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ABSTRACT

This paper describes factor analyzed voice models for realizing
various voice characteristics in the HMM-based speech synthesis.
The eigenvoice method can synthesize speech with arbitrary voice
characteristics by interpolating representative HMM sets. However,
the objective of PCA is to accurately reconstruct each speaker-
dependent HMM set, and this is not equivalent to estimating models
which represent training data accurately. To overcome this problem,
we propose a general speech model which generates speech utter-
ances with various voice characteristics directly. In the proposed
method, the HMM states, factors representing voice characteristics
and contextual decision trees are simultaneously optimized within a
unified framework.

Index Terms— HMM-based speech synthesis, eigenvoice, fac-
tor analysis, expectation maximization algorithm, deterministic an-
nealing EM algorithm

1. INTRODUCTION

To let machines speak naturally like a human, an HMM-based
speech synthesis system has been proposed [1, 2]. The system mod-
els spectrum, pitch and state duration simultaneously in a unified
framework of HMMs and synthesizes speech using parameters gen-
erated from HMM sets. One of the advantages of the system is that
voice characteristics of synthesized speech can be easily changed by
transforming HMM parameters.

The eigenvoice method for HMM based synthesis [3] can syn-
thesize speech with arbitrary voice characteristics by interpolating
representative HMM sets. In this method, a set of speaker-dependent
HMMs is represented by a single large dimensional vector called a
supervector and representative supervectors called eigenvoice vec-
tors are constructed by applying Principal Component Analysis
(PCA). Finally, speech with a desired voice characteristic is gener-
ated by a target HMM set which is reconstructed by interpolating
the eigenvoice vectors using given weights representing factors of
voice characteristics. However, the objective of PCA in the eigen-
voice method is to accurately reconstruct each speaker-dependent
HMM set, and this is not equivalent to estimating models which
represent training data accurately. Furthermore, speaker-dependent
HMMs for all speakers are required with the same decision trees
(parameter tying structures). However, it is sometimes difficult to
collect enough speech data for all speakers.

To overcome these problems, we propose a general speech
model which generates speech utterances with various voice charac-
teristics directly. In this paper, we name the proposed model factor
analyzed voice model (FA-voice model), because the structure of
the proposed method is based on the factor analysis (FA) model
for representing various speaker characteristics. In the proposed
method, the likelihood is directly calculated from speech utterances
of training data, therefore speaker-dependent HMMs are not re-
quired. In the training of the proposed model, the HMM states,

factors representing voice characteristics and contextual decision
trees are simultaneously optimized within a unified maximum like-
lihood (ML) framework based on a single statistical model. This
simultaneous optimization is expected to achieve a better quality of
synthesized speech for a desired voice characteristics.

The parameters of the proposed model can be estimated via
the expectation maximization (EM) algorithm for approximating
the Maximum Likelihood (ML) estimate. However, the exact ex-
pectation step (E-step) is computationally intractable due to the
combination of hidden variables. To derive a feasible algorithm,
we applied the variational EM algorithm [4] to the proposed model.
The variational method approximates the posterior distribution over
the hidden variables by a tractable distribution. However, the EM
algorithm has the problem that the solution converges to a local
optimum and the convergence point depends on the initial model
parameters. This problem causes that estimated model parameters
are not appropriate for training data and the quality of synthesized
speech may be degraded. To overcome this problem, we apply the
deterministic annealing EM (DAEM) algorithm [5] to the training
of the FA voice model.

The rest of the paper is organized as follows. Section 2 describes
the eigenvoice method based on PCA. In Section 3, we propose
the voice generation model based on factor analysis and estimation
method for model parameters using the EM algorithm, and Section
4 describes the DAEM algorithm for estimating the proposed model
parameters. Experimental results are presented in Section 5, and
concluding remarks and future work are presented in the Section 6.

2. EIGENVOICE METHOD BASED ON PCA

In the eigenvoice method for HMM-based speech synthesis, speaker
dependent HMM sets represent voice characteristics of each speaker.
Therefore, mean vectors of these HMM sets are generated from
eingenvoice vectors and these weights. For each of S speaker-
dependent HMM sets, we extract parameters representing all
HMMs. Then, we concatenate all parameters for each speaker
and create a vector of a large dimensionality which is called “su-
pervector.” By applying PCA, S eigenvoice vectors are calculated
from S supervectors. Eigenvoice vectors are called “eigenvoices.”
Using the first L eigenvoices el, L arbitrary weight coefficients λl

for eigenvoices el, l = 1, 2, . . . , L, and a vector μ̄ is a mean vector
of S supervectors, a new supervector μ̂ is calculated as follows:

μ̂ = μ̄ +

LX
l=1

λlel. (1)

