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Abstract

In this study, a renormalization group (RNG) theory for turbulence with a passive
scalar is investigated to close the turbulent moment hierarchy in a turbulent shear flow
in order to formulate rational turbulence models.

RNG theory, as a tool for resolving physical matters, has been chiefly developed in the
analysis of phase transition phenomena, and applied to the study of isotropic turbulence
by means of the Navier-Stokes equation with a random external force in the inertial
range at a high Reynolds number limit. The RNG theory for isotropic turbulence was
primarily intended for calculation of scaling laws for asymptotic turbulent energy spectra
and reduction of the number of degrees of freedom of turbulence.

Then, the RNG theory has been modified to close the moment hierarchy for an in-
homogeneous turbulent shear flow. In particular, the RNG theory with the e-expansion
technique proposed by Yakhot and Orszag (1986) and later revised by Yakhot and Smith
(1992), and believed to be the application to an inhomogeneous turbulent flow based on
that for Wilson’s e-expansion theory, is well-known as representative. It yields a K-z
two-equation turbulence model for a high Reynolds number flow, the Smagorinsky model
for large eddy simulation, the eddy diffusivity for thermal field, and the equation for
the turbulent Prandtl number, each of which has been used in predicting some cases of
turbulent flows. It has been frequently emphasized that the strong point of this kind of
theory is its ability to derive turbulence models with their model constants in Fourler
space with the aid of the Kolmogorov —5/3 power law for the spectrum of the turbulent
kinetic energy.

However, some researchers pointed out that the RNG theory of Yakhot, Orszag and
Smith has some algebraic errors and theoretical problems. The latter have been very
controversial and now open to question.

On the other hand, the procedure to eliminate the fluctuating components in sequence
in wave number space is similar to the concept of large eddy simulations and convenient
to derive turbulence models at a high Reynolds number limit. Thus, the RNG by an

iterative averaging method is considered to be more schematic and applicable to con-
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structing turbulence models for a turbulent shear flow rather than by the e-expansion
technique. In the present study, by using the iterative averaging RNG method for inho-
mogeneous turbulence, an eddy-viscosity type turbulence model, which corresponds well
to the Boussinesq postulate, is obtained with the aid of the Kolmogorov —5/3 power
law spectrum for the turbulent energy. The model constant thus obtained becomes the
function of the Kolmogorov constant in the inertial range.

By the same manner, an eddy diffusivity for heat and the equation for the turbulent
‘ Prandt] number Pr; are derived. The equation shows that the turbulent Prandtl number
Pr, is the function of the molecular Prandtl number Pr and the turbulent Reynolds Re;
or Peclet number Pe;. The result is in fairly good agreement with the data of some exper-
iments and direct numerical simulation with the change of the molecular Prandtl number.
The obtained turbulent Prandtl number at a high Reynolds number limit converges on

Pr, = 0.79 with any molecular Prandt]l number.
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Chapter 1

INTRODUCTION

1.1 Background

Renormalization group (RNG) theory was primarily used to eliminate divergences
in field theory, and later became famous because of successful applications to critical
phenomena in the 1970s (Wilson & Kogut 1974; Ma & Mazenko 1975).

RNG theories for critical phenomena

The subject of critical phenomena deals with matters in the vicinity of a phase tran-
sition. Some examples are a liquid gas system near the critical point or a ferromagnet
at the Curie point. The application of RNG theory to magnetism is often interpreted as
giving a quantitative meaning to the concept of block spins. Kadanoff (1966) proposed
an RNG theory in order to explain the observed self-similarity of certain thermodynamic
relationships under scaling transformations.

The corresponding RNG theory that which starts with an interaction Hamiltonian
Hy, which is associated with two spins at a distance Lo (i.e., the lattice spacing). Then
one calculates an effective Hamiltonian H;, based on a region of size 2Lo, which means
averaging over the effects of scales Ly. Next, we calculate H,, based on a region of size
4Lo, with the effects of scales less than or equal to 2L, averaged out. Thereafter, the
general expression can be obtained by calculation of the Hamiltonian H,, associated with

a region of size 2" Ly, and the elimination of scales less than or equal to 2"~ L,.
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The above process can be expressed in terms of a renormalization operator R, which

is applied repeatedly:
R(Ho) = H,, R(H\)=H,, R(H;)=Hs,---. (1.1)
At each renormalization stage, the length scales of the system are changed as
Lo— 2Ly, 2Lo—4Lo---, (1.2)

and the spin variables are rescaled in an appropriate fashion such that the Hamiltonian
always seemingly looks the same in scaled coordinates. It is this rescaling which produces
renormalization and the transformations Eq. (1.1) define a simple group (i.e., renormal-

ization group). And iterating the transformation leads to the result:
Hn+1 e Hn, (13)

where H,41 = T(H,), then H, = Hy, is called a fixed point which corresponds to the
critical point of the system. Intuitively, this can be understood in terms of the fact that
the fluctuations of infinite wavelength (which occur at the critical point) will be invariant
under scaling transformations. Thus, the procedure of RNG is to move the system along a
trajectory, with the sequence of scaling operations playing the part of time. The resulting

fixed point is determined by the solution of the following equation:
R(Hy) = H., (1.4)

and is a property of the operator R rather than the initial condition Hy. This is asso-
ciated with the idea of universality of critical behavior. In the case of turbulence, the
corresponding property would be that the renormalized effective viscosity v which would
not depend on the molecular viscosity vp.

RNG theory by epsilon-expansion

Concerning the above discussion with respect to wave number, the Fourier transforma-
tion of the spin variables (or the spin field) is indispensable, and this expression enable us

to consider the space dimension d as a variable parameter. The calculation of H, from Hy
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is done by integrating over the band k£ > 27/L,, and the other modes are eliminated by
turns in terms of the bands /Lo < k < 27/Lo, 7/2Lo < k < 7/Lo, - -- in order to obtain
the corresponding Hamiltonians, Hs, Hs, - - -. Then, the problem at the fixed point can be
solved for d = 4 because the critical dimension of the Ising model of a ferromagnet is 4;
furthermore, the solutions for d = 4 — ¢, where ¢ is considered to be a small parameter,
are obtained by the expansion for e. Thus, € is set equal to unity and the solution for

d = 3 is obtained.

RNG theory for turbulence

The application of RNG theory to turbulence is classified into three: transition from
laminar to turbulent flow; calculation of scaling laws for asymptotic turbulent energy
spectra in a randomly stirred fluid; and reduction of the number of degree of freedom of
fully developed turbulent flow. The first of these topics, which involves a transition from
quasi-periodic behavior to chaos under the influence of external noise inputs, is beyond the
subject of this study. The second matter has been primarily investigated by Forster et al.
(1977), who studied the behavior of a randomly stirred fluid by the e-expansion technique.
The third has been mainly investigated by McComb (1990), the concept of which is that
averaging over the shortest period smooths out the part of the field which corresponds to
the highest frequency fluctuations. Then the mean effect of these fluctuations is calculated
from the averaged-equation and eliminated from the equation for the rest of the velocity
field. This procedure is repeated in terms of a narrow band in the whole wave number

range to derive an effective viscosity.

Following Forster et al. (1977), Yakhot & Orszag (1986) proposed the RNG theory for
turbulence which is applicable to an inhomogeneous turbulent flow and the RNG-based
turbulence models: K-z two-equation model; the Smagorinsky model for large eddy sim-
ulation; and the equation for the turbulent Prandtl number Pr,. These models have
been used for predicting some cases of turbulent flows (Yakhot et al. 1987; Piomelli
1989; Yakhot et al. 1992; Orszag et al. 1993). Rubinstein & Barton (1992) applied the
RNG theory by Yakhot & Orszag (1986) to modeling of the transport equation for the
Reynolds stress —ww;. Giles (1994a, 1994b) applied the RNG theory to the probability
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distribution of the velocity field, and proposed a K-Z two-equation model with the numer-
ical constants. However, the validity of the RNG by the e-expansion for turbulence has
been discussed (Kraichnan 1987; Avellaneda & Majda 1990; Avellaneda & Majda 1992;
Carati & Chriaa 1993; Lesieur 1993; Eyink 1994; Frisch 1995; Rubinstein 1996), and now

becomes a controversial problem in the study of turbulence.

1.2 Objectives

In view of the background described in the previous section, the present study has the

following main objectives:

1. To assess the RNG theory proposed by Yakhot et al. (Yakhot & Orszag 1986;
Yakhot & Smith 1992) in order to reveal all the problems in their derivation of

turbulence models;

2. To apply an iterative averaging RNG method to an inhomogeneous turbulent shear
flow with a passive scalar in order to formulate an eddy viscosity, an eddy diffusivity,
and the equation for the turbulent Prandtl number without the problems occurred

in the e-expansion technique.

1.3 Organization of Dissertation

The subject of this thesis consists of two main parts, one concerned with an assess-
ment of the Yakhot-Orszag-Smith RNG theory (Yakhot & Orszag 1986; Yakhot & Smith
1992), the other with refinement of the iterative averaging RNG based on McComb’s
method (McComb 1990; McComb & Watt 1990) so as to derive turbulence models in an
inhomogeneous shear flow with a passive scalar (Itazu & Nagano 1997a; Itazu & Nagano
1997b; Itazu & Nagano 1997c; Nagano & Itazu 1997b; Itazu & Nagano 1998). Chapter 2
is related to the former study, and Chapter 3 with the latter one.

Chapter 2 refers to the RNG theory proposed by Yakhot & Orszag (1986) and later
revised by Yakhot & Smith (1992). In this chapter, the estimation of their RNG theory
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is carried out to clear up all the problems in turbulence models they derived (Nagano &
Itazu 1995; Itazu & Nagano 1996; Nagano & Itazu 1997a). Firstly, the application of the
RNG to the Navier-Stokes equation with a stirring force is discussed with the validity of
the e-expansion and the obtained numerical constants in the inertial range. Then, the
modeling of the K-Z two-equation turbulence model by the RNG theory is reexamined.
The problems in deriving this model are pointed out in order.

Chapter 3 refers to the development of the iterative averaging RNG theory to analyze
an inhomogeneous turbulent shear flow with a passive scalar. This method is explained
in this chapter. An eddy viscosity type turbulence model is formulated by using the exact
Navier-Stokes equation with no stirring force apart from the problem appearing in the
e-expansion technique. In the same manner, an eddy diffusivity for heat and the equation
for the turbulent Prandtl number Pr; are formulated.

The conclusions are summarized in Chapter 4.

The detailed calculations through Chapters 2 and 3 are shown in Appendices A and



Chapter 2

ASSESSMENT OF THE
YAKHOT-ORSZAG-SMITH
THEORY

Here the author goes into details of the Yakhot & Orszag (hereinafter referred to as
YO) and Yakhot & Smith (YS) theory for turbulence according to their papers (Yakhot
& Orszag 1986; Yakhot & Smith 1992), clearly points out all the problems in turns, and

comments on them.

2.1 Basic Equations

In the inertial range, one can consider the following forced Navier-Stokes equation and

incompressible continuity equation:

Ou; ou; 1 0p 0%u; .
o Y, = T S8 T 5000, (21)
Gui
=0, (2.2)

where u;(x,7) is the fluctuating velocity component, p is the density, p is the pressure,

and v is the molecular kinematic viscosity. The equation of motion for the fluctuating
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velocity is generalized by the addition of an external random force. The random force f;
is assumed to be Gaussian, white noise in time, isotropic in space, and homogeneous in

time. The (d + 1)-dimensional Fourier transform of its two-point correlation is defined as

follows:
. 2D(k) (27)3 Py (k) §(k+ k) : A <k < Ag
(filk) £i(k)) = ’ Y, (23)
0 :  otherwise
where
.D(k) = Dok—y, (24)
k:k;

Py(k) = b — St 2:5)

Here, k = (k,w) is the (d + 1)-dimensional wave-frequency vector, Do is a dimensional
coefficient, and the parameter y is chosen to describe the Kolmogorov form of the energy
spectrum in three dimensions (y = d = 3). The projection operator P;j(k) makes the
random force statistically isotropic and divergence free. The initial cutoff wave number
in Bq. (2.3)is Ao = O [(/13)""], and A, = O(x/L).

We use the (d + 1)-dimensional Fourier transform:

+oo , _ dwdk
u; (&, 7) = /k<Ao /_oo u; (k,w)exp(tk -z — ZWT)W. (2.6)

The space-time Fourier transformed Navier-Stokes equation for Eq. (2.1) and continuity

equation for Eq. (2.2) are

() = GoA(E) = 52 Gal) Pena8) [ (@) un( = q>(—2i)"—— (2.7)
kiui(k) = 0, (2.8)
where
Go(k) = (—iw+ nok?)7Y, (2.9)
Piin(k) = kmPin(k) + kP (k), (2.10)
¢ = (.9 =(q1,% 9 Q), (2~11)
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In Eq. (2.7), Ao(= 1) is added as a bookkeeping parameter in front of the nonlinear term,
and Eq. (2.7) is defined on the domain 0 < £ < Ag, 0 < ¢ < Ag, —00 < w < +00, and

—0 < 1 < 400.

2.2 Scale Removal Procedure

As shown in Fig. 2.1, we divide the velocity ui(l::) into two components as follows:

i) = { wi(k) o A<k<Ar) 213
u? (k) @ A(r) <k <Ao
A(r) = Agexp(—r). (2.14)

The parameter r is chosen so that 0 < exp(—r) < 1. Then the corresponding decompo-
sition of the Navier-Stokes equation can be obtained by substituting Eq. (2.13) into Eq.
(2.7): '

wi(h) = Gs(h) fe(k) - S2 G5 (h) Piinl) [um(@)un(k = 0 (2:)i+1
= G5(k) f(k)
-3 G5 k) Pk J s @us (b =) + 202 (@)us (k— )
> > S dfj
+us (Q)u, (k- ‘Z)} Wg (2.15)
2B = G3H)£2(H) = 5 GRR) Paunlk) (el — D)
= Gy (k) 7 (k)
~58 G0 P2 (b [{us @b - )+ 20—
>N, >(1 A d‘?
tun(§)ur (k — Q)} (2m)d+1 (2.16)

Note that in the equation of motion for u<, the higher wave number modes u” are
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E(k)

A(r) Ay k

Figure 2.1: Fine scale removal

included in the nonlinear terms.

In order to eliminate u> from Eq. (2.15), all 4 terms should be removed by the
substitution of u? given by Eq. (2.16) into all the modes u> in the u< equation [Eq.
(2.15)]; thus,

ur(§) = Gg(@)fo(d) — Z =G Pr.sa /{u $ugs(q — 8) +2uZ(8)us(q - 3)

= G- S2G@FLae) {565 -9 + 2632 (s - 9)
+G5(S)f§(s)08(q—s)fg(q—s)}w

+0()2) (2.17)
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2063 (k= P2k — q) [{us (s (b= - 7)

203 (P (k= 4= ) 42 (e (k= 4= 1)}
= G3(k-9f7 (k-9
“\0(;>( §)P2s(k — q) /{u (k—g—7)
1263 (F) £ (FJus (k — 4 — 7) +G3 () £ (NG (k= 4 —#) f2 (k= 4= 7)} @)
+0(\d). (2.18)

This procedure generates an infinite expansion for «< in powers of Ao in which the modes

u”> do not formally appear:

(—iw + vok?)us (k) = fE(E) + O (M) + 0 (X) -+, (2.19)
where
00 = ~20pg, (k) [ug(@us(k - i) = (2.20)
o/ — 9 imn . m\q)Uy, q (2’”)[“_17 .

