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Abstract

A minimum generation error (MGE) criterion had been pro-
posed to solve the issues related to maximum likelihood (ML)
based HMM training in HMM-based speech synthesis. In this
paper, we improve the MGE criterion by imposing a log spectral
distortion (LSD) instead of the Euclidean distance to define the
generation error between the original and generated line spectral
pair (LSP) coefficients. Moreover, we investigate the effect of
different sampling strategies to calculate the integration of the
LSD function. From the experimental results, using the LSDs
calculated by sampling at LSPs achieved the best performance,
and the quality of synthesized speech after the MGE-LSD train-
ing was improved over the original MGE training.

Index Terms: Speech synthesis, HMM, minimum generation
error, log spectral distortion, line spectral pairs

1. Introduction

Speech synthesis has been studied for several decades, and
many effective methods and techniques had been developed. In
recent years, HMM-based speech synthesis was proposed [1].
In this method, the spectrum, pitch and duration are modeled
simultaneously in a unified framework of HMMs [2], and the
parameter sequence is generated by maximizing the likelihood
of the HMMs related to the parameter sequence under the con-
straint between static and dynamic features [3]. Under its sta-
tistical training framework, it can learn salient statistical prop-
erties of speakers, speaking styles, emotions, and etc., from the
speech corpus. The recent improvements and implementations
[4, 5, 6] showed its potential to realize a speech synthesis sys-
tem with high quality and flexibility.

In the conventional HMM-based speech synthesis frame-
work, Maximum Likelihood (ML) criterion was adopted for
HMM training. Although its performance is quite good, there
are two issues [7] related to ML-based HMM training, includ-
ing the mismatch between training and application of HMM,
and the ignorance of constraint between static and dynamic fea-
tures. In order to resolve these two issues, a minimum genera-
tion error (MGE) criterion had been proposed for HMM train-
ing [7], where a generation error function was firstly defined,
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spectral distortion measure. In fact, there are many meaningful
spectral distortion measures which were popularly used, such as
log spectral distortion (LSD), Itakura-Saito distortion, and etc
[11]. In this paper, we adopt the LSD to replace the Euclidean
distance for generation error definition in MGE criterion, and
reformulate the updating rules for model parameters. Because
the integration in LSD calculation cannot be solved directly, we
need to compute it by numerical integration, where the integral
is approximated by accumulating the values of integrand at cer-
tain sampling points. In addition, we investigate the effects of
two sampling ways for LSD calculation, including equidistant
sampling and sampling at LSP frequencies.

The rest of the paper is organized as follows. In section 2,
we briefly review the parameter generation algorithm, the MGE
criterion for HMM training, and the properties of LSP. In sec-
tion 3, we present the details of imposing the LSD to define
the generation error for LSPs in MGE criterion, and formulate
the related updating rules for model parameters. In section 4,
we describe the experiments to evaluate the effectiveness of the
MGE training with the LSD, and show the results. Finally, our
conclusions are given in section 5.

2. Related techniques
2.1. Parameter generation algorithm

For a given HMM A\ and the state sequence g, the parame-
ter generation algorithm is to determine the speech parameter
vector sequence o [01,0],...,07]" which maximizes
P(0]g, \). In order to keep the smooth property of the gener-
ated parameter sequence, the dynamic features including delta
and delta-delta coefficients A ¢, (n = 1,2) are used, i.c., the
parameter vector can be rewritten as

TjA(2)C;F]T

0; = C:,A(l)c

(M

The constraints between static and dynamic feature vector can

T
be formulated as o = W, where ¢ = [clT, ca,. .., CH .
Due to limited space, here the details of W are not given, which
can be found in [3, 7].

