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Chapter 1 

Introduction 

 

1.1   Overview 

Research in the area of Disaster Operations Management (DOM) has gained more 

popularity in recent years. As defined by Altay and Green (2006), disaster operations 

are set of activities that are performed before, during, and after a disaster with the goal 

of preventing loss of human life, reducing its impact on the economy, and returning the 

state of normalcy. Based on this definition, preventing loss of human life can be 

considered as the most important goal and indicator that determine the success of the 

operations itself. As stated by Galindo and Batta (2013), the International Federation of 

Red Cross and Red Crescent Societies (IFRC) records some of the most memorable 

destructive events related to disasters which include the World Trade Canter attacks in 

2001, the earthquake and tsunami in Indonesia in 2004,  hurricane Katrina in 2005, and 

the Haiti earthquake in 2010. The IFRC estimates there are 1,105,352 casualties, and 

2,550,272,267 of affected people. These numbers increase every time a new major 

disaster strikes, such as the Tohoku earthquake and tsunami in 2011, and the most 

recent one, the Nepal earthquake in 2015. The massive numbers of casualties and 

people affected by these disasters indicate the urge and importance of studies in the area 

of DOM. 

Altay and Green (2006) mention that there are four programmatic phases in 

disaster management: mitigation, preparedness, response, and recovery. According to a 

review conducted by Galindo and Batta (2013), the authors stated that response phase, 

followed by preparedness phase and then mitigation phase are found to be the most 

common types of research contributions in DOM between the timeframe 2005–2010. 

They also mention that DOM has become a highly active field in OR/MS, which means 

that the diverse OR/MS techniques, including facility location analysis, stock pre-

positioning analysis, and transportation planning or routing problems may be applied to 

the different stages of DOM.   
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Natural disaster such as earthquake or tsunami however, is notorious for its 

uncertainty factors. Even in this modern age, it is very difficult or nearly impossible to 

predict the exact time of occurrence of a disaster and the extent of the area hits by a 

disaster. According to Beamon (2004), this research area has additional complexity and 

unique challenges since the demand is unpredictable and suddenly occurs in large 

amounts with short lead times for a wide variety of supplies. There are also high stakes 

associated with the timeliness of deliveries and the lack of resources in terms of supply, 

people, technology, transportation capacity, and money. Therefore, it is very 

challenging to conduct researches in the area of DOM, particularly researches related to 

disaster logistics. Thus, in this thesis, preparedness phase is set to be the main focus, 

while optimization methods are used in developing new models of stock pre-positioning 

and distribution (routing) problems. The models are particularly developed to help the 

government and/or decision maker to prepare and response quickly as the disaster 

strikes. 

In this chapter, we will introduce and discuss the concepts of disaster logistics, 

stock pre-positioning and distribution (routing) problem. Additionally, we will present 

literatures related to DOM that impact and contribute to our research. This chapter is 

organized as follows: In section 1.2, we will introduce the basic concept of disaster 

relief logistics. In section 1.3, we will discuss the concept of stock pre-positioning 

problem in order to support emergency response and present the concept of an extended 

model of stock pre-positioning by taking facility disruptions into account. In section 1.4, 

we will discuss the concept of distribution (routing) planning. In section 1.5, we will 

present the motivation of our study and a brief concept of optimization modeling in 

stock pre-positioning and distribution planning. In section 1.6, we define the objective 

of this thesis. In section 1.7, we present the outline of this thesis.     

 

1.2   Disaster Relief Logistics 

Disasters are inevitable. Natural disasters (such as earthquake, tsunami, flood, hurricane, 

etc), man-made disasters (such as war, terrorism, etc), disease and extreme poverty at 

any point in time are to be found somewhere in the world (Maspero and Ittmann, 2008). 

Disaster Operations Management (DOM) covers these large areas of disaster 
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classification. The most important goal of DOM is to prevent or minimize human 

suffering and loss of human life. 

As defined by Altay and Green (2006), and Galindo and Batta (2012), there are 

four main phases of DOM: 1. Mitigation phase, 2. Preparedness phasee, 3. Response 

phase, and 4. Recovery phase. Each phase has it own unique challenges which need to 

be planned and programmed carefully. Figure 1.1 shows the details of each phase. In 

this thesis, we focus on preparedness phase, more specifically on developing strategies 

of emergency planning in the event of a natural disaster. Emergency planning in this 

context is strictly related to disaster relief logistics planning.     

In a workshop with humanitarian organizations, Thomas and Mizushima (2005) 

define humanitarian or disaster logistics as the process of planning, implementing and 

controlling the efficient, cost-effective flow and storage of goods and materials, as well 

as related information, from the point of origin to the point of consumption for the 

purpose of meeting the end beneficiary’s requirements. The characteristics of disaster 

logistics are presented by Beamon (2004) in Fig. 1.2. Compared to its counterpart, 

commercial logistics which has a relatively stable demand patterns and well-defined 

information, disaster logistics seem much more complex and agile.  

 

 

Figure 1.1 Four Phases of DOM (Altay and Green, 2006) 
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Decker (2013) mentions that the decision makers in disaster relief operations are 

facing complex problems of the unknown and unpredictability in the humanitarian 

sector. They don’t know when, where, what, how much, where from and how many 

times demand is required in the early days of the post disaster response. These thoughts 

raise an alarm to continue the work of improving disaster relief planning and 

management. The methods on how to provide relief supplies and distribute them 

quickly and efficiently to the affected areas are some of the important issues in DOM 

that needs to be discussed further.   

In essence, disaster relief planning also depends on the availability of budgets. 

Without enough budgets provided by the governments and/or non-government sectors, 

the operations will face many obstacles; one of them is the shortage of critical items to 

be transported to specific disaster areas. But unfortunately, not all governments in all 

countries can provide enough budgets to support emergency relief response. In such 

cases, some scenarios are needed to be developed and analysed prior to the disasters.  

 

Humanitarian or Disaster Relief Logistics

Demand Pattern

Demand is generated from random events that are unpredictable in terms of timing,

location, type, and size. Demand requirements are estimated after they are needed, based

on an assessment of disaster characteristics.

Lead Time

Approximately zero lead times requirements (zero time between the occurrence of the

demand and the need for the demand), but the actual lead time is still determined by the

chain of material flow.

Distribution

Network

Configuration

Challenging due to the nature of the unknowns (locations, type and size of events,

politics, and culture), and “last mile” considerations.

Inventory Control
Inventory control is challenging due to the high variations in lead times, demands, and

demand locations.

Information system Information is often unreliable, incomplete or non-existent.

Strategic Goals Minimize loss of life and alleviate suffering.

Performance

Measurement

System

Primary focus on output performance measures, such as the time required to respond to a

disaster or ability to meet the needs of the disaster (customer satisfaction).

What is “Demand”? Supplies and people.

 

Figure 1.2 Characteristics of disaster relief logistics (Beamon, 2004) 
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1.3   Stock Pre-positioning in DOM 

1.3.1 Background  

Galindo and Batta (2012) review that mathematical programming is still the most 

preferred methodology in DOM. Basically, there are three major issues that have been 

discussed by most of the papers focus in mathematical models related to disaster 

logistics operations. One of the most important issues is stock pre-positioning problem.       

Stock pre-positioning involves preparing critical relief supplies in strategic 

locations and determining the amount of demand to be released in disaster areas. Hale 

and Moberg (2005) mention that rather than waiting passively for a situation of crisis to 

occur somewhere in the world to launch humanitarian operations, it is better to show 

pro-activity by mobilizing supplies or other material and non-material resources in 

anticipation. According to Beamon (2004), many issues are need to be focused in pre-

positioning stage; including budget limitation, limited number of distribution centers 

and limited capacity for each distribution center. In addition, the demand is uncertain. 

Once the disaster happens in one location, demand is requested, and demand must be 

transported efficiently into the disaster area. Because in disaster relief case, the demands 

are lumpy and occur suddenly, that the locations are completely unknown until the 

demand occurs.  

In some cases, where the distribution center has not yet existed, it is necessary to 

determine the best location of each distribution center, the optimum number of 

distribution center that needs to be opened, and the maximum capacity of each 

distribution center. OR/MS technique such as facility location analysis can be applied to 

deal with these problems. Hale and Moberg (2005) suggest that emergency supplies 

need to be located in a manner as to not be vulnerable to attack. But, they need to be 

close to the areas to which they are assigned to serve. Therefore, it may fall in dilemma: 

how is the best way to locate an emergency resource within the supply chain to serve 

specific areas without being vulnerable itself.  

Recently, literatures related to stock pre-positioning in DOM are increasing and 

can be found conveniently. The work of Balcik and Beamon (2008) integrate facility 

location and inventory decisions. Their model integrates facility location and inventory 

decisions. They consider multiple items, and captured budgetary constraints and 
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capacity restriction of distribution centers. They also provide the simulation of pre- and 

post-disaster relief funding on relief system’s performance. Another work by Mete and 

Sabinzky (2010) proposes a two stage stochastic programming approach for disaster 

preparedness which is consist of warehouse selection and inventory decisions, and 

transportation plans and demand satisfaction decisions. Instead of using the traditional 

OR/MS techniques, some authors prefer to build new heuristic algorithms and solve the 

problems using tools such as CPLEX, C++ or C# (Murali et al., 2012; Lin et al., 2011; 

Sha and Huang, 2012; Verma and Gaukler, 2015). 

 

1.3.2 Stock Pre-positioning under Facility Disruptions 

There are many potential threats that can lead to facility disruptions. Disaster, either 

natural or man-made disaster, is one of the threats that can cause serious breakdown of 

logistics systems. In a special case of stock pre-positioning model when it takes facility 

disruptions into account, further investigations of the probability of occurrence of a 

disaster and the probability of a disruptions scenario are needed.  

Although papers related to this specific topic are still limited, recently, several 

authors have managed to publish some interesting papers that focus on logistics design 

under the risk of facility disruptions. For example, Qin et al. (2013) create a fortification 

planning model for capacitated logistics systems in a two-stage stochastic mixed-integer 

programming framework. In their model, the operating facilities are susceptible to 

accidental disruptions. Once a facility is hit by disruptions, the disrupted facility is 

completely inoperable throughout its entire recovery time so that customers assigned to 

it must be emergently reassigned to any non-disrupted facility that has enough excess 

capacity to accommodate the additional demand. They estimate the probability of 

disruptions scenario by historic data and forecast of experts. They also use one specific 

parameter to indicate whether a facility is hit in some scenarios. If a facility fails, this 

specific parameter is equal to 1 and otherwise 0. To solve the large-scale problems, they 

use alternative methods based on decomposition (D2-BAC) and run the model on 

CPLEX. 

Another work presented by Hatefi and Jolai (2014) propose a robust and reliable 

mixed-integer programming model for an integrated forward-reverse logistics (IFRL) 
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network design, which simultaneously takes uncertain parameters and facility 

disruptions into account. The authors use a robust criterion to obtain the reliable 

counterpart model of the IFRL network. In their model, a set of facilities may be 

simultaneously disrupted in each scenario. The augmented robust are developed to 

control the reliability of the proposed model among disruption scenarios. Furthermore, 

two alternatives objective functions are considered, which minimize the expected 

scenario costs and the nominal costs. The problems are solved using GAMS/CPLEX. 

Sawik (2014) recently presents the coordinated supplier selection, order quantity 

allocation and customer order scheduling for single and multiple sourcing strategies to 

optimize worst-case performance of a supply chain under various types of disruption 

risks. The author stated that the suppliers are located in different geographic regions and 

the supplies are subject to different types of disruptions. For any combination of 

suppliers hit by different types of disruptions, a formula for calculating the 

corresponding disruption probability is developed. The obtained combinatorial 

stochastic optimization problem is formulated as mixed-integer program with 

conditional value-at-risk as a measure. The computational experiments are preformed 

using the AMPL programming language and run by CPLEX and Gurobi solvers.  

 

1.4   Distribution Planning in DOM 

Two key issues in the immediate response stage correspond to: 1) the design of relief 

distribution systems focuses on the flow of relief supplies into a disaster affected zone, 

and 2) the design of evacuation systems (Khrisnamurty et al., 2013). Rachaniotis et al. 

(2013) state that for humanitarian organizations, setting up an efficient supply chain in 

general and more specifically a last mile distribution network is always a complex 

operation after a man-made or a natural disaster.  

Unlike logistics managers in the private sector, humanitarians face difficulties due 

to their operations’ nature. In addition, even with accurate data, both demand and supply 

can vary significantly during the response operation period. Unexpected events also 

force resources to move out of one operation field and head off to another, even 

overnight. 
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Rachaniotis et al. (2013) also mention that the first three days after the disaster are 

crucial and during them supplies arrive to the operation field by air, by land or by sea 

from abroad as quickly as possible. Then, during the next three months approximately, 

it is a balancing effort between effectiveness in helping people and minimizing cost, 

considering that development programs operations may continue in parallel. de La Torre 

et al. (2012) state that disaster relief presents many unique logistics challenges, with 

problems including damaged transportation infrastructure, limited communication and 

coordination of multiple agents. The authors review several papers related to disaster 

relief routing and found that a common trend in making allocation decisions is to 

prioritize the needs of the most vulnerable populations.   

Hamedi et.al. (2012) formulate routing and scheduling of humanitarian supply 

transportation to minimize the total cost which is composed by travel time, travel 

distance, risk exposure and risk accumulation costs. The authors also consider the 

reliability, cost, average response time and the arrival time of the first vehicle (in this 

case, the authors use trucks to deliver supplies to demand points) to make an optimum 

plan of the deployment of disaster response fleet. They suggest that the response time 

may increase rapidly if some routes become partially or completely unavailable due to 

the uncertainty in road conditions.  

 

 

 

Figure 1.3 A simple humanitarian response network (Hamedi, 2012) 

 

 



Chapter 1                                                                                                                                                  - 9 - 
 

 
 

Figure 1.3 shows the sample network illustration. In this figure, two disaster 

response vehicles (trucks) need to ship supplies from the origin node 1 to destination 

node 5. The authors state that when all links are available (not damaged by the disaster), 

the cost of path 1-2-4-5 is 3 and the cost of path 1-3-4-5 is 4. Hence, it is easy for the 

decision maker to choose the shortest path for truck deployment. By considering 

probability of link failure, the model becomes more complex. The authors then assume 

that the link failure probabilities in their model are independent. These failures cannot 

be discovered in advance.  

Lin et al. (2011) develop a multi-objective logistics model that considers a muti-

item, multi-period, multi-vehicle, soft time windows and split delivery strategy. In their 

model, a multi-objective tour based integer-programming formulations is constructed. 

Minimization of the total unsatisfied demand (particularly for critical items), the total 

travel time for all tours, the total travel time for all vehicles and the difference in the 

satisfaction rate between nodes, become the objectives of their model. To aggregate the 

multi-objective formulations to a single objective formulation, they apply the weighted 

sum method. They also propose two strategies to overcome the difficulties in solving 

problem with large-scale numbers of tours.  

The first strategy is to use only a subset of all possible tours iteratively to solve the 

model, while the second strategy allows the whole problem to be decomposed into 

several sub-problems and be solved in parallel. The first strategy is built based on a 

Genetic Algorithm (GA), while a decomposition and assignment heuristic approach is 

proposed for the second strategy. Based on this study, we realize that a distribution 

(routing) problem with massive numbers of tours can be very difficult to deal with. 

Thus, building a proper algorithm can be necessary in order to solve the problem.             

Abounacer et al. (2014) focus their study on the response stage for the logistic 

feature, more specifically on two relevant issues: location and transportation. The 

location problem focuses on designing a network for distributing humanitarian aid (e.g., 

food, water, survival equipment and medical goods), while the transportation problem 

discusses the distribution of humanitarian aid from Humanitarian Aid Distribution 

Centers (HADC) to demand points. Since both problems are solved simultaneously, the 

problem is then considered as a location-transportation problem.  
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Therefore, the authors present a multi-objective emergency location-transportation 

problem with three main objectives: to minimize the sum of all transportation durations, 

to minimize the number of agents needed to operate the opened HADCs, and to 

minimize the total uncovered demand. An epsilon-constraint method is proposed to 

solve the problem.  

 

1.5 Motivation of the Study  

1.5.1 Motivation of the Study of Optimization Models in Stock Pre-positioning 

Balcik and Beamon (2008) develop a model which is a variant of the maximal covering 

location model. Their model determines the number and locations of distribution centers 

in a relief network and the amount of relief supplies to be stocked at each distribution. 

Their mathematical models however, do not include a set of potential response time of a 

distribution center to provide service in the specific disaster area.  

Few years later, the work of Lee et.al. (2011) includes this set of potential 

response time into the model. Their model simultaneously determines the decision of 

distribution centers to cover a single disaster area and the amount of supplies to be 

stocked in each distribution center. By using their model, the result of the proportion of 

relief demand satisfied for one of the critical items is zero due to its higher price and 

larger size per unit compared to another items. In a real system, this zero result is not 

acceptable since some amounts of critical items should be stored in distribution centers. 

In order to solve this problem, in this thesis we propose a new two-stage mathematical 

model. Stage I is to minimize the lower bound of the proportion of unsatisfied relief 

demand, while Stage II is to maximize the amount of critical items covered in each 

distribution center by inputting the optimum results of stage I. The details of this work 

can be seen in Chapter 2.  

In addition, we apply our model to Indonesia and perform sensitivity analysis by 

changing the value of its important parameter. Meanwhile, some authors focus on 

minimizing the costs; Lin et al. (2011) build a multi-objective logistics model with one 

of the objectives is to minimize the penalty cost of unsatisfied demand; Mete and 

Zabinsky (2010) present a warehouse selection and inventory decisions model that 

minimize the total cost of operating warehouses.  
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Figure 1.4 Time constraint: the assignment of service area for each distribution center 

 

In our models, the distribution centers have been established by the government. 

Therefore, it is not necessary to build another new distribution center(s). First, we need 

to focus on determining the service area for each distribution center by considering the 

time limitation. Time limitation here denotes the maximum response time limit for each 

vehicle available in a distribution center to reach a specific disaster area. This maximum 

response time limit is determined by the governments and/or decision makers, and it has 

to be set wisely in order to minimize the loss of human life.  

Figure 1.4 illustrates the concept of this time constraint where a distribution center 

can only serve disaster areas that located within the range of a given maximum response 

time limit. Instead of using time limitation as a constraint, Verma and Gaukler (2015) 

use distance limitation in their model which presents the two location models for large-

scale emergencies that consider the impact of a disaster to the disaster response facilities 

and the population centers in surrounding areas.  

There are some parameters that are crucial in this stock pre-positioning model. 

One of them is the availability of budgets. Either pre-disaster or post-disaster budget, 

both have important roles in determining the final results. Pre-disaster budget 

commonly used to purchase items to be stocked in distribution centers, to purchase 

vehicles, to build distribution centers, to operate distribution centers, and so on, while 

post-disaster budget is used to fund all activities occur during the actual emergency 
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response following a disaster. In some cases, these budgets (or costs) can be the main 

focus of study. 

In some of our stock pre-positioning models, we add a new parameter of the 

number of vehicles available in each distribution center. This parameter can be crucial 

since the less the number of vehicles available, the less the number of critical items can 

be distributed to disaster area(s). We also add the expected satisfied relief demand in a 

specific disaster area as a parameter. This parameter forces the number of critical items 

to be sent to a specific disaster area is no less than its pre-determined number. Other 

important parameters are probability of occurrence of earthquake in a disaster area, 

maximum capacity of each distribution center, unit volume of each item, expected 

demand in each disaster area, unit weight of each item, maximum weight capacity of a 

vehicle and the criticality weight for each item.  

In some cases, stock pre-positioning model is combined with transportation model. 

This joined model can give better support to the government’s emergency response plan 

since it simultaneously generates several outputs, such as the number of items to be 

stocked in distribution centers and the amount of items to be delivered to each disaster 

area. This joined model also gives more outcomes to be analysed. Thus, in chapter 3, we 

extend the stock pre-positioning model presented in chapter 2 and develop a new stock 

pre-positioning model that considers transportation planning problem into account.  