00 = 400(%) ps.b fIG2 01 63~ )

da N
X P25k — )P, (9)q Y s u5 (F)

(2r)t 7
sapn (52 P [JG300- o 3 (0)Pula
<B2(k— q) Ik = al” oz (k). (2.21)

The equation for u< is averaged over the fine-scale Agexp(—r) < ¢ < Ao [use Eq. (2.3)
for £>]. Integration of the higher wave-number components such as Gg(§) and Py,,.(q)

over the higher wave-frequency vector § = (g, Q) is carried out on the assumption of the
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distant-interaction limit ( |k| < |g| ). Keeping terms to O(\2), we obtain

NDy d*—y—4S;exp(er) —1 .
2 _ o0/0 Y d P 2,,<
0% = ~saGrr dasa) g U
ADo d® —d—eSzexp(er) =1, _ »
T 23(2n)¢ d(d+ 2) eA§ Erui (k),
and
(—iw + vok?) uf (k) = £2 (k) + O (ho) — Av(r)k?us(k)
or
{~iw+ (o + M) R Jus(B) = £2(R) + 0 (),
where

Av(r) = Agu Ni———~X =

1 Sa: d2 —d—c¢
Ad = 7 d 9
2 (2n)¢ d(d+2)
e = 4+y—d,
32 o A5 Do
" TR

(see Appendix A). Equation (2.24) can be rewritten as

ui(h) = GBI

@ 7.\ p< <(AN<(1 _ 4 dg
- 2 GT(k)szn(k)/q u (q)un (k q) (27‘—)d+1’

m
<Ap exp(—7)

where
G, (k) = {~iw+u(nF} .
v(r) = v+ Av(r)

— —1
_ ,,O{ngffp_“gl_}.

11

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
(2.27)

(2.28)

(2.29)

(2.30)

(2.31)
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In Eq. (2.26), S4is the area of a d-dimensional unit sphere (i.e., S3 = 47). Equation (2.25)
denotes the effect of the eliminated mode w”, and is added to the bare viscosity vo. Note
that the expansion parameter € in Eq. (2.27) is determined not only by the number of
dimensions d but also by the decay parameter y defined by Eq. (2.4). Thus, the expansion
parameter € in the YO theory is never determined by only a dimension d. It also depends
on the scaling parameter y that describes the random force spectrufn. And the rescaling |
process is not done. Actually, the YO theory is not Wilson-type (e-expansion) RNG at
all.
The effective viscosity is represented as

rdv(l)

-l (2.32)

z/(rv) =y +

and the effect of the nonlinear terms is treated as an increment to the viscosity by in-

creasing r.

2.3 Differential Relation for Effective Viscosity

Here we clarify the methodology of how to derive the differential relation for v(r).
To obtain the derivative of v(r) with respect to r, YO argued that it can be obtained by
taking the limit r — 0 in Eq. (2.31). However, this approach does not lead to the correct
renormalized equation for dv(r)/dr. Hence, from our point of view, the correct procedure
should be as follows.

From Eq. (2.25), the effect of eliminated modes is represented as

2
i = At |

vie

1 1
{Aoexp(—)} A—J 7 (2.33)

so that the renormalized viscosity becomes

v (A= AA)

v(A)+Av(A)

AgDo)\} 1 1
= v+ {(A —AAY A_} ! (2:34)
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where

A = Agexp(—r). (2.35)

Accordingly, the differential equation for v(A) is represented as

dv(A) — oim Y (A—AA)—v(A)
dA ar-0  (A—AA)-A

AgDo)\g{ 1 _%}
— lim vi(A)e L(A—AA)

AA—0 —-AA
= — lim AdDO)‘g (A - AA)'—e — A7
T aA=0u2(A)e AA
_ _AdDo)\g dA~¢
T v2(A)e dA
AgDo\2
= ——— 2.
2 (A) Aetl ( 36)
The integration of Eq. (2.36) gives
v k
/ Vdy = — [ AgDoM2A™1dA, (2.37)
vo Ao
which yields
D 22 3
v(k) = vo {1 + ?’-Ad—e-"—‘l (k- Age)} (2.38)
or .
—1)°?
v(r) = v {1 + 3AdD0/\gip(6—€—§Z——} . (2.39)
0

Note that the renormalized viscosity is obtained without any help of an e-expansion though
YS alluded to some relationship with the e-expansion.

In the limit case k < Ao, YO suggested that

y(k) =~ <3A“D°>3 =3 (2.40)
€
And, they made use of the following relation:
2Dy Sy

=1.59 (2.41)
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and related Dy to the turbulent energy dissipation rate €. [Lam (1992) pointed out that

the constant 1.59 is in error, and 1.57 is correct.] Then the effective viscosity has the

spectrum form:

3x159 —d—e)7 . _,
k) = Gl
v(k) { 9 2(d2+2d)} s

_ [3x15918-3-(0)% 4 @
Col2x(4) 2 324+2x3
= 04985k75. (2.42)

We emphasize here that the numerical constant is invalid because they evaluated it by
putting € = 0 and ¢ = 4 (it describes the Kolmogorov spectrum) in Eq. (2.42) in an
illogical manner. If we substitute € = 4 for Eq. (2.42), we obtain a value of 0.34 instead

of 0.49.

2.4 Renormalized Energy Spectrum

Using the following zeroth-order (Ao = 0) equation for u<(k) on the condition A, <
k < A03
{~iw + v(k)E? b ug (k) = £2(F), (2.43)
we obtain the energy spectrum:

SaDo

ER = monm

K. (2.44)

Substituting Eq. (2.40) and Eq. (2.41) into Eq. (2.44), the renormalized energy spectrum

is represented as

E(k) = Cy &% k=%, (2.45)

and the parameter ¢ = 4 (or y = 3) is necessary to describe the Kolmogorov —5/3

power-law spectrum; besides, the Kolmogorov constant is determined as

o = (12) [3dd-c B
N 2 d(d +2)
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Wi

- (1'259)5 {2 ><3(4) 8 ?;;(?:)3;(20))}—
— 1615 (2.46)

by using € = 0 and € = 4 at different points in the same equation. If we use a value of
¢ = 4 consistently, the Kolmogorov constant becomes Cx = 1.113, which is out of range
of the measurement Cx = 1.4 ~ 2.0 (Sreenivasan 1995).

After the elimination of the modes in the inertial range, one can set the wave number
k to A in Eq. (2.40). On the other hand, the averaged turbulent kinetic energy evaluated
from Eq. (2.45) is

5

- /OOOE(k)dk:/:CK g3

=
|

= SoxEialt, (247)

and from this relation, the effective viscosity given by Eq. (2.40) is reformulated as

11.59x3 d%—d—e 5
2 2 2+2d | K

3 2
(56%) )

1159x3 3 -3-(0) :
2 2x(4) ~ 32+2x3 ) K

2 —
(g x 1.615) c

v(Ae) =

2

-2
K

= 0.085 (2.48)

m

For the numerical constant 0.085, YO emphasized that this result is in good agreement
with the eddy viscosity of the standard K-z model. But this would seem to be only
sheer coincidence. There are the following inconsistencies in the derivation of Eq. (2.48):
the use of the renormalized spectrum [Eq. (2.45)], which is derived under the condition

Ae < k < Ao, for Eq. (2.47), and the computation of the numerical constants using
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€ = 0 and € = 4 in the same equation. [It can be argued that this numerical constant
might be obtained with a lowest order approximation Cx = Ao/€ to the inertial range
constant in the form: Cx = A(e)/e = Ao/e + Ay + Aze + - -, as shown by Woodruft
(1994); and € is never set to any value other than 4, either in evaluating exponents
or amplitudes, although the quantitative accuracy of this approximation is not proven
mathematically. Any improvement on Cx = Ap/e would require evaluation of a higher
order approximation, which would be their objection to setting Cx = A(4)/4 (Rubinstein
1996).] If one use a consistent value of ¢ = 4, the numerical constant in Eq. (2.48)

becomes 0.122. This value differs from the value of 0.09 used in the standard K- model.

2.5 Modeling of K-Equation

Next, we examine the derivation of their RNG K-equation. The procedure is the
same as for the Navier-Stokes equations: All the modes in the interval A, < k < Ap are
removed, and represented as an increment of a diffusion term.

The transport for the turbulent kinetic energy K 1s

oK 0K 0’°K 0 p
B -+ Ura-;i- =—c+ Vom - %'1‘ (Uz;) + u; fi, (2.49)

where K = 1/2u;u; and ¢ = vo(0u;/0z;)?. We use the definition of the Fourier transform:

d
K(z,1) /}C<AO/_ K(k,w)exp(ik - & — zwr)(2w)ilf_l, (2.50)
Kew) = KR) =5 [ w(@uilh-3) o (2.51)
’ =4 - 2 q<AOUl 278 9 (27T)d+l’ ’
and obtain the transport equation for K in Fourier space:
(—w + XO—kZ)K(lAc) = —1hok; / ui( K(k 1) —— dq___ e(k) (2.52)
AR ° a<ho 7 (27)d+1 ) )

Here x% (= vo) is the bare diffusivity. The pressure-strain correlation term and the force-
strain correlation term are assumed to be negligibly small. To eliminate the higher wave

number modes in the interval Agexp(—r) < k < Ao, we decompose K (k) into K <(k) and
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K>(k) in the same way as in Section 2.2, and substitute K (k) and u> determined from

each transport equation into the nonlinear term in the transport equation for K<(k).

The resultant renormalized equation for K< becomes
i + xx(r)k? K<12=—‘Ak,-/ ONE<(h— §)—__ _e<(k), (2.53
{ o+ xx(r) } (F) "o q<Aoexp(—r)u2 (DK 9 (2m)d+ =k )

where the renormalized diffusivity 1s

d—1 Sa Mg exp(er) 1}. (2.54)

xx(r) = Xi {1 3 2m)x% +n  exx

In what follows, we attempt to derive the differential relation for xx in the same way

as in Section 2.2, because YO made few comments on its derivation, only mentioning that
taking r — 0. However, by simply taking r — 0, we cannot get the correct equation. The
correct procedure should be as follows. From Eq. (2.54), according to the renormalization

theory, the renormalized diffusivity has the following relation:

xg (A=AA) = xx(A)+Axx (A)

= xx (A)
d—1 Sy Do)} { 1 _L}
T o () D (N v (W \(A=BAF &
(2.55)
Hence, the differential relation for xx is obtained as follows:
D) _ (A= AA) — ke (A)
dA AA—0 (A—AA)—A
d—1_58, Do) { 1 _ 1 }
: Cr)?v (M) {vA)+xx (M) e L(A-AA)" A
= lim
AA—-O —AA
_ i d-1 S, Do)Z (A—AAN) = A~
%074 Eoiv M @) +xx (W) AN

_d-1 S, DoX2 [_dA‘E]
d 2olv(A){v(A)+xx(M)}e| dA
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_ _d —1 Sd DO)\g (2 56)
d (2r)v (M) {v (A) + xx (A)} A+’ :
and replacing A with Agexp(—r) gives
dxk(r) _d=1 Ss Do A2
& T Td @R ) + o) SR (2.57)
or
dxx(r) _d=1 S: N(r)(r) (2.58)
o d @0 () + ()’ ’
where
3 \D
2.\ — 2070
A(r) = J3(r)Ag exp(er). (2.59)

Equation (2.58) is identical to that used in the YO theory. Again, there is no e-expansion
in mathematical treatment.

Next, YO define the parameter ax(r) as ag(r) = xx(r)/v(r), write its differential
equation as

dog(r) _ 1 dxk(r) xxk(r) dv(r)
dr v(r) dr vi(r) dr

Sd T2 d—1 1 1d2—d—6
- QWVAOj{ 7 Ttar() 2 ddta) &0

}, (2.60)

and solve this under the initial condition ax(0) = ao:

b—1
atl =
atd a+b 1/0

v(r)’

aK—i-b
a0+b

o —a

(2.61)

Qo — a

where they estimate a and b as follows:

1
1 te d(d+2) \?
¢ = 2{_1+<1+§d2—d——e> }

1 4x(4) 3x(3+2)\?
= 5{—L+O+ g X32~3—@J }

= 1.3929, (2.62)
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1 de d(d+2) \*
b = 2{1+(1+3——d2_d_6) }

= 1{1+(1+4X(4) x 3X(3+2))%}

2 3 32-3—-(0)
= 2.3929. (2.63)

From Eq. (2.61), ax approaches the constant aj = a = 1.3929 ~ 1.39 when vy < v(r).
But this value aj, = 1.39 is also computed by putting ¢ = 0 and € = 4 in the same
equation [see Eq. (2.62)].

In actual turbulent shear flow, the production term and the convection term would

appear from the nonlinear term. To account for this fact, YS add these terms to the

initial governing equation:

UJ aIEj U] 612j u,u] 8.’1,‘]' J 81]' ’

(2.64)

The averaged value for the turbulent kinetic energy and its dissipation rate are defined

as lim K(k) = K and lim e(k) = €, respectively. Hence the production term is
k—0 k—0

oU; oU;
i ; It —i——.__’.) 265
fc]_rf(l)u i afL']' Uitly axj ( O)
and the convection term is
— 0K — 0K
im 7,28 ~ 7,28 (2.66)

Although the following K-equation is obtained, it is not directly derived by the RNG
theory. It is apparent from the foregoing discussions that their RNG theory predicts only

the modified diffusion term and the numerical constants are invalid.

o8 _ oK  _ o (. 0K
5r +Ui5x_i = —C+PK+8—${{O{KV(AG)5;} (2.67)
P =~z oLt (2.68)
c'?xj
'I—(—Z
V(M) = 0.085 — (2.69)

5
c

af =1.39 (2.70)
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2.6 Modeling of z-Equation

The transport equation for € is obtained from Eq. (2.1).

O O o, 0w 0f o OuiOwOui o[ Ou 2
— 4+ u— = 2y — 2 — =25 | ———
87 ‘ 8:1:1- 03.'17_7‘ 8:1:]' Oaxj ij 8:131 0 63:,-6351
vo Ou; O%p %
—-2— 2.71
p Oz; 0z;0z; + ”°3xiazi ( )
Using the definition of the Fourier transform:
+oo dwdk
e(e,7) = /k<Ao/_oo e(k,w)exp(tk - & — in)@;jd—-i-_f’ (2.72)
and
— (] .. .
e(k,w) = e(k) = —VO/KAO%(’C — q)ui(§ui(k - q)m, (2.73)
the equation for ¢ in Fourier space is
(mieo +XRNe(R) = —idoks [ wid)elk— @)
€ ‘ q<Ag ‘ (27“)d+1
Y(k) - va(h), (2.74)

where x%(= o) is the bare diffusivity, the turbulence production term for dissipation (k)

1s
» . o v .. drdg
Yi(k) = —2ivg /q(AO/T(AO(JjTj(k —q —r)ii(@u(f)ui(k — § - T)(Qw)TJm (2.75)
and destruction of the dissipation is
V) =2 | | dlk = aPui(duh - ) (2.76)

Smith and Reynolds (1992) showed that the pressure-strain correlation term and the

force-strain correlation term are neglected as a result of a renormalized procedure.
However, we consider that Eq. (2.74) with Eq. (2.75) and Eq. (2.76) does not describe

the turbulent energy dissipation rate exactly because it is not defined in the dissipation

range which exists in much higher wave number region (k > Ao).
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After eliminating the modes in the interval A, < k < Ay, the renormalized e-equation
1s
. . . dg ) .
{ 2 < e . < (A< N1 y< _v<
(=i + xelA R () = —idoks | uf(@)e<(h =) e — V(R - i), 277
where the renormalized diffusivity is represented as

Xs(Ae) = a:V(Ae)y (278)

ar =1.39, (2.79)

and the diffusion term is modified as

o [ Oe o (., 0
'5;; (VOE? — Uj6) — a—x] {aéV(Ae)afL‘j } . (280)

In homogeneous flow, the following terms, which include the mean velocity, are added

to the production term of the dissipation in the YS analysis:

y au,' 0u1 8ui 9 aui aul Bui 8UZ 8’111 8ui

—_— 5 9y - -

®dz; Oz, Oz ° 0z, Oz, Oz; v Oz; 0z; Oz,
I T3

+ 2 Bui 87, aui 2 8ui 6u1 8U1
Vqg—m—m— - .
083:]- a.’lij (91131 VOBa:j 8:1:]- Ba:l
T4 TS

Smith and Reynolds (1992) showed that 73, which corresponds Y; (k) given by Eq. (2.75),

(2.81)

A

can be neglected as a result of the YO renormalization procedure. On the other hand, T

vanishes for homogeneity, and T is modeled as follows (Yakhot et al. 1992):

—  CP(l—q/n)E
T, ==& — 2.82
* 1+ 87 K’ (282)
LS (2.83)
g
. 1o 1(0U; dU;
S = (28,8), 5= 5 ( 5t axi>’ (2.84)

where C, = 0.085 [see Eq. (2.48)], no = 4.38, 3 = 0.012.
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E (k)< k?

