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Chapter 1

Introduction

1.1 Motivation

The word reconstruction in classical multiple view geometry (MVG) [1, 17, 19, 21, 30]
refers to generation of a 3 dimensional (3D) world from 2 dimensional (2D) images.
Usually, structure or geometric information is the subject of study. Many methods exist
to perform the task. Common examples are "Structure from X", where X could be
motion [1, 2, 3, 7, 19, 21], texture [35], shading [36], etc.

Reconstruction has 3 main steps, correspondence, motion and structure. Correspon-
dence means finding the 2D location of a 3D point in multiple images. Motion refers
to estimating the camera parameters. Structure means recovering scene geometry i.e.
3D reconstruction. After reconstruction arbitrary views can be generated from different
viewpoints. Figure 1.1 shows the process of correspondence establishment, reconstruc-
tion and arbitrary view generation.

It would be worth mentioning that traditional multiview relations are in spatial do-
main and are capable of reconstructing geometric information of the 3D world. The
accuracy of reconstruction depends on the accuracy of image points and the correctness
of correspondence among these image points. In particular, wrong image correspon-
dence causes completely wrong 3D reconstruction [4, 26]. Therefore, the correctness of
image correspondence is quite important in 3D reconstruction.

If we have a large variety in image intensity, it is not so difficult to obtain accurate
image correspondence in multiple images. However, if the object has repetitive tex-
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Figure 1.1: The process of reconstruction and arbitrary view synthesis. Corresponding
points, reconstructed 3D point and its projection in arbitrary view are joined by black
lines.

(a) image 1 (b) image 2

Figure 1.2: A texture patterns from two different viewpoints.

ture pattern as shown in Fig. 1.2, it is quite difficult to obtain correct correspondence
in multiple images, since we have many similar patterns in images. This is called cor-
respondence problem, and is still a major problem in computer vision. In this thesis,
we tackle the correspondence problem in repetitive patterns, and propose methods for
reconstructing texture objects while relaxing the correspondence problem.

1.2 Sequential Patterns

In this thesis, we consider the reconstruction of the following 2 types of objects:

1D Sequential Patterns: A series of grayscale/color 3D points is termed as a 1D
sequence. It can also be referred to as 1D sequential texture. When we have multiple
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(a) bracelet (b) a line of berries

Figure 1.3: Example of sequential patterns

(a) texture 1 (b) texture 2

Figure 1.4: Example of texture patterns.

objects in the 3D scene, we often have the order of objects and their order is visible
in images. For example, a bracelet shown in Fig. 1.3 (a) consists of some small 3D
objects of various colors, and the order of these objects is visible in the image. The
line of berries shown in Fig. 1.3 (b) is another example. In this research, we propose
a reconstruction method for such sequential patterns from multiple images. Two kinds
of sequential patterns are considered, grayscale and color sequential patterns depending
upon the camera used. Elements of a grayscale sequence are 4 dimensional and elements
of a color sequence are 6 dimensional.

2D Sequential Patterns (Texture patterns): 2D Sequential patterns or texture pat-
terns are considered as combination of geometric and photometric information on 3D
curved surfaces. We assume that texture elements are connected in a 2D sampling grid
which is visible in images. Figures 1.4 (a) and (b) show examples of texture patterns. A
texture patch is defined to be a 2D array/grid of points on a 3D surface as shown by red
in Fig. 1.4 (a). Two types of texture patterns are considered, grayscale texture patterns
are 4 dimensional and color texture patterns are 6 dimensional.
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(a) 3D object (b) image 1 (c) image 2

Figure 1.5: 3D object projected to 2 images. Black points in image 1 and image 2 show
position of 1st, 15th and 29th points.

(a) image 1 (b) image 2

Figure 1.6: Sampling of image 2 is shifted by 5 units. Black points show position of 1st,
15th and 29th points.

1.3 Correspondence Problem

Traditionally, a set of discrete points in two or more than two images are used for recon-
structing a 3D object. These points will be referred to as samples or sample points and
their sequence in an image as sampling order or sequence order. Figure 1.5 (b) and (c)
show sample points obtained from a 3D object shown in Fig. 1.5 (a). Let us consider an
example when the two images view the same set of 3D points but the sequence order is
different as shown in Fig. 1.6. In other words the sampling order of image 2 is shifted.
Then, reconstruction would be terribly distorted as shown in Fig. 1.7, even if the sam-
pling order is shifted only by 5 units. This is known as correspondence problem due to
sampling shift, and it easily occurs in sequential patterns such as Fig. 1.3.

Finding correspondence in the sequential pattern is difficult due to two factors. The
sequential patterns are often repetitive and set of similar intensities/color repeat in a
single sequential pattern. Hence, finding the correspondence of points among multiple
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(a) ground truth (b) reconstruction

Figure 1.7: 3D reconstruction under sampling shift. The sequence order of image 2 was
shifted with 5 units, therefore reconstruction is distorted.

(a) camera 1 (b) camera 2

Figure 1.8: The same scene is observed differently in each camera image because of the
difference in intensity parameters of camera.

images is not easy in general. Second is the intensity calibration problem. The image
intensity changes according to the intensity parameters of camera, and these parameters
are different in each camera. As a result, the same scene is observed differently in
each camera image as shown in Fig. 1.8. To cope with the problem, camera intensity
parameters are often calibrated before using image intensity information. However, the
calibration of intensity parameters is not easy and is time consuming. Also, the intensity
calibration is not always available.

2D sequential patterns i.e. texture patterns have the same difficulties. Repetitive
texture patterns contain many areas (patches) with similar intensity/color and distin-
guishing these areas is not easy. Figure 1.9 shows one such example of a texture object
imaged from different viewpoints. In these images the patches outlined in red are cor-
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Figure 1.9: Corresponding texture patches in two images. Red patches are correspond-
ing. Black patches in image 2 are false corresponding patches.

(a) 3D space (b) 4D space (c) 6D space

Figure 1.10: World space.

responding to each other. However, a sound criteria must be established to find these
corresponding patches, as there are many patches which look nearly the same. For in-
stance, the black patches in image 2 have different geometric positions but have similar
visual appearance with the red patch.

1.4 Approach and Assumption

To cope with the correspondence problem we extend the classical 3D reconstruction
method in 2 folds. Firstly, the reconstruction of texture objects is performed in higher
dimensional space in this research. For grayscale texture, we consider 4D space which
consists of the usual 3D space and a 1D intensity space, as shown in Fig. 1.10 (b). For
color texture, we consider 6D space, which consists of the usual 3D space and RGB
color space as shown in Fig. 1.10 (c). A projection from 4D to 3D space is considered
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for grayscale texture and a projection from 6D to 5D is considered for color texture.
The unification of geometrical and photometrical information in frequency space

has following benefits:

1. First it saves us from calibration of camera geometry and camera sensitivity pa-
rameters, which is required in the existing 3D reconstruction method.

2. It provides us a method for reconstructing the geometrical and photometrical in-
formation of an object simultaneously without knowing image correspondences.

Secondly, we consider camera projection and reconstruction not in the usual space,
but in the frequency space, whose coordinates consists of frequencies. The use of fre-
quency space enables us to reconstruct sequential patterns without knowing point cor-
respondences.

For deriving our new method, we introduce the following assumptions in this re-
search:

1. Cameras are affine.

2. Cameras observe same spatial domain, in which the sampling grid or line is given.

3. Surfaces are Lambertian.

1.5 Abbreviations

Table 1.5 summarizes abbreviations used in this thesis.

Table 1.1: Abbreviations used in text.

No. Abbreviation Term

1 D dimensions
2 DOF degrees of freedom

cont.
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3 COP center of projection
4 LOS line of sight
5 TCC tensor consistency check
6 SIFT scale invariant feature transform
7 SURF speeded up robust features
8 MVG multiple view geomtry
9 SD spatial domain
10 FD Fourier domain
11 DFT discrete Fourier transform
12 1D-DFT 1 dimensional discrete Fourier transform
13 2D-DFT 2 dimensional discrete Fourier transform
14 RGB red green blue (color channels)
15 no. number
16 s.t. such that
17 w.r.t. with respect to
18 cont. continued
19 conf. configuration
20 col./cols. columns
21 def. definition
22 ref. refer
23 vs. versus

1.6 Symbols

Following is a list of important symbols and their tensor representations.
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Table 1.2: Important symbols and their tensor representations.

No. Symbol Tensor
Representation

Quantity

1 X X i world point in SD
2 X(k) X i(k) sequential point SD
3 X(k, l) X i(k, l) texture point in SD
4 Z Zi world point in FD
5 Z(n) Zi(n) sequential point FD
6 Z(n,m) Zi(n,m) texture point in FD
7 S Si plane/hyperplane in world
8 x xi image point in SD
9 z zi image point in FD
10 z(n) zi(n) sequential image point in FD
11 z(n,m) zi(n,m) texture image point in FD
12 e ei epipole in image
13 l li, lij, lijkl line in image
14 s si plane/hyperplane in image
15 λ(n) λ(n) sampling shift in 1D sequential

points
16 λ(n,m) λ(n,m) sampling shift in texture element
17 P P i

j camera matrix, i is col., j is row
18 H H ij, H i

j homography between images
19 0 0i, 0ij zero vector and matrix
20 ε εijk, ε

ijk, εijkl, . . .Levi-Civita tensor (def. in Ap-
pendix A.4)

21 F Fij 2 view tensor of classical MVG

cont.
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22 T Tfij 2 view tensor of extended MVG
(grayscale images)

23 T Tijhkl 2 view tensor of extended MVG
(color images)

1.7 Thesis Overview

The thesis consists of 5 chapters and 2 appendices. Experiments are provided at the end
of each chapter.

Chapter 1 introduces the research, main terms of the text and assumptions.

Chapter 2 summarizes the traditional 2 view geometry using affine camera. Affine
cameras are a useful approximation of general projective cameras. Multiview relations
are derived in spatial domain and traditional reconstruction is shown.

Chapter 3 describes the theory for 4 dimensional to 3 dimensional affine projection.
It is used for reconstruction of grayscale objects. One dimensional Fourier transform
is used for sequences elements and 2 dimensional Fourier transform is used for texture
elements. Multiview constraints are derived in frequency space and 4D reconstruction is
explained. Method to establish correspondences across images is also discussed. Eval-
uation of new multiview tensor is shown using stability criteria.

Chapter 4 shows the case of 6 dimensional to 5 dimensional affine projection. It is
used for reconstruction of color objects. Multiview relations are derived in frequency
space and 6D reconstruction is shown. Method to establish correspondences across im-
ages is also discussed. Stability of tensor is also explained.

Appendix A has material supplementing Chap. 2 to Chap. 4.
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Appendix B contains some details of the preliminary steps for experiments performed.
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Chapter 2

Classical 3D Reconstruction

In this chapter traditional two view geometry and 3D reconstruction for affine cameras
is explained. The classical reconstruction method is explained in many existing articles
such as [1, 17, 19, 21, 30].

2.1 Object and Image Space

In classical multiple view geometry a point X in world is defined in 3D space X , Y and
Z, and its projection in image is described in 2D space x and y. Using homogeneous
coordinates a 3D point and its 2D projection are expressed as vectors in matrix notation
as follows;

X =


X

Y

Z

1

 (2.1)

x =

xy
1

 (2.2)

Next, we consider special point forms.

• In 3D world. For any arbitrary scalar W ,
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– points of form [X, 0, 0,W ]> lie on X−axis

– points of form [0, Y, 0,W ]> lie on Y−axis

– points of form [0, 0, Z,W ]> lie on Z−axis

– world origin (intersection of three axes) is of form [0, 0, 0, 1]>.

• In 2D image. For any arbitrary scalar w,

– points of form [x, 0, w]> are present on x−axis

– points of form [0, y, w]> are present on y−axis

In tensor notation the points are represented with contravariant indices. For example,
a 3D point and a 2D point have representations X i and xi respectively. Further details
on tensor notation can be found in Appendix A.4. For homogeneous coordinates kindly
refer Appendix A.1.

2.2 Camera

A traditional camera projects a 3D point in world to a 2D image point, as illustrated in
Fig. 2.1. This projection is expressed mathematically as Eq. (2.3). The image geometric
characteristics are dependent on camera internal characteristics such as focal length, etc.
and the position of camera w.r.t world origin (external characteristics). These parameters
determine the type of camera and are consolidated in a 3 × 4 matrix. Equation (2.4)
shows the general camera matrix P.

x = PX (2.3)

P =

p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

 (2.4)

A general camera has 12 elements and 11 degrees of freedom (DOF), except a scale.
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Figure 2.1: A general camera projection. The line joining the camera center C and
image point x is termed as line of sight (LOS). The figure shows the camera center at a
finite position for general cameras and at infinity for affine cameras.

2.2.1 Camera Parameters

The camera defined in Eq. (2.4) can be defined as a composition of intrinsic parameters
K and extrinsic parameters Mext.

P = KMext (2.5)

Internal parameters include scale factors, skew and principal point. The five internal
parameters are written as a 3× 3 upper triangular matrix as shown in Eq. (2.6).

K =

mx 0 0

0 my 0

0 0 1


f 0 px

0 f py

0 0 1

 =

αx s x0

0 αy y0

0 0 1

 (2.6)

where,

• [x0, y0]
> is the principal point (image center).

• αx and αy are the scale factors in x and y coordinates, αy/αx is termed as the
aspect ratio.

• s is the skew. Generally s is zero, leading to 4 DOF. This means the pixels
of image are square. In cases, where s is non-zero the image axes x and y are
non-perpendicular and pixels are non-square. An example is taking image of an
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image.

The matrix diag(mx,my, 1) converts the image coordinates to pixel form, mx, my rep-
resents the no. of pixels per unit distance in x and y axes respectively, f is focal length
and [px, py]> represents the image center or principal point in metric dimensions.

Commonly, it is assumed that αx = αy and s = 0. Equation (2.7) shows an example
of camera internal parameter matrix.

K =

500 0 250

0 500 250

0 0 1

 (2.7)

External parameters are rotation and translation. Rotation is represented as a 3×3

matrix, a product of 3 matrices Rx, Ry and Rz. These matrices represent rotation along
X , Y and Z axes as shown in Eq. (2.9). Translation is represented as a 3 × 1 vector.
Rotation and translation are often combined together to form a 3 × 4 matrix, as shown
in Eq. (2.8).

Mext =

R11 R12 R13 TX

R21 R22 R23 TY

R31 R32 R33 TZ

 (2.8)

where the matrix R is the orthogonal Rotation matrix defined as follows:

R =

1 0 0

0 cosθX −sinθX
0 sinθX cosθX


 cosθY 0 sinθY

0 1 0

−sinθY 0 cosθY


cosθZ −sinθZ 0

sinθZ cosθZ 0

0 0 1

 (2.9)

2.2.2 Camera Matrix Properties

A camera matrix defined in Eq. (2.4) can be written as follows:

P =
[
M|p4

]
(2.10)

where M represents the 3 × 3 left matrix portion and p4 last column. Matrix M is an
important element that classifies two major camera categories, namely finite and infinite
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cameras. If the matrix rank of M is 3 the camera is finite, if it is 2 the camera is infinite.
A camera at infinity is also known as affine.

A general camera matrix P has following 4 properties:

• Camera center is the null vector of matrix P

• Matrix columns representing images of special points

• Matrix rows representing special planes

• Principal axis/ray and principal point can be defined from matrix M

These properties are explained in the following part of this section.

Camera Center

The matrix P has 4 columns, however its rank is 3. This shows existence of 1 dimen-
sional right null space, which is the camera center.

PC = 0 (2.11)

Representing the camera center as C = [C̃>, 1]>, we may formulate Eq. (2.5) and
Eq. (2.10) as follows:

P = KR[I| − C̃] = M[I|M−1p4] (2.12)

Equation (2.12) confirms that a camera has 11 DOF, 5 for K, 3 for R and 3 for C. If M
is non-singular, camera center has following form:

C =

[
−M−1p4

1

]
(2.13)

In case M in singular, camera center has following form:

C =

[
d

0

]
(2.14)

where d is the right null vector of M.
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Camera Matrix Columns

The four columns of camera matrix P represent image points as follows:

• p1 represents the vanishing point of world X−axis, since p1 = PD, where D =

[1, 0, 0, 0]> is the direction of X−axis.

• p2 represents the vanishing point of world Y−axis, since p2 = PD, where D =

[0, 1, 0, 0]> is the direction of Y−axis.

• p3 represents the vanishing point of world Z−axis, since p3 = PD, where D =

[0, 0, 1, 0]> is the direction of Z−axis.

• p4 represents the image of world origin, since p4 = PD, where D = [0, 0, 0, 1]>

is the world origin.

Camera Matrix Rows

The three rows of camera matrix P represent special planes. These planes can be con-
sidered as join of a point and a line.

• first row, P1>: represents a plane, which goes through the camera center C and
image y-axis. The plane P1> goes through the camera center C since P1>C = 0.
Also, all points on P1, s.t. P1>X = 0 are projected to image points [0, y, w]>,
which forms the image y−axis. Thus, P1> is a plane which goes through C and
y-axis.

• second row, P2>: represents a plane, which goes through the camera center C and
image x-axis. The plane P2> goes through the camera center C since P2>C = 0.
Also, all points on P2, s.t. P2>X = 0 are projected to image points [x, 0, w]>,
which forms the image x−axis. Thus, P2> is a plane which goes through C and
x-axis.

• third row, P3>: represents a plane, which goes through the camera center C and
is parallel to image xy-axis. The plane P3> goes through the camera center C
since P3>C = 0. Also, all points on P3, s.t. P3>X = 0 are projected to image
points [x, y, 0]>, which forms the plane parallel to image xy− plane. Thus, P3>

is a plane which goes through C and is parallel to xy−plane.
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The first two planes are known as axes planes, while third plane is called principal plane.

Principal Axis and Principal Point

From Eq. (2.10) and Eq. (2.12) and s = 0 we may define the left 3× 3 portion of P as
follows:

M = KR =

αx 0 x0

0 αy y0

0 0 1


r

1

r2

r3

 =

αxr
1 + x0r

3

αyr
2 + y0r

3

r3

 (2.15)

ri represent the row vectors of R, and mi represent the row vectors of M. The third row
of M, m3 represents the vector normal to principal plane, it is known as the principal
axis or principal ray. It is also normal to image plane.

Next, we consider principal point x0 = Mm3. From Eq. (2.15) we may write:

Mm3 =

(αxr
1 + x0r

3)r3>

(αyr
2 + y0r

3)r3>

(r3)r3>

 =

x0y0
1

 (2.16)

Since (r3)r3> = 1 and (ri)r3> = 0. The distance from camera center to image center
(principal point) is the focal length of camera. Similarly, we may obtain αx and αy as
the 1st and the 2nd elements of vectors Mm1 and Mm2 respectively.

2.3 Affine Camera

In this research we are concerned with affine cameras only. Generally, the word "affine"
in classical geometry characterizes preservation of collinearity. Equation (2.17) shows
the affine camera projecting a 3D point to a 2D point in homogeneous coordinates.

xy
1

 =

p11 p12 p13 p14

p21 p22 p23 p24

0 0 0 1



X

Y

Z

1

 (2.17)
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The affine camera has 8 degrees of freedom. The camera matrix rank is 3. And rank of
upper 3x2 matrix part is 2. The part (p14, p24)

> is the image of the world origin. The
reasons for being termed affine and mathematical details for matrix structure will be
clarified in subsequent sections.

2.3.1 Affine Camera Approximation

Affine camera is a useful approximation of general projective camera, when the scene
depth is small compared to the distance between the scene and the camera, and the
distance of the point from principal ray is small. Cameras with long focal length and
small field of view satisfy these conditions.

General cameras available are perspective. Therefore, for experiments affine camera
approximation can be achieved by placing the camera far from the scene, then zoom-
ing it appropriately. This technique is known as track back and zoom in. Long dis-
tance/focal length significantly minimizes the perspective effects, while zooming has
the effect of scale transformation, which is also an affine operation.

Figure 2.2 shows a perspective camera being approximated to affine. Compare point
X1 in (a) and point X2 in (b) being projected to image points x1 and x2 respectively.
The image points x′1 and x′2 are their affine projections. As shown in these figures, the
approximation error ∆x2 = ||x2 − x′2|| is smaller than ∆x1 = ||x1 − x′1||. This means
that we have better approximation under small scene depth.

It must be noted when the scene has many points with widely varying depths affine
camera approximation is prone to errors. In such cases, the scene should be divided into
multiple regions, with affine model for each region.

Formation of Affine Camera

A general projective camera can be approximated to affine. A finite projective camera
can be written as follows:

P0 = KR[I| − C̃] = K

r
1> −r1>C̃
r2> −r2>C̃
r3> −r3>C̃

 (2.18)
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(a) affine approximation

(b) affine approximation with smaller scene depth

Figure 2.2: Affine camera approximation.

The camera is at position C̃ with rotation R w.r.t world coordinate frame. For simplicity
let us assume r3 is in direction of world Z−axis. From previous discussion, we know
that the principal axis is in direction of r3. This means the camera is allowed to rotate
only about Z−axis, under such circumstances the rotation matrix is R = Rz (right
most matrix in Eq. (2.9)) and r3>= [0, 0, 1]>. The distance of the world origin from
the camera center in the direction of the principal ray is given by d0 = −r3>C̃. The
first step for affine camera is tracking back i.e. moving the camera backward along the
direction of principal ray with translation t = [0, 0, t]>. The new position of camera
center is C̃− t, as shown in Fig. 2.3.