Then a new speaker dependent HMM set is reconstructed from the
generated supervector μ̂. It is noted that eigenvoices for speech syn-
thesis should be different from those in speech recognition because
they should capture not only spectrum but also F0 parameters. Var-
ious voice qualities can be synthesized by setting arbitrary weight
coefficients λl.
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Fig. 2. Structure of the FA voice model

3. FACTOR ANALYZED VOICE MODELS

3.1. Factor analysis

The factor analysis (FA) is one of a statistical method for model-
ing the covariance structure of high dimensional data using a small
number of latent variables. In the FA model, observation variable o
is generated by following equation:

o =Wa + n, (2)

where a is a Q dimensional latent variable, n is a noise vector, and
W = [w1, w2, . . . , wQ], wi = [wi1, wi2, . . . , wiD]� is a D × Q
matrix known as a factor loading matrix. The structure of the FA
model is shown in Figure 1.

Applying the FA model as speech generation model, acoustic
feature vectors of speaker dependent utterance o = [o1, o2, . . . , oD]�

are generated from a common latent variable a and noise vector n
which are inherent in each variable given by

a ∼ N (0, I), n ∼ N (μ,Σ), (3)

where I is identity matrix. In this condition, observation sequence
o is generated from

P (o | Λ)=

Z
P (o | a,Λ)P (a | Λ)da, (4)

P (o | a,Λ)=N (o | Wa + μ,Σ) . (5)

where Λ is model parameter.

3.2. FA voice models
In the factor analyzed voice models, the loading matrix W corre-
sponds to eigenvoice vectors and we assume that the loading matrix
and noise vector are generated from HMM sets. Figure 2 shows
the proposed model structure. In the proposed models, eigenvoice

vectors can convert their structure according to various input data.
Hence, this model receives states changing similarly to HMM. Fur-
thermore, HMM parameters are generated from liner combination
of eigenvoice vectors. As a result, this model is feature generating
model with liner transformation.

In the FA voice model, an utterance observation sequence of
speaker r is generated from following expression:

o(r) = W
S(r)a

(r) + n
S(r) , (6)

where o(r) is an observation sequence of speaker r, a(r) is latent
variable, and S(r) is HMM path. The loading matrix W

S(r) and a
noise vector n

S(r) depend on state transition. The latent variable is
prepared for each speaker and represents speaker qualities.

In this model, the likelihood function for utterances of all speak-
ers is written as

P (o | Λ) =
Y

r

X
S(r)

Z
P (o(r) | a(r), S(r),Λ)

×P (a(r) | Λ)P (S(r) | Λ)da(r), (7)

P (o(r) | a(r), S(r),Λ)

= N (o(r) | W
S(r)a

(r) + μ
S(r) ,ΣS(r)), (8)

where Λ is model parameter and μ
S(r) , Σ

S(r) are mean and vari-
ance of noise vector n

S(r) .

3.3. EM algorithm for FA voice models
In the proposed, model parameters are estimated by the expecta-
tion maximization (EM) algorithm to maximize the log-likelihood
for given training data. Q-function of the EM algorithm is given by

Q(Λ,Λ′) =
X

r

X
S(r)

Z
P (a(r), S(r) | o(r),Λ)

× ln P (o(r), a(r), S(r) | Λ′)da(r), (9)

where Λ′ is estimated model parameter. Maximizing Q-function,
the log-likelihood is guaranteed to increase or remain unchanged.
However, calculating Q-function is very hard, because it needs the
summation for all paths S(r) and the integral over the latent variable
a(r). Therefore, we introduce the variational methods to the EM
algorithm.

In the variational EM algorithm, we approximate the pos-
terior distribution in Eq. (9) by using an arbitrary distribution
Q(a(r), S(r)) and define the lower bound of the log-likelihood:

ln P (o | Λ)

= ln
X

r

X
S(r)

Z
P (o(r), a(r), S(r) | Λ)da(r)

= ln
X

r

X
S(r)

Z
Q(a(r), S(r))

P (o(r), a(r), S(r) | Λ)

Q(a(r), S(r))
da(r)

≥
X

r

X
S(r)

Z
Q(a(r), S(r)) ln

P (o(r), a(r), S(r) | Λ)

Q(a(r), S(r))
da(r)

=
X

r

X
S(r)

Z
Q(a(r), S(r)) ln P (o(r), a(r), S(r) | Λ)da(r)

−
X

r

X
S(r)

Z
Q(a(r), S(r)) ln Q(a(r), S(r))da(r)

= F(Q,Λ), (10)
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where Jensen’s inequality is applied. The difference between
ln P (o | Λ) and F is given by Kullback-Leibler divergence between

Q(a, S) and the true posterior distribution P (a(r), S(r) | o(r),Λ).

