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ABSTRACT
This paper improves a minimum generation error (MGE) based
HMM training technique for HMM-based speech synthesis by di-
rectly using the original spectrum instead of line spectral pairs
(LSPs) as reference spectrum for log spectral distortion (LSD) mea-
sure. Two types of original reference spectra for LSD calculation are
investigated, including the spectrum extracted from speech wave-
form by STRAIGHT, and the short-time FFT spectrum calculated
from speech waveforms. Since only the harmonics of the FFT spec-
trum are coincident with the underlying spectral envelope, the LSD
between generated LSPs and original FFT spectrum is calculated by
sampling at the harmonic frequencies, and a weighting function is
designed to simulate the sampling strategy on LSPs. From the ex-
perimental results, the MGE-LSD training using the FFT spectrum
as reference spectrum achieved the best performance.

Index Terms— Speech synthesis, HMM, minimum generation
error, log spectral distortion

1. INTRODUCTION

Speech synthesis systems have been under development for decades,
and many research efforts have been made to improve the quality
and flexibility of synthesized speech. In recent years, HMM-based
speech synthesis [1] had been proposed, and shown its potential to
realize a speech synthesis system with high quality and flexibility
[2]. In this method, the spectrum, pitch and duration are modeled
simultaneously in a unified framework [3], and the parameter se-
quence is generated by maximizing the likelihood of the HMMs re-
lated to the parameter sequence under the constraint between static
and dynamic features [4]. Comparing to other synthesis methods,
this method can learn salient statistical properties (such as speakers,
speaking styles, emotions, and so on) from speech data, and generate
smooth and stable speech under a small footprint.

In the conventional HMM-based speech synthesis framework,
Maximum Likelihood (ML) criterion was adopted for HMM train-
ing. However, there are two issues [5] related to theML-based HMM
training for speech synthesis, including the mismatch between train-
ing and application of HMM, and the ignorance of constraint be-
tween static and dynamic features. In order to resolve these two
issues, a minimum generation error (MGE) criterion [5] had been
proposed for HMM training, where a generation error function using
Euclidean distance was defined, and the HMM parameters were op-
timized so as to minimize the total generation errors of training data.
Furthermore, a log spectral distortion (LSD) was adopted to replace
the Euclidean distance to define the generation error between the
original and generated line spectral pairs (LSPs) [6] in MGE train-
ing, and the quality of synthesized speech was improved [7].

In previous MGE-LSD training, the LSPs extracted from origi-
nal speech waveforms were used as the reference for spectral distor-
tion measure. In this paper, we continue to improve the MGE-LSD
training by directly using the original spectrum for spectral distor-

tion measure. We firstly adopt the spectral envelope extracted from
original speech waveform by STRAIGHT [8] as the reference to cal-
culate the LSDs, and define the generation error function. However,
the speech waveforms are the actual target signals we want to sim-
ulate. The STRAIGHT-based spectral analysis basically can be re-
garded as a process to recover the spectral envelope from the short-
time FFT spectrum calculated from speech waveform, and this pro-
cess itself may loss some information in speech waveform. There-
fore, we directly use the short-time FFT spectrum calculated from
speech waveforms as the original reference spectrum for LSD calcu-
lation. Since only the harmonics of the FFT spectrum are coincident
with the underlying spectral envelope, the LSD between generated
LSPs and original FFT spectrum is calculated by sampling at the har-
monic frequencies. The MGE-LSD training with FFT spectrum can
be regarded as a unified training framework by incorporating spec-
tral analysis and parameter generation into model training. It has a
similar concept to the analysis-by-synthesis in speech coding and the
closed-loop training [9] for concatenative speech synthesis .

The rest of this paper is organized as follows. In section 2, we
briefly review the MGE criterion for HMM training. In section 3,
we present the details of MGE-LSD training, including three types
of original reference spectra for LSD calculation. In section 4, we
describe experiments to evaluate the effectiveness of the MGE-LSD
training with different types of LSD calculation, and present the re-
sults. Finally, our conclusion are given in section 5.

2. MINIMUM GENERATION ERROR CRITERION

The basic concept of MGE criterion is to calculate the generation er-
rors by incorporating the parameter generation into training process,
and then optimize the HMM parameters so as to minimize the total
generation errors of training data.