Pt = K

r
1> −r1>(C̃− t)

r2> −r2>(C̃− t)

r3> −r3>(C̃− t)

 = K

r
1> −r1>C̃
r2> −r2>C̃
r3> −r3>C̃ + t

 (2.19)

Since t is in direction of r3 and rotation matrix is orthogonal, −ri>t are zero for i 6= 3

and dt = −r3>C̃ + t is the depth of the world origin w.r.t camera center. The next
step is zooming. The effect of zooming is right multiplication of calibration matrix by
diag(k, k, 1). To keep the size fixed, the magnification factor can be defined as k =
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Figure 2.3: Backward translation of camera in direction of principal axis. The principal
axis of camera is in direction of world Z-axis. The position vector C shows original
position of camera center and C − t shows position of camera center after translation
−t.

dt/d0. Equation (2.20) shows the effect of zooming on a tracked back camera.

Pt = K

dt/d0 0 0

0 dt/d0 0

0 0 1


r

1> −r1>C̃
r2> −r2>C̃
r3> dt

 =
dt
d0

K

 r1> −r1>C̃
r2> −r2>C̃

r3>d0/dt d0

 (2.20)

The multiplicative factor dt/d0 can be ignored. Equation (2.20) shows the general cam-
era matrix with combined effects of tracking and zooming. At t = 0, matrix Pt is same
as a finite projective camera P0, shown in Eq. (2.18). If the camera is tracked backwards
infinitely, implying dt → ∞ ⇒ d0/dt → 0 and the projective camera turns into affine
as follows:

P∞ = lim
t→∞

Pt = K

r
1> −r1>C̃
r2> −r2>C̃
0> d0

 (2.21)

Affine Approximation Error

Next, we study the details of error introduced by affine approximation compared to
projective camera. This will help us to understand the scene configurations required for
best approximation. First, the points on plane through world origin and perpendicular
to direction of principal axis are invariant to camera motion and zooming. With respect
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to camera coordinates the points on this plane have following form:

X =

[
αr1 + βr2

1

]
(2.22)

Since P0X = PtX = P∞X = [α − r1>C, β − r2>C , 0 − r3>C] > ∀t, and R is
orthogonal matrix i.e. r3>(αr1 + βr2) = 0. However, the images of points not on
principal plane differ under projection of projective (P0) and affine camera (P∞), such
points have following form.

X =

[
αr1 + βr2 +4r3

1

]
(2.23)

where4 represents the perpendicular distance from principal plane. The projective and
affine camera maps this point to following image points.

xproj = P0X = K

 x̃

ỹ

d0 +4

 (2.24)

xaff = P∞X = K

 x̃ỹ
d0

 (2.25)

where x̃ = α− r1>C̃, ỹ = β − r2>C̃. We can write the calibration matrix in following
form:

K =

[
K2×2 x̃0

0̃> 1

]
(2.26)

K2×2 is a 2× 2 upper triangular matrix and x̃0 = [x0, y0]
>. Equation (2.24) and (2.25)

become,

xproj =

[
K2×2x̃ + (d0 +4)x̃0

d0 +4

]
(2.27)
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xaff =

[
K2×2x̃ + d0x̃0

d0

]
(2.28)

Dehomogenizing the above images points,

x̃proj = x̃0 +
K2×2x̃

d0 +4
(2.29)

x̃aff = x̃0 +
K2×2x̃

d0
(2.30)

From Eq. (2.29) and (2.30) we can find the relation between x̃proj and x̃aff as follows:

x̃aff − x̃0 =
d0 +4
d0

(x̃proj − x̃0) (2.31)

Equation (2.31) shows that the difference between affine approximated camera and pro-
jective camera is d0+4

d0
= 1 + 4

d0
. We may rewrite Eq. (2.31) as follows:

x̃aff − x̃proj =
4
d0

(x̃proj − x̃0) (2.32)

Using Eq. (2.32) we can consider the following three conditions under which a projec-
tive camera can be safely considered as affine. This is possible if the right hand side of
Eq. (2.32) is close to zero.

• First, 4 ≈ 0 i.e. the scene depth is nearly equal to zero. Conversely, all points
are clustered around average depth.

• Second, 4 << d0 or d0 ≈ ∞. This means that either the camera has long focal
length or the distance between camera and scene is sufficiently large.

• Third, x̃proj ≈ x̃0. This occurs under the condition when all 3D points are close
to the principal axis.

For pictorial description of these conditions refer Fig. 2.4. The first condition is self-
evident in Fig. 2.4. For the second condition the camera center is moved backward, as
it can be seen that difference between x̃aff and x̃proj reduces. Fig. 2.4 (b) shows the
effect of moving the points near to principal axis.
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(a) effect of moving camera center farther

(b) effect of moving points closed to principal axis

Figure 2.4: Affine approximation conditions.

Anatomy of Affine Camera

Equation (2.21) shows the general form of affine camera, we write it as follows:

P∞ =

[
K2×2 x̃0

0̂> 1

][
R̂ t̂

0> d0

]
(2.33)

where,

• 0̂ = [0, 0]> and 0 = [0, 0, 0]>

• R̂ contains first two rows of rotation matrix R

• t̂ = [−r1>C̃,−r2>C̃]>

Following equation is equivalent to Eq. (2.33):

P∞ =

[
1
d0
K2×2 x̃0

0̂> 1

][
R̂ t̂

0> 1

]
(2.34)

Assuming d0 = 1 gives the definition of an affine camera.

P∞ =

[
K2×2R̂ K2×2x̃0 + t̂

0̂> 1

]
(2.35)
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Thus following two decompositions are equivalent,

P∞ =

[
K2×2 0̂

0̂> 1

][
R̂ t̂

0> 1

]
=

[
K2×2 x̃0

0̂> 1

][
R̂ 0̂

0> 1

]
(2.36)

Since t̂ is an external parameter, we cannot fix it in camera matrix. Other choice is x̃0

must be [0, 0]>. Therefore, affine camera can be decomposed as follows:

Paff = P∞ =

[
K2×2 0̂

0̂> 1

][
R̂ t̂

0> 1

]
(2.37)

Affine Camera Properties

Affine cameras are characterized by the following important properties:

• The Camera center is at infinity. Thus, principal plane for affine camera is at
infinity.

• The last row of camera matrix is [0, 0, 0, 1]>.

• Calibration matrix K in Eq. (2.6) takes the following form:

K =

[
K2×2 0̂

0̂> 1

]
(2.38)

• Weak perspective camera is one of the affine cameras, in which all points in world
are first projected orthographically to average scene depth s.t. Z = Z0 followed
by perspective projection. Thus the non-linear component is tuned to a scalar
multiplication, as follows:

x = 1
Z0
X y = 1

Z0
Y (2.39)

if Z0 = 1, we have:

x = X y = Y (2.40)
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(a) 3D object (b) perspective projection (c) affine projection

Figure 2.5: A 3D object with several parallel lines. Parallel lines do not remain parallel
after projection in perspective projection whereas, affine preserves parallelism.

• The plane at infinity is projected to image points at infinity. As the point coor-
dinates present on the plane at infinity have (X, Y, Z, 0)> form,their projections
have image coordinates (x, y, 0)>.

• Parallel lines remain parallel after projection. Since the points at infinity are in-
variant under affine projection and parallel lines intersect at infinity, parallelism
is maintained. This is shown in Fig. 2.5. A 3D object with several parallel lines
is projected to images using perspective camera (non-linear) in Fig. 2.5 (b) and
an affine camera (linear) in Fig. 2.5 (c). Note, original parallel lines are no longer
parallel in the perspective camera image, while they are parallel in the affine cam-
era images. Other invariants under affine projection are volume ratio, centroid
and plane at infinity.

2.4 Back Projection from 2D images

In 3D to 2D projection we consider back projection of a line to form a plane. Equa-
tion (2.3) shows the projection of a 3D point to a 2D point. Let us consider a line l

passing through a point x in 2D space as follows:

l>x = 0 (2.41)

From Eq. (2.3) and Eq. (2.41) following expression is obtained:

l>PX = 0 (2.42)
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Figure 2.6: A general camera projection. A back projected plane S from a line l in
image. The reader may observe that 3D points projected onto line l form a plane defined
by camera matrix and line.

In the above equation, we define:

S = P>l (2.43)

where S is the back projected plane from a 2D point to a 3D point along the line of
sight. This plane meets the 3D point X as follows:

S>X = 0 (2.44)

The plane S joins four entities, 3D point X, 2D point x and line l in image and camera
center C. This phenomenon is shown in Fig. 2.6.

2.5 Multiview Relations

We next consider, the multiview relations, which describes the relationship among mul-
tiple cameras.

2.5.1 Multiple view geometry

Let us consider two cameras whose camera centers are C and C′ as shown in Fig. 2.7.
Let a 3D point X be projected to x in the first camera, and projected to x′ in the second
camera. Then, X, C and C′ form a plane in the 3D space, which is called epipolar plane.
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Figure 2.7: Epipolar geometry.

The intersections of the epipolar plane and two image planes form epipolar lines l and
l′ as shown in Fig. 2.7. The 3D line which goes through C and C′ is called baseline,
and the intersections of the baseline and two image planes are called epipoles e and
e′. The epipoles are considered as the projection of the camera in the image of another
camera. As shown in Fig. 2.7, the epipolar lines go through the epipoles e ande′ and
image points x and x′. Therefore, all the epipolar lines go through epipoles in each
image.

2.5.2 Multiview Constraints

When we have multiple cameras, there exist special constraints among these cam-
eras,which are called multiview constraints. In the 3D space, the multiview constraints
are obtained by intersection of 4 planes at a 3D point X= [X, Y, Z, 1]>. Let us consider
2 cameras C and C′, and let a 3D point X be projected to x and x′ in the images of
these cameras as shown in Fig. 2.8:

x = PX (2.45)

x′ = P′X

Suppose we have 2 lines l and l′ which go through x, and 2 lines l′1 and l′2 which go
through x′ respectively. If we consider back projected planes S1 and S2 from l1 and l2,
and S′1 and S′2 from l′1 and l′2, these 4 planes intersect at X in the 3D space as shown
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Figure 2.8: Intersection of four planes at a single 3D point X. For two view geometry,
planes S1 and S2 are back projected from image 1. Planes S′1 and S′2 are back projected
from image 2.

in Fig. 2.8.

S1 = P>l1, S2 = P>l2, S′
1

= P′
>
l′1, S′

2
= P′

>
l′2 (2.46)

The condition of 4 planes S1, S2, S′1, S′2 intersecting at a point X is stated mathemati-
cally as follows:

S1>

S2>

S′1>

S′2>

X = 0 (2.47)

Since the linear equation Eq. (2.47) has a solution i.e. X, the following equation must
hold:

det[S1>S2>S′
1>
S′

2>
] = 0 (2.48)

In tensor notation Eq. (2.48) can be rewritten as follows:

εklmnS1
kS

2
l S
′1
mS
′2
n = 0 (2.49)
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where εklmn is known as the Levi-Civita tensor and defined as follows:

εklmn =


+1 For evenpermutationsof (k, l,m, n)

−1 For oddpermutationsof (k, l,m, n)

0 otherwise

(2.50)

where k, l,m and n have values from 1 to 4. Substituting Eq. (2.46) into Eq. (2.49) we
have:

εklmnP p
k l

1
pP

q
l l

2
qP
′r
ml
′1
r P
′s
n l
′2
s = 0 (2.51)

Since two lines l1 and l2 intersect at a point x, and two lines l′1 and l′2 intersect at a
point x′, we may write:

εipql1pl
2
q = xi (2.52)

εjrsl′1r l
′2
s = x′j (2.53)

From Eq. (2.51), Eq. (2.52) and Eq. (2.53) we have,

εklmnεipqεjrsx
ix′jP p

kP
q
l P
′r
mP

′s
n = 0 (2.54)

Then, we may define:

Fij = εklmnεipqεjrsP
p
kP

q
l P
′r
mP

′s
n (2.55)

where it may be noted that k, l,m and n range from 1 to 4 and represent columns of
camera matrix. Variables p, q, r and s range from 1 to 3 and symbolize the rows of
camera matrix. The entity Fij is known as the fundamental matrix or bifocal tensor. It
is a 3 x 3 matrix (tensor of order 2). Details of fundamental matrix and its computation
are explained in Sec. 2.5.4. By using Fij Eq. 2.54 can be described as follows:

xix′jFij = 0 (2.56)
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This is the multiview constraints for two cameras known as bilinear constraints or epipo-
lar constraints.

2.5.3 Algebraic verification

Another way to obtain the multiview relations is through matrix operations. Once again
consider the affine projection equations of two cameras, combined into a single one as
follows:

[
P x 0

P′ 0 x′

]X

−1

−1

 = 0 (2.57)

Expanding above equation, we obtain:

p11 p12 p13 p14 x1 0

p21 p22 p23 p24 x2 0

p31 p32 p33 p34 x3 0

p′11 p′12 p′13 p′14 0 x′1

p′21 p′22 p′23 p′24 0 x′2

p′31 p′32 p′33 p′34 0 x′3



X

−1

−1

 = 0 (2.58)

Since Eq. (2.58) has non-trivial solution, the determinant of the left most 6 × 6 matrix
must be zero. This condition is expressed as a bilinear equation in terms of xi and
x′j . The easiest way is to eliminate one row of camera 1 and one row of camera 2,
the columns to be eliminated are always the ones containing the image coordinates i.e.
5th column and 6th column. Remaining part is a 4x4 determinant. An example case is
shown in Eq. (2.58) for computation of F33 with blue elements indicating the eliminated
part. The bilinear relation obtained is:

xix′jεipqεjrs det


pp

pq

p′r

p′s

 = 0 (2.59)
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Figure 2.9: Fundamental matrix transferring a point into a line in the other image.

Equation (2.59) is the same two view constraint obtained in Eq. (2.56) with the funda-
mental matrix defined as in Eq. (2.55).

2.5.4 Fundamental Matrix

We next consider the fundamental matrix in detail. The fundamental matrix is the
algebraic representation of two view geometry. It represents relative geometry (i.e.
rotation and translation) between two cameras. The rank of F is 2 and has 9 elements.
Its degrees of freedom depend on the type of camera used. For projective cameras
it has 7 degrees of freedom. If cameras are affine the last row of camera matrices is
[0, 0, 0, 1]>, therefore only 5 elements of F are non-zero, leading to 4 degrees of freedom
due to overall scale ambiguity. The non-zero F elements are F13, F23, F31, F32 and F33.
The non-zero elements of F can be found by analyzing Eq. (2.55), the value of F is
determined by the selections of camera rows. All rows participate in computation of F
except those indicated by i and j. Thus for affine cameras, all elements of F are zero
except five elements stated afore.

Fundamental matrix is responsible for the transfer of image information between
images. For a point in one image, it gives a line in the other on which the corresponding
point may be found. Therefore it reduces the search space from 2 dimensional image to
a line. This is shown in Fig. 2.9.

If the internal camera matrices are calibrated, the fundamental matrix can be mod-
ified into essential matrix whose DOF is just 5. Appendix A.5 shows the relationship
between the two matrices.
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Computation of Fundamental Matrix

Equation (2.56) can be written in matrix form as follows;

x>Fx′ = 0 (2.60)

where x = [x, y, 1]> and x′ = [x′, y′, 1]>. Then Eq. (2.60) can be expressed as follows:

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (2.61)

In the case of affine cameras only 5 elements of Fij are non-zero. Therefore Eq. (2.61)
is reduced to the following form:

x′f13 + y′f23 + xf31 + yf32 + f33 = 0 (2.62)

Let us define f = [f13, f23, f31, f32, f33]
>. Then in matrix form we may write Eq. (2.62)

as follows;

[x′, y′, x, y, 1]f = 0 (2.63)

For n corresponding points the matrix of image coordinates, say M is of dimension n
x 5. Eigenvalue decomposition of M>M i.e. eigenvector corresponding to the smallest
eigenvalue will give the coefficients of f .

2.5.5 Minimum No. of Points

Equation (2.62) shows each image correspondence gives one independent bilinear con-
straint (equation). Therefore a minimum of 4 point correspondences in two views is
sufficient to compute the affine fundamental matrix up to an overall scale ambiguity.
However, these 4 points must have good 3D variation i.e. 4 points must not be coplanar
and no 3 points should be collinear.
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2.5.6 Maximum No. of Cameras

In classical multiple view geometry we can have a maximum of 4 cameras, owing to the
fact that the no. of planes used for the generation of multilinear constraints is 4. The
geometric entities that describe the multiview relations for 3 and 4 cameras are trifocal
tensor and quadrifocal tensor. Considering Eq. (2.47) for trifocal tensor the first two
planes are back projected from image 1 and second and third planes are back projected
from image 2 and image 3 respectively. For quadrifocal tensor each image provides one
plane. The multiview relations for point correspondences across three and four images
are given by following equations [1, 2, 19, 21, 30].

xix′jx′′kεjruεksvτ
rs
i = 0uv (2.64)

xix′jx′′kx′′′lεipuεjqvεkrwεlsxQ
pqrs = 0uvwx (2.65)

where tensors, τ rsi andQpqrs are defined by using the projection matrices of four cameras
P, P′, P′′ and P′′′ as follows:

τ rsi = εipqε
abcdP p

aP
q
b P
′r
c P

′′s
d (2.66)

Qpqrs = εabcdP p
aP
′q
b P

′′r
c P

′′′s
d (2.67)

2.6 3D Reconstruction

Once a multiview entity is computed, such as fundamental matrix for two views. 3D
reconstruction can be achieved as shown in the following sections:

2.6.1 Retrieval of Camera Matrices

It is known that the canonical camera pair can be defined in the affine case as follows:

P =

1 0 0 0

0 1 0 0

0 0 0 1

 (2.68)
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(a) epipolar lines (b) epipolar lines
for perspective camera image for affine camera image

Figure 2.10: Comparison of epipolar lines. The epipolar lines in perspective camera
intersect at a finite epipole. The epipolar lines in affine camera intersect at infinity
(epipole), thus parallel.

P′ =
[
H|e′

]
(2.69)

H is called the homography, which represents 2D projective transformation and e′ rep-
resents the epipole in the second image. Thus, if we compute H and e′, a pair of cameras
can be calibrated.

2.6.2 Computation of Epipoles

As shown in Sec. 2.5.1, all the epipolar lines go through epipoles. This means that the
epipole in one image corresponds to all the points in other another image. Hence the
following equation must hold:

eiFij = 0j (2.70)

e′jFij = 0i (2.71)

Thus, the epipoles can be computed as the left and right null vector of fundamental
matrix. The camera centers for affine camera are at infinity. Points at infinity are mapped
to points at infinity in affine camera images. Therefore, the epipoles for affine cameras
are at infinity, and epipolar lines are parallel. This is another characteristic of affine
cameras. This is shown in Fig. 2.10.
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Figure 2.11: Image points x and x′ of a 3D point X on an arbitrary plane π are related
through a homography H. The homography H can be computed from fundamental
matrix F.

2.6.3 Extraction of Homography

Projections of coplanar 3D points in one image are related to projections in another
image via a homography. Consider a point X in 3D world on an arbitrary plane π. The
point X is projected to a point x in image 1 and x′π in image 2. The corresponding
points x and x′π are related by a 2D homography H, as shown in Fig. 2.11.

x′lπ = H l
ix
i (2.72)

Next, an epipolar line l′ in image 2 can be defined by joining epipole e′ and point x′π.

l′j = εjlrx
′l
πe
′r (2.73)

From bilinear constraint Eq. (2.56) the line l′j can also be defined as follows:

l′j = Fijx
i (2.74)

Equations (2.72), (2.73) and (2.74) lead to following result.

H l
i = εjlre′rFij (2.75)

Therefore, homography H can be computed from a bifocal tensor, which is fundamental
matrix F in this case. Once the homography H and the epipole e′ are computed, camera
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matrices of two cameras can be recovered as shown in Sec. 2.6.1.

2.7 Affine Reconstruction and Rectification

Once the camera matrices P and P′ are retrieved, 3D reconstruction is possible. Since
the 3D point X is projected to x and x′ as shown in Eq. (2.45), we have the following
equations:

[x]×PX = 0 (2.76)

[x′]×P
′X = 0 (2.77)

where, [ · ]× denotes a skew symmetric matrix for vector product. From Eq. (2.76) and
Eq. (2.77) we have:

MX = 0 (2.78)

where M is a 6× 4 matrix as follows:

M =

[
[x]×P

[x′]×P
′

]
(2.79)

By computing X from Eq. (2.78), we can reconstruct the 3D point X. The least squares
solution of Eq. (2.78) is obtained by computing an eigenvector which corresponds to
the minimum eigenvalue of M>M.

The reconstructed object is correct up to an affine transformation. It is still different
from ground truth, hence a geometric correction is required. To obtain the original ob-
ject a transformation Ha is computed to rectify the reconstruction X = HaX

′, where
Ha is the affine transformation between reconstruction X′ and ground truth X. It is de-
scribed using 4 corresponding points in homogeneous coordinates Xi,X

′
i(i = 1, . . . , 4)

which act as basis vectors.

