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Abstract

This paper proposes a Bayesian approach to hidden semi-
Markov model (HSMM) based speech synthesis. Recently, hid-
den Markov model (HMM) based speech synthesis based on the
Bayesian approach was proposed. The Bayesian approach is a
statistical technique for estimating reliable predictive distribu-
tions by treating model parameters as random variables. In the
Bayesian approach, all processes for constructing the system are
derived from one single predictive distribution which exactly
represents the problem of speech synthesis. However, there is
an inconsistency between training and synthesis: although the
speech is synthesized from HMMs with explicit state duration
probability distributions, HMMs are trained without them. In
this paper, we introduce an HSMM, which is an HMM with
explicit state duration probability distributions, into the HMM-
based Bayesian speech synthesis system. Experimental results
show that the use of HSMM improves the naturalness of the
synthesized speech.

Index Terms: speech synthesis, HSMM, Bayesian approach

1. Introduction

A statistical speech synthesis system based on hidden Markov
models (HMMs) was recently developed. In the HMM-based
speech synthesis, spectrum, excitation and duration of speech
are modeled simultaneously by HMMs, and speech parameter
sequences are generated from the HMMs themselves [1]. The
maximum likelihood (ML) criterion has been typically used for
training HMMs and generating speech parameters, and the min-
imum description length (MDL) criterion has been employed to
select the model structure [2]. However, since the ML criterion
produces a point estimate of HMM parameters, the estimation
accuracy may be degraded when small training data is available.
Because the MDL criterion is based on the asymptotic assump-
tion, it is ineffective when the amount of training data is small.

A framework of speech synthesis based on the Bayesian
approach was recently proposed [3]. In this framework, all pro-
cesses for constructing the system are derived from one sin-
gle predictive distribution which exactly represents the prob-
lem of speech synthesis. The Bayesian approach assumes that
model parameters are random variables and reliable predictive
distributions are estimated by marginalizing model parameters.
However, the estimation of posterior distributions of latent vari-
ables lead to a huge computational cost. To overcome this prob-
lem, the variational Bayesian method has been proposed as a
tractable approximation method of the Bayesian approach [4]
and it shows a good performance in the HMM-based speech
recognition [5]. In the model selection, since the Bayesian
approach does not use an asymptotic assumption as the MDL
criterion, it is available even in the case where the amount of
training data is small. In the Bayesian approach, an appropri-
ate model structure can be selected by maximizing the marginal
likelihood [5, 6].
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In the HMM-based speech synthesis, rhythm and tempo are
controlled by state duration probability distributions. One of
major limitation of HMMs is that they do not provide an ade-
quate representation of the temporal structure of speech. This
is because the probability of state occupancy decreases expo-
nentially with time. To overcome this limitation, in the HMM-
based speech synthesis system, each state duration probability
distribution is explicitly modeled by a single Gaussian distri-
bution. They are estimated from statistics obtained in the last
iteration of the forward-backward algorithm, and then clustered
by the decision tree-based context clustering [7, 8]. In the syn-
thesis part, we construct a sentence HMM corresponding to an
arbitrarily given text and determine state durations which max-
imize their probabilities. Then, a speech parameter sequence is
generated for the given state sequence by the speech parameter
generation algorithm [9]. However, there is an inconsistency
between training and synthesis: although speech is synthesized
from HMMs with explicit state duration probability distribu-
tions, HMMs are trained without them. To overcome this incon-
sistency, hidden semi-Markov model (HSMM) based speech
synthesis has been proposed [10]. This framework introduces
an HSMM, which is an HMM with explicit state duration prob-
ability distributions, into not only for synthesis but also training
in the HMM-based speech synthesis system. In this paper, we
propose a Bayesian approach to the HSMM-based speech syn-
thesis. Using HSMMs as acoustic models, the proposed method
outperforms the HMM-based Bayesian speech synthesis.

The rest of this paper is organized as follows. Section 2
describes the relation between HMM and HSMM. Section 3
describes th Bayesian approach to speech synthesis. HSMM
based Bayesian speech synthesis is described in Section 4. In
Section 5, subjective listening test results are presented. Con-
cluding remarks and future work are presented in final section.

