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Abstract
This paper proposes a technique of reducing footprint of HMM-
based speech synthesis systems by tying all covariance matri-
ces. HMM-based speech synthesis systems usually consume
smaller footprint than unit-selection synthesis systems because
statistics rather than speech waveforms are stored. However,
further reduction is essential to put them on embedded devices
which have very small memory. According to the empirical
knowledge that covariance matrices have smaller impact for the
quality of synthesized speech than mean vectors, here we pro-
pose a clustering technique of mean vectors while tying all co-
variance matrices. Subjective listening test results show that the
proposed technique can shrink the footprint of an HMM-based
speech synthesis system while retaining the quality of synthe-
sized speech.
Index Terms: HMM, speech synthesis, decision tree, context-
clustering, MDL criterion, embedded device

1. Introduction
Currently the most popular speech synthesis technique is unit
selection synthesis [1–3], where appropriate sub-word units are
selected from large speech databases. Although this technique
can synthesize high quality synthesized speech, we need to
record large speech databases. Furthermore, this system usually
requires too large footprint to put it on embedded devices such
as mobile phones, PDAs, car navigation systems, and game ma-
chines.

A statistical parametric speech synthesis system based on
HMMs [4] has grown in popularity in recent years. Figure 1 il-
lustrates the overview of a typical HMM-based speech synthesis
system. In this system, the spectrum, excitation, and duration
of speech are modeled simultaneously by context-dependent
HMMs, and speech parameter trajectories are generated from
the HMMs themselves under constraints between static and dy-
namic features. One of the attractive points of HMM-based
speech synthesis is its footprint. The HMM-based system usu-
ally has smaller footprint than the unit selection system, be-
cause statistics rather than speech waveforms are required to
be stored. However, further reduction is essential to put it on
embedded devices which have very small memory.

Speech parameters such as spectrum, excitation, and dura-
tions depend on a variety of contextual factors such as phoneme
identities, accent types, and part-of-speech. In the HMM-based
speech synthesis system, context-dependent models are used to
capture these contextual factors. If more combinations of the
above contextual factors are taken into account, we should be
able to obtain more accurate models. However, as the number
of contextual factors increases, the number of possible combi-
nations also increases exponentially. As a result, it is difficult
to robustly estimate model parameters because of lack of train-
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Figure 1: Overview of HMM-based speech synthesis system.

ing data. Furthermore, it is impossible to cover every possible
combination of contextual factors with a finite set of training
data. Although a variety of parameter tying techniques have
been developed [5–9] to avoid this problem, a decision tree-
based context-clustering technique [10] has been widely used.
In the HMM-based speech synthesis system, distributions of
spectrum, excitation, and duration are clustered individually be-
cause they have their own contextual dependency.

In this technique, a top-down clustering is performed so as
to maximize the likelihood of model to the training data by us-
ing questions about contexts. Then, HMM states (or streams)
which are clustered into the same leaf node are tied. Unseen
models can be generated by traversing the decision trees. Var-
ious criteria to select questions to be used and nodes to be
split [11–13] and techniques to extend single Gaussian distri-
bution to mixture of Gaussian distributions [14, 15] have been
proposed.

Conventionally we construct an HMM stream-level tying
structure in HMM-based speech synthesis, i.e., mean vectors
and covariance matrices have exactly the same parameter tying
structure (Fig. 2 (a)). However, we empirically know that co-
variance matrices have smaller impact for the quality of synthe-
sized speech than mean vectors. Based on this knowledge, this
paper proposes a context-clustering technique of mean vectors
while tying all covariance matrices (Fig. 2 (b)). If each parame-
ter is stored in single-precision floating-point number (4 Bytes)
and the dimensionality of Gaussian distributions is 120, approx-
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Figure 2: Context-dependent parameter tying structure built by
conventional and proposed clustering techniques.

imately 938 KBytes are required to store 1,000 Gaussian with
diagonal covariance matrices distributions (statistics associated
to the leaf nodes). However, by tying all covariance matrices, it
reduced to almost half (469 KBytes).