Ha =
[
X1 X2 X3 X4

] [
X′1 X′2 X′3 X′4

]−1
(2.80)

Figure 2.12 shows 4 points forming basis vectors .
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Figure 2.12: Four points forming affine basis vectors for the rectification of reconstruc-
tion.
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Chapter 3

Reconstructing Grayscale Objects
without knowing Image
Correspondences

As shown in the previous chapter, the MVG enables us to describe the relationship be-
tween multiple cameras, and reconstruct 3D objects in the scene. However, the classical
MVG explained in the previous chapter can only describe the geometric relationship
among multiple cameras, and photometric properties, such as image intensity, cannot
be treated.

In this chapter, we extend the classical MVG into high dimensional space, and show
new MVG which enables us to describe photometric relationship as well as geometric
relationship among multiple images. Based on the new MVG, we propose a method for
reconstructing sequential patterns without knowing image correspondences.

A general imaging process can be described as follows. Suppose we have an object,
a source of light and a camera. The light source emits the light and the object reflects
it (obeying some reflection models), the camera captures the reflections (obeying some
transformation model) and maps them onto an image plane.

When a ray of light strikes a surface, it is reflected and scattered on the surface.
This scattering is different in different directions and depends on the surface properties.
Usually under normal circumstances, reflection pattern is a combination of specular (or
specular lobe) and diffuse reflection. To make things simpler Johan Lambert proposed
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Figure 3.1: The uniform reflection behavior of a Lambertian surface.

a special case of light reflection, where the reflection is uniform in all directions, like
a hemisphere. This is a good approximation of light reflection in many cases, such as
matte paper or unfinished wood etc. In this case, the specular part is zero. A reflec-
tion behavior of such kind is termed as diffuse reflection or Lambertian. Figure 3.1
shows the case of Lambertian reflectance. In Lambertian reflectance the apparent sur-
face brightness is constant, even if the viewing direction is different. The benefit of
Lambertian surface assumption is that we can choose any view point without any dif-
ference in surface radiosity.

3.1 Object and Image Spaces

For considering the relationship between the real world and its projections in images,
we in this section explain points in the real world and in images.

3.1.1 4D World

For deriving a reconstruction method without image correspondences, we consider that
the real world is in 4 dimensions. Three dimensions are for geometric information and
one dimension is for intensity / gray level. It is assumed that Lambertian reflectance
model is obeyed for the intensity information. A 4D point in homogeneous form is
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represented as a vector of following form:

X =


X

Y

Z

I

1

 (3.1)

whereX, Y and Z denote the coordinates of a point in the usual 3D space, and I denotes
the intensity of the 3D point.

3.1.2 3D Image

An image is considered to be in 3 dimensions. Two dimensions are for geometric in-
formation and 1 dimension is reserved for intensity. A 3D image point in homogeneous
coordinates is defined in vector form as follows:

x =


x

y

i

1

 (3.2)

where x and y denote the coordinates of an image point, and i denotes the intensity of
the image point. In tensor notation the points are represented with contravariant indices.
For example, a 4D point and a 3D point have representations X i and xi respectively.
Further details on tensor notation can be found in Appendix A.4. For homogeneous
coordinates kindly refer Appendix A.1.

3.1.3 Object and Image Spaces considering Sequential Patterns

In sequential patterns the 4D points in world and 3D points in image are considered to be
connected in a sequence, as shown in Fig. 1.3. In spatial domain sequential and texture
patterns differ depending on how the elements are connected. An example of sequential
pattern with different sequence ordering is shown in Fig. 3.2. As shown n this figure,
the set of coordinates of sequential pattern is completely different if the sampling order
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(a) sampling order (b) shifted sampling order

Figure 3.2: Example of a sequence in an image with sampling order shifted.

(a) sampling order (b) shifted sampling order

Figure 3.3: An example of texture sampling. (b) shows the sampling shift in horizontal
and vertical direction using the numbering convention of (a). k and l denote a 2D
sampling grid, and t and s represent the shift in horizontal and vertical directions of the
sampling grid.

is shifted. Thus, finding the correct ordering is essential in the classical MVG and for
3D reconstruction.

3.1.4 Object and Image Spaces considering Texture Patterns

In texture pattern, the sample points vary in two directions. The sample points are
connected in horizontal and vertical directions to form a 2D sampling grid on the texture
elements. Fig. 3.3 shows the texture elements of an image connected to form a grid with
different sampling order. Again, the set of coordinates of texture pattern is completely
different if the sampling order is shifted as shown in Fig. 3.3.



43

3.2 Affine Camera from 4D to 3D Space

The 4D world point defined in Sec. 3.1.1 is projected to an image point defined in
Sec. 3.1.2 by an affine camera as follows:


x

y

i

1

 =


p11 p12 p13 0 p15

p21 p22 p23 0 p25

0 0 0 p34 p35

0 0 0 0 1




X

Y

Z

I

1

 (3.3)

This is the extension of the classical affine camera shown in Sec. 2.3 , and we call it ex-
tended affine camera model in this thesis. The red part in the matrix denotes rotation
and the blue part represents translation. Intensity is projected through p34 and p35. We
assume image intensity depends on two camera factors i.e. intensity gain (p34) and in-
tensity offset (p35). They are known as camera linear sensitivity parameters. In general,
these parameters have different values in different cameras. Details of these parameters
can be found in Appendix B. Equation (3.3) shows, the extended camera model can
not only capture geometric information, but also capture photometric information of the
scene. It should be noted that geometric and photometric information are independent
of each other. Therefore, the projection is simultaneous yet independent. A conceptual
figure of 4D to 3D camera projection is shown in Fig. 3.4.

Center of projection (COP) in 4D to 3D projection is a tensor of order 4− 3= 1, i.e.
it is 4D point. COP is usually the null space of camera matrix (4× 5 in this case). The
line of sight (LOS) is the join/union of 2 higher dimensional points (tensor of order 1).
Therefore, it is a line (tensor of order 1 + 1 = 2). In tensor notation image points and
lines are represented as xi and lij respectively.

3.3 Projection in Frequency Domain

For deriving the reconstruction method without image correspondence, we introduce
image projection in frequency domain in this thesis. We first, consider the general
concept of affine projection in frequency domain. Equation (3.3) shows the projection
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Figure 3.4: An extended camera projection from 4D world to 3D image. The line
joining the camera center C and image point x is termed as line of sight (LOS). The
figure shows the camera center is at infinity for affine cameras. A plane in the 3D image
is back projected to a hyperplane in the 4D world space.

of point X to image point x in spatial domain. Let us denote, the discrete Fourier
transform by F . To change the domain from spatial to frequency we apply F to both
sides of Eq. (3.3) as follows:

F(x) = F(PX) (3.4)

Affine projection and Fourier transform are both linear operations, the product is com-
mutative and order of these operations can be swaped as follows:

F(x) = PF(X) (3.5)

Let z be the Fourier transform of x, and Z be the Fourier transform of X. Then, Eq. (3.5)
can be rewritten as follows:

z = PZ (3.6)

Thus, the Fourier transformation of a series of points being affine projected has same
effect of projecting frequencies (points in frequency domain) under affine transforma-
tion.
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3.3.1 Projection in Frequency Domain for Sequential Patterns (1D-
DFT)

To consider the transformation of the sequential pattern in spatial domain to frequency
domain, suppose two cameras C and C′ projecting a series of 3D points X(k) (k =

1, · · · , N). Assuming the point correspondences in two cameras are unknown but the
order of the points is maintained in each view, the kth 3D point X(k) is observed as kth
image point x(k) in image 1. The same point is observed as k′th image point x′(k′) in
image 2 as follows:

x(k) = PX(k) (3.7)

x′(k′) = P′X(k) (3.8)

where k and k′ are different in general. As the order is preserved in each image, the
following relationship holds:

k′ = k + s (3.9)

where, s is the shift in sampling of image 2 with respect to sampling of image 1. In this
research, we assume that it is unknown but it is constant. Therefore, x(k) and x′(k′)

are not corresponding points. To solve with the correspondence problem, the projection
model in the frequency space described in Eq. (3.6) is used. Suppose there are N image
points in image 1 and image 2 respectively. Then, by applying discrete Fourier transform
to both sides of Eq. (3.7):

z(n) =
1

N

N−1∑
k=0

PX(k)e
−j2πnk

N

= PZ(n)

(3.10)

where, z(n) = [xf (n), yf (n) , if (n) , δ(n)]> is an image point, and Z(n) = [Xf (n),

Yf (n), Zf (n), If (n), δ(n)]> is a 4D object point in frequency space. The reader may
notice we are using homogeneous coordinates. δ(n) is the delta function, whose value
is equal to 1 for n = 0 and 0 for others. Similarly, applying discrete Fourier transform
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to Eq. (3.8):

z′(n) =
1

N

N−1∑
k′=0

P′X(k′ − s)e
−j2πnk′

N

= P′Z(n)e
−j2πns
N

(3.11)

where z′(n) = [x′f (n), y′f (n), i′f (n), δ(n)]> is a point in second image in frequency
space. We rewrite Eq. (3.11) as follows:

λ(n)z′(n) = P′Z(n) (3.12)

where λ(n) = e
j2πns
N represents the phase shift of sampling in camera C′ relative to

camera C, and it is unknown. From Eq. (3.10) and Eq. (3.11), we find that in the
frequency space both cameras project the same 4D point Z(n) and thus it is possible to
consider the correspondence of image data, even if the sampling order of two images is
different.

3.3.2 Projection in Frequency Domain for Texture Patterns (2D-
DFT)

For the case of texture surface consider a 2D sampling grid on it, as shown in Fig. 3.3,
where the 2D grid is indexed by k and l. Then, each point on the texture pattern is
defined using two variables k and l of the sampling grid. Suppose two cameras C and
C′ project a texture pattern of 4D points X(k, l) (k = 1, · · · , N, l = 1, · · · ,M) to
image 1 and image 2 respectively. It is assumed that the point correspondences in these
two cameras are unknown, but a grid of points and their order is obtained in each view.
Thus, the (k, l)th 3D point X(k, l) is observed as (k, l)th image point x(k, l) in image 1

and is observed as (k′, l′)th image point x′(k′, l′) in image 2 as follows:

x(k, l) = PX(k, l) (3.13)

x′(k′, l′) = P′X(k, l) (3.14)
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k, l and k′, l′ are different in general. Since order is preserved in each image, the fol-
lowing relationship holds:

k′ = k + s (3.15)

l′ = l + t (3.16)

where, s and t are the horizontal and vertical shifts in the sampling of image 2 with
respect to the sampling of image 1. In this thesis, we assume that s and t are unknown
but are constant. Thus, x(k, l) and x′(k′, l′) are non-corresponding points. We solve this
problem by considering camera projection in the frequency space. Suppose there are
N ×M image points in image 1 and image 2 respectively. Applying Fourier transform
to Eq. (3.13):

z(n,m) =
1

N

1

M

N−1∑
k=0

M−1∑
l=0

PX(k, l)e
−j2πnk

N e
−j2πml
M

=PZ(n,m)

(3.17)

where, z(n,m) = [xf (n,m), yf (n,m), if (n,m), δ(n,m)]> represents the 3D image
point in frequency space, and Z(n,m) = [Xf (n,m), Yf (n,m), Zf (n, m) , If (n,m)

, δ(n,m)]> represents the 4D point in the frequency space. δ(n,m) is the delta function,
whose value is equal to 1 for n = m = 0 and 0 for others. Similarly, applying Fourier
transform to Eq. (3.14) we have:

z′(n,m) =
1

N

1

M

N−1∑
k′=0

M−1∑
l′=0

P′X(k′ − s, l′ − t)e
−j2πnk′

N e
−j2πml′

M

=P′Z(n,m)e
−j2πns
N e

−j2πmt
M

(3.18)

where z′(n,m) = [x′f (n,m), y′f (n,m), i′f (n,m), δ(n,m)]> is a point in the second
image in frequency space. Equation (3.18) can be rewritten as follows:

λ(n,m)z′(n,m) = P′Z(n,m) (3.19)

where λ(n,m) = e
j2πns
N e

j2πmt
M represents the 2D phase shift of sampling in camera C′

relative to camera C. Equation (3.17) and (3.19) show that in the frequency space both
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cameras project the same 4D point Z(n,m) , even if the original 4D points X projected
to these two cameras are different from each other. Thus, it is possible to consider the
correspondence of image data, even if the sampling order of image 2 is shifted in 2

directions of the 2D sampling grid w.r.t the sampling order of image 1.

3.4 Back Projection from 3D images

We next consider back projection from 3D images to 4D space in frequency domain,
which is the extension of the concept shown in Sec. 2.4. The projection in frequency
domain is described in Eq. (3.6) as follows:

z = PZ (3.20)

The following equations shows a plane containing a point z in 3D image.

s>z = 0 (3.21)

From above two equations, following result is straight forward:

s>PZ = 0 (3.22)

In Eq. (3.22), a hyperplane S can be defined such that S = P>s. Then, we have:

S>Z = 0 (3.23)

Equation (3.23) asserts important results. That is, a hyperplane S back projected from
the plane s in 3D image goes through a 4D point Z in the frequency space. Equa-
tion (3.23) is agreeable in spatial domain as well. Figure 3.4 portrays the back projection
concept.

3.5 Multiview relations for Sequential Patterns

Following sections describe the method of deriving multiview relations in 4D extended
space. For ease of understanding, a quick look of Appendix A.4 would be helpful for
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tensor notation.

3.5.1 Geometric derivation

Multiview relations in 4D space can be considered as the intersection of 5 hyperplanes
meeting at a single point [1]. Let us consider two cameras in the 4D frequency space,
and let a 4D point Z be projected to z and z′ in the image of these cameras, as shown in
Fig. 3.5.

z = PZ (3.24)

λz′ = P′Z (3.25)

where λ represents the phase shift of the sampling between two cameras. Suppose we
have three planes s1, s2 and s3 which go through z, and two planes s′1 and s′2 which go
through z. If we consider back projected hyperplanes S1, S2 and S3 from s1, s2 and s3,
and S′1 and S′2 from s′1 and s′2, these hyper planes intersect at Z in the 4D frequency
space as shown in Fig. 3.5.

S1 = P>s1 (3.26)

S2 = P>s2 (3.27)

S3 = P>s3 (3.28)

S′
1

= P′
>
s′

1 (3.29)

S′
2

= P′
>
s′

2 (3.30)

A necessary and sufficient condition for these five hyperplanes to meet in a common
point in 4D space is that the determinant of the matrix formed from the vectors repre-
senting these hyperplanes should vanish. Mathematically, this condition is written as
follows:

det[P>s1,P>s2,P>s3,P′>s′1,P′>s′2] = 0 (3.31)
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Figure 3.5: Intersection of five planes at a single 4D point Z. For two view geometry,
hyperplanes S1 , S2 and S3 are back projected from image 1 and S′1 and S′2 are back
projected from image 2.

Note, these planes are considered in analysis for deriving the multilinear relationship
between z and z′, and determining these planes is not required. Equation (3.31) can be
rewritten in tensor format as follows:

εpqrsts1aP
a
p s

2
bP

b
q s

3
cP

c
r s
′1
dP
′d
s s
′2
eP
′e
t = 0 (3.32)

Since Eq. (3.32) holds for any s′3f we have:

εpqrsts1aP
a
p s

2
bP

b
q s

3
cP

c
r s
′1
dP
′d
s s
′2
eP
′e
ts
′3
f = 0f (3.33)

The planes s1a, s
2
b and s3c intersect at a point zi in image 1, and s′1d, s

′2
e and s′3f intersect

at a point z′j in image 2 as follows:

εabcis1as
2
bs

3
c = zi (3.34)

εdefjs′1ds
′2
es
′3
f = z′j (3.35)

Thus, the following equations hold:

s1as
2
bs

3
c = εabciz

i (3.36)

s′1ds
′2
es
′3
f = εdefjz

′j (3.37)
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By substituting Eq. (3.36) and Eq. (3.37) into Eq. (3.33), following relationship is
obtained:

ziz′jεabciεdefjε
pqrstP a

pP
b
qP

c
rP
′d
sP
′e
t = 0f (3.38)

We define a bifocal tensor Tfij as follows:

Tfij = εabciεdefjε
pqrstP a

pP
b
qP

c
rP
′d
sP
′e
t (3.39)

Then Eq. (3.38) results in following bilinear constraint in frequency space:

ziz′jTfij = 0f (3.40)

where z = [z1, z2, z3, z4]> and z′ = [z′1, z′2, z′3, z′4]> are 3D image points in the
frequency space, εabci is a 4 × 4 × 4 × 4 tensor, which takes 1 for even permutation,
−1 for odd permutation and 0 for others. Also, εpqrst is a 5 × 5 × 5 × 5 × 5 tensor
which takes −1, 1 and 0 depending on its permutation. The bifocal tensor Tfij defined
in Eq. (3.39) is a 4 × 4 × 4 tensor, which consists of camera projection matrices only.
Thus, the computation of Tfij is same as the calibration of two cameras. Equation (3.40)
shows by varying f a set of 4 equations is obtained, each equation having 16 terms. The
details of Tfij are postponed till Sec. 3.5.4.

3.5.2 Algebraic verification

Next is the algebraic verification of the bifocal tensor. Considering the frequency do-
main projection of two cameras and combining Eq. (3.10) and Eq. (3.13):

[
P z 0

P′ 0 z′

] Z

−1

−λ

 = 0 (3.41)
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Expanding Eq. (3.41), we have:

p11 p12 p13 0 p15 z1 0

p21 p22 p23 0 p25 z2 0

0 0 0 p34 p35 z3 0

0 0 0 0 1 z4 0

p′11 p′12 p′13 0 p′15 0 z′1

p′21 p′22 p′23 0 p′25 0 z′2

0 0 0 p′34 p′35 0 z′3

0 0 0 0 1 0 z′4



 Z

−1

−λ

 = 0 (3.42)

Again, to form multiview relations in such a case is to start eliminating the rows until a
square minor is obtained. For this case, a 7x7 minor has a zero determinant. For ease of
notation let us name the rows of camera matrices. The 4 rows of camera 1 are pa, pb,
pc and pi. The four row vectors of camera 2 will be referred to as p′d, p′e, p′f and p′j .
Then expansion of the determinant by cofactors results in following constraint:

ziz′jεabciεdefj det


pa

pb

pc

p′d

p′e

 = 0f (3.43)

The tensor Tfij is described as follows:

Tfij = εabciεdefj det


pa

pb

pc

p′d

p′e

 (3.44)

From Eq. (3.43) and (3.44), we have the bilinear constraints shown in Eq. (3.40). A part
of T443 is shown as an example in Eq. (3.42), with blue colored elements indicating the
eliminated matrix part.
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3.5.3 Generalization to Texture Patterns

Equation (3.40) represents two view constraints for sequential patterns in frequency
space. For clarity, it can be rewritten in the following form:

zi(n)z′j(n)Tfij = 0f (3.45)

For the case of texture patterns i.e. 2D sequential patterns, the two view constraint can
be generalized to following form:

zi(n,m)z′j(n,m)Tfij = 0f (3.46)

The bifocal tensor Tfij in Eq. (3.46) is identical with that in Eq. (3.45), since it is irrele-
vant to objects observed by the cameras. Eq. (3.45)and Eq. (3.46) are two view relations
in 4D space, which are important for recovering 4D points from 3D images.

3.5.4 Bifocal tensor

Tensor Tfij is the algebraic representation of extended two view geometry. It repre-
sents the relative geometric and photometric relationship between two cameras. From
Eq. (3.40), it can be seen that the tensor Tfij can be computed from corresponding points
in frequency space, z and z′. Camera matrix Eq. (3.3) and Eq. (3.39) gives an insight
of Tfij tensor structure. First, affine camera structure shows presence of zero terms in
tensor. Hence only 18 components are non-zero out of 64 elements of the tensor Tfij . It
also shows the elements will be repeated twice due to presence of f and j in one ε term.
The components of Tfij are non-zero when all the following conditions hold;

1. The two fourth rows of both camera matrices should not be present for computa-
tion of Tfij in Eq. (3.39).

2. If one fourth row exists, two third rows of camera matrices should not be present
in Eq. (3.39).

3. Third row for at least one camera must exist in Eq. (3.39).

4. f 6= j. Otherwise εdefj = 0, and Tfij vanishes.
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In tensor Tfij , there are 18 non-zero components. However, 9 of them have the
same values with the other 9 components, and only the sign is different. Therefore,
only 9 elements are unique and 8 are independent due to scale ambiguity. The unique
elements are T144, T244, T341, T342, T344, T413, T423, T431 and T432. The other 9 non-zero
components can be obtained by taking negative and reversing the indices as follows:
T144 = −T441, T244 = −T442, T341 = −T143, T342 = −T243, T344 = −T443, T413 =

−T314, T423 = −T324, T431 = −T134, T432 = −T234.
Next, let us ponder on uniqueness of 9 components of Tfij . In Eq. (3.39) apart from

the ε terms (Levi-Civita tensors) to be non-zero, the selection of camera rows is also
important for tensor elements to be non-zero. Right hand side of Eq. (3.39) shows the
variables a, b, c, d and e are used for selecting the camera rows whereas the variable i, j
and f only contribute to the value of ε term. Also, if εdefj is 1 then εdejf is always −1.
Therefore, for elements of tensor Tfij whenever the values of variables f and j switch
such that the value of f in one element is j in the other, and value of j in one element is
f in the other, those two tensor elements will have the same value with only difference
in sign. For example, let us consider two elements T134 and T431. Observe that for T134,
f=1 and j=4 and for T431, f=4 and j=1. Expansion of Eq. (3.39) for T134, shows that
the combinations of a, b, c, i and d, e, f, j for non-zero terms are: {1243, 2314}, {1243,

3214}, {1423, 2314}, {1423, 3214}, {2143 , 2314}, {2143 , 3214}, {2413, 2314}, {2413

, 3214}, {4123, 2314}, {4123, 3214}, {4213, 2314}, {4213, 3214}. Similarly, to com-
pute T431 the combinations of a, b, c, i and d, e, f, j for non-zero terms include: {1243,

2341}, {1243, 3241}, {1423, 2341}, {1423, 3241}, {2143, 2341}, {2143, 3241}, {2413,

2341}, {2413, 3241}, {4123, 2341}, {4123, 3241}, {4213, 2341}, {4213, 3241}. Com-
parison of these combinations shows the difference is only in the values of f and j. This
means that the numerical value of T134 and T431 is same, and only sign is different. The
same is true for all 18 elements. Hence, we have only 9 unique tensor components.