E(k)

) k

Figure 2.2: Energy spectrum in lower wave-numbers range

In the limit £ — 0, T} is estimated in the lower wave-numbers range:

_ U, dgq
= Qpp—nou 2uNu{—d) ——
T5 Yo &rj A<Aoq ui(q)uj( q) (27r)d+1
_ < an 2, <(MN<(_4 dg
= (A5, /q o T () G (2.85)

In the YO and YS theory, it is further assumed that the spectrum tensor E;;(k) is pro-
portional to k? in the region k& < A, (see Fig. 2.2), the Reynolds stress is thus given
by

. . dk
uu; = A<Aeui(k)Uj(—k)W

Ak dk = ? A2, - (2.86)

I

k<Ae

and substituting its relation,

A= — U uy, (287)
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into Eq. (2.85), the following result is obtained:
— oU; dg
T, = 2 Ae——/ 20<(6)uS(—d) —H
5 Z/( ) axj q<Aeq u; (q)u]( q) (27T)d+1
oU;
= 2w (A) 5 [ Agid
v( )axj | Addg
6 oU;
= gl/ (Ae) Azuiuj—ax—j. (288)

Note that by eliminating € from Eq. (2.47) and Eq. (2.48) it follows that

K = 1007 (A,) A% (2.89)

Using Eq. (2.48) and Eq. (2.89), the above T is ultimately modeled in the YO and YS
theory as

13

(2.90)
Similarly, in the limits w — 0 and k& — 0, YS set the destruction term as T; =

lim Y;*(k), and integrate this over the lower range 0 < k < A., which yields
k—0

=2

- E
T, =1.68=. 291
=168 291)
It should be noted that Eq. (2.91) is obtained by the use of the following relations:
— Ae
T, =4v*(A) [ ¢*E_(g)dg, (2.92)
0
A
20 (A) / ¢*E_(q)dq, (2.93)
0

(2.94)

The existing theory of turbulence does not permit our estimating T and Z by using the
lower wave number spectrum [Eq. (2.94)].

On the other hand, in order to represent actual turbulent flows, YS add U;0z/dz; to

the nonlinear term in the initial governing equation with the stirring forces as follows:
' Ot 0 — Oe
Ui — Uy U,'———‘ 2.95
ox; 0z; + ozx; ( )
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Finally, the high Reynolds number form of the RNG-based g-equation is written as

= = =2 3(1 _ =2 =
% U ol 16l G0 mn/m)E 0 {a:u(Ae) 65}. (2.96)

ar Ve, K UK 1+6pP K o 9z
On the face of it, it seems to be in good agreement with the current standard K-z model
(see Nagano & Hishida 1987; Nagano & Tagawa 1990). But the numerical constants
a? =1.39 and C, = 0.085 are invalid, the destruction of ¢ is estimated in the lower wave
number range, and the turbulent energy dissipation rate itself is also underestimated. In
addition, the direct numerical simulation of turbulence (Kim et al. 1987; Mansour et al.
1988; Mansour et al. 1989) has revealed that it is the ¥;(k) term that dominates the

production of €. The term, however, vanishes in the Yakhot-Orszag-Smith theory.

2.7 Concluding Remarks

The RNG theory developed by Yakhot & Orszag (1986) and reformulated by Yakhot
& Smith (1992) has been confirmed. It became evident that their theory is only a scale
removal procedure rather than a renormalization group theory because any e-expansion
does not appear in their theory.

The forced Navier-Stokes equation is considered to be unsuitable for deriving the
turbulence model identified with the Reynolds-averaged model. The exact Navier-Stokes

equation with mean shear should be used as a governing equation.
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ITERATIVE AVERAGING RNG
THEORY

3.1 [Iterative Averaging Method for Velocity Field

3.1.1 Basic equations

The equation of motion for an incompressible fluid is

o ,OU _ _10P U
or ]8xj - P Bxi Voaxjascj’

(3.1)

and the continuity equation 1s
oU;

5 =0 (3.2)

Here U, is the instantaneous velocity component, P is the pressure, p is the density of
the fluid, and v is the molecular kinematic viscosity. The mean velocity U; and the
fluctuating velocity u; are represented in a Fourier series as follows (Giles 1994a; Giles

1994b):

Ui(z,7)= >_ Ui(k,7)exp(ik - x) (3.3)
k<A,
u(e, 1) = kz u;(k,7)exp(ik - ), (3.4)

25
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where the wave number A, is the order of that for the energy-containing eddies, the wave

vector k is given by

27
k = f {nl,nz,ng,}, (35)

and n;, n, and nj are integers, each of which is summed over the range from —oo to
+00; we begin by considering the turbulent fluid to occupy a cubic box of size L. In the
present formulation, it should be noted that the effect of fluctuating velocity u; defined

in the lowest wave number range k£ < A, is neglected so that:
Ae oo
/ E(k)dk < /A E(k)dk (3.6)
Y e

at high Reynolds number (see Fig. 3.1). Then, the turbulent kinetic energy K is repre-

sented using the Kolmogorov spectrum, E(k) = Cxg*/3k=5/3, as follows:

A.
3CK -2
~ 2K€§Ae3, (3.7)

where Ck is the Kolmogorov constant, Z is the dissipation rate of K, and A, < Ag (Ag
is a sufficiently large wave number which marks the dissipation range of turbulent kinetic
energy as defined later), so that A, is given by

_(3Ck)TE (30K
= () 5= (55

™)

3
2

=

Note that the wave number k.(= £/ &Y 2) represents the range of the energy-containing

eddies. Hence, the fluctuating velocity u; satisfies the following condition:
u; =0. (3.9)

Accordingly, we can consider that averaging according to Eqs. (3.3) and (3.4) is equivalent
to the Reynolds decomposition on the assumption that A, is a sufficiently small value, i.e.,

the turbulence Reynolds number Re,(= K’ /vo¥) is sufficiently large since (FI/ 2 /vo)/Ae =
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E(k)

~_
—~

A << Ao

Figure 3.1: Energy spectrum at large Reynolds number

(2/3Ck)*?Re;. As a result, the application of Eqs. (3.3) and (3.4) to Eq. (3.1) gives the

following two Navier-Stokes equations:

oU; - dU; 1 oP U, 0

B T Dj%; p Oz, * Voaxj(%j B 8_x;m’ (3.10)
and
Ou; oU;  — Ou; 19p 0%u; 5,
= - — U — WUs) . 11
o T, TUin T o hm T P aas,  Bs; (W T ) (3:11)

Then we begin by transforming Eq. (3.11) to Fourier space as follows:
+ VO]C ui(kaT) = __szn(k) Zum(an)un(k _an)
ar 2 .
—iPin(k ZU Tun(k —q,7), (3.12)

where
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and
kik;
Pi;(k) = 6;; — —k2—J (3.14)
The continuity equation for u; also becomes
kiu;(k,7) = 0. (3.15)

Here the compound projection operator P;,,,(k) results from the elimination of the pres-
sure by using the continuity condition, and a variable wave number £ is defined in the
interval A, < k < Ag.

The maximum wave number A, is defined approximately through the dissipation in-

tegral (McComb 1990):
F= / 20k E(k)dk ~ / " ovek? E(k)dk. (3.16)
0 Ae

Apparently Ag should be the same order of magnitude as the Kolmogorov dissipation wave
number kg = (/v3)V/*. If we assume the Kolmogorov spectrum E(k) = Cxg¥3k~5/3 Eq.
(3.16) yields

2 \i

The estimates given by Eqgs. (3.8) and (3.17) are most appropriate in the case where a
value of the Reynolds number is so high that the range of the energy-containing eddies and
the range of maximum dissipation are sufficiently wide apart, i.e., ke K kg or A, < A,o.
The technicalities of Fourier-transforming Eq. (3.11) to Eq. (3.12) are discussed in
Appendix B. In addition, multiplying each side of Eq. (3.12) by k; with Eq. (3.15) gives
an important property of P;(k):

kP (k) = 0, (3.18)

which is of great use in Section 3.1.2.
Similarly, we can represent the Reynolds stress ;% in the Fourier series as follows:
U U; = Z R,‘j(k, 7') exp(ik : (B), (319)
k<A,

where

R,i(k,7)= Zui(q, T)u;(k —q,7), (3.20)

q
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and its wave numbers are defined in the interval k < Ao, Ae < ¢ < Ag, Ae < |kE—¢q| < Ao.

In particular, it should be noted that the wave number £ is sufficiently small.

3.1.2 Elimination of small scales

In this section, we will develop the eddy-viscosity type turbulence model with the aid
of RNG by iterative averaging. First of all, we begin by dividing the velocity component
into two components in terms of the second cutoff wave number A;(Ae € A1 < Ao) as

shown in Fig. 3.2:

wlam)=y @7 A= 321
o u?(q,7) 3A1§Q<A07

where the interval A; < ¢ < Ag is assumed to be a narrow band near the initial cutoff

wave number Ag, so that A; may be written using the bandwidth parameter A as
Al=A(1=X), 0<AKI. (3.22)
According to Eq. (3.21), the r.h.s. of Eq. (3.20) is expanded as follows:
Xq:%‘(q,f)w(k*q, Zu (g, 7)u;(k—q,7)
+ Zu (g,7)us (k —q,7)
+ Zu (q,7)u; (k—q,7)

Here we assume that the probability distribution of w4~ in the band A; < ¢ < Ag is near-
Gaussian, and introduce the operation of partial averaging ( ). over fluctuations in
the band A; < g < Ao, where the subscript serves to distinguish it from the total (global)
average, defined by ( ). By applying this average to Eq. (3.23), the first term of the
r.h.s. of Eq. (3.23) becomes
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E(q)

A A q

Figure 3.2: Elimination of velocity components in the band A; < ¢ < Ag

> (uf (@, m)us(k - q.7)) = us(g,7)us(k —q,7) (3.24)

9 q

because this term has no components defined in the range A; < ¢ < Ag. Thus, it is
not influenced under partial averaging. For the second and the third terms, we have
the problem that the 4> mode in real turbulence seems to be not independent of the
u< mode because these modes are coupled each other through the nonlinear term in the
Navier-Stokes equation, which conflicts in part with the concept of partial averaging, i.
e., the straightforward partial average is equivalent to a conditional average in which u<
is held constant while u” is averaged (McComb 1990). Therefore, we take advantage of
McComb’s idea (McComb & Watt 1990) writing the higher wave number mode in terms

of another velocity field v~:

u?(q,7) =v7(q,7) + A7 (q,7), (3.25)
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where v is a field of the same type as u> except that it is not coupled to the «< modes.

The properties of v under total averaging, denoted by ( ), are the same as those of
u”; thus,
(v7(q,7)) = (u(q,7)) =0 (3.26)
and
(w7 (@707 (¢7)) = (w2 (a7 (4',7)) - (3.27)

The function A> in Eq. (3.25) represents the part coupled to the < modes. Thus, from
Egs. (3.26) and (3.27), its properties under total averaging become

(A7(g,7)) =0 (3.28)
and
<A?(q, T)AZ (¢, T)} =0. (3.29)

Accordingly, in view of the above points, the second and the third terms of the r.h.s. in

Eq. (3.23) are assumed to be

S (w2 (g sk —q,7)) = (07 (g.7) uf(k—q,7)+ 3 (A7 (g, 7). uf(k — q,7)

q q q

= > (A2 (g 7)) us(k—q,7)

q

~ O\")~0,m >1 (3.30)
and
S(us@ )k —q,7) = Su(a,7) (v} (k—q,7) +Xu(a,) (4] (k—q,7)),

= zuf(an) <Aj>(k - Q>T)>c
~ ON")~0,m > 1 (3.31)

on the condition that the interval Ay < ¢ < Ao, or the bandwidth parameter A, is
sufficiently small. Note that Eqgs. (3.30) and (3.31) amount to a so-called statistical

scale-separation assumption.
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Lastly, for the fourth term Z<uf (q,r)u;(k — q,T)> , we cannot replace it directly
[o]

g
with the following energy spectrum tensor for homogeneous isotropic turbulence:

(valk, sk, ) = () Q) Pas(k)biss (332)
E(k,7) = 47k*Q(k, 7) (3.33)
Spakr = <%> L/jl/Lexp {—i(k+ k') z}dr,dzodzs (3.34)

because the wave number k (or wave vector k) in Eq. (3.23) is small but not zero. If
the wave number k in Eq. (3.23) is set to 0, we obtain the result, which is the case
of homogeneous field but out of our interest. Therefore, we begin by constructing the
transport equation for u7(q,7) u7(k — ¢,7) obtained from multiplying the transport
equation for u7(q, ) equivalent to Eq. (3.12) by u7(k — ¢,7) and that for v} (k —q,7)
by u7(q,7), and adding these equations:

0
(5; + v0q” + volk — ql2) u?(q,7)u; (k—q,7)
=—iP;, (k—q ZU (r,7)un(k — g —7,7)u7 (g, 7)
P (@)Y Un(r,m)un(g —7r, 7)) (k—q,7)

—gpzfnn )Zum(r’T)un(q _-TJT)U’]?(k —‘q7T)

——P> (k—q)> un(r,7us(k—q—7r,7)u(g,7). (3.35)

9 ]mn
Then substitution of Eq. (3.35) into Z<uz>(q, T)u; (k — q,r)>c becomes (see Appendix

B): ’

> (u? (g, (k —g,7))

q

-1
= —zZZ( + vog? + |k — q|2)
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X {Pﬁnn(k - Q)Um(r,T) <un(k -—q—-7, T)”?(Q? T)>c
+ P (@)U (r,7) (ualg = 7,703 (k — g, 7))
+ 22 (@) (un(r (g = 7o) (= 7)),

P (k= ) (i, 7k — g — 7,72 (@ 7))

12

. 9 -
TS (o4 4wl -al)
q T

imn

X {P> (k — Q)Um(r7 7') <v;(k -q—-7, T)U?(q, T)>c

+P2n(@) Un(r,7) (02 (@ = 7, 7)07 (k= g,7)) } - (3.36)

And the r.h.s. of Eq. (3.36) can be expanded infinitely by replacing the second-order
moment of u> repeatedly with its transport equation. Thus, as shown in Appendix B,
keep terms to the order of ﬁl, since these terms are the leading ones. This corresponds,
in effect, to a moment closure hypothesis. As a result, the fourth term of the r.h.s. of Eq.

(3.23) can be reformed as follows:

S (w2 (g, 7w (k—g,7)),

T 3
~ —i Z(—Qf) o V;k —F { Pk — @)P(0)Q7 ()

+P2 ()P (k— )@ (Ik — )} Un(k, 7). (3.37)

It should be noted that 8/07 can be neglected on account of universality of the inertial
range. So this idea is, as it were, a simple case called a Markovian approximation. By
assuming the relation |k — g| ~ ¢ and Q7 (|k — q|) ~ @7 (¢) in terms of the narrow band
A < g < Ao, Eq. (3.37) is rewritten as:

> (ur (g, m)ui (k- q,7)),

q
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=i () s (Pl - P2@) + PPk - )

p 2v0q
xQ3(9)Un(k, 7). (3.38)

In addition, the projection operators in Eq. (3.38) expanded to O(k) are also reformed

simply by using the relation |k — q| ~ ¢:
PP (k- q)+ P (k—q)P;(q)

kiiQm _ Kidi@m _ knling  kn@idns
¢ ¢ ¢ " ¢

~ kj6im + k¢5jm -

kn 1979mY4n
+2—ﬂq’f—i. (3.39)

Here, to make the transition to the infinite system, we replace sums over wave vectors in

Eq. (3.38) by integrals according to

lim Zq:(gg)s z/q dq. (3.40)

As aresult, we can obtain the renormalized form for the Reynolds stress so that the effects

of all the eliminated components «” in the band A; < ¢ < Aq are replaced by v; as

follows:
Zq:(ui(q, Ju;(k —q,7 ; S(k—gq,7)
—v {ikT,(k,7) + ik;Ts(k,7)} | (3.41)
where
v = A (3.42)
Avg = 307”0 /A I:O—E%Zldq. (3.43)

Note that vy represents the apparent eddy viscosity due to the nonlinear coupling in the
band A; < ¢ < Ag. The numerical constant 7/30 arises from transforming the integration
from the wave vector g to the wave number ¢(= |g|). The details of its derivation are

given in Appendix B.



