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Abstract
In conventional HMM-based speech synthesis frame-

work, spectral features are modeled in one stream, and

stream-dependent tree-based clustering was then applied

for tying the model parameters. In this paper, we in-

vestigate several different stream-dependent tying struc-

tures for spectral features by splitting the feature vector

into several streams. One splitting approach is to split

each feature dimension into each stream. Another one

is to split the static and dynamic features into different

streams. Although splitting spectral features into differ-

ent streams would ignore the correlation of context de-

pendency between them, the number of model parameters

can be optimized for each stream after stream-dependent

clustering. From the experimental results, both split-

ting approaches can improve the quality of synthesized

speech. However, the quality of synthesized speech be-

came worse when we combined these two splitting ap-

proaches.

Index Terms: HMM-based speech synthesis, stream-

dependent tying structure

1. Introduction
HMM-based speech synthesis (HTS) has been proposed

for a decade [1]. In this method, spectrum, pitch and du-

ration are modeled simultaneously in a unified framework

of HMMs [2], where continuous probability distributions

are used for spectral modeling and multi-space probabil-

ity distributions (MSD) [3] are used for F0 modeling. In

synthesis, the speech parameter sequence is generated by

maximizing the likelihood of HMMs related to the pa-

rameter sequence under the constraint between static and

dynamic features [4]. Due to its trainable framework and

stable synthesized speech, HMM-based speech synthesis

approach has been widely adopted over recent years.

In the conventional framework of HMM-based

speech synthesis, the feature vector for HMM model-

ing consists of two streams, where one stream is used

for modeling of spectral parameters and another one is

for modeling of F0 parameters. In the model training,

the context dependent models are firstly trained, and then

the stream-dependent tying structure are built by using

decision-tree based context clustering [5]. Since only one

stream is used for modeling of spectral parameters, the

tying structure may not be optimized for each dimension

of spectral parameters.

In this paper, we investigate several stream-dependent

tying structures for spectral parameters by splitting the

spectral feature vector into several streams. Two split-

ting approach are adopted, where one approach is to split

each feature dimension into each stream, and another one

is to split the static and dynamic features into different

streams. We analyze the effect of different stream split-

ting way by considering the number of model parameters

after tree-based clustering and the quality of synthesized

speech.

The rest of paper is organized as follows. In Sec-

tion 2, the conventional stream-dependent tying struc-

ture is introduced. In Section 3, we present the stream-

dependent tying structures after splitting spectral features

into different streams. In Section 4, the experiments

and listening test to evaluate the effect of new stream-

dependent tying structure are described. In Section 5, we

give the conclusions and future work.

2. Stream-dependent tying structure
2.1. Stream structure

In current HMM-based speech synthesis framework, the

speech feature vector used for HMM modeling consists

of spectrum and pitch part. The spectrum part includes

the mel-cepstral coefficients [6] and their dynamic fea-

tures (delta and delta-delta coefficients). The pitch part

includes logarithm of F0 and its dynamic features. The

stream structure is show in Fig. 1(a). In our system, 25th

mel-cepstral coefficients including c(0) are used.

In the spectrum part, there is only one stream for

modeling all of the dimensions of spectrum feature vec-

tor. Considering correlation between different dimen-

sions, we combine them together to train HMMs and per-

form tree-based context clustering.

2.2. Tree-based clustering

When we construct context dependent models with the

combinations of contextual factors such as mora count,

stress and part-of-speech in addition to current, preceding

and succeeding phonemes, the model parameter could be

trained with high accuracy if enough data is available.
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Figure 1: (a) Conventional stream structure; (b) The
structure separating c(0) of mel-cepstral’s vector; (c) The
structure separating c(0) and c(1) of mel-cepstral’s vec-
tor; (d) The structure separating every dimension

However, as contextual factors increase, their combina-

tions also increase exponentially. Therefore, the model

parameters with sufficient accuracy cannot be estimated

with limited training data. Furthermore, it is impossible

to prepare speech database which includes all combina-

tions of contextual factors. To overcome this problem,

a decision-tree based context clustering technique is ap-

plied for tying the model parameters for spectrum, F0 and

duration. Since spectrum, F0 and duration are affected by

different contextual contextual factors, the model param-

eters for spectrum, F0 and duration are clustered indepen-

dently.

3. Stream-splitting approaches
Due to the correlation of context dependency, we com-

bined all dimensions of spectral feature vector and their

dynamic features into one stream. However, we may ig-

nore the model diversity for each dimension or between

static and dynamic features. In order to investigate these

diversities, we try to split the spectral features into inde-

pendent streams as follows.
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Figure 2: (a) The structure separating dynamic features
from static features; (b) The structure Splitting all fea-
tures

3.1. Splitting feature dimensions

3.1.1. Structure separating c(0)

Here we adopt mel-cepstral coefficients with 25-th order

including c(0) as a spectrum feature vector. As we have

known, the lower dimensions of mel-cepstral coefficients

contains much more independent information and com-

plexity than the higher dimensions. Accordingly, it could

be separated as an independent stream for tree-based con-

text clustering. We firstly split one spectrum feature vec-

tor stream into two streams by separating c(0) from other

dimensions. The stream structure after splitting is shown

in Fig. 1(b).

3.1.2. Structure separating c(0) and c(1)

We continue to involve more lower dimensions of mel-

cepstral coefficients, and split the spectral feature into

more streams by separating c(1) by the same way. As a

result, the stream for spectrum feature vector is split into

three streams, and the related stream structure is shown

in Fig. 1(c).