3.5.5 Computation of tensor

In this section computation of tensor Tfij from point correspondences in frequency
space is shown. From Eq. (3.40) we obtain following 4 equations, in case of n = 0.

−z3z′4T431 − z4z′3T341 + z4z′4T144 = 0 (3.47)
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−z3z′4T432 − z4z′3T342 + z4z′4T244 = 0 (3.48)

−z1z′4T413 − z2z′4T423 + z4z′1T341+

z4z′2T342 + z4z′4T344 = 0
(3.49)

z1z′3T413 + z2z′3T423 + z3z′1T431 + z3z′2T432−

z4z′1T144 − z4z′2T244 − z4z′3T344 = 0
(3.50)

For correspondence at n 6= 0, z4 = z′4 = 0 in frequency space. This results in only 1

independent equation as follows:

z1z′3T413 + z2z′3T423 + z3z′1T431 + z3z′2T432 = 0 (3.51)

We may stack these equations in a matrix form as follows:

MT = 0 (3.52)

where T = [T144,T244, T341, T342, T344, T413, T423, T431, T432]> and M is 5× 9 matrix.

M =

 z4z′4 0 −z4z′3 0 0 0 0 −z3z′4 0

0 z4z′4 0 −z4z′3 0 0 0 0 −z3z′4

0 0 z4z′1 z4z′2 z4z′4 −z1z′4 −z2z′4 0 0

−z4z′1 −z4z′2 0 0 −z4z′3 z1z′3 z2z′3 z3z′1 z3z′2

0 0 0 0 0 z1z′3 z2z′3 z3z′1 z3z′2

 (3.53)

The 9 elements of tensor Tfij can be found by computing the least square solution
of Eq. (3.52). Although we have 4 equations in n = 0, only three of them are linearly
independent. This can be observed in Eq. (3.47)− Eq. (3.50). Equation (3.50) is a linear
combination of Eq. (3.47), Eq. (3.48) and Eq. (3.49).

3.5.6 Minimum No. of Points for Tensor Computation

The elements T144,T244,T341,T342 and T344 can be computed only from the point cor-
respondence at n = 0, as it can be seen from Eqs. (3.47)−(3.51). The other tensor
elements T413, T423, T431 and T432 can be obtained from corresponding points at n 6= 0

or n = 0. Accordingly, at least 4 corresponding points (2 from n = 0 and 2 from
n 6= 0) are required for the computation of bifocal tensor Tfij . Since 2 correspondence
at n = 0 are required, at least two sequential patterns are required for computing Tfij .
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It should be noted that for 4 corresponding frequencies, the matrix of image coordinates
in Eq. (3.53) would be of size 10 × 9 with a matrix rank of 8, which is sufficient to
compute 8 elements of scaled Tfij . If we have k more point correspondences for n 6= 0

the size of M increases as (8 + k)× 9.

The minimum no. of points for computing the tensor from sequential patterns in
Eq. (3.45) and texture patterns in Eq. (3.46) is same. However, for texture patterns at
least three frequencies should be used e.g. 2 correspondences at n = 0, and 1 corre-
spondence at n = 1 and n = 2 make up for rank 8 matrix M in Eq. (3.53).

3.5.7 Maximum No. of Cameras

Since the number of hyperplanes to form a multilinear constraint is 5. The maximum
number of cameras/images for 4D to 3D projection is five. If we denote corresponding
points of image 1, 2, . . . , 5 in frequency space as z, z′, z′′, z′′′ and z′′′′ and the camera
matrices as P, P′, P′′, P′′′ and P′′′′. The multiview relations in frequency domain for 3,
4 and 5 cameras are shown below:

ziz′jz′′kεdefjεghlkAdgi = 0efhl (3.54)

ziz′jz′′kz′′′lεdefjεghmkεnoplDdgnci = 0cefhmop (3.55)

ziz′jz′′kz′′′pz′′′′tεabciεdefjεghlkεmnopεqrstCadgmq = 0bcefhlnors (3.56)

where tensors Adgi , Ddgnci and Cadgmq have following definitions:

Adgi = εabciε
pqrstP a

p P
b
qP

c
rP
′d
s P

′′g
t (3.57)

Ddgnci = εabciε
uvwxyP a

uP
b
vP
′d
w P

′′g
x P ′′′ny (3.58)

Cadgmq = εuvwxyP a
uP
′d
v P

′′g
w P ′′′mx P ′′′′qy (3.59)

3.6 Sampling shift

Sampling shifts for sequential patterns and texture patterns can be found using the fol-
lowing methods.



57

3.6.1 Sampling shift for Sequential Patterns

In this section, a method to find the relative sampling shift is explained. For sequential
patterns the sampling shift is one dimensional as shown in Eq. (3.9), since all points in
sequence are connected in a single line. Considering upper 3 × 5 part of each camera
matrix and upper 3×1 part of each image frequency z and z′ in Eq. (3.10) and Eq. (3.12),
we have following equations:

p11 p12 p13 0 p15 z1

p21 p22 p23 0 p25 z2

0 0 0 p34 p35 z3

p′11 p′12 p′12 0 p′15 λz′1

p′21 p′22 p′23 0 p′25 λz′2

0 0 0 p′34 p′35 λz′3


[
Z

−1

]
= 0 (3.60)

where λ = ejnθ and θ = 2πs
N

. It is the phase shift in image 2, as shown in Eq. (3.12).
Since Eq. (3.60) has a solution the determinant of the left most matrix must be zero. To
obtain a valid constraint between image coordinates, the last column must be eliminated
as follows:

z1Q1 + z2Q2 + z3Q3 + λ(z′1Q4 + z′2Q5 + z′3Q6) = 0 (3.61)

whereQi are the determinants of the 5x5 minors obtained by eliminating the last column
and ith row as follows:

Qi = (−1)i+6 det[∼ mi] (3.62)

where ∼ mi denotes the eliminated row. Separating the phase part in Eq. (3.61) we
have:

λ(n) = ejnθ = − z1Q1 + z2Q2 + z3Q3

z′1Q4 + z′2Q5 + z′3Q6

(3.63)

From Eq. (3.63), it seems possible to compute shift s from a single λ of any n (n 6= 0).
However, this is not the case and only λ of n = 1 can be used. When n ≥ 2 mul-
tiple solutions of s are obtained, and because of aliasing correct value of s cannot be
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distinguished from wrong ones. Since the complex exponentials vary from 0 to 2π and
any value greater than 2π is again mapped to this range. For example, let N = 5 then
we cannot distinguish between e

4πj
5 and e

14πj
5 . This phenomenon is termed as aliasing.

Thus, only λ of n = 1 can be used. On the contrary if the ratio of two consecutive fre-
quencies is used, say λ(n1) and λ(n2), we do not have the aliasing problem in Eq. (3.64),
and all the n frequency components can be used for computing s.

λ(n2)

λ(n1)
=
ejn2θ

ejn1θ
= ej(n2−n1)θ (3.64)

where n2 − n1 = 1. In this case, the sampling shift s can be computed as follows:

s =
N

2πj(n2 − n1)
log

λ(n2)

λ(n1)
(3.65)

Equation (3.65) describes the case when λ(n1) and λ(n2) have unit norm. In the pres-
ence of noise, λ(n1) and λ(n2) are divided by their magnitude, so that they have unit
norm. Since s obtained from Eq. (3.65) is a complex number only the real part is taken,
and rounded off to obtain an integer. After obtaining s for each frequency, the most
repeated value of s is considered as the sampling shift.

3.6.2 Sampling shift for Texture Patterns

Sampling shift for texture can be computed in the same way as for sequential patterns.
Although the shift is in two dimensions, knowing the nature of Fourier basis matrix, the
coefficients of shifts can be considered separately. The shift in case of textures is of the
form ejnθejmφ = e

2πjs
N e

2πjt
M , as shown in Eq. (3.19). For example, when N = M = 5,

λ(n,m) is as follows:

λ(n,m) =


1 e

2jπs
5 e

4jπs
5 e

6jπs
5 e

8jπs
5

e
2jπt
5 e

2jπs
5

+ 2jπt
5 e

4jπs
5

+ 2jπt
5 e

6jπs
5

+ 2jπt
5 e

8jπs
5

+ 2jπt
5

e
4jπt
5 e

2jπs
5

+ 4jπt
5 e

4jπs
5

+ 4jπt
5 e

6jπs
5

+ 4jπt
5 e

8jπs
5

+ 4jπt
5

e
6jπt
5 e

2jπs
5

+ 6jπt
5 e

4jπs
5

+ 6jπt
5 e

6jπs
5

+ 6jπt
5 e

8jπs
5

+ 6jπt
5

e
8jπt
5 e

2jπs
5

+ 8jπt
5 e

4jπs
5

+ 8jπt
5 e

6jπs
5

+ 8jπt
5 e

8jπs
5

+ 8jπt
5

 (3.66)

The phase shift e
2πjs
N is constant in vertical direction and e

2πjt
M is constant in horizon-
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tal direction. Therefore, taking ratio of two consecutive frequencies in vertical direction
λ(n1,m1)
λ(n1,m2)

eliminates the horizontal shift and gives us vertical shift value t. Similarly, tak-
ing ratio of two consecutive frequencies in horizontal direction λ(n2,m1)

λ(n1,m1)
would provide

us horizontal shift value s. Working same as Eq. (3.60)− Eq. (3.63) following equation
is obtained:

λ(n,m) = − −z
1Q1 + z2Q2 − z3Q3

−z′1Q4 + z′2Q5 − z′3Q6

(3.67)

where Qi is defined as Eq. (3.62). The horizontal and vertical shifts can be computed as
follows:

s =
N

2πj(n2 − n1)
log

λ(n2,m1)

λ(n1,m1)
(3.68)

t =
M

2πj(m2 −m1)
log

λ(n1,m2)

λ(n1,m1)
(3.69)

where n2 − n1 = m2 −m1 = 1 for consecutive frequencies.

3.7 4D Reconstruction

We next consider a method for reconstructing 4D sequential patterns and texture patterns
without knowing individual point correspondence. For reconstructing 4D points X we
first reconstruct 4D points Z in frequency space. For this objective, we have to recover
camera matrices. We consider the following canonical affine camera pair:

P =


1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

 (3.70)

P′ = [H|e′] (3.71)

where H represents the homography between a pair of images and e′ is the epipole in the
second image. Then, H and e′ can be computed from Tfij as described in the following
sections. Once the homography and the epipole are computed, camera matrices are
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Figure 3.6: Homography induced by a plane.

recovered from Eq. (3.70) and Eq. (3.71), and the 4D points Z(i) (n = 1, · · · , N) can
be reconstructed. Then the 4D point X in the real space can be obtained by inverse
Fourier transform of Z(i).

3.7.1 Computation of Epipoles

For a given bifocal tensor Tfij , the epipole e in image 1 can be computed as its left null
space. Similarly, the epipole e′ in image 2 can be computed as the right null space of
Tfij , as follows:

eiTfij = 0fj (3.72)

e′jTfij = 0fi (3.73)

Equation (3.73) can be described in matrix form as follows:

Me′ = 0 (3.74)

where, e′ = [e′1, e′2, e′3, e′4]>, and M is a 16 x 4 matrix, which consists of the com-
ponents of Tfij . Thus e′ can be obtained by solving Eq. (3.74) as the eigenvector
corresponding to the smallest eigenvalue of M>M.
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3.7.2 Extraction of Homography

Let us consider an arbitrary but fixed plane π, not passing through any of the camera
centers, as shown in Fig. 3.6. Then, a point z in image 1 is related to a point z′π in image
2 via homography H as follows:

z′lπ = H l
iz
i (3.75)

An epipolar line l′ in image 2 can be defined as the join of epipole e′ and the point z′π
as follows:

l′jf = εjflre
′rz′lπ (3.76)

Since images are 3 dimensional the epipolar line l′ is a second order tensor (i.e. matrix).
From Eq. (3.40), epipolar line l′ can also be defined as the corresponding line in image
2 for a point z in image 1 as follows:

l′jf = Tfijzi (3.77)

Eq. (3.75), Eq. (3.76) and Eq. (3.77) result in the following equation:

H l
i = εjflre′rTfij (3.78)

By using Eq. (3.78), we can compute the homography H from the bifocal tensor Tfij
and the epipole e′ in image 2. Thus, both H and e′ can be computed from tensor Tfij ,
and camera matrices P and P′ can be obtained from Eq. (3.70) and Eq. (3.71).

3.7.3 4D Reconstruction and Rectification

Once the camera matrices P and P′ have been computed, 4D points can be recovered us-
ing the following method. Let us consider the camera projection equation in frequency
space again:

z = PZ (3.79)
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z′ = P′Z (3.80)

Taking the vector product between the left side and the right side of Eq. (3.79) and
Eq. (3.80), we have:

[z]×PZ = 0 (3.81)

[z′]×P
′Z = 0 (3.82)

where, [ · ]× denotes a skew symmetric matrix for vector product. From Eq. (3.81) and
Eq. (3.82), we have:

MZ = 0 (3.83)

where, M is a 6× 5 matrix as follows:

M =

[
[z]×P

[z′]×P
′

]
(3.84)

Then, by solving Eq. (3.83), 4D point Z in the frequency space can be recovered.
The least squares solution of Eq. (3.83) can be obtained by computing an eigenvec-
tor which corresponds to the minimum eigenvalue of M>M. After all points Z(n)

(n = 1, · · · , N) are reconstructed using Eq. (3.83) in frequency space, we apply inverse
Fourier transform to Z to get original points X(i) (i = 1, · · · , N) in spatial domain.
The two objects, reconstructed and the original one still differ by an affine homogra-
phy. This homography has 20 degrees of freedom and can be computed by choosing
five points in general configuration for rectification of the reconstructed object. A case
similar to Eq. (2.80).

3.8 Experiments

We next show the experimental results from the proposed reconstruction method. In
particular, we show that the proposed method can reconstruct sequential patterns and
texture patterns without knowing point correspondences. We first show the results from
1D sequential patterns,followed by the results from 2D sequential patterns, i.e. texture
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Figure 3.7: Sequential objects used in synthetic experiment. There exist two series of
4D points, which are connected by lines.

patterns.

3.8.1 Sequential Patterns

This section will show reconstruction and arbitrary view generation of 1D sequential
patterns.

Synthetic Image Experiment

To ensure that the proposed method works correctly, we first show results from synthetic
image experiments.

Figure 3.7 shows a synthetic scene considered in this experiment. There exist two
sequences of points connected by lines. As shown in this figure, each sequences has 3D
geometric and 1D intensity information, making them 4D objects.

These objects are then projected into two grayscale cameras at different positions
with different camera gains as shown in Fig. 3.8 (a) and Fig. 3.8 (b). The 3D images
have point position and intensity. Image 1 in Fig. 3.8 (a) is a high gain image, whereas
the image 2 in Fig. 3.8 (b) is a low gain image. The image size is 640 × 480 and
intensity ranges from 0 to 255, therefore geometric and photometric coordinates vary in
same range i.e. 0 ∼ 102. Moreover, we shifted the sampling order of points in image 2

by 9 units to demonstrate the correspondence freeness of our method. Figure 3.8 (c) and
(d) show image 2 before and after the sampling shift. Using the proposed method we
computed the tensor Tfij from images shown in Fig. 3.8 (a) and (d). Two corresponding
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Figure 3.8: 3D Images taken from different viewpoints. Index numbers in red and blue
points signify the sampling order.

frequencies at n = 0 and two at n = 1 were used for tensor computation. Next, the
estimated bifocal tensor was used for computing camera matrices and for reconstructing
4D object.

Figure 3.9 (a) and Fig. 3.9 (b) show that, the reconstruction from the proposed
method is correct both geometrically and photometrically, while the reconstruction from
the classical method is completely wrong because of the wrong correspondence as
shown in Fig. 3.9 (c). This shows that unlike the traditional reconstruction method
in spatial domain, the proposed method can reconstruct objects, even in the absence
of exact corresponding points. It also shows that proposed method is independent of
camera sensitivity parameters. This implies that off line calibration of camera intensity
parameters is not necessary if the camera sensitivity is approximated linear. Next, we
discuss reconstruction for three special cases:

1. Reconstruction is possible for planar sequences as shown in Fig. 3.10 (a) and (b).
However for coplanar sequences, there should be a difference in plane heights
e.g. if 1 sequence is at plane Z = 0.3, the other sequence should be at plane
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(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 3.9: Original and reconstructed 4D object. The reconstructed object has correct
3D shape and point intensity values.

(a) ground truth (b) reconstruction

Figure 3.10: Coplanar 4D sequences.

Z = 0.6. If both sequences are at the same level, the matrix M in Eq. (3.53) is
rank deficient (less than 8), and proper reconstruction is not possible. Another
valid configuration of planar sequences is when the sequences are planar perpen-
dicularly, as shown in Fig. 3.11 (a) and (b).

2. Sequences lack intensity variation, as shown in Fig. 3.12 (a). From Eq. (3.53) at
least 1 sequence must have intensity variation for reconstruction Fig. 3.12 (b).

3. Sequences are planar and lack intensity variation, as shown in Fig. 3.13. For re-
construction, the rank of matrix M should be 8, therefore the coplanar sequences
should differ in plane heights and at least 1 sequence should have intensity varia-
tion.
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(a) ground truth (b) reconstruction

Figure 3.11: Perpendicularly planar 4D sequences.

(a) ground truth (b) reconstruction

Figure 3.12: 4D sequences. One sequence has constant intensity.

Real Image Experiment

We next show the results from real image experiments. Figure 3.14 (a) and (b) show
two real images. Image 1 in Fig. 3.14 (a) is a high gain image, taken by a high gain
camera, while image 2 in Fig. 3.14 (b) is a low gain image.

In these images, necklace beads and patchwork design provide us two sequences.
We consider the end points of these sequences to be connected to form closed loops. The
blobs in the sequential pattern were detected using a method described in Appendix B.4.
The centroid and average intensity of each blob were used for computing the tensor and
for reconstructing the sequential pattern. The detected blobs are shown Fig. 3.15. Index
numbers show sampling order. It may be observed that the order in image 2 is shifted
by 3 with respect to that in image 1. Note, we regarded the last blob in the sequence
is connected with the first blob in the sequence, so that the blobs constitute a closed
sequence.
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(a) ground truth (b) reconstruction

Figure 3.13: Coplanar 4D sequences. One sequence has constant intensity.

(a) image 1 (b) image 2

Figure 3.14: Images of sequential objects used in real image experiment.

Using the images shown in Fig. 3.14 (a) and Fig. 3.14 (b) the bifocal tensor Tfij
was computed, and the original objects were reconstructed in frequency domain. Two
corresponding frequencies at n = 0, one corresponding frequency at n = 1 and one
corresponding frequency at n = 2 obtained from two sequential patterns were used for
tensor computation. The phase shift was also estimated. The estimated phase shift was 3

as we expected. Inverse discrete Fourier transform was applied to obtain reconstruction
in spatial domain. The 3D shape of mannequin was measured to obtain the ground
truth shape of sequential patterns. Figure 3.16 (a) and (b) show the ground truth and
reconstructed object from the proposed method, while Fig. 3.16 (c) shows that from
classical reconstruction method. These results confirm following important results (i)
correspondence freeness of our multiview relations (ii) camera sensitivity parameter
freeness of our linear camera model. It shows that our method is independent of camera
intensity parameters, and we can freely use it for images taken by cameras with different
camera gains. Figure 3.17 (a) and (b) show reprojected images of two arbitrary views
of the sequential objects reconstructed in Fig. 3.16 (a) and (b). The actual image points
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(a) sequence blobs (b) sequence blobs
of image 1 of image 2

Figure 3.15: The extracted blobs of two sequences are indexed in red and yellow. Sam-
pling order of image 2 sequences is shifted by 3 w.r.t the sampling order of image 1
sequences.

(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 3.16: Reconstruction result of real image experiment.

are connected by the green lines whereas the reprojected image points are joined by
the red lines. These results show the proposed method is able to generate arbitrary
views of a reconstructed sequential object properly. Other examples of sequential object
reconstruction can be found in [37].