The rest for this paper is organized as follows. Section 2
describes the proposed decision tree-based context-clustering
technique of mean vectors while tying all covariance matrices.
Subjective listening test results are shown in Section 3. Con-
cluding remarks and future plans are presented in Section 4.

2. Tying covariance matrices
2.1. Decision tree-based context clustering

In the decision tree-based context-clustering technique, a top-
down clustering is performed so as to locally maximize the like-
lihood of model to the training data using pre-defined questions
about contexts. Then, mean vectors and covariance matrices of
HMM states (or streams) clustered to the same leaf (terminal)
node are tied. As a result, HMM state-level (or stream-level)
tying structure can be constructed. The mean vector and the co-
variance matrix associated to the leaf node S, µS and ΣS , can
be estimated based on the ML criterion as
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where T is the total number of frames in the training data, MS

is a set of HMM states (or streams) clustered to the leaf node
S, and γm (t) is the posterior probability of an HMM state (or
stream) m for an observation vector at frame t, ot. The total
log likelihood of the Gaussian distribution of node S to the as-
sociated training data is calculated as
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where n is the dimensionality of µS .
The minimum description length (MDL) criterion [11] has

been used in the HMM-based speech synthesis system to au-
tomatically control the size of decision trees. When cluster S
is divided to Sq+ and Sq− by a question q, the change of total
description length by this split is calculated as follows:

∆q = L (S) −
n

L (Sq+) + L (Sq−)
o

+ α
N

2
log Γ (S0) , (4)

where S0 denotes a root node, α is a heuristic weight for the
penalty term of the MDL criterion, N is the number of parame-
ters increased by this split, and

Γ (S) =

T
X

t=1

X

m∈MS

γm (t) . (5)

If all covariance matrices are diagonal covariance matrices,
N = n+n. Note that the context-clustering based on the MDL
criterion can be viewed as that based on the ML criterion whose
threshold is given as αN

2
log Γ (S0).

2.2. Context clustering while tying all covariance matrices

The decision tree-based context-clustering techniques used in
HMM-based speech synthesis system construct HMM state- or
stream-level tying structure, i.e., the same tying structure is used
for both mean vectors and covariance matrices. However, we
empirically know that mean vectors have more impact for the
quality of synthesized speech than covariance matrices. For ex-
ample, even we manually modify values of covariance matrices,
speech parameter trajectories generated from the original and
modified models are almost identical. In this paper, we con-
struct tying structure of mean vectors by using decision trees
while tying all covariance matrices.
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If all covariance matrices are tied, the total log likelihood
of the leaf node S to the associated training data is calculated
as follows:
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where Σg is a globally tied covariance matrix. Note that Σg is
fixed in the context-clustering process because of large compu-
tational cost.

When cluster S is divided to Sq+ and Sq− by a question q,
the change of total description length by this split is calculated
as follows:

∆′
q = L′ (S) −

˘
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¯

+ α
N

2
log Γ (S0) .

(7)

Unlike Eq. (4), N becomes n in this case because only mean
vectors are split. We can expect that the proposed technique can
efficiently reduce the footprint of HMM-based speech synthesis
systems while retaining the quality of synthesized speech.

3. Experiments
3.1. Experimental condition

To evaluate the effectiveness of the proposed technique, subjec-
tive listening tests were conducted. The first 450 sentences of
the phonetically balanced 503 sentences from the ATR Japanese
speech database B-set [16], uttered by male speaker MHT, were
used for training. The remaining 53 sentences were used for
evaluation. Speech signals were sampled at 16kHz and win-
dowed with a 5-ms shift, and mel-cepstral coefficients [17] were
obtained from STRAIGHT spectrum [18]. Feature vectors con-
sisted of spectrum and excitation parameters. The spectrum pa-
rameter vectors consisted of 39 STRAIGHT mel-cepstral co-
efficients including the zero coefficient, their delta and delta-
delta coefficients. The excitation parameter vectors consisted
of log F0, its delta and delta-delta. A seven-sate (including the
beginning and ending null states), left-to-right, no skip struc-
ture was used for hidden semi-Markov model [19]. The spec-
trum stream was modeled by single multi-variate Gaussian dis-
tributions. The excitation stream was modeled by a multi-
space probability distribution consisting of a Gaussian distri-
bution for voiced frames and discrete distribution for unvoiced
frames. Each state-duration distribution was modeled by a five-
dimensional (equal to the number of emitting states in each
phoneme model) multi-variate Gaussian distribution. The de-
cision tree-based context-clustering technique was separately
applied to distributions for spectrum, excitation, and state du-
ration. A speech parameter generation algorithm considering
global variance (GV) [20] was used for parameter generation.