Chapter 3. ITERATIVE AVERAGING RNG THEORY 35

3.1.3 Recursion relation

After eliminating the higher wave number modes defined in the band A; < ¢ < Ao,
we relabel uS — wu;, and then divide u; again into uS and u? in terms of the new cutoff

wave number A, (A, < Az < Ayg).

(3.44)
u?(g,7) ¢ A< g<M -

uf(Q>T) : Ae S q < A2
ui((LT) =

Hence, the higher wave-number modes in the new band A, < ¢ < A; are eliminated by

the procedure shown above in Section 3.1.2:

Y- (uilg, uj(k—q,7)), = D uf(g,)u(k—q,7)

g<Ao g<Az

—v, {ik,‘U]’(k, ) + ik;U;(k, 7')} , (3.45)

where
Vg = 1 '+' Al/l (346)

and
7 [ME(q)

Ay = / dg. 3.47
2 300, 0 q (3.47)
Carrying out the same procedure for successive bands A, < A, <------ Ay < Ay < Ay,

we obtain the recursion relation for v,, as follows (see Fig. 3.3):

> (uig,T)uj(k—gq,7)), >~ Y ui(q,7)uf(k—gq,T)

g<Ao q<An41

—vnpr {ikT;(k,7) + ik Uik, 7)), (3.48)

where
Vpt1 = Vn + Avy, (3.49)
and
7 [ E(g)
A, = / dg. 3.50
Y 30v, JAns ¢° K ( )

Using the relations given by Eqgs. (3.48)-(3.50), we obtain the renormalized expression to
Eq. (3.48) in which all the fluctuating velocity components [or the first term of the r.h.s.
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E(q)

Figure 3.3: Recursion relation for v,

of Eq. (3.48)] are removed. Therefore, we begin by summing over the square of each side

of Eq. (3.49) up to an arbitrary number N — I:

N-1 N-1
Sovy = S {v+ 2w + (An)*) (3.51)
=0 i=0
or
N-1 N-1 N-1
Z (Vz‘2+1 - V?) =2 Z v;Av; + Z (AVZ‘)2 ) (3.52)
1=0 i=0 i=0
where
N-1
(v21 = v?) = v, (3.53)
=0
N-1 '
7 [ME(q)
2 V,L'Al/i - —/ —=d y 3.54
; 15 AN q2 9 ( )
and



Chapter 3. ITERATIVE AVERAGING RNG THEORY 37

Here, replacing E(q) in Eqgs. (3.54) and (3.55) with the Kolmogorov —5/3 power law
spectrum gives

N-1
7 -8 -8
2 ZV{AV{ = CK€§ (ANg - AO g)
=0

m (3.56)
and
N-1 N-1 7Cx 2 g% ] )
g( V) i=0 80 VEAE {(1 )\) 1}
S 1Ck\? B 8 4 ?
- K Sa+ 2y )
g(so)yg,\_‘%(sJ“g +
= ON)+O0(N%) +---. (3.57)

(3.58)
on condition that the bandwidth parameter X is sufficiently small.

Obviously, in the case of Ay < Ao, vy becomes independent of the initial cutoff wave
number Ag, and Eq. (3.58) is simplified as

TCk _1 ,-%
UN 4/ 0 g3 ApN°.

3.1.4 Derivation of eddy viscosity

(3.59)

Naturally, the result of renormalizing all the components in the inertial range is also
obtained by setting Ay = A, in Eq. (3.59):

[7Ck -
Ve 4OA 23 AL 3.

Moreover, the well-known representation:

(3.60)

(3.61)
where

(3.62)
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results from replacing A, in Eq. (3.60) with the turbulent kinetic energy K by using Eq.
(3.8).
Finally, from Eq. (3.61), the Reynolds stress is modeled as:

wu;, = Z R;;(k,7)exp(ik - x)
kL Ae

= Z [—22’; T{;(k,’l') 8ij — Ve {ik,’U]‘(k,T) + iiji(k, 7‘)}] exp(ik - x)

k&Ae
2 oU; 9U;
= 3K6;—n ('55]"- * 52 ) (3.63)
where
=2
Vy = C#KT (364)

Here, §;; is the Kronecker delta, and the diagonal components of the Reynolds stress

T;u; (1 = j) are related to the turbulent kinetic energy:

K(k,) Zm q,7)ui(k —q,7), (3.65)
which yields
— 1
K = 5 E T)exp(ik - z). (3.66)
<A

The formulation given by Eq. (3.64) is identical with the Boussinesq postulate for the
eddy viscosity (Yoshizawa 1984), and our model constant C, is determined from the Kol-
mogorov constant Cx. With the typical value of Cx = 1.6 for the Kolmogorov constant
(Kraichnan 1965; McComb 1990; Sreenivasan 1995), Eq. (3.62) gives C,, = 0.092. This
value is in good agreement with that for the standard K-z model (Nagano & Tagawa

1990).
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3.2 Iterative Averaging Method for Thermal Field

3.2.1 Energy equation

The energy equation for an incompressible fluid is

T 2
o vt or (3.67

8_7' Zgé_l; = o 6.’121'6.’171" )

where T is the instantaneous fluid temperature, U; is the instantaneous velocity com-
ponent, and ap is the thermal diffusivity. The mean components and the fluctuating

components are represented by means of a Fourier series (Giles 1994a; Giles 1994b):

Ui(e,7) = > Ui(k,7)exp(ik - z), (3.68)
k<A

wi(®,7) = kz u;(k, ) exp(ik - @), (3.69)

T(z,7)= Y T(k,7)exp(ik - z), (3.70)
kK Aet

te,7)= k; t(k,7)exp(ik - ). (3.71)

Here, we can assume A., = O(A.) because the behavior of the temperature fluctuation
spectrum at large wave numbers mainly depends on the Prandtl number (Tennekes &
Lumley 1972; Hinze 1975; Townsend 1976). Thus, we hereafter specify the wave num-
ber A, to the thermal field as a counterpart of A.,. This implies that the fluctuating

components u; and ¢ satisfy the following condition:

@ = 0, (3.72)

S|
Il
o

(3.73)

Accordingly, the application of Egs. (3.68)-(3.71) to Eq. (3.67) yields the transport

equations for the mean temperature T and the temperature fluctuation t:

O 79 0 0T 04 3.74
or ‘Oz, °‘°ax,-aa:i - %% ’ (3.74)
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— 4+ u;— + U; (uit—-Uﬁ). (3.75)

ot oT ot 9 3
ar Yo T oz, 01,0z, 0z

Then, the transformation of Eq. (3.75) to Fourier space becomes
9 2
6+a0k t(k,7) =—zk§u,q, t(k—gq,r —zkEU q,7)t(k—q,7)
-

—ik; Euz q,7)T(k—gq,1), (3.76)

where a variable wave number £ is defined in the range A, < k£ < Ay, and the initial cutoff
wave number Ay is the same as that for the fluctuating velocity component u;: the order
of magnitude of the Kolmogorov dissipation wave number k4[= (Z/v¢)/4]. Furthermore,
we assume the condition A. < Ay, since the turbulent Reynolds number Re,(= K /VoE)
is sufficiently large.

Similarly, the turbulent heat flux —u;f in Fourier space can be written as follows:

—uit = Y Ri(k,7)exp(ik - z), (3.77)
k<A,

zt k T ZU q7 k q, T) (378)

where the wave numbers are defined in the range k£ < Ae, Ae < g < Ap, Ae < |k—q]| < Ay,

and we note that the wave number & is sufficiently small.

3.2.2 Elimination of small scales

In accordance with the iterative averaging procedure, we begin by dividing the fluctu-

ations u; and ¢ into two modes about the second cutoff wave number A;(A. € A < Ay):

t<(q,7) : A < g<A
Ha={ "' @7 1o (3.79)
t>(‘177) : Al S q < Ao,
and
ul(g,7) @ A < g<A
wlg,r) =1 @7 =5 (3.80)
~ u?(g,7) : A1 < g <A,
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where the interval A; < ¢ < Ag is assumed to be a sufficiently small band in the higher
wave-number range. Hence, the application of Eqgs. (3.79) and (3.80) to the r.h.s. of Eq.
(3.78) yields

—Zui(q,T)t(k—q,T) = —Zuf(q,7)t<(k——q,¢)

q

~ ui(g,7)t<(k —g,7)
_Zuf(q>7-)t>(k - QaT)

- u? (g7t (k- q,7). (3.81)

Here we assume that the joint probability distribution of > and ¢ is Gaussian (Nagano
& Tagawa 1988), and introduce the operation of conditional partial averaging ( ), over
fhese fluctuations in the narrow band A; < ¢ < Ap. By applying this operation to the
r.h.s. of Eq. (3.81), the first term becomes

—Z (k—gq,7),=-> ui(qg,7)t(k—q,7) (3.82)

because the conditional average ( ). does not affect the terms uS and ¢t<. Also, as in
Section 3.1, the second and third term of the r.h.s. in Eq. (3.81) can be assumed to be
negligibly small as compared to the other terms (see Appendix B), so Eq. (3.81) may be

approximately represented as:
—Zuz q, T k q,7 ) = —ZUf(q,T)t<(k —qu)
q
—Z (q,7)t"(k —q,7)).. (3.83)

For the second term of the r.h.is. of Eq. (3.83), we can not replace the correlation
(u?t>), with its spectrum directly, because the functional formalism for that has never
been specified analytically; so we begin by expanding the term (u;¢”)_ by means of a

renormalization approximation, and form an eddy diffusivity representation in Fourier
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space. We replace the correlation ut” with its transport equation which is formed in

multiplying the transport equation for u?:

(g%wof) W(@7) = =5Pun(@) Dun(r,TJinlg = 7,7)
~iPon(@) XUn(r, Junlg = 7,7),  (389)

kik,

Pij(k) =6 — -5~ (3.86)

by t> and Eq. (3.76) for t> by u?, and adding these equations:

0
(52 + 00"+ clk = al?) w2 (g, (k= 0,7

= —Z(k - q)j Zu]'(’l', T)T(k -—q-7, T)ui>(q’ T)
—i(k—q); > Uj(r,7)t(k —q—r,7)u7(q,7)

—ilk = q); Y us(r, )tk — g = 7, 7)u? (q,7)

T

2 P2n@) i Ttnlg — 7,70 (k — q,7)
P2 (0) S U Jun(g — 7, 7) (k — q,7). (3.87)

Hence, the second term of the r.h.s. in Eq. (3.83) is expanded infinitely by substituting
(u?t”), into its transport equation [Eq. (3.87)] repeatedly. Performing a moment closure
hypothesis (see Appendix B), we keep the terms to the order of Tl; then the fourth term

becomes

27\ (ki — 4)P7(9)Q”(9)
— S (g, 1) (k- q,7)) ~i ( ) L T(k,T). 3.88
St (e kg ).~ (T) ST, (35
Here, it should be noted that /07 can be neglected because of the universality of the

inertial range. By assuming the relation |k — q| ~ ¢ relevant to the sufficiently narrow
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band A; < ¢ < Ay, Eq. (3.88) is rewritten as:

—Z (k= g, ~ZE< ) (; _(Iq/;)+a(()))?>( Tk 7). (3.89)

To make the transition to the infinite system, we replace sums over wave vectors in Eq.

(3.89) by integrals according to

lim ;(2%)3 = /q dg. (3.90)

Finally, we obtain the renormalized form for the turbulent heat flux corresponding to
an eddy-diffusivity representation, so that the effect of the eliminated components in the

range Ay < ¢ < Ag is shown as

—Z >(k—q,7)), ~ iAok, T(k,T), (3.91)
_d-1 1 Ao E(q)
Aao =~ I/o+6¥0/A1 q¢* %, (3.92)
and
= 2 (ui(g, )tk — q.7)), = = > ul(q,7)t(k - q,7) + iAok T(k,7),  (3.93)
g<Ao a<A

where d is the space dimension. Hence, the r.h.s. of Eq. (3.91) is considered to be an

increment to the diffusion term in Eq. (3.74). Thus, we can also rewrite it as

— > (ui(q,7)t(k — q,7)), + ik T(k,T)

g<Ao

~ — Y uf(g, )t (k ~ q,7) + i KT (k, 7), (3.94)

<M

o] = g + AOAo, (395)

in which all the wave numbers are defined in the range A, < |[k—gq| < A, Ac < |g] < Az

3.2.3 Derivation of thermal eddy diffusivity

After eliminating the higher wave-number modes with respect to the sufficiently small

band A; < ¢ < Ao, we relabel uS — wu;, t< — ¢, and then divide these fluctuating
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components again into two modes with the next cutoff wave number Ay(< Ay):

ul(g,7) : A, < g<A

wlgr) =] @7 1< (3.96)
u1>(q77-) A‘2 S q < Al)
t<(q, : A < g<A

tq,7) = (,7) = s (3.97)
t>(q’7-) Ay £ g< Ay

As shown in Section 3.2.2, the first term of the r.h.s. in Eq. (3.94) is divided into four
counterparts, each of which is averaged over the higher wave-number range A, < ¢ < Aq;
and the term (u7t”), is added as an increment to the second term of the r.h.s. in Eq.

(3.94). Equation (3.94) is renormalized to

- Z <ui(q7 T)t(k _ q, T))c + iaokiT(kv T)

g<Ao
~ — Y ul(q,7)t%(k — q,7) + inkT(k,7), (3.98)
<Az
0y =y + Aal, (399)
d—-1 1 A E(q)
Aa; = / dg. .
a; Rl Nl q (3.100)

Accordingly, carrying out this procedure for successive bands Apy; < A, < ---Ay < A; <

Ao 1n sequence, we can obtain the recursion relation for an,; as follows:

- Y (ul(q, )t (k —q,7)), + ion kT (k,7), (3.101)
g<An41

where

Qnt1 = 0y + Aay, (3.102)
and
d—1 1 An E(q)
Aa, = / dg. 3.1

¢ d Vn '+' Qpn JAnyr q2 1 (3 03)

This implies that progressive elimination of the fluctuating components by turns completes
an eddy-diffusivity representation in Fourier space, i.e., Qnt1 — Q; + g as Ay — Ae.
Making use of Eqs. (3.101)-(3.103), we write a,; as a function of the cutoff wave number

An41 to obtain its functional formalism a(A) about an arbitrary cutoff wave number A.
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Hence, we begin by transforming from the discrete representation o, 41 to the continuous

one:
d
a(A) —  lm Aoy,
dA Antp1—=An An-l-l - An
d— A
= — lim ! 1 E(Q)dq, (3.104)

ah—=0 d {v(A)+ a(A)}AA Jacan @@

and replace the energy spectrum F(g) with the well-known Kolmogorov spectrum in the

inertial range:

E(q) = Cx % g5, (3.105)
which yields
da(A) _ 20k £3 (3.106)
dA 3 {v(A) +a(A)} AT

where d = 3. Following Yakhot & Orszag (1986), we introduce a new variable:

R
(A) = 2(8) (3.107)
and its differential equation:
dz(A) 1 dafA) _afA) dv(A) (3.108)

dA v(A) dA v2(A) dA

which is very convenient to find the solution of a(A). For the r.h.s. of Eq. (3.108),
da(A)/dA is replaced with its differential equation [Eq. (3.106)], and dv(A)/dA is replaced

with
dv(A) 10k &S
dA 30 y(A)AF

(3.109)

which is obtained from iterative averaging for the Reynolds stress %4; (Itazu & Nagano

1997b; Nagano & Itazu 1997b). Then, Eq. (3.108) becomes

dz(A) 20k B L 10k z(A)ES
dA 3 (A {v(A) + (M)} AT T 30 L2(A)AF
10 1 1 1 dv2(A)
B <7z+1_§z) v2(A) dA (3.110)
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which can be simplified to

dz _ dv?(A)

T =
7142 2
Finally, the solution of Eq. (3.111) is
z(A)—acz(A)—bd v
= 3.112
25— a 20— b v(A)’ ( )
where .
1 1 /87
= —=+4 —/— ~ 1.2627
=TT aVT
b= —l - l\lg ~ —2.2627
2 2V 7 . (3.113)
1 1 /7
c—§+§ 8—7_0.6418
1 1 /7
=57 5\z ™ 0.3582

Hence, the result of renormalizing all the components in the range Ac < ¢ < Ag is

obtained by setting A = A, in Eq. (3.112):

* —1.2627%64 | 2* 4+ 2.2627(°% 1
z 6 7 +2.26 - (3.114)
2o — 1.2627 2o + 2.2627 14+ =
14
where
Z*Ea(Ae):a0+at=1/PT+(Vt/V0)/Prt’ (3115)
v(Ae) wvotu 1+ v/
and
(6 7) 1
= —= —, 3.116
%0 Vo Pr ( )

This equation shows how the turbulent Prandtl number Pr; changes with the molecular
Prandtl number Pr and the eddy viscosity v;.