Stability Evaluation

We next show the stability of 4D points reconstructed by the proposed method. For
stability analysis a Gaussian noise with standard deviation of 1 pixel was added to each
image point, and a Gaussian noise with standard deviation of 1 was added to each image
point intensity. The image size is 640×480 and the image intensity varies from 0 to 255.
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(a) reprojected image 1 (b) reprojected image 2

Figure 3.17: Arbitrary views of real image experiment. Green and red lines connect the
actual and reprojected image points respectively.

Then, the following reconstruction error was computed from N reconstructed points:

E =
1

N

N∑
i=1

d(Q(i)− Q̂r(i))
2 (3.85)

where d(Q(i) − Q̂r(i))
2 represents the squared distance between the true quantity and

reconstructed quantity in spatial domain. Q is 3D geometric coordinates for Fig. 3.18 (a)
and 1D intensity information for Fig. 3.18 (b). N is total no. of points. By varying the
experimental conditions, such as 4D configuration, camera position, and sensitivity, and
noise magnitude, we increased the number of corresponding frequencies, i.e. number
of corresponding points in the frequency space, for computing the bifocal tensor from
4 (minimum number required) to 20 and evaluated the reconstruction errors. These
frequencies were chosen, so that they were the lowest N frequencies. The result were
averaged for 500 iterations. Figure 3.18 (a) shows the relationship between the number
of corresponding frequencies used for tensor computation and the reconstruction error
in 3D shape; the horizontal axis represents the the number of corresponding frequencies
for tensor computation and the vertical axis shows the reconstruction error in spatial
domain. Figure 3.18 (b) shows the graph between the number of frequencies for bifocal
tensor computation and reconstruction error in intensity; the horizontal axis shows the
the number of frequencies used for tensor computation and the vertical axis represents
the reconstruction error in intensity.
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(a) reconstruction error (b) reconstruction error
in 3D shape in intensity

Figure 3.18: Stability of reconstruction. The horizontal axes represent the number of
frequencies tensor computation. The vertical axes show errors in shape and intensity.

Figure 3.18 (a) and (b) show that as we increase the number of corresponding fre-
quencies, the magnitude of reconstruction error is reduced resulting in better reconstruc-
tion. The graph is the generic behavior of tensor stability i.e. sharp reduction of error
at the beginning followed by gradual decay. However, we find that the error does not
decrease monotonically. This is because some frequencies are close to zero and lack
variation in the frequency space. Thus, the choice of frequencies which have enough
variation is important for stable computation.

3.8.2 Texture Patterns

We next show experimental results from 2D sequential patterns, i.e. texture patterns.

Synthetic Image Experiment

Figure. 3.19 shows the texture object considered. The object has 3D geometric in-
formation and repetitive intensity information, and therefore it has a repetitive texture
surface with each texture element being 4D point. Then this object was projected into
two cameras with different parameters. Fig. 3.20(a) shows high intensity image and (b)
shows low intensity image. The sampling of two images is unknown. Therefore, we
consider different sampling start points, as shown in Fig. 3.20. As it can be seen that
the start point of image 2 is shifted w.r.t sampling start point of image 1. Using the
proposed method, we computed the bifocal tensor Tfij , and reconstructed the texture
pattern. In this experiment, two corresponding frequencies at n = 0, two corresponding
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Figure 3.19: Grayscale texture object used in synthetic experiment. There exist two
objects. The texture elements are connected in a 2D grid.

(a) image 1 (high gain) (b) image 2 (low gain)

Figure 3.20: 3D Images of a grayscale texture. The first sampling start point is shown
in each image.

frequencies at n = 1 and one corresponding frequency at n = 2 obtained from two
texture objects were used for tensor computation. The reconstruction result is shown
in Fig. 3.21 which shows the object is reconstructed accurately by using the proposed
method. Both the 3D geometric and 1D photometric information are correct. The tex-
ture object was then reprojected to virtual cameras with different camera gains. The
arbitrary views are shown in Fig. 3.22.

Next, we discuss reconstruction for three special cases:

1. Textures are planar Fig. 3.23 (a). From Eq. (3.53), reconstruction requires rank
of matrix M to be 8. Therefore, the planar textures should vary in plane heights,
as shown in Fig. 3.23. Another valid configuration for planar textures is to be
perpendicular, as shown in Fig. 3.24.
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(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 3.21: Ground truth and reconstructed grayscale texture. The reconstructed tex-
ture object has correct 3D shape and point intensity values.

(a) arbitrary view 1 (b) arbitrary view 2

Figure 3.22: Arbitrary views of reconstructed texture pattern.

2. Textures lack intensity variation Fig. 3.25. For reconstruction, at least one texture
pattern should have varying intensity.

3. Textures are planar and lack intensity variation Fig. 3.26. For similar reasons
as above, the planar textures should differ in plane heights and at least 1 texture
pattern should have varying intensity.

Lastly, we discuss the case of mixed objects. When sequences and textures both are
present. Sequences are considered using 1D Fourier transform and textures using 2D
Fourier transform. Reconstruction is similar (1D-DFT and 2D-DFT) and tensor requires
a minimum of 4 correspondences as shown in Fig. 3.27.
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(a) ground truth (b) reconstruction

Figure 3.23: Planar texture patterns.

(a) ground truth (b) reconstruction

Figure 3.24: Perpendicularly planar texture patterns.

Real Image Experiment

Next, we evaluate our theory using real images. Fig. 3.28 shows texture considered
in real image experiments. Image 1 is a high gain image taken by a high intensity
gain camera, while image 2 is taken by a low gain camera. The colored check boxes
connected by red grid are considered as the texture elements. The images were first
processed for blob detection (refer Appendix B.4). These blobs were then connected in
a 2D grid pattern. In this experiment, we assumed that the end points of the 2D grid are
connected to each other, so that the 2D grid is closed. Although image domain is same,
image correspondences are unknown. Therefore sampling start points in image 1 and
image 2 are different from each other. After tensor computation, phase was estimated.
Horizontal shift was 1 and vertical shift was 2. Two correspondences at n = 0 and
two correspondences at n = 1 were used for tensor computation. Then reconstruction
was performed, Fig. 3.29 (a) shows ground truth and (b) shows reconstruction from the
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(a) ground truth (b) reconstruction

Figure 3.25: Planar texture patterns. One texture pattern has constant intensity.

(a) ground truth (b) reconstruction

Figure 3.26: Planar texture patterns. One texture pattern has constant intensity.

proposed method, while (c) shows reconstruction from the classical method. Arbitrary
view synthesized from reconstruction is shown in Fig. 3.30. Green lines connect the
ground truth and red lines connect the reprojected points. These lines are overlapping
showing that the reprojected texture overlaps the ground truth image texture. Therefore
the arbitrary view has been generated properly. The synthetic and real image experi-
ments show that the proposed method can reconstruct the texture objects correctly, even
if there are no exact image correspondences, while the classical reconstruction method
cannot reconstruct correctly. Arbitrary views of the texture object can also be accurately
generated.

Accuracy Evaluation

Next important step is to consider the stability of the tensor (computed using Eq. (3.46))
used for reconstruction of texture patterns. The experiments were iterated for 3000 iter-
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(a) ground truth (b) reconstruction

Figure 3.27: Reconstruction of mixed 4D objects.

(a) image 1 (high gain) (b) image 2 (low gain)

Figure 3.28: Grayscale texture object from different viewpoints.

ations adding image noises and changing conditions such as texture patterns and camera
parameters. The reconstruction errors in shape and intensity were separately evaluated.
Graph in Fig. 3.31 shows the reconstruction error in shape and intensity. Horizontal axes
show the no.of frequencies used for the computation of tensor and vertical axes show
the error in shape and intensity. The graph reveals that error reduces by increasing the
no. of frequencies leading to stable tensors and better reconstruction results. The graph
steepness can be explained in the way similar to Sec. 3.8.1. The graph also shows that
tensor is capable of handling different texture objects and varying imaging conditions.

3.9 Summary

In this chapter two view geometry for 4D to 3D affine projection was elaborated. Com-
ponents of grayscale affine cameras were described. Projection in frequency space and
two view constraints for 3D images were discussed and used for reconstructing sequen-
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(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 3.29: Reconstruction of grayscale texture pattern.

Figure 3.30: Arbitrary view of grayscale reconstructed texture.

tial patterns without knowing point correspondence. The comparison with the classical
reconstruction method shows that the proposed reconstruction method out performs the
classical method, since the proposed method can reconstruct objects accurately even if
the image correspondence is wrong. In next chapter we will show how to expand this
theory to color images.
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(a) reconstruction (b) reconstruction
error in shape error in intensity

Figure 3.31: Stability of grayscale texture tensor Tfij . Horizontal axes show no. of point
(in frequency domain) used for tensor computation. Vertical axes show reconstruction
error in (a) shape and (b) intensity.



78

Chapter 4

Reconstructing Color Objects without
knowing Image Correspondences

The previous chapter showed the reconstruction of texture objects. But, it is restricted
to the case of grayscale sequences and textures. In this chapter we consider the case of
reconstructing color sequential and texture patterns.

4.1 Object and Image Spaces

4.1.1 6D World

For color objects we consider that the world is 6 dimensional as shown in Fig. 4.1 (a). 3

dimensions are for geometric information and 3 for photometric information. Geometric
information consists of X , Y and Z axes. Photometric information comprises of red,
green and blue color channels. Equation (4.1) shows the homogeneous coordinates of a
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(a) 6D world (b) 5D image

Figure 4.1: 6D world and 5D image. Three dimensions are for geometric information
and three for color information in 6D. Two dimensions are for geometric and three for
color information in 5D image.

6D point X.

X =



X

Y

Z

R

G

B

1


(4.1)

4.1.2 5D Image

The Dimensionality of image space is also increased to 5 as shown in Fig. 4.1. Two
dimensions are for image geometric information (x, y) and three dimensions are for
red, green and blue color channels. Equation (4.2) shows the homogeneous coordinates



80

of a 5D point x.

x =



x

y

r

g

b

1


(4.2)

In tensor notation the points are represented with contravariant indices. In spatial do-
main, a 6D point and a 5D point have representations X i and xi respectively. Further
details on tensor notation can be found in Appendix A.4.

4.1.3 Color Sequential Patterns

In 6D space multiple points X(k)(k = 1, · · · , N) are connected in a curve to form 1D
sequential patterns. In image 5D points x(k)(k = 1, · · · , N) join to form a sequential
pattern. Sampling of color sequences is same as described in Sec. 3.1.3.

4.1.4 Color Texture Patterns

For color textures 6D points X(k, l) (k = 1, · · · , N, l = 1, · · · ,M) are connected
in a 2D grid to form a color texture. Image textures join 5D points x(k, l) (k =

1, · · · , N, l = 1, · · · ,M) horizontally and vertically to form a grid. Sampling concept
is same as explained in Sec. 3.1.4. Fig. 3.3 gives the idea of sampling. The difference is
the photometric information is 3 dimensional in this case.

4.2 Affine camera from 6D to 5D space

We next consider an affine camera which projects sequential patterns defined in 6D
space into 5D space. We call it 6D-5D affine camera. In this chapter we consider two
types of affine camera matrices. Equation (4.3) represents a simple case when there is
no color channel crosstalk, thus camera matrix and resulting tensor have fewer DOF.
Equation (4.4) shows the complex case when inter channel crosstalk exists, it may be
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noticed that the camera matrix has more non-zero, components and it will be shown in
the next sections that the resulting tensor will also have greater DOF:



x

y

r

g

b

1


=



p11 p12 p13 0 0 0 p15

p21 p22 p23 0 0 0 p25

0 0 0 p34 0 0 p37

0 0 0 0 p45 0 p47

0 0 0 0 0 p56 p57

0 0 0 0 0 0 1





X

Y

Z

R

G

B

1


(4.3)
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y

r

g
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1


=



p11 p12 p13 0 0 0 p15

p21 p22 p23 0 0 0 p25

0 0 0 p34 p35 p36 p37

0 0 0 p44 p45 p46 p47

0 0 0 p54 p55 p56 p57

0 0 0 0 0 0 1





X

Y

Z

R

G

B

1


(4.4)

The matrix part in red denotes rotation and the blue one represents translation. Color
is projected using a 3 × 3 transformation matrix shown in green, where diagonal com-
ponents p34, p45 and p56 are gain in red, green and blue color channels, p37, p47 and p57
are offset in each color channel. Components p35, p36, p44, p46, p54 and p55 are crosstalk
among red, green and blue color channels. For discussion on gain and offset kindly
refer Appendix B.2. Equation (4.3) and (4.4), shows the extended camera projection
model can capture both geometric information and photometric (RGB) information of
the scene. The reader may notice that geometric and photometric information is inde-
pendent of each other. The projection is dealt independently although it is simultaneous.
A general projection of 6D to 5D camera is shown in Fig. 4.2.

Center of projection (COP) in 6D to 5D projection is a tensor of order 6−5 = 1, i.e.
it is a 6D point. COP is usually the null space of camera matrix (6x7 in this case). The
line of sight (LOS) is the join/union of 2 higher dimensional points (tensor of step 1).
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Figure 4.2: Camera projection for 6D-5D affine camera. The line joining the camera
center C and image point x is termed as line of sight (LOS). The figure shows the
camera center is at infinity for affine cameras.

4.3 Projection in Frequency Domain

We next consider the 6D-5D camera projection in frequency domain. Discussion about
linearity of projection in Sec. 3.3 is also valid here.

4.3.1 Projection in Frequency Domain for Sequential Patterns (1D-
DFT)

Suppose two cameras C and C′ and projection of a series of 6D points X(k) (k =

1, · · · , N). Assume the point correspondences in these two cameras are unknown but
the order of the points is maintained. Thus, a kth 6D point X(k) is observed as kth 5D
image point x(k) in image 1 and is observed as k′th 5D image point x′(k′) in image 2

as follows:

x(k) = PX(k) (4.5)

x′(k′) = P′X(k) (4.6)

k and k′ are different in general. Since we assume each image preserves the point order,
the following relationship holds:

k′ = k + s (4.7)
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where, s is the shift in sampling of image 2 with respect to image 1. s is unknown but
it constant. Since s is unknown, we do not know the correspondence between x(k) and
x′(k′). To solve this problem, we consider camera projection in the frequency space.
Suppose we have N image points in image 1 and image 2. By applying discrete Fourier
transform to both sides of Eq. (4.5), we have the following representation for image
projection in frequency space:

z(n) =
1

N

N−1∑
k=0

PX(k)e
−j2πnk

N

= PZ(n)

(4.8)

where, z(n) = [xf (n), yf (n) , rf (n), gf (n) , bf (n), δ(n)]> is an image point and Z(n) =

[Xf (n), Yf (n) , Zf (n), Rf (n) , Gf (n), Bf (n) , δ(n)]> is a 6D object point in frequency
space, which is represented in homogeneous coordinates. δ(n) is the delta function,
whose value is equal to 1 for n = 0 and 0 for others. Similarly, we apply discrete
Fourier transform to Eq. (4.6) as follows:

z′(n) =
1

N

N−1∑
k′=0

P′X(k′ − s)e
−j2πnk′

N

= P′Z(n)e
−j2πns
N

(4.9)

where z′(n) = [x′f (n), y′f (n) , r′f (n), g′f (n) , b′f (n), δ(n)]> is a point in the second image
in frequency space. We may rewrite Eq. (4.9) as follows:

λ(n)z′(n) = P′Z(n) (4.10)

where λ(n) = e
j2πns
N represents the phase shift of sampling in camera C′ relative to

camera C. Equation (4.8) and Eq. (4.10) show both cameras project the same 6D point
Z(n), therefore it is possible to consider the point correspondence of image data in
frequency domain, even if the relative sampling of images is shifted as in the spatial
domain.
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4.3.2 Projection in Frequency Domain for Texture Patterns (2D-
DFT)

For color texture pattern we consider a 2D sampling grid on the texture patterns. The
concept is same as shown in Fig. 3.3, the position of a point on texture is defined by k
and l. Suppose two cameras C and C′ project texture elements X(k, l) (k = 1, · · · , N
and l = 1, · · · ,M ). The correspondences in these two cameras are unknown. Thus, the
(k, l)th 6D point X(k, l) is observed as (k, l)th 5D image point x(k, l) in image 1 and is
observed as (k′, l′)th 5D image point x′(k′, l′) in image 2.

x(k, l) = PX(k, l) (4.11)

x′(k′, l′) = P′X(k, l) (4.12)

k, l and k′, l′ are generally different. Assuming the order of points is preserved, we have
the following relationship:

k′ = k + s (4.13)

l′ = l + t (4.14)

where, s and t are the relative horizontal and vertical shifts in the sampling of image 2

with respect to the sampling of image 1. Thus, s and t are unknown but are constant.
This means x(k, l) and x′(k′, l′) are non corresponding points. To find correspondence
it is necessary to determine the shifts s and t. This is possible by considering projection
in the frequency space. Suppose N image points in image 1 and image 2. Applying
Fourier transform to Eq. (4.11) yields following equation:

z(n,m) =
1

N

1

M

N−1∑
k=0

M−1∑
l=0

PX(k, l)e
−j2πnk

N e
−j2πml
M

=PZ(n,m)

(4.15)

where, z(n,m) = [xf (n,m), yf (n,m) , rf (n,m), gf (n,m), bf (n,m), δ(n,m)]> rep-
resents the image point in the frequency space, and Z(n,m) = [Xf (n,m), Yf (n,m),

Zf (n,m),Rf (n,m) , Gf (n,m) , Bf (n,m) , δ(n,m)]> represents the 6D point in the
frequency space. δ(n,m) is the delta function, and its value is 1 for n = m = 0 and 0
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for others. Similarly, applying Fourier transform to Eq. (4.14):

z′(n,m) =
1

N

1

M

N−1∑
k′=0

M−1∑
l′=0

P′X(k′ − s, l′ − t)e
−j2πnk′

N e
−j2πml′

M

=P′Z(n,m)e
−j2πns
N e

−j2πmt
M

(4.16)

where z′(n,m) = [x′f (n,m) , y′f (n,m) , r′f (n,m), g′f (n,m), b′f (n,m), δ(n,m)]> is a
point in the image 2 in frequency space. Rewriting Eq. (4.16) as follows:

λ(n,m)z′(n,m) = P′Z(n,m) (4.17)

where λ(n,m) = e
j2πns
N e

j2πmt
M represents the 2D phase shift of sampling in camera C′

relative to camera C. Equation (4.15) and Eq. (4.17) shows that both cameras project
the same 6D point Z(n,m). Therefore, it is possible to consider the correspondence of
image data even if the sampling order of two images is different.

4.4 Back Projection from 5D images

Usually a higher dimensional entity is projected to a lower dimensional entity by ap-
plication of camera. Back projection involves projection of lower dimensional entity in
image space to be back projected to a higher dimensional entity in world. For instance,
a point in image to a line in world, or a line in image to a plane in world etc. In this case,
it is projected from a lower dimensional hyperplane to a higher dimensional hyperplane.
Equation (4.5) shows projection in frequency domain as follows:

z = PZ (4.18)

A hyperplane containing a point z in 5D image can be described as follows:

s>z = 0 (4.19)

Combining Eq. (4.18) and Eq. (4.19):

s>PZ = 0 (4.20)
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A hyperplane S in 6D space can be defined as S = P>s. Then, we have:

S>Z = 0 (4.21)

Equation (4.21) shows the hyperplane S contains 6D point Z. It also shows that back
projection of a hyperplane in 5D image is a hyperplane in 6D image. The back projec-
tion of a hyperplane can be observed in Fig. 4.3 where hyperplanes are back projected
from 2 cameras.

4.5 Multiview relations for Sequential Patterns

We next derive multiview relations in 6D space, which is important for reconstructing
color sequential patterns without knowing point correspondences.

4.5.1 Geometric derivation

Multiview relations in 6D space can be considered as the intersection of 7 hyperplanes,
as shown in Fig. 4.3. This is the extension of the existing multiview relations [1]. Let
us consider two cameras in 6D frequency space and let a 6D point be projected to z and
z′ in the images of these cameras.

z = PZ (4.22)

λz′ = P′Z (4.23)

where λ represents the phase shift of sampling between two cameras. Suppose we have
5 planes s1, s2, s3, s4 and s5 which go through z and two planes s′1 and s′2, which go
through z′. Note, these planes are considered for deriving the multilinear constraints and
it is not important to determine these planes. If we consider back projected hyperplanes
S1, S2, S3, S4 and S5, from s1, s2, s3, s4 and s5 and S′1 and S′2 from s′1 and s′2, these
7 hyper planes intersect at Z in 6D frequency space as shown in Fig. 4.3.