3.1.3. Structure separating every dimension

In order to observe independent influence by each di-

mension of mel-cepstral feature, we split each dimension

of feature vector into independent streams for tree-based

context clustering. The structure with 25 streams for the

spectrum feature vector is shown in Fig. 1(d).

3.2. Splitting static and dynamic features

Not only large diversities may exist in different mel-

cepstral feature dimensions, but also there are differences

between the static and dynamic features. From the results

in [7], the static features contains more complexity than
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the dynamic features. In order to figure out the difference

between static and dynamic features, we split them into

three independent streams, which is shown in Fig. 2(a).

3.3. Splitting all features

Finally, we split each feature dimensions into one stream

by combining the above two stream-splitting approaches,

i.e. 75-dimension spectral feature vector is split into 75

streams. The stream structure is shown in Fig. 2(b). In

this case, the correlations of context dependency between

each dimension of feature vector and that between static

and dynamic features are ignored in the stream dependent

tree-based clustering.

4. Experiments
4.1. Experimental setups

In this experiment, we used the phonetically balanced

503 sentences from ATR Japanese speech database (B-

set, speaker: myi), where the first 450 sentences were

used as training data, and the remaining 53 sentences

were used for evaluation. Speech signal were sampled

at a rate of 16kHz. On the condition of 5ms frame shift,

F0 was extracted by TEMPO [8], and mel-cepstral co-

efficients (mcp) which describe the spectrum of acous-

tic features were extracted by SPTK Toolkit [9]. Fea-

ture vector consists of static features, including 25-th

mel-cepstral coefficients and logarithm of F0, and their

delta and delta-delta coefficients. The system for train-

ing and synthesis was built using HTS-2.1, which is a

hidden-semi Markov model (HSMM) based speech syn-

thesis system [10]. In synthesis, the Mel Log Spectrum

Approximation (MLSA) filter [11] was used to synthe-

size the speech waveform.

4.2. Parameter complexity

As described in Sec. 3, we compared the results of three

stream-splitting approaches. Fig. 3 shows the tree size

after clustering in the baseline and the approach one by

splitting feature dimension into different streams. In

baseline, we combined every dimension feature together,

each dimension have the same number of Gauss distri-

bution after tree-based clustering. In approach one, we

separate c(0), c(0) & c(1) and each dimension of mel-

cepstral coefficients, respectively. From the results, we

confirmed that the lower dimensions of spectrum feature

contain much more independent information and com-

plexity than the higher dimensions. The tree size af-

ter clustering for another splitting approach is shown in

Fig. 4. From the figure, it can be seen that the static

features contains more complexity than the dynamic fea-

tures. The similar result can be found in Fig. 5 for the

case by combining these two splitting approaches to split

all the dimensions of features.
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Figure 3: The tree size of baseline, separating c(0), sepa-
rating c(0) and c(1), and separating every dimension.
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Figure 4: The tree size of static and dynamic features.

4.3. Listening test

We conducted a formal subjective listening test to eval-

uate five types of stream-dependent structure, which in-

cludes the baseline (all dimensions of mcp and their dy-

namic features are combined in one stream), c0 (only

c(0) is separated as one stream), c24 (each dimension of

mel-cepstral feature is split into an independent stream),

c+delta (three streams consist of static and dynamic fea-

tures) and c24+delta (75 streams which include separated

each dimension of mel-cepstral and their dynamic fea-

tures). Ten Japanese listeners participated in the test.

Each listener evaluated 15 sets of samples, where each

set includes five synthesized speech from the above five

systems, and gave a score from 1(bad) to 5(good) on the

quality of synthesized speech. The speech samples were

randomly selected for each listener from the 53 test sen-

tences of each set.

The result of listening test is shown in Fig. 6. It can be

seen from the figure that the quality of synthesized speech

was improved when we separate the dimension of mel-

657



0

1000

2000

3000

4000

5000

6000

7000

8000

c(0) c(2) c(4) c(6) c(8) c(10) c(12) c(14) c(16) c(18) c(20) c(22) c(24)

The order of mcp dimension

N
u

m
b

er
 o

f 
G

au
ss

 d
is

tr
ib

u
ti

o
n

s

C

  C

   C
2

Figure 5: The tree size of every dimension’s static and
dynamic features.
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Figure 6: the result of listening test.

cepstral coefficients, or when we separate the static and

dynamic features. Although splitting the spectral feature

into different streams may ignore the correlation of con-

text dependency between them, the model complexities

can be optimized for each spectral features in tree-based

clustering. The improvement of synthesized speech is

benefited from this. However, the quality of synthesized

speech became much worst when we combined these two

splitting approach to split every dimension into an in-

dependent stream and separate their static feature from

dynamic features. This indicates the ignorance of con-

text dependency between each dimension result in a seri-

ous problem in such extreme case. Therefore, we should

make a tradeoff by considering the model complexity of

each features and the correlations between them.

5. Conclusions and future work
In this paper, we adopt three stream-splitting approaches

to split the spectral feature vector into different streams,

and investigate the effect on the tree-based context clus-

tering and the model training. The experimental results

show that separating each dimension of mel-cepstral co-

efficients or separating static features and dynamic fea-

tures into different streams can improve the quality of

synthesized speech. However, the results became much

worse when separating all of the feature dimensions by

combining both splitting approach, which indicates that

we need to make a tradeoff between the model complex-

ity and the correlation of context dependency for each

spectral features.

Future work is to explore better stream-dependent ty-

ing structures by involving another spectrum feature such

as line spectral pairs.
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