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Abstract
This paper proposes a speaker adaptation technique using a non-
linear spectral transform based on GMMs. One of the most
popular forms of speaker adaptation is based on linear trans-
forms, e.g., MLLR. Although MLLR uses multiple transforms
according to regression classes, only a single linear transform is
applied to each state. The proposed method performs nonlinear
speaker adaptation based on a new likelihood function combin-
ing HMMs for recognition with GMMs for spectral transform.
Moreover, the dependency of transforms on context can also be
estimated in an integrated ML fashion. The proposed technique
outperformed conventional approaches in phoneme-recognition
experiments.

Index Terms: Speech Recognition, Speaker Adaptation, Non-
linear Spectral Transformation

1. Introduction
A speaker adaptation technique is a powerful approach to han-
dling mismatches between training and testing speeches. One
of typical, Maximum Likelihood Linear Regression (MLLR)
[1] is generally used. In this method, regression matrices are
learned using a small amount of adaptation data and the linear
transforms of the model parameters are estimated. Although
the regression matrices are given each regression classes which
classified the states of HMMs, this method can only represent a
single linear transform for each state.

On the other hand, spectral transform techniques based on
GMMs [2][3] in voice conversion can represent the nonlinear
transforms of spectral features. This is because the transform
matrix changes being dependent on input form. In the pro-
posed technique, we considered applying a spectral transform
based on GMMs to the speaker adaptation framework. Speaker
adaptation can be carried out by applying a spectral transform
to the observation sequences in the stage before speech recog-
nition. However, this method could not improve the accuracy
of recognition in preliminary experiments. This is because it
did not take account of HMM parameters for recognition at the
spectral transform. Furthermore, these spectral transform tech-
niques cannot represent the dependency of transforms on con-
text. MLLR makes use of a regression class that cluster the
Gaussians in HMM states, and the same transform is applied to
each cluster. This means that MLLR can represent the depen-
dency of transforms on context, because transforms change be-
ing dependent on the HMM states corresponding to the context
information. Therefore, ignoring the dependency of transform
on context can be a disadvantage in spectral-transform-based
adaptation against MLLR.

To address these issues, we propose a speaker adaptation
technique based on a newly defined likelihood function combin-
ing HMMs for recognition with GMMs for spectral transform.
Nonlinear speaker adaptation is performed by updating the pa-
rameters corresponding to GMM in the ML fashion. Further-
more, by introducing state dependency into the mixture weights

of GMM, the dependency of transforms on context can also be
represented as well as the regression class in MLLR. More-
over, the proposed method can perform not only hard classi-
fication but soft clustering of the regression class by estimating
the weight parameters based on a consistent ML criterion.

This paper is organized as follows. Section 2 explains
speaker adaptation based on MLLR. Speaker adaptation based
on nonlinear spectral transform is presented in Section 3. and
the experimental results are reported in Section 4. Finally, con-
clusions are drawn and future work is discussed in Section 5.

2. Speaker Adaptation Based on MLLR
MLLR computes a set of transformations that will reduce the
mismatch between an initial model set and the adaptation data.
More specifically, MLLR is a model adaptation technique that
estimates a set of linear transformations for the mean and vari-
ance parameters of HMM systems. It generally uses regression
classes that classified the states of HMMs to give different linear
transforms for each states.

The transform matrices used to give a new estimate of the
adapted mean and variance in the constrained MLLR (CMLLR)
[4] are given by

μ̄qt
=H (r)μqt

+ b̃
(r)

(1)

Σ̄qt =H (r)ΣqtH
(r)�

(2)

and the likelihood function is written as follows:

P (o |λ) =
X

q

Y
t

aqt−1qtN (ot|μ̄qt
, Σ̄qt) (3)

where o = (o1, o2, . . . , oT ) is a feature vector of adaptation
data, μqt

and Σqt correspond to the mean vector and covariance
matrix at state qt of the model that learned for recognition, and
aqt−1qt is the state transition probability. The state q is assumed
to belong to regression class r in this expression.