S1 = P>s1 (4.24)
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S2 = P>s2 (4.25)

S3 = P>s3 (4.26)

S4 = P>s4 (4.27)

S5 = P>s5 (4.28)

S′
1

= P′
>
s′

1 (4.29)

S′
2

= P′
>
s′

2 (4.30)

The condition for these seven hyperplanes to meet at a single point in 6D space is
considered as the determinant of the matrix of hyperplanes vanishes as follows:

det[P>s1,P>s2,P>s3,P>s4,P>s5,P′>s′1,P′>s′2] = 0 (4.31)

Equation (4.31) can be written in tensor format as follows:

εmnopqrss1aP
a
m s

2
bP

b
n s

3
cP

c
os

4
dP

d
p s

5
eP

e
q s
′1
fP
′f
r s
′2
gP
′g
s = 0 (4.32)

The five planes s1a, s
2
b , s

3
c , s

4
d and s5e intersect at a point zi in image 1, and planes s′1f ,

s′2g, s
3
h, s4k and s′5l intersect at a point z′j in image 2 as follows:

εiabcdes1as
2
bs

3
cs

4
ds

5
e = zi (4.33)

εjhklfgs′1hs
′2
ks
′3
l s
′4
fs
′5
g = z′j (4.34)

Thus, following equations hold:

s1as
2
bs

3
cs

4
ds

5
e = εiabcdez

i (4.35)

s′1hs
′2
ks
′3
l s
′4
fs
′5
g = εjhklfgz

′j (4.36)

Substituting Eq. (4.35) and Eq. (4.36) into Eq. (4.32), we have the following rela-
tionship:

ziz′jεiabcdeεjhklfgε
mnopqrsP a

mP
b
nP

c
oP

d
pP

e
qP
′f
rP
′g
s = 0hkl (4.37)
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Figure 4.3: Intersection of seven hyperplanes at a 6D point Z. The hyperplanes S1,
S2, S3, S4 and S5 are back projected from image 1. Hyperplanes S′1 and S′2 are back
projected from image 2.

We define the bifocal tensor Tijhkl as follows:

Tijhkl = εiabcdeεjhklfgε
mnopqrsP a

mP
b
nP

c
oP

d
pP

e
qP
′f
rP
′g
s (4.38)

Then, the following bilinear constraint for 6D-5D camera is obtained in frequency
space:

ziz′jTijhkl = 0hkl (4.39)

where z = [z1, z2, z3, z4, z5 , z6]> and z′ = [z′1, z′2, z′3, z′4, z′5, z′6]>. εiabcde is a
6×6×6×6×6×6 tensor, which takes 1 for even permutation,−1 for odd permutation
and 0 for others. Also, εmnopqrs is a 7×7×7×7×7×7×7 tensor which takes−1, 1 and
0 depending on its permutation. The bifocal tensor Tijhkl is a 6× 6× 6× 6× 6 tensor.
Equation (4.39) shows for 1 point correspondence in frequency domain , a set of 216

equations is obtained (by varying the variables h, k and l) and each equation contains
36 terms. The details of Tijhkl are postponed till Sec. 4.5.3.
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In the case of 1D color sequential patterns, Eq. (4.39) can be specified as follows:

zi(n)z′j(n) Tijhkl = 0hkl (4.40)

For the case of 2D color sequential patterns, i.e.color texture patterns, the projection in
frequency space is defined by Eq. (4.15) and Eq. (4.17), and Eq. (4.39) is modified to
the following form:

zi(n,m)z′j(n,m) Tijhkl = 0hkl (4.41)

Equation (4.40) and Eq. (4.41) are two view relations in 6D space, which are essential
for recovering 6D points from 5D images.

4.5.2 Algebraic verification

We next show, the algebraic verification of the bifocal tensor. Equation (4.3) or (4.4)
can be used for computation of tensor. The only difference would be their DOF. Thus, in
this section only Eq. (4.4) is considered. Let us consider the projection of two cameras
in frequency domain, Eq. (4.8) and Eq. (4.10). These two equations can be described
by a single matrix equation as follows:

[
P z 0

P′ 0 z′

] Z

−1

−λ

 = 0 (4.42)
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Expanding Eq. (4.42), we obtain:

p11 p12 p13 0 0 0 p17 z1 0

p21 p22 p23 0 0 0 p27 z2 0

0 0 0 p34 p35 p36 p37 z3 0

0 0 0 p44 p45 p46 p47 z4 0

0 0 0 p54 p55 p56 p57 z5 0

0 0 0 0 0 0 1 z6 0

p′11 p′12 p′13 0 0 0 p′17 0 z′1

p′21 p′22 p′23 0 0 0 p′27 0 z′2

0 0 0 p′34 p′35 p′36 p′37 0 z′3

0 0 0 p′44 p′45 p′46 p′47 0 z′4

0 0 0 p′54 p′55 p′56 p′57 0 z′5

0 0 0 0 0 0 1 0 z′6



 Z

−1

−λ

 = 0 (4.43)

To form multiview relations eliminate rows until a square minor is obtained. In this
case, a 7x7 minor has a zero determinant. Let us name the rows of camera matrices.
The 6 row vectors of camera 1 are pa, pb, pc, pd, pe and pi. The six row vectors of
camera 2 will be referred to as p′f , p′g, p′h, p′k, p′l and p′j . Then, cofactor expansion
of determinant gives following bilinear constraint:

ziz′jεiabcdeεjhklfg det



pa

pb

pc

pd

pe

p′f

p′g


= 0hkl (4.44)
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The tensor Tijhkl is defined as follows:

Tijhkl = εiabcdeεjhklfg det



pa

pb

pc

pd

pe

p′f

p′g


(4.45)

From Eq. (4.44) and Eq. (4.45), we have the bilinear constraints shown in Eq. (4.39). A
part of tensor T66345 is shown as an example in Eq. (4.43), where the eliminated matrix
part is shown in blue.

4.5.3 Bifocal Tensor

In this section, we consider the detail of the bifocal tensor for 6D-5D cameras. It rep-
resents the relative geometric and photometric relationship between the two cameras
which exist in the 6D space. Equation (4.39) shows that the tensor Tijhkl can be com-
puted from corresponding points in frequency space z and z′. Camera matrices and
Eq. (4.38) exhibit features of tensor structure. Because of the structure of affine cam-
eras many zero elements exist in the bifocal tensor. Equation (4.38) also shows that
each element will be repeated 24(= 4!) times (12 times positively and negatively) ow-
ing to the presence of 4 variables of tensor Tijhkl present in one ε term. Depending on
the structure of camera matrices shown in Eq. (4.3) and (4.4), the resulting tensors have
different DOF. Thus, the minimum no. of frequencies required for its computation is
also different. However, the maximum no. of cameras and reconstruction procedure
remains the same.

The bifocal tensor defined in Eq. (4.38) has 2 types depending upon which projection
model in Eq. (4.3) and Eq. (4.4) is used.
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Bifocal Tensor - I

Considering the bifocal tensor of camera matrices defined in Eq. (4.3), Tijhkl has 7776

total elements and 408 components are non-zero. This tensor would termed as bifocal
tensor - I or tensor - I.

The tensor Tijhkl, contains 408 non-zero components. However, 17 of them are
unique and 16 independent. Each element is repeated 12 times with same polarity and
12 times with reversed polarity such that 17× (12× 2) = 408. The unique elements are
T13456, T23456, T31456, T32456, T41356, T42356, T51346, T52346, T61345, T61346, T61356, T61456,
T62345,T62356, T62456,T62346 and T63456. A complete list of 408 non-zero components of
tensor Tijhkl classified into 17 unique component groups is given in Table 4.1.

Table 4.1: List of all Tijhkl non-zero elements (tensor - I).

Group No. Polarity Element List

1 + T13456, T13564, T13645, T14365, T14536, T14653,
T15346, T15463, T15634, T16354, T16435, T16543

− T13465, T13546, T13654, T14356, T14563, T14635,
T15364, T15436, T15643, T16345, T16453, T16534

2 + T23465, T23546, T23654, T24356, T24563, T24635,
T25364, T25436, T25643, T26345, T26453, T26534

− T23456, T23564, T23645, T24365, T24536, T24653,
T25346, T25463, T25634, T26354, T26435, T26543

3 + T31456, T31564, T31645, T34165, T34516, T34651,
T35146, T35461, T35614, T36154, T36415, T36541

cont.
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− T31465, T31546, T31654, T34156, T34561, T34615,
T35164, T35416, T35641, T36145, T36451, T36514

4 + T32465, T32546, T32654, T34256, T34562, T34625,
T35264, T35426, T35642, T36245, T36452, T36524

− T32456, T32564, T32645, T34265, T34526, T34652,
T35246, T35462, T35624, T36254, T36425, T36542

5 + T41365, T41536, T41653, T43156, T43561, T43615,
T45163, T45316, T45631, T46135, T46351, T46513

− T41356, T41563, T41635, T43165, T43516, T43651,
T45136, T45361, T45613, T46153, T46315, T46531

6 + T42356, T42563, T42635, T43265, T43526, T43652,
T45236, T45362, T45623, T46253, T46325, T46532

− T42365, T42536, T42653, T43256, T43562, T43625,
T45263, T45326, T45632, T46235, T46352, T46523

7 + T51346, T51463, T51634, T53164, T53416, T53641,
T54136, T54361, T54613, T56143, T56314, T56431

− T51364, T51436, T51643, T53146, T53461, T53614,
T54163, T54316, T54631, T56134, T56341, T56413

8 + T52364, T52436, T52643, T53246, T53462, T53624,
T54263, T54326, T54632, T56234, T56342, T56423

cont.
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− T52346, T52463, T52634, T53264, T53426, T53642,
T54236, T54362, T54623, T56243, T56324, T56432

9 + T61354, T61435, T61543, T63145, T63451, T63514,
T64153, T64315, T64531, T65134, T65341, T65413

− T61345, T61453, T61534, T63154, T63415, T63541,
T64135, T64351, T64513, T65143, T65314, T65431

10 + T61364, T61436, T61643, T63146, T63461, T63614,
T64163, T64316, T64631, T66134, T66341, T66413

− T61346, T61463, T61634, T63164, T63416, T63641,
T64136, T64361, T64613, T66143, T66314, T66431

11 + T61365, T61536, T61653, T63156, T63561, T63615,
T65163, T65316, T65631, T66135, T66351, T66513

− T61356, T61563, T61635, T63165, T63516, T63651,
T65136, T65361, T65613, T66153, T66315, T66531

12 + T61465, T61546, T61654, T64156, T64561, T64615,
T65164, T65416, T65641, T66145, T66451, T66514

− T61456, T61564, T61645, T64165, T64516, T64651,
T65146, T65461, T65614, T66154, T66415, T66541

13 + T62345, T62453, T62534, T63254, T63425, T63542,
T64235, T64352, T64523, T65243, T65324, T65432

− T62354, T62435, T62543, T63245, T63452, T63524,

cont.
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T64253, T64325, T64532, T65234, T65342, T65423

14 + T62346, T62463, T62634, T63264, T63426, T63642,
T64236, T64362T64623, T66243, T66324, T66432

− T62364, T62436, T62643, T63246, T63462, T63624,
T64263, T64326, T64632, T66234, T66342, T66423

15 + T62356, T62563, T62635, T63265, T63526, T63652,
T65236, T65362, T65623, T66253, T66325, T66532

− T62365, T62536, T62653, T63256, T63562, T63625,
T65263, T65326, T65632, T66235, T66352, T66523

16 + T62456, T62564, T62645, T64265, T64526, T64652,
T65246, T65462, T65624, T66254, T66425, T66542

− T62465, T62546, T62654, T64256, T64562, T64625,
T65264, T65426, T65642, T66245, T66452, T66524

17 + T63456, T63564, T63645, T64365, T64536, T64653,
T65346, T65463, T65634, T66354, T66435, T66543

− T63465, T63546, T63654, T64356, T64563, T64635,
T65364, T65436, T65643, T66345, T66453, T66534

Bifocal Tensor - II

Next, bifocal tensor Tijhkl of camera matrices defined in Eq. (4.4) will be dealt. It will
be referred to as bifocal tensor-II or tensor - II. The total no. of elements remains
same, i.e. 7776 elements. But the no. of non-zero elements increase to 696. There are



96

29 unique elements and 28 independent elements except a scale. Each element repeated
12 times positively and 12 times negatively. The unique elements are, T13456, T23456,
T31346, T31356, T31456, T32346, T32356, T32456, T41346, T41356, T41456, T42346, T42356, T42456,
T51346, T51356, T51456, T52346, T52356, T52456, T61345, T61346, T61356, T61456, T62345, T62346,
T62356, T62456 and T63456. In addition to the non-zero elements of Table 4.1, the list of 12

additional non-zero components of tensor Tijhkl is given in Table 4.2.

Table 4.2: List of additional 12 non-zero Tijhkl elements (tensor - II).

Group No. Polarity Element List

18 + T31364, T31436, T31643, T33146, T33461, T33614,
T34163, T34316, T34631, T36134, T36341, T36413

− T31346, T31463, T31634, T33164, T33416, T33641,
T34136, T34361, T34613, T36143, T36314, T36431

19 + T31365, T31536, T31653, T33156, T33561, T33615,
T35163, T35316, T35631, T36135, T36351, T36513

− T31356, T31563, T31635, T33165, T33516, T33651,
T35136, T35361, T35613, T36153, T36315, T36531

20 + T32346, T32463, T32634, T33264, T33426, T33642,
T34236, T34362, T34623, T36243, T36324, T36432

− T32364, T32436, T32643, T33246, T33462, T33624,
T34263, T34326, T34632, T36234, T36342, T36423

cont.
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21 + T32356, T32563, T32635, T33265, T33526, T33652,
T35236, T35362, T35623, T36253, T36325, T36532

− T32365, T32536, T32653, T33256, T33562, T33625,
T35263, T35326, T35632, T36235, T36352, T36523

22 + T41364, T41436, T41643, T43146, T43461, T43614,
T44163, T44316, T44631, T46134, T46341, T46413

− T41346, T41463, T41634, T43164, T43416, T43641,
T44136, T44361, T44613, T46143, T46314, T46431

23 + T41465, T41546, T41654, T44156, T44561, T44615,
T45164, T45416, T45641, T46145, T46451, T46514

− T41456, T41564, T41645, T44165, T44516, T44651,
T45146, T45461, T45614, T46154, T46415, T46541

24 + T42346, T42463, T42634, T43264, T43426, T43642,
T44236, T44362, T44623, T46243, T46324, T46432

− T42364, T42436, T42643, T43246, T43462, T43624,
T44263, T44326, T44632, T46234, T46342, T46423

25 + T42456, T42564, T42645, T44265, T44526, T44652,
T45246, T45462, T45624, T46254, T46425, T46542

− T42465, T42546, T42654, T44256, T44562, T44625,
T45264, T45426, T45642, T46245, T46452, T46524

26 + T51365, T51536, T51653, T53156, T53561, T53615,

cont.



98

T55163, T55316, T55631, T56135, T56351, T56513

− T51356, T51563, T51635, T53165, T53516, T53651,
T55136, T55361, T55613, T56153, T56315, T56531

27 + T51456, T51564, T51645, T54165, T54516, T54651,
T55146, T55461, T55614, T56154, T56415, T56541

− T51465, T51546, T51654, T54156, T54561, T54615,
T55164, T55416, T55641, T56145, T56451, T56514

28 + T52356, T52563, T52635, T53265, T53526, T53652,
T55236, T55362, T55623, T56253, T56325, T56532

− T52365, T52536, T52653, T53256, T53562, T53625,
T55263, T55326, T55632, T56235, T56352, T56523

29 + T52465, T52546, T52654, T54256, T54562, T54625,
T55264, T55426, T55642, T56245, T56452, T56524

− T52456, T52564, T52645, T54265, T54526, T54652,
T55246, T55462, T55624, T56254, T56425, T56542

4.5.4 Computation of Bifocal Tensor

The unique elements of bifocal tensor Tijhkl can be computed by using the relationship
shown in Eq. (4.39). By modifying Eq. (4.39), we have:

MT = 0 (4.46)
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where, T is a vector which consists of the unique elements of Tijhkl, and M is a matrix
which consists of z and z′. For computing bifocal tensor - I, M and T are as follows:

M =


z1z
′
3 z2z

′
3 z3z

′
1 z3z

′
2 0 0 0 0 0

z1z
′
5 z2z

′
5 0 0 0 0 z5z

′
1 z5z

′
2 0

−z1z′4 −z2z′4 0 0 z4z
′
1 z4z

′
2 0 0 0

−z1z′6 −z2z′6 0 0 0 0 0 0 z6z
′
1

0 0 z6z
′
1 0 0 z6z

′
2 0 z6z

′
3

z6z
′
1 0 0 0 0 0 z6z

′
2 z6z

′
5

0 z6z
′
1 0 0 z6z

′
2 0 0 −z6z′4

0 0 0 z6z
′
2 0 0 0 −z6z′6


(4.47)

T = [T13456, T23456, T31456, T32456, T41356, T42356, T51346, T52346, T61345, T61346,

T61356, T61456, T62345, T62356, T62456, T62346, T63456]>
(4.48)

For n frequencies the dimensions of M would be 4n × 17. The 17 elements of tensor
Tijhkl can be found by computing the least eigenvector of M>M.
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For computing bifocal tensor - II, M and T are as follows:

M =


z1z
′
3 z2z

′
3 z3z

′
1 z3z

′
2 z4z

′
1 z4z

′
2 z5z

′
1 z5z

′
2

z1z
′
5 z2z

′
5 0 0 0 0 0 0

−z1z′4 −z2z′4 0 0 0 0 0 0

−z1z′6 −z2z′6 0 0 0 0 0 0

z6z
′
1 z6z

′
2 z6z

′
3 0 0 0 0 0

0 0 z6z
′
5 z3z

′
1 z3z

′
2 z4z

′
1 z4z

′
2 z5z

′
1

0 0 −z6z′4 0 0 0 0 0

0 0 −z6z′6 0 0 0 0 0

0 0 0 0 0 0 0 0

z5z
′
2 z6z

′
1 z6z

′
2 0 0 0 0 0

0 0 0 z3z
′
1 z3z

′
2 z4z

′
1 z4z

′
2 z5z

′
1

0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

z5z
′
2 z6z

′
1 z6z

′
2 0 0

0 0 0 z6z
′
1 z6z

′
2



(4.49)

T = [T13456, T23456, T31346, T31356, T31456, T32346, T32356, T32456, T41346, T41356,

T41456, T42346, T42356, T42456, T51346, T51356, T51456, T52346, T52356, T52456,

T61345, T61346, T61356, T61456, T62345, T62346, T62356, T62456, T63456]>
(4.50)

4.5.5 Independent Equations

The number of independent equations is same for both the tensors, tensor - I and tensor
- II. Equation (4.39) shows 1 correspondence in frequency domain gives 216 equations,
however only 4 of them are independent for n = 0 as shown in Sec. 4.5.4, and 3 are
independent for n 6= 0, since at n 6= 0, z6 = z′6 = 0 in frequency space.
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4.5.6 Minimum Number of Points for Tensor Computation

We next consider the minimum number of points required for computing the bifocal
tensor.

Bifocal Tensor - I

The 17 unique (16 independent) elements of tensor - I, Tijhkl can be computed from a
minimum of 5 corresponding frequencies. In frequency domain 3 point correspondences
at n = 0 provide 3 × 4 = 12 independent equations, and 2 correspondences at n 6= 0

provide 3×2 = 6 independent equations. Therefore, a total of 16 independent equations
is sufficient to compute 16 independent components of tensor. It may be noticed that
elements T61345, T61346, T61356, T61456, T62345,T62356, T62456, T62346 and T63456 can be
computed from frequencies at n = 0 only. A discussion similar to Sec. 3.5.4.

The minimum no. of frequencies for computation of tensor - I for texture patterns
(Eq. (4.41)) is same as for sequences (Eq. (4.40)). However, for proper reconstruction,
the rank of matrix M in Eq. (4.47) should be 16. Therefore for repetitive textures, the
choice of frequencies is slightly different. Two dimensional fourier transform of color
information produces several zero components in absence of noise and components of
negligible magnitude in presence of noise. Therefore, 3 frequencies must be chosen at
n = 0 and two frequencies must be chosen at n 6= 0 for which the RGB frequency
transformed components are non-zero.