2.1. Parameter generation
For a given HMM λ and the state sequence q, the parameter gen-
eration algorithm [4] is to determine the speech parameter vector
sequence o = [o�

1 , o�
2 , . . . , o�

T ]� which maximizes P (o|q, λ). In
HMM-based speech synthesis, ot = [c�

t , Δ(1)c�
t , Δ(2)c�

t ]� in-
cludes not only static but also dynamic features. The constraint
between static and dynamic feature vectors can be formulated as
o = W c, where c = [c�

1 , c�
2 , . . . , c�

T ]�, and W is a regression
matrix [4] for calculating dynamic features.

Under this constraint, parameter generation is equivalent to de-
termining c to maximize P (o|λ, q). By setting ∂P (o|λ, q)/∂c =
0, we obtain

c̄q = R−1
q rq , (1)

where

Rq = W �Σ−1
q W , rq = W �Σ−1

q μq , (2)

and μq =
[
μ�

1 , . . . , μ�
T

]� and Σq = diag (Σ1, . . . ,ΣT ) are the
mean vector and covariance matrix related to q, respectively.

4013978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



2.2. MGE criterion with Euclidean distance measure
In previous MGE criterion [5], an Euclidean distance was adopted
to measure the distortion between the original and generated feature
vectors, which is calculated as

Dc(c, c̄q) =‖ c − c̄q ‖2 . (3)

Although the posterior probability can be used to weight the dis-
tances for all possible state sequences, it is computationally expen-
sive for this direct calculation. Therefore, the representative n-best
paths can be used to approximate the generation error. In our cur-
rent implementation, only the optimal state sequence is used, and
the generation error is defined as

e(c, λ) = Dc(c, c̄q̂), (4)

where q̂ is the optimal state sequence for o. This refers to a Viterbi-
type MGE training. In the rest of the paper, we use q to denote q̂.

Based on the generation error measure, the parameter generation
process is incorporated into HMM training for calculating the total
generation errors for all training data, which is

E(λ) =
∑

n

e(cn, λ). (5)

Finally, the objective of MGE criterion is to optimize the model
parameters so as to minimize the total generation errors, i.e.,

λ̂ = arg min E(λ). (6)

As direct solution for Eq. (6) is mathematically intractable, a prob-
abilistic descent (PD) [11] method was adopted for parameter opti-
mization. The details of updating rules for mean and variance pa-
rameters in MGE training can be found in [5].

3. MGE TRAININGWITH LOG SPECTRAL DISTORTION

We use a log spectral distortion (LSD) instead of the Euclidean dis-
tance to define the generation errors for generated LSPs. Three types
of original reference spectra are used to calculate the LSD, which
includes the spectrum derived from original LSPs, the spectrum ex-
tracted from speech waveform by STRAIGHT, and the short-time
FFT spectrum directly calculated from speech waveforms.

3.1. LSD between generated and original LSPs
This paper adopts line spectral pairs (LSP) as the spectral feature
for HMM modeling. LSPs are derived from linear prediction coeffi-
cients (LPC). For a given p-th order LPC filter Ap(z), two artificial
(p + 1)-th order polynomials can be constructed, which are{

P (z)

Q(z)
= Ap(z) ± zp+1Ap(z−1). (7)

The LSP coefficients are related to the roots of the LSP polynomi-
als. Let us denote ejωi and e−jωi(i = 1, . . . , p) as the roots of a
LSP polynomial, where ωi are the LSP coefficients. Without loss of
generality, we assume p is even number in the rest of the paper.