The E-step computes the posterior probabilities Q(a(r), S(r)) which
maximizes F .

In this paper, we assume the following constraints:

Q(a(r), S(r)) = Q(a(r))Q(S(r)), (11)X
S(r)

Q(S(r)) = 1 ,

Z
Q(a(r))da = 1. (12)

Based on these constraints, we use Lagrange multiplier method and
obtain following Q(a(r)) and Q(S(r)):

Q(a(r))

∝ P (a(r) | Λ) exp
D
log P (o(r) | a(r), S(r),Λ)

E
Q(S(r))

, (13)

Q(S(r))

∝ P (S(r) | Λ) exp
D
log P (o(r) | a(r), S(r),Λ)

E
Q(a(r))

, (14)

where 〈·〉Q represents an expectation with respect to a distribution
Q. The structure of Eq. (14) includes an expectation of a latent
variable. Furthermore, Eq. (13) can be transformed into a Gaussian

distribution. The mean μ
(r)
a and variance Σ

(r)
a of Eq. (13) are given

by

μ(r)
a =Σ(r)

a

 X
k

W �
k Σ−1

k (U
(r)
k − N

(r)
k μk)

!
, (15)

Σ(r)
a =

 
I +

X
k

N
(r)
k W �

k Σ−1
k Wk

!−1

. (16)

We define following equations:

N
(r)
k =

X
t

D
S

(r)
t , k

E
, U

(r)
k =

X
t

D
S

(r)
t , k

E
o

(r)
t , (17)

where 〈S(r)
t , k〉 is a probability of staying in state k at time t given

observation o.
In the M-step, the model parameter Λ is calculated for maxi-

mizing the lower bound F . For simplifying, we define the following
equations.

ā(r) =[ 1 a(r)� ]�, (18)

W̄s(r) =[ μ
S(r) W

S(r) ], (19)

The lower bound F(Q,Λ) is partial differentiated about each model
parameter and we obtain following equations for re-estimation:

W̄k =

 X
r

U
(r)
k

D
ā(r)�

E! X
r

N
(r)
k

D
ā(r)ā(r)�

E!−1

, (20)

Σk =
1X

r

N
(r)
k

X
r

„
V

(r)
k − U

(r)
k

D
ā(r)

E�
W̄ �

k

«
, (21)

where

V
(r)

k =
X

t

D
S

(r)
t , k

E
o

(r)
t o

(r)�
t , (22)

〈ā(r)〉 =
h

1 μ(r)�
a

i�
, (23)

〈ā(r)ā(r)�〉 =

"
1 μ

(r)�
a

μ
(r)
a Σ

(r)
a + μ

(r)
a μ

(r)�
a

#
. (24)

The variational EM algorithm iteratively maximizes F with respect
to the Q and Λ holding the other parameters fixed:

(E step) : Q(k+1) = arg max
Q

F(Q,Λ(k)), (25)

(M step) : Λ(k+1) = arg max
Λ

F(Q(k+1),Λ), (26)

In this procedure, the lower bound F is guaranteed to increase in-
stead of the value of the Q-function.

3.4. Context clustering
The proposed models can make arbitrary shared structure for each
model. Therefore, we apply some questions to each node for increas-
ing the log-likelihood and make clusters like HMM. In this paper, we
make each model has same structure. In this clustering method, it is
easy to re-estimate model parameters simultaneously because each
model have a same structure. Calculating the log-likelihood directly
costs a lot of computational cost. Hence, we use the lower bound of
the log-likelihood F in Eq. (10).

4. ANNEALING BASED ESTIMATION ALGORITHM FOR
FA VOICE MODELS

In this paper, we propose the DAEM algorithm [5] as annealing
based estimation algorithm. Applying the DAEM algorithm to the
FA voice model, the free energy function Lβ can be defined as

Lβ =− 1

β
ln
X

r

X
S(r)

Z
P
“
o(r), a(r), S(r)|Λ

”β

da(r), (27)

where 1
β

is called “temperature” and β is temperature parameter.
Since the negative free energy function corresponds to the log-
likelihood function, the lower bound of −Lβ is defined as

−Lβ

≥ 1

β

X
r

X
S(r)

Z
Qβ(a(r), S(r)) ln P (o(r), a(r), S(r) | Λ)βda(r)

− 1

β

X
r

X
S(r)

Z
Qβ(a(r), S(r)) ln Qβ(a(r), S(r))da(r)

= Fβ(Q,Λ), (28)

where Qβ(a(r), S(r)) is the approximated posterior distribution

similarly to the variational EM algorithm. Qβ(a(r)) can be derived

as the Gaussian distribution which has following mean μ
(r)
aβ and

variance Σ
(r)
aβ :