2. Hidden semi-Markov model
2.1. Likelihood computation of the HMM

The model likelihood of an HMM A for an observation vector
sequence 0 = (01, - - - , o7 ) can be computed efficiently by the
forward-backward algorithm. First, we define partial forward
likelihood i () as follows:

ai(j) P(oy,--,04,q: =7 | A)

N
Zat—l(i)aijbj(oz), 1<t<T,1<j<N(@D
i=1

where a;; is a state transition probability from ¢-th state to j-th
state, b;(0¢) is an output probability of observation vector o,
from j-th state, IV is a total number of HMM states. To begin
the recursion Eq. (1), we set a1 (j) = 7;b;(01),1 < j < N,
where 7; is an initial state probability of j-th state. Secondly,

6— 10 September, Brighton UK



partial backward likelihood (3;(-) is defined as follows:
Be(2)

P(0t+17"' , 0T | qt+1 :i,A)

N
> aibi(0i41)Bipa (i), 1<t<T,1<i<N2)
j=1

To begin the recursion Eq. (2), we set fr(i) = 1,1 < i <
N. From Egs. (1) and (2), the model likelihood P(o | A) is
computed as

Plo|A) =) au(i)-Bu(i). 1<t<T 3)

2.2. Likelihood computation of the HSMM

The model likelihood of an HSMM A for an observation vector
sequence 0 = (01, ,0r) can be computed efficiently by
the generalized forward-backward algorithm. We can compute
partial forward likelihood o} (-) and partial backward likelihood
B4 (+) recursively as follows:

ap(j) = @
t N’
ar(j) = Y. > at_a(i)ai;pi(d)
d=11i=1,j#j
t
< ] bilos), 1<t<T )
s=t—d+1
Br@) = 1, (6)
T—-t N’
Bi(i) = P AC)
d=1 j=1,j#i
t+d
x ] bi(0s)Bisali), 1<t<T (D)
s=t+1

where aj;, b;(0¢), N'p}(d), and 7; are a state transition prob-
ability from ¢-th state to j-th state, an output probability of ob-
servation vector o; from j-th state, a total number of HSMM
states, a state duration probability of j-th state, and an initial
state probability of j-th state, respectively. From above equa-
tions, the model likelihood P(o | A’) is given by

N’ N’ t
Plo|A) = Z Z Zoéfd(i)aéjp;(d)
i=1 j=1,i#j d=1
t
x JI ¥iles)Bi().

s=t—d+1

®)

3. Bayesian approach to speech synthesis
3.1. Bayesian approach

The Bayesian approach assumes that a set of model parameters
A is a random variable, while the ML approach estimates con-
stant model parameters. In the Bayesian approach, the speech
parameter is generated by the predictive distribution as fol-
lows [3]:

OBayes

argmax P(o|s,0,S)

)

argmax P(0,0 | s, S) .

It can be seen that Eq. (9) directly represents the problem of
speech synthesis, that is, generating speech parameter sequence
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o given training feature sequences with labels and labels to be
synthesized. The marginal likelihood of 0 and O is defined by:

P(0,0 |s,S)

= ZZ/P(mq,O,QA |'s,S)dA
q Q

=22 / P(o,q |5, A)P(0,Q| S, A)P(A)dAL0)
q Q

where q is a sequence of HMM states for a speech parameter
sequence o, P(A) is a prior distribution for model parame-
ter A, P(o,q|s, A) is the likelihood of synthesis data o, and
P(0,Q]|S, A) is the likelihood of training data O. The model
parameters are integrated out in Eq. (10) so that the effect of
over-fitting is mitigated. However, it is difficult to solve the in-
tegral and expectation calculations. Especially, when a model
includes latent variables, the calculation becomes more com-
plicated. To overcome this problem, the variational Bayesian
method has been proposed as a tractable approximation method
of the Bayesian approach and it has shown good generalization
performance in many applications [4].

3.2. Variational Bayesian method

The variational Bayesian method maximizes a lower bound of
log marginal likelihood instead of the true marginal likelihood.
A lower bound F is defined by using Jensen’s inequality:

logP(0,0 | s,S)

:lOgZZ/P(07Qa07Q,AIS,S)dA
a Q
:1°g22/Q(q7Q7A)P(O’q’O’Q7A\575)
q Q

Q(g,Q,AN)
> Z;/Q(q,QA)log

P(O7 q7 07 Q? A' | 87 S)
<10g P(O7 q’ 07 Q? A' | 87 S)

dA

dA

Q(q,Q,A)
Q(g,Q,A)

>Q(q,Q7A)

=F (11

where, (-)¢ denotes a calculation of expectation with respect to
Q, and Q(q,Q, A) is an approximate distribution of the true
posterior distribution P(q, @, Alo,O,s,S). The variational
Bayesian method uses the assumption that probabilistic vari-
ables associated with g, Q, A are statistically independent of
the other variables.