The log spectral distortion (LSD) between original and gener-
ated LSP feature vectors is calculated as

DL(ct, c̄t)=
1

π

∫ π

0

[log |Ac(ω)| − log |Ac̄((ω)|]2 dω, (8)

whereAc(ω) andAc̄(ω) are the spectra related to ct and c̄t, respec-
tively. Based on the definition of LSP, the power spectrum corre-
sponding to a set of LSP coefficients can be calculated as

|Ac(ω)|2 =
1

4

[|Pc(ω)|2 + |Qc(ω)|2] , (9)

where

|Pc(ω)|2 = 4 cos2
ω

2

∏ p
2

i=1
4 (cos ω − cos c2i−1)

2 , (10)

|Qc(ω)|2 = 4 sin2 ω

2

∏ p
2

i=1
4 (cos ω − cos c2i)

2 . (11)

From Eqs. (8)-(11), it is difficult to formulate the direct solution
for the integration in Eq. (8). An alternative is to use a numerical
integration to approximate the integral, which is calculated by ac-
cumulating the values of integrand at certain sampling points. Then
Eq. (8) can be rewritten as

DL(ct, c̄t) =
1

Ns

Ns∑
j=1

[log |Ac(ωj)| − log |Ac̄(ωj)|]2 , (12)

where ωj is the location of each sampling point and Ns is the total
number of sampling points.

Two sampling strategies were investigated in [7], which includes
the equidistance sampling, i.e.,

ωj =
(2j − 1)π

2Ns
, j = 1, 2, . . . , Ns, (13)

and the sampling at LSP frequencies, i.e.,

ωj = ct,j , j = 1, 2, . . . , p, (14)

where ct,j is the j-th coefficient of the original LSP vector ct.
Compared to the equidistant sampling, the advantage of the latter
sampling strategy is that it implicitly puts more weights on spectral
peaks, and less weights on spectral valleys, which is due to one
of the properties of LSP that there are more LSPs around spectral
peaks. This is coincident with the human perception, which is more
sensitive on spectral peaks than spectral valleys.

3.2. LSD between generated LSPs and spectrum extracted from
original waveform
Previously we adopted the spectrum derived from original LSPs as
the reference spectrum for LSD calculation. Since the LSPs are ex-
tracted from the original speech/spectrum, we can directly calculate
the LSD between generated LSPs and original spectrum if the orig-
inal spectrum are available. In this study, we use STRAIGHT [8] to
extract the spectral envelope from the original speech waveform, and
then use the extracted spectrum as the original reference spectrum to
calculate the LSD for generated LSPs, i.e.,

DS(ct, c̄t) =

∫ π

0

[log |AS(ω)| − log |Ac̄(ω)|]2 dω, (15)

where AS(ω) is the spectrum extracted from original speech and
Ac̄(ω) is the spectrum related to the generated LSP vector c̄t, re-
spectively. Similarly, we can formulate the equations of numerical
integration for this LSD function using the equidistance sampling
and the sampling on LSPs, which are similar to Eq. (12)-(14). The
only difference is to replace Ac(ω) by AS(ω).

3.3. LSD between generated LSPs and short-time FFT spec-
trum calculated from original waveform
Actually, the speech waveforms are the target signals we want to
simulate. The STRAIGHT-based spectral analysis can be regarded
as a process to recover the spectral envelope from the short-time
FFT spectrum calculated from speech waveform, and this process it-
self may loss some information in speech waveform. Therefore, we
directly adopt the short-time FFT spectrum calculated from speech
waveform as the original reference spectrum for LSD calculation.
Since only the spectral values of the FFT spectrum at the harmonic
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frequencies are reliable for estimating the spectral envelope, we need
to calculate the LSD between generated LSPs and original FFT spec-
trum by sampling at the harmonic frequencies. The related numeri-
cal integration of LSD function is calculated as

DF (ct, c̄t) =
1

Nh

Nh∑
j=1

[log |AF (ωj)| − log |Ac̄(ωj)|]2 , (16)

where
ωj =2jπf0/Fs, j = 1, 2, . . . , Nh, (17)

Nh =

[
Fs

2f0

]
, (18)

AF (ω) is the FFT spectrum calculated from original speech wave-
form, f0 is the fundamental frequency, Fs is the sampling rate of
waveform, and Nh is the number of harmonics.

Based on the above calculation of LSD, the related MGE-LSD
training can be regarded as a unified training framework by incorpo-
rating spectral analysis and parameter generation into model training
process. Actually, these three processes can be combined in another
way with different focus, where a statistical spectral analysis method
was proposed in [10] by incorporating model training and parameter
generation into spectral analysis process.