Bifocal Tensor - II

The number of independent equations for tensor -II is same as that for tensor - I, but the
DOF for tensor - II is increased to 28 (29 minus overall scale). The minimum no. of
points for the tensor -II computation is 9. Three frequencies at n = 0 provide 3 × 4 =

12 constraints. Six frequencies for n 6= 0 give 6 × 3 = 18 constraints. Thus, a total of
30 equations provide the least no. of constraints required for tensor - II computation.
However, it must be noted that elements T61345, T61346, T61356, T61456, T62345, T62346,
T62356, T62456, T63456 can be computed from correspondences at n = 0 only.
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4.5.7 Maximum No. of Cameras

The maximum no. of cameras/images for 6D to 5D projection is 7, since the number of
hyperplanes intersecting to form a multilinear constraint is 7. Let us denote the points
in image 1, . . . , image 7 in frequency space as z, z′, z′′, z′′′, zIV, zV, zVI and camera
matrices as P, P′, P′′, P′′′, PIV, PV and PVI.
The multilinear constraint for 3 cameras is:

ziz′jz′′kεja6...a10εka11...a15Ca6a11i = 0a7...a10a12...a15 (4.51)

The multilinear constraint for 4 cameras is:

ziz′jz′′kz′′′lεja6...a10εka11...a15εla16...a20Da6a11a16ia5
= 0a5a7...a10a12...a15a17...a20 (4.52)

The multilinear constraint for 5 cameras is:

ziz′jz′′kz′′′lzIV
x
εja6...a10εka11...a15εla16...a20εxa21...a25

Ea6a11a16a21ia4a5
= 0a4a5a7...a10a12...a15a17...a20a22...a25

(4.53)

The multilinear constraint for 6 cameras is:

ziz′jz′′kz′′′lzIV
x
zV

y
εja6...a10εka11...a15εla16...a20εma21...a25εya26...a30

Fa6a11a16a21a26ia3a4a5
= 0a3a4a5a7...a10a12...a15a17...a20a22...a25a27...a30

(4.54)

The multilinear constraint for 7 cameras is:

ziz′jz′′kz′′′lzIV
x
zV

y
zV I

w
εja6...a10εka11...a15εla16...a20εma21...a25εya26...a30

εwa31...a35Ga1a6a11a16a21a26a31 = 0a2...a5a7...a10a12...a15a17...a20a27...a30a32...a35
(4.55)

where Ca6a11i , Da6a11a16ia5
, Ea6a11a16a21ia4a5

, Fa6a11a16a21a26ia3a4a5
and Ga1a6a11a16a21a26a31 are defined

as follows:

Ca6a11i = εmnopqrsεia1...a5P
a1
m P

a2
n P

a3
o P

a4
p P

a5
q P

′a6
r P ′′a11s (4.56)

Da6a11a16ia5
= εmnopqrsεia1...a5P

a1
m P

a2
n P

a3
o P

a4
p P

′a6
q P ′′a11r P ′′′a16s (4.57)

Ea6a11a16a21ia4a5
= εmnopqrsεia1...a5P

a1
m P

a2
n P

′a3
o P ′a6p P ′′a11q P ′′′a16r P IV ′a21

s (4.58)
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Fa6a11a16a21a26ia3a4a5
= εmnopqrsεia1...a5P

a1
m P

a2
n P

′a6
o P ′′a11p P ′′′a16q P IV a21

r P V a26
s (4.59)

Ga6a11a16a21a26ia3a4a5
= εmnopqrsεia1...a5P

a1
m P

′a2
n P ′′a6o P ′′′a11p P IV a16

q P V a21
r P V Ia26

s (4.60)

The notation ai, . . . , aj (in subscripts and superscripts) means elements ranging from ai

to aj . The definition of tensors εmnopqrs etc. can be seen in Appendix A.4.

4.6 Sampling shift

Sampling shifts for color sequence and texture patterns can be computed using the fol-
lowing methods.

4.6.1 Sampling shift for Sequential Patterns

We next consider the method of finding the sampling shift for sequential patterns. For
sequential patterns the phase shift is 1 dimensional as shown in Eq. (4.7) and Eq. (4.10),
as all points in sequence are connected in a single line. Considering upper 5x7 part of
each camera matrix and upper 5x1 part of each image frequency z and z′ in Eq. (4.8)
and Eq. (4.10), the following system is obtained:

p11 p12 p13 0 0 0 p17 z1

p21 p22 p23 0 0 0 p27 z2

0 0 0 p34 p35 p36 p37 z3

0 0 0 p44 p45 p46 p47 z4

0 0 0 p54 p55 p56 p57 z5

p′11 p′12 p′13 0 0 0 p′17 ejnθz′1

p′21 p′22 p′23 0 0 0 p′27 ejnθz′2

0 0 0 p′34 p′35 p′36 p′37 ejnθz′3

0 0 0 p′44 p′45 p′46 p′47 ejnθz′4

0 0 0 p′54 p′55 p′56 p′57 ejnθz′5



[
Z

−1

]
= 0 (4.61)

where ejnθ = λ is the phase shift in sampling of image 2. Since Eq. (4.61) has solution,
the determinant of the left most matrix M must be zero. The matrix M is non-square
(10×8) and thus by solving a quadratic equation derived from the determinant of M>M,
phase shift λ can be determined. The quadratic equation would give two solutions for
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λ. In absence of noise, the roots of the equation will be equal. However, in the presence
of noise the roots will be slightly different, so any one of them can be chosen. Taking
the ratio of two consecutive frequencies, we have:

λ(n2)

λ(n1)
=
ejn2θ

ejn1θ
= ej(n2−n1)θ (4.62)

where n2−n1 = 1 for consecutive frequencies. Thus, the phase shift s can be computed
as follows:

s =
N

2πj(n2 − n1)
log

λ(n2)

λ(n1)
(4.63)

where λ(n2) and λ(n1) represent the phase at frequencies n2 and n1 respectively. In the
presence of noise k will be a complex number. Therefore, we consider the real part and
most repeated integer.

4.6.2 Sampling shift for Texture Patterns

The sampling shift is 2 dimensional in texture patterns, as shown in Eq. (4.13) and
Eq. (4.14). Following the discussion in Sec. 3.6.2 taking the ratio of two horizontal
consecutive frequencies to gives horizontal phase shift. Similarly ratio of two vertical
consecutive frequencies gives vertical phase shift as follows:

s =
N

2πj(n2 − n1)
log

λ(n2,m1)

λ(n1,m1)
(4.64)

t =
M

2πj(m2 −m1)
log

λ(n1,m2)

λ(n1,m1)
(4.65)

where (n2,m1) and (n1,m1) are horizontally consecutive frequencies, and (n1,m2) and
(n1,m1) are vertically consecutive frequencies respectively.

4.7 6D Reconstruction

We next consider reconstruction of 6D points from 5D images for recovering color se-
quential patterns. The method does not require point correspondences on the sequential
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patterns.

4.7.1 Retrieval of Camera Matrices

Reconstruction of 6D point Z requires knowledge of camera matrices. Assuming a
canonical camera pair, the two camera matrices are defined as follows:

P =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


(4.66)

P′ = [H|e′] (4.67)

where H represents the homography between images and e′ is the epipole in image 2.
H and e′ can be computed from Tijhkl as described in the following sections. Once
the homography and the epipole are computed, camera matrices are recovered from
Eq. (4.66) and Eq. (4.67), and the 6D frequency points Z(n) (n = 1, · · · , N) can be
reconstructed.

4.7.2 Computation of Epipoles

Epipole e in image 1, can be computed as the left null space of Tijhkl. Similarly, epipole
e′ in image 2 can be computed as the right null space of tensor Tijhkl.

eiTijhkl = 0jhkl (4.68)

e′jTijhkl = 0ihkl (4.69)

Equation (4.69) can be described in matrix form as follows:

Me′ = 0 (4.70)



106

where, e′ = [e′1, e′2, e′3, e′4, e′5, e′6]T , and M is a 1296 x 6 matrix, which consists of
the components of tensor Tijhkl. Then, e′ can be obtained by solving Eq. (4.70). In
the presence of noise, the least square solution of e′ can be computed as an eigenvector
corresponding to the smallest eigenvalue of MTM.

4.7.3 Extraction of Homography

Let us consider an arbitrary but fixed plane π, not passing through any of the camera
centers. Then, a point z in image 1 is related to a point z′π in image 2 by the homography
H as follows:

z′sπ = Hs
iz
i (4.71)

An epipolar line l′ in image 2 can be defined as the join of epipole e′ and the point z′π
as follows:

l′jhlk = εjhlkrse
′rz′sπ (4.72)

From Eq. (4.39), epipolar line l′ can also be defined as the corresponding line in image
2 for a point in image 1.

l′jhlk = Tijhlkzi (4.73)

Equations (4.71), (4.72) and (4.73) show the following relationship for homography:

Hs
i = εjhlkrse′rTijhkl (4.74)

Fig. 3.6 showed the concept induced homography for 3D images. The same concept is
generalized to 5D images in this section.

Thus, both H and e′ can be computed from Tijhkl, and camera matrices P and P′

can be obtained from Eq. (4.66) and Eq. (4.67).
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4.7.4 Affine Reconstruction and Rectification

Once the camera matrices P and P′ have been computed, 6D points can be recovered
as follows: Let us consider the camera projection equation in frequency space again:

z = PZ (4.75)

z′ = P′Z (4.76)

Taking the vector product between the left side and the right side of Eq. (4.75) and
Eq. (4.76), we have:

[z]×PZ = 0 (4.77)

[z′]×P
′Z = 0 (4.78)

where, [ · ]× denotes a skew symmetric matrix for vector product. From Eq. (4.77) and
Eq. (4.78), we have:

MZ = 0 (4.79)

where, M is a 250× 7 matrix as follows:

M =

[
[z]×P

[z′]×P
′

]
(4.80)

Then, by solving Eq. (4.79), 6D point Z in the frequency space can be recovered.
The least squares solution of Eq. (4.79) can be obtained by computing an eigenvec-
tor which corresponds to the minimum eigenvalue of M>M. After all points Z(n)

(n = 1, · · · , N) are reconstructed using Eq. (4.79) in frequency space, we apply inverse
Fourier transform to Z to get original points X(i) (i = 1, · · · , N) in spatial domain,
as X = F−1(Z). The two objects, reconstructed and the original one still differ by an
affine homography. This homography has 42 degrees of freedom and can be computed
by choosing seven points in general configuration for rectification of the reconstructed
object. A case similar to Eq. (2.80).

The original sequential patterns X̂ can be obtained by rectifying the reconstructed
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pattern X by the homography H as follows:

X̂ = HX (4.81)

4.8 Experiments

We next show the results of reconstructing 6D points, that is color sequential patterns
and color textures. We show that the proposed method can reconstruct these objects
without knowing point correspondence. We also show that our method can reconstruct
photometric information as well as geometric shape information.

4.8.1 Color Sequential Pattern

First, we consider color sequences.

Synthetic Image Experiment

Figure 4.4 shows the sequential patterns used. The sequential patterns have 3D geo-
metric information and 3D color information, thus termed "color". The objects are 6

dimensional. Two cameras with different geometric and sensitivity parameters project
these sequences to image 1 and image 2. Figure 4.5 (a) and (b) show the 5 dimensional
images. It may be observed that, image 1 was taken by a high gain camera, and image 2

was taken by a low gain camera. Also, the correspondence is unknown between images.
Therefore, we assume that sampling of image 2 is shifted w.r.t sampling of image 1.

Using the method described in Sec. 4.5.4 tensor was computed. Three frequencies
at n = 0, three frequencies at n = 1 and three frequencies at n = 2 were obtained from
three textures were used for computing the tensor. The sampling of image 2 was found
to be shifted w.r.t image 1 by 5 units. And appropriate phase values were multiplied to
the reconstructed points Z before applying inverse Fourier transform(Sec. 4.7).

Figure 4.6 (a) shows the ground truth and (b) illustrates the reconstructed object,
while (c) shows the result from the classical method. The reconstruction from the pro-
posed method is exactly same as the ground truth in terms of shape and color, which
shows the method works well. It also depicts the fact that the method is independent to
camera sensitivity differences.
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Figure 4.4: 6D color sequences used in synthetic experiment. There are three series of
color points, which are connected by lines (object 1, object 2 and object 3).

(a) image 1 (high gain) (b) image 2 (low gain)

Figure 4.5: 5D Images of color sequences.

The last part is to synthesize arbitrary views of the reconstructed object. Figure 4.7
shows the arbitrary views. It can be observed that not only the viewpoints but the camera
sensitivity parameters are also different for these images.
Nonetheless, the synthesized image is properly generated by using the proposed method.
Next, we discuss reconstruction for three special cases:

1. Sequences are planar as shown in Fig. 4.8 (a).

2. Sequences lack color variation, two sequences have no color variation as shown
in Fig. 4.9 (a).

3. Sequences are planar and lack color variation as shown in Fig. 4.10 (a).

Planar sequences can be reconstructed perfectly well. However, all sequences must not
be on same plane. In this experiment, three correspondences at n = 0, three at n = 1
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(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 4.6: Original and reconstructed 6D object. The reconstruction has correct 3D
shape and color (RGB) information.

(a) arbitrary view 1 (b) arbitrary view 2

Figure 4.7: Arbitrary views of the 6D sequence reconstruction.

and three at n = 2 were used for tensor computation.

Next, if there is no color variation in all the sequences, reconstruction is not possible.
This is because the rank of matrix M in Eq. (4.46) reaches at most 12, even if all
the points are used. Therefore, at least one sequence must have color variation for
determining the tensor as shown in Fig. 4.9 (b). Three points are chosen at n = 0 from
each sequence, and other 6 points are chosen from the sequence having color variation.

Third, if the sequences are planar and lack color variation. Again, at least one se-
quence must have color variation. And correspondences are chosen in the similar way
as for case above.

The experiments show the proposed method can reconstruct and produce the arbi-
trary views of the color sequences. These experiments were carried out in absence of
image noise. Noise factor will be catered in stability analysis of tensor in Sec. 4.8.1.
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(a) ground truth (b) reconstruction

Figure 4.8: Planar 6D sequences.

(a) ground truth (b) reconstruction

Figure 4.9: 6D sequences. Two sequences have no color variation.

Real Image Experiment

Figure. 4.11 shows the images used for real image experiment. These images differ in
viewpoint and camera gain. Concentric circles of blocks form the sequential patterns
in this case. In this experiment, blobs are detected by using a method described in
Appendix B.4, and their centroid and mean color are used for the coordinates of 5D
image point Z. The correspondence of image points between image 1 and image 2 is
not known.

From image 1 and image 2, tensor Tijhkl and phase shift were estimated by using
the proposed method. Three frequencies at n = 0, three frequencies at n = 1, three
frequencies at n = 2 and three frequencies at n = 3 from three sequences were used
for computing the tensor. The sampling of image 2 was found to be shifted by 5 units.
After that, the proposed method was used to reconstruct the objects.

Figure 4.12 shows the comparison of (a) ground truth, (b) reconstruction from the
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(a) ground truth (b) reconstruction

Figure 4.10: Planar 6D sequences. Two sequences have no color variation.

(a) image 1 (high gain) (b) image 2 (low gain)

Figure 4.11: Images for real experiment. The color tops of blocks form the sequential
patterns.

proposed method and (c) reconstruction from the classical method. As it may be seen,
the reconstruction result of the proposed method is quite similar to the original object
geometrically and photometrically, while the result from the classical method is com-
pletely wrong. This shows the proposed method works well for real images as well. It
also shows the reconstruction of 3D shape and 3D color information is possible even if
the sampling of images used is different. It also shows camera parameters need not to
be same.

Next, the reconstruction was projected to arbitrary views as shown in Fig. 4.13,
where arbitrary view 1 is high gain image. The original image points are joined using
black lines and reprojected points are connected using red lines. As we may observe the
difference is very minute. This shows that the arbitrary views are produced accurately.
From above experiment we may state that the proposed method works for different kinds
of color sequences and camera parameters.
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(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 4.12: Original and reconstructed 6D object. The reconstruction has correct 3D
shape and color values.

(a) arbitrary view 1 (b) arbitrary view 2
(high gain) (low gain)

Figure 4.13: Arbitrary views of the 6D real color sequence. Black lines connect actual
image points. Red lines connect the reprojected points.

Stability Evaluation

Next, we will look at its two important aspects of tensor Tijhkl; resistance against noise
and increase in no. of frequencies for its computation. Reconstruction error Eq. (4.82)
is used for gauging tensor stability.

E =
1

N

N∑
i=1

d(Q(i)− Q̂r(i))
2 (4.82)

where Q and Qr represent the true quantity and reconstructed quantity. Q is 3D geo-
metric information for Fig. 4.14 (a) and it is 3D color information for Fig. 4.14 (b), N is
the total no. of points present in sequences. The tensor was computed changing object
shape and camera position. A random Gaussian noise of standard deviation of 1 was
added to the image coordinates and color information. The result was averaged over
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(a) reconstruction error (b) reconstruction error
in shape in color

Figure 4.14: Stability of reconstruction. Horizontal axes show no. of frequencies for
tensor computation. Vertical axes show reconstruction errors.

100 iterations. From the small magnitude of errors in the presence of noisy images and
changing conditions we understand that the tensor is quite stable. Next, by increasing
the no. of points in frequency domain for tensor computation, the reconstruction error
is reduced and better reconstruction is obtained. This shows the stability of tensor is
exponentially proportional to the no. of frequencies used. The graph also shows the fact
that tensor is capable of handling different sequences under varying conditions.

4.8.2 Color Texture Patterns

This section will show 6D reconstruction and arbitrary view generation of color textures,
i.e. 2D sequential patterns.

Synthetic Image Experiment

Figure 4.15 shows the synthetic texture used in this experiment. The textures have 3D
geometric shape and 3D repetitive color information. It is easy to notice, the texture
elements are connected vertically and horizontally to form a 2D sampling grid. The
following experiments consider bifocal tensor - II for reconstruction. Two cameras at
different locations and with different camera sensitivity values give image 1 and image
2, as shown in Fig. 4.16. Image 1 is a high gain image, and image 2 is a low gain image.
To show the correspondence freeness of the method, image 2 was given a sampling
shift. The horizontal sampling shift was 2 and the vertical sampling shift was 3. The
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Figure 4.15: Color textures for synthetic experiment. The objects are 6 dimensional
having 3D shape and repetitive 3D color information.

(a) image 1 (high gain) (b) image 2 (low gain)

Figure 4.16: 5D images of color texture objects.

images were then Fourier transformed. Tensor Tijhkl was computed for these images,
since the color is repetitive 5 correspondences were chosen in frequency space with
enough variation. Three correspondences were chosen at n = 0 and other two at n =

4. Figure 4.17 shows the ground truth with reconstruction results from the proposed
method and the classical method. The result from the proposed method is identical to the
ground truth both in shape and texture colors, highlighting that reconstruction of color
textures is accurate, even in the absence of exact correspondences. It also shows that
our method is free of camera sensitivity parameters and sampling differences. To show
the reconstructed textures from different viewpoints with different camera parameters,
arbitrary views Fig. 4.18 were generated. These images differ in viewpoint and color
information from the actual images Fig. 4.16 were used. Next, we discuss reconstruction
in the following three special cases:
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(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 4.17: Original and reconstructed 6D texture objects. The reconstructed color
texture has correct 3D shape and color values.

(a) arbitrary view 1 (b) arbitrary view 2

Figure 4.18: Arbitrary views of 6D reconstructed texture.

1. Textures are planar as shown in Fig. 4.19 (a). Reconstruction is possible with 9

correspondences. Three at n = 0 and 6 at n 6= 0. However, the three texture
patterns should not be at same plane.

2. Textures lack color variation as shown in Fig. 4.20 (a). To meet the rank criteria
of matrix M in Eq. (4.49), the color should vary for at least 1 object.

3. Textures are planar and also lack color variation as shown in Fig. 4.21 (a).

Next, we study the possibility of mixed objects, when both 1D sequences and 2D
textures are present in the scene. Sequences are considered using 1D Fourier transform
and textures using 2D Fourier transform. Reconstruction is similar (1D-DFT and 2D-
DFT) and tensor requires a minimum of 9 correspondences as shown in Fig. 4.22. The
9 correspondences can be divided into two groups, 3 at n = 0 and 6 at n 6= 0.
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(a) ground truth (b) reconstruction

Figure 4.19: Planar 6D textures.

(a) ground truth (b) reconstruction

Figure 4.20: 6D textures. Two texture patterns have no color variation.

Real Image Experiment

To show the reconstruction of real image textures we consider the texture shown in
Fig. 4.23. The color texture is viewed from cameras with different sensitivity param-
eters. Image 1 in Fig. 4.23 (a) was taken by a high gain camera, while image 2 in
Fig. 4.23 (b) was taken by a low gain camera. Since, we do not know the true sampling
order of images, it is assumed that the sampling order of 2 is relatively shifted horizon-
tally and vertically. The proposed method was used to compute the tensor Tijhkl and
estimate the sampling shift. It was found correct. The sampling order of image 2 was
shifted by 2 units vertically and 1 unit horizontally. Figure 4.24 shows the (a) ground
truth and (b) reconstruction from the proposed method while (c) shows the result from
the classical method. The reconstruction result from the proposed method is almost
same as the ground truth, confirming the results of synthetic image experiments.

Next, color texture was reprojected to arbitrary views. Figure 4.25 show the re-
projection result. Green and red lines link actual image points and reprojected image
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(a) ground truth (b) reconstruction

Figure 4.21: Planar 6D textures. Two texture patterns have no color variation.

(a) ground truth (b) reconstruction

Figure 4.22: Reconstruction of mixed 6D objects.

points. We may observe the lines are almost coincident. This shows that arbitrary view
is generated properly.

Stability Evaluation

We next examine the stability of reconstruction of the color textures in the presence of
random image noise and increase in no. of frequencies used for its computation. The
texture shape, color, camera sensitivity parameters and positions were changed. Also,
image points coordinates and color information were perturbed by a Gaussian noise
of standard deviation of 1. As expected from Sec. 4.8.1 tensor showed same response
Fig. 4.26, displaying robustness against noise and exponential decrease in reconstruction
error. The result was an enhanced stability with increase in no. of frequencies.
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(a) image 1 (high gain) (b) image 2 (low gain)

Figure 4.23: Real images used for color texture reconstruction

(a) ground truth (b) reconstruction from (c) reconstruction from
proposed method classical method

Figure 4.24: Original and reconstructed color texture. The reconstructed object has
correct 3D texture shape and 3D color.

4.9 Summary

In this chapter, reconstruction of color sequences and textures was shown. The dimen-
sions of object and image space were 6D and 5D respectively. Multiview constraints for
2 cameras were derived in frequency domain. One dimensional Fourier transform was
used for sequences and two dimensional Fourier transform was used for textures. Tijhkl
is the algebraic entity between color sequences and textures of two images. Multiview
relationship for 3,. . . , 7 cameras were also shown. It was shown that be relaxing cor-
respondence criteria, reconstruction from relatively shifted samples of color objects is
possible.
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Figure 4.25: Arbitrary view of the 6D texture. Green and red lines join the actual image
points and reprojected points respectively.

(a) reconstruction error (b) reconstruction error
in shape in color

Figure 4.26: Stability of reconstruction. Horizontal axes are no. of frequencies for
tensor computation, vertical axes represent reconstruction errors.



121

Chapter 5

Conclusion

Computer Vision is an interesting field with diverse applications in industry, medicine
etc. However, the biggest advantage it offers is the visual practicality of linear algebra in
education. It is quite interesting to apply the various concepts of physics, mathematics
etc. to find a solution to a problem. Multiple view geometry is the core of computer
vision. It’s classical theory as well as its ability to expand and encompass other infor-
mation is intriguing. It is also the feature used in this research.

The object of this research was to reconstruct texture objects and synthesize its arbi-
trary views. Two kinds of textures were considered 1D sequential and 2D patch texture.
Each of the pattern was studied under the light of two cases grayscale and color infor-
mation. The method to solve the problem consisted of expanding the scope of classical
view geometry for mixed image information.

For reconstruction, finding accurate correspondences is inevitable. Therefore, an-
other important aspect was deriving multiview constraints while relaxing the correspon-
dence criteria. The approach was to work in Fourier domain, instead of spatial. With
properties of Fourier domain such as linearity and translation the correspondence of
individual points was solved.

Texture is usually characterized by the repetition of texture elements or group of
points (patch correspondence). The proposed method to handle group correspondence
is to utilize tensor consistency with minimization of reprojection errors. Thus far, static
textures are reconstructed and being synthesized to produce arbitrary views.

Several extensions of this research can be considered of this research. One of them,
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is to contemplate on dynamic textures i.e. reconstruction of moving textures.
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Appendix A

Theory

A.1 Homogeneous Coordinates

Homogeneous coordinates can be defined as an extended coordinate system (usually of
Euclidean in spatial domain). Generally in Euclidean coordinate system we describe a
point in 2D and 3D as x = [x, y]> and X = [X, Y, Z]> respectively. In homogeneous
coordinates we add an additional coordinate as follows:

x =

x1x2
x3

 = λ

xy
1

 (A.1)

X =


X1

X2

X3

X4

 = λ


X

Y

Z

1

 (A.2)

where λ denotes arbitrary scalar.

The benefits of using homogeneous coordinate system are:

1. It can define the point at infinity as [x, y, 0]> and differentiate between points at
infinity in different directions e.g. [2, 3, 1, 0]> and [−2,−3, 1, 0]>. Therefore, the
intersection point of parallel lines can be described mathematically as a point at
infinity.
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Figure A.1: 3D points in homogeneous coordinates.

2. It enables us to write non-linear equations linearly.For example, camera projection
equations for perspective cameras can be described linearly as follows:

x = PX (A.3)

where x and X are 2D and 3D homogeneous coordinates and P is a camera ma-
trix.

Fig. A.1 shows the 3D points with homogeneous coordinates.

A.2 Matrix operations

Some common matrix operations used are enumerated below.

1. A cross product of vector X = [X1, X2, X3]
> and Y = [Y1, Y2, Y3]

> is defined in
matrix notation as follows:

X×Y = [X]×Y (A.4)
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where [X]× is defined as follows:

[X]× =

 0 −X3 X2

X3 0 −X1

−X2 X1 0

 (A.5)

2. A dot product is written as follows:

X.Y = X>Y (A.6)

3. Pseudo Inverse: Let us suppose a,b and M have dimensions n × 1, m × 1 and
n×m respectively, and let a = Mb. Then, pseudo inverse of a non-square matrix
M is given as follows:

M+ = (M>M)−1M> (if n > m) (A.7)

M− = M>(MM>)−1 (if n < m) (A.8)

A.3 Discrete Fourier Transform

One dimensional discrete Fourier transform of a vector X = [X0, X1, . . . XN ]> can be
written in matrix notation as follows:

X0
f

X1
f

X2
f

.

.

.

XN
f


=

1

N



1 1 1 . . . 1

1 E E2 . . . E(N−1)

1 E2 E4 . . . E2(N−1)

. . . . . . .

. . . . . . .

1 EN−1 E2(N−1) . . . E(N−1)2


N×N



X0

X1

X2

.

.

XN


(A.9)

where E = e−
2πj
N . Since Fourier transform is a linear operation. Two dimensional

Fourier transform of data can be considered as arranging the data into matrix form and
applying 1D Fourier transform on rows followed by 1D Fourier transform on columns.
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A.4 Tensor and Tensor notation

The essentials of tensor and tensor notation are discussed in this appendix.

1. The tensor is a multi-dimensional array of quantities, such as scalar, vector and
matrix. The dimension of quantities is called order/step/valency of the tensor. For
example, a scalar is order 0 tensor, a vector is order 1 tensor, while a matrix is
order 2 tensor.

2. The tensor also helps in conceptualizing the higher order algebraic entities, spe-
cially the ones that can not be described pictorially.

3. There are two types of tensor, that is covariant and contravariant tensors. If the
quantity of the tensor changes in proportion to the basis, it is called covariant
tensor. If the quantity changes in inverse proportion to the basis, it is called co-
variant tensor.The lines and planes are covariant tensors, while the 2D points and
3D points are contravariant tensors.

4. The tensor notation is a way to represent tensors compactly using indices. The
upper index is used for contravariant tensor, while the lower index is used for
covariant tensor. Thus, a point x is represented by xi, and a line l is represented
by li. For the case of matrices upper index is for matrix rows and lower index is
for matrix columns.

5. For the case of camera matrices e.g. in Eq. (2.51) and Eq. (3.32) the superscript
is for matrix rows and subscript is for matrix columns.

6. In the tensor notation, summation sign is often omitted and shown as repeated
indices in subscript of one variable and superscript of the other. It is known as
"Einstien’s Notation", "contraction" or "tensor summation". For instance,

∑
i lix

i

is described as lixi. Thus, Eq. (3.40) represents following 4 equations:∑
i

∑
j

ziz′jT1ij = 0 (A.10)

∑
i

∑
j

ziz′jT2ij = 0 (A.11)
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∑
i

∑
j

ziz′jT3ij = 0 (A.12)

∑
i

∑
j

ziz′jT4ij = 0 (A.13)

7. εijk is a special tensor known as "Levi-Civita tensor". It has value of 1 for even
permutation of i, j and k, −1 for odd permutation and 0 otherwise. Usually,
it separates out non-zero components and describes the polarity of the elements
associated e.g. in multiview constraints Eq. (2.55), Eq. (3.39) etc. Some important
properties of this tensor are:

• εijk...nεijk...n = n! e.g. εijkεijk = 6

• cross product of two vectors a and b can be described as follows:

a× b = εijka
ibj (A.14)

• skew symmetric matrix [ · ]× for cross product can be described as follows:

[a]× = εijka
i (A.15)

A.5 Fundamental Matrix vs. Essential Matrix

While deriving the essential matrix it is assumed that camera internal parameter matrix
is known. Therefore, essential matrix has less DOF i.e. 5 compared to fundamental
matrix i.e. 7. Let us consider the world coordinate is at the 1st camera. Then we may
write the projection equations as follows:

x = PX = [I|0]X = X̃ (A.16)

x′ = P′X = [R|T]X = RX̃ + T (A.17)

where .̃ denotes non-homogeneous coordinates. Combining Eq. (A.16) and Eq. (A.17),

x′ = Rx + T (A.18)
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Equation (A.18) shows the three vectors are coplanar, hence the volume enclosed must
be zero. In vector notation this condition is expressed as follows:

x′.(T× (Rx)) = 0 (A.19)

In matrix notation we may write,

x′
>

[T]×Rx = 0 (A.20)

where, essential matrix E has following definition:

E = [T]×R (A.21)

By using E matrix, Eq. (A.20) takes the following form:

x′
>
Ex = 0 (A.22)

To mark the difference between fundamental and essential matrix clearly, let us describe
x and x′ in pixel based coordinates m and m′ as follows:

m = Kx (A.23)

m′ = K′x′ (A.24)

where K and K′ are intrinsic parameter matrices. From Eq. (A.22), Eq. (A.23) and
Eq. (A.24) we have:

m′
>
K′
−>

EK−1m = 0 (A.25)

where fundamental matrix is defined as follows:

F = K′
−>

EK−1 (A.26)

By using F matrix, Eq. (A.25) is modified as follows:

m′
>
Fm = 0 (A.27)
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Equations (A.22) and (A.27) are known as Epipolar equations. The difference being
Eq. (A.22) is defined using physical image coordinates and Eq. (A.27) is generalized for
correspondences given in pixel coordinates. Essential matrix has fewer DOF (5) than
fundamental matrix (7). Three for rotation and 3 for translation equals 6, minus one for
over all scale reduces to 5. The rank of E is 2.
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Appendix B

Experiments

B.1 Normalization and Denormalization

B.1.1 Normalization of image data

A typical image has dimensions 640× 480. Therefore the homogeneous coordinates of
image point x = [x, y, 1]> ranges in 1 ∼ 102. Therefore, for computation of tensors
involved in multiview constraints, we often have to work with data ranging from 1 ∼ 108

(e.g. terms like xy, x′y in Eq. (2.61) and Eq. (3.53) range in 1 ∼ 104 ∼ 1 and entries
in matrix M>M for computing the least squares solution range in 1 ∼ 108). This can
lead to significant numerical inaccuracies in the presence of noise while estimating an
approximate solution. To avoid such a prblem image data is normalized. Normalization
of image data refers to the task of scaling the image data so that it ranges from around
−
√

2 to
√

2 and is centered around origin. It can be achieved by following equation.

Ajix
i = wj (B.1)

where xi and wj are un normalized and normalized image points. Matrix A is defined
as below:

A =


√
2
d

0 −
√
2x̃
d

0
√
2
d

−
√
2ỹ
d

0 0 1

 (B.2)
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where x̃ and ỹ are the x-coordinate and y-coordinate of mean point and d is the average
of distance of all image points to center/mean point. By application of normalization
the images used for computation of tensor and subsequent calculation may have dif-
ferent coordinate origin and sizes. Normalization brings the performance and accuracy
of linear algorithms for tensor computation near the iterative algorithms. Details on
numerical accuracy due to normalization can be found in [32]. It is understood in all
experiments (synthetic and real) in this thesis that images used for tensor computations
are normalized, and denormalization is performed afterwards.

B.1.2 Denormalization of Tensor

Since the matrix/tensor is estimated from normalized image data, denormalization is
necessary to revert the change in data range. We first consider denormalization of fun-
damental matrix Fij (Sec. 2.5.4). Let us change the notation in Eq. (2.56) as equation
below, where wi and w′j are the normalized image points.

wiw′jFij = 0 (B.3)

Then defining wi = Aipx
p and w′j = A′jq x

q, where xp and x′q are the un-normalized
image points, we may write:

(Aipx
p)(A′jq x

′q)Fij = 0 (B.4)

xpx′q(AipA
′j
q Fij) = 0 (B.5)

xpx′qF̂pq = 0 (B.6)

Therefore, we have

F̂pq = AipA
′j
q Fij (B.7)

where F̂pq is the denormalized fundamental matrix.

We next consider denormalization of bifocal tensor Tfij (Sec. 3.5.4). The tensor is
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Figure B.1: Camera linear sensitivity parameters (gain and offset).

computed from normalized image data using following equation (refer Eq. (3.40)).

wiw′jTfij = 0f (B.8)

Since the relationship between normalized points wi, w′j and un-normalized points zp,
z′q in frequency space are wi = Aipz

p and w′j = Ajqz
q, we have:

zpz′q(AipA
′j
q Tfij) = 0f (B.9)

zpz′qTfpq = 0f (B.10)

Therefore, we obtain:

T̂fpq = AipA
j
qTfij (B.11)

where T̂fpq is the denormalized tensor.

B.2 Camera Gain, Offset and Crosstalk

Two linear camera sensitivity parameters considered in this research are gain and off-
set. In Equation (3.3), p34 represents intensity gain and p35 intensity offset. These
parameters are used for the affine projection of intensity information of world point and
determine the brightness of the projected image point.

Intensity gain is a multiplicative factor and results in signal amplification. The
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typical value is 1. Any value of gain < 1 will result in a darker intensity value. A high
gain increases brightness, over all contrast and image noise.

Intensity offset is the value of the image intensity when the intensity of the original
scene is zero. Any offset > 0 increases brightness and naturally decreases the dynamic
range of intensity from 0 ∼ 255 to offset∼ 255. Also, any signal above the upper limit
(255) due to offset addition is cut off.

Figure B.1 shows the roles of gain and offset. The image intensity Ii obtained by
the camera and the original scene intensity Is have the following relationship.

Ii = gain× Is + offset (B.12)

Figure B.2 show the original image and Fig. B.3 show the effects of applying varying
camera gains and offset.

Crosstalk: An image from a color camera consists of 3D color information that is
red, green and blue color channels e.g. [1, 0, 0]> represents red. These color channels
are projections in color space of the RGB values of the scene, and are independent of
each other i.e. red color channel of an image depends on the red color of the scene and is
independent of the green and the blue colors of the scene. Similarly, green color channel
of an image is independent of the red and the blue colors of the scene and the blue color
channel of an image is independent of the red and the green colors. However, in real
cameras inter channel leakage occurs and color channels of the image are affected by
one another, this is known as crosstalk. Under such circumstances, the image RGB
values slightly differ from the true values as shown in Eq. (B.13).rg

b

 =

gainr cgr cbr

crg gaing cbg

crb cgb gainb


RG
B

 (B.13)

where the diagonal components gainr, gaing and gainb are the gains in the red, green
and blue color channels and the off diagonal components crb, crg, cgr, cgb, cbr and cbg are
crosstalk components.

Although, this leakage/crosstalk is small compared to actual channel value, it af-
fects the image color quality, so that the image appears to be color tinted e.g. bluish.
We next show the effect of crosstalk by considering an example shown in Eq. (B.14).
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Figure B.2: Original image.

(a) gain = 1 (b) gain = 0.5 (c) gain = 0.5
offset = 0.2 offset = 0 offset = 0.2

Figure B.3: Image with varying camera gains and offset.

Figure B.2 shows original image. Fig. B.4 (a) shows the result of the crosstalk applied
and Fig. B.4 (b) shows the result of crosstalk with offset.rg

b

 =

 1 0.02 0.03

0.5 1 0.03

0.5 0.02 1


RG
B

 (B.14)

Camera gain, offset and crosstalk calibrations are usually performed to have radio-
metrically same images from different cameras. These images can be used for various
applications e.g. correspondence search, reconstruction etc.
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(a) image with crosstalk (b) image with crosstalk
gain = 1, offset = 0 gain = 1, offset = 0.1

Figure B.4: Image with crosstalk and offset.

B.3 Gamma Transformation and Correction

Let’s briefly review one more imaging parameters.

B.3.1 Gamma Transformation

Today many devices used for image capture or display work according to gamma/power
law transformation. It is defined mathematically as follows:

Y = Xγ (B.15)

where Y and X are the output and input (original) image intensity values, γ is the
transformation factor. If γ < 1, then according to Eq. (B.15) a narrow range of dark
input values are mapped to a wide range of output values. Also, a wide range of high
input values are mapped to a narrow range of dark input values. The foremost advantage
is that range of middle graylevels/tones is expanded. These are the intensity levels our
eyes are more sensitive to.

It is different from camera gain. In the case of gain enhancement gray levels of
all pixels are brighten equally (linear response). For an image containing dark and
bright areas. The darker areas are brightened but the bright areas are over brightened.
To avoid such a case, gamma correction is applied. The result is although the dark
areas get brighter, the bright areas remain relatively same (non-linear response). The
value of gamma is always positive and usually in the range of 1

5
∼ 5, depending on

device. Therefore, before working on images a gamma correction is applied to revert
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Figure B.5: Gamma transformation and gamma correction plot.

the changes in gray levels applied by camera according to gamma law. The result is
output intensity levels as a linear function of input signal values. A conceptual graph
of gamma transformation and gamma correction is given in Fig. B.5. In this graph
it is assumed that image under consideration is far too bright, therefore the gamma
transformation produces a darker one. Gamma correction reverses the transformation
and produces the original image.

B.3.2 Gamma Correction

Before working with real image data gamma correction is applied to pixels intensity
values. Taking logarithm of Eq. (B.15) yields following equation:

logY = γ logX (B.16)

For i no. of input intensities, finding a least squares fit to minimize the error ε we obtain
following equation:

ε =
∑
i

(γ logXi − logYi)
2 (B.17)

Equating the derivative w.r.t γ to 0 gives us the expression for γ as follows:

γ =

∑
i log(Xi)

∑
i log(Yi)

(
∑

i log(Xi))2
(B.18)

To find the γ values of red, green and blue color channels X-rite color checker was
used in our experiments. Images of color checker were taken with low gain and high
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Table B.1: γ values of the camera used for real image experiments.

Color γ γ
(low gain) (high gain)

Red 0.19 0.77
Green 0.76 0.69
Blue 0.52 0.55

(a) color checker (b) gamma corrected image

Figure B.6: Image of x-rite color checker and its gamma corrected image.

gain. A chart of true color values X is provided with it, and average observation values
Y were obtained after blob detection of images, denoted by Y. Thus, Eq. (B.18) was
used for finding γ value. Table B.1 shows γ values of the camera used in our real image
experiments. Fig. B.6 shows the color checker with gamma corrected image. All real
images used in this research are gamma corrected.

B.4 Blob detection using mathematica

To perform real image experiments of sequences and textures we need to sieve the re-
quired information. This information consists of blobs (texture elements). In our ex-
periments, the bolb detection was carried out in 2 main steps by using mathematica. A
sample image after gamma correction is shown in Fig. B.7. Generally, the blobs (se-
quence/texture elements) are of various shapes and color. The first step is to make the
required image features as distinctive as possible and to delete the unrequired features.
Following are the steps performed:

• Color separate the image into red, green and blue as shown in Fig. B.8. Some
blobs are detected more efficiently in one color than the other.
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Figure B.7: Gamma corrected image used for blob detection.

(a) red (b) green (c) blue

Figure B.8: Image color channels separated into red, green and blue.

• Binarize each color separately. Most appropriate values for image thresholds
ranged from 0.2 to 0.65. For this example binary image of blue color channel is
considered.

• Following steps are used to reduce the size of the unnecessary features with loca-
tions near the blobs.

– Apply Erosion (to reduce small light features) if the required blob is black

– Apply Dilation (to remove tiny / thin dark features) if the required blob is
colored white. Mostly erosion and dilation were performed with Diamond
matrix. This is shown in Fig. B.9 (a).

Next, Morphological Component function of Mathematica 7.0 was used for labeling
the foreground blobs using appropriate thresholds. Most appropriate values of image
thresholds ranged from 0.4 ∼ 0.75. Fig. B.9 (c) shows the blobs separated from back-
ground. It uses connected component analysis and has option for 4 pixel adjacency or 8
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(a) dilation (b) foreground blobs detected

Figure B.9: Image dilation, and detection of blobs.

Figure B.10: Center points of (colored) blobs shown after detection.

pixel adjacency, latter is preferred. Related pixels are accumulated into N groups. For
each group/blob find the center and average color/itensity, which gives N blob set for
sequence/texture pattern per image. These center points however are not ordered in row,
column form as shown in Fig. B.10. Finding the sequence of these points is established
by the method shown in B.5.

B.5 Connecting image points

Blob detection shown in B.4 gives the image points. Next, these points can be connected
either to form a sequence or texture.
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(a) points considered (b) disordered points

Figure B.11: Image for connecting the points in 2D grid. The considered points are
shown in yellow.

B.5.1 Connecting image points for sequences

A set of points in an image can be connected in a closed sequence by finding the opti-
mum path i.e. a sequence that results in overall minimum distance. In Mathematica 7.0

such an ordering of sequence points can be obtained using function FindShortestTour[
{e1,e2, . . . , en}], where e1, e2, . . . , en represents the list of sequence points.

B.5.2 Connecting image points for textures

To connect points in a 2D grid, given the no. of rows (r) and columns (c), consider a
set of points in an image, as shown in Fig. B.11 (a) by yellow. In this example r = 6

and c = 8. At the initial stage, these points are not arranged correctly as shown in
Fig. B.11 (b). Then, we apply the following algorithm for arranging these points.

1. The points are first sorted w.r.t y− coordinates to get a rough arrangement.

2. Then the set of coordinates is divided into r subsets, each having c elements.

3. A line l is formed using 2 points, 1st and last points in the subset.

4. The points x are tested using x>l < t and count the no. of points which lie on the
line by setting a threshold t. In our experiments t = 0.1. Let this no. of points on
the line be n.

5. The subset ri is selected if the no. of points in step 4 equals the no. of columns
i.e. n = c. It is then sorted w.r.t x− coordinates.
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Figure B.12: The points are connected to form rows.

Figure B.13: 2D grid of points.

6. If n < c in step 4, the line is rejected. A new line l is formed by selecting 2nd and
2nd last points, and steps 4 and 5 are repeated until r = c.

7. The points connected in rows is shown in Fig. B.12. Then, points in selected
subsets ri were concatenated to form a sorted list, where ri form rows, as shown
in Fig. B.12. The extracted 2D grid of blobs is shown in Fig. B.13.
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