The MDL criterion [11] was used to control the size of de-
cision trees. We changed the heuristic weight for the penalty
term of α to construct acoustic models with various number of
parameters. The weights used here were 8.0, 4.0, 2.0, 1.0, 0.5,
and 0.25. Although the decision tree-based context-clustering
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Figure 3: Experimental results: Type of covariance tying struc-
ture. The same mean tying structures are constructed.

technique was separately applied to distributions for spectrum
and excitation, the same α was used.

Ten subjects participated in these listening tests. Ten sen-
tences were randomly selected from 53 sentences for each sub-
ject. The subjects were asked to rate the naturalness of syn-
thesized speech with a scale from 1 (completely unnatural) to
5 (natural). All experiments were carried out in a sound-proof
room using head-phones.

3.2. Experimental results

The first listening test was designed to confirm the empirical
knowledge that covariance matrices have small impact for the
quality of synthesized speech. The following two methods were
evaluated;

BASELINE : The same tying structure was used for both
mean vectors and covariance matrices.

TIED DIAGC (Same structure) : Although the tying struc-
ture of mean vectors was exactly the same as BASE-
LINE, all covariance matrices were tied.

Figure 3 shows the subjective listening test results. It can
be seen from the figure that TIED DIAGC (Same structure)
achieved almost the same subjective scores with almost the half
number of parameters (footprint) when α = 1.0. It also shows
that tying covariance matrices looks more efficient than reduc-
ing the size of decision trees to achieve the same footprint.

The second listening test evaluated the performance of the
proposed clustering technique while tying all covariance matri-
ces. The following two methods were compared;

BASELINE : The same tying structure was used for both
mean vectors and covariance matrices.

TIED DIAGC (Proposed) : Mean vectors were clustered by
decision trees while tying all covariance matrices.

Figure 4 shows the experimental results. It can be seen from
the figure that TIEDGC (Proposed) significantly reduced the
number of parameters. Furthermore, it achieved slightly bet-
ter subjective scores. On the other hand, only TIED DIAGC
system with α = 0.25 reduced scores. Although the number
of parameters decreased by using the proposed technique, the
number of mean parameters increased. Therefore, it seems that
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Figure 4: Experimental results: Type of covariance tying struc-
ture. Different mean tying structures are constructed.

training data was lacking. When each parameter is stored in
single-precision floating-point number (4 Bytes), the footprint
of BASELINE with α = 1.0 is about 813 KBytes. However,
TIED DIAGC (Proposed) with α = 1.0 requires 649KBytes.
Furthermore, TIED DIAGC (Proposed) with α = 2.0 con-
sumes only 300KBytes while retaining the quality of synthe-
sized speech close to BASELINE with α = 1.0.

Table 1 shows the number of leaf nodes of each system with
α = 1.0. By using the proposed technique, the number of mean
parameters increased. It seems that degradation of quality of
synthesized speech by tying covariance matrices was reduced
by incrementation of the number of mean parameters.

4. Conclusions
This paper proposed a technique of reducing the footprint of
HMM-based speech synthesis systems by tying all covariance
matrices. The experimental results showed that the proposed
technique efficiently shrinked the footprint of an HMM-based
speech synthesis system to less than half of its original size
while retaining the quality of synthesized speech. Future work
includes applying this technique to full covariance matrices and
comparing it with semi-tied covariance matrices [21].
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Table 1: Comparison of number of leaf nodes.

Number of leaf nodes
Spectrum F0

Mean Covariance Mean Covariance
BASELINE 808 808 2015 2015
TIED DIAGC 1311 1 2210 1
(Proposed)
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