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Abstract
This paper proposes a deterministic annealing based training al-
gorithm for Bayesian speech recognition. The Bayesian method
is a statistical technique for estimating reliable predictive distri-
butions by marginalizing model parameters. However, the local
maxima problem in the Bayesian method is more serious than
in the ML-based approach, because the Bayesian method treats
not only state sequences but also model parameters as latent
variables. The deterministic annealing EM (DAEM) algorithm
has been proposed to improve the local maxima problem in the
EM algorithm, and its effectiveness has been reported in HMM-
based speech recognition using ML criterion. In this paper, the
DAEM algorithm is applied to Bayesian speech recognition to
relax the local maxima problem. Speech recognition experi-
ments show that the proposed method achieved a higher perfor-
mance than the conventional methods.

Index Terms: variational Bayesian method, cross validation,
speech recognition, deterministic annealing

1. Introduction
In HMM-based speech recognition, the expectation maximiza-
tion (EM) algorithm is widely used for parameter estimation.
The EM algorithm provides a simple iterative procedure to ob-
tain approximate maximum likelihood (ML) estimates. How-
ever, it sometimes suffers from the local maxima problem. To
relax this problem, the deterministic annealing EM (DAEM) al-
gorithm has been proposed [1]. In the DAEM algorithm, the
problem of maximizing the log-likelihood is reformulated as
minimizing the thermodynamic free energy. It’s posterior distri-
bution derived includes a “temperature” parameter which con-
trols the influence of unreliable model parameters. It has been
reported that the DAEM algorithm is effective for HMM-based
speech recognition using the ML criterion [2].

The ML criterion has been usually used for training HMMs.
However, the ML criterion produces a point estimate of HMM
parameters and the estimation accuracy may be degraded when
little training data is available. The Bayesian method is a statis-
tical technique for estimating reliable predictive distributions by
marginalizing model parameters, and it can accurately estimate
observation distributions even though the amount of training
data is small. However, the calculation becomes complicated
due to the combination of latent variables, i.e., state sequences
and model parameters. To solve this problem, the variational
Bayesian (VB) method has been proposed as an effective ap-
proximation method of the Bayesian approach [3].

The Bayesian approach uses prior information which is rep-
resented by the prior distributions. Since prior distributions
affect the estimation of posterior distributions and model se-

lection, the determination of prior distributions is an important
problem for estimating of appropriate acoustic models. To over-
come this problem, the prior distribution determination tech-
nique using cross validation has been proposed [4]. By using
cross valid prior distributions, an appropriate model structure
can be selected in the context clustering without tuning pa-
rameters. In this papaer, we use the prior determination tech-
nique based on the cross validation as a baseline system of the
Bayesian approach.

Although the Bayesian approach achieves higher perfor-
mance than the ML approach, the local maxima problem in
the Bayesian method is more serious than in the ML-based ap-
proach, because the Bayesian method treats not only state se-
quences but also model parameters as latent variables. The com-
bination of many latent variables makes the likelihood function
complicated. Therefore, the optimization algorithm is impor-
tant for the Bayesian approach. Furthermore, the VB method
assumes the independence between the posterior distributions
of state sequences and model parameters, and these factorized
distributions are iteratively updated. This means that the VB
method requires reliable initial posterior distributions. To over-
come this problem, we applied the DAEM algorithm to the VB
method to improve the performance of the VB speech recog-
nition. The proposed method provides a theoretically well de-
fined algorithm, because the update equations of the posterior
distributions are straightforwardly derived from the DAEM free
energy function using the integrated manner based on the vari-
ational approximation.

The rest of this paper is organized as follows. Section 2 de-
scribes the deterministic annealing EM algorithm method, and
Section 3 describes the speech recognition based on variational
Bayesian. Section 4 describes the DAEM algorithm for the
Bayesian speech recognition. In Section 5, results of the contin-
uous phoneme recognition experiments are presented, and con-
cluding remarks and future work are presented in the final sec-
tion.

2. Deterministic annealing EM algorithm
The objective of the EM algorithm is to estimate a set of model
parameters which maximizes the incomplete log-likelihood
function:

L (O) = log
X
Z

P (O, Z | Λ) . (1)

where Λ denotes a set of model parameters and O =
(O1, O2, ..., OT ) and Z = (z1, z2, ..., zT ) are the observation
and state sequences, respectively. The EM algorithm iteratively
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maximizes the auxiliary function so called Q-function:

Q(Λ,Λ′) =
X
Z

P (Z | O,Λ) log P (O, Z | Λ′), (2)

where P (Z | O,Λ) is the posterior probability of Z . It can be
obtained by the Bayes rule as follows:

P (Z | O,Λ) =
P (O, Z | Λ)X

Z

P (O, Z | Λ)
. (3)