Q(q,Q,A) =Q(q) Q(Q) Q(A)

In the variational Bayesian method, posterior distributions
Q(Q), Q(q) and Q(A) are introduced to approximate the true
posterior distributions. The optimal posterior distributions can
be obtained by maximizing the objective function F with the
variational method as follows:

12)

Q(q) = Cqexp (log P(0,q|s, A))g(a) - (13)
Q(Q) = Cqexp (log P(O,QS,A)) o) (14)
Q(A) = CAP(A) exp (log P(0,als, A) o

x exp (log P(O,Q|S,A)) gy » (15)

where Cyq, Cq and Ca are the normalization terms of Q(q),
Q(Q) and Q(A), respectively.



4. HSMM based Bayesian speech synthesis
4.1. Optimization of poterior distributions

In the HSMM based Bayesian speech synthesis, the optimiza-
tions using Eqgs. (13, 14, 15) can be effectively performed by
iterative calculations as the expectation maximization (EM) al-
gorithm, which increases the value of objective function F at
each iteration until convergence. The normalization term Cyq
of an HSMM can be computed efficiently by the generalized
forward-backward algorithm for the variational Bayes method.

Cq—l — Zexp <10gP(07q ‘ S7A)>Q(A)
q
¢ 5 4
_ Z Z G—a(i) exp(log aij) g(a)

IS

i=1 j=1,i#j d=1
x exp(log p;(d)) ()
t
x ] expllogbi(os))amBe().  (16)

s=t—d+1

We can compute partial forward likelihood & (-) and partial
backward likelihood (3;(+) recursively as follows:

() D> d-ali)expllog ais)gea)

d=1i=1,j#j

x exp(log p; (d))q(a)
t

x ][ expllogb;(o:))qn),
s=t—d+1

. T—-t N
Be(i) = Y > exp(logai)oa)

d=1j=1,j#i

x exp(log p;(d))qa)
t+d

x [ explogbs(os)ama)Berals). (18)

s=t+1

an

Because the Bayesian approach assumes that a set of model pa-
rameters A is a random variable, model parameters are repre-
sented by the expectation values. The normalization term Cgq
can be computed as like Eq. (16). Although the computational
cost is increased by using HSMMs, the Bayesian approach re-
quires almost the same computational cost with the ML crite-
rion.

4.2. Prior distribution for duration distribution

In the Bayesian approach, a conjugate prior distribution is
widely used as a prior distribution P(A). When the state dura-
tion probability distribution is a Gaussian distribution, the con-
jugate prior distribution becomes a Gauss-Gamma distribution:

P(u, S)

Nulwe Mo (218.5) . a0

where {£,n, v, B} is a hyper-parameter set. Using a conjugate
prior distribution, a set of parameters of posterior distribution is
also represented by the same parameter set {&, 77, 7, B}.

4.3. Speech parameters generation

In the synthesis part, first an arbitrarily given text to be synthe-
sized is converted to a context-dependent label sequence and
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a sentence HSMM is constructed by concatenating context-
dependent HSMMs according to the label sequence. Secondly,
state durations d of the sentence HSMM A are determined as
follows:

dmaec = arg mdax(log P(d| A))gn (20)
Thirdly, a speech parameter sequence is generated for a given
state sequence. We assume that a speech parameter vector o;
consists of a static feature vector ¢; and its first and second order
dynamic feature vectors, that is

o = We
.
= |[wol,we)y,....weoi| @n
Wey = [ acl, %] 2)

where W is a window matrix to calculate dynamic features
from static features [9]. In the synthesis part, a static feature
vector sequence c is generated. By the variational Bayesian
method, the lower bound F approximates the log marginal like-
lihood log P(We, O | s,S). Therefore, the optimal speech
parameter sequence ¢ is generated by maximizing the lower
bound F:

OF

0
e Je (log P(We | q,A)P(q | S7A)>Q(q)Q(A)

9
Jdc
Under the condition in Eq. (21), the optimal static feature se-

quence ¢ can be determined by solving the following set of lin-
ear equations:

=0.
R(9)Q(A)

log P(We | q,A)> (23)

WT(S)We=W ' (Su), (24)
where (S) and (S ) represent the expectation value of S and
S, respectively. Eq. (24) can be solved efficiently using the
Cholesky or QR decomposition [9].