Chapter 4 presents the extended stock pre-positioning model that has been 

developed in chapter 3. In this chapter, we propose a new stock pre-positioning model 

to support emergency relief response under facility disruptions. By considering the 

disruption of one or more facilities (distribution centers), the model become more 

realistic to be applied to the real system. Some of the optimization tools that can to be 

used to solve the problems are GAMS, LINGO, LINDO, AMPL and Gurobi.       

 

1.5.2 Motivation of the study of Optimization Models in Distribution Planning 

The transportation of emergency relief supplies has constantly been a great challenge 

for years. In terms of distribution of disaster relief, various uncertainty factors such as 

road conditions following a disaster and the amount of emergency supplies required to 

be sent to the affected area is difficult to predict. In most cases, compared to using 
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helicopter, ground vehicles such as trucks are still preferable to deliver supplies to 

affected areas. Normally, the decision-maker should make a quick decision whether to 

send a group of fully-loaded vehicles through certain routes based on incomplete 

information of road conditions shortly after a disaster strikes, or wait in order to gain 

more reliable information. Once the decision is made, it can risk human lives and health.   

Chapter 5 discusses further details of our distribution model. In this proposed 

model, we consider transportation and vehicle purchase budgets as constraints. We 

realize that the governments in developing countries such as the Philippines, Indonesia 

or Bangladesh, who often experience disasters such as earthquakes, floods and typhoons, 

do not really have large budget to be allocated for emergency response. Most of these 

countries highly rely on NGO, INGO or even assistance from the governments of 

developed countries. In the field, for example in some parts of Indonesia, the local 

government often reduces the number of vehicles to be deployed to disaster areas 

quickly after a disaster occurs. Some local governments don’t even have enough 

budgets to purchase or add new vehicles. Our intention is that this proposed model can 

be applied not only to the developed countries, but also to the developing countries.  

Hamedi et al. (2012) address humanitarian response planning for a fleet of 

vehicles with reliability considerations. The authors focus on minimizing the total cost 

which is composed by travel distance, travel time, risk exposure and risk accumulation 

costs, with and without considering the probability of route failure. This method is 

interesting. But rather than just focus on route probability, we also focus on route 

availability for all possible scenarios. More precisely, first, we generate all possible 

scenarios based on route availability and then we calculate the probability of route 

available for each scenario. By analysing route availability for all possible scenarios, we 

are able to adapt our model to all possible situations that will occur in the real system.   

Ukkusuri and Yushimito (2008) develop an approach to disaster pre-positioning 

problems that account for the routing of vehicles and possible disruptions in the 

transportation network. This means the graph has a probability of failure for some pre-

selected edges. While the authors focus on finding the best location to pre-position 

inventories, our model which considers a single existing distribution center, focuses on 

maximizing the amount of each item to be delivered to the affected areas using a certain 

number of vehicles in a specific period of time. In addition, not only considering a 
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single routing problem period as appear in the pre-positioning model of Ukkusuri and 

Yushimito (2008), we propose a multi-period distribution model. The situation of route 

recovery can be considered in this multi-period distribution model. Hence, our model is 

more realistic to be applied to the real system.    

  To develop a distribution model that can demonstrate a large-scale observation to 

all possible scenarios, an algorithm is built to generate all possible path combinations. 

This algorithm gives results of the available routes and the probability of route 

availability for each scenario. These results are become the two important parameters 

for the next stage of mathematical modeling that will be solved using an optimization 

method. In this case, the mathematical model is formulated as a mixed-integer 

programming (MIP) model which is built to maximize the amount of each item to be 

delivered to disaster area(s). Other parameters to be considered are number of demand, 

costs (including transportation and vehicle purchasing cost), maximum capacity of a 

vehicle, unit weight of each item, criticality weight of each item and budgets availability. 

The complete discussion of this work is presented in Chapter 5 of this thesis.  

  

1.6   Objective of the Thesis 

There are four works will be discussed in each of the next four consecutive chapters. 

The first work develops a stock pre-positioning model with an objective to obtain the 

maximum number of expected relief demand covered by the existing distribution 

centers by preventing the result of zero proportion of relief demand satisfied under 

budget constraints. The second work extends the previous stock pre-positioning model 

that has been developed in the first work. This study considers multi-items, multi-

vehicles and multi-periods with the objective to maximize the expected relief demand 

covered by distribution centers by considering the transportation constraints into the 

model.  

The third work is an extension of the previous model that has been developed in 

the second work. This study proposes a stock pre-positioning model under facility 

disruptions that considers multi-items, multi-vehicles, and multi-periods. The objective 

is to maximize the expected relief demand covered by distribution centers by 

considering the transportation problem and facility disruption scenarios into the model. 
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The fourth work develops an independent distribution model of emergency relief 

supplies. The objective of this study is to simultaneously determine the maximum 

amount of relief supplies sent to disaster areas and the optimum number of vehicles 

required in distribution center by considering route availability.  

Each of this study is provided with case study or illustration. Each of this study 

also performs sensitivity analysis by modifying the number of some important 

parameters or demonstrates a large-scale observation of all potential scenarios. The 

objective of this thesis in general is to determine the optimum amount of critical items 

to be covered in distribution centers and/or to be distributed to disaster area(s) in order 

to support the governments and decision makers to prepare and respond quickly as a 

disaster strikes.   

 

1.7   Outline of the Thesis 

The outline of this thesis is described as follow: In chapter 2, a stock pre-positioning 

model to obtain the maximum number of inventory stocked, while at the same time 

preventing the result of zero proportion of a single item type stored in distribution 

centers is developed. In this model, a new variable of proportion of unsatisfied relief 

demand is introduced. The proposed model is then applied to Indonesia, a disaster prone 

country located in Southeast Asia. The sensitivity analysis is performed to show the 

effect of different upper bound of the proportion of unsatisfied relief demand. 

In chapter 3, we extend the previous model that has been developed in Chapter 2. 

This new model of stock pre-positioning simultaneously generates the maximum 

proportion of relief demand covered in distribution centers and the maximum amount of 

relief demand distributed from multiple distribution centers to a single disaster area 

within a certain period of time. The proposed model is applied to the same real system 

as in the previous chapter with some upgrades of the data. Sensitivity analysis is 

conducted by modifying the number of available vehicles and the total planning period 

in order to improve the results of proportions of relief demand satisfied.   

In chapter 4, we develop a new model that integrates the decisions of the 

maximum proportion of relief demand covered in distribution centers, the maximum 

amount of relief supplies delivered to a single disaster area and the number of optimum 
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vehicle available in distribution centers. This model is an extension of the previous 

model that has been proposed in chapter 3. This new model takes the risk of facility 

disruptions into account and is applied to Indonesia as a case study. All potential 

disruption scenarios are generated and analysed to improve the proportions of relief 

demand satisfied.  

In chapter 5, we present a distribution model that considers a single distribution 

center, multiple disaster areas, homogenous fleet of vehicles, multi-items and multi-

periods. This study integrates the transportation plans and demand satisfaction decisions 

by considering route availability. To understand this proposed model better, an 

illustration that demonstrates a large-scale observation to all possible scenarios is given. 

In chapter 6, the results of this thesis are summarized and possible future works 

are discussed. 
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Chapter 2 

Stock Pre-positioning Model with Unsatisfied Relief 

Demand Constraint to Support Emergency Response 

 

2.1 Introduction 

In this chapter, we study a two-stage stock pre-positioning model to prevent the zero 

proportion of relief demand satisfied of disaster areas. This chapter is organized as 

follows: First, we introduce the literatures related to this study and state the objective of 

our study. Second, we formulate the two-stage mathematical model. Third, we describe 

the real system and the data used in this model. Finally, we present the computational 

results of the proposed model and provide the sensitivity analysis to show the effect of 

different upper bound of the proportion of unsatisfied relief demand.     

 

2.2 Literature and Objective 

Disaster management covers large area of disasters classification. Amin and Markus 

(2008) mention that disasters are classified to natural disasters and technological 

disasters, or complex emergencies. Disaster Management that covers natural disasters, 

including earthquake, is required to identify hazard prone and formulate actions that 

should be prioritized. In the previous year, Whybark (2007) explains the importance of 

the management of disaster relief inventories. The author also describes the 

characteristic of disaster relief inventories and shows the significant differences between 

disaster relief and enterprise inventories. As mentioned in Chapter 1 section 1.3, pre-

positioning is one of the major issues to be concerned in disaster logistics operations. 

Pre-positioning involves preparing critical relief supplies in strategic locations and 

determining the amount of demand to be released in disaster areas.  

Literature related to stock pre-positioning problem have been observed. Ozbay and 

Ozguven (2007) concern an efficient and quick-response humanitarian inventory 

management model which can determine the safety stock that will prevent disruptions at 

a minimal cost. While almost at the same time, Tovia (2007) builds an emergency 



Chapter 2                                                                                                                                                   - 20 - 
 

 
 

response model (ERM) that can be used to evaluate response capabilities, to assess the 

logistics challenges in the event of natural disaster, specifically hurricane, and to 

perform what-if analysis on the threat of a weather disturbance system. Chang et al. 

(2007) apply the data processing and network analysis functions of the geographic 

information system to estimate the possible locations of rescue demand points and the 

required amount of rescue equipment for flood emergency logistics.  

Three years later, Gatignon et al. (2010) evaluate the decentralized supply chain’s 

performance in responding to humanitarian crises through an analysis of the 

International Federation of the Red Cross (IFRC)’s operations during the Yogyakarta 

earthquake in 2006. Just by a year, Lin et al. (2011) propose a complex logistics model 

for disaster relief operations. They focus on minimization of total penalty cost of 

unsatisfied demand, especially for high priority items, and provide a real-world 

earthquake scenario. 

Raftani-Amiri et al. (2010) conduct a multi-period supply network research. They 

consider multiple food products with time windows on condition that the customer will 

be served only by one supplier in different time periods. Later, Kӓhkӧnen (2011) 

demonstrates that a proper case study can be conducted in the research field of supply 

management. The author also emphasizes how the validity and reliability of the case 

study can be evaluated. Ozguven and Ozbay (2013) develop a humanitarian emergency 

management framework based on the real-time tracking of emergency supplies and 

demands through the use of RFID technology integrated. They concern a multi-

commodity stochastic humanitarian inventory management model (MC-SHIC) to 

determine the optimal emergency inventory levels at the minimal cost.  

The previous work of Lee et al. (2011) simultaneously determine the decision of 

distribution centers to cover a single disaster area and the amount of supplies to be 

stocked in each distribution center. They carefully consider the response time needed 

for each existing distribution center to serve one or more disaster areas. In their model, 

the distribution centers have been established by the government and each distribution 

center is located in a single disaster area. By using their model, the result of the 

proportion of item type G (tent) is zero due to its higher price or larger size per unit 

compared to another items. The result eventually changes (no longer zero) when 

maximum response time is increased rapidly and each budget is multiplied by ten. 
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Changing the budgets, however, is inappropriate since the budgets are predetermined by 

the government. In a real system, this result of zero proportion of some critical items 

could not be tolerated. To support emergency relief response, all critical items should 

have some amounts to be stocked in distribution centers. 

To solve this problem, we propose our new two-stage model. In order to obtain the 

maximum number of inventory stocked, while at the same time preventing the result of 

zero proportion of a single item type stored in distribution centers, a new variable of 

proportion of unsatisfied relief demand is introduced. In the first stage, we use an 

approach to minimize the lower bound of the proportion of unsatisfied demand of each 

item under given budgets. Furthermore, we generate the upper bound of the proportion 

of unsatisfied demand. In the second stage, by using the optimum results from the 

previous stage as inputs, we maximize the total expected relief demand satisfied by 

considering the new variable of the proportion of unsatisfied demand.  

This proposed model is applied to the same real system as in the previous work of 

Lee et al. (2011), by also maintaining the same data estimation for each parameter. The 

objective of this study is to obtain the maximum number of expected relief demand 

covered by the existing distribution centers by preventing the result of zero proportion 

of relief demand satisfied under budget constraints.  

 

2.3 Model Formulation 

Each distribution center is located in a single disaster area, and each distribution center 

can provide service in one or more disaster areas. The same assumption is also used in 

this model that the earthquake will not occur at the same time in multiple disaster areas. 

 

Data set: 

i = disaster area;  

j = distribution center; 

𝐽𝑖= distribution center j that provide service in disaster area i; 

k = item type. 
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Parameters: 

𝑇𝑖𝑗 expected time to satisfy relief demand in disaster area i from distribution center j 

(hour), 

𝛿𝑖 maximum response time limit to perform emergency response in disaster area i 

(hour), 

𝑢𝑘 upper bound of the proportion of unsatisfied relief demand of item type k (𝑢𝑘 =

𝑍𝑘 + (1 − 𝑍𝑘) ∗ 𝑚𝑘), where 𝑍𝑘 < 𝑢𝑘 < 1 and 0 < 𝑚𝑘 < 1, 

𝑚𝑘 degree of importance of item type k; where 𝑚𝑘 = 𝑚, ∀𝑘, 

𝑃𝑖 probability of occurrence of earthquake in disaster area i, 

𝑑𝑖𝑘 expected demand for item type k in disaster area i (unit), 

𝑈 𝑗 capacity of distribution center j (m3), 

𝛾𝑘 unit volume of item type k (m3), 

𝐵0 pre-disaster budget ($), 

𝐵1 post-disaster budget ($), 

𝑔𝑗𝑘 unit cost of acquiring item type k at distribution center j ($/unit), 

𝑐𝑖𝑗𝑘 unit cost of shipping item type k from distribution center j to demand point i 

($/unit), 

𝑤𝑘 criticality weight for item type k; ∑ 𝑤𝑘 =  1𝑘 and 𝑤𝑘 ≥ 0, 

M a very large positive number. 

 

Decision variables: 

𝑓𝑖𝑗𝑘 proportion of item type k relief demand satisfied by distribution center j that 

provide services in disaster area i, 

𝑁𝑖𝑘 proportion of unsatisfied relief demand of item type k in disaster area i,  

𝑍𝑘 the lower bound of the proportion of unsatisfied relief demand of item type k, 

𝑄𝑗𝑘 units of item type k stored at distribution center j, 

𝑎𝑖𝑗 set of potential response time of distribution center j that will provide service in 

disaster area i (𝑎𝑖𝑗= 1; if expected time T is no bigger than maximum response time 

limit, 0 otherwise), 

𝑋𝑖𝑗 set of potential distribution center j to provide service in disaster area i (𝑋𝑖𝑗= 1, if 

distribution center j provides service in disaster area i, 0 otherwise). 
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2.3.1 Stage I: Generating Lower Bound of the Proportion of Unsatisfied Demand 

As discussed in Chapter 1 section 1.5.1, the distribution centers have been established 

by the government. Therefore, it is not necessary to build another new distribution 

center(s) or to determine the location of new distribution center(s). Each distribution 

center is assigned to provide services to one or more disaster areas that located inside 

the range of a given maximum response time limit.  

The problem consists of two stages. In this first stage, we derive the following 

problem (1-k) for each item type k in {1, 2,…, k}. 

 

Objective function 

 𝑀𝑖𝑛 =  𝑍𝑘.         (2.1) 

 

Constraints: 

 ∑ 𝑓𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑀𝑋𝑖𝑗,                     ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,     (2.2) 

 ∑ 𝑓𝑖𝑗𝑘𝑗𝜖𝐽 = 1 − 𝑁𝑖𝑘,                  ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,     (2.3) 

 𝑁𝑖𝑘 ≤ 𝑍𝑘                                      ∀𝑖𝜖𝐼,     (2.4) 

 𝑓𝑖𝑗𝑘𝑑𝑖𝑘 ≤ 𝑄𝑗𝑘 ,                            ∀𝑖𝜖𝐼, 𝑗𝜖𝐽, 𝑘𝜖𝐾,     (2.5) 

 ∑ 𝛾𝑘𝑄𝑗𝑘 ≤ 𝑈𝑗  ,                      ∀𝑗𝜖𝐽𝑘∈𝐾 ,     (2.6) 

 ∑ ∑ 𝑄𝑗𝑘𝑔𝑗𝑘𝑘𝜖𝐾𝑗∈𝐽 ≤ 𝐵𝑜,     (2.7) 

 ∑ ∑ 𝑑𝑖𝑘𝑐𝑖𝑗𝑘𝑗𝜖𝐽 𝑓𝑖𝑗𝑘𝑘𝜖𝐾  ≤  𝐵1,   ∀𝑖𝜖𝐼,      (2.8) 

 𝑓𝑖𝑗𝑘  ≥ 0,                                       ∀𝑖𝜖𝐼, 𝑗𝜖𝐽, 𝑘𝜖𝐾,   (2.9) 

𝑁𝑖𝑘  ≥ 0,                                       ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,     (2.10) 

 𝑎𝑖𝑗𝑇𝑖𝑗 ≤  𝛿𝑖,                                  ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,          (2.11) 

 𝑎𝑖𝑗 ≥ 𝑋𝑖𝑗,                                      ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,          (2.12) 

 ∑ 𝑋𝑖𝑗 ≥ 1,                                ∀𝑖𝑗∈𝐽 𝜖𝐼, 𝑖 ≠ 𝑗,     (2.13) 

 𝑎𝑖𝑗 ∈ (0,1),                                   ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,          (2.14) 

 𝑋𝑖𝑗 ∈ (0,1),                                   ∀𝑖𝜖𝐼, 𝑗𝜖𝐽.      (2.15) 

 

The objective function (2.1) minimizes lower bound of the proportion of unsatisfied 

relief demand of each item type. Constraint set (2.2) ensures the amount of supplies sent 



Chapter 2                                                                                                                                                   - 24 - 
 

 
 

to satisfy relief demand that only exists when the distribution center provides service in 

designated disaster areas. Constraint set (2.3) means that the actual demand is equal to 

the amount of satisfied relief demand summed with the amount of unsatisfied relief 

demand in a specific disaster area. Constraint set (2.4) assures that the proportion of 

unsatisfied relief demand does not exceed the desired lower bound limit. Constrain set 

(2.5) requires the inventory level at a single distribution center that is no smaller than 

the maximum amount of demand. Constraint set (2.6) guarantees that the amount of 

inventory kept at any distribution center does not exceed its capacity. Constraint set 

(2.7) requires that the preparedness expenditures related to provision of logistics for 

basic needs in emergency does not exceed the pre-disaster budget. Constraint set (2.8) 

means that the transportation costs to mobilize resources are less than the expected post-

disaster budget. Constraint set (2.9) describes the non-negativity constraint on the 

proportion of demand satisfied. Constraint set (2.10) describes the non-negativity 

constraint of the proportion of unsatisfied demand. Constraint set (2.11) guarantees that 

the existing distribution center can only provide service in specific disaster area if the 

expected time to satisfy relief demand is no bigger than the maximum response time 

limit. Constraint set (2.12) guarantees that a distribution center will not provide service 

in specific disaster area if the expected time to satisfy relief demand is bigger than the 

maximum response time limit. Constraint set (2.13) assures that at least one distribution 

center will provide service in any disaster area. Constraint sets (2.14) and (2.15) define 

the binary variable of potential response time and service area for each distribution 

center, respectively. 

 

2.3.2 Stage II: Maximizing the Total Expected Relief Demand Satisfied of Disaster 

Areas 

 

Next, in the second stage, the objective function (2.16) is now maximizing the total 

expected relief demand covered by the existing distribution centers, while constraint set 

(2.4) is needed to be modified. Since the value of optimal lower bound of the proportion 

of unsatisfied relief demand has been generated in the first stage, we should be able to 

determine the value of the upper bound of the proportion of unsatisfied relief demand, 

where 𝑢𝑘 = 𝑍𝑘 + (1 − 𝑍𝑘) ∗ 𝑚𝑘  and 𝑍𝑘 < 𝑢𝑘 < 1 . The new constraint set (2.19) 
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guarantees that the proportion of unsatisfied relief demand in each disaster area is 

smaller than the desired upper bound limit. In spite of these two changes of objective 

function (2.16) and constraint set (2.19), other constraints are remaining the same as 

described in section 2.3.1. 