In the DAEM algorithm [1], the problem of maximizing the log-
likelihood function is reformulated as the problem of minimiz-
ing the following free energy function:

Fβ(Λ) = − 1

β
log

X
Z

P β(O, Z | Λ)

= −
X
Z

f(Z | O,Λ) log P (O, Z | Λ)

− 1

β
I[f(Z | O,Λ)], (4)

where I[x] denotes the entropy of x and 1/β is called as “tem-
perature.” If β = 1, the negative free energy −Fβ(Λ) becomes
equal to the log-likelihood function L (O). In the determinis-
tic annealing approach, the new posterior distribution f is de-
rived so as to minimize the free energy under the constraint ofP

Z f = 1. To solve this problem, we can use elementary cal-
culus of variations to take functional derivatives of Eq. (4) with
respect to f , and the optimal distribution can be derived as

f(Z | O,Λ) =
P β(O, Z | Λ)X

Z

P β(O, Z | Λ)
. (5)

In the DAEM algorithm, the temperature parameter β is grad-
ually increased while iterating the EM-steps at each tempera-
ture. This process is called “annealing.” When 1/β is set to

an initial temperature β(0) � 0, the EM-steps may achieve a
single global minimum of Fβ(Λ). At the initial temperature,
the posterior distribution f takes a form nearly uniform dis-
tribution. While the temperature is decreasing, the form of f
changes from uniform to the original posterior. Finally at the
temperature 1/β = 1, the DAEM algorithm is identical with
the original EM algorithm. the reliable model parameters can
be estimated usin the DAEM algorithm and it has been reported
that the DAEM algorithm is effective for HMM-based speech
recognition using the ML criterion[2].

3. Speech recognition based on variational
Bayesian method

3.1. Bayesian approach

Let O = (o1, o2, . . . , oT ) be a set of training data of D di-
mensional feature vectors, and T is used to denote the frame
number. The likelihood function of an HMM is represented by:

P (O, Z | Λ) =

TY
t=1

azt−1ztN (ot | μzt
, S−1

zt
) , (6)

where Z = (z1, z2, · · · , zT ) is a sequence of HMM states,
zt ∈ {1, . . . , N} denotes a state at frame t and N is the num-
ber of states in an HMM. A set of model parameters Λ =

{aij , μi, Si}N
i,j=1 consists of the state transition probability aij

from state i to state j, the mean vector μi and the covariance
matrix S−1

i of a Gaussian distribution N (· | μi, S
−1
i ).

The Bayesian approach assumes that a set of model param-
eters Λ is random variables, while the ML approach estimates
constant model parameters. The posterior distribution for a set
of model parameters Λ is obtained with the famous Bayes the-
orem as follows:

P (Λ | O) =
P (O | Λ)P (Λ)

P (O)
, (7)

where P (Λ) is a prior distribution for Λ. Once the posterior
distribution P (Λ | O) is estimated, the predictive distribution
for input data X is represented by:

P (X | O) =

Z
P (X | Λ)P (Λ | O)dΛ . (8)

The model parameters are integrated out in Eq. (8), so that
the effect of over-fitting is mitigated. However, it is difficult
to solve the integral and expectation calculations. Especially,
when a model includes latent variables, the calculation becomes
more complicated. To overcome this problem, the variational
Bayesian (VB) method has been proposed as a tractable approx-
imation method of the Bayesian approach and it showed good
performance in the HMM-based speech recognition [3], [5].

3.2. Variational Bayesian method

The variational Bayesian method maximizes a lower bound of
log marginal likelihood F instead of the true likelihood. A
lower bound of log marginal likelihood is defined by using
Jensen’s inequality:

L(O) = log
X
Z

Z
P (O, Z | Λ)P (Λ) dΛ

= log
X
Z

Z
Q(Z)Q(Λ)

P (O, Z | Λ)P (Λ)

Q(Z)Q(Λ)
dΛ

≥
X
Z

Z
Q(Z)Q(Λ) log

P (O, Z | Λ)P (Λ)

Q(Z)Q(Λ)
dΛ

= F . (9)

In the VB method, VB posterior distributions Q(Λ) and Q(Z)
are introduced to approximate the true posterior distributions.
The optimal VB posterior distributions can be obtained by max-
imizing the objective function F with the variational method as
follows:

Q(Λ) = CΛP (Λ) exp

j X
Z

Q(Z) log P (O, Z | Λ)

ff
,

(10)

Q(Z) = CZ exp

j Z
Q(Λ) log P (O, Z | Λ) dΛ

ff
, (11)

where CΛ and CZ are the normalization terms of Q(Λ) and
Q(Z), respectively. Since equations (10) and (11) are depend
on each other, these updates should be iterated as the EM algo-
rithm, which increases the value of objective function F at each
iteration until convergence.
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3.3. Bayesian context clustering using cross validation

