complex cognition.

The entropy discontinuity could in fact account for the divergence or dissimilarity of belief

within one individual (probabilistic) cognition space; in the way that can cause some kind

of “collective wisdom” within one individual. This corroborates the idea that the temporal

separation of guesses increases the benefit of within-person averaging by increasing the

independence of guesses, thus making a second guess from the same person is more like a

guess from a completely different person [99].

3. Utility hyper-graphs for complex preferences representation. (Chapter 4)

We propose a novel representation for nonlinear utility spaces as to tackle the complexity

problem. It has the merit of being modular and parametric, which allows search strategies

evaluation as well as any graph-theoretic analysis. We also propose efficient optimization

algorithms and heuristics for optimal contracts search based on message passing in the

utility hyper-graph. This is performed by a loopy utility propagation scheme inspired by

the loopy belief propagation used in probabilistic graphical models [87]. The proposed

approach outperforms the other sampling-based methods and provides a better scaling for

both issues and agents.

132



4. Quantifying the complexity of nonlinear utility spaces. (Chapter 5)

We propose an efficient method to assess the complexity of a nonlinear utility space using

its induced utility hyper-graph. This is based on the assumption that the hyper-edges of a

utility hyper-graph are an instantiation of the abstract cognitive graph used in 1, and that

it is possible to use the same entropy-based approach [47] as to measure complexity. This

is done by assessing the entropy of the constraint-issue distribution because it reflects the

degree of interdependence within the utility space. This has the merit of reflecting the

computational complexity of any search algorithm, and corroborates other issue-related

interdependency measures [40].

5. Low-complexity search in utility hyper-graphs. (Chapter 5)

Based on the complexity measure, we provide several search strategies and identify the

optimal strategy that minimizes the search cost. The optimal search strategy allows a low-

complexity traversal of the utility hyper-graph while preserving the contracts optimality.

This is an improvement of the message passing algorithm and an example of fast and

frugal heuristics used in decision making under high-information load [16, 44, 45]. The

optimal strategy uses a Power-law exploration topology, and corroborates the ubiquity of

such distributions in complex systems undergoing phase transition. In our case, the phase

transition is with respect to the accumulation of utility, or welfare.

6. Using utility hyper-graphs in multilateral negotiation. (Chapter 6)

We provide an evaluation of the hyper-graphic representation in a multilateral mediated

negotiation setting. To this end, we assume that the agents utility models are defined as

utility hyper-graphs, and that they use our message passing mechanism when searching for

their optimal contracts. Agents submit their proposals (bids, or contracts) to a mediator

who tries to find the contract(s) that maximize social welfare. We show that under high

complexity, the collective social welfare could be greater than the sum of the individual

expected best utilities. This corroborates the assumption of nonlinearity by reflecting the

idea that the nonlinearity of the (individual) agent’s utility spaces is propagated from the
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issue-constraint level up to the agreement level through means of mediation. It is possible

to propose a principled method that could exploit this nonlinearity property as to maximize

social welfare in consensus-based platforms.

7. Unifying Constraint-based utility functions. (Chapter 6)

We propose a formula that unifies all known constraint-based (Cubic, Bell, Conic, etc.)

utility functions. The new representation leads us to a potential parametric model that

could be used for opponent modeling in complex nonlinear negotiations.

With this representation, the constraints’ definitions collapse to fewer parameters that could

potentially be defined using prior distributions and the underlying hyper-parameters. These

parameters could be estimated online, using well known Machine Learning techniques

during a real-time encounter between two agents.

8. Asymptotic maximum entropy utility principle. (Chapter 7)

We propose a Maximum Entropy principle for preferences elicitation for utility functions

with an infinite number of outcomes. This is the mirrored version of 2., in the sense that

we study the evolution of preferences defined over an infinite number of outcomes. The

new principle extends the maximum entropy principle for utility elicitation [2].

We show that under high-information load, a stochastic preferences merging process is

non-ergodic [58] to the extent that its entropy is discontinuous. This is another way of

interpreting the merging process as a dynamic system. In this case, there are states of the

system that cannot be occupied again when the system reaches the limiting distribution

(or limiting preference profile), perceived as the equilibrium state. This state is known

to be transient and irreversible, which makes the whole process non-ergodic with regard

to uncertainty. Trying to analyze the whole system by taking a momentary snapshot at

each time step does not reflect the behavior of the whole system on the long run. This

independence between the states of the system could also account for [99].
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8.2 Future Directions

As future directions, we are interested in the following areas of research:

1. Hierarchical Automated Negotiation: It is possible to exploit the structure of the utility

hyper-graphs by proposing an hierarchical exploration scheme and evaluate it in a hierar-

chical negotiation scenario. Indeed, it is possible to recursively negotiate over the different

layers of the problem according to a Top-down approach. Even the idea of issue could

be abstracted to include an encapsulation of sub-issues, located in sub-utility spaces and

represented by cliques in the hyper-graph. Consequently, search processes can help iden-

tify optimal contracts for improvement at each level. This combination of separating the

system into layers, then using utility propagation to focus attention and search within a

constrained region can be very powerful when the agent is making offers (bidding) during

a short number of rounds. Additionally, it addresses general negotiations with multiple

domains in the sense that the different components of the hierarchy could account for dif-

ferent knowledge-domains or ontologies. This is inherent to realistic negotiation scenarios

such as the collaborative design of complex contracts.

2. Divide-and-Conquer in Complex Automated Negotiation: Analyze the interdependence

arising between the issues (or between the constraints, as explained in section 4.2.3) as to

assess their importance and influence on the contracts optimality. Being able to assess the

issues importance could in fact be used to simplify complex negotiation scenarios by focus-

ing on the most important sub-contracts. This allows the whole problem to be divided into

independent components that could be separately negotiated by the agents. For instance, let

us assume that two agents 1 and 2 have utility hyper-graphs G1 and G2 with K isomorphic

components. In this case, it is possible to run K negotiation threads that can ensure a better

agreement then if the agent had to negotiate over the whole representation. Having isomor-

phic components might not be realistic in the sense that, usually, real-world problems have

one dense component. However, we could establish some assumptions that could help re-

lax the general constrained form and allow independent components to emerge. This could
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be done for instance by using the importance of the issues as a way to go beyond the initial

graphical connectivity configuration.

3. Opponent Modeling and Preferences Learning using GGMM: The proposed GGMM

approximation of constraint-based utility functions could be used for preferences learning

as to allow the agent to learn and build the structure of her own utility space whenever this

information is missing. This assumption is due to the bounded rational nature of the agent

and the limited foresight and access to the whole structure of the problem.

This could be done by building the induced dependence graph from the utility hyper-graph

in the same way a Bayesian Network relates to its Factor Graph representation. Herein,

two different dependence graphs could be built, between the constraints as well as between

the issues (section 4.2.3). Several Machine Learning technique could then be used for

Opponent Modeling. Additionally, this could allow the agent to learn her own preferences

or the preferences of a human user in an interactive manner. Interacting with a human

user as to elicit her preferences is important whenever the domains are large and require a

human guidance in the way the utility models are built.

4. Holonic Mechanism Design: It is possible to generalize the message passing mechanism

in utility hyper-graphs from the issue-constraint level to several levels of abstraction. Par-

ticularly, and as shown in Figure 8.1, an issue k could act as an agent k, having different

valuations defined as bids {bk,1, . . . , bk,nk} in the same way issue k has different valuations

from a particular domain. Similarly, a constraint acts as a coalition defined by a mediator

M with a consensus function f . This stems from the fact that our message passing scheme

is in fact a generalized form of the Vickrey–Clarke–Groves (VCG) mechanism [54].

Particularly, fixing a value for one issue while dynamically evaluating the other issues is

similar to the Clark pivot mechanism used in VCG. The same applies for the payment

scheme, whereby µM→k is a payment sent from the mediator M to agent k, for k’s bid bk.

It is possible to prove that the mechanism is efficient and Incentive Compatible (IC) all

over the hierarchies of the architecture. The resulting architecture is a holonic multi-agent
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system for general purpose consensus making. This holonic architecture is a generalization

of the hierarchical scheme described in 1.

Figure 8.1: VCG as Message Passing in Hierarchical Utility Hypergraph
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Appendix A

Appendix

A.1 Proof of (7.30)
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We have lim
n→∞

T1 = −1× log(1) = 0. T2 can be written as in (A.3).

T2 = −
(

log a

log n

)b [
log

(
1

n

)
+ log

((
log a

log n

)b)]
(A.3)

=

(
log a

log n

)b
log(n)︸ ︷︷ ︸

T3

+

(
log n

log a

)b
log

((
log a

log n

)b)
︸ ︷︷ ︸

T4

Using L’Hôpital’s rule, we can show that lim
n→∞

T4 = 0, while for T3, we have (A.4).

lim
n→∞

(log(a))b × log(n)

(log(n))b
=

lim
n→∞

(log(a)b)× (log(n))1−b (A.4)

Hence

lim
n→∞

H(∆U
(a,b)
(n) ) =


0 if b > 1

log a if b = 1

∞ if 0 < b < 1
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A.2 Proof of Theorem 1

We start by considering the sequences (A.5).