 

Objective function: 

𝑀𝑎𝑥 =  ∑ ∑ ∑ 𝑝𝑖𝑑𝑖𝑘𝑤𝑘𝑓𝑖𝑗𝑘𝑗∈𝐽𝑖𝑘∈𝐾𝑖∈𝐼 .      (2.16)  

 

Modified constraints: 

 ∑ 𝑓𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑀𝑋𝑖𝑗,                     ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,     (2.17) 

 ∑ 𝑓𝑖𝑗𝑘𝑗𝜖𝐽 = 1 − 𝑁𝑖𝑘,                  ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,     (2.18) 

𝑁𝑖𝑘 ≤ 𝑢𝑘,                                    ∀𝑖𝜖𝐼, 𝑘𝜖𝐾.   (2.19) 

 𝑓𝑖𝑗𝑘𝑑𝑖𝑘 ≤ 𝑄𝑗𝑘 ,                            ∀𝑖𝜖𝐼, 𝑗𝜖𝐽, 𝑘𝜖𝐾,     (2.20) 

 ∑ 𝛾𝑘𝑄𝑗𝑘 ≤ 𝑈𝑗  ,                      ∀𝑗𝜖𝐽𝑘∈𝐾 ,     (2.21) 

 ∑ ∑ 𝑄𝑗𝑘𝑔𝑗𝑘𝑘𝜖𝐾𝑗∈𝐽 ≤ 𝐵𝑜,     (2.22) 

 ∑ ∑ 𝑑𝑖𝑘𝑐𝑖𝑗𝑘𝑗𝜖𝐽 𝑓𝑖𝑗𝑘𝑘𝜖𝐾  ≤  𝐵1,   ∀𝑖𝜖𝐼,      (2.23) 

 𝑓𝑖𝑗𝑘  ≥ 0,                                       ∀𝑖𝜖𝐼, 𝑗𝜖𝐽, 𝑘𝜖𝐾,   (2.24) 

𝑁𝑖𝑘  ≥ 0,                                       ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,     (2.25) 

 𝑎𝑖𝑗𝑇𝑖𝑗 ≤  𝛿𝑖,                                  ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,          (2.26) 

 𝑎𝑖𝑗 ≥ 𝑋𝑖𝑗,                                      ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,          (2.27) 

 ∑ 𝑋𝑖𝑗 ≥ 1,                                ∀𝑖𝑗∈𝐽 𝜖𝐼, 𝑖 ≠ 𝑗,     (2.28) 

 𝑎𝑖𝑗 ∈ (0,1),                                   ∀𝑖𝜖𝐼, 𝑗𝜖𝐽,          (2.29) 

 𝑋𝑖𝑗 ∈ (0,1),                                   ∀𝑖𝜖𝐼, 𝑗𝜖𝐽.      (2.30) 

 

It is necessary to provide an adjustment to the model to be used in the real system. The 

constraint sets (2.13) and (2.26) are changed to: 

∑ 𝑋𝑖𝑗 ≥ 2,                              ∀𝑖𝑗∈𝐽 𝜖𝐼1,     (2.31) 

 ∑ 𝑋𝑖𝑗 ≥ 1,                              ∀𝑖𝑗∈𝐽 𝜖𝐼0.     (2.32) 
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Constraint set (2.31) assures that at least two distribution centers will provide services 

in disaster area that already has one existing distribution center (𝐼1), while constraint set 

(2.32) assures that at least one distribution center will provide service in disaster area 

with zero existing distribution center (𝐼0). 

 

2.4 Data Construction 

Indonesia, a developing country that is located in Southeast Asia and is considered as an 

earthquake-prone country, becomes the main focus in this study. At the end of year 

2012, there are 33 provinces existing in Indonesia, which in this study are considered as 

the 33 disaster areas. In October 2010, the Indonesian governments have distributed 

some logistics and equipments in 16 disaster-prone areas in order to support disaster 

preparedness. In this study, these 16 disaster-prone areas are considered as the locations 

for 16 temporary existing distribution centers. Figures 2.1 and 2.2 show the map of 33 

disaster areas and the location of 16 temporary distribution centers, while Table 2.1 

shows the details of disaster areas, distribution centers, and item types. 

The distribution centers are located in 16 different disaster areas. In this case, a 

distribution center serves one or more disaster areas and one disaster area is possibly 

served by one or more distribution centers. Commonly, disaster relief consists of many 

items. The items needed are very diverse and difficult to be accurately satisfied. In this 

study, the items are limited up to nine critical item types. These nine items are the most 

priority items and need to be available in each distribution center. 

 

 
Figure 2.1 Map of 33 disaster areas 
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Figure 2.2 Location of 16 temporary distribution centers 

 

Table 2.2 depicts the data estimation. The data used in this model is extensive and 

some of it is very difficult to be determined. Hence, for the sake of simplicity, we use 

approximation and/or assumption to determine some of the data. The approximate 

distance from a distribution center to an affected area is easily obtained by using the 

application of distance measurement tools provided by Google maps. Figure 2.3 shows 

the example of distance calculation from the distribution center 7 (Yogyakarta) to 

disaster area 17 (Bali) provided by Google maps. Related to the calculation of expected 

response time, helicopters are used to transport each item to the affected area. The 

expected loading time is set to be 2 hours (the same for each item). The maximum 

response time limit is set to be 8 hours, while in the reality this number is flexible, 

depends on the government policy.  

 

 

 

Figure 2.3 Distance measurement provided by Google maps (http://maps.google.com) 

http://maps.google.com/
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Table 2.1 Data set 

Number of 

disaster area: 

33 

 

1. Aceh* 

2. North Sumatra* 

3.  Riau* 

4.  West Sumatra 

5.  Jambi 

6.  Riau Island 

7.  Bangka-Belitung 

8.  Bengkulu 

9.  South Sumatra* 

10. Lampung*  

11. Banten* 

12. Jakarta  

13. West Java 

14. Central Java 

15. Yogyakarta* 

16. East Java* 

17. Bali 

18. West Nusa 

Tenggara*  

19. East Nusa 

Tenggara* 

20. West Kalimantan 

21. Central 

Kalimantan* 

22. South Kalimantan 

23. East Kalimantan* 

24. West Sulawesi 

25. South Sulawesi* 

26. South East 

Sulawesi 

27. Central Sulawesi* 

28. Gorontalo* 

29. North Sulawesi 

30. North Maluku 

31. Maluku* 

32. West Papua 

33. Papua 

Number of 

distribution 

center: 16 

 1. Banda Aceh 

 2. Medan 

 3. Tanjung Pinang 

 4. Palembang 

5. Bandar Lampung 
 

6. Serang 

7. Yogyakarta 

8. Surabaya 

9. Mataram 

10. Makassar 
 

 

11. Kupang 

12. Palangkaraya 

13. Samarinda 

14. Palu 

15. Gorontalo 

16. Ambon 
 

Number of 

item type: 9 

 

A. Medicine (box) 

B. Instant food (box) 

C. Rice (per 50 Kg 

sack) 

 

D. Drinking water 

(box) 

E. Blanket (unit) 

F. Clothes (packet) 

G. Tent (unit) 

H. Mat (unit) 

I. Lantern lamp (unit) 

 

*) Disaster area with one existing distribution center 

 

The probability of earthquake for each disaster area is estimated based on the 

principal of 6 earthquake zones of Indonesia. These 6 earthquake zones are studied by 

Irsyam et al. (2010) with the result shown in Fig. 2.4. Indonesia population in year 2010 

is used for the demand estimation. The capacity of each distribution center is obtained 

by assuming the dimension of each distribution center = 100*100*12 = 120,000 m³. 

Normally, only 70% space is used for the storage. Hence, the capacity of each 

distribution center is 84,000 m³.  

Criticality weights are obtained by classifying all items into two groups: 

primary and secondary items. Primary items are set to have bigger priorities compared 

to secondary items. Primary items are medicine, instant food, rice, drinking water, 

clothes and tent, while secondary items are blanket, mat and lantern lamp. Score of 1 is 
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given to each of primary item, while score of 0.5 is given to each of secondary item. 

The criticality weight of each item is calculated by dividing the criticality score of each 

item by the total of criticality weight of all items.  

 

Table 2.2 Data estimation 

Expected response time (distance from distribution center to the affected area (Km)) / 

vehicle speed (Km/hr)) + (expected loading time (hr)) 

Maximum response time Expected to be 8 hours since the earthquake (the same for each 

disaster area) 

Probability of earthquake Calculated based on the frequency of earthquake hit each disaster 

area during 2005-2010. The earthquake magnitude varies 

between 1.0 to 9.0 Mw. 

Amount of demand Estimated from the total population of each province in 2010.  

Criticality weight  (Weight of each item type / total weight) 

Weight of item type A to I = 0.13, 0.13, 0.13, 0.13, 0.07, 0.13, 

0.13, 0.07 and 0.07, respectively. 

Volume  Unit volume of item type A to I = 0.019 m, 0.054 m³, 0.020 m³, 

0.054 m³, 0.009 m³, 0.112 m³, 0.200 m³, 0.0562 m³ and  0.006 

m³, respectively.  

Distribution center capacity 84,000 m³ (the same for each distribution center) 

Unit cost of acquiring relief 

items 

Purchase cost of item type A to I, respectively = $364.162, 

$5.780, $0.925, $3.699, $6.936, $11.561, $751.445, $8.671 and 

$8.092. respectively (1 USD = Rp. 8,650). 

Unit cost of shipping from 

distribution center to the 

affected area 

(Expected response time (hr)) x (Kerosene needed (litre/hour)) x 

2 (round trip) 

Maximum pre-disaster 

budget available 

$857,317,919.075  

Maximum post-disaster 

budget available 

$116,589,595.375 
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Figure 2.4 Indonesia’s earthquake map (Irsyam et al., 2010)  

 

Unit cost of acquiring relief item is estimated from the purchase price of each item. 

To calculate the unit cost of shipping, it is necessary to assume the maximum load of 

helicopter. The maximum load of medium size of helicopter can be assumed to be 6.23 

m³ for one way trip. It is also important to be noticed that pre-disaster and post-disaster 

budgets are predetermined by the government. In this study, maximum pre-disaster and 

post-disaster budgets are adapted from the budget allocation for preparedness and 

emergency response programs in year 2010-2014 estimated by the Indonesian 

government (Republic of Indonesia. Indonesian National Board for Disaster 

Management, 2010). 

 

2.5 Computational Results and Analysis 

LINGO 8.0 is used for finding the optimal solutions with the mathematical model 

presented in section 2. All experiments solving each problem are tested on a personal 

computer with an intel® Core
TM

 2 Duo CPU 2.93GHz and 2.00 GB of RAM. The 

computation time of all the test problems is less than 1 minute. 

At first, we run the model which minimizes lower bound of the proportion of 

unsatisfied relief demand of each item type as described in section 2.3.1. This model 
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runs under pre-disaster budget of USD 857,317,919.08; post-disaster budget of USD 

116,589,595.38; maximum response time of 8 hours; and capacity of each distribution 

center of 84,000 m³. The results of lower bound of proportion of unsatisfied demand are 

(for item type A to I): 0.949, 0.000, 0.277, 0.000, 0.000, 0.791, 0.851, 0.000 and 0.000, 

respectively. 

The results of grouping service area for each distribution center with maximum 8 

hours of response time are shown in Fig. 2.5 and 2.6 (refer to chapter 1, section 1.5.1. 

for the concept of generating service areas for each distribution center). Figure 2.5 

shows that distribution center 12 (Palangkaraya), due to its strategic location, can serve 

up to 28 disaster areas. On the contrary, distribution center 1 (Banda Aceh) can serve 

only 9 disaster areas. Figure 2.6 shows that disaster area 23 (East Kalimantan) can be 

served by the maximum number of 14 distribution centers, while disaster area 33 

(Papua), due to its remote location, can only be served by 1 distribution center.  

 

 

 

Figure 2.5 Number of disaster areas that served by a single distribution center 
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Figure 2.6 Number of distribution centers that serves the same disaster area 

 

Furthermore, by using the results of lower bound of proportion of unsatisfied 

demand as inputs, we continue to the second stage of model formulation as described in 

section 2.3.2. As we mentioned earlier, this study focuses on how the new variable of 

the proportion of unsatisfied relief demand will improve the final result of preventing 

the zero proportion of a single item type stored in distribution centers. Hence, scenario 

for sensitivity analysis by changing the upper bound of the proportion of unsatisfied 

relief demand under given budgets (denoted by 𝑢𝑘) is performed. As can be seen in 

Table 2.3, the upper bound of each item type depends on government policy, which is 

assumed to vary from 0.780 to 0.999. 

 

Table 2.3 Scenarios for sensitivity analysis 

Scenario 

Degree of 

Importance of All 

Item Types  

(𝑚𝑘) 

Upper Bound of the Proportion of Unsatisfied Relief 

Demand of Item Type A to I 

(𝑢𝑘) 

1 0.780 0.989; 0.780; 0.841; 0.780; 0.780; 0.954; 0.967; 0.780; 0.780 

2 0.800 0.989; 0.800; 0.855; 0.800; 0.800; 0.958; 0.970; 0.800; 0.800 

3 0.850 0.992; 0.850; 0.892; 0.850; 0.850; 0.969; 0.978; 0.850; 0.850 

4 0.900 0.995; 0.900; 0.928; 0.900; 0.900; 0.979; 0.985; 0.900; 0.900 

5 0.999 0.999; 0.990; 0.993; 0.990; 0.990; 0.998; 0.999; 0.990; 0.990 

4 

6 

9 9 
10 10 

13 
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11 
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Table 2.4 Average proportion of satisfied and unsatisfied relief demand  

for each item type 

  

Sce- 

nario 

Objective 

Function 

Value 

Item Type 

 

(A)            

 

(B)             

 

(C)                      

 

(D)              

 

(E)                

 

(F)                   

 

(G)                       

 

(H)                      

 

(I)                        

Average  

Proportion  

of Satisfied 

Relief  

Demand 

1 16,703,300 0.353 0.865 0.876 0.865 0.911 0.595 0.318 0.821 0.938 

2 17,053,820 0.362 0.850 0.893 0.848 0.919 0.589 0.296 0.810 0.938 

3 17,532,810 0.377 0.832 0.906 0.833 0.934 0.576 0.232 0.793 0.954 

4 17,707,590 0.396 0.813 0.911 0.824 0.934 0.591 0.159 0.734 0.988 

5 17,955,520 0.438 0.798 0.919 0.801 0.934 0.591 0.016 0.677 0.988 

Average  

Proportion  

of Unsatisfied 

Relief  

Demand 

1 16,703,300 0.647 0.135 0.124 0.135 0.089 0.405 0.682 0.179 0.062 

2 17,053,820 0.638 0.150 0.107 0.152 0.081 0.411 0.704 0.190 0.062 

3 17,532,810 0.623 0.168 0.094 0.167 0.066 0.424 0.768 0.207 0.046 

4 17,707,590 0.604 0.187 0.089 0.176 0.066 0.409 0.841 0.266 0.012 

5 17,955,520 0.562 0.202 0.081 0.199 0.066 0.409 0.984 0.323 0.012 

 

By changing the upper bound of the proportion of unsatisfied demand, we get the 

new results of the average proportion of satisfied relief demand. As shown in Table 2.4, 

there are no zero results or zero proportions of satisfied relief demand for each item type. 

This means, all item types are stored in distribution centers, including item type G, 

although it has larger volume and higher price compared to another items. This new 

result is quite different from the previous work conducted by Lee, et al. (2011), where 

the amount of item type G stocked in distribution centers is zero (no stock). By applying 

this new model, the limitation can be eliminated. 

The previous model generates an objective function value of 17,979,240, while in 

the new model the number varies between 16,703,300 to 17,955,520. The number is 

smaller compared to the number generated by the previous model, but this smaller 

number covered each item type stored in distribution centers. This means the new 

model is preferable to be applied in the real systems. 

Due to budget limitations, the average proportion of each item type cannot even 

reach 1.00. To increase the total proportion of satisfied relief demand, or to decrease the 

total proportion of unsatisfied relief demand, the government needs to upgrade their 

budgets (for some developing countries, this plan is difficult to be realized). In spite of 

this limitation, we consider scenario 1 as the best scenario because most of its critical 

items have lower proportion of unsatisfied relief demand compared to other scenarios. 
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Also, we noticed that the bigger the upper bound of the proportion of unsatisfied relief 

demand inputted, the bigger the value of objective function resulted.        

 

2.6 Conclusion 

In this study, we propose a new emergency model of stock pre-positioning that focuses 

on preventing the result of zero proportion of a single item type stored in distribution 

centers. This two-stage stock pre-positioning model is formulated as a linear 

programming with assumptions that the earthquake will not occur at the same time in 

multiple disaster areas and the demand is deterministic. The first stage of model 

formulation: generating lower bound of the proportion of unsatisfied demand, is 

specifically developed to improve the previous model built by Lee et.al. (2011). This 

first stage aims to prevent the zero proportions of some items stocked in distribution 

centers. The optimum results of stage I are used as inputs in stage II. Next, the second 

stage of model formulation: maximizing the total expected relief demand satisfied of 

disaster areas, is developed to determine the maximum amount of items stocked in 

distribution centers.  

This proposed model is applied to a real case with 33 disaster areas and 16 

temporary existing distribution centers in Indonesia. Sensitivity analysis is provided by 

changing the parameter of upper bound of the proportion of unsatisfied relief demand 

for each item. The results of each scenario provided by sensitivity analysis show a 

significant improvement compared to the previous results of single-stage model 

presented by Lee et.al. (2011). By adding a new variable of proportion of unsatisfied 

relief demand, the amount of each item type stocked in distribution centers, including 

item type G (tent) which has higher price and larger size per unit compared to another 

items, is no longer zero. The bigger the value of upper bound of the proportion of 

unsatisfied relief demand for each item inputted, the bigger the average proportion of 

satisfied relief demand resulted. These results are acceptable, based on the government 

policy that requires the availability of each critical item type in distribution centers. For 

a long-term planning in an effort to perform emergency response efficiently, the 

government is encouraged to make a better preparation and invest more budgets.  
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Chapter 3 

Emergency Response Model of Stock Pre-positioning 

with Transportation Constraints 

 

 3.1  Introduction 

In this chapter, we study a stock pre-positioning model that integrates the decisions of 

the maximum proportion of relief demand covered in distribution centers and the 

maximum amount of relief supplies delivered to a single disaster area within a certain 

period of time. This chapter is organized as follows: First, we mention the literature 

related to this study and define the objective of our study. Next, we build the proposed 

mathematical model. Afterward, we present the real system and the data used in this 

model. Finally, we run the model and analyze the computational results of different 

scenarios generated by changing the number of helicopters available in a distribution 

center, or by adding more periods to the set. 

 

 3.2 Literature and Objective 

Pre-positioning involves preparing critical relief supplies in strategic locations and 

determining the amount of demand to be released in disaster areas. The main objective 

of the study of disaster management is to minimize or prevent the loss of human life. 

Based on this objective, the delivery of relief supplies to the affected area within a 

relatively short period of time becomes one of the crucial factors to be considered. Opit 

et al. (2013) develop a stock pre-positioning model to obtain the maximum number of 

expected relief demand covered by the existing distribution centers by preventing the 

zero proportion of relief demand satisfied.  

Their stock pre-positioning model however, does not consider the transportation 

planning into the model. This limitation leads us to extend the model by adding a new 

variable of amount of each item to be delivered from distribution centers to a specific 

disaster area. This new model captures budgetary constraints, capacity restrictions of 

distribution centers, and vehicles availability in each distribution center. This model is 



Chapter 3                                                                                                                                                   - 38 - 
 

 
 

developed to support an emergency disaster relief response in the event of an 

earthquake. 