3.3.1. F0 optimization

Since a small error of F0 will result in a large difference in high-
frequency harmonics, the accuracy of F0 is critical for the LSD cal-
culation by harmonic sampling. After F0 extraction, we refine the
F0 for each frame by searching a nearby F0 value to maximize the
accumulated log spectral value on harmonic frequencies, which is

f̂0 =arg max
f0

Nh∑
j=1

log |AF (2jπf0/Fs)|, (19)

3.3.2. Weighting function from LSPs

As we mentioned, the sampling on LSPs for LSD calculation is
equivalent to putting more weights on the region with dense LSPs
and less weights on the region with sparse LSPs. From this point,
we design a weighting function to simulate the sampling on LSPs
for the above integration by the harmonic sampling.

For a given sequence of sampling points ω = [ω1, ω2, . . . , ωN ],
we define a related effective region for each point ωi, whose left and
right boundaries are

ω
(l)
i = (ωi−1 + ωi)/2, (20)

ω
(r)
i = (ωi+1 + ωi)/2. (21)

Lets assume i′ and i′′ satisfy ω
(l)
i ∈ (ci′−1, ci′) and ω

(r)
i ∈

(ci′′−1, ci′′). Finally, the weight for the sampling point ωi is defined
as the ratio of the number of LSP points covered by [ω

(l)
i , ω

(r)
i ], i.e.,

ϕi =
1

p + 1

[
ci′ − ω

(l)
i

ci′ − ci′−1

− ci′′ − ω
(r)
i

ci′′ − ci′′−1

+ (i′′ − i′)

]
. (22)

3.4. Parameter updating
Here we use the LSD between original and generated LSPs as exam-
ple to formulate the updating rules in MGE-LSD training. For the
cases of using other two LSDs, we only need to replace Ac(ω) with
AS(w) or AF (w) in the formulation. Under the MGE criterion, we
minimize the total generation errors

E′(λ) =
∑

n

e′(cn, λ) =
∑

n

T∑
t=1

DL(ct, c̄t), (23)

with respect to

μ =
[
μ�

1 , μ�
2 , . . . , μ�

K

]�
, (24)

U =
[
Σ−1

1 ,Σ−1
2 , . . . ,Σ−1

K

]�
, (25)

where μk and Σk are the mean vector and covariance matrix of the
k-th Gaussian component, and K is the total number of Gaussian
components in the model set λ.

The PD method [11] is adopted for parameter optimization. For
each training utterance cτ , the parameter set is updated as

λτ+1 = λτ − ετHτ
∂e′(cτ , λ)

∂λ

∣∣∣∣
λ=λτ

, (26)

whereHτ is a positive definite matrix, and ετ is a learning rate that
decreases when utterance index τ increases.

For the mean and variance parameters, the gradients of the gen-
eration error function are calculated as

∂e′(cτ , λ)

∂μ
=2S�

q Σ−1
q W R−1

q ζ, (27)

∂e′(cτ , λ)

∂U
=2S�

q diag−1(W R−1
q ζ(μq − W c̄q)

)
, (28)

where

Σ−1
q = diag(SqU ), (29)
μq = Sqm, (30)

ζ =
[
ζ�
1 , ζ�

2 , . . . , ζ�
T

]�
, (31)

ζt = [ζt,1, ζt,2, . . . , ζt,p]� , (32)

ζt,i =
1

2S

S∑
s=1

∣∣∣X(i)
c̄ (ωs)

∣∣∣2
|Ac̄(ωs)|2

sin c̄t,i

cos ωs − cos c̄t,i
log

∣∣∣∣Ac̄(ωs)

Ac(ωs)

∣∣∣∣, (33)
X

(i)
c̄ (ωj) =

{
Pc̄(ωj), i is odd
Qc̄(ωj), i is even

. (34)

In the above equations, Sq is a matrix whose elements are 0 or 1
determined according to the optimal state sequence q for cτ . The
operation of diag(·) is to convert a 3DT × 3D matrix to a 3DT ×
3DT block-diagonal matrix with a block size of 3D, and diag−1(·)
is the inverse operation of diag(·).

It should be noted that the above formulation of updating rules
are valid for all types of LSDs calculated by the equidistant sam-
pling, the harmonic sampling, and the sampling at LSP frequencies,
respectively. The only differences between them are the number of
sampling points Ns and the position of each sampling point ωj .