In the Bayesian approach, prior distributions are usually de-
termined heuristically. However, hyper-parameters (parame-
ters of prior distributions) affect the model selection as tun-
ing parameters. Therefore, to automatically select an apropriate
model structure, a determination technique of prior distribution
is required. One possible approach is to optimize the hyper-
parameters using training data so as to maximize the marginal
likelihood. However, it still needs tuning parameters which con-
trol influences of prior distributions, and often leads to the over-
fitting problem as the ML criterion. To overcome this problem,
the prior distribution determination technique using cross val-
idation has been proposed [4]. The cross validation is known
as a straightforward and useful method for model structure op-
timization. By using cross valid prior distributions, an appro-
priate model structure can be selected in the Bayesian context
clustering without tuning parameters. We apply the prior deter-
mination technique based on K-fold cross validation as a base-
line system of the Bayesian approach.

4. DAEM algorithm for variational Bayes
method

In the VB method, the free energy function for Bayesian ap-
proach can be rewritten as follows:

Fβ(Λ) = − 1

β
log

X
Z

Z
P β(O, Z | Λ)P β(Λ) dΛ. (12)

An upper bound of log marginal likelihood F̄β(Λ) is defined
by using Jensen’s inequality:

Fβ(Λ) = − 1

β
log

X
Z

Z
Q̂(Z)Q̂(Λ)

P β(O, Z | Λ)P β(Λ)

Q̂(Z)Q̂(Λ)
dΛ

≤ − 1

β

X
Z

Z
Q̂(Z)Q̂(Λ) log

P β(O, Z | Λ)P β(Λ)

Q̂(Z)Q̂(Λ)
dΛ

= F̄β(Λ) (13)

The optimal VB posterior distributions can be obtained by
minimizing the objective function F̄β(Λ) with the variational
method as follows:

Q̂(Λ) = CΛP β(Λ) exp

j X
Z

Q̂(Z) log P β(O, Z | Λ)

ff
,

(14)

Q̂(Z) = CZ exp

j Z
Q̂(Λ) log P β(O, Z | Λ) dΛ

ff
. (15)

Since equations (14) and (15) are dependent each other, these
updates should be iterated in the E-step of the DAEM algo-
rithm. At the initial temperature β(0) � 0, the VB posterior
distributions Q(Λ) and Q(Z) take a form nearly uniform distri-
bution. While the temperature is decreasing, the form of Q(Λ)
and Q(Z) change from uniform to each original posterior dis-
tribution. Finally the temperature β = 1, Q(Λ) and Q(Z)
take each original posterior distribution and the reliable poste-
rior distributions can be estimated.

5. Experiments
To evaluate the effectiveness of the proposed method, speaker
independent continuous phoneme recognition experiments were
conducted.

Table 1: Experimental conditions

Training data JNAS 20,000 utterances

Test data JNAS 100 utterances

Sampling rate 16 kHz

Feature vector 12-order MFCC
+ ΔMFCC + ΔEnergy

Window Hamming

Frame size 25ms

Frame shift 10ms

Number of HMM state 3 (left-to-right)

Number of phoneme categories 43

5.1. Experimental conditions

The experimental conditions are summarized in Table 1. The
training data of about 20,000 Japanese sentences and testing
data of 100 sentences were prepared from Japanese Newspaper
Article Sentences (JNAS). Three-state left-to-right HMMs were
used to model 43 Japanese phonemes, and 144 questions were
prepared for the decision tree context clustering. Each state out-
put probability distribution was modeled by a single Gaussian
distribution with a diagonal covariance matrix.

In these experiments, the following five algorithms were
compared.

• “ML” : Acoustic models trained by ML criterion and
model structures selected by MDL criterion [6] and 50
EM-steps was conducted in the EM algorithm. HMMs
were initialized by the segmental k-means algorithm.

• “CV-Bayes(f-EM50)” : Acoustic models trained by the
Bayesian criterion and model structures selected by the
Bayesian criterion using cross validation and 50 EM-
steps was conducted in the EM algorithm. The posterior
distributions were initialized by the flat start training.

• “CV-Bayes(EM5)” : Acoustic models trained by the
Bayesian criterion and model structures selected by the
Bayesian criterion using cross validation and 5 EM-steps
was conducted in the EM algorithm. The posterior dis-
tributions were initialized by the k-means algorithm.

• “CV-Bayes(EM50)” : Acoustic models trained by the
Bayesian criterion and model structures selected by the
Bayesian criterion using cross validation and 50 EM-
steps was conducted in the EM algorithm. The posterior
distributions were initialized by the k-means algorithm.

• “CV-Bayes(DAEM)” : Acoustic models trained by the
Bayesian criterion and model structures selected by the
Bayesian criterion using cross validation and the DAEM
algorithm was used for training algorithm.