Z = {zi}i (A.5)

Z1 = {z′i}i

Z2 = {z′′i }i

Let z′a− , z
′
a+
∈ Z1 and z′′a− , z

′′
a+
∈ Z2 relative to the nodes a+, a− ∈ G. Since we are com-

paring Z1 and Z2 after the addition of the edges (s, a−) and (s, a+) respectively to G1 and G2,

only the values of z′a− , z
′
a+
, z′′a− , z

′′
a+

are to be considered, while the other values are unchanged.

Furthermore, we have z′a− = z′′a− + 1 and z′′a+
= z′a+

+ 1.

Finding the total difference between the entropies of Z1 and Z2 is reduced to finding the

difference between the entropies of {z′a− , z
′
a+
} and {z′′a−, z′′a+

} as in (A.6).

H(Z1)−H(Z2) = (A.6)

= H({z′a− , z
′
a+
})−H({z′′a− , z

′′
a+
})

= H({z′′a− + 1, z′a+
})−H({z′′a− , z

′
a+

+ 1})

= −(z′′a− + 1) log(z′′a− + 1)− z′a+
log(z′a+

) + z′′a− log(z′′a−) + (z′a+
+ 1) log(z′a+

+ 1)

=
[
(z′a+

+ 1) log(z′a+
+ 1)− z′a+

log(z′a+
)
]
−
[
(z′′a− + 1) log(z′′a− + 1)− z′′a− log(z′′a−)

]
= h(z′a+

)− h(z′′a−)

Let the function h be defined as in (A.7) :

h(x) = (x+ 1) log(x+ 1)− x log(x) (A.7)

We have :

1. h is strictly monotonic: h′(x) > 0 ∀x ∈ [1,+∞]

2. z′a− < z′a+
and z′a− > z′′a− (since z′a− = z′′a− + 1).

Hence z′a+
> z′′a−
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3. From 1. and 2., we have h(z′a+
)− h(z′′a−) > 0.

Hence H(Z1) > H(Z2)

That is, adding a link from s towards a+ (rather than a−) minimizes the entropy (A.8).

H(Z|s ∼ a−) > H(Z|s ∼ a+) (A.8)
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“A Congestion Management Simulation based on the Negotiation Mechanism among Vehi-

cles and its Application” (in Japanese). The 77th National Convention of IPSJ (IPSJ2015),

Kyoto, Japan, March 17-19, 2015

[3] Rafik Hadfi and Takayuki Ito. “Unifying Constraint-based Utility Functions”. Joint Agent

Workshops and Symposium (JAWS2014), Kyushu, Japan, October 27-29, 2014

[4] Rafik Hadfi and Takayuki Ito. “Distributed group formation among agents based on deci-

sional structures and linguistic mediation rules”. Joint Agent Workshops and Symposiums

(JAWS/iJAWS2012), Shizuoka, Japan, October 24-26, 2012

[5] Rafik Hadfi and Takayuki Ito. “The Interpretation of Heuristics based on the Maximum

Entropy Principle”. Information Processing Society of Japan (IPSJ2012), Nagoya, Japan,

March 6-8, 2012

[6] Rafik Hedfi and Takayuki Ito. “Coalition Formation based on Decisional Structures.” In-

formation Processing Society of Japan (IPSJ2011), Tokyo, Japan, March 2-4 2011

[7] Rafik Hedfi and Takayuki Ito. “A Learning Interface Agent for Collaborative Multi-attribute

Design using Semi-Supervised Clustering”. First International Joint Agent Workshop and

Symposium 2010 (JAWS/iJAWS2010), Furano, Hokkaido, October 29, 2010
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Awards

1. Monbukagakusho (MEXT) Scholarship, April 2009–March 2015

2. AAAI Student Scholarship Award, American Association for Artificial Intelligence (2014)

3. ACAN2011 Best Student Presentation Award

• Rafik Hedfi and Takayuki Ito. “Agreement among Agents based on Decisional Struc-

tures and its Application to Group Formation”. The 4th International Workshop on

Agent-based Complex Automated Negotiations (ACAN2011), Taipei, Taiwan, May
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4. IEEE Computer Society Japan Chapter JAWS Young Researcher Award

• Rafik Hadfi and Takayuki Ito. “Unifying Constraint-based Utility Functions”. Joint

Agent Workshops and Symposium (JAWS2014), Kyushu, Japan, October 27-29, 2014
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