4. EXPERIMENTS

4.1. Experimental conditions
We used the phonetically balanced 503 sentences fromATR Japanese
speech database (B-set, MHT) in the experiment. The first 450 sen-
tences were used as training data, and the remaining 53 sentences
were used for evaluation. Speech signals were sampled at a rate
of 16kHz. The acoustic features include F0 and LSP coefficients,
where LSP coefficients were calculated based on spectra extracted
by STRAIGHT [8]. The feature vector consists of static features
(including 24-th LSP coefficients, logarithm of gain and logarithm
of F0), and their delta and delta-delta coefficients. A 5-state left-to-
right no-skip HMM structure was used, and MSD-HMM [12] was
adopted for F0 modeling. In synthesis, the STRAIGHT synthesis
filter was used to synthesize the speech waveform.
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Fig. 1. MOS scores for ML training and MGE training with different
spectral distortion measures

The HMM training in this experiment was performed as follows.
Firstly, the conventional ML-based HMM training was conducted.
Then the optimal state alignments for all training data were obtained
using the ML-trained HMMs. Finally, the MGE training was applied
to re-estimate the parameters of ML-trained HMMs. In the experi-
ments, we conducted theMGE training with different configurations,
which are as follows:
a) MGE-ECD: MGE training with Euclidean distance;
b) MGE-LSD-L: MGE training with LSD between generated
and original LSPs;

c) MGE-LSD-S: MGE training with LSD between generated
LSPs and original STRAIGHT-extracted spectrum;

d) MGE-LSD-F: MGE training with LSD between generated
LSPs and original FFT spectrum;

In the configurations of MGE-LSD-L and MGE-LSD-S, the LSDs
were calculated by sampling at LSP frequencies. In the configura-
tion of MGE-LSD-F, we adopted Eq. (19) to refine the extracted F0,
and the weighting function in Eq. (22) to simulate the sampling at
LSP frequencies. Since we aimed to evaluate the effectiveness of
different spectral distortion measures for MGE training, only spec-
trum part of model parameters were updated in MGE training.

4.2. Experimental results
A formal subjective listening test was conducted to evaluate the
performances of MGE training with different spectral distortion
measures. Five training configurations, including ML, MGE-ECD,
MGE-LSD-L, MGE-LSD-S and MGE-LSD-F, were evaluated.
Eight listeners participated in the test. Each listener evaluated
15 sets of samples consisting of five synthesized speech samples,
and gave the MOS on the naturalness. The speech samples were
randomly selected for each listener from the 53 test sentences.

The results are shown in Fig. 1, with vertical lines indicating
the 95% confidence intervals. It can be seen that the quality of syn-
thesized speech was gradually improved when we apply MGE-ECD
training, and then MGE-LSD training. From this figure, MGE-LSD-
L and MGE-LSD-S achieve the similar MOS scores, which can be
explained as follows. Although using 24-order LSPs to represent the
extracted spectrum introduces a little spectral distortion, the spec-
trum derived from LSPs usually has sharper formants than the orig-
inal extracted spectrum, which means the conversion from spectrum
to LSPs partially enhances the spectral formants. Therefore, such
effect of formant enhancement could compensate the spectral distor-
tion after converting spectrum to LSPs. Among all the configurations
of MGE-LSD training, MGE-LSD-F achieved the best performance.
As we mentioned in Sec. 3.3, the MGE-LSD training with the FFT

spectrum as original reference spectrum for LSD calculation can be
regarded as a unified training framework, where spectral analysis and
parameter generation was incorporated into model training process.
Such unified training framework eliminated the mismatch between
these three components, and thus improved the performance.

5. CONCLUSIONS

This paper introduces the MGE training with a log spectral distortion
(LSD) for measuring the distortion of generated LSPs. We com-
pared three types of original reference spectra for calculating the
LSD, which includes the spectrum derived from original LSPs, the
extracted spectrum by STRAIGHT, and the short-time FFT spec-
trum directly calculated from speech waveforms. Experimental re-
sults showed that using the LSDs calculated with the FFT spectrum
as reference spectrum achieved the best performance, and the quality
of synthesized speech after the MGE-LSD training was significantly
improved over the original ML and MGE-ECD training.
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