The flat start training (“CV-Bayes(f-EM50)”) assumes that
initial posterior distributions of state sequences are uniform dis-
tribution. Once the posterior distributions of state sequences are
given, the posterior distributions of model parameters can be es-
timated by the statistics of state sequences. In the initialization
by the k-means algorithm, the posterior distribution of state se-
quences were initialized by the segmental k-means algorithm
using phoneme boundary labels. In the Bayesian approaches,
the posterior distribution of model parameters are also updated
in the segmental k-means algorithm. Although the DAEM algo-
rithm includes the initialization process, the DAEM algorithm
(“CV-Bayes(DAEM)”) with β = 0 is equivalent to the initial
values of the flat start training. This means that the DAEM al-
gorithm uses no phoneme boundary labels in the initialization
of posterior distributions. However, even though the flat start
training updates the posterior distributions immediately at the
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Figure 1: Log marginal likelihood

first iteration based on unreliable initial parameters (this corre-
sponds to the DAEM with β = 0 at the 1st iteration and β = 1
at the nd iteration), the DAEM algorithm gradually increase the
temperature parameter β, and updates the posterior distributions
slowly based on the annealing process.

The model structure based on MDL criterion has 5400
states and based on the Bayesian approach using cross valida-
tion has 16205 states. In “CV-Bayes” methods, the cross valida-
tion uses 10 folds. The temperature parameter β for the DAEM
algorithm was updated by

β(i) =
i

I
, (i = 0, . . . , I) (16)

where i denotes the iteration number. The number of tempera-
ture update steps was set to 10 (I = 10), and 5 EM-steps were
conducted at each temperature, in total 50 EM-steps were con-
ducted.

5.2. Experimental results

Figure 1 compares the lower bound of the log marginal like-
lihood F for the training data, though the value of “ML”
shows the log likelihood of the ML parameters (not marginal).
Since the marginal likelihood is defined as the weighted sum
of the likelihood function (equation (9)), the marginal likeli-
hoods of the Bayesian approaches were lower than the like-
lihood of “ML.” The marginal likelihood of “CV-Bayes(f-
EM50)” was the lowest among Bayesian methods. This is be-
cause of the local maxima problem caused by the inappropriate
initial posterior distributions obtained without using phoneme
boundary information. Although “CV-Bayes(DAEM)” also
uses no phoneme boundaries, the marginal likelihood of
“CV-Bayes(DAEM)” was improved than that of “CV-Bayes(f-
EM50).” This result confirmed that the local maxima prob-
lem can be relaxed by the DAEM algorithm. Comparing “CV-
Bayes(EM5)” with “CV-Bayes(EM50),” “CV-Bayes(EM50)”
obtained the higher likelihood. This means that 5 EM-steps
are not enough to converge the marginal likelihood. “CV-
Bayes(DAEM)” also iterated the EM-steps 5 times at the last
temperature (β = 1), and this may be the reason that the
marginal likelihood of “CV-Bayes(DAEM)” was lower than
that of “CV-Bayes(EM50).” However, the likelihood of “CV-
Bayes(DAEM)” was higher than that of “CV-Bayes(EM5).”
This means that the DAEM algorithm obtained reliable poste-
rior distributions by using annealing process, even though no
phoneme boundary information was used.

Figure 2 shows the phoneme accuracy of acoustic models.
Contrary to the marginal likelihood, the Bayesian approaches
outperformed “ML.” This result confirmed that the Bayesian
approach is useful for HMM-based speech recognition. Com-
paring the Bayesian approaches, “CV-Bayes(f-EM50)” was the
lowest recognition performance, because of the local maxima
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problem. Although “CV-Bayes(EM50)” achieved the high-
est likelihood, “CV-Bayes(EM50)” obtained no significant im-
provement as compared with “CV-Bayes(EM5)” in phoneme
accuracy. Comparing the EM and DAEM algorithm, “CV-
Bayes(DAEM)” achieved the higher phoneme accuracy than the
EM algorithm using phoneme boundary information. This re-
sult indicated that the DAEM algorithm is effective to relax the
serious local maxima problem in the VB speech recognition.

6. Conclusions
This paper proposed a deterministic annealing based training
algorithm for Bayesian speech recognition. The local maxima
problem in the Bayesian method is more serious than in the
ML-based approach, because the Bayesian method treats not
only state sequences but also model parameters as latent vari-
ables. In this paper, the DAEM algorithm was applied to the
Bayesian speech recognition to improve the recognition perfor-
mance. The results of speech recognition experiments showed
that the proposed method achieved higher performance than the
conventional methods. As future work, we will apply this pro-
posed framework to the simultaneous optimization of state se-
quences and model structures [7].
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