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Abstract
We describe a hidden Markov model (HMM)-based speech

synthesis system developed at the Nagoya Institute of Technol-
ogy (NIT) for Blizzard Challenge 2009. We incorporated sev-
eral state-of-the-art technologies into this system, including the
Speech Transformation and Representation using Adaptive In-
terpolation of weiGHTed spectrum (STRAIGHT) vocoder, min-
imum generation error (MGE) training, phone duration mod-
eling, parameter generation algorithm considering global vari-
ance, and linear spectrum pair (LSP)-based formant enhance-
ment. The runtime of system synthesizes speech around 0.3
xRT (real time ratio), and its footprint is less than 25 MB. The
results of listening tests showed that the overall speech qual-
ity and intelligibility of our systems are better than most other
systems, especially when we have better labeling for a speech
corpus.
Index Terms: HMM, speech synthesis, speaker adaptation,
HTS, Blizzard Challenge

1. Introduction
The hidden markov model (HMM) has been commonly used for
speech recognition [1], and there has been significant progress
over the decade. Recently an HMM-based speech synthesis
method was proposed [2]. In this method, the spectrum, pitch,
and duration are modeled simultaneously in a unified frame-
work of HMMs [3], and the parameter sequence is generated by
maximizing the likelihood of the HMMs related to the param-
eter sequence under the constraint of the explicit relationship
between static and dynamic features [4]. Compared to other
synthesis methods, this method has several advantages, 1) un-
der its statistical training framework, it can learn salient statis-
tical properties of speakers, speaking styles [5], emotions [6],
etc., from the speech corpus; 2) many techniques developed for
HMM-based speech recognition can be applied to speech syn-
thesis [7, 8]; 3) voice characteristics of synthesized speech can
be easily controlled by modifying acoustic statistics of HMMs
[9, 10]. Furthermore, it can generate smooth and stable speech
under a small footprint. As a result, HMM-based speech syn-
thesis gradually became popular both in research and applica-
tion [11–13].

Although the performance of the conventional HMM-based
speech synthesis framework is quite good, the quality of synthe-
sized speech still needs to be improved. In recent years, sev-
eral techniques had been proposed to improve the quality of
synthesized speech for HMM-based speech synthesis, includ-
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ing a high quality vocoder Speech Transformation and Repre-
sentation using Adaptive Interpolation of weiGHTed spectrum
(STRAIGHT) [14] for spectral analysis, a minimum genera-
tion error (MGE) [15] criterion for model training, phone du-
ration modeling [13], parameter generation algorithm consid-
ering global variance (GV) [16], and a postfilter for the lin-
ear spectrum pair (LSP) to enhance the formant for generated
speech [13]. In NIT’s system for the Blizzard Challenge, we use
the HMM-based speech synthesis method and integrate these
state-of-the-art technologies.

The rest of the paper organized as follows. In sections 2,
3, 4, 5, and 6, we briefly review STRAIGHT vocoding, MGE
training with log spectral distortion, phone duration modeling,
parameter generation algorithm considering GV, and LSP-based
formant enhancement, respectively. In section 7, we describe
experiments for evaluating our system, and present the results.
Finally, our conclusions are given in section 8.

2. STRAIGHT vocoding
We use STRAIGHT a high-quality speech vocoding method
proposed by Kawahara et al. [14]. It consists of three main
components, F0 extraction, spectral, and aperiodic analysis, and
speech synthesis.

The STRAIGHT method is used to automatically extract F0

with fixed-point analysis [17]. We use a two-stage extraction to
alleviate errors of the F0 extraction. First, we perform the F0

extraction for all training data for each speaker in which a search
range is set to 55-500 Hz. Using of a histogram of the extracted
F0, we roughly estimate the F0 range of each speaker. Then,
F0 is again extracted in the speaker-specific range.

Using the extracted F0, we use the STRAIGHT method to
perform pitch-adaptive spectral analysis combined with a sur-
face reconstruction method in the time-frequency region to re-
move signal periodicity. As a spectral parameter, we use the 40-
th STRAIGHT mel linear spectrum pair (mel-LSP) coefficients.
An aperiodicity measure on the frequency domain based at a ra-
tio between the lower and upper smoothed spectral envelopes
to represent the relative energy distribution of aperiodic com-
ponents [18] is also extracted. As a parameter for constructing
a mixed excitation sources in speech synthesis, average values
of the aperiodicity measures on five frequency bands, 0-1, 1-2,
2-4, 4-6, and 6-8 kHz are used.