As shown in Fig. 3.4, compared to the data of some experiments (Blackwell et al.
1972; Zukauskas & Slanciauskas 1987; Kays & Crawford 1993) and DNS (Kasagi et al.
1992; Kasagi & Ohtsubo 1992), the turbulent Prandtl number Pr; obtained f;om Eq.
(3.114) is suitable for turbulent flow with both a low and high Prandt! number Pr; and
Pr, — 0.79 as the turbulent Peclet number Pe, is sufficiently large.
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Figure 3.4: Analytic solutions for Pr;

In case of a high Prandtl number, although there is a viscous convective range at high
wave numbers £ > Ao which affects the temperature variance £2 (Tennekes & Lumley
1972; Hinze 1975; Townsend 1976), there is an exponential drop-off of the spectrum for
the fluctuation u; in the dissipation range k& > Ag, which indicates that the correlation
Yken. Ui(q,7)t(k—q, T), consisting of t(k—gq,7) and u;(q, 7) in the range ¢ > Ao, |k—q| >
Ao, can be neglected in deriving an eddy diffusivity turbulence model, since it contributes
little quantitatively to the turbulent heat flux —u;t (see Fig. 3.5). On the other hand,
there is an exponential decrease of the spectrum for ¢ in the range A, < |k—q| < Ao, i.e.,
inertial diffusive subrange if the Prandtl number is low (Tennekes & Lumley 1972; Hinze
1975; Townsend 1976); and this implies that only the correlation ", .4, wi(q, 7)t(k—q,7)
with respect to {(k — ¢,7) in the inertial convective range is valid for deriving the eddy

diffusivity turbulence model by iterative averaging. Hence, our theory is applicable to the
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change of the molecular Prandt]l number Pr. It is revealed that the behavior of the spectra
for the fluctuations (u and t) at lower wave-numbers largely dominates the turbulent heat
flux —u;t at high Reynolds number flows, and the property of Eq. (3.114) may respond
to the assumption Ay = O(A.).
Following Kays (1994), we can also introduce an empirical equation as a counterpart
of Eq. (3.114):
Pr,=0.7/Pe; + 0.79. (3.117)

To sum up, the turbulent heat flux —u,? is modeled, based on the iterative averaging
RNG, as:

—ut = > i{a(Ae) — a0} kT (k,7)exp(ik - x)
k< Ae

= Y iakT(k,7)exp(ik - z)
k&€ Ae

oT

8.’13,"

(3.118)

Qy

where a; is given by Eq. (3.114).

3.3 Concluding Remarks

The drawback of the YO theory is the misleading e-expansion technique. From our
point of view, a renormalization group theory based on the e-expansion is not suitable for
investigation of turbulence models in comparison with critical phenomena.

The eddy-viscosity type turbulence model has been directly formed with the aid of
RNG by iterative averaging. It has become evident that the result is in perfect agreement
with the Boussinesq postulate; moreover, its proportional constant C, becomes a suitable
value if the Kolmogorov constant Cg is within the normally acceptable value.

The thermal eddy diffusivity has been formed with the aid of RNG theory on the basis
of iterative averaging in Fourier space, in which the inconsistency of e-expansion due to

the Yakhot-Orszag theory is completely excluded. The equation for the turbulent Prandtl
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number Pr; as a function of the molecular Prandtl number Pr is also obtained. Compared
to the data of some experiments and DNS, the present formulation is considered to be

mostly valid for turbulent flow with a variety of Prandtl numbers.
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Figure 3.5: Spectra of temperature variance with large and small Prandtl numbers



Chapter 4

CONCLUSIONS

The investigation of the renormalization group theory for turbulence has been carried
out as a fundamental approach for modeling a turbulent shear flow with a passive scalar.
The conclusions through this study are summarized herewith.

The results obtained from Chapter 2 are as follows:

1. It became evident that the RNG theory for turbulence developed by Yakhot &
Orszag (1986) and reformed by Yakhot & Smith (1992) is a scale removal procedure
has nothing to do with the exact RNG by the e-expansion technique for phase

transition phenomena.

2. The obtained numerical constants in their theory are problematic because the quan-

titative accuracy of the e-expansion is not proven.

3. The performance of their theory to derive turbulence models is contrary to the result

of DNS on modeling the production terms in Z-equation.

In Chapter 3, the improved iterative averaging RNG theory is applied to an inhomoge-
neous turbulent shear flow with a passive scalar in order to formulate turbulence models.

The main results are as follows:

1. By applying the iterative averaging RNG theory to the exact Navier-Stokes equation

without a stirring force, the eddy-viscosity type turbulence model is formulated with

51
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its model constant which is determined by the Kolmogorov constant. The derived

model corresponds well to that of the current standard K- model.

. The eddy diffusivity for heat and the equation for the turbulent Prandt] number

are formulated with the aid of the iterative averaging RNG method. The model is
in good agreement with the data of experiments and DNS with the change of the

molecular Prandt! number.
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Appendix A

CALCULATIONS BASED ON
YAKHOT-ORSZAG THEORY

Here, the author delves into calculations as a supplementary explanation of Chapter 2,
and shows how to derive some unfamiliar equations. The equations partly overlap those

in Chapter 2, allowing a better understanding of this theory.

A.1 Fourier Transformation of Basic Equations

The basic equations for Yakhot-Orszag theory consists of the continuity equation for

an incompressible fluid and the Navier-Stokes equation with a random force:

8u2- _
= (A.1)
. . 2,,.
Ou; Ou; £ 1 dp 0%u; (A2)

o T, =T 3os, T 82,00,
which are defined in the inertial range. The random force f; is needed to compensate
for the dissipation of the turbulent kinetic energy so that the equation becomes that for
stationary turbulence. The function of f; satisfies the following conditions: the continuity
condition given by

0f: _ 0, (A.3)

B2 =

38
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and the two-point correlation in Fourier space defined by
(i (k,w)f; (K, ') = 2Dok™ (2)1P (k) (K + ) 6(w +'),  (A4)

where Dy is the amplitude of the forces and y is an arbitrary parameter to determine the

decay rate of the energy spectrum for f;. The projection operator

kik;
Pi(k) = b — 2 (4.5)

is the isotropic tensor arising from the continuity condition of the velocity field and is

divergence free. The homogeneity in space and time is guaranteed by the Delta function:

1

3
1
d+1 / N — —ik-x+i
2r)* 6 (k+ k) S (w+w') = (L) 7_/L‘/I;/L/ATexp( tk-x +iwr)drdridzydes. (A.6)

Then, the velocity component in physical space u;(x,7) is transferred to that in Fourier

space by means of the d + 1-dimensional Fourier integral form:

ui(z,7) = /k<AO /_J:oui(k,w) exp(tk - & — iwr)%ﬁ%. (A.T)

The velocity component u;(k,w) is defined in the range A, < k < Ao, where the wave

number A.[= O(x/L)] is the order of the energy-containing eddies and the wave number

Ao[= O(ky)] is the order of the Kolmogorov dissipation scale. This range is assumed to
be very large at a high Reynolds number, i.e., A, < A,.

Now our discussion moves to the Fourier transformation of Egs. (A.1) and (A.2). The

continuity equation for the velocity field is transferred as follows:

Ou; 0 +oo . . dwdk
5o, = 3_331-'/k<A0 /_oo u; (k,w) exp(ik -z — MT)_—(:Zﬂ)d“

+oo dwdk
= /k<AO /_oo tkiu; (k,w) exp(tk - @ — iwT) @t—)—zﬁ

- 0, (A.8)

which leads to
ko (k,w) = 0. (A.9)
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Each term in the Navier-Stokes equation is transferred to Fourier space in sequence by

means of Eq. (A.7). The derivative with respect to time becomes

Oui _ 9 +oo . . dwdk
ar o .A(Ao /_ u; (k,w)exp(ik - @ — ZwT)W
e . . dwdk
= /I-c<Ao = {—iwu;(k,w)} exp (tk - © — 1wT) W. (A.10)
The nonlinear term is
Ou; et , dw'dk’
“"a_x]- = /l<A0[_ wexp(ik' - — 1w T)W
oo dQdq
6IEJ </q<Ao /_ q’ )eXp(Zq z— ZQT)W
oo dw'dk’
= /'<A0 /_ W')exp(ik' - & —iw 7')Z2—7r)71H
dQdgq

+o0
X/q<Ao /_m {ig;ui(q, )} exp(zq - @ —ZQT)W

/ /+oo oo 0 o
B '<Ag V—o0 ‘/;<A0 '/-OO ?’q]u"(q’ )u]( ,w)

o o dQdgdw’'dk’
xexp{i(k' +q) -z —i(w +Q)7} —(QZ)TH_’ (A.11)

where the replacements k' + ¢ = k and v’ + Q = w yield

Ou; +oo +oo +oo , . dQdq
wge = Jowl foen { Lo i G = Kk >u1<q,ﬂ>——(27r)d+l}
x exp(ik - & —wT)6(k — k' — q)é(w — ' — Q) (d; )cilil dwdk
_ (e +o0 +oo ddg
- A<A0~Aw </’<Ao['oc {'/Q<A0/; ks UJ k Ud (q’Q) (277)51-“}
! !
x exp(ik - ¢ —wT)b(k — k' — q)é(w — ' — Q) é(';)(i’il dwdk
_ +o0 dQddq
S O T A R PR
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dwdk

X exp(zk &L — iwr) (—2-’”)(1—?

The random force is

+co X . dwdk
fi(w’ T) = A<Ao /—oo fi(k,W) exp(Zk e ZWT) Wﬁ.

The pressure is transferred as

1 Jp dwdk

" p(k k-
~hm = —;—8—117—1//0<A0/:- ,w) exp(1 :c—zu,T)(Q =

e
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(A.12)

(A.13)

(A.14)

Here p(k,w) can be replaced with the velocity correlation by using the Poisson equation:

1 &*p Ou,, Ou,

p 0z, ' Oz, Oz, 0.

Each term in Eq. (A.15) is represented as

1 9% 1 92 +oo . . dwdk
b9z ;@/MAO /_oo p(k,w)exp(ik -« — WT)__(Q,T)«HI
too [k . | dwdk
= /k<A0 /_ {——p k w)} exp(ik - ¢ — WT)—(QW)HI
and
ou,, Ou, too ., "y ., dw'dk’
3z, Oz, /,<A0 /_oo ik um (k' w')exp(ik’ - & — iw T)W

+oo , _ dfldq
X /q<A0 /_Oo 1Gmun(g, Q) exp(iqg - — zQT)(_é}—)_le

400 oo (kl , Q
B /’<Ao~/— /<A0/; qmum & )un(Qa )

o o, dQdgdw’'dk’
xexp{i(k'+q) -z —i(w' + )7} —(2—-;155?.

The replacements k' + ¢ = k and w’ + Q = w yield

oy O A O B B B Y

(A.15)

(A.16)

(A.17)



62 Appendix A. CALCULATIONS BASED ON YAKHOT-ORSZAG THEORY

(L' Y ' ’ dedeldk’
xexp{i(k'+¢q)-z — (v + )7} 8(k — k' — q)6(w—u' — Q) Gy dwdk
+o0 k N q
N _/k<Ao/— ./<A0/ ~n qmu"(q’ )um( —q,w— )
) . . dQdgdwdk
x exp(tk - — ZwT)(Tn‘qW
N (kn k 0 A18
- —/k<Ao/— {/<Ao/ = ¢n)(km — gm — km)un(g, Q) (A.18)
dQddq . . dwdk
Xum(k — q,w Q)( )d+1}eXP(lk'm_2wT)fg7‘-_ydﬁ
oo dQdq
= kmks / (k=g
/‘“<A°/- {/<Ao - il = @0 =) (2w)d+1}
dk
x exp(ik -z — iWT)Z;i:}TE' (A.19)
The Poisson equation in Fourier space becomes
el d0dq
‘/k<A° ‘[‘ { ek, ) 4 knkr /<Ao/- Dur (k= g, =) (27)a+1
. . dwdk
x exp(tk - & — sz)W
=0 (A.20)
or
; p(k, <ol (g, Jum(k — q,w - Q) (Qﬂ)d+l (A.21)

Then, the pressure is replaced with the velocity correlation:

o = L [ [Tt a0 gt

dwdk
Finally, the molecular viscous diffusion term becomes

0%u; 0? +oo , . dwdk
Voaxjaxj = VO__—aa:jaa:j /k<A0/-oo ui(k,w)exp(tk - & — tw7 )——(271')‘“'1
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dwdk
(2r)

By summing up all the terms, the Fourier integral form of the Navier-Stokes equation is

+
= -y /k<A0 i k*u;(k,w)exp(ik - & — zw’r) (A.23)

represented as

+oo . . +oo dQldq
A {—wuxk,w) vty [ [Tk g - 0ula.0) o

kmkn +oo ddq
T m k I £ - n 9 T~ NTL1
) =ik [ L vl = e, )
dwdk
2 : .
+vok ui(k,w)} exp(tk -z — MT)W
=0 (A.24)
or
(—iw + vok?)u;(k,w)
+oo ddgq
- { /<A0~/— u](k q,w — ) (q Q)(z )d+1
kikmkn +oo deq
ST = = Dunla,) W}
= 0. (A.25)
Following the notation
_ Feo dQdq
W AR e (A.26)

the last two terms of the Lh.s. in Eq. (A.25) are rewritten as

‘ too dfldq
kikmkn oo deq
S e = Onta0)

= {kj [u];; — ki’jc’;k" [u]m} . (A.27)
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The index j is interchangeable so that Eq. (A.27) becomes

. k;k..k
0 {kj[u],-j -

”Mm}

. kikmkn
= z{kn[u]mn&-m— E) [u]mn}

= 1k, P (k) [t]mn

- % Poonn () [t (A.28)

Another interpretation is as follows: the index 7 = 1 leads to

kjluli; — kiﬁ"];—”[u]m = k;[ul1j — by b kf [ulmn
= kifun -k :z[ Ju -k %[U]lz - kl%[uhs
+koluliz — Ky kzlrjl[ Ja1 — ky :z[ J22 kl%[u]za
+kalulis — klﬁ;c—f—l[ Ja1 — k1 kzljz [uls2 — k1 :2 [u]ss
- I (1 - k—2) (i + ks ( _ —g) [u]ia + ks (1 — —Z—j) [ul1s — Ky kal [u]n
b s — b oy — B B, 1 K,

L2
=k (511 - —k—;) [uli1 + k2 (

k2
o — 76%) [U]u

k?

k? kok
+ k3 (611 — —) [ul1s + k1 (521 - 1) [u]21

ko k
0 — Z 1) [u]22

+k2(

ksk
+k1(531“%>
+k3<

[ula1
ba1 — szl) [ulss

kaok
ks (521 - 221> [4]23

ksk
+ ko (531 Z 1) [u]s2
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=k Piy(k)[u]n + ko Pra(k)[uliz + ks Pry(k)[ulis
+ k1 Pra(k)[ular + k2 Pra(k)[ulas + k3 Pra(k)[u)os
+ k1 Pi3(k){u)s1 + k2 Pis(k)[u]sz + k3 Pis(k)[u]ss

- % {k1 Py (k) + k1 Py ()} [u]in + % {k1Pro(k) + ko Pry(K)} [u]1
+ % {k1 Pis(k) + ksPry(k)} [u]is + %{kzpn(k) + k1 Pra(k)} [u]2n
+ % {koPra(k) + k2 Pra(k)} [u)az + % {k2Prs(k) + k3 Pra(k)} [u]2s
+ %{klpw(k) + ksPry(k)} [u)a; + % {k2Pia(k) + ks Pr2(k)} [u]s
n % {3 Pya(k) + kaPra(k)} [u]a

- %len(k)[u]m, (A.29)

and the equations for other indices : = 2, 3 are also obtainable in the same manner.