Furthermore, this transform can be written as a feature
space transformation as follows:

ô
(r)
t = A(r)ot + b(r) = W (r)ζ(t) (4)

where ζ is an extended feature vector, and the relation between
model space transformation and feature space transformation as
follows:

N (ot|μ̄qt
, Σ̄qt) = |A(r)|N (ô

(r)
t |μqt

,Σqt) (5)

where the transform matrices W (r) are estimated via EM algo-
rithm.

3. Speaker Adaptation Based on Nonlinear
Spectral Transform

3.1. Speaker Adaptation Using Spectral Transform Based
on GMM

In the spectral transform based on GMMs, to convert spec-
tral feature sequences of a source speaker to that of a target
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speaker, the joint probability of two features are modeled by

GMMs. Let a vector o′t = (o(1)
t , o(2)

t ) be a joint feature vector

of that of the source o(1)
t and that of the target o(2)

t at time t.
Alignment between two feature sequences is obtained with Dy-
namic Programming (DP) matching. where the vector sequence
o′ = (o′1, o

′
2, . . . , o

′
T ) is modeled with GMM to learn the rela-

tion between source and target features. The output probability
of o′ given GMM λ(G) for a spectral transform can be written
as follows:

P (o′ |λ(G))

=
X
m

P (o′, m |λ(G))

=

TY
t=1

MX
mt=1

P (mt |λ(G))P (o′t |mt, λ
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´
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where
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mt
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–
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and mt is the mixture index at time t and μ(1)
mt

and μ(2)
mt

are
the mean vectors at mixture component mt of the source and
target speaker, respectively. Here, Σ(1, 1)

mt
and Σ(2, 2)

mt
corre-

spond to the covariance matrices at mixture component mt of
the source and target speaker and Σ(1, 2)

mt
and Σ(2, 1)

mt
correspond

to the cross covariance matrices. These model parameters can
be estimated via the EM algorithm. In the spectral conver-
sion based on GMMs, the optimal converted feature sequence

o(2) = (o(2)
1 , o(2)

2 , . . . , o(2)
T ) given a source feature sequence

o(1) = (o(1)
1 , o(1)

2 , . . . , o(1)
T ) is obtained by maximizing the fol-

lowing conditional distribution:

P (o(2) |o(1), λ(G)) =

X
m

TY
t=1

h
P (mt |o(1)

t , λ(G))P (o(2)
t |o(1)

t , mt, λ
(G))

i
(8)

This is because the mixture component for the transform
changes depending on the input data by using the posterior
probability given the observation sequence; this technique can
represent the nonlinear transform.

Recognition accuracy is expected to be improved by ap-
plying the spectral transform prior to recognition. However,
training GMMs for the spectral transform requires joint feature
vectors. Moreover, it is impossible to prepare joint feature vec-
tors from observed data in speaker independent models. The
parameter-generation algorithm [5] can be employed to over-
come this problem. Figure 1 summarizes this system. We con-
ducted a preliminary experiment to evaluate this system. How-
ever, the accuracy of recognition could not be improved. This
is because this method did not take account of HMM model
parameters for recognition in the spectral transform.

3.2. Speaker Adaptation Based on Combining Acoustic
Models

In this paper, we propose a speaker adaptation technique based
on a new likelihood function combining HMMs for recogni-
tion with GMMs for spectral transform. The likelihood function

transformation
Recognition
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Speech synthesis
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Figure 1: speaker adaptation based on spectral transform

combining HMMs with GMMs is defined as follows:
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where o(1)
t and o(2)

t correspond to the feature sequences before

and after the transform and P (o(1)
t |o(2)

t , λ(G)) is the posterior

distribution of GMMs. Here, P (o(2)
t |λ(H)) is the likelihood

function of HMMs for recognition, m = (m1, . . . , mT ) is the
mixture index sequence of GMMs, and q = (q1, . . . , qT ) is
the state index sequence of HMMs. In the proposed method,
parameters λ(G) that maximize Equation (9) are estimated.