There are numbers of studies that focus in the area of Disaster Operations 

Management (DOM). Galindo and Batta (2013) survey the recent OR/MS research in 

DOM. Their survey shows that mathematical programming is the most preferred 

methodology, while response stage is the most preferred problem to be focused. Balcik 

and Beamon (2008) develop a model that determines the number and locations of 

distribution centers in a relief network and the amount of relief supplies to be stocked at 

each distribution center. Mete and Sabinzky (2010) propose a two stage stochastic 

programming approach for disaster preparedness.  

Papers related to transportation problems also have been discussed in literatures. 

Lin et al. (2011) develop a multi-objective integer programming model for delivery of 

prioritized items in disaster relief operations. Zhang et al. (2012) design a heuristic 

algorithm based on linear programming and network optimization to efficiently solve 

the optimal allocation of emergency resources problem. Hamedi et al. (2012) consider 

the reliability of a route into their routing and scheduling of humanitarian supply 

transportation model. Abounacer et al. (2014) propose a multi-objective emergency 

location-transportation problem for disaster response. Edrissi et al. (2013) propose a 

plan for retrofitting transportation link to ease access to the affected areas, and locating 

and equipping emergency response centers.  

Although the above studies discuss facility location, stock pre-positioning and/or 

transportation planning problem, none of the above studies propose a stock pre-

positioning model that simultaneously generates the maximum proportion of relief 

demand covered in distribution centers and the maximum amount of relief demand 

distributed from multiple distribution centers to a single disaster area within a certain 

period of time. By integrating these two decisions into a single model, the new model 

will become more reliable to be applied to the real system. The objective of this study is 

to maximize the expected relief demand covered by distribution centers by considering 

the transportation constraints into the model.  
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 3.3  Model Formulation 

In this new model, first, we need to determine the service area for each distribution 

center. By grouping service area for each distribution center, the total travel time of the 

first wave of delivery is guaranteed to be less than the maximum response time limit. 

The optimum results of the assignment of each distribution center to a number of 

disaster areas will be used as an input in the mathematical model presented in stage I. 

Stage I is developed to prevent zero results of the proportion of relief demand satisfied. 

Additionally, the optimum results of stage I will be used as an input in stage II. Stage II 

determines the maximum amount of relief demand to be covered by each distribution 

center. Figure 3.1 depicts the stages for solving this model. 

In this model, we assume that the earthquake will not occur at the same time in 

multiple disaster areas, which means each distribution center will not be able to provide 

service to multiple disaster areas at the same time. The unit of time within planning 

period is called normal service period (t), where 𝑇̅ = {1,2,3, … , 𝑡̅},  and 𝑡̅ is the total 

number of normal service period. One unit of time can be 1 hour, 8 hours, or even 1 day. 

If the service time of a vehicle exceeds the planning period, the activity will be 

considered as a delayed service period, 𝑆̅ = {1,2,3, … , 𝑠̅}, where 𝑠̅ is the total number of 

delayed service period. Delayed service is allowed within a certain limit of time.  

Let I = {1, 2, 3,…,𝑖}̅ be the set of disaster areas, and J = {1, 2, 3,…, 𝑗}̅ be the set 

of distribution centers. Let 𝐽𝑖 be the set of distribution centers that provide service in 

disaster area I, 𝑖 ∈ 𝐼. Let K = {1, 2, 3…, 𝑘̅} be the set of item types, and V = {1, 2, 3,…, 

𝑣̅} be the set of vehicle types. Given disaster area I and distribution center j, let 𝑉𝑗
𝑖 be 

the set of vehicles available in distribution center j to provide service in disaster area I, 

𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . In this model, the distribution centers have been established by the 

government. 

 

 

 

 

 

Figure 3.1 Stages of problem solving 
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Table 3.1 Parameters and decision variables 

Parameters : 

𝑢𝑘 upper bound of the proportion of unsatisfied relief demand of item type k, 

𝑘 ∈ 𝐾, 

𝑚𝑘  degree of importance of item type k; where 𝑚𝑘 = 𝑚, 𝑘 ∈ 𝐾, 

𝑋𝑖𝑗 potential distribution center j to provide service in disaster area I, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖, 

𝑌𝑖𝑗𝑣𝑡 potential vehicle v available in distribution center j to provide service in 

disaster area i at period t, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑣 ∈ 𝑉𝑗
𝑖, 𝑡 ∈ 𝑇̅ ∪ 𝑆̅, 

𝑃𝑖  probability of occurrence of earthquake in disaster area i, 𝑖 ∈ 𝐼, 

𝑑𝑖𝑘 expected demand for item type k in disaster area I (unit), 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 

𝑈 𝑗 capacity of distribution center j (m3), 𝑗 ∈ 𝐽, 

𝛾𝑘 unit volume of item type k (m3), 𝑘 ∈ 𝐾, 

𝐵0 pre-disaster budget ($), 

𝐵1 post-disaster budget ($), 

𝑔𝑗𝑘 unit cost of acquiring item type k at distribution center j ($/unit), 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 

𝐶𝑖𝑗𝑘𝑣 unit cost of shipping item type k from distribution center j to demand point i 

by vehicle v ($/unit), 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉, 

𝑤𝑘 criticality weight for item type k; ∑ 𝑤𝑘 =  1𝑘 and 𝑤𝑘 ≥ 0, 𝑘 ∈ 𝐾, 

M large positive number, 

DCj cost of operating a single distribution center,  𝑗 ∈ 𝐽, 

𝛽𝑘 unit weight of item type k (Kg), 𝑘 ∈ 𝐾, 

𝐶𝑊𝑣 the maximum weight capacity of vehicle v (Kg), 𝑣 ∈ 𝑉, 

𝐸𝐿𝑖𝑘 expected satisfied relief demand of item type k in disaster area i ; 𝐸𝐿𝑖𝑘 ≤ 1, 

𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 

𝑛𝑖𝑗𝑣 number of vehicle v available in distribution center j to provide service in 

disaster area I, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑣 ∈ 𝑉. 

  

Decision Variables: 

𝑓𝑖𝑗𝑘 proportion of item type k relief demand satisfied by distribution center j that 

provide services in disaster area I, 

𝑁𝑖𝑘 proportion of unsatisfied relief demand of item type k in disaster area I, 

𝑍𝑘 the lower bound of the proportion of unsatisfied relief demand of item type k, 

𝑄𝑗𝑘 units of item type k stored at distribution center j, 

𝐴𝑖𝑗𝑘𝑣𝑡 amount of item type k to be delivered from distribution center j to disaster area 

I by vehicle v in period t. 

 

First, we need to determine the potential distribution center j to provide service in 

disaster area i (denoted by 𝑋𝑖𝑗). Each distribution center is located in a different disaster 

area, and each of it provides service to one or more disaster areas located inside the 

range of a given maximum response time limit. 𝑋𝑖𝑗= 1, if distribution center j provides 

service in disaster area i, 0 otherwise, where 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖. To cover the possibility of 

losing a distribution center, at least two distribution centers will provide services in 
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disaster area with one existing distribution center. 𝑋𝑖𝑗 is determined by considering the 

expected response time and the maximum response time limit for each vehicle to reach 

a specific disaster area.  

Next, the potential vehicle v available in distribution center j to provide service in 

disaster area I at period t (denoted by 𝑌𝑖𝑗𝑣𝑡), is determined. 𝑌𝑖𝑗𝑣𝑡= 1, if vehicle v in 

distribution center j provides service to disaster area i at period t, 0 otherwise, where 

𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝑖 , 𝑣 ∈ 𝑉𝑗
𝑖 , 𝑡 ∈ 𝑇̅ ∪ 𝑆.̅  Also, in this model we assume that the earthquake hit at 

period 0. The response is immediately started at period 1. In order to support emergency 

response, our model encourages each vehicle to provide service as soon as possible. The 

first response (first wave) is considered as an important event in this study. Table 3.1 

shows the parameters and decision variables. 

 

3.3.1 Stage I: Generating Lower Bound of the Proportion of Unsatisfied Relief 

Demand 

 

In order to prevent zero results of the proportions of relief demand satisfied, firstly, we 

need to generate the lower bound of the proportion of unsatisfied relief demand for each 

item (denoted by 𝑍𝑘 ). 

 

Objective function:  

𝑀𝑖𝑛 =  𝑍𝑘.          (3.1) 

 

Constraints: 

∑ 𝑓𝑖𝑗𝑘𝑘∈𝐾 ≤ 𝑀𝑋𝑖𝑗,                    ∀𝑗𝜖𝐽, 𝑖𝜖𝐼,      (3.2) 

∑ 𝑓𝑖𝑗𝑘𝑗𝜖𝐽 = 1 − 𝑁𝑖𝑘,                 ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,       (3.3) 

𝑁𝑖𝑘 ≤ 𝑍𝑘 ,                                    ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,              (3.4)  

𝑓𝑖𝑗𝑘𝑑𝑖𝑘 ≤ 𝑄𝑗𝑘 ,                           ∀𝑗𝜖𝐽, 𝑖𝜖𝐼, 𝑘𝜖𝐾,                        (3.5) 

∑ 𝛾𝑘𝑄𝑗𝑘 ≤ 𝑈𝑗  ,                     ∀𝑗𝜖𝐽𝑘∈𝐾 ,    (3.6) 

∑ (𝐷𝐶𝑗 +𝑗 ∑ 𝑄𝑗𝑘𝑔𝑗𝑘)𝑘𝜖𝐾 ≤ 𝐵𝑜,      (3.7) 

∑ ∑ ∑  (𝐶𝑖𝑗𝑘𝑣(∑  𝐴𝑖𝑗𝑘𝑣𝑡 + ∑ 𝐴𝑖𝑗𝑘𝑣𝑚
𝑡̅+𝑠̅
𝑚=𝑡̅+1 ))𝑡∈𝑇̅𝑣∈𝑉𝑘∈𝐾𝑗∈𝐽  ≤  𝐵1,         ∀𝑖𝜖𝐼,    (3.8) 

∑ ∑ ∑  (∑ 𝐴𝑖𝑗𝑘𝑣𝑡)𝑡∈𝑇̅𝑣∈𝑉𝑘∈𝐾𝑗∈𝐽 ≥  𝐸𝐿𝑖𝑘𝑑𝑖𝑘 , ∀𝑖𝜖𝐼, 𝑘𝜖𝐾,       (3.9)   
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∑ (∑  𝐴𝑖𝑗𝑘𝑣𝑡 +  ∑  𝐴𝑖𝑗𝑘𝑣𝑚
𝑡̅+𝑠̅
𝑚=𝑡̅+1 ) = 𝑓𝑖𝑗𝑘𝑑𝑖𝑘 , ∀𝑗𝜖𝐽, 𝑖𝜖𝐼, 𝑘𝜖𝐾,  𝑡∈𝑇̅ 𝑣∈𝑉     (3.10) 

∑ 𝛽𝑘 𝐴𝑖𝑗𝑘𝑣𝑡  ≤𝑘∈𝐾  𝑛𝑖𝑗𝑣 𝐶𝑊𝑣, ∀𝑣𝜖𝑉, 𝑗𝜖𝐽, 𝑖𝜖𝐼, 𝑡𝜖𝑇̅ ∪ 𝑆̅,      (3.11) 

𝐴𝑖𝑗𝑘𝑣𝑡 ≤ 𝑀 𝑌𝑖𝑗𝑣𝑡 , ∀𝑣𝜖𝑉, 𝑗𝜖𝐽, 𝑖𝜖𝐼, 𝑘𝜖𝐾, 𝑡𝜖𝑇̅ ∪ 𝑆̅,                (3.12) 

𝐴𝑖𝑗𝑘𝑣𝑡  ≥  0,           ∀𝑣𝜖𝑉, 𝑗𝜖𝐽, 𝑖𝜖𝐼, 𝑘𝜖𝐾, 𝑡𝜖𝑇̅ ∪ 𝑆̅,                (3.13) 

𝑓𝑖𝑗𝑘  ≥ 0,                 ∀𝑗𝜖𝐽, 𝑖𝜖𝐼, 𝑘𝜖𝐾,                                      (3.14) 

𝑁𝑖𝑘  ≥ 0,                 ∀𝑖𝜖𝐼, 𝑘𝜖𝐾.        (3.15) 

 

The objective function (3.1) minimizes lower bound of the proportion of unsatisfied 

relief demand of each item type. Constraint set (3.2) states the assignment of service 

area for each distribution center. Constraint set (3.3) means that the actual demand is 

equal to the amount of satisfied relief demand summed with the amount of unsatisfied 

relief demand. Constraint set (3.4) assures that the proportion of unsatisfied relief 

demand does not exceed the desired lower bound limit. Constrain set (3.5) ensures that 

the amount of demand is smaller than the inventory level on distribution centers. 

Constraint set (3.6) imposes the capacity restrictions on distribution centers. Constraint 

sets (3.7) and (3.8) state the maximum budget of pre- and post-disasters. Constraint set 

(3.9) forces the amount of items delivered within normal service period to reach the 

desired level of satisfied relief demand. Constraint set (3.10) imposes the total amount 

of items delivered to be equal to the amount of inventories stocked in distribution 

centers. Constraint set (3.11) assures that the maximum load of each vehicle is not 

exceeding its weight capacity. Constraint set (3.12) ensures that certain type of vehicles 

may only deliver items to specific disaster areas. Constraint set (3.13) guarantees that 

the amount of items to be delivered exists when the delivery is provided within normal 

or delayed service period. Constraint sets (3.14) and (3.15) describe the non-negativity 

constraints. 
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3.3.2  Stage II: Maximizing Expected Relief Demand Covered by Distribution 

Centers 

 

Next, in stage II, we need to determine the value of the upper bound of the proportion of 

unsatisfied relief demand (denoted by𝑢𝑘), where 𝑢𝑘 = 𝑍𝑘 + (1 − 𝑍𝑘) ∗ 𝑚𝑘, 𝑍𝑘 < 𝑢𝑘 <

1, and 0 < 𝑚𝑘 < 1, ∀𝑘𝜖𝐾 (value of 𝑍𝑘 has been generated in Stage I).  

 

 

Objective function: 

𝑀𝑎𝑥 =  ∑ ∑ ∑ 𝑝𝑖𝑑𝑖𝑘𝑤𝑘𝑓𝑖𝑗𝑘𝑗∈𝐽𝑖𝑘∈𝐾𝑖∈𝐼 .      (3.16) 

 

Constraint: 

𝑁𝑖𝑘 ≤ 𝑢𝑘 ,   ∀𝑖𝜖𝐼, 𝑘𝜖𝐾.                                                   (3.17)  

 

The objective function (3.16) is now maximizing the total expected relief demand 

covered by the existing distribution centers. Constraint set (3.4) is now replaced by 

constraint set (3.17) that guarantees the proportion of unsatisfied relief demand in each 

disaster area is smaller than the desired upper bound limit. In spite of these two changes, 

other constraints are remaining the same (refer to Stage I, section 3.3.1). 

 

 3.4  Data Construction 

Similar to the previous studies conducted in Chapter 2, we also apply this new model to 

Indonesia, an earthquake-prone country that is located in the pacific ring of fire. To 

improve the results, we update the number of disaster areas from 33 to 34 (based on 34 

provinces existed in Indonesia since late 2012). Number of temporary distribution 

centers is 16. Figures 3.2 and 3.3 show the map of 34 disaster areas and the location of 

16 temporary distribution centers. We use large amount of data to be inputted into the 

new model. For the sake of simplicity, we use assumptions to some data which are 

found difficult or nearly impossible to be obtained. The complete data set is presented in 

Table 3.2, while Table 3.3 describes the data estimation.  
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Figure 3.2 Map of 34 disaster areas 

 

 
Figure 3.3 Location of 16 temporary distribution centers 

 

We run our model under four normal service periods and two delayed service 

periods, which is equal to 72 hours (1 period = 12 hours). In the field, these numbers are 

flexible, depends on the government policy. Disaster relief items needed, including 

consumable and inconsumable items, are very diverse. As described in chapter 2 section 

2.4, we narrow the item up to nine critical item types. We consider that these nine items 
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hold the highest priority and need to be covered by the existing distribution centers. 

Maximum pre-disaster and post-disaster budgets are adapted from the budget allocation 

for preparedness and emergency response programs in year 2010-2014 (Republic of 

Indonesia. Indonesian National Board for Disaster Management, 2010).  

Two types of vehicle are available in each distribution center, truck and helicopter. 

Trucks can only be used to deliver items in the area that is connected to the mainland. 

To deliver items between two different islands without any available roads access, 

helicopters are used as a main transport. Helicopter will provide service every period, 

while truck will provide service every two-period. In this study, the data of the size and 

speed of helicopter has been updated.  

 

Table 3.2 Updated data set 

Disaster area   

1. Aceh* 

2. North Sumatra* 

3. Riau* 

4. West Sumatra 

5. Jambi 

6. Riau Island 

7. Bangka-Belitung 

8. Bengkulu 

9. South Sumatra* 

10. Lampung*  

11. Banten* 

12. Jakarta  

13. West Java 

14. Central Java 

15. Yogyakarta* 

16. East Java* 

17. Bali 

18. West Nusa Tenggara*  

19. East Nusa Tenggara* 

20. West Kalimantan 

21. Central Kalimantan* 

22. South Kalimantan 

23. East Kalimantan* 

24. North Kalimantan 

25. West Sulawesi 

26. South Sulawesi* 

27. South East Sulawesi 

28. Central Sulawesi* 

29. Gorontalo* 

30. North Sulawesi 

31. North Maluku 

32. Maluku* 

33. West Papua 

34. Papua 

Distribution center 

 1. Banda Aceh 

 2. Medan 

 3. Tanjung Pinang 

 4. Palembang 

5. Bandar Lampung 
 

6.  Serang 

7.  Yogyakarta 

8.  Surabaya 

9.  Mataram 

10. Makassar 
 

11. Kupang 

12. Palangkaraya 

13. Samarinda 

14. Palu 

15. Gorontalo 

16. Ambon 

Item type 

A. Medicine (box) 

B. Instant food (box) 

C. Rice (per 50 Kg sack) 

D. Drinking water (box) 

E. Blanket (unit) 

F. Clothes (packet) 

G. Tent (unit) 

H. Mat (unit) 

I. Lantern lamp (unit) 

*) Disaster area with one existing distribution center 
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Table 3.3 Updated data estimation 

Expected response 

time (hr) 

(distance from dist. center to the affected area (km)) / vehicle speed 

(km/hr)) + (expected loading time (hr)). 

Maximum response 

time (hr) 

Expected to be 12 hours (the same for each disaster area). 

Probability of 

earthquake 

Calculated based on the frequency of earthquakes hit each disaster area 

during 2005-2013. The earthquakes magnitude varies between 1.0 to 9.0 

Mw. 

Amount of demand Assumed to be 1% of the total population of each province in year 2010 

(which means only 1% of the total population in each disaster area will 

be affected by the earthquake and need to be treated immediately). 

Criticality weight  (Criticality weight of each item type / total weight)  

Weight of item type A to I = 0.133, 0.133, 0.133, 0.133, 0.067, 0.133, 

0.133, 0.067 and 0.067, respectively. 

Volume (m³) Unit volume of item type A to I = 0.018, 0.054, 0.020, 0.054, 0.009, 

0.112, 0.200, 0.056 and 0.006, respectively.  

Weight (Kg) Unit weight of item type A to I = 5, 4, 25, 18, 0.5, 5, 40, 5 and 0.25, 

respectively. 

Distribution center 

capacity (m³) 

Dimension of each dist. center is assumed to be 100 x 100 x 12 = 

120,000 m³. Normally, only 70% space is used for the storage. The 

capacity of each dist. center is 84,000 m³ (the same for each distribution 

center). 

Cost of operating a 

distribution Center 

($) 

Assumed to be $6,100/5 years (the same for each distribution center). 

This number is calculated based on the approximation of the cost of 

electricity used to run a single distribution center. 