Thus, the sum of these becomes

i{kj[u]ij - EJjﬁizlzﬁ[u]mn} = %-szn(k)[u]mn (A.30)

Hereafter the wave-frequency vector k consists of the wave vector k and the frequency

w 1s used.
+0o0 ~
/ / dwdk — dk (A.31)
k<ApJ—00 k<Aq

The Green function (or the bare propagator in renormalization) is defined as
Go(k) = (—iw + vok?)™L. (A.32)

Then, the Navier-Stokes equation with a random force in Fourier space is written as

k) = Golf) = 2 Go(BPn(l) [ unliinlh= i)z (A3

g<Ao
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where Ae < k(= |k]) < Ao, Ae < ¢(=]g]) < Ay, —0 < w < 400, —00 < < +00,
and Ao(= 1) is a parameter to indicate the effect of nonlinear terms in renormalization

expansion.

A.2 Renormalization Procedure

Now the RNG method is to be started with the following scale separating assumption:

uf(k) i Ae < k < Agexp(—r)
wi(k) =93 w>(k) : Agexp(~r) < k< Ao - (A.34)
0 : otherwise

The parameter r is chosen to specify the mode u? (k) in the vicinity of the initial cutoff

wave number Ag. According to this decomposition, the two Navier-Stokes equations:

Wb = G5 [0 = 5 G50 Pa(h) [un(un(k— D) Gy
= G5 50 - 22 G5k P28 [ (s @i -9
+20, @ (k- 9+, @02 (- )} s (A35)
B = G302 (B = 52 GF(h) P2n(k) fum(@unll — 1) gy

=GB £ (0 = 52 63 (8) Pn(h) [{us(@usb— )
>N <(b — & S, >(h 4 dq
20 (@ (k= 4) +z @03 (k- 9} G (A.36)

are obtained. Thereafter, we seek to eliminate the higher wave-number mode u? (k) in the

A

velocity field and to represent the field with the rest mode u(k), which corresponds to the

reduction of degree of freedom in the system. In the equation for the lower wave-number

A

mode uf(k), the higher wave-number modes > in the nonlinear term are removed by
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using the renormalizing expansion for the Navier-Stokes equation, i.e., by replacing u> in

Eq. (A.35) with their transport equations on the basis of Eq. (A.36), which yields
uf (k) = O(A) + O(A}) + O(A3) + - - (A.37)

as an expansion of Ag. The calculation is done as follows: the equations for the higher

wave-number modes

un(§) = Gg(4) fn(d)

~22 G30) Pasla) [{uS(3)us(a - 8) + 22 (9usla— 9
s, . d3
+ug (3) Ua(q—S)}W
= G3(d) £2(9)
Ao

~5 G3@) Pasl@) [{us(us(a—3) +2G3(5) 2 (9)us(a - 3)

ds
+G3(3) Gz (4 - 3) £2(3) E(é—é)}W

+O(N2) (A.38)

22 Gk 0) P2elk — q) [{us (s (k=g - )
+2u2 (Pus (k= § =) + w3 () w3 (k- g~ 7)} (2:;“
= Gy(k—q) f2 (k-9
ZA°G>(1€ §) P2 s(k — q/{ (k—g—7)

+2G3 (7) £ (Fug (k= G — 7)

-I-G>( )G>(L —¢—r) f>( )fg( _‘j_f)} (2:;d+1
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+0(X\3) (A.39)
up to the order of \j are obtained; and substituting »> in Eq. (A.35) into Eqs. (A.38)
and (A.39) gives

_ o

o2 Pnlk) [us (@) us (k- ) 0

(—iw + ks (k) = (k) G

_izoPS (k) / [Ga(é)f;@

P) :)
2 G2 @P2la) [{us(d)

+2G5(3) /2 (8)us(d —3)

LG -9 269} #J

dg

| Xurf(k—é)w

0P [Gé@)m@

2/\0 G> q) maﬁ /{ <(5

+2G5 (8)f2(8)ug(q - 3)

GG G- 2O E-4) ) (Z—f)ﬁ]

< |G- k- g)
-5 Gk P2k~ ) [fus( )

+ 2G5 (1) (F)us (k- ¢ - 7)

dr dg

tGEAOGEHR-a-ALOF k== G| gom
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+0(%)
1o . s
= 50 =3 P50 [ui @) ui(h - @)

NP 8) [GR@R - )

+2CMj < | //G>q)mm (k- q)
x {uS(8)us(q — 3) + 263 (3) 12 (3)us (4 - §)
+G3(8)G3 (- 38) £2(8)f2(4—3) } Gy

l/\g

x{us (FJug (k= § =) +263 (A)f (Fus (k- 4~ 7)

didg

+ G (MG (k—q—7) (M) (k—g-7)} G

22(%2) P [ 30005002 - P2ta)

x {ug(8)ug (g — 3) +2G3 (3)£2 (3)us (4 — 3)

+G>( )G (§—3) f>( )fg(q_ 3) } (Qf)(zliz

+0(X).
Then, Eq. (A.4) for £~ is used to close this equation:

(—ww + Vokz)uf(fc) = f(if) — 5 Py (k) /qufn((j) uﬁ(fc ) Wﬁ

tmn /G> GO f>( )f:(];.—qA)W

+2(%) < ( //G> (k= §)£2(4)P2s(k — q)

69

(A.40)
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—i2oP(E) [ 63 0) (7200 us k- D) s

+z( ;0) Pia(k) [ [G3@P2.sla)n witk-9

x {ug(8)us (G — 8) +2G3 (3) (£2(3)) us (4 — )

+GOG -9 (20304} dsffﬂ

-5 Pk [G @63 (- D (£(072 (- D) s
Ao < S>> >

22(%) P [ @306 G- P2tk 0

< {{£2(@) us(Fug (k= g —7)

+2G3 (7) (£ (M) F2(9)) us (k= ¢ = 7)

+ GG == ) (£ O (= 1 20)} s

(2)‘0> rmn //Go Go "‘q maﬁ()
x {uS(8) (£ (k= @) us(d—3)

+2G3(3)(£2(3)£2 (k — )y us (G- 9)

+G3(3)G3 (-3 (23— 912 (k- )} dsdg

(2 )2d+2

+ O(A)

— 50 =2 P50 [u

3N
—~
<
N—
S
S A
~
x>
I
B>}
~—
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. (g) Psa() [ [G3(0)P20s(a)

gvs
xul(k—§) {ug(3)us(g - 3)

2,”- 2:1'+2

+G3 (863 (64— 9) (£2(3) 24

_z'/\o

5 Pinlk) [GR@G3 (= (DR (k=) oy

+2 (1;\0) Ps, (k) //Go ‘Z)Go( — §)G5 (7) n‘y&(k_q)
< (F2(Q) £ (7)) us (k- g —7) ﬁ:ﬁi—

1o o >
+2( 2) Pia(b) [ [G3(@G3 (k- D63 (4) Prusta)

< (12— ) £2(9)) us(d - 9) (—;%—
+O(ND), (A.41)

where the third term of the r.h.s. is estimated as

2 (52) Piath) [ [G3(@0P2p0) w3615 G ) ek

= (%)EM@ | [62@63(2)G3 (4 - £)P2usla)
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: \ d3dg
- > d+l¢/ a A j) ———
X {2D0 s7Y Paﬁ(s) (271‘) 5(q -5+ S) }Ufl(k - q) (277)2d+2

_ 2(%) P5al) | /sGa(qua(é)Gs(é—é)Pz_aﬁ(w

d3dg

x {2Dq s7¥ P25(s) (27)*16(§) }us(k - §) Gy
_— (A43)
the fifth term is treated as
Z/\o n dA
Afi= = P [GOG R - (@R (E-0) Grmr, (A0

the sixth term is

2(%) Piak) [ [G3(0)GE (k= 1G5 () P2k - q)
<(R2O5 )b - - ) ol

= 2(92) s [ [Gr@Ga - 065 P2atk 0
didg

*{2D0 4 B, (0) (@) 84+ A} us (k= 4= 1) i

= 2 (%) PS (k) /ng(Q)Gg(k - 9)G5(=9) P2s(k - q)

dg

x2Do 7Y P (q)us (k) Zr)

A . i _ 2
- (7) PEA8) (163 @F Gy (k) Pk~ )
di

x2Dg ¢ P,;,(‘I) us (k) (27)d+1

(A.45)

and the seventh term is
ix A
2 (52) P [ 30630 - 0639 P2usta)

gvs
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P . . . dsdg
< (£2 (k- q) 3(5)>U§(Q—S)W5

- 2(%) Psa(k) [ [G3(0G3 (h - 963 (5) P2.0(a)
{20 e —al™ B2 (k= @) (2r)¥16(E - 4+ )} us(d - §) el
- 2(_;-) 5lk) [ O3 @G (k= DG3 (4= k) Prasla)
x2Dg |k —q|™¥ P>, (k —q)u (’5)(37%7
= 2(52) paath) flesti - af 6@ P2osta)
<20 k= aI”" P2, (k- @) us(h) (4.40)

In particular, interchanging the indices & — v and § — § in the sixth and seventh terms
can be done in association with the symmetric property Pj,..(k) = Pinn(k). As a result,

the renormalized Navier-Stokes equation is obtained as

(—iw + vok?) us(k) = f(k)+Af;

44D, (—;-) Psal) [[630k = ) G2 (d) Pola)

dg

xPro(k—q)|k—q|™ @n) ug (k)
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+ O[(u<)?). (A.47)

To carry out the integration of ¢, the fourth and fifth terms in Eq. (A.47) are rewritten

as
_ Do » N2 A h A
R = =0 o Bra(t) u(h) G @F G5 (k- 9)
X P2k - 4) P2.(a) g™ dd (A48)
D A A 2
— 2 0 A ~
R = =N oy Brab)us(h) [|63 (-0 630

xPrs(q) Pra(k —q) |k —q|™ dg. (A.49)
Here the integral operator indicates

+oo
dg = d dQl. A.50
-/q 1 /Ao exp(—7)<g<Ao 9 /—oo ( )

Firstly, the integration of the frequency § is easily carried out by using the residue theo-

rem:

[ 163 @0 630k -9y an | (4.51)

/+oo dQ
—oo (=i + 10g?) (i + v0g?) { =i(w — Q) + w0 [k — g’}

) [ Q- iVoqz ]
= 27 - - . 2
(—ZQ + V0q2)(ZQ + Voqz) {—-Z(U) ot Q) + Vg Ik - ql } Q=+iuoq2

. Q—w—iylk—q|
+2mi | — ; . >
(=39 + v0g?) (i + vog?) { ~i(w — ) + o |k — g}

:I Q=w+ivglk—gqf?

27
2v0¢? (—iw — 1g* + 1o [k ‘I|2)

27
T (=i + vog? + vo [k — ) (i + vog? — vo [k — gI)

™

_ : (A.52)
voq? (—Zw + v0g® + vo |k — ¢I|2)
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and

3k )| do (A.53)

[ ez

_ /+°° dQ
~oo {—i(w— Q) +vok — g} {i(w — Q) + o [k — g’} (—i0 + vog?)

l: Q—w—ivylk—gq|
= 2m . RS 5
{=ilw = Q) + w0k — "} {i(w - Q) + w0 [k — g’}

(—iQ + VO‘f)} Q=w+ivg|k—q|?

T

= - , A.54
ok = aF (=i & vog® + 50l — aF) (A54)
so that R; and R; become

2 Do ¢ - /Pr?ag(k -q)P; . (q)g7Vdq
= \N—— P2 (k k A.55
Rl ’\0 1/0(27T)d+1 zmn( )uﬁ( ) ¢ —iw+ V0q2 + VOlk _ q|2 ( )

mD Prs(@)Pro(k — q)lk — q|7v~2dgq
vo(27) q —w + voq? + volk — q|

. : . L, . .
Under the assumption |k| < |g| and |iw| < vo¢® the interchange ¢ — q + §k is valid, so
that

M 5 Pnaﬁ( k_q)P'ia(q+%k)"1+%kl_y_2dq —
Ry = —\2 2up(27)° ug(k /q VoIQ+%k|2+z/o|§k—q]2 (A.57)

—y=2
2 DoPSn(k) o (Prsla+3 k)P k—q)|lk-q|" dq
Ry = N2 ﬁ(k)/ 2 h (A.58)
A LT e e ik
and
2
lk—q =2q2+%k2:2q2. (A.59)

Thus, by making the use of the following relations:

1 1
o _ka>Pma< —k)
<q+2 173
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1 1
1 (Qa + 3 ka> (qm + 5 km)
= (qa + ka) 6ma -

%+%k
= (an+ g n) = (a0 + 5 0)
=0 (A.60)
= % ba ) Pra (4 - % k) =0 (A.61)
kaug(k) = 0, (A.62)

the compound projection operator is reduced as follows:

b (s -0) P (0439
|

1 1
Z{kaPm@ (;k_q)_q,gpna <§k—Q)}Pma (Q+2k)
1 1 1
:{kapnﬁ (q_§k) —q‘BPnoz (q_§k>}Pma <q+§k> (A63)
1 1
Pnaﬁ(q+'2‘k>Pma(§k—q>
={(sat 3] Pus (a4 50) (w5 5 45) P (2 5 8) P (%
T\BT gt ) 9T Wtz k) ralat 3 2 _q>
1 1 1
:{kapnﬁ<q+§k>+qﬁPna<q+'2-k>}Pma(q_§k>7 (A64)

where the approximations

1 1
Pno: (q_§k>Pma <q+§k)
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1 1 1 1
o28) o dt)] [, (rdin) (o)

1 1.7
—Zk it
P 9 M+2k
1 1
(0:-35) (s =58n) (0t 5H0) (a0 + 5 50)
=6 - -
mn 2 1k2
——k -
“’ “”2
1 1 1
(qn—'ikn) (qm+§km) <qc2>z—zkz2x)
+ T = (A.65)
- = —k
‘q 2k q+2
and
1,172 —2 kaj
1.1 kig;
lq__z_k =gq 1_+__qz_+... (A.67)
yield

+ O(k?)
_ 1 kig; 1 1
- 67”" q2 (1 + q_z) <qmqn - é’ kmqn 5 anm)

1 kiq; 1 1 1 1 1
——y 1—# (mn '—kmn —knm> —<mn _k'mn_-knm>
( qz)qrq+2 Gt 5 Fndm ) + 73 (Gnn + 3 k= 5 Fng
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+ 0(1;2)

dmqn 1 kngn 1 kngn .
= 6mn - A k
q2 2 q2 2 q2 + O( )

= Po.(q)+O(k?). | (A.68)

Then the reduction

P.. (q - % k) Pre (q + -;- k> ~ Pp(q) (A.69)
P <q + % k) P <q - % k) ~ Pon(q) (A.70)

is applicable under the condition £ — 0, and R; and R, are rewritten as

X2DoPS (k) .\ ] v-?
R, = _20Z705imnl%) <f / -2 Lk
. nipm: Wk [T |at 3
> 1 > 1 >
X kapnﬁ q—gk Pma q+§k _qﬁPmn(q) dq (A71)
_ MDoPsn(k) oo [ s 1|72
R, —Wug(k)/qq q—§k
k > 1 > 1 >
Xkl (2t 5k) Prala—5k)+aPr.(q);dg (A.72)
or
R+ R,
M DoPgS, (k) </i y+2 kg
07T wmnl k/-y—4 (1______7_-7
408 (2r)¢ us (k) qq 2 ¢

1 1
X {kaprfa (q ~3 k) P, (‘I + 3 k) - (IﬁPm>n(‘1)}

+2 kiq: 1 1
+ (1_+_ yT ;—2%) {kaP;ﬁ (q + §k> Pria (q - 5 k) +qﬁp7in(q)}:| dq

(A.73)
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Actually, the O(k?) term is neglected because of k — 0; thus,

1 1
raa0) (0414

1 1 1 1
(qn"" §kn> (Qﬁ_ikﬁ) 5 (Qm+§km> (qa+ §koz

79

2

R
&~
Q

~
5
=
5
Q

S

and

R, + R,
AzDOsznn(k) <1 ~y—4 y+2 k]Q] > >

g5 P7a(a)} + (1+ Lrs ’%) {kaP2o(0)P2ul )+qﬁP;n<q)}] dq

_ A2DoP5,,. (k) y+2kigi s

(A.74)

202(27)? U;(IAC) /qq {k P;ﬁ( )P (q) + 5 _qz_qﬁpmn(Q)} dq.