In equation (9), the transformed feature sequence o(2) is
marginalized out, therefore the likelihood function is defined
as a function only of the input feature sequence o(1). Hence,
the parameters of the proposed model can be estimated from
o(2) without using joint feature sequences. However, to directly
optimize the proposed model involves large computational cost
because a closed form solution cannot be derived due to the nor-
malization term of the posterior distribution P (mt|o(2)

t , λ(G)).
To avoid this problem, we propose the following approximation.

P (mt|o(2)
t , λ(G)) ≈ P (mt|qt, λ

(G)) (10)

Using this approximation, likelihood-function Equation (9) is
written as follows:

P (o(1) |λ)

=

Z X
m

Y
t

[P (mt|qt, λ
(G))P (o(1)

t |o(2)
t , mt, λ

(G))]

×
X

q

Y
t

[P (qt|qt−1, λ
(H))P (o(2)

t |qt, λ
(H))]do(2)

(11)

Although the GMM part (the first two terms) in equation (11) is
a linear transform due to the approximation in equation (10), the
transform derived from equation (11) is still nonlinear, because

the posterior probability of mt depends on o(1)
t . In addition, it
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Figure 2: summary of proposed method system

can represent the dependence of transform parameters on state
as a regression class of MLLR by yielding the dependence on
mixture weight of state qt. Here, the model parameters for each
component of the likelihood function are defined as follows:

P
`
mt|qt, λ

(G)´ = wmtqt (12)

P
`
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t |o(2)
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(G)´
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P
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,Σ(2)

qt

´
(15)

where wmtqt is the mixture weight of GMMs and aqt−1qt is

the state transition probability of HMMs. Here, μ(1) and μ(2)

and Σ(1) and Σ(2) are the mean vectors and covariance matri-
ces of the adaptation speaker and model speaker, respectively,
and Hmt is a transform matrix at the mixture component mt.
Using these parameters, likelihood-function Equation (11) can
be rewritten as follows:

P (o(1) | λ) =X
m,q

Y
t

aqt−1qtwmtqtN (o(1)
t |μ̂mtqt

, Σ̂mtqt) (16)

μ̂mtqt
=μ(1)

mt
+ Hmtμ

(2)
qt

(17)

Σ̂mtqt =Σ(1)
mt

+ HmtΣ
(2)
qt

H�
mt

(18)

It can be seen from Equations (3) and (18) that the pro-
posed model has a similar form to CMLLR with Multi-mixture
HMMs. Figure 2 has a summary of this system. The differ-
ence from CMLLR is that the covariance matrix of the pro-
posed model contains the bias term Σ(1)

mt
and all the mean and

covariance of mixture components are shared in each state. In
other words, the mixture components of the proposed model
are expanded by combining the original Gaussian component of
HMM with the mixture components of GMM. Furthermore, ap-
plying the approximation in Equation (10), the mixture weights

depend on the state index qt. This means that the proposed
model can represent the dependency of the transform matri-
ces on context as well as the regression class of CMLLR. If
the weight of the GMM mixture component corresponding to
the regression class is set to 1.0 and the others are set to 0.0,
the proposed method can represent the same regression class of
CMLLR. Therefore, it can be seen that the proposed method in-
cludes the conventional CMLLR as the model structure. More-
over, soft clustering of regression class can be performed by
estimating the weight parameters based on the ML fashion.

In the adaptation process, the model parameters of GMMs
λ(G) = {wmtqt , μ

(1)
mt

,Σ(1)
mt

, Hmt} are estimated via EM al-
gorithm using adaptation data. The update procedure of model
parameters in the proposed method is summarized as follows:

1. μ(1)
mt

,Σ(1)
mt

and Hmt that maximize likelihood function

P (o(1) | λ) are estimated via EM algorithm by using

adaptation data o(1) = (o(1)
1 , o(1)

2 , . . . , o(1)
T ).

2. Each mean and covariance matrices of expanded mix-
ture components are updated based on Equations (17)
and (18) by using transform matrices Hmt .

3. The mixture weight of each state wmtqt that maximizes

likelihood function P (o(1) | λ) is estimated via the EM
algorithm.

In step 1., assuming Σ(1)
mt

= 0, {μ(1)
mt

, Hmt} can be estimated
by using the same procedure of CMLLR.