Unit cost of 

acquiring relief 

items ($) 

Purchase cost of item type A to I = $364.162, $5.780, $0.925, $3.699, 

$6.936, $11.561, $751.445, $8.671 and $8.092, respectively (1 USD = 

IDR 11.500). 

Unit cost of 

shipping ($) 

(Expected response time (hr)) x (fuel needed (liter/hr)) x 2 (round trip). 

Expected satisfied 

relief demand  

Range from 0.006 to 0.12 (based on the size of population in each 

disaster area). 

Number of vehicles 

available 

3 helicopters and 10 trucks (assumed to be the same at each distribution 

center). 

Maximum weight 

capacity of a 

vehicle 

4,100 kg for each helicopter and 14,000 kg for each truck.  

Maximum budgets 

available ($) 

Pre-disaster budget = $857,317,919.075 and post-disaster budget = 

$116,589,595.375.  

 

The probability of earthquake for each disaster area is estimated based on a study 

conducted by Irsyam et al. (2010) that discuss the principal of 6 earthquake zones of 

Indonesia as shown in previous chapter (refer to Figure 2.4, chapter 2, section 2.4). 
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Since the demand is deterministic, Indonesia population in year 2010 is used for the 

estimation. In this case, however, we use only as big as 1% of the total population for 

the demand estimation. This means, we assume that only 1% of the total population in 

each disaster area will be affected by the earthquake and needs to be treated 

immediately. Operating cost for each distribution center is determined by calculating the 

approximate total cost of running a single-medium-size of distribution center for 5 years 

long (Indonesian government reviews their budget allocation every 5 years). 

Criticality weights, as explained in Chapter 2 section 2.4, are obtained by 

classifying all items into two groups: primary and secondary items. Primary items are 

medicine, instant food, rice, drinking water, clothes and tent, while secondary items are 

blanket, mat and lantern lamp. Score of 1 is given to each of primary item, while score 

of 0.5 is given to each of secondary item. The criticality weight of each item is 

calculated by dividing the criticality score of each item by the total of criticality weight 

of all items.  

Expected satisfied relief demand (denoted by 𝐸𝐿𝑖𝑘) is set based on its item type 

and disaster area. We assume, the bigger the population in a disaster area, the smaller 

the value of expected satisfied relief demand is determined. To prevent constraint 

violation which will lead to infeasible results, each value of the expected satisfied relief 

demand is set to be quite small, range from 0.006 to 0.12. This means, at least 0.6% to 

12% of a total of each critical item will be delivered to a single disaster area within 

normal service period. The rest of the items will be delivered within delayed service 

period.  

 

3.5  Computational Results and Analysis 

The mathematical model presented in section 3.3 is coded on GAMS 24.1.3 and run by 

CPLEX 12.5.1.0 solver on an intel® Core
TM

 i7-3770 Dual Processor with 24 GB RAM 

and 3.40 GHz CPU. The computation time of each test problem is less than 1 minute. 

The first stage model runs under the estimation data compiled in Table 3.3. The results 

of the lower bounds of proportion of unsatisfied relief demand (for item type A to I) are: 

0.181, 0.000, 0.890, 0.316, 0.000, 0.181, 0.383, 0.000 and 0.000, respectively.  
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Table 3.4 Scenarios 

Scenario 
Number of vehicles available 

(Helicopter = H, Truck = T) 

Planning period 

(Normal service =  N, 

Delayed service = D) 

S1 
H = 3, T = 10 (for each distribution 

center) 
N = 4, D = 2 

S2 

H = 4, T = 10 trucks (for distribution 

center 12, Palangkaraya) and H = 3, T = 

10 (for the rest of distribution centers) 

N = 4, D = 2 

S3 

H = 4, T = 10 (for distribution center 13, 

Samarinda) and H = 3, T = 10 (for the 

rest of distribution centers). 

N = 4, D = 2 

S4 
H = 3, T = 10 (for each distribution 

center) 
N = 6, D = 2 

 

Next, in stage II, the value of degree of importance of each item type (denoted by 

𝑚𝑘) is set to be 0.85. Hence, the upper bounds of item type A to I are: 0.877, 0.850, 

0.984, 0.897, 0.850, 0.877, 0.907, 0.850 and 0.850, respectively. By inputting these 

upper bound values, along with lower bound values that have been generated in stage I 

into the model, we generate the objective function value of stage II as big as 23,785.240. 

This result indicates no zero proportion of satisfied relief demand occurs, even for 

demand with high-priced and large-sized such as tent. 

In this model, the number of relief demand to be satisfied is set at 1% of the total 

population. If we drastically increase this number, the result will become infeasible due 

to the limited number of vehicles available in distribution centers. Thus, the constraint 

of vehicles availability has proven to be the most restrictive constraint in this case study, 

as if we add one vehicle (helicopter) in a single distribution center, the proportion of 

relief demand satisfied will increase. To show the importance of this constraint, we 

provide some scenarios as shown in Table 3.4 with the sensitivity analysis shown in 

Table 3.5.  

Scenarios 2 and 3 (refer to Table 3.4) are performed by adding one vehicle 

(helicopter) in a single distribution center that provides services to the most disaster 

areas. In that case, distribution center 12 (Palangkaraya) that serves 33 disaster areas 

(minus Papua), and distribution center 13 (Samarinda) that also serves 33 disaster areas 
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(minus Aceh) are selected to perform the sensitivity analysis. We add one helicopter to 

Palangkaraya (scenario 2) and one helicopter to Samarinda (scenario 3).  

As can be seen in Table 3.5a, the objective values of scenarios 2 and 3 show a 

slight improvement compared to the objective function value of scenario 1. Due to the 

difference of the size of population to be served by each distribution center, 

Palangkaraya is expected to serve bigger population than Samarinda. We assume that 

the bigger the population in disaster areas, the smaller the desired level of satisfied relief 

demand (denoted by 𝐸𝐿𝑖𝑘) to be determined. 

 

Table 3.5 Results and sensitivity analysis 

A. Objective function value  

S1 S2 S3 S4 

23,785.240 23,900.885 23,936.166 26,128.657 
 

B. Average proportion of relief demand satisfied 

Scenario 

Item Type 

(A) (B) (C) (D) (E) (F) (G) (H) (I) 

S1 0.027 0.029 0.015 0.023 0.029 0.027 0.013 0.025 0.029 

S2 0.027 0.029 0.015 0.023 0.029 0.027 0.014 0.025 0.029 

S3 0.027 0.029 0.015 0.023 0.029 0.027 0.014 0.025 0.029 

S4 0.028 0.029 0.017 0.026 0.029 0.028 0.014 0.026 0.029 
          

C. Total amount of item delivered to disaster areas within normal service period (hundred thousand unit) 

Scenario 

Item Type 

(A) (B) (C) (D) (E) (F) (G) (H) (I) 

S1 734.635 219.811 526.907 267.938 1,866.378 745.646 65.271 72.266 78.285 

S2 766.819 233.137 534.170 294.048 1,700.692 743.199 66.929 86.907 134.007 

S3 814.908 232.250 530.191 286.581 1,821.067 714.373 64.343 122.818 123.798 

S4 1,071.471 302.781 766.382 368.582 1,828.584 853.373 77.288 127.038 143.380 
          

D. Total amount of item delivered to disaster areas within delayed service period (hundred thousand unit) 

 Item Type 

Scenario (A) (B) (C) (D) (E) (F) (G) (H) (I) 

S1 772.357 256.947 223.782 114.592 517.416 669.427 10.990 142.666 120.364 

S2 835.229 243.621 226.675 94.413 683.103 686.630 11.065 131.642 64.641 

S3 785.485 244.508 229.670 101.880 562.727 722.031 13.652 95.730 74.851 

S4 747.488 173.977 240.132 82.338 555.210 647.327 12.904 106.286 55.269 
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Therefore, the objective function value of scenario 2 is expected to be slightly 

smaller than the objective function value of scenario 3 although the values of the 

average proportions of relief demand satisfied for both scenarios are the same (refer to 

Table 3.5b).  The average proportion of relief demand satisfied for each item is 

calculated by considering the probability of occurrence of earthquake in each disaster 

area (refer to Table 3.5b).   

Several scenarios run by adding one truck to a single disaster area. In this case, we 

realize that the result of the objective function value remains the same. On the contrary, 

by adding one helicopter, which is fast and able to deliver critical items between islands 

within long distance, will slightly improve the objective function value. Tables 3.5c and 

3.5d describe the total amount of items to be transported to disaster areas within normal 

and delayed service periods. Both tables display another slight improvement of the 

results of scenarios 2 and 3 compared to scenario 1. Refer to Constraint set (3.9) in 

section 3.3.1, we encourage each item to be transported immediately to the specific 

disaster area following an earthquake. Therefore, the total amount of items transported 

within normal service period as shown in Table 3.5c, reaches the desired level of 

satisfied relief demand. 

Since the implementation of scenarios 2 and 3 require additional supply of budgets 

to purchase a new vehicle, sensitivity analysis by changing the planning period (refer to 

Table 3.4, scenario 4) is also provided. In this scenario, the normal service period is set 

to be 6 periods. Compared to other scenarios, it is confirmed that by adding more 

periods to the set, the proportions of relief demand satisfied are improving. Additionally, 

by adding more periods to the set also mean that some people affected by the 

earthquake will experience a longer waiting time to receive the critical relief items.  

 

3.6   Conclusion 

This study proposes a new stock-prepositioning model that simultaneously generates the 

maximum proportion of relief demand covered in distribution centers and the maximum 

amount of relief demand distributed to a single disaster area within a certain period of 

time. This new model is intended to support the governments in planning for emergency 

preparedness and disaster relief.  
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In this model, we assume that the earthquake will not occur at the same time in 

multiple disaster areas, the demand is deterministic, and there are two types of vehicles 

available in each distribution centers: helicopter and truck, where trucks can only 

deliver items to the area that is connected to the mainland. New variable of the amount 

of each item to be delivered from distribution centers to a specific disaster area is 

introduced to this model. First, each distribution center is assigned to serve some 

disaster areas that located within the range of pre-determined maximum response time 

limit. Next, as have been discussed in Chapter 2, the first stage model is built to prevent 

the zero proportions of items stocked in distribution centers. The second stage model is 

developed to determine the maximum items covered in distribution centers by inputting 

the optimum results of the first stage model.   

Compared to the previous model presented in Chapter 2, this new model offers 

more outputs and restrictions to be analyzed. To verify the model, a case study with 34 

disaster areas and 16 existing distribution centers in Indonesia is conducted (the data of 

disaster areas is updated to the current circumstances). Sensitivity analysis by 

performing different scenarios by changing the number of helicopters available in a 

distribution center, or by adding more periods to the set are provided. The results show 

by adding one helicopter, which is able to deliver items between islands and is faster 

than truck, to a certain distribution center slightly improved some of the proportions of 

relief demand satisfied. Therefore, for the better results, we suggest the central or local 

government to increase the number of vehicles (in this case, helicopter) available at 

each distribution center.  Although we apply our model to Indonesia as a real system, 

this model is applicable to any other system facing an earthquake threat.  
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Chapter 4 

Pre-positioning of Emergency Relief Supplies under 

Facility Disruptions  

 

4.1 Introduction 

In this chapter, we study a stock pre-positioning model under facility disruptions that 

integrates the decisions of the maximum proportion of relief demand covered in 

distribution centers, the maximum amount of relief supplies delivered to a single 

disaster area and the number of optimum vehicle available in distribution centers. This 

chapter is organized as follows: First, we introduce the literatures related to this study 

and state the objective of our study. Second, we develop the two-stage mathematical 

model formulation. Third, we construct the data used as inputs in this model. Finally, we 

present and analyze the computational results of all potential disruption scenarios.   

 

4.2 Literature and Objective 

The aftermath of a natural disaster such as earthquake is always difficult to be predicted. 

Certain areas that located close to the epicenter of the earthquake may suffer major 

damages including loss of facility (distribution center) that is used to store the supplies 

for emergency relief response. Once a distribution center is disrupted (collapse), many 

people affected by the earthquake will not be able to receive the critical items needed 

for survival immediately. This means more people will suffer and even loss their life. 

This issue motivates us to extend the previous stock pre-positioning model developed 

by Opit and Nakade (2015a), as have been discussed in Chapter 3, to a new model that 

considers all potential scenarios of facility disruptions.     

Papers related to stock pre-positioning and transportation planning models have 

been discussed in literature, such as one written by Rawls and Turnquist (2010) that 

presents a two-stage stochastic mixed integer program which provides an emergency 

response pre-positioning strategy. Lin et al. (2011) develop a multi-objective integer 

programming model for delivery of prioritized items in disaster relief operations. Mete 
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and Zabinsky (2010) develop a two stage stochastic programming approach for disaster 

preparedness which consists of warehouse selection, inventory decisions, transportation 

plans and demand satisfaction decisions. Opit and Nakade (2015b) present a 

transportation model of emergency relief supplies by considering route availability at a 

specific period of time. 

Facility disruptions are considered into the model in these following papers. Qin et 

al. (2013) propose a risk mitigation combination of facility protection and emergency 

inventory pre-positioning policies to hedge well against accidental disruptions in the 

capacitated logistics systems. Akgün et al. (2015) develop an optimization model that 

minimizes the risk that a demand point may be exposed to because it is not supported by 

the located facilities. Hatefi and Jolai (2014) propose a robust and reliable model for an 

integrated forward-reverse logistics network design, which takes facility disruptions 

into account. Sawik (2014) obtains combinatorial stochastic optimization problem of 

suppliers hit by different types of disruptions to either minimize expected worst-case 

cost or to maximize expected worst-case customer service level.   

All above literature provide a better understanding on developing a pre-

positioning and/or transportation planning model of emergency relief supplies, with or 

without considering facility disruptions. As for the difference, our study integrates the 

decisions of the maximum proportion of relief demand covered in distribution centers, 

the maximum amount of relief supplies delivered to a single disaster area within a 

certain period of time, and the number of optimum vehicle available at a distribution 

center for each disruption scenario. The objective of this study is to maximize the 

expected relief demand covered by distribution centers by considering the transportation 

problem and facility disruption scenarios into the model.  

     

4.3 Model Formulation 

In this model, the temporary distribution centers have been established by the 

government. Each distribution center is located in a different disaster area and it is 

assigned to provide services to one or more disaster areas that located inside the range 

of a given maximum response time limit. Let S = {1, 2, 3,…, s} be the set of disruption 

scenarios. Let I = {1, 2, 3,…,𝑖}̅ be the set of disaster areas, and J = {1, 2, 3,…, 𝑗}̅ be the 

set of distribution centers.  



Chapter 4                                                                                                                                                   - 55 - 
 

 
 

Table 4.1 Parameters and decision variables 

Parameters: 

𝑢𝑘 upper bound of the proportion of unsatisfied relief demand of item type k, 

𝑘 ∈ 𝐾, 

𝑚𝑘  degree of importance of item type k; where 𝑚𝑘 = 𝑚, 𝑘 ∈ 𝐾, 

𝑃𝑠  probability of occurrence of earthquake for each scenario s, 𝑠 ∈ 𝑆, 

𝑑𝑖𝑘 expected demand for item type k in disaster area i (unit), 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 

𝑈 𝑗 capacity of distribution center j (m3), 𝑗 ∈ 𝐽, 

𝛾𝑘 unit volume of item type k (m3), 𝑘 ∈ 𝐾, 

𝐵0, 𝐵1   pre-disaster budget ($), post-disaster budget ($), 

𝑔𝑗𝑘 unit cost of acquiring item type k at distribution center j ($/unit), 𝑗 ∈ 𝐽, 

𝑘 ∈ 𝐾, 

𝐶𝑖𝑗𝑘𝑣 unit cost of shipping item type k from distribution center j to demand point 

i by vehicle v ($/unit), 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 

𝑤𝑘 criticality weight for item type k; ∑ 𝑤𝑘 =  1𝑘 and 𝑤𝑘 ≥ 0, 𝑘 ∈ 𝐾, 

DCj cost of operating a single distribution center, 𝑗 ∈ 𝐽, 

𝛽𝑘 unit weight of item type k (Kg), 𝑘 ∈ 𝐾, 

𝐶𝑊𝑣 the maximum weight capacity of vehicle v (Kg), 𝑣 ∈ 𝑉, 

𝐸𝐿𝑖𝑘 expected satisfied relief demand of item type k in disaster area i; 𝐸𝐿𝑖(𝑠)𝑘 ≤

1, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 

𝑛̅𝑠𝑗𝑣 maximum number of vehicle v available in distribution center j for each 

scenario s, 𝑣 ∈ 𝑉, 𝑗 ∈ 𝐽 , 𝑠 ∈ 𝑆. 

  

Decision variables: 

𝑓𝑠𝑖𝑗𝑘 proportion of item type k relief demand satisfied by distribution center j 

that provide service in disaster area i for each scenario s, 

𝑁𝑠𝑖𝑘 proportion of unsatisfied relief demand of item type k in disaster area i for 

each scenario s, 

𝑍𝑘 the lower bound of the proportion of unsatisfied relief demand of item 

type k, 

𝑄𝑗𝑘 units of item type k stored at distribution center j, 

𝑛𝑠𝑖𝑗𝑣 number of vehicle v available at distribution center j to provide service in 

disaster area i for each scenario s,  

𝐴𝑠𝑖𝑗𝑘𝑣𝑡 amount of item type k to be delivered from distribution center j to disaster 

area i by vehicle v in period t for each scenario s. 

 

Let 𝐽𝑖
𝑠 be the set of distribution centers that provide service in disaster area i for 

each scenario s , 𝑖 ∈ 𝐼, 𝑠 ∈ 𝑆.  Let 𝐼𝑠 be the set of disaster areas hit by the earthquake for 

each scenario s, 𝑠 ∈ 𝑆. Let K = {1, 2, 3…, 𝑘̅} be the set of item types, and V = {1, 2, 

3,…, 𝑣̅} be the set of vehicle types. Let 𝑉𝑗
𝑖  be the set of vehicles that available in 

distribution center j to provide service in disaster area i, 𝑖 ∈ 𝐼, j ∈ 𝐽. The unit of time 

within planning period is called normal service period, where 𝑇̅ = {1,2,3, … , 𝑡̅}. One 
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period can be 1 hour or even 1 day. If the service time of a vehicle exceeds the planning 

period, the activity will be considered as a delayed service period, where 𝑆̅ =

{𝑡̅ + 1, 𝑡̅ + 2, … , 𝑠̅}. Table 4.1 shows the parameters and decision variables. 

 

4.3.1 Stage I: Generating Lower Bound of the Proportion of Unsatisfied Relief 

Demand 

 

This stage is developed to prevent zero results of the proportions of relief demand 

satisfied. 