μ(r)
aβ

=βΣ(r)
aβ

 X
k

W �
k Σ−1

k (U
(r)
k − N

(r)
k μk)

!
, (29)

Σ(r)
aβ

=
1

β

 
I +

X
k

N
(r)
k W �

k Σ−1
k Wk

!−1

. (30)

These equations have the structure which adds the temperature pa-
rameter β to the approximated posterior distribution Q(a(r)) in the
variational EM algorithm. Furthermore, Fβ is partial differentiated
by model parameter and we can obtain a following equation:

∂Fβ

∂Λ
=

∂F
∂Λ

= 0. (31)

This equation equivalent to the updating equation of the variational
EM algorithm. In the DAEM algorithm, the temperature parameter
β is gradually increased while iterating the EM-steps at each temper-
ature. When 1

β
is set to an initial temperature β � 0, the EM-steps

may achieve a single global maximum of Fβ . Finally at the β = 1,
Fβ is identical with the variational EM algorithm.
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5. EXPERIMENTS

5.1. Experimental conditions

For training speaker independent HMM sets, we used ATR Japanese
speech database B-set uttered by six male and four female speakers.
Nine speakers excluding one male speaker were used for the exper-
iment. Each speaker uttered 503 sentences: different 50 sentences
were used for each speaker in the training, and the remaining 53 sen-
tences were used for evaluation. The speech data was down-sampled
from 20kHz to 16kHz, windowed at a 5-ms frame rate using a 25-
ms Blackman window. Feature vectors consisted of spectral and F0

feature vectors. Each spectral feature vector consisted of 24 mel-
cepstral coefficients and their delta and delta-delta coefficients. The
F0 parameter vectors consisted of log F0, its delta and delta-delta.
A left-to-right, 5-state, MSD-HMM with no skip structure was used.
The number of eigenvoice vectors and the number of factors in the
proposed method are both two. For the DAEM algorithm, the tem-
perature parameter β was updated by

β(i) =

„
i

20

«2

, (i = 0, 1, . . . , 20), (32)

where i denotes the iteration number. At each temperature, 20 EM-
steps were conducted.

To evaluate the performance of the FA voice models, the follow-
ing four training methods were compared:

• “PCA”: the PCA based eigenvoice model with the model
structure obtained by speaker independent HMMs.

• “PCA STC”: the PCA based eigenvoice model with the
model structure obtained by STC [6].

• “FA EM”: the FA voice model initialized by speaker inde-
pendent HMMs, and the EM algorithm was used.

• “FA DAEM”: the FA voice model initialized by speaker in-
dependent HMMs, and the DAEM algorithm was used.

5.2. Experimental results
A subjective listening test was conducted to evaluate quality of syn-
thesized speech. The test compared the naturalness of synthesized
speech by the mean opinion score (MOS) test method. The sub-
jects were 10 Japanese graduate students. Speech samples were ran-
domly chosen from the evaluation sentences. Voice characteristics
of speech samples were average voice and that of nine speakers in
the training data, and two sentences for each characteristic, in total
20 sentences were prepared for each subject. In the MOS test, after
listening to each test sample, the subjects were asked to assign it a
5-point naturalness score (5:excellent, 4:good, 3:fair, 2:poor, 1:bad).

Figure 3 plots the experimental results. It can be seen from
the figure that the proposed methods “FA EM” and “FA DAEM”
achieved better subjective scores than the conventional methods
“PCA” and “PCA STC.” Since the FA voice models were esti-
mated from training data directly, appropriate model parameters
were obtained for representing speech utterances accurately. It is
also the reason of the improvement that the context clustering was
performed based on the same criterion as the parameter estimation.
It can also be seen that “FA DAEM” obtained a better subjective
score than “FA EM.” Because the DAEM algorithm can improve the
local maxima problem. These results clearly show the effectiveness
of the proposed method in speech synthesis and the DAEM algo-
rithm is more effective than the EM algorithm for estimating model
parameters.
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Fig. 3. Mean opinion scores of synthesized speech with 95% confi-
dence intervals by the conventional and proposed methods

6. CONCLUSION

This paper proposed the FA voice model for HMM-based speech
synthesis. It can synthesize speech with various voice characteris-
tics. This method can estimate more appropriate model parameters
than eingevoice method based on PCA. We also derived the EM and
DAEM algorithm for the proposed method. In the experiments, the
proposed method achieved a higher performance than the conven-
tional eigenvoice method. Furthermore, the DAEM algorithm im-
proved the performance of the proposed method. Experiments on
larger datasets and evaluation of synthesized speech with various
voice characteristics will be future work.
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