Under this constraint, parameter generation is equiva-

and the HMM parameters were optimized by using probabilis- lent to determining ¢ to maximize P(o[),q). By setting
tic descent (PD) [8] method so as to minimize the total genera- dP(o|X, q)/0c = 0, we obtain
tion errors of training data. Furthermore, it had been applied to _ 1
the tree-based clustering for context dependent HMMs and the Cq = Ry rq, )
whole HMM training procedure [9]. where

In original MGE criterion, the Euclidean distance was
adopted to measure the distortion between the original and gen- R, = WTE; 'w, rq = WTE; ! U, 3)
erated acoustic features. Although we used line spectral pairs
(LSP) [10] as the spectral feature for HMM modeling, the Eu- and pg = (i ,...,pr) T and B, = diag (21,...,S7) are

clidean distance between two LSPs is not so convincing as a
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the mean vector and covariance matrix related to g, respectively.
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2.2. Minimum generation error criterion

In previous MGE criterion [7], the Euclidean distance was
adopted to measure the distortion between the original and gen-
erated feature vectors, which is calculated as

_ S 2
De(e,eq) =l ¢ —¢q ||

4)

Although the posterior probability P(g|\, o) can be used to
weight the distance for all possible state sequence g, it is com-
putationally expensive for this direct calculation. Therefore, the
representative n-best paths can be used to approximate the gen-
eration error. In the real implementation, only the optimal state
sequence is used and the generation error is defined as

where ¢ is the optimal state sequence for o. In fact, this refers
to a Viterbi-type MGE training. In the following part of this
paper, we use g to denote ¢ by default.

Based on the generation error measure, the parameter gen-
eration process is incorporated into HMM training for calculat-
ing the total generation errors for all training data, which is

A) = elen,N),

where N is the total number of training utterances.

Finally, the object of MGE criterion is defined, which is to
optimize the parameters of HMMSs so as to minimize the total
generation errors

(6)

A = argmin E()). 7

As direct solution for Eq. (7) is mathematically intractable,
probabilistic descent (PD) [8] method was adopted for param-
eter optimization. The details of updating rules for mean and
variance parameters in MGE training can be found in [7].

2.3. Line spectral pairs

In this paper, line spectral pairs (LSP) is adopted as the spectral
feature for HMM modeling. Here we review some properties
of LSP. LSP is derived from LPC (linear prediction coefficient)
filter. An LPC filter is defined as

®)

Ap(z) =14 a1z " +asz >+ F+anz ?, )

where p is the order of LPC filter, and G is the gain.
For a given p-th order LPC filter, we can construct two ar-
tificial (p + 1)-th order polynomials, which are

P(2) =A,(2) + 27 AT,
Q) =Ap(z) — PP AR,

(10)
(In

The LSP coefficients are related to the roots of the LSP polyno-
mials. Lets denote ¢/“¢ and e™“i(i = 1,...,p) as the roots
of LSP polynomial, where w; are the LSP coefficients. Without
loss of generality, we assume the order p is even number in
the rest of the paper. The polynomials P(z) and Q(z) can be
rewritten as

P(z)=(z+ V][]
Q) =(z-1D[]* (-

i=1

P
2
zZ—€

(12)
(13)
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The LSP coefficients have several useful properties. Firstly,
the LSP has good interpolation property, which is suitable for
HMM modeling and generation. Secondly, a cluster of adjacent
LSPs characterizes a formant frequency, and the bandwidth of
a given formant depends on the closeness of the corresponding
LSPs. Furthermore, the spectral sensitivities of LSPs are local-
ized, i.e., a change in a given LSP produces a change in the LPC
power spectrum only in its neighborhood.

3. MGE with log spectral distortion
3.1. Log spectral distortion for LSPs

The log spectral distortion (LSD) between the original and gen-
erated LSP feature vectors is calculated as

= | oglAc()] — tog | Ae(@)* o (19

where A.(w) and Az (w) are the spectra related to ¢; and &, re-
spectively. Based on the definition of LSP in Egs. (10)-(13), the
power spectrum corresponding to a set of LSP can be calculated
as

Dysa(cy, )

AP =7 IP@F+IRWPE, (5

where
|P(w)|* =4 cos® —l_IZ ) 4 (cosw —coscai1)*,  (16)
|Q(w)|* =4sin* %Hilél (cosw — cos c2i)” . 17

From Egs. (14)-(17), it is difficult to formulate the direct so-
lution for the integration in Eq. (14). An alternative is to use a
numerical integration to approximate the integral, which is cal-
culated by accumulating values of integrand at certain sampling
points. Then Eq. (14) can be rewritten as

Disa(et, 6) == Z [log |Ac(ws)| — log | As (ws)|]27 (18)

where
(25 — 1)7r’ (19)

28
and S is the number of sampling points. It can be seen that
the approximation becomes more accurate when S increases.
However, the computational cost increases simultaneously. We
need to set an appropriate value for S to balance the accuracy
and efficiency.