 

Objective function:  

𝑀𝑖𝑛 =  𝑍𝑘.          (4.1) 

 

Constraints: 

∑ 𝑓𝑠𝑖𝑗𝑘𝑗𝜖𝐽𝑖
𝑠 = 1 − 𝑁𝑖𝑘𝑠,              ∀𝑖𝜖𝐼𝑠 , 𝑘𝜖𝐾, 𝑠𝜖𝑆,       (4.2) 

𝑁𝑖𝑘𝑠 ≤ 𝑍𝑘,                                    ∀𝑖𝜖𝐼𝑠, 𝑘𝜖𝐾, 𝑠𝜖𝑆,            (4.3)  

∑ 𝑓𝑠𝑖𝑗𝑘  𝑑𝑖𝑘𝑖𝜖𝐼𝑠 ≤  𝑄𝑗𝑘,                ∀𝑗𝜖𝐽, 𝑘𝜖𝐾, 𝑠𝜖𝑆,         (4.4) 

∑ 𝛾𝑘𝑄𝑗𝑘 ≤ 𝑈𝑗  ,                      ∀𝑗𝜖𝐽𝑘∈𝐾 ,       (4.5) 

∑ (𝐷𝐶𝑗 +𝑗 ∑  𝑄𝑗𝑘 𝑔𝑗𝑘)𝑘𝜖𝐾 ≤ 𝐵𝑜,      (4.6) 

∑ ∑ ∑ ∑  (𝐶𝑖𝑗𝑘𝑣(∑  𝐴𝑠𝑖𝑗𝑘𝑣𝑡 + ∑ 𝐴𝑠𝑖𝑗𝑘𝑣𝑚
𝑡̅+𝑠̅
𝑚=𝑡̅+1 ))𝑡∈𝑇̅𝑣∈𝑉𝑗

𝑖 𝑘∈𝐾𝑗∈𝐽𝑖
𝑠𝑖𝜖𝐼𝑠 ≤  𝐵1, ∀𝑠𝜖𝑆,   (4.7) 

∑ ∑  (∑ 𝐴𝑠𝑖𝑗𝑘𝑣𝑡)𝑡∈𝑇̅𝑣∈𝑉𝑗
𝑖𝑗𝜖𝐽𝑖

𝑠 ≥  𝐸𝐿𝑖𝑘 𝑑𝑖𝑘 ,        ∀𝑖𝜖𝐼𝑠, 𝑘𝜖𝐾, 𝑠𝜖𝑆,              (4.8)    

∑  (∑  𝐴𝑠𝑖𝑗𝑘𝑣𝑡 +  ∑  𝐴𝑠𝑖𝑗𝑘𝑣𝑚
𝑡̅+𝑠̅
𝑚=𝑡̅+1 )𝑡∈𝑇̅ 𝑣∈𝑉𝑗

𝑖 = 𝑓𝑠𝑖𝑗𝑘  𝑑𝑖𝑘,   ∀𝑗𝜖𝐽𝑖
𝑠, 𝑖𝜖𝐼𝑠, 𝑘𝜖𝐾, 𝑠𝜖𝑆,   (4.9) 

∑ 𝛽𝑘 𝐴𝑠𝑖𝑗𝑘𝑣𝑡  ≤𝑘∈𝐾  𝑛𝑠𝑖𝑗𝑣  𝐶𝑊𝑣,    ∀𝑣𝜖𝑉𝑗
𝑖, 𝑗𝜖𝐽𝑖

𝑠, 𝑖𝜖𝐼𝑠, 𝑡𝜖𝑇̅ ∪ 𝑆̅, 𝑠𝜖𝑆,       (4.10) 

∑ 𝑛𝑠𝑖𝑗𝑣𝑖𝜖𝐼𝑠 ≤  𝑛̅𝑠𝑗𝑣                    ∀𝑣𝜖𝑉, 𝑗𝜖𝐽, 𝑠𝜖𝑆,         (4.11) 

𝐴𝑠𝑖𝑗𝑘𝑣𝑡  ≥  0,                             ∀𝑣𝜖𝑉𝑗
𝑖, 𝑗𝜖𝐽𝑖

𝑠, 𝑖𝜖𝐼𝑠, 𝑘𝜖𝐾, 𝑡𝜖𝑇̅ ∪ 𝑆̅, 𝑠𝜖𝑆,        (4.12) 

𝑓𝑠𝑖𝑗𝑘  ≥ 0,                                  ∀𝑗𝜖𝐽𝑖
𝑠 , 𝑖𝜖𝐼𝑠, 𝑘𝜖𝐾, 𝑠𝜖𝑆,                          (4.13) 

𝑁𝑠𝑖𝑘  ≥ 0,                                   ∀𝑖𝜖𝐼𝑠 , 𝑘𝜖𝐾, 𝑠𝜖𝑆,      (4.14) 

𝑛𝑠𝑖𝑗𝑣 ∈ {0, 1},                         ∀𝑣𝜖𝑉, 𝑗𝜖𝐽, 𝑖𝜖𝐼𝑠, 𝑠𝜖𝑆.     (4.15) 
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The objective function (4.1) minimizes lower bound of the proportion of unsatisfied 

relief demand of each item type. Constraint set (4.2) means that the actual demand is 

equal to the amount of satisfied relief demand summed with the amount of unsatisfied 

relief demand. Constraint set (4.3) assures that the proportion of unsatisfied relief 

demand does not exceed the desired lower bound limit. Constrain set (4.4) ensures that 

the amount of demand is smaller than the inventory level on distribution centers. 

Constraint set (4.5) imposes the capacity restrictions on distribution centers. Constraint 

sets (4.6) and (4.7) state the maximum budget of pre- and post-disasters. Constraint set 

(4.8) forces the amount of items delivered within normal service period to reach the 

desired level of satisfied relief demand. Constraint set (4.9) imposes the total amount of 

items delivered to be equal to the amount of inventories stocked in distribution centers. 

Constraint set (4.10) assures that the maximum load of each vehicle is not exceeding its 

weight capacity. Constraint set (4.11) ensures that the number of vehicles placed in each 

distribution center is less than its maximum number available. Constraint sets (4.12), 

(4.13) and (4.14) describe the non-negativity constraints. Constraint set (4.15) describes 

the binary constraint. 

 

4.3.2 Stage II: Maximizing Expected Relief Demand Covered by Distribution 

Centers 

 

The value of the upper bound of the proportion of unsatisfied relief demand is 

determined, where 𝑢𝑘 = 𝑍𝑘 + (1 − 𝑍𝑘) ∗ 𝑚𝑘,  𝑍𝑘 < 𝑢𝑘 < 1,  and 0 < 𝑚𝑘 < 1, ∀𝑘𝜖𝐾 

(value of 𝑍𝑘 has been generated in Stage I). 

 

Objective function: 

𝑀𝑎𝑥 =  ∑ ∑ ∑  𝑃𝑠 𝑤𝑘 𝑓𝑖𝑗𝑘𝑠 𝑗∈𝐽𝑖
𝑠 𝑑𝑖𝑘 𝑘∈𝐾𝑖𝜖𝐼𝑠      (4.16) 

 

Constraint: 

𝑁𝑠𝑖𝑘 ≤ 𝑢𝑘,   ∀𝑖𝜖𝐼𝑠, 𝑘𝜖𝐾, 𝑠𝜖𝑆.                                       (4.17)  

 

The objective function (4.16) is now maximizing the total expected relief demand and 

back up inventory covered by the existing distribution centers. Constraint set (4.4) is 
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now replaced by constraint set (4.17) that guarantees the proportion of unsatisfied relief 

demand in each disaster area is smaller than the desired upper bound limit. Despite 

these two changes, the rest of the constraints are remaining the same (refer to Stage I). 

 

4.4 Data Construction 

Indonesia remains the main focus in this case study with the total of 34 disaster areas 

(number of existing provinces) and 16 temporary distribution centers (refer to Chapter 3, 

Figures 3.2 and 3.3). Table 4.2 presents the details of disaster areas and temporary 

distribution centers. To solve the problem, firstly, all potential disruption scenarios are 

generated. In this new model, the earthquake can occur at the same time in multiple 

disaster areas. Once a disaster area is hit by an earthquake, the distribution center that 

located inside this area may or may not be disrupted. We assume that at most two 

neighboring disaster areas will suffer damages after they got hit by an earthquake. For 

example, disaster 1 has 1 neighboring area, which is disaster area 2 (refer to Figure 4.1). 

Thus, when an earthquake hit disaster area 1, it can cause damage to only disaster area 1 

or to disaster area 1 and 2.   

Therefore, if only disaster area 1 is hit by an earthquake then distribution center 1 

that located inside this area may or may not be disrupted. We then generate the first two 

scenarios, where distribution center in disaster area 1 is disrupted (scenario 1) and not 

disrupted (scenario 2). Next, if disaster areas 1 and 2 hit by an earthquake then 

distribution centers 1 and 2 that located inside each area may or may not be disrupted at 

the same time. Another possibility, distribution center 2 may be disrupted while 

distribution center 1 is completely unaffected, and vice versa. Hence, we can generate 

four scenarios where only distribution center 2 is disrupted (scenario 3), only 

distribution center 1 is disrupted (scenario 4), both distribution centers are completely 

unaffected (scenario 5) and both distribution centers are disrupted (scenario 6), and so 

on for the next disaster area(s). Finally, we generate the total number of 118 scenarios.  
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Tabel 4.2 Data set 

Disaster area   

1. Aceh* 

2. North Sumatra* 

3. Riau* 

4. West Sumatra 

5. Jambi 

6. Riau Island 

7. Bangka-Belitung 

8. Bengkulu 

9. South Sumatra* 

10. Lampung*  

11. Banten* 

12. Jakarta  

13. West Java 

14. Central Java 

15. Yogyakarta* 

16. East Java* 

17. Bali 

18. West Nusa 

Tenggara*  

19. East Nusa 

Tenggara* 

20. West Kalimantan 

21. Central 

Kalimantan* 

22. South Kalimantan 

23. East Kalimantan* 

24. North Kalimantan 

25. West Sulawesi 

26. South Sulawesi* 

27. South East 

Sulawesi 

28. Central Sulawesi* 

29. Gorontalo* 

30. North Sulawesi 

31. North Maluku 

32. Maluku* 

33. West Papua 

34. Papua 

Distribution center   

 1. Banda Aceh 

 2. Medan 

 3. Tanjung Pinang 

 4. Palembang 

5. Bandar Lampung 
 

6.  Serang 

7.  Yogyakarta 

8.  Surabaya 

9.  Mataram 

10. Makassar 
 

11. Kupang 

12. Palangkaraya 

13. Samarinda 

14. Palu 

15. Gorontalo 

16. Ambon 

*) Disaster area with one existing distribution center 

 

 

 

Figure 4.1 Illustration of the two neighboring disaster areas 
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The probability of occurrence of earthquake for each scenario (denoted by 𝑃𝑠) is 

estimated based on the probability of occurrence of earthquake in each disaster area by 

considering the chances (proportion) of each disaster area to be hit by an earthquake. 

Figure 4.2 shows the illustration on how to generate the probability of occurrence of 

earthquake for each combination of disaster areas 1 and 2. In this model however, we 

assume that the value of 𝑃𝑠 is the same for each scenario of disaster area i hit by an 

earthquake. This means, the facility disruptions are not considered into the calculation 

of each 𝑃𝑠. For example, two scenarios can be generated when disaster area 1 is hit by 

an earthquake: Scenario 1) When the distribution center in this area is disrupted and 

Scenario 2) When the distribution center in this area is not disrupted. Regardless of the 

risk of facility disruptions, the value of 𝑃1 and 𝑃2 is the same, which is equal to 0.034 

(refer to Figure 4.2).   

 

 
 

Figure 4.2 Illustration on generating the probability of occurrence of earthquake  

for each combination of disaster areas 1 and 2 
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There are two types of vehicles used for transporting items: helicopter (𝑣1) and 

truck (𝑣2). In this model, 5 helicopters and 10 trucks are available in each distribution 

center. Maximum weight capacity for each helicopter is 4,100 kg, while for truck is 

14,000 kg. Maximum response time is expected to be 12 hours. There are 9 critical 

items: A. Medicine (box), B. Instant food (box), C. Rice (per 50 Kg sack), D. Drinking 

water (box), E. Blanket (unit), F. Clothes (packet), G. Tent (unit), H. Mat (unit) and I. 

Lantern lamp (unit). Amount of demand is assumed to be 1% of total population of each 

province in year 2010. 

This model is executed under four normal service periods (𝑡̅ = 4) and two delayed 

service periods (𝑠̅ = 6). Since we assume that 1 period is equal to 12 hours, hence the 

total of normal and delayed period is equal to 72 hours. The capacity of each 

distribution center is assumed to be 84,000 m³. Unit cost of operating a single 

distribution center is $6,100/5 years. Maximum pre-disaster and post-disaster budgets 

are $857,317,919.075 and $116,589,595.375, which are adapted from the budget 

allocation of Indonesian government for preparedness and emergency response 

programs in period 2010-2014 (Republic of Indonesia. Indonesian National Board for 

Disaster Management, 2010). The expected satisfied relief demand value (denoted by 

𝐸𝐿𝑖𝑘) is set to be 0.6% to 12%. The details of data estimation can be seen in Chapter 3, 

Table 3.3. 

 

4.5 Computational Results and Analysis 

Based on the mathematical model presented in Section 4.3, we code each formulation 

on GAMS 24.1.3 and run by CPLEX 12.5.1.0 solver on an intel® Core
TM

 i7-3770 Dual 

Processor with 24 GB RAM and 3.40 GHz CPU. The computation time of each test 

problem is less than 5 minutes. The results of stage I, which is the lower bound of 

proportion of unsatisfied relief demand (for item type A to I) are: 0.352, 0.000, 0.911, 

0.464, 0.000, 0.351, 0.542, 0.000 and 0.000, respectively. These results are used as 

inputs in stage II.  

Next, in the second stage formulation, we set the value of degree of importance of 

each item type (denoted by 𝑚𝑘) is to be 0.85. Thus, the result of total expected relief 

demand covered by distribution centers is 35,396.761. This result indicates no zero 
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proportion of satisfied relief demand occurs, even for tent (type G) which has high 

prices and large sizes. 

There are 4 disaster areas: 6, 7, 31 and 32 in which each proportion of demand 

satisfied is equal to 1. This means demands for all items in disaster areas 6, 7, 31 and 32 

are fully satisfied for each scenario. On the contrary, Table 4.3 presents three disaster 

areas, 13, 14 and 16, which are less covered by distribution centers for each scenario. 

Since we set the value of expected satisfied relief demand (denoted by 𝐸𝐿𝑖𝑘) for disaster 

areas 13, 14 and 16 to be equal to 0.01, which are smaller compared to other disaster 

areas, the results of the average proportions of satisfied relief demand in disaster areas 

13, 14 and 16 are also found to be minimum. This makes 𝐸𝐿𝑖𝑘 becomes one of the most 

restrictive constraints in this model. We determine 𝐸𝐿𝑖𝑘 based on the size of population 

in each disaster area. To ensure that the solution is feasible, we assume that the larger 

the population, the smaller the value of 𝐸𝐿𝑖𝑘. In this case study, disaster areas 13, 14 

and 16 are found to be the most populous areas.  

Due to its large number of population, although demand in disaster areas 13, 14 

and 16 are less covered by the distribution centers, the amount of items delivered within 

normal and delayed period to these areas are bigger compared to the amount of items 

delivered to other disaster areas as shown in Table 4.4 and 4.5. Meanwhile, disaster 

areas 17, 24, 25 and 33 with relatively small numbers of population received the 

minimum amount of items. The value of the average proportion of satisfied relief 

demand for these four disaster areas however, are much higher compared to disaster 

areas 13, 14 and 16. 

 

Table 4.3 Disaster area with minimum average proportion of satisfied relief demand 

Disaster 

area 

Item type 

(A) (B) (C) (D) (E) (F) (G) (H) (I) 

13 0.217 1.000 0.013 0.080 1.000 0.162 0.069 0.150 1.000 

14 0.415 1.000 0.013 0.080 1.000 0.272 0.069 0.150 1.000 

16 0.283 0.978 0.013 0.080 1.000 0.236 0.069 0.150 1.000 
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Table 4.4 Disaster area with maximum and minimum amount of each item delivered 

within normal service period (thousand unit) 

Disas-

ter area 

Item type 

(A) (B) (C) (D) (E) (F) (G) (H) (I) 

Maximum amount of item delivered within normal service period 

13 56.783 41.958 8.660 9.827 280.254 35.238 4.885 4.809 7.416 

14 88.483 46.258 6.199 7.226 160.708 46.312 3.017 5.070 7.876 

16 61.361 38.106 7.307 8.409 162.655 62.516 4.082 4.427 9.238 

Minimum amount of item delivered within normal service period 

17 1.467 0.293 6.496 0.489 5.759 1.467 0.912 0.142 1.019 

24 2.733 1.043 6.540 1.738 0.516 1.964 0.147 0.467 0.112 

33 0.912 0.851 6.674 0.721 4.068 4.735 0.831 0.301 0.339 

 

Table 4.5 Disaster area with maximum and minimum amount of each item delivered 

within delayed service period (thousand unit) 

Disas-

ter area 

Item type 

(A) (B) (C) (D) (E) (F) (G) (H) (I) 

Maximum amount of item delivered within delayed service period 

13 36.564 44.149 0.609 1.711 150.282 34.408 0.046 5.954 28.461 

14 45.899 18.506 0.772 1.452 163.118 41.620 0.692 3.025 19.109 

16 44.805 35.210 0.761 1.634 212.112 25.888 0.210 4.942 21.992 

Minimum amount of item delivered within delayed service period 

24 4.647 0.433 4.674 0.721 6.864 5.417 0.360 0.762 0.502 

25 6.534 0.815 4.195 1.366 7.617 6.419 0.622 1.503 0.897 

33 6.691 0.669 5.644 1.813 3.535 2.868 0.377 0.965 0.294 

 

Another constraint that has been proven to be very restrictive is the maximum 

number of vehicles available in each distribution center (denoted by 𝑛̅𝑠𝑗𝑣), particularly 

𝑛̅𝑠𝑗1  (maximum number of helicopter available). As if we reduce the number of 

helicopters available in distribution centers, the proportions of satisfied relief demand in 

disaster areas for each scenario will be decreased. In some cases, reducing the number 

of helicopters available will lead to an infeasible solution. In order to improve the 

proportion of satisfied relief demand, especially in disaster areas with large populations, 
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it is better to add the number of helicopters available in some of distribution centers that 

located near to these densely populated areas. 

 

4.6 Conclusion 

This study proposes a stock pre-positioning model of disaster relief supplies that 

integrates the decisions of the maximum proportion of relief demand covered in 

distribution centers, the maximum amount of relief supplies delivered to a single 

disaster area and the number of optimum vehicle available in distribution centers. This 

model also considers multi-items, multi-vehicles, and multi-periods. In contrast to the 

previous models presented in Chapters 2 and 3, in this new model, the earthquake can 

occur at the same time in multiple disaster areas. 

First, all potential disruptions scenarios of distribution center(s) that located in one 

or more disaster areas are generated. Afterward, the probability of occurrence of 

earthquake for each scenario is calculated. The next step, mathematical model, is 

formulated as a mixed-integer programming model. Stage I of the mathematical model 

formulation is developed to minimize the lower bound of the proportion of unsatisfied 

relief demand. Stage II of the mathematical model formulation is developed to 

maximize the proportion of relief demand satisfied by each distribution center for all 

potential disruption scenarios. Similar to the previous models that have been discussed 

in Chapters 3 and 4, stage II is executed by inputting the optimum results of stage I.  

By using Indonesia as a case study, this new model generates 118 potential 

disruption scenarios. The results show that the proportions of satisfied relief demand in 

some disaster areas can be fully satisfied for each scenario, while in other areas these 

proportions are much smaller, especially in the areas with large number of populations. 

According to these results, the maximum number of vehicles available in each 

distribution center is proven to be one of the most restrictive constraints. Hence, to 

improve the proportions of satisfied relief demand, the government needs to consider 

adding the number of helicopter in some of distribution centers that located near to the 

densely populated areas. It is not recommended however, to add the number of 

helicopters in a distribution center that located inside the densely populated areas since 

the distribution center itself may be collapsed as an earthquake hit.  
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Chapter 5 

Distribution Model of Disaster Relief Supplies by 

Considering Route Availability 

 

5.1 Introduction 

In this chapter, we study a distribution model of emergency relief supplies that 

integrates the transportation plans and demand satisfaction decisions by considering 

route availability at a specific period of time. This chapter is organized as follows: First, 

we define the literatures related to this study and explain the objective of our study. 

Afterward, we describe the problem and concept of this study. Then, we build the 

algorithm and formulate the mathematical model. Finally, we perform the sensitivity 

analysis based on probability of path availability and budget availability.  