The integration of the wave vector ¢ is done by the following relations:

/dq = /d"q = Sd/qd‘ldq,

(A.75)

(A.76)
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S,
d__ Pd d+1
/QaQﬁd 9= 501[3/‘] dq, (A.T7)
and
Sy d+3
/qaq;iqqusd q= i+ (6apbys + 6arbps + 5a65ﬁv)/q dg, (A.78)

where Sy is the area of a d-dimensional unit sphere (i.e., S3 = 47). The first term of the

r.hs. in Eq. (A.75) becomes

Pia(k)kous () [~ Py(a)P2a()dg

= Bk (] [ (s~ 22 (6 - 220 g

(k)kaug(l;) Lq_y_4 (6nﬁ5ma - _q_th%:@_ 6ma - qz_ja 5nﬁ + me_;;Ioz‘Zﬁ> dq

= PpS

mn

= sznn(k)kau;(z")sd {6"&016715 - % 6mo¢5n,@ - é 6ma5nﬁ

+

Ag exp(—T)

Ao
—y+d—5
d(d + 2) (6aﬁ6mn + 6m06nﬁ + 6na5mﬁ)} / q dq

) 2 1 Ao
= PS(k)knus(h)Si 41— 2 / R
1mn( ) u”( ) d { d + d(d + 2) } Ao exP(_T)q !

A Sy Ao 5
PS (k) kus(k / rerd
+ P (k) "g_,( J3@+2) Iowicn®

+ PS Sz

- Ao
k)kus (k / “v+d-5g
1.m’n( ) u’m( )d(d+2) Aoexp(_:r)q q .

< <3 2 2 Ao —y+d—5 -
= PS.Rknus(B)Suq1 -2+ =1 [* gty (A.79)

d(d + 2) Ao exp(—7)

where

= KPo(k)un(k) + kp Po (k) knun ()
0
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= E6iun(k) — kiknu, (k)
N’

0
= kZUi(]AC),
Ao - 1 Ao
q—y+d—5dq — q—y+d—4]
/1;0 exp(—r) LY +d—14 Ag exp(—7)

1 gk

= |24 exp(er) —1
L € 7 ]Ao exp(—r) EAC { p( ) }

and

e=4+4+y—d.

The result is
PS (k)kqus (k) /q P s(q)P2,(q)dg

=2 Si{exp(er) -1} ., . -
T dd+2) eAg Fub (k).

Similarly, the second term is reduced to

. +2 _, .k
Pin(k)us(R) [ 5577 23 sP? (a)dg

7 y+2 'mn
= P L2 o000 (b = 282 dg

- ¥E2 pe

2 mn

~ |1 1
S - o —

Ao g
X (6mn6_76 + 6jm5nﬁ +6jn5m5)} Sd/ q—y+ _5dq

Ao exp(—r)

y+2f1 1 Moo
= NG T PR ks (k) Sa [ vri=sg

2 {d d(d+2)} RV (R) e [ !
0
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(A.80)

(A.81)

(A.82)

(A.83)
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y+2 Sy oy Ao —ytd-
. PS kkm<k/ vtd=3g
2 d(d 2) zmn( ) un( ) Aoe (-—7‘) q q

y+2 5y

Ao
Py (k) kyus (k TSy
2 d(d+2) tmn( ) u"m( ) Aoexp(—r)q q

(y +2)Sa e <y ™ —y+d-5
— < (k)k v d

Ao exp(—7)

_ (y+2)Ssexp(er) =1 , . -
= — 1@ 2) At k*us (k). (A.84)

Finally, Eqs. (A.48) and (A.49) are formed as follows:

NDo =y —4 Sfexpler) =1} ,, .« :
- _ “(k
3 AgDo  d* —d—e Syfexp(er) =1} , _ :
T 2827 d(d+2) eAg Fucth) (455)
Ry +R, = ~lim Av(k)E*us (k)
—0
w=0
= —Av(0)k*ul(k), (A.86)
. l1d*—d-e¢
A=3 Ta (487
~ Sd
Ay = Ay W’ (A.88)
and
2 —
Av(0) = 4,800 @R(er) =1 (A80)

YVENG €
This term represents the effect of the eliminated components > and is added to the

molecular (bare) viscosity as an increment.
v, = vp+ Av(0)

AiDy exp(er) —1
vEA§ €

= vy + A4

= v {1 + Adxg%)_—l} (A.90)
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A= :
Then the renormalized Navier-Stokes equation becomes
uf(k) = G.(k) {f(k) + AL}
ZAO [l n A N qu
—— G, (k)P (k < <(k —
3 G BPE ) [ ws@us(h - ) oy
+0[(w*)?, (A.92)
where
Go(k) = (~iw + 1, k?) 7 (A.93)

is the renormalized Green function. The wave number £ is defined in the range A, < k <

Agexp(—r).

A.3 Application to Scalar Field

The transport equation for a passive scalar T is

oT or 0*T

o T g, T X0gg g (A.9¢)

where A\o(= 1) is an indicator to describe the effect of the nonlinear term in renormalization

expansion. By using the Fourier integral representation:

+oo , , dwdk
T(e,7)= /k<A0 /_ T(k,w)exp(ik -z — sz)W, (A.95)

Equation (A.94) is transferred to Fourier space as follows:

oT +oo dwdk
or  or /k<Ao /— Tk w)explik @ —ion) g (2 )+
M , o dwdk
= /k<Ao /_Oo {—wT(k,w)exp(ik - & — iwT)} W’ (A.96)

+oo . _ dQdq
0_, = A /q(AO /_oo ui(q,Q)exp(zq-:c—zQT)———(27T)d+1
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T
—'Z(.(JT -_—
*Bz: J<no J- ) exp(i (2m)

= %o . / :° /q N /_;mik;ui(q,Q)T(k’,w’)

-y o dQdq du'dk’
xexp {i(k'+ q) = —i(w' + D)7} (27)3+T (27)+1

=% [ L. [ itk = auila, 0T (k — g, - 0)

d0dq  dwdk
(2m)d+1 (27) 3+

o [ o L e a0y

x exp(tk - & — wT)

dwdk

X exp(zk L — in)W, (A97)
T +o0 dwdk
_ o
X502, ~ 0z,0z, /mo /_oo xoT'(k,w) exp(ik - @ —dwr) 5 gy
_ too o dwdk
= /k<Ao /_oo Xxok“T (k,w)exp(ik - x ZwT)___(Qﬂ-)cHl' (A.98)
Then, the transport equation for the passive scalar T in Fourier space becomes
. . +o0 dQdq
—sz(k,w) + Z/\ok,‘ /,;<A0 /;oo uz(q,Q)T(k —q,w — Q)W
= —xok*T(k,w) (A.99)
or
5 . > - dgq
T(k) = —idok; / (OT(h - g)—2__ .
T( ) tAg gO(k) q<Aou (Q)T(k q) (27‘_)(1.{_1 (A 100)
with
go(k,w) = go(k) = (—iw + xok?)™. (A.101)

Renormalization for the passive scalar is done in the same manner as for the velocity
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field. Firstly, the component T is also divided into two parts:
T<(k) : Ae<k< Ao exp(—r)
T>(k) : Agexp(—r) <k < Ao -

0 : otherwise

T(k) =

The nonlinear term in Eq. (A.100) can be expanded as

fu@rt -G = [@r<G- 050
+ qu5<@>T<<l‘c—é>(—Q,—fﬁ:

AT — )2
+/ <(9) (—ﬂﬁaﬁT

i
[ O b g
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(A.102)

(A.103)

To eliminate the components defined in the range Agexp(—r) < k < Ay, w” and T

in Eq. (A.103) are substituted for their transport equations based on Eqs. (A.36) and

(A.100). In the equation for T'<:

. . s, dg
—1Aok; /quf(q)T<(k —4) (27)d+1

(—iw + xok*)T<(k) =
—idok: [ (OT<(E — §)—2—
z/\Okz /quz (q)T (k q) (27T)d+1

—1Aok; /
—idok; /

()T (k Q)W

(A.104)

the effect of the second and third terms in the r.h.s. is negligible compared to the other

terms if the wave number of u< and T< is quite a distance from that of u> and T~.

Then, the fourth term is expanded as

A dg
—-Z)\ok / T> k — )W_ﬁ-
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= ok | [0~ R @F0) [un Gl - 55
X [—Mo(kl - Qz)g())(ic - q) /Tul(f)T(k q- 7:)(2:;“] (2:)%+1

= =3k | [tk = )63 (@93 (k= )72 @) {wf (AT (k= 4 - 7)
+ Gy (A P (AT (k= ¢ —7) +uS(F)T> (k- §—+)
+G3(7) 7 (AT (k—g-7)} GryE

+ 0. (A.105)

Averaging over the range Agexp(—r) < k < Aq is applied to the random force f~, and
Eq. (A.105) becomes

—X2k; / /T(kz — )G (D)ge (k- §) {(F7 (@)uf (AT (k- §—7)
+ G (A7 ()7 (PNT<(k = g — ) + (f2(@)uf (AT (k — g — )
LG A @ () >T><1%—q—f>}(—2f§%

+0(X3)

A2 / [(k, — @)G3(§)G3 (Mg (k — (2 ()F7 (7))

didg

+0O(X\3)

= N3k [ (k= )G3 (@G5 (7)o (k — 6)2Dog™ B ()(27)**

drdg

+0(X)
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= =Xk [(k — @)IG3 (@)'68 (k — D2Doq™P3 (@)T<(})
+0(X\3)
= —2NDokAT(h) 163 (063~ 0™ P2 (0) e

+ O())). (A.106)

Then, the transport equation for T< becomes

dg
(—iw+ xok?)T<(k) = —idok: / DTk~ 6) o5 o
. . s dg
=2\ Dok;k, T< (k) /q 1G5 (9)95 (k — §)¢™* P (q)w
+ O()Y). (A.107)
If we define
A o dg
FAXRIT(F) = 205DokbT“(F) [ 163 @03 (k ~ g™ PF (@) iy (4109
or
EAx(k) = 202 Dok;k Gy (§ k “YPZ(q 44 A.109
X(k) = 243 Dakk [ 163 (@) a3 (F ~ 0™ P (0) g5 (A.109)
the renormalized equation for the passive scalar becomes
w AR T<(k) = —idok; T (k — 44 A.110
{~iw+ (xo + Ax) FT<(k) = —ixg / Q)W- (A.110)

The term Ax(k) arises from eliminating the modes in the range Agexp(—r) < k < A
and is added as an increment to the molecular diffusivity xo. Thereafter, the integration
of ¢ in Eq. (A.110) is carried out. The integration of the frequency Q is

+o0 . +o0 df
G5 (995 (k — §)dQ = , . :
I e B e e e e e S B

2 . [ Q —_ il/o(]z
= Tl " T .
(=192 4+ 10g®) (i + vog?) {—i(w — Q) + xolk — q[?} Q=+irgq?
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0 —w—ixolk — q|?
(—2Q + 10g?) (12 + 10g®) {—1(w — Q) + xolk — @*} | e pyixolr—qp

+ 271

s

vog?(—w — vog® + xolk — q]2)

27
+ — -
(—iw + 10g® + xolk — q[?) (2w + 10g* — Xolk — q?)

s
voq?(—1w + vog* + xolk — q/?)

T

~ , A.111
10g*(v0q* + xolk — q/?) ( )
which yields
Ax(k) = M/ ¢ '"*P7(q)dq (A112)
vo(2m)2k? J A exp(-r)<a<ho Y0q% + Xolk — q|?
and
2 X -y—2p>
Ax(k) /\oDok;kl / ¢ "P7(q)dq
vo(27)2k2 JAs exp(-r)<a<ho  V0q% + X0g?
A:D, kik y—4
- : —v=4p>(q)d A.
o(27)%k2 o + Xo /Aoexp(—-r)<q<Ao q 7 (q)dq (A.113)
in the limit £ — 0, and the integration of the wave vector q is calculated as
_y—4P_> d — / -y—4 6i _ M) d
/Ao exp(—r)<g<Ao 1 i(9)dg Ao exp(—7)<g<Ao ! ( l ¢ 1
= 5:'1/ ~v4dq - gqq¥"%dg
Ao exp(—1)<g<Ao Ao exp(—1)<g<Ao
1 Ao
= (1-3) a0 [ ~v+i=sg
( d al Ao exp(—r) 1 1
Ao
1 1
(D)5
d d t+ d—4 Ao exp(-r)
1 -1
- (1 - E) Sdéuﬂg—:—z——, (A.114)
0

where € =4 4+ y — d. As a result, the increment to the molecular diffusivity becomes
ADy (d—1)S, exp(er) —1
vo(2m)4d(xo +v0)  €A§

Ax(k)
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_ d- 1Kd Avd exp(er) —1

A.115
d Xo + Vo € ( )

I

where

Do)}

VgAS
Sq

(2m)®

The resultant renormalized equation for 7T°< is

Yo’ = (A.116)

K;= (A.117)

(i X} T(h) = —idoks [us(@)T<(F (Q:ﬁm (A.118)

with
(A.119)

d—1 A2v¢ exp(er) — 1}
=Xxo{l+ K,—22 :
x(r) = Xxo { d dXo ¥ v .