The above numerical integration can be regarded as an
equidistant sampling of power spectrum in the frequency do-
main. Accordingly, other sampling strategies can also be ap-
plied. Here we sample the power spectrum on each LSP fre-
quency, and calculate the integral as

s=1,2,...,5,

ws =

12
Dysa(ee, Et) :;BZ [log |Ac(ws)| — log |As(ws)|]?, (20)
s=1

where
s=1,2,...,p 21)
and ¢y, i, is the k-th coefficient of the original LSP vector c;.
Compared to the equidistant sampling, the advantage of this
sampling strategy is that it implicitly puts more weight on spec-
tral peaks, and less weight on spectral valleys, which is due to
one of the properties of LSP that there are more LSPs around
spectral peaks. This is coincident with the human perception,
which is more sensitive on spectral peaks than spectral valleys.

Ws = Ct,s,



3.2. MGE-based Parameter updating

With the log spectral distortion, we define a new generation er-
ror function for the original LSP Vector sequence c as

E Dysa(c, €t)

_ T JI T
where €, = [¢{,€5,...,e7] is the generated LSP vector
sequence. Finally, the new MGE training algorithm is to mini-
mize the total generation errors

€' (c,\) = Disa(c, Eq) 22)

= argmmz (eny ), (23)
with respect to
T T 717
H:[/l’layﬂw'wp/}(] ) (24)
U=[=30 50 (25)

where p;, and 3, are the mean vector and covariance matrix of
the k-th unique Gaussian component, and K is the total number
of Gaussian components in the model set \.

The PD method [8] is adopted here for parameter optimiza-
tion. For each training utterance ¢, the parameter set is updated
as

9¢'(er,\)
oA ’

A=Ar
where H - is a positive definite matrix, and €, is a learning rate
that decrease when utterance index 7 increase.

For the mean and variance parameters, the gradients of the
generation error function are calculated as

)\7'+1 =Ar e H, (26)

%};’) =28] X 'WR, ¢, 7)
9e'(CrN) 96T diag—! (W RS We 28
oU - g d1ag ( q C(l”/qi Cl]))v ( )
where
s, = diag(S,U), (29)
Hq = Sqm, (30)
T
¢=¢lcd ] (1)
G =1[Cen, Cras oGl (32)
1 S
Gi = 55 ; [log [Ac(ws)| — log | Ac(ws)[]
(i) 2
PO o)
\Aé(ws)|2 COSWs — COS Ct,;
X () = ¢ Polon)sTisodd (34)
Qz(ws), iiseven

In the above equations, Sq is a 3DT x 3DK matrix whose
elements are 0 or 1 determined according to the optimal state
sequence q for ¢,. The operation of diag(.) is to convert a
3DT x 3D matrix to a 3DT x 3DT block-diagonal matrix
with a block size of 3D, and diag™"(.) is the inverse operation
of diag(.).

It should be noted that the above formulation of updating
rules are valid for both LSDs calculated by the equidistant sam-
pling and by sampling at LSP frequencies. The only differences
between them are the number of sampling points .S and the po-
sitions of sampling points ws.
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Relative reduction of generation errors after MGE

4. Experiments
4.1. Experimental setups

We used the phonetically balanced 503 sentences from ATR
Japanese speech database (B-set, MHT) in this experiments.
The first 450 sentences were used as the training data, and the
remaining 53 sentences were used for evaluation. The speech
signals were sampled at a rate of 16kHz. The acoustic features
include FO and LSP coefficients, where LSP coefficients were
calculated based on spectra extracted by STRAIGHT [13]. The
feature vector consists of static features (including 24-th LSP
coefficients, logarithm of gain and logarithm of F0), and their
delta and delta-delta coefficients. A 5-state left-to-right no-skip
HMM was used, and MSD-HMM [12] was adopted for FO mod-
eling. In synthesis, the STRAIGHT synthesis filter was used to
synthesize the speech waveform.
The HMM training in this experiment was performed as
follows. First, the conventional ML-based HMM training pro-
cedure was conducted. Then the optimal state alignment for
all training data were obtained using the ML-trained HMMs.
With the state alignments, the MGE training was performed to
re-estimate the parameters of clustered HMMs. In the experi-
ments, we conducted the MGE training with different configu-
rations, which are as follows:
a) Original MGE training with Euclidean distance measure
(MGE-ECD);

b) MGE training with LSD which is calculated by equidis-
tant sampling, where S were set to 32 and 512;