4. Experiments
4.1. Speaker Dependent Experiments

For training speaker dependent HMM sets, we used an ATR
Japanese speech database B-set uttered by six male and four
female speakers. Two male speakers were selected; one for
training and one for adaptation (training: MHT and adaptation:
MTK). Each speaker uttered 503 sentences. We used 400 sen-
tences of uttered by speaker MHT for training, and 50 different
sentences by speaker MTK for adaptation, and the remaining
53 sentences by speaker MTK were used for evaluation. The
speech data were down-sampled from 20 to 16 kHz and win-
dowed at a 10-ms frame rate using a 25-ms Blackman window.
Each spectral feature vector consisted of 18 mel-cepstral coef-
ficients and their delta and delta-delta coefficients.

In this experiment, the following two methods were com-
pared.

• MLLR: speaker adaptation based on MLLR. Only the
mean vector transform was used in this experiments. The
number of regression classes was 4, 8, and 16.

• NLST: speaker adaptation based on a Non-Linear Spec-
tral Transform. Only the mean vector transform was
used in this experiments. The initial parameters for the
proposed model are given by MLLR. The number of
mixtures was 4, 8, and 16.

When the number of regression classes in MLLR is equal to
the number of mixtures in NLST, these methods have the same
number of transform matrices in adaptation. Figure 3 plots
the phoneme accuracy while iterating the updates of parame-
ters. The phoneme accuracy without adaptation was 60.71%. It
can be seen that large improvement was not observed in MLLR
adaptation after the second iteration. In contrast, the accuracy
of the proposed method gradually improved by updating GMM
parameters and weights iteratively. When comparing NLST to
MLLR with the same number of transform matrices, NLST out-
performed MLLR under all conditions. This is because the pro-
posed method carried out nonlinear spectral transform by using
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Figure 3: Results for speaker-dependent phoneme recognition
using MLLR and proposed technique with only mean transform
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Figure 4: Results for speaker-independent phoneme recognition
using MLLR and proposed technique with only mean transform

all the transform matrices according to the weights, even though
a single transform matrix was applied to each state based on the
regression class in MLLR.

4.2. Speaker Independent Experiments

For training speaker independent HMM sets, four male and fe-
male speakers were selected from the ATR Japanese speech
database and 400 sentences were used for each speaker in the
training, and 50 different sentences by speaker MTK were used
for adaptation and the remaining 53 sentences by speaker MTK
were used for evaluation. Figure 4 plots the results for speaker-
independent phoneme-recognition. Phoneme accuracy without
adaptation was 84.33%. The results indicated that the proposed
method was also effective for the speaker-independent model.

Additionally, the following two methods with mean and
variance transforms were also compared in this experiment.

• CMLLR: speaker adaptation based on CMLLR. The
number of regression classes was 4, 8, and 16.

• CNLST: speaker adaptation based on a Non-Linear
Spectral Transform. We assumed Σ(1)

mt
= 0 and the ini-

tial parameters for the proposed model were given by
CMLLR in this experiments. The number of mixtures
was 4, 8, and 16.

Figure 5 plots the results for phoneme recognition using CM-
LLR and the proposed method. This figure shows that the pro-
posed method outperforms the conventional CMLLR approach

 89

 90

 91

 92

 93

 94

1 2 3 4 5 6 7

P
h

o
n

e
m

e
 A

c
c
u

ra
c
y
 (

%
)

Iteration

CMLLR 4class
CMLLR 8class

CMLLR 16class
CNLST 4mix.
CNLST 8mix.

CNLST 16mix.

Figure 5: Results for speaker-independent phoneme recognition
using CMLLR and proposed technique with mean and variance
transforms

with mean and variance transforms. Furthermore, the effective-
ness of the variance transform in the proposed method can be
seen by comparing Figures 4 and 5.

5. Conclusions
This paper proposed a speaker adaptation technique based on
a nonlinear spectral transform that was carried out in ML fash-
ion by using weighted multiple transform matrices. The pro-
posed method outperformed conventional MLLR methods in
the phoneme-recognition experiments. Estimating the variance
bias parameters and clustering of the weight parameters will be
future work.
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