The effective diffusivity x(r) at each renormalization has the relation:
X(A=AA) = x(A)+Ax(4)

= x(A)

d—1 S, DoX2 1 1), ..
7 @) (A (X (M) + v ()] ¢ {< } (A-120)

A— AN A
so that the differential relation for x(r) becomes

(b)) _ o x(A—-AA) - x(4)
dA aA—0  (A—AA)—-A

d 27 v M) {v(A) +x(A)Te \(A= AAF ~ A°F
AA—O _AA

. d-1 S DoA? (A= AN — A~
a2 Td Emiv (N (v (A) +x(A)Je  AA

d-1 5, Do) [_dA-f]
d () tv(A){r(A)+x(A)}e| dA

- 41 S Doks (A.121)

d (2m)tv(A){v(A) +x (A)} At
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and replacing A with Agexp(—r) gives

dx(r) _d=1 Si Do L exp(er)
dr d (2r)u(r)A§ x(r) + v(r) P

or

dx(r)’ _d—1 Si X(r)vi(r)

dr— d (2r)ix(r)+v(r)
where
< A2 Dy
A (r) = NG exp(er).
Then, the new parameter « is defined as
_ x(r)
a(r) = e

with its differential equation:

doa(r) _ 1 dx(r)_ x(r) dv(r)
dr v(r) dr v3(r) dr =

Replacing dx(r)/dr and dv(r)/dr with their equations gives

da(r) 1 d-1 X2 (r)v?(r) VRN
dr v(r) d de(r)+v(r) (r)AsX*(r)

d—1 , Sd /—\2(7‘) 32
y I&d(?ﬁ)d T+ o) — a(r)Agr*(r)

. d—1 1
= Az\ (r){—dzl-l-a(r) —a(r)}

d—1 1
dA; 1+ a(r)

= Ag)\iexp(er) {

1

= Ay\iexp(er) [1 + %Adj‘(z) {exp(er) — 1}]_ dA {1 + a(r)}

x [d =1~ a(r){1+ o(r)}dAy|

and

dAs(1+ @) o = AgA\2exp(er)

_ = dr.
d=1=ddsa(lta) 14 2452 fexp(er) — 1)

(A.122)

(A.123)

(A.124)

(A.125)

(A.126)

- a(r)} [1 + %Ad;\g {exp(er) — 1}] o

(A.127)

(A.128)
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The integration with the initial condition (0) = xo/v becomes

/cx(r) dAd(l + a) do /T Ad/_\(2) eXP(fT) dr (A129)
o 0

o d—1—dAs(e?+a) 1+ §Ad?\§ {exp(er) — 1}
€

or

o(r) b~ ’ A
_/ 1 b (a +1 lb) da = / 3 Ad_AO xpler) dr (A.130)

ap a-+ a—a a+ 0 1 + _AdA(z) {eXp(ET) - 1}
€

g

with

l\')l’—-‘

l\DI’—'

The result is

a+bd
b—1)1
+b{(a+1)ln ao—a+( l)nao-i—b‘}
= —-ln [1+ —Ag\} {exp(er)—l}] (A.133)
or
a—als|a+b o5 . 1
o — a ao+ b - 3

[1 + %Adﬁg{exp(er) - 1}]

- N (A.134)




Appendix B

CALCULATIONS ON ITERATIVE
AVERAGING

B.1 Fourier Transformation of the Navier-Stokes Equ
tion

Here we begin by transforming the equation of motion to Fourier space. Using Egs.

(3.3) and (3.4), we can represent Eq. (3.11) as the Fourier series:

Z {g;u,-(k, T) + tk; ZU,-(q,r)uj(k - q,7)

k> Ae

+ik; Y U;(q, m)ui(k — q,7) + ik; D _ui(g, 7)u;j(k ~ q,7)
q q

”
+ %P(ka 7) + vok’ui(k, T)} exp(tk - z) = 0. (B.1)

Then, in order to eliminate the pressure p(k, 7), we make use of the Poisson equation:

du,, 00, N du,, U, _ _l 0*p B 0?
oz, 0z, Oz, 0x,  p 0r,0z, 0,0z,

(UmUn, — Ul s (B-2)

which can be transformed to Fourier space as follows:

knkn
L2

%p(k, ) = - [Z{Un(q, Vum(k — q,7) + Un(q,7)un(k — q,7)

92
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+un (g, 7)un(k - ¢,7)} (B.3)

Note that @, does not appear in Eq. (B.3) because the wave number £ is defined in

the range k¥ > A.. Hence, Eq. (B.1) is reformed as follows:

Z %ul(kv T) + lk] ;{Uz(q’ T)U'j(k - q,T) + Uj(qa T)ui(k -9, T)

k> Ae
M

&,
+ui(g, 7)uj(k - ¢,7)} + % p(k,7) +vok*ui(k,7)| exp(k-2) =0,  (B.4)

%

where the terms marked with * become

ik S {Ti(q, T)ui(k — q,7) + Uj(q, 7)uilk — q,7) + wi(g, 7)u;(k — q,7)}

bk ST (g, PYun(k — 4,7) + Tn(g, PYum(k — 0,7)

+ik; [— 12

+ un(g TJunlk = 4,7} |

) — kik,k, —
= 1 {iji(an)uj(k - q-/T) - k2 m(an)un(k - q7T)}

q

3

=

Then, each term is reformed by turns:

k]U‘L(q~T)u](k - q, T) - k2 Um(q7T)un(k - 9q, 7—)

= knbinUnm(q, 7)un(k — ¢, 7) — 12 Un(q,7)un(k —g,7)

(B.6)
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— k:k,. k,
kiUi(q,m)ui(k —q,7) —

U.(q, 7)um(k —q,7)

k:k, k,
kjui(qv T)U](k - 4q, T) - k2 uﬂ(q7 T)Um(k -9, T)

= knPi(k)tm(q, T)un(k — q,7)

1

= 3 Ponn(R)um(g,T)un(k — q,7). (B.8)

As a result, transforming Eq. (3.11) to Fourier space yields
0 ) i
— + vk Jui(k,7) = —=Pin.(k) Zum(k, T)un(k —q,7)
or 2 .

—iPimn(k) ZUM(qa T)un(k —-q, T)? (BQ)

for £k > A..

B.2 Iterative Averaging for Velocity Field

By replacing the term (u”w”)_ with its transport equation, we expand the fourth
term of the r.h.s. in Eq. (3.23) up to O (Ul). As a result, many terms appear, most of
which are neglected under conditional averaging in the band A; < ¢ < Aq.

First, after replacing «”u> with its transport equation, the term (u”u”)_ becomes
9 -1
— ZZ (5— + voq® + vo |k — qu>
g T
< Pirnll = )T (7,7) (un(k = g = 7,707 (g, 7)),

+ P @)U (r,7) (un(g = 7, 7)7 (k — g, 7))
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+% Pjinn(k = q) (un(r,T)un(k —q —r,7)u7 (g, 7)),

+ % P2,.(q) (um(r, 7)un(q — 7,77 (k — g, T)>C} : (B.10)

Here, by applying the decomposition, Eq. (3.21), to the components » in Eq. (B.10), the
terms in the bracket { } yield

Prn(k—a){{u;(k~q—r,1)u7(g,7)),

+(uy (k — g =7, 7)u7(q,7)) .} Un(r,7)

+Pn(@) {(us(a =7, 7w} (k — q,7))

+(uX(g =770 (k= g,7)) }Tn(r,7)

45 Bunlk = @) {(u(r, s (k — g = 7, 7)u (g, 7).
+2 (ug(r, m)uy (k=g — v, 7)u? (g, 7)),

+ (un(r, T)u; (k — g — 7, 7)u?(q, 7))}

1

+5 Pon(@) {(us (. s (g = 7 (k= q,7).

2 (us(r )2 (g = vl (k= g,7),

+<u;(r,7)ui(q——r,r) u? (k —q,7’)>c}. (B.11)

From the results of Egs. (3.30) and (3.31), the term (u”u<)_ can be neglected. We also
apply the relation given by Eq. (3.25) to the estimation of the terms (u<u<u”), and

(u”u”u<)_; thus, these terms are assumed to be

(uSuv”), ~uu (v”)

(B.12)

[o}

and

(wu”u<), ~

(v>v”), us (B.13)
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under the condition that the effect of the coupling function A> is small. Eventually, by
applying the relation (3.32) to the term (v>v>),, Eq. (B.10) becomes

—tZ( ) (a + o + vo [k — ql);l

X { P2 02 (k—q—7,7)2(q, 7). Un(r,7)
+Pn(@) (02 (g = 7,7)07 (k = q,7)) Un(r,7)
+ Pk — @) (03 (k — g = 7,7)07 (¢,7)), us(r, )
+P2n(a) (03 (g — 7,707 (k — q,7)) us(r,7)}
- —iZ(Q%f (a% + vog® + vo [k — q|2> B

x {Prnn(k — 9)P2(2)Q2 (4)

+P,.(q) Pk — q)Q2 (Ik — q))} Un(k,7)

_Zz( )<8+Voq + v lk — q|>—1

x {P2..(k — 9)P2(2)Q2 (q)

+P2(a )Pﬁ(k—«n@z(\k—q1>}u;<k,r) (B.14)

‘Note that, in ordinary turbulent shear flows, the mean velocity U, is much larger than the

corresponding fluctuating component uy,. Thus, it is the Un-related term that governs

Eq. (B.14).
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B.3 Integration of Wave Vector

Now we begin by integrating Eq. (3.38) over the wave vector ¢ in the band A; < ¢ <
Ag. After taking the limit L — oo, Eq. (3.38) becomes

—i Jim qu(gg—r) s = {Prnlk — @) P2(q) + P2.(g )P2(k —q)}

xQ>(q) Un(k,7)
- 2y0/47rq {P3nlk — @)P(@) + P (@) PL(k — @)} dg Un(k, 7)
T2 ,/47rq {k O+ Fibim = kzzqu B kjgzqm

_k”—;i]ﬁgm _knggqné +2knq1«;]qmqn O(k"‘)}dq To(ko), (B15)

where E(q)[= 47¢*Q(q)] denotes the energy spectrum for A; < ¢ < Ao. Next, we
introduce the following standard identities for transforming the integration from the wave

vector q to the wave number g¢:

/dq = Sd>/ ¢*ldg (B.16)
S, -
/qaq,adq = —di&w /qd“dq (B.17)
S,
[ auasmasda = gty (Basbs b Gunfiss 4 Susts) [ 43 (B

where Sy is the area of a d-dimensional unit sphere (S3 = 47). Hence, the result of the

integration of Eq. (B.15) with respect to the wave vector ¢ becomes

1 [ME(g) 2 2 -
_v 2 N N .
2o /A g {1 d+d(d+2)}(kl5ﬂ"+kJ51m)qum( ,7)

T /A1 = (thi;pm + 1k;6i) dq U (K, T)

= - {kT,(k,7) + ik;Ui(k,7)} . (B-19)
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B.4 Iterative Averaging for Thermal Field

For the second and third terms of the r.h.s. in Eq. (3.81), there is an inevitable
problem in carrying out the conditional average: the u> mode in real turbulent flow is
always not independent of the u< mode because of the nonlinear term in the Navier-
Stokes equation, i.e., performing the partial average of the 4> mode does affect at least
the property of u< mode. Hence, to avoid this problem, we begin by dividing the »”

mode into two components with respect to another velocity field v~:
u?(g,7) =v7(g,7) + A7 (g, 7), (B-20)

where v is a velocity field of the same type as u” except that it is never coupled to the
u”> modes. Thus, the properties of v> under total averaging, denoted by ( ), are the

same as those of u”:

(v (g, 7)) = (v (g, 7)) (B.21)

and
(v? (@77 (g7)) = (w7 (@ 7)) (7)) (B-22)
On the other hand, the function A> represents the part coupled to the < modes in the

u> modes, the properties of which under total averaging are
(A7 (g,7)) =0 (B.23)

and

(A7(g,7)27 (g, 7)) = 0. (B.24)

Then, the second term can be evaluated as

—Z Ttk —q,7)). = —Z ) t<(k—q,7) = (A7 (g, 7)) t(k —q,7)

(B.25)

2
2
>
2
3
Vv
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which is considered to be negligiby small as compared to the first and fourth terms in Eq.
(3.81) under the condition that the band A; < ¢ < Ao, or the band width parameter
A= (Ao — A1)/ Ao), is sufficiently small (Itazu & Nagano 1997b; Nagano & Itazu 1997b).

The higher wave-number mode ¢> in the third term is also divided into two counter-

parts under the statistical scale-separation assumption:
t(k—q,7)=0>(k—q,7) + A7 (k~-q,T1), (B.26)
so that the third term becomes

—Z >(k—q,7)), = —Zu<(q, ) (67 (k —gq,7)), —>_us(q,7) (A7 (k —q,7)).

q
0

- —Zu (¢,7) (A7 (k- q,7)),

~ O™ (m > 1), | (B.27)

which may be the same order of the second term and is considered to be negligibly small.

B.5 Renormalization Expansion

For the second term of the r.h.s. in Eq. (3.83), we replace the correlation u? (q, 7)t” (k—
q,7) with its transport equation [Eq. (3.87)]:

—Z o (k—q,7)), = lZZ( + vog” + ook — q|2)_1
x [(k; — g;) { (w7 (g, 7)us(r, 7)) T(k —q = 7,7)
+T(r,7) (t(k — g —7,7)u? (g, 7)),
+ (uy(r, Ptk — g — 7, 7)u7 (g,7)). }

B (@) {5 (m(r, T Junlg = 1) (k= 0,7)),

+Tm(r,7) (un(g =7, 7)8 (k —q,7)).}] . (B28)
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Applying Eqs. (3.79) and (3.80) to the fluctuations (u and ¢) in the r.hs. of Eq. (B.28)
yields

zZZ( + voq” + aolk — W)Tm—%mwﬂmmémﬂxﬂhw—mﬂ
+@ﬁmnwﬂnﬂx7w—é—rnrHZumM%m—q—rmwnmﬂn
+U;(r, 1) (£ (k — g — v, 7)u?(q,7)), + (uf(r, 7)< (k — g — 7, T)uf(qﬁ»c
+(uf(r, ) (k — g = v, 7)u? (g, 7))+ (w] (r, 7t (k — g — 7, 7)u? (q,7)).
+{(u} (r, 1) (k— g —7,7)u2(g,7)) }

+P2(a) {5 s (@ = v, )0 (= g, 7)), + (1, 7@ — 710 (k = ,7).

43 W(r, 7 (g = 7, (b~ 4,7)), + Dol 7) (g = 7,70 (k = g,7),

+Tm(r,7) (w3 (g =7, 7)8 (k — g, 7)) }] . (B.29)

Here the (u”t”) -related terms are expanded in sequence by replacing the correlation
(u>t>)_ with its transport equation, the quantitative contribution of which to the turbu-
lent heat flux is considered to be small compared to the T'-related term for simple shear
flow at high Reynolds number limit. The triple correlation consisting of only the higher
wave-number modes should be neglected. Then, the conditional average of the joint cor-
relations between the higher wave-number modes (u” and ¢>) and the lower wave-number
“modes (u< and ¢<) is performed by means of the scale-separation assumption [Eqgs. (B.20),

(B.25)-(B.27)]; thus,

zZZ( + vo0g* + aglk — q|2>_ [(kj_‘Zj){<7~’i>(‘177)v]‘>(7',7')>c7(k—q——r,r)

+uf(r,7) (67 (k — g —7,7)07 (g,7)), + (v ,)>Ct<(k—q—1','r)}
+P7.(q) (v (r,7)0” (k — q,7)) us (g —7,7)]
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~ zZZ( + vog® + aolk — q|2)_ (kj—qj){<v;(q,f)v;(r,f)>c7(k—q-r,f)

+ <v]->(r, 7 (q, r)>c t<(k—q— r,'r)} , (B.30)

where all the A7 and A7 -related terms are neglected. Finally, we pay attention to the
T'-related term as a leading one in Eq. (B.30), and apply the second-order moment for

1sotropic turbulence:

(2am3@m), = (5 Pl@)02 0,75 er (B31)
Sgtq 0 = <—i—)3 /L/L/L exp{—i(q + ¢') - ¢} dz1dz,dz3 (B.32)

to the fundamental velocity field v> as a moment closure hypothesis in our theory. Con-

sequently, the second term of the r.h.s. in Eq. (3.83) can be modeled as

) -1
‘E Tt (k—q,7)), ~ ZZ( )( + voq® + aolk — qlz)

x(kj — ;)P (¢)Q7 (¢,7)T(k,T) (B.33)

relevant to the order of T in the renormalized expansion.