S. Experiments
5.1. Experimental conditions

To evaluate the performance of the proposed method, the speech
synthesis experiment was performed. In this experiment, the
following four models were compared.

e “ML-HMM” : HMMs trained by the ML criterion were
used as the acoustic models. Model structures were se-
lected by the MDL criterion.

e “ML-HSMM” : HSMMs trained by the ML criterion
were used as the acoustic models. Model structures were
selected by the MDL criterion.

e “Bayes-HMM” : HMM:s trained by the Bayesian method
were used as the acoustic models. Model structures
were selected by the Bayesian criterion with cross val-
idation [3].

e “Bayes-HSMM” : HSMMs trained by the Bayesian
method were used as the acoustic models. Model struc-
tures were selected by the Bayesian criterion with cross
validation.

Table 1 represents the details of the number of states.
In this experiment, the ATR Japanese speech database [11]
B-set which consists of the phonetically balanced 503 sentences



Table 1: Number of states of selected model structure by the
conventional and proposed methods.

mel-cepstram Fo duration
ML-HMM 1,115 2,267 275
ML-HSMM 1,128 2,272 283
Bayes-HMM 9,532 16,044 3,005
Bayes-HSMM 9,485 16,130 3,490
3.9
— 95% confidence intervals
38 3.630
g 3.7 T
? 3.6 1
5
£ 3.5 3.355
Q.
S 34
S 33l 3.180 &?s l
a 9 :
© 32 | l
31 J.
3.0
ML-HMM  ML-HSMM Bayes-HMM Bayes-HSMM

Figure 1: Mean opinion scores of synthesized speech by the
conventional and proposed methods. Error bars show 95% con-
fidence intervals.

was used. The first 450 of the 503 sentences, uttered by one
male speaker (MHT), were used for training. The remaining
53 sentences were used for evaluations. Speech signals were
sampled at a rate of 16 kHz and windowed at a 5 ms frame rate
using a 25 ms Blackman window. Feature vectors consisted of
spectrum and Fp parameter vectors. The spectrum parameter
vectors consisted of 24 mel-cepstral coefficients excepting the
zero-th coefficients and their delta and delta-delta coefficients.
The Fy parameter vectors consisted of log Fp, its delta and
delta-delta. A five-state, left-to-right MSD-HSMM and MSD-
HMM [12] without skip transition was used. Each state output
PDF was composed of spectrum and Fj streams. The spectrum
stream was modeled by single multi-variate Gaussian distribu-
tions with diagonal covariance matrices. The Fy stream was
modeled by a multi-space probability distribution consisting of
a Gaussian distribution for voiced frames and a discrete distri-
bution for unvoiced frames. Each state duration PDF was mod-
eled by a one-dimensional Gaussian distribution. The decision
tree-based context clustering technique was separately applied
to distributions of spectrum, Fp, and state duration.

5.2. Experimental results

A subjective listening test was conducted to evaluate the qual-
ity of synthesized speech. The test compared the naturalness
of converted speech by the mean opinion score (MOS) test
method. The subjects were 10 Japanese students in our research
group. Twenty sentences were chosen at random from the eval-
uation sentences. Samples were presented in a random order for
each test sentence. In the MOS test, after listening to each test
sample, the subjects were asked to assign it a five-point natural-
ness score (5: natural — 1: poor).

Figure 1 plots the experimental results. It can be seen from
the figure that the proposed model “Bayes-HSMM” achieved
a better subjective score than the conventional model “Bayes-
HMM,” and the subjective score of “ML-HSMM” was bet-
ter than “ML-HMM.” Consequently, the speech quality is im-
proved by using HSMMs as the acoustic models. Moreover,
the proposed model “Bayes-HSMM” outperformed the model
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“ML-HSMM.” These results clearly show the effectiveness of
the proposed model. The number of states of “Bayes-HMM”
and “Bayes-HSMM” was considerable larger than “ML-HMM”
and “ML-HSMM.” Although the large model structure allevi-
ated the over-smoothihg problem, the ML training leads to the
over-fitting problem. However, the Bayesian approach avoided
the over-fitting problem because the posterior distributions of
model parameters were used. Therefore, the Bayesian approach
overcame the over-fitting and over-smoothing problems simul-
taneously. Consequently, most of the subjects observed that the
proposed model improved the naturalness in spectrum and ex-
citation.

6. Conclusion

This paper proposed the new framework of speech synthesis
based on the Bayesian approach. In the proposed framework, all
processes for constructing the system could be derived from one
single predictive distribution which represents the problem of
speech synthesis directly. The results on the MOS test demon-
strated that the proposed method outperform the conventional
one. Future work includes investigation of the relation between
the speech quality and the size of model structure.
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