3. MGE training with log spectral
distortion

In the conventional HMM-based speech synthesis framework,
Maximum Likelihood (ML) criterion was adopted for HMM



training. However, there are two issues [15] related to ML-
based HMM training for speech synthesis, including the mis-
match between training and application of the HMMs and the
ignorance of constraint between static and dynamic features. To
resolve these two issues, a minimum generation error (MGE)
criterion [15] had been proposed for HMM training, where a
generation error function using Euclidean distance was defined,
and the HMM parameters were optimized to minimize the total
generation errors of training data. Furthermore, a log spectral
distortion (LSD) was adopted to replace the Euclidean distance
to define the generation error between the original and gener-
ated LSPs [19] in MGE training, and the quality of synthesized
speech was improved [20]. The LSPs extracted from original
speech waveforms were used as the reference measuring for
spectral distortion in this training.

We use the MGE-LSD training by directly using the orig-
inal spectrum for measuring spectral distortion [21]. First, we
adopt the spectral envelope extracted from the original speech
waveforms using the STRAIGHT method [14] as a reference
to calculate the LSDs and define the generation error function.
However, the speech waveforms are the actual target signals we
want to simulate. The STRAIGHT-based spectral analysis can
be basically regarded as a process for recovering the spectral
envelope from the short-time fast Fourier transform (FFT) spec-
trum calculated from the speech waveforms. However, some
information may be lost in this process. Therefore, we directly
use the short-time FFT spectrum calculated from speech wave-
forms as the original reference spectrum for LSD calculation.
Since only the harmonics of the FFT spectrum are coincident
with the underlying spectral envelope, the LSD between gener-
ated LSPs and original FFT spectrum is calculated by sampling
at the harmonic frequencies. The MGE-LSD training with FFT
spectrum can be regarded as a unified training framework by
incorporating spectral analysis and parameter generation into
model training. This is a similar concept to the analysis-by-
synthesis in speech coding and the closed-loop training [22] for
concatenative speech synthesis.

4. Phone duration modeling
In the conventional framework, a state duration model is trained
to predict the duration of every state in the utterance for syn-
thesis. A phone duration model is also constructed in our sys-
tem, by taking into account a phonetic unit, and combined with
the state duration model for predicting the duration of each
state [13].

5. Parameter generation algorithm
considering global variance

Usually, speech parameter vector sequences generated from
HMMs are smoothed excessively. Synthesized speech using
over-smoothed parameters sounds muffled. To reduce this ef-
fect, we use a parameter generation algorithm considering GV
of the generated parameters [16].

We apply this algorithm to both spectral and F0 parameter
generation processes. One GV is calculated from a parameter
sequence over the entire of one utterance. It should be noted that
only voiced frames are used for calculating GV of F0 parame-
ters. Probability density on GV is modeled using a Gaussian
distribution with a diagonal covariance matrix.

In parameter generation, we first generate a parameter tra-
jectory with the speech parameter generation algorithm. Then,
we convert the generated trajectory so that its GV is equal to

a mean of Gaussian distribution. Using this converted trajec-
tory as an initial value, we iteratively calculate the parameter
trajectory that maximizes the likelihood function consisting of
the output probability of the parameter sequence and that of its
GV with the Newton-Raphson method.

We changed the GV Gaussian probability density function
(pdf) from a single global distribution to a context-dependent
one. In a similar way to HMM observation density ty-
ing, decision-tree-based clustering was applied to the context-
dependent GV pdfs to tie their parameters. The number of
leaf nodes of the decision trees was automatically determined
by the MDL criterion [23]. To simplify implementation, only
sentence-level contextual features (e.g., number of phonemes in
a sentence) were used at this time. Furthermore, we calculated
the GV vector from only speech and excluded silence and pause
regions from the calculation, based on automatic segmentation,
to improve the estimation accuracy of the GV vector.

6. LSP-based formant enhancement
We select mel linear spectral pair (mel-LSP) to present each
frame spectral envelop estimated using the STRAIGHT method
because LSPs relate more closely to formant positions and have
better smoothness among adjacent frames. Because of the av-
eraging effect of statistic modeling, the spectra reconstructed
from parameter generation are always over-smoothed and the
formants are broaden, which make the synthetic speech sound
muffled. The relationship between spectral peaks and LSP, es-
pecially the difference between its adjacent orders, is used to
enhance the formants of synthesized speech [13].