 

5.2 Literature and Objective 

Transportation or distribution planning of emergency relief supplies has constantly been 

a great challenge for years. Various uncertainty factors such as road conditions 

following a disaster and the amount of emergency supplies required to be sent to the 

affected area are always difficult to predict. The previous work of Opit et al. (2013) who 

develops a stock pre-positioning model to obtain the maximum expected relief demand 

covered by existing distribution centers (by preventing the result of zero proportion of 

relief demand satisfied) under budget constraints, has also motivated us to expand our 

research and develop a new model that focuses on distribution planning for emergency 

relief supplies.  

In this new model, we consider transportation and vehicle purchase budgets as 

constraints. Our intention is that this model can be applied not only to developed 

countries, but also to developing countries. Therefore, we propose a distribution model 

that considers a single distribution center, multiple disaster areas, a homogenous fleet of 

vehicles, multi-items and multi-periods. The objective of this study is to simultaneously 
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determine the maximum amount of relief supplies that can be sent to disaster areas and 

the optimum number of vehicles required for the distribution center by considering 

route availability. 

In recent years, few papers have focused their studies on the transportation and 

distribution of disaster relief supplies. Some of these papers are reviewed in a study 

conducted by Manopiniwes and Irohara (2014). Lin et al. (2011) propose a multi-

objective distribution model of prioritized items for disaster relief operations. They 

create a real-world earthquake scenario using a GA-based approach and decomposition 

and assignment heuristics.  

Another research conducted by Berkoune et al. (2012) define and formulate a 

practical transportation problem often encountered by crisis managers in emergency 

situations, while Özdamar and Demir (2012) describe a hierarchical cluster and route 

procedure (HOGCR) for coordinating vehicle routing in large-scale post-disaster 

distribution and evacuation activities. Taniguchi and Thompson (2013) propose a multi-

objective vehicle routing and scheduling problem. The model is applied to the case of 

Ishinomaki City following the Tohoku disaster in 2011. 

Other papers, such as the one written by Mete and Zabinsky (2010), develop a 

two-stage stochastic programming approach for disaster preparedness, which consists of 

warehouse selection and inventory decisions, and transportation plans and demand 

satisfaction decisions. Abounacer et al. (2014) propose a multi-objective emergency 

location-transportation problem for disaster response. A plan for strengthening 

structures of vulnerable areas, retrofitting transportation link to ease access to the 

affected areas, and locating and equipping emergency response centers has been 

presented by Edrissi et al. (2013). Nakanishi et al. (2013) propose a methodology to 

analyze transportation demand in a post-disaster regional community. Huang et al. 

(2013) focus on the assessment routing problem, which routes teams to different 

communities to assess damage and relief needs following a disaster. Rawls and 

Turnquist (2011) discuss pre-positioning and delivery planning in the event of a natural 

disaster. Their model includes requirements for reliability that ensures all demands to be 

satisfied in scenarios comprising at least 100α% of all outcomes.      
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Although the above papers are important for our research, as they provide several 

different concepts on how to develop a distribution model in order to support 

emergency response, the above papers do not consider route or link probability in their 

transportation plans. Route probability, which relates to road conditions, represents one 

of the uncertainty factors that occur after a disaster strikes. Therefore, it is very 

important to consider route probability into the model.  

As have been discussed in Chapter 1, section 1.5.2, Hamedi et al. (2012) address 

humanitarian response planning for a fleet of vehicles with reliability considerations. 

The authors focus on minimizing total time in a network with and without considering 

the probability of route failure. We find that the method they developed is interesting. 

But rather than just focus on route probability, in this study we also focus on route 

availability for all possible scenarios. Ukkusuri and Yushimito (2008) develop an 

approach to disaster pre-positioning problems that account for the routing of vehicles 

and possible disruptions in the transportation network. While the authors focus on 

finding the best location to pre-position inventories, our research which considers a 

single existing distribution center, focuses on maximizing the amount of each item to be 

delivered to the affected areas using a certain number of vehicles in a specific period of 

time. In addition, not only considering a single routing problem period as discussed in 

the pre-positioning model of Ukkusuri and Yushimito (2008), we propose a multi-

period distribution model. The situation of route recovery can be considered in this 

multi-period distribution model. Hence, our model is more realistic to be applied to the 

real system.    

Since we are interested in routing problems and determining the optimum number 

of vehicles required for the distribution center, several papers related to the topic are 

also studied. Choi et al. (2003) present a genetic algorithm to solve the asymmetric 

traveling salesman problem. Kim (2012) builds a dual stochastic programming model 

with chance constraints that concern the number for an optimal dispatch policy. Zhang 

and Li (2012) analyze multi-periodic vehicle fleet size and routing problems. Repoussis 

and Tarantilis (2010) design an adaptive memory programming solution approach for 

the fleet size and mixed vehicle routing problem with time windows. In this study, 

rather than just focus on routing problem and determining the optimum number of 
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vehicles, we also focus on determining the maximum amount of supplies to be sent to 

each disaster area in a specific period of time. Therefore, our proposed model integrates 

the transportation plans and demand satisfaction decisions by considering route 

availability. 

 

5.3 Problem Description 

In this study, we consider a single distribution center as the starting point for each 

vehicle to deliver supplies (items) to a specific disaster area. However, to deliver items 

to their destination, each vehicle should travel via a certain route. In terms of disaster 

relief transportation, after a disaster strikes, this route may or may not be available at 

some point in time.  

To understand our proposed model better, we provide a case study as shown in Fig. 

5.1. Figure 5.1 illustrates all areas affected by a disaster. Let N = {1,2,…, 𝑛̅} be the set 

of paths. As given in Fig. 5.1, we assume  𝑛̅ = 6. Based on Fig.  5.1, we also assume that 

the probability of each path available at period 1 ( 𝑃𝑛
1) = 0.5,  n ∈ N , while the 

probability of each path available at period 2 (𝑃𝑛
2) = 0.7, n ∈ N. According to Hamedi 

et al. (2012), for real-world scenarios, one can determine the probability of path 

availability using historical data and topographical GIS. 

We use binary code (0,1) to represent each path availability at one point in time, 

where 0 means the path is unavailable and 1 means the path is available. It is important 

to note that, in this model, we use a homogenous fleet of ground vehicles such as trucks 

to deliver items to disaster areas. Hence, for example, if vehicle v is assigned to deliver 

items to disaster area D, then vehicle v will have two options: travel via path 3, or travel 

via path 2 and path 5. Let’s say that the decision-maker has assigned vehicle v to travel 

via path 3, yet in the field, path 3 is actually unavailable, while paths 2 and 5 are both 

available during period 1. This means, if vehicle v eventually travels via path 3 during 

period 1, it would not be able to reach its destination. 

The above example simply describes one possibility that could happen in the 

system. In a real system with various uncertainties of events, it is recommended to 

observe not only one possibility, but all of the possibilities that might occur in the 

system. Therefore, we need to generate all possible scenarios based on route availability 
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for each period of time. Table 5.1 shows detailed information for each route and its 

destination as illustrated in Fig. 5.1. 

As shown in Fig. 5.1 and Table 5.1, we have six paths, seven routes, four disaster 

areas, and one distribution center. For the sake of simplicity, we assume that the 

distribution of emergency relief supplies is supposed to be completed in two periods (1 

period = 24 hr). This also means that each vehicle is assumed to be able to complete its 

round-trip travel in one period of time (including loading and unloading time). Given 

the number of paths (𝑛̅ = 6), the possible scenario for period 1 is formulated as the 

combination of paths available. Thus, the number of scenarios = {2n̅ = 64}. 
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(0.5, 0.7) = (Probability of path available during period 1,
                   probability of path available during period 2)

 

Figure 5.1 Illustration of disaster areas affected by a disaster 
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Table 5.1 Paths and routes used to reach each destination 

Path 
Route 

1 2 3 4 5 6 7 

1 *   *    

2  *    * * 

3   *  *   

4    *    

5      * * 

6     *  * 

Destination B C D E E D E 

 

We assume that every available path during period 1 remains available during 

period 2. This specific condition means the disaster occurs prior to the first delivery. 

There is no secondary disaster that will follow. For example, in the event of an 

earthquake, there are no major aftershocks occurring after the first delivery. Given k 

combinations from set l of n elements, the possible scenario during period 2 = 

 ∑ ∑ (n̅
k
) × (k

l
)  =k

l=0
n̅
k=0   ∑ (n̅

k
)n̅

k=0 2k =  3n̅  =  36 = 729.  

To understand the concept better, Let S1 = {1,2,3,…,s̅1} be the set of scenarios 

during period 1, and S = {1,2,3,…, s̅ } be the set of scenarios during period 2. 

Additionally, let 𝑓(𝑠) be the scenario of routes available during period 1 linked to 

scenario s, 𝑠 ∈ 𝑆. Table 5.2 explains this concept of generating the number of possible 

scenarios for each period with the given number of paths (𝑛̅ = 6), as shown in Fig. 5.1. 

Based on the above assumption, paths available during period 1 would remain available 

during period 2. Therefore,  S1 = {1,2,3,…,64}, while S = {1,2,3,…,729}.  

For example, scenario 2 during period 1 would be the combination of path 

availability = (0,0,0,0,0,1), while scenario 66 during period 2 would be the combination 

of path availability = {(0,0,0,0,0,1), (0,0,0,0,1,1)}. Additionally, 𝑓(𝑠) = 1  for each 

scenario S = {1,2,3,…,64} during period 2 would be the combination of path 

availability of scenario 1 during period 1 = (0,0,0,0,0,0) that linked to the combination 

of path availability of each scenario 1 to 64 during period 2. 
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Table 5.2 Possible scenarios with a given number of paths (𝑛̅ = 6) 

 S1 

(scenarios during 

period 1) 

Path 

combination 

availability during 

period 1 

Path 

combination 

availability during 

period 2 

S 

(scenarios during 

period 2) 

1 0,0,0,0,0,0 

0,0,0,0,0,0 1 

0,0,0,0,0,1 2 

0,0,0,0,1,0 3 

0,0,0,0,1,1 4 

… ... 

1,1,1,1,1,1 64 

    

2 0,0,0,0,0,1 

0,0,0,0,0,1 65 

0,0,0,0,1,1 66 

… … 

1,1,1,1,1,1 96 

    

… … … … 

64 1,1,1,1,1,1 1,1,1,1,1,1 729 

 

The probability of route availability for each scenario s during period 1 is denoted 

by 𝑃𝑟𝑜𝑏𝑠
1, 𝑠 ∈ 𝑆1, while the probability of route availability during period 2 based on 

the previous scenario in period 1 is denoted by 𝑃𝑟𝑜𝑏𝑠
2, 𝑠 ∈ 𝑆.  The calculation of 

probability of routes being available for each scenario s (denoted by 𝑃𝑟𝑜𝑏𝑠 )  is as 

follows:  𝑃𝑟𝑜𝑏𝑠 =  𝑃𝑟𝑜𝑏𝑓(𝑠)
1 × 𝑃𝑟𝑜𝑏𝑠

2, 𝑓𝑜𝑟 𝑠 ∈ 𝑆. Table 5.3 describes an example to 

calculate the probability of route availability based on the probability of path 

availability given in Fig. 5.1. 

Since the available paths during period 1 remain available during period 2, it is not 

necessary to include the probability of path 5 in the calculation of the probability of 

route availability during period 2 for the above scenario. Meanwhile, paths 1, 2, 3 and 4 

are not available during period 1, and again during period 2, thus, it is necessary to 

consider the probability of paths 1, 2, 3 and 4 in the above calculation.     

Now that we have the concepts to generate all possible scenarios and the 

probability of route availability for each scenario, the next step is to determine the 

maximum amount of items to be delivered to each disaster area.  

 



Chapter 5                                                                                                                                 - 73 - 
 

 
 

Table 5.3 Calculation of the probability of route availability 

Path combination 

availability during period 1  

𝑓(𝑠) = 2 

Path combination 

availability during period 2 
s = 66  

(0,0,0,0,0,1) (0,0,0,0,1,1) 

 

𝑃𝑟𝑜𝑏𝑓(𝑠)
1 =   

(1 −  𝑃1
1)  ×  (1 − 𝑃2

1)

× (1 − 𝑃3
1)

×  (1 − 𝑃4
1)  

×  (1 − 𝑃5
1) ×  (𝑃6

1) 

= 0.5 × 0.5 × 0.5
× 0.5 × 0.5 × 0.5 

= 0.015625 
 

 

𝑃𝑟𝑜𝑏𝑠
2 =  

(1 −  𝑃1
2) × (1 − 𝑃2

2)
× (1 − 𝑃3

2)

× (1 − 𝑃4
2) × (𝑃5

2) 

= 0.3 × 0.3 × 0.3
× 0.3 × 0.7 

= 0.00567 

𝑃𝑟𝑜𝑏66 =  𝑃𝑟𝑜𝑏𝑓(66)
1 × 𝑃𝑟𝑜𝑏66

2 = 0.00008859 

 

 

5.4 Problem Modeling  

5.4.1 Generating All Possible Scenarios Based on Path Availability during a 

Period of Time t 

 

We set the single distribution center as the starting node. For each trip, vehicle v must 

depart from the starting node and travel straight to destination node j before heading 

back to the starting node. In addition, each vehicle v can serve only one disaster area j 

along the route r. The algorithm to generate all possible scenarios and to determine the 

probability of route availability for each scenario are illustrated as follows: 

 

1: Generate all possible path combinations during period 1. 

2: Index each combination as a separate scenario respectively. 

3: Initialize the starting node for each scenario. Assign a path between two nodes 

(check the predecessor requirements based on the illustration shown in Fig. 

5.1). If the binary value of the path between two nodes is equal to 0, then set 

the path as unavailable (damaged by a disaster). Otherwise, the path is 

available (equal to 1).  
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4: Generate all possible routes between start and end node for each scenario. If 

there is at least one unavailable path along route r, then set route r = 0 

(unavailable), otherwise 1 (available).   

5: Generate all possible path combinations during period 2 based on scenarios 

during period 1. Repeat steps 2 to 4. 

6: Calculate the probability of route availability for each scenario s (denoted by 

𝑃𝑟𝑜𝑏𝑠), where 𝑃𝑟𝑜𝑏𝑠 =  𝑃𝑟𝑜𝑏𝑓(𝑠)
1 × 𝑃𝑟𝑜𝑏𝑠

2, 𝑓𝑜𝑟 𝑠 ∈ 𝑆. 

 

As a result, we generate all possible scenarios during periods 1 and 2. We also get 

the results of route availability r during period t for scenario s (denoted as 𝑹𝒔𝒓𝒕, where 

𝑹𝒔𝒓𝒕 = 𝟏 if route r during period t in scenario s is available, 0 otherwise) and the 

probability of route availability for each scenario s (denoted as 𝑷𝒓𝒐𝒃𝒔). These two 

results, 𝑹𝒔𝒓𝒕 and 𝑷𝒓𝒐𝒃𝒔 will be used as two important inputs in the mathematical model 

presented in section 5.4.2.  

 

5.4.2 Determining the Maximum Amount of Items i to be Delivered to Disaster 

Area j 
 

Given 𝑅𝑠𝑟𝑡 and 𝑃𝑟𝑜𝑏𝑠  from the previous stage, in this section we develop a model for 

determining the expected value of the maximum amount of each item to be delivered to 

disaster areas. This proposed model is formulated as mixed-integer programming with 

the assumption that the capacity of the distribution center is unlimited, which means the 

amount of items stocked in the distribution center can always satisfy the demand. This 

model simultaneously generates the optimum number of vehicles required for each 

period of time. 

 

Let I = (1,2,3,…,i)̅ be the set of item types, T = (1,2,3,…,t̅) be the set of planning 

periods, and J = (1,2,3,…, j ̅) be the set of disaster nodes (disaster areas). Let R = 

(1,2,3,…,r̅) be the set of routes, and 𝑅(𝑗) be the destinations (disaster areas) 𝑗 of each 

route 𝑟 ∈ 𝑅.  

 



Chapter 5                                                                                                                                 - 75 - 
 

 
 

Parameters: 

𝑅𝑠𝑟1  route availability r during period 1 in scenario 𝑆1, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆1. 𝑅𝑠𝑟1 = 1 if 

route r during period 1 in scenario 𝑆1 is available, 0 otherwise, 

𝑅𝑠𝑟2  route availability r during period 2 in scenario s, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.  𝑅𝑠𝑟2 = 1  if 

route r during period 2 in scenario 𝑆 is available, 0 otherwise, 

𝑑𝑖𝑗  demand of item type i at disaster node 𝑗, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 

𝐶𝑖𝑟  transportation cost per unit of item i via route r, 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 

𝐶𝑝  purchasing cost of a single vehicle,  

𝑃𝑟𝑜𝑏𝑠   probability of route availability for each scenario s, 𝑠 ∈ 𝑆,  

𝑈 maximum load capacity of a vehicle, 

𝑊𝑖  unit weight of item i, 𝑖 ∈ 𝐼,   

𝛼𝑖   criticality weight of item type i, ∑ ∝𝑖= 1𝑖  and ∝𝑖≥ 0, 𝑖 ∈ 𝐼, 

𝑇𝐶   available budget for transportation cost, 

TP available budget for purchasing new vehicles, 

M large positive number, where maximum value of M =  
TP

CP
 , 

 

Decision variables: 

𝐴𝑠𝑖𝑟𝑡  amount of item i delivered via route r during period t in scenario s, 

𝑁𝑠𝑟𝑡  integer number of vehicles required at distribution center to travel via route r 

during period t in scenario s,      

 

Objective function: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  ∑ 𝑃𝑟𝑜𝑏𝑠𝑠∈𝑆 ∑ 𝛼𝑖 (∑ 𝐴𝑓(𝑠)1𝑖𝑟1 + 𝐴𝑠𝑖𝑟2𝑟𝑖∈𝐼 ),        (5.1) 

 

Constraints: 

𝑁𝑠𝑟1  ≤ 𝑀 𝑅𝑠𝑟1                             ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆1,        (5.2) 

𝑁𝑠𝑟2  ≤ 𝑀 𝑅𝑠𝑟2                             ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,               (5.3) 

𝐶𝑝 ∑ 𝑁𝑠𝑟1𝑟 ≤ 𝑇𝑃                                      ∀ 𝑠 ∈ 𝑆1,              (5.4) 

𝐶𝑝 ∑ 𝑁𝑠𝑟2𝑟  ≤ 𝑇𝑃                                     ∀ 𝑠 ∈ 𝑆,          (5.5) 

∑ ∑ 𝐶𝑖𝑟𝑟𝑗 (𝐴𝑓(𝑠)𝑖𝑟1 + 𝐴𝑠𝑖𝑟2) ≤ 𝑇𝐶         ∀ 𝑠 ∈ 𝑆,            (5.6) 
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∑ (𝐴𝑓(𝑠)𝑖𝑟1 + 𝐴𝑠𝑖𝑟2) ≤ 𝑟∈𝑅(𝑗) 𝑑𝑖𝑗    ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑠 ∈ 𝑆,      (5.7) 

∑ 𝑊𝑖 𝐴𝑠𝑖𝑟1𝑖

𝑈
 ≤  𝑁𝑠𝑟1                        ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆1,             (5.8) 

∑ 𝑊𝑖 𝐴𝑠𝑖𝑟2𝑖

𝑈
 ≤  𝑁𝑠𝑟2                     ∀ 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆,              (5.9) 

𝐴𝑠𝑖𝑟1  ≥ 0                            ∀𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆1,             (5.10) 

𝐴𝑠𝑖𝑟2  ≥ 0                            ∀𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆.              (5.11) 

 

Objective function (5.1) maximizes the expected value of the amount of relief supplies 

delivered to each disaster area. Constraint sets (5.2) and (5.3) ensure that the vehicles 

can only travel to certain disaster areas via available routes during a specific period of 

time. Constraint sets (5.4) and (5.5) guarantee that the expenditure for purchasing the 

required vehicles prior to the disaster is less than the available budget. Constraint set 

(5.6) assures that the transportation cost is less than the expected budget. Constraint set 

(5.7) means the amount of relief supplies distributed to each disaster area does not 

exceed the demand. Constraint sets (5.8) and (5.9) guarantee that the maximum load of 

each vehicle does not exceed its weight capacity. Constraint sets (5.10) and (5.11) 

describe the non-negativity constraints. 