¢) MGE training with LSD which is calculated by sampling
at LSP frequencies and zero point, i.e., S = 25;

Since we aim to compare the effectiveness of MGE training
with different spectral distortion measures, only spectrum part
of model parameters were updated in MGE training.

4.2. Experimental results
4.2.1. Effect of sampling strategies

Fig. 1 shows the relative reduction of generation errors on the
test data after MGE training, which includes the Euclidean dis-
tance between original and generated LSPs (i.e., ECD errors)
for several typical dimensions, and the LSDs between original
and generated LSPs (i.e, LSD errors). From this figure, al-
though the original MGE-ECD training focus on minimizing
the ECD errors, the LSD errors are alleviated in certain extent
as a by-product. After the MGE-LSD training, the LSD errors
is largely reduced, especially for the case that the LSD is calcu-
lated by sampling at LSPs. However, the improvement for the
ECD errors is less than that after the MGE-ECD training. and
the relative reduction rates for some dimensions (e.g., 11th and
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Figure 2: Preference scores for different sampling strategies

21th) are even less than 0, which means the ECD errors is worse
than the baseline ML training. Since the calculation of LSD in
Eq. (14) is based on all dimension of LSPs, minimization of the
LSD errors does not guarantee the reduction of the ECD errors
for each dimensions. From this point, the effect of MGE-LSD
training is reasonable.

In order to evaluate the performance of different sampling
strategies in MGE-LSD training, we conducted a formal sub-
jective listening test. The quality of synthesized speech was
compared by a paired comparison. Three sampling strategies
including the equidistant sampling on 32 (LSD-E32) and 512
(LSD-E512) points, and the sampling at LSP frequencies with
zero point (LSD-L25). Eight Japanese listeners participated in
the test. They were presented pairs of synthesized speech in
random order, and asked which one sounded better. For each
listener, 25 test sentences were randomly selected from the 53
test sentences.

Fig. 2 shows the preference scores with 95% confidence
interval. It is obvious that the sampling at LSP frequencies
achieve the best performance, which is coincident with our de-
scription of its advantage in Section 3.1. Moreover, by compar-
ing scores of LSD-E32 and LSD-E512, there is no improvement
when increasing the number of sampling points from 32 to 512.

4.2.2. Effect of MGE-LSD training

Finally, a subjective listening test was conducted to evaluate the
effectiveness of MGE-LSD training by comparing it with ML
and MGE-ECD training. The setting of MGE-LSD-L25 was
adopted based on the experiment in Sec. 4.2.1. The synthesized
speech samples from the models trained by above three training
procedures were compared by paired comparison. Other setting
of the listening test is the same as the previous one.

The results are shown in Fig. 3. It can be seen that the
MGE training significantly improves the quality of synthesized
speech over the original ML training, and the performance
of MGE-LSD training is better than that of MGE-ECD train-
ing. By comparing the synthesized speech after MGE-ECD and
MGE-LSD training, we found that the clearness of synthesized
speech was improved, and the artificial effect was reduced after
MGE-LSD training.

5. Conclusions

In this paper, a log spectral distortion (LSD) is incorporated into
MGE training by replacing the Euclidean distance to define the
generation error between original and generated LSPs. We in-
vestigated the effect of different sampling strategies, including
equidistant sampling in frequency domain and sampling at LSP
frequencies, to calculate the integration of LSD function. Ex-
periment results showed that using the LSDs calculated by sam-
pling at LSP frequencies achieved the best performance, and the
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Figure 3: Preference scores for different training procedures

quality of synthesized speech after the MGE-LSD training was
improved over the original MGE-ECD training.
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