7. Experiments
7.1. Experimental conditions for all tasks

The Blizzard Challenge is an annual evaluation of corpus-based
speech synthesis systems, in which each participating team
builds a synthetic voice from common training data, then syn-
thesizes a set of test sentences. Listening tests are adopted to
evaluate the systems in term of naturalness, similarity to orig-
inal speaker and intelligibility. In Blizzard Challenge 2009,
an English speech database consisting of about 15 hours of
speech uttered by a British male speaker and a Mandarin speech
database consisting of about 6 hours of speech uttered by a Bei-
jing female speaker were released by the Centre for Speech
Technology Research (CSTR), University of Edinburgh, UK,
and iFlytek Beijing, China.

Speech signals were sampled at a rate of 16kHz and win-
dowed with an F0-adaptive Gaussian window with a 5-ms shift.
The feature vectors consisted of 40 STRAIGHT mel-LSP coef-
ficients, log F0, aperiodicity measures, and their dynamic and
acceleration coefficients. We used 5-state left-to-right context-
dependent multi-stream MSD-HMMs without skip paths. Each
state had a single Gaussian pdf with a diagonal covariance ma-
trix. The iteration for the GV calculation was 20, and the post-
filter rate was 0.8.

7.2. Experimental conditions for English hub task 1 (EH1)

Database An approximately 15-hour speech database (roger)
with no modification.

Phoneset All labels were generated using Unilex-RPX and
Festival’s Multisyn module.

Context-clustering Thresholds of MDL criterion α were 1.2



for the spectrum, log F0, aperiodicity measures, and du-
ration.

Global variance GV weights were 0.7 for the spectrum and
log F0.

7.3. Experimental conditions for English hub task 2 (EH2)

Database An approximately 1-hour speech database (roger)
with no modification.

Phoneset All labels were generated using Unilex-RPX and
Festival’s Multisyn module.

Context-clustering Thresholds of MDL criterion α were 1.2
for the spectrum, log F0, aperiodicity measures, and du-
ration.

Global variance GV weights were 0.7 for the spectrum and
log F0.

7.4. Experimental conditions for English spoke task 1 (ES1)

Database The CMU-ARCTIC speech database was used for
the average voice model. This database contains a set
of approximately one thousand phonetically balanced
sentences uttered by three male speakers (AWB, BDL,
RMS) with a total duration of about 3.5 hours.

Phoneset All labels were generated using Unilex-RPX and
Festival’s Multisyn module.

Context-clustering Thresholds of MDL criterion α were 0.9,
1.3, 1.3, and 1.3 for the spectrum, log F0, aperiodicity
measures, and duration, respectively.

Global variance GV weights are 0.7 for the spectrum and log
F0.

7.5. Experimental conditions for Mandarin hub task (MH)

Database An approximately 10-hour speech database by iFly-
tek with no modification.

Phoneset All labels were released by iFlytek with no modifi-
cation.

Context-clustering Thresholds of MDL criterion α were 0.9,
1.3, 1.3, and 1.3 for the spectrum, log F0, aperiodicity
measures, and duration, respectively.

Global variance GV weights were 0.4 and 1.0 for the spec-
trum and log F0, respectively.

7.6. Experimental conditions for Mandarin spoke task 1
(MS1)

Database The iFlytek speech database was used for the aver-
age voice model. This database contains one thousand
phonetically balanced sentences uttered by one female
speaker (f3) with a total duration of about 2.5 hours.

Phoneset All labels were released by iFlytek with no further
modification.

Context-clustering Thresholds of MDL criterion α were 0.9,
1.3, 1.3, and 1.3 for the spectrum, log F0, aperiodicity
measures, and duration, respectively.

Global variance GV weights were 0.4 and 1.0 for the spec-
trum and log F0, respectively.

7.7. Listening tests

About 1500 and 1000 test sentences were generated for English
and Mandarin, respectively. To evaluate naturalness and simi-
larity, 5-point mean opinion score (MOS) and differential mean
opinion score (DMOS) tests were conducted. The scale for the
MOS test was from 5 for “completely natural” to 1 for “com-
pletely unnatural”. The scale for the DMOS tests was from 5
for “sounds like exactly the same person” to 1 for “sounds like
a totally different person” compared to a few natural example
sentences from the reference speaker. To evaluate intelligibility,
the subjects were asked to transcribe semantically unpredictable
sentences. The evaluations were conducted over a six-week pe-
riod via the Internet.

7.8. Experimental results of the English systems

Figures 1-9 show the results of the English systems. “A”, “B”,
“C”, and “D” correspond to real speech, the Festival “Multisyn”
benchmark speech synthesis system [24], the HTS benchmark
system 2005 [25], and 2007 [26], respectively. The Festival
system uses a conventional unit-selection method. The HTS
Benchmark systems are a standard statistical parametric system
using HTS toolkit version 2.1 and STRAIGHT.

Our system was equal to the Festival one in naturalness for
EH1 task (Figure 1). On the other hands, our system achieved
a higher score than the Festival one in naturalness for EH2 task
(Figure 4). It seems that our labels for the large database were
not accurate. There are significant differences between real
speech and all other systems from the point of view of natu-
ralness and similarity.

Intelligibility of our system was best with the smaller
dataset (Figure 6). Although the Blizzard Challenge rules allow
participants to add pronunciations for out-of-vocabulary words
found in the test set to their lexicon, we did not add them due to
our limited human resources.

7.9. Experimental results of the Mandarin systems

Figures 10-15 show the results of the Mandarin systems. As
with the English systems, “A”, “C”, and “D” correspond to real
speech, the HTS benchmark system 2005, and 2007, respec-
tively. There is no Festival benchmark system for Mandarin.

Our system scored best in naturalness for MH task (Figures
10), character error rate for MH task (Figure 12), in naturalness
for MS1 task (Figure 13), and character error rate for MS1 task
(Figure 15). It seems that the labels given by iFlytek were for-
tunately accurate. However, there are significant differences be-
tween real speech and all other systems from the point of view
of similarity.

8. Conclusions
We described HMM-based speech synthesis system developed
at the Nagoya Institute of Technology (NIT) for Blizzard Chal-
lenge 2009. We incorporated several state-of-the-art technolo-
gies into this system, including the STRAIGHT vocoder, min-
imum generation error training, phone duration modeling, pa-
rameter generation algorithm considering GV, and the LSP-
based formant enhancement. The runtime of system synthesizes
speech around 0.3 xRT (real time ratio) and its footprint is less
than 25MB. The results of listening tests showed that the overall
speech quality and intelligibility of our systems are better than
most other systems, especially when we have better labeling for
the speech corpus.
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Figure 1: Experimental results: naturalness for EH1 task. (L:
NIT system.)
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Figure 2: Experimental results: similarity scores comparing to
original speaker for EH1 task. (L: NIT system.)
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Figure 3: Experimental results: word error rate for EH1 task.
(L: NIT system.)
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Figure 8: Experimental results: similarity scores comparing to
original speaker for ES1 task. (L: NIT system.)
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Figure 9: Experimental results: character error rate for ES1
task. (L: NIT system.)
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Figure 11: Experimental results: similarity scores comparing to
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Figure 13: Experimental results: naturalness for MS1 task. (L:
NIT system.)
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Figure 14: Experimental results: similarity scores comparing to
original speaker for MS1 task. (L: NIT system.)
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Figure 15: Experimental results: character error rate for MS1
task. (L: NIT system.)

[22] M. Akamine and T. Kagoshima, “Analytic generation of
synthesis units by closed loop training for totally speaker
driven text to speech system (TOS drive TTS),” in Proc. of
ICSLP, 1998.

[23] K. Shinoda and T. Watanabe, “Acoustic modeling based
on the MDL criterion for speech recognition,” in Proc. of
Eurospeech, vol. 1, pp. 99–102, 1997.

[24] K. Richimond, V. Strom, R. Clark, J. Yamagishi, and
S. Fitt, “Festival Multisyn voices for the 2007 Blizzard
Challenge,” in Proc. of BLZ3-2007, 2007.

[25] H. Zen, T. Toda, M. Nakamura, and K. Tokuda, “Details of
Nitech HMM-based speech synthesis system for the Bliz-
zard Challenge 2005,” IEICE Trans. Inf. & Syst., vol. E90-
D, no. 1, pp. 325–333, 2007.

[26] J. Yamagishi, T. Nose, H. Zen, T. Toda, and K. Tokuda,
“Performance evaluation fo the speaker-independent
HMM-based speech synthesis system HTS-2007 for Bliz-
zard Challenge 2007,” in Proc. of ICASSP, pp. 3957–
3960, 2008.