 

5.5 Computational Experiments  

Based on the illustration shown in Fig. 5.1, we conduct computational experiments that 

focus on large-scale observation, and analyze the best option to obtain the optimum 

result. We code each step explained in section 5.4.1 on Python 2.7.6. The solving time 

is less than 5 min. The mathematical model presented in section 5.4.2 is coded on 

GAMS 24.1.3 and run by CPLEX 12.5.1.0 solver on an Intel® Core
TM

 i7-3770 Dual 

Processor with 24 GB RAM and 3.40 GHz CPU. The computation time of each test 

problem is less than 3 min.  

In this study however, we use assumptions to determine the values of the data 

used in the mathematical model presented in section 5.4.2. We assume that there are 

two types of relief items to be delivered immediately: type 1 is medicine (unit) and type 

2 is water (bottle). Demand for type 1 in disaster areas B, C, D and E is 50,000, 50,000, 

70,000 and 85,000, respectively, while demand for type 2 in disaster areas B, C, D and 
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E is 10,000, 10,000, 20,000 and 25,000, respectively. The transportation costs per unit 

of type 1 delivered via routes 1 to 7 are $5.00, $5.20, $5.20, $6.00, $7.00, $6.80 and 

$7.20, respectively, while transportation costs per unit of type 2 delivered via routes 1 to 

7 are $5.20, $5.50, $5.50, $6.20, $7.20, $7.00 and $7.50, respectively. Unit weights of 

Type 1 and Type 2 are 1 kg and 18 kg, respectively, while the maximum load capacity 

of each vehicle is 14,000 kg. Criticality weights for Type 1 and Type 2 are set at 0.55 

and 0.45, respectively. The price of a single vehicle is estimated to be $15,000.   

For real-world scenarios, the types of relief items needed to be stocked in 

distribution centers are varies. We can determine the type of relief items that should be 

prioritized by carefully examine the necessity of each item according to the past 

experiences. The number of demand can be determined based on the population of the 

area affected by a disaster. The transportation cost can be calculated by considering the 

cost of gas/fuel needed by each vehicle to delivered items to the affected area. The 

maximum load capacity and the price of each vehicle are determined based on the type 

of vehicle used. Criticality weight for each item can be set by classifying all items into 

primary and secondary items. Primary items are set to have bigger priorities compared 

to secondary items. The criticality weight of each item can be calculated by dividing the 

criticality score of each item by the total of criticality weight of all items. As described 

in the previous section 5.3, we assume that the probability of each path available at 

period 1 is equal to 0.5, while the probability of each path available at period 2 is equal 

to 0.7. In a real-world, we can determine these probabilities by using historical data and 

topographical GIS. 

Table 5.4 presents a sensitivity analysis of the computational experiments, while 

Table 5.5 shows the maximum value of the objective function for each computational 

experiment. We calculate the results shown in Table 5.4 by multiplying the proportion 

of relief demand satisfied (during periods 1 and 2) with the probability of route 

availability for each scenario. To demonstrate the importance of the probability of path 

availability denoted by 𝑷𝒏
𝟏  and 𝑷𝒏

𝟐 , we changed the probability of path availability from 

0.5 (period 1) and 0.5 (period 2) to 0.5 (period 1) and 0.7 (period 2). 
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Table 5.4 Sensitivity analysis of the average proportion of relief demand satisfied 

Exp. 

Prob. of                                    

path  

Availabi-

lity 

Expected budget 

(thousand dollar) 

Average proportion of relief demand satisfied 

Dis. Area B Dis. Area C Dis. Area D Dis. Area E 

t=1 t=2 Transp.                              
Vehicle 

purchase                               

Type  

1 

Type  

2 

Type  

1 

Type   

2 

Type  

1 

Type  

2 

Type  

1 

Type 

2 

1 0.5 0.5 1,000 2,500 0.746 0.225 0.752 0.303 0.806 0.262 0.367 0.036 

2 0.5 0.7 1,000 2,500 0.957 0.276 0.790 0.274 0.914 0.914 0.914 0.914 

3 0.5 0.5 2,000 2,500 0.746 0.149 0.752 0.150 0.889 0.889 0.852 0.849 

4 0.5 0.7 2,000 2,500 0.957 0.191 0.790 0.158 1.000 1.000 1.000 1.000 

5 0.5 0.5 2,500 1,000 0.746 0.692 0.752 0.714 0.891 0.839 0.854 0.845 

6 0.5 0.7 2,500 1,000 0.957 0.869 0.790 0.729 1.000 0.930 1.000 0.979 

7 0.5 0.5 2,500 2,000 0.746 0.746 0.752 0.752 0.889 0.889 0.852 0.852 

8 0.5 0.7 2,500 2,000 0.957 0.957 0.790 0.790 0.995 0.995 1.000 1.000 

 

Table 5.5 Maximum value of the objective functions 

Exp. 
Objective function 

value 

1 95,048.49 

2 110,600.05 

3 139,543.96 

4 161,715.80 

5 138,615.16 

6 160,277.12 

7 139,582.24 

8 161,746.71 

 

The expected budgets consist of transportation budget (denoted by TC) and 

vehicle purchase budget (denoted by TP). These two budgets restrict the amount of 

relief supplies delivered to disaster areas. To discover the most restricted budget, first, 

we set the transportation budget to be smaller than the purchase budget (refer to Table 

5.4, see experiments No. 1 and 2; and No. 3 and 4). Then we set the purchase budget to 
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be smaller than the transportation budget (see experiments No. 5 and 6; and No. 7 and 

8). 

If we compare the computational experiments based on the difference of the 

probability of path availability—for example, experiments No. 3 and 4 (refer to Table 

5.4)—the experiment No. 4, with the probabilities of 0.5 and 0.7, resulted in a higher 

objective function value (refer to Table 5.5) compared to experiment No. 3 with the 

probabilities of 0.5 and 0.5. This result generally follows by higher average proportions 

of relief demand satisfied. Since we set the criticality weight for Type 1 items (denoted 

by 𝜶𝒊) to be higher than Type 2 items, the results of the average proportion of relief 

demand satisfied for Type 1 items in each disaster area is greater than or equal to Type 

2 items. 

Regarding the budgets, investing more money for the transportation budget would 

improve the average proportion of relief demand satisfied. This also means that, in this 

illustration, the transportation budget could be considered one of the most restricted 

constraints. However, the two budgets are considered as important constraints and 

influence each other. Additionally, it should be noted that in some scenarios, although 

many routes are available, only a few routes would be traversed by the vehicles. This 

condition is due to the budget limitation. The bigger the budgets, the more vehicles will 

available at the distribution center, and the more vehicles will deliver items to disaster 

areas. 

As for the experiments No. 7 and 8, by applying as much as $2.5 million for 

transportation budget and $2 million for vehicle purchase budget, we could satisfy a 

large proportion of demand for each scenario. In this case, by increasing the 

transportation budget to more than $2.5 million, the results as can be seen in Tables 5.4 

and 5.5 will reach a steady-state condition. The same case applies by increasing the 

vehicle purchase budget to more than $2.2 million. At this state, the model has reached 

its optimum solution. Meanwhile, the maximum number of vehicles required at the 

distribution center for each experiment varied between 66 to 133 units. These numbers 

are massive and require a large parking area. An option available to avoid this situation 

is to add more time. This option can be considered in the future since this proposed 

model uses a single distribution center. 
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5.6 Conclusion 

We propose a distribution model for emergency response that simultaneously 

determines the maximum amount of relief supplies delivered to disaster areas and the 

optimum number of vehicles required for distribution center by considering route 

availability. This model considers a single distribution center, multiple disaster areas, 

homogenous fleet of vehicles, multi-items and multi-periods. To solve the problem, first 

we build an algorithm to generate all possible path combinations using binary code. 

This algorithm generates the number of all possible scenarios and the available routes 

for each scenario at each planning period.  This algorithm also calculates the probability 

of route available for each scenario. Route availability and probability of route available 

for each scenario would become the two important inputs for the next stage, 

mathematical model formulation.  

Next, the mathematical model is formulated as a mixed-integer programming 

model. The objective of this mathematical model is to maximize the amount of relief 

supplies sent to disaster areas for each scenario. The optimum numbers of vehicles 

required in distribution centers at each planning period are determined simultaneously. 

This proposed model generates an extensive number of possible scenarios based on path 

combinations. Route availability, probability of route availability for each scenario, and 

budget availability are considered as important parameters in the mathematical model.  

Therefore, sensitivity analysis is performed by changing the probability of path 

availability and the expected budgets (transportation and vehicle purchase budgets). By 

increasing the value of probability of path availability, the result of the average 

proportion of relief demand satisfied for each item can be improved. The improvement 

of the result of the average proportion of relief demand satisfied can also be achieved by 

increasing the transportation budget more than the vehicle purchase budget. 

This proposed model can be used for various events in response to natural 

disasters such as earthquakes. Moreover, this model is developed to support the 

government and/or decision-maker to prepare an alternative transportation or 

distribution plan prior to the disaster. Based on the illustration given in this study, we 

solve the algorithm presented in section 5.4.1 with a computation time of less than 5 

min. This computation time would be much longer if the algorithm is applied to a 
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larger-scale network. In this case, we need to upgrade the algorithm or consider a new 

approach to obtain the near-optimal solution.   
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Chapter 6 

 

Conclusions 

 

 

This thesis offers the modeling of stock pre-positioning and distribution planning to 

support emergency relief response. Three new models of stock pre-positioning and one 

new model of distribution planning are performed and solved using the optimization 

methods. The results are summarized as follows: 

 

In chapter 2, we focus on how to prevent the result of zero proportion of a single item 

stored in distribution centers, which is the proportion of relief demand satisfied of 

disaster areas. A two-stage stock pre-positioning model is proposed by adding a new 

variable of proportion of unsatisfied relief demand. This model is built with 

assumptions that the earthquake will not occur at the same time in multiple disaster 

areas and the demand is deterministic. Fist, Stage I of model formulation is developed 

to improve the previous model built by Lee et.al. (2011). Stage I aims to prevent the 

zero proportions of some items covered by distribution centers. Next, by inputting the 

optimum results of the lower bound of proportion of unsatisfied relief demand for each 

item generated in stage I, stage II is formulated. Stage II determines the maximum 

amount of items stocked in distribution centers. This proposed model is applied to a real 

system with 33 disaster areas and 16 existing temporary distribution centers in 

Indonesia. The sensitivity analysis is performed to show the effect of different upper 

bound of the proportion of unsatisfied relief demand. The results show a significant 

improvement compared to the previous results of single-stage model presented by Lee 

et al. (2011). By using this model, the amount of each item type stocked in distribution 

centers, including item type G (tent) which has higher price and larger size per unit 

compared to another items, is no longer zero. This result is acceptable, based on the 

government policy that requires the availability of each critical item type in distribution 

centers. For a long-term planning in an effort to perform emergency response efficiently, 

the government is encouraged to make a better preparation and invest more budgets. 
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In chapter 3, the previous model presented in chapter 2 is extended. In this chapter, a 

stock pre-positioning model that integrates the decisions of the maximum proportion of 

relief demand covered in distribution centers and the maximum amount of relief 

supplies delivered to a single disaster area within a certain period of time is developed. 

This model considers multi-items, multi-vehicles and multi-periods, and is intended to 

support the government in planning for emergency preparedness. In this model we 

assume that the earthquake will not occur at the same time in multiple disaster areas. 

Firstly, the service area for each distribution center is assigned. This service area is 

determined by considering the given maximum response time limit for a vehicle 

available in a distribution center to deliver item to disaster area(s). Afterward, stage I of 

model formulation is developed by adding the new transportation constraints into the 

model. Stage I is built to generate the minimum value of the lower bound of proportion 

of unsatisfied relief demand by using the result of the assigned service area of each 

distribution center as an input. Next, in stage II, the outputs of stage I are used as inputs 

to determine the maximum amount of critical relief supplies to be stocked in 

distribution centers. This new model is applied to Indonesia with 34 disaster areas 

(instead of 33 disaster areas as presented in Chapter 2) and 16 existing temporary 

distribution centers. To improve the results, some of the data used in this model has 

been updated. Different scenarios by changing the number of helicopters available in a 

distribution center, or by adding more periods to the set are provided. The results show 

by adding one helicopter to a certain distribution center slightly improves some of the 

proportions of relief demand satisfied. The proportions of relief demand satisfied also 

improve by adding more periods to the set. This decision however, can slow down the 

delivery of emergency relief supplies to the affected areas. Therefore, for the better 

results, we suggest the central or local government to increase the number of vehicles 

(in this case, helicopter) available at each distribution center.  

 

In chapter 4, a stock pre-positioning model under facility disruptions that considers 

multi-items, multi-vehicles, and multi-periods is presented. This new model integrates 

the decisions of the maximum proportion of relief demand covered in distribution 

centers, the maximum amount of relief supplies delivered to a single disaster area and 

the number of optimum vehicle available in distribution centers. This model is an 
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extension from the previous model developed in Chapter 3. In this new model, we 

assume that the earthquake can occur at the same time in multiple disaster areas. All 

potential disruptions scenarios of distribution center(s) that located in one or more 

disaster areas and the probability of occurrence of earthquake for each scenario are 

considered in this model. Similar to the previous models discussed in Chapters 2 and 3, 

this new model is solved using two stages: stage I is to minimize the lower bound of the 

proportion of unsatisfied relief demand and stage II is to maximize the proportion of 

relief demand satisfied by each distribution center for all potential disruption scenarios. 

Stage II is determined by inputting the optimum results of stage I. The mathematical 

model is formulated as a mixed-integer programming model. This proposed model is 

also applied to Indonesia, an earthquake-prone country with 34 disaster areas and 16 

existing temporary distribution centers. This new model generates 118 potential 

disruption scenarios. The results show that the proportions of relief demand satisfied in 

some disaster areas can be fully satisfied for each scenario, while in other areas these 

proportions are much smaller, especially in the areas with large number of populations. 

According to these results, the maximum number of vehicles available in each 

distribution center is proven to be one of the most restrictive constraints. Hence, to 

improve the proportions of satisfied relief demand, the government needs to consider 

adding the number of helicopter in some of distribution centers that located near to the 

densely populated areas. It is not recommended to add the number of helicopters in a 

distribution center that located inside the densely populated areas since the distribution 

center itself may be collapsed as an earthquake hit. 

 

In chapter 5, we build a distribution model of emergency relief supplies that integrates 

the transportation plans and demand satisfaction decisions by considering route 

availability at a specific period of time. This model considers a single distribution center, 

multiple disaster areas, homogenous fleet of vehicles, multi-items and multi-periods. 

First, an algorithm to generate all possible path combinations using binary code that 

would lead to the determination of the number of all possible scenarios is developed. 

Afterward the algorithm would generate the available routes for each scenario at each 

planning period and then calculate the probability of route available for each scenario. 

These two outputs, route availability and probability of route available for each scenario 
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would become the two important inputs for the next stage, mathematical model 

formulation. Second, the mathematical model is formulated as a mixed-integer 

programming model whose objective is to maximize the amount of relief supplies sent 

to disaster areas for each scenario. The optimum numbers of vehicles required in 

distribution centers at each planning period are determined simultaneously. This 

proposed model generates an extensive number of possible scenarios based on path 

combinations. Route availability, probability of route availability for each scenario, and 

budget availability are considered as important parameters in the mathematical model. 

One could determine the best results for overall scenarios by performing the sensitivity 

analysis. Hence, probability of path availability and budget availability are used in 

performing the sensitivity analysis. By increasing the value of probability of path 

availability, the result of the average proportion of relief demand satisfied for each item 

can be improved. The improvement of the result can also be achieved by increasing the 

transportation budget more than the vehicle purchase budget. This proposed model can 

be used for various events in response to natural disasters such as earthquake, flood, 

typhoon, etc. Moreover, this model is developed to support the government and/or 

decision-maker to prepare an alternative transportation or distribution plan prior to the 

disaster. 

 

From the three studies of stock pre-positioning problems presented in chapters 2, 3 and 

4, the last model presented in chapter 4 is considered to be more realistic compared to 

the previous two models discussed in chapters 2 and 3. This last model integrates the 

decisions of the maximum proportion of relief demand covered in distribution centers, 

the maximum amount of relief supplies delivered to a single disaster area and the 

number of optimum vehicle available in distribution centers. The extended model 

presented in chapter 4 also considers facility disruption scenarios which makes this 

model is more preferable to be applied to the real system. The distribution model 

presents in chapter 5 shows the importance of route availability. In the real system with 

various uncertainties of events, including roads condition following a disaster, it is more 

realistic to build a model that considers these uncertainty factors.      
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By applying the stock pre-positioning model developed in chapter 4, the government 

can receive information of all possible scenarios that considers the possibility of 

distribution center(s) to be damaged by a disaster. The government can prepare and 

decide better the amount of items to be stocked in each distribution center, the amount 

of items to be deployed to disaster area(s) and even the number of vehicles that needs to 

be placed at each distribution center prior to a disaster. By applying the distribution 

planning model presented in chapter 5, the government is able to perform a large-scale 

observation to all possible scenarios of emergency deployment that concerns the road 

conditions following a disaster. The government can prepare the optimum amount of 

items to be transported to each demand point prior to a disaster.  

 

Models developed in this thesis are based on current condition, which means the models 

can be applied when certain conditions are met. For future research, a new-independent- 

model can be proposed to the government. For example, a joined model between stock 

pre-positioning, distribution planning and also facility location, with risk of facility 

disruptions and by considering route availability. To solve these three problems 

simultaneously, a new mathematical model and algorithm are needed to be constructed. 

This joined model can help the government to simultaneously determine the best 

locations to build new distribution centers, the maximum amount of items to be stocked 

in distribution centers, the optimum number of vehicles available at each distribution 

center and the optimum amount of items to be delivered to each demand point by 

considering certain uncertainty factors such as facility disruptions and road conditions 

following a disaster. This complex model can offer a better and more realistic result.        

 

In these four studies conducted in chapter 2 to chapter 5, for the sake of simplicity, we 

assume that the demand is deterministic. In a real system however, the number of 

demand for humanitarian supplies is always difficult and is a big challenge to be 

determined. Hence, the next step of this research can also focus on the forecast of 

demand. In the field, while performing an emergency response, many uncertainty 

factors may suddenly occur at the same time, for example the unavailability of vehicles 

(broken, no driver, or no fuel). In the future research, these uncertainty factors can be 

added as additional parameters into the model. To predict better result for each model, 
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sensitivity analysis can be provided by changing more parameters values such as 

budgets and capacity of distribution centers. Also, the results of models presented in 

chapter 2 to chapter 5, show that the value of the average proportion of relief demand 

satisfied is vary for each item. Although the parameter of criticality weight of each item 

type has been considered into the model, the values of the average proportion of relief 

demand satisfied for items with higher price and/or larger size are much smaller 

compared to items with lower price and/or smaller size. For future work, this issue can 

be addressed and solved by improving the models.        

 

In many cases, Disaster Operations Management (DOM) claims the involvement of 

many parties to support an extensive emergency response. These parties include the 

Non-Governmental Organizations (NGOs), the governments from neighbouring 

countries, and even the governments from all over the world. In this thesis however, we 

do not discuss this issue and focus on one government as a single actor. In future 

research, to connect all of these parties and to perform an organized emergency relief 

response, an interface of incoming relief supplies from NGOs and other governments is 

needed to be developed. This interface will also help the decision maker to control the 

amount of relief supplies available in distribution centers more accurately.      

 

Overall, this thesis states that stock pre-positioning and distribution planning problems 

are important to be carefully planned prior to a disaster in order to minimize the human 

suffering and loss of human life. Models related to stock pre-positioning and 

distribution planning can be used to support the governments and/or decision makers to 

prepare and respond quickly as the disaster